

Water Resources Data New Jersey Water Year 1982

Volume 2. Delaware River Basin and Tributaries to Delaware Bay

U.S. GEOLOGICAL SURVEY WATER-DATA REPORT NJ-82-2
Prepared in cooperation with the New Jersey
Department of Environmental Protection
and with other agencies

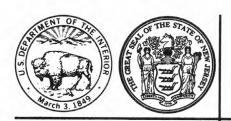
CALENDAR FOR WATER YEAR 1982

									1	981											
		OC	товн	ER					NOV	/EMI	BER					DE	CEM	BER			
S	S M	T	W	Т	F	S	S	М	Т	W	Т	F	S	S	М	Т	W	Т	F	S	
1	1 1 8 1	2 1:	3 14 0 21	15	3 9 5 16 2 23	2 3 9 10 5 17 8 24 9 31	15	3 9 5 16 2 23	17 24	11 18	12	2 13	21	1:	6 7 3 14 0 21 7 28	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 9 5 16 2 2 2 3	9 10 5 17 8 20	7 18	1 12	
-									19	982											
	-	JAN	IUAR	Y					FEB	RUA	RY					MA	RCH				- Hall
S	М	Т	W	Т	F	S	S	М	T	W	T	F	S	S	M	Т	W	Т	F	S	
1	0 11 7 18 4 25	l 12	13 20	14 21	8 15 22	2 9 16 23 30	7	8 15 22	9	10 17	11 18	12 19	6 13 20 27	7 14 21	1 8 15 22 29	9 16 23	10 17 24	11 18 25	12	13 20	
		A	PRI	L]	MAY						J	UNE				
S	M	Т	W	Т	F	S	S	M	Т	W	Т	F	s	S	M	T	W	Т	F	S	
18	1 12	20	7 14 21 28	8 15 22	16 23	10 17 24	9 16 23	10 17	11 18	12 19	20	21	22	13 20	7 14 21 28	8 15 22	9 16 23	10 17 24	18	12 19	
		J	ULY						AUC	SUST					SE	EPTE	EMBI	ER			
S	M	Т	W	Т	F	S	S	M	Т	W	T	F	S	S	M	T	W	Т	F	S	
11 18	12 19	13 20	14 21	8 15 22	9 16 23	3 10 17 24 31	22	9 16	10 17 24	11 18	12 19	13 20	14 21	12 19	13	14 21	8 15 22	9 16 23	3 10 17 24	11 18	

United States Department of the Interior

GEOLOGICAL SURVEY
Water Resources Division
430 Federal Building
402 E. State Street
Trenton, New Jersey
08608

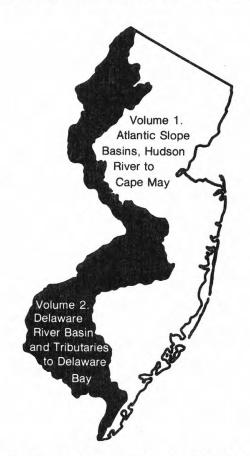
I am pleased to announce the release of our annual report, "Water Resources Data for New Jersey, Water Year 1982." This report was prepared by the U.S. Geological Survey, in cooperation with the State of New Jersey and several local and federal government agencies.


Once again this year, the report is issued in two volumes: Volume 1.--Atlantic Slope Basins, Hudson River to Cape May; Volume 2.--Delaware River Basin and Tributaries to Delaware Bay.

The report contains records of stream discharge and water-quality measurements, elevations of lakes and reservoirs, major water-supply diversions, and tidal elevations. Also included are records of sediment concentrations and records of ground-water quality and ground-water levels. The ground-water level section was expanded this year and now includes 72 sites, most with 5-year hydrographs. Data for 28 sites with automatic water-level recorders and 44 sites with water-level extremes recorders are presented in tabular and graphic form. Special sections are devoted to low-flow and crest-stage data and summaries of tidal crest elevations in the New Jersey estuaries and intracoastal waterways.

Copies of this report are for sale through the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22161. When ordering, refer to U.S. Geological Survey Water-Data Report NJ-82-1 (for Volume 1) and NJ-82-2 (for Volume 2). For further information on this report, please notify me at the above address or telephone (609) 989-2162.

Sincerely, Milliam R. Bauersfeld, Chief


William R. Bauersfeld, Chief Hydrologic Records Section

Water Resources Data New Jersey Water Year 1982

Volume 2. Delaware River Basin and Tributaries to Delaware Bay

by W.R. Bauersfeld, E.W. Moshinsky, E.A. Pustay, and F.L. Schaefer

U.S. GEOLOGICAL SURVEY WATER-DATA REPORT NJ-82-2 Prepared in cooperation with the New Jersey Department of Environmental Protection and with other agencies

UNITED STATES DEPARTMENT OF THE INTERIOR

JAMES G. WATT, Secretary

GEOLOGICAL SURVEY

Dallas L. Peck, Director

For additional information write to

District Chief, Water Resources Division
U.S. Geological Survey
Room 430, Federal Building
402 East State Street
Trenton, New Jersey 08608

PREFACE

This volume of the annual hydrologic data report of New Jersey is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by State, local, and Federal agencies, and the private sector for developing and managing our Nation's land and water resources. Hydrologic data for New Jersey are contained in 2 volumes:

Volume 1. Atlantic Slope Basins, Hudson River to Cape May Volume 2. Delaware River Basin and Tributaries to Delaware Bay

This report is the culmination of a concerted effort by dedicated personnel of the U.S. Geological Survey who collected, compiled, analyzed, verified, and organized the data, and who typed, edited, and assembled the report. In addition to the authors, who had primary responsibility for assuring that the information contained herein is accurate, complete, and adheres to Geological Survey policy and established guidelines, the following individuals contributed significantly to the collection, processing, and tabulation of the data:

E. Dorr R.D. Schopp
T.A. Chepiga W.D. Jones
G.R. Kish G.M. Farlekas

S.J. Perry and I.C. Heerwagen typed the text of the report.

This report was prepared in cooperation with the State of New Jersey and with other agencies under the general supervision of D.E. Vaupel, District Chief, New Jersey.

REPORT DOCUMENTATION PAGE	1. REPORT NO. USGS/WRD/HD-82-057	2.	3. Recipient's Accession No.	
4. Title and Subtitle Water Resources Data Volume 2. Delaware	5. Report Date June 1983			
		·	6.	
7. Author(s) W.R. Bauersfeld, E.	W. Moshinsky, E.A. Pusta	y, F.L. Schaefer	8. Performing Organization Rept. No. USGS-WRD-NJ-82-2	
9. Performing Organization Name at U.S. Geological Surv	nd Address vey, Water Resources Divi	Ision	10. Project/Task/Work Unit No.	
Room 430 Federal But Trenton, New Jersey			11. Contract(C) or Grant(G) No. (C) (G)	
	vey, Water Resources Divi	ision	13. Type of Report & Period Covered Annual - Oct. 1, 1981	
Room 430 Federal But			to Sept. 30, 1982	
Trenton, New Jersey	08608		14.	
15. Supplementary Notes Prepared in cooperate and with other agence	tion with the New Jersey	Department of Enviro	onmental Protection	

Water resources data for the 1982 water year for New Jersey consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground water. This volume of the report contains discharge records for 21 gaging stations; tide summaries for 3 stations; stage and contents for 16 lakes and reservoirs; water quality for 58 surfacewater sites and 78 wells; and water levels for 23 observation wells. Also included are data for 27 crest-stage partial-record stations, 7 tidal crest-stage gages, and 26 low-flow partial-record stations. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements. These data represent that part of the national water data system operated by U.S. Geological Survey and cooperating State and Federal agencies in New Jersey.

17. Document Analysis a. Descriptors *New Jersey, *Hydrologic data, *Surface water, *Ground water, *Water quality, Flow rate, Gaging stations, Lakes, Reservoirs, Chemical analyses, Sediments, Water temperatures, Sampling sites, Water Levels, Water Analyses.

b. Identifiers/Open-Ended Terms

c. COSATI Field/Group

18. Availability Statemen: No restriction on distribution. This report may be purchased from: National	19. Security Class (This Report) Unclassified	21. No. of Pages 209
Technical Information Service, Springfield, VA 22161	20. Security Class (This Page) Unclassified	22. Price

CONTENTS	V
	Page
Preface. List of surface-water stations, in downstream order, for which stations of ground-water stations, by county, for which records Introduction. Cooperation. Acknowledgments. Summary of hydrologic conditions. Definition of terms. Downstream order and station number. Numbering system for wells and miscellaneous sites. Special networks and programs. Explanation of stage and water-discharge records. Collection and computation of data. Accuracy of field data and computed results. Publications. Other data available. Records of stage or discharge collected by agencies other Explanation of water-quality records. Collection and examination of data. Water temperatures. Sediment. Remark codes for water-quality data. Publications. Explanation of ground-water level records. Collection of the data. Publications. Selected references. Publications on techniques of water-resources investigation. Surface-water records. Discharge at partial-record stations and miscellaneous site: Low-flow partial-record stations. Crest-stage partial-record stations. Miscellaneous sites. Tidal crest-stage stations. Ground-water level records. Ground-water records. Ground-water records. Ground-water records. Ground-water records. Ground-water level records.	Page III ch records are published. are published. VI than the Geological Survey than the Geological Survey 11 12 13 14 15 17 17 17 17 17 18 18 18 18
Quality of ground-water records	
ILLUSTRATI	
- I DESCRIPTION OF THE PROPERTY OF THE PROPERT	
 Monthly streamflow at key gaging stations Annual mean*discharge at key gaging stations Monthly ground-water levels at key observati Map showing location of gaging stations, and Map showing location of low-flow and crest-s 	11 20 21 20 21 21 22 22 23 24 24 25 26 26 26 27 27 28 28 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20
TABLES	
TABLES	
Table 1. Degrees Celsius (°C) to degrees Fahrenheit (°F) 2. Water-supply paper numbers, surface-water quali 3. Water-supply paper numbers, ground-water level Factors for converting Inch-pound units to Metr	ty records, water years 1945-70

[Letter after station name designates type of data: (d) discharge, (c) chemical, (m) microbiological, (e) elevation, gage height or contents, (t) water temperature, (s) sediment]

	Pogo
MAURICE RIVER BASIN	Page
Maurice River at Norma (domts) Menantico Creek near Millville (d)	26 32
Cohansey River at Seeley (dcm)	33 36
DELAWARE RIVER BASIN Delaware River at Port Jervis, NY (dt)	37
Neversink River at Godeffroy, NY (d)	40
Big Flat Brook at Tuttles Corner (cm)	42
Flat Brook at Flatbrookville (d)	45
Delaware River at Portland, PA (cm)	46 48
Paulins Kill at Blairstown (dcm)	50 53
Paulins Kill at mouth. at Columbia (cm)	54 56
Delaware River near Richmond, PA (cm)Pequest River at Pequest (d)	57
Beaver Brook near Belvidere (cm)Pequest River at Belvidere (cm)	58 59
Delaware River at Belvidere (d)	61 62
Lopatcong Creek at Phillipsburg (cm)Pohatcong Creek at New Village (cm)	64
Pohatcong Creek at Carpentersville (cm)	68
Musconetcong River at outlet of Lake Hopatcong (cm)	70 72
Musconetcong River at Beattystown (cm)	74 76
Musconetcong River at Riegelsville (cm)	77
Harihokake Creek near Frenchtown (cm)	80 81
Delaware River at Frenchtown (cm)	82
Lockatong Creek at Raven Rock (cm)	83 84
Wickecheoke Creek at Stockton (cm)	86 87
Delaware River at Lambertville (cm)	88
Delaware River at Trenton (dtcsm)	90
Assunpink Creek at Carsons Mills (cm)	100
Assunpink Creek at Trenton (d)	102
Crosswicks Creek at Groveville (cm)	106
Doctors Creek at Rt. 130, near Yardville (cm)	110 112
Assiscunk Creek near Columbus (cm)	113
Assiscunk Creek near Burlington (cm)	114
South Branch Rancocas Creek at Retreat (cm)South Branch Rancocas Creek at Vincentown (cm)	117 119
North Branch Rancocas Creek at Browns Mills (cm)	121
McDonalds Branch in Lebanon State Forest (dtcms)	123 130
Delaware River at Palmyra (e)Pennsauken Creek:	133
North Branch Pennsauken Creek near Moorestown (cm)	134
South Branch Pennsauken Creek at Cherry Hill (dcm)	136 139
Cooper River at Kirkwood (cm)	141
Cooper River at Haddonfield (d)	145
Big Timber Creek: South Branch Big Timber Creek at Blackwood Terrace (cm)	147
North Branch Big Timber Creek at Glendora (cm)	149
Mantua Creek at Pitman (cm)	151 153
Raccoon Creek near Mullica Hill (cm)	155 157
Oldmans Creek at Porches Mill (cm)	159 160
Salem River at Woodstown (dcm)	161 163
Diversions and withdrawals in Delaware River basin	

Page CROUND-MATER LEVEL RECORDS SURLINGTON COUNTY Lebanon State Forest 23-D.	GROUND WATER STATIONS, BY COUNTY, FOR WHICH RECORDS ARE PUBLISHED	VII
BURLINGTON COUNTY		Page
BURLINGTON COUNTY		
Lebanon State Forest 23-D. 181 Medford 4 182 Medford 5 183 Medford 1 184 Medford 2 186 Millingbore 2 186 Willingbore 1 187 Rhodia Corp. 1 187 Rhodia Corp. 1 187 Rhodia Corp. 1 187 Rhodia Corp. 1 187 CAPE MAY COUNTY Elm Tree Farm 2 189 Elm Tree Farm 3 199 Hutton Hill 1 191 CAPE MAY COUNTY Jones Island 2 192 Sheppards 1 195 GLOUGESTER COUNTY Shell Chemical 5 195 Eagle Point 3 197 HUNTERDON COUNTY Bird 98 SALEM COUNTY Salem 1 197 HUNTERDON COUNTY Salem 1 197 HUNTERDON COUNTY Salem 1 198 SALEM COUNTY Salem 1 200 SALEM COUNTY Salem 1 200 SALEM COUNTY HOFT SALEM 2 201 SALEM COUNTY HOFT SALEM 2 201 MARREN COUNTY HOFT SALEM 2 203 QUALITY OF GROUND—WATER RECORDS Cameden County 2 204 Cape May County 2 204	GROUND-WATER LEVEL RECORDS	
Lebanon State Forest 23-D. 181 Medford 4 182 Medford 5 183 Medford 1 184 Medford 2 186 Millingbore 2 186 Willingbore 1 187 Rhodia Corp. 1 187 Rhodia Corp. 1 187 Rhodia Corp. 1 187 Rhodia Corp. 1 187 CAPE MAY COUNTY Elm Tree Farm 2 189 Elm Tree Farm 3 199 Hutton Hill 1 191 CAPE MAY COUNTY Jones Island 2 192 Sheppards 1 195 GLOUGESTER COUNTY Shell Chemical 5 195 Eagle Point 3 197 HUNTERDON COUNTY Bird 98 SALEM COUNTY Salem 1 197 HUNTERDON COUNTY Salem 1 197 HUNTERDON COUNTY Salem 1 198 SALEM COUNTY Salem 1 200 SALEM COUNTY Salem 1 200 SALEM COUNTY HOFT SALEM 2 201 SALEM COUNTY HOFT SALEM 2 201 MARREN COUNTY HOFT SALEM 2 203 QUALITY OF GROUND—WATER RECORDS Cameden County 2 204 Cape May County 2 204	BURLINGTON COUNTY	
Medford 4 182 Medford 5 183 Medford 1 184 Medford 2 185 Willingboro 2 186 Willingboro 1 187 Rhodia Corp. 1 188 CAMDEN COUNTY 189 Elm Tree Farm 2 189 Elm Tree Farm 3 190 Higbee Beach 3 192 CUMBERLAND COUNTY 191 Jones Island 2 193 Orange Street 194 Sheppards 1 195 GLOUCESTER COUNTY 195 Shell Chemical 5 196 Eagle Point 3 197 HUNTERDON COUNTY 198 Bird 198 SALEM COUNTY 198 Salem 1 199 Salem 3 200 Salem 3 200 Salem 3 200 Salem 1 201 WARREN COUNTY 400 Hoffman LaRoche 4 203 QUALITY OF GROUND-WATER RECORDS 204 Camden County 204 Camberland County 204 Cumberland County 204 Cumberland County 205	Jehanon State Forest 22-D	181
Medford 5. 183 Medford 1. 184 Medford 2. 185 Willingboro 2. 186 Willingboro 1. 187 Rhodia Corp. 1. 187 CAMDEN COUNTY 188 Elm Tree Farm 2. 189 Elm Tree Farm 3. 190 Hutton Hill 1. 191 CAPE MAY COUNTY 192 CUMBERLAND COUNTY 193 Orange Street. 194 Sheppards 1. 195 GLOUCESTER COUNTY 196 Shell Chemical 5. 196 Eagle Point 3. 197 HUNTERDON COUNTY 198 SALEM COUNTY 198 SALEM COUNTY 198 Salem 1. 200 Salem 2. 201 Point Airy. 202 WARREN COUNTY 203 WHOTERDON LaRoche 4. 203 QUALITY OF GROUND-MATER RECORDS 204 Camberland County. 204 Cape May County. 204 Cumberland County. 204 Cumberland County. 204 Cumberland County. 204	MARONA II	
Medford 1. 184 Medford 2. 185 Willingboro 2. 186 Willingboro 1. 187 Rhodia Corp. 1. 188 CAMDEN COUNTY 188 Elm Tree Farm 2. 189 Elm Tree Farm 3. 190 Hutton Hill 1. 191 CAPE MAY COUNTY 191 Higbee Beach 3. 192 CUMBERLAND COUNTY 193 Jornes Island 2. 193 Orange Street. 194 Sheppards 1. 195 GLOUCESTER COUNTY 195 Eagle Point 3. 197 HUNTERDON COUNTY 196 Balem 1. 197 HUNTERDON COUNTY 198 SALEM COUNTY 198 Salem 2. 200 Salem 3. 200 Salem 2. 201 Point Airy 202 WARREN COUNTY 202 Morney Graden County. 203 Camberland County. 204 Cumberland County. 204 Cumberland County. 204 <td></td> <td></td>		
Medford 2. 185 Willingboro 1. 186 Willingboro 1. 187 Rhodia Corp. 1. 187 CAMDEN COUNTY 188 Elm Tree Farm 2. 189 Elm Tree Farm 3. 190 Mutton Hill 1. 191 CAPE MAY COUNTY 192 CUMBERLAND COUNTY 192 CUMBERLAND COUNTY 194 Sheppards 1. 195 GLOUCESTER COUNTY 195 GLOUCESTER COUNTY 196 Eagle Point 3. 197 HUNTERDON COUNTY 198 SALEM COUNTY 198 Salem 1. 199 Salem 2. 200 Salem 3. 200 Salem 2. 201 VARREN COUNTY 202 WARREN COUNTY 203 QUALITY OF GROUND-WATER RECORDS 204 Camden County. 204 Cape May County. 204 Cumberland County. 204 Cumberland County. 205		
Willingboro 2		
Willingboro 1. 187 Rhodia Corp. 1. 188 CAMDEN COUNTY Elm Tree Farm 2. 189 Elm Tree Farm 3. 190 Hutton Hill 1. 191 CAPE MAY COUNTY Higbee Beach 3. 192 CUMBERLAND COUNTY Jones Island 2. 193 Orange Street 194 Sheppards 1. 195 GLOUCESTER COUNTY Shell Chemical 5. 195 Eagle Point 3. 197 HUNTERDON COUNTY Bird 198 SALEM COUNTY Bird 198 SALEM COUNTY Salem 1. 198 SALEM COUNTY Salem 3. 200 Salem 2. 201 Point Airy 202 WARREN COUNTY Hoffman LaRoche 4. 203 QUALITY OF GROUND-WATER RECORDS Camben Gounty. 204 Cape May County 3. 204 Cape May County 3. 205 Camben Gounty 4. 205 Camben Gounty 5. 204 Cape May County 6. 204 Cape May County 6. 204 Cape May County 7. 205 Cape May County 7. 205 Cape May County 7. 205 Cape May County 7. 206 Cape May County 9. 206 Cape M		
Rhodia Corp. 1. 188 CAMPEN COUNTY Elm Tree Farm 2. 189 Elm Tree Farm 3. 190 Hutton Hill 1. 191 CAPE MAY COUNTY Higbee Beach 3. 192 CUMBERLAND COUNTY Jones Island 2. 193 Orange Street. 193 Sheppards 1. 195 GLOUCESTER COUNTY Shell Chemical 5. 195 Eagle Point 3. 197 HUNTERDON COUNTY Bird. 198 SALEM COUNTY Salem 1. 198 SALEM COUNTY Salem 1. 199 SALEM COUNTY Salem 1. 200 WARREN COUNTY Hoffman LaRoche 4. 200 WARREN COUNTY Hoffman LaRoche 4. 200 QUALITY OF GROUND-WATER RECORDS Camedem County. 204 Cape May County. 204	Willingboro 2	
CAMDEN COUNTY Elm Tree Farm 2. 189 Elm Tree Farm 3. 190 Mutton Hill 1. 191 CAPE MAY COUNTY Higbee Beach 3. 192 CUMBERLAND COUNTY Jones Island 2. 193 Orange Street. 194 Sheppards 1. 195 GLOUCESTER COUNTY Shell Chemical 5. 196 Eagle Point 3. 197 HUNTERDON COUNTY Bird. 198 SALEM COUNTY Salem 1. 198 SALEM COUNTY Salem 1. 199 Salem 3. 200 Salem 2. 201 Point Airy. 202 WARREN COUNTY Hoffman LaRoche 4. 203 QUALITY OF GROUND-WATER RECORDS Camedem County. 204 Cape May County. 204		
Elm Tree Farm 2	Rhodia Corp. 1	188
Elm Tree Farm 2		
Elm Tree Farm 3		
Hutton Hill 1	Elm Tree Farm 2	189
Hutton Hill 1	Elm Tree Farm 3	190
CAPE MAY COUNTY Higbee Beach 3. 192 CUMBERLAND COUNTY Jones Island 2. 193 Orange Street. 194 Sheppards 1. 195 GLOUCESTER COUNTY Shell Chemical 5. 196 Eagle Point 3. 197 HUNTERDON COUNTY Bird. 198 SALEM COUNTY Salem 1. 198 SALEM COUNTY Salem 3. 200 Salem 2. 201 Point Airy 201 WARREN COUNTY HOffman LaRoche 4. 203 QUALITY OF GROUND-WATER RECORDS Camden County. 204 Cape May County. 204 Cape May County. 204 Cape May County . 204		
Higbee Beach 3. 192 CUMBERLAND COUNTY Jones Island 2. 193 Orange Street. 194 Sheppards 1. 195 GLOUCESTER COUNTY Shell Chemical 5. 196 Eagle Point 3. 197 HUNTERDON COUNTY Bird. 198 SALEM COUNTY Salem 1. 199 Salem 3. 200 Salem 2. 201 Point Airy. 201 WARREN COUNTY Hoffman LaRoche 4. 203 QUALITY OF GROUND-WATER RECORDS Camden County. 204 Cape May County. 204		
Higbee Beach 3. 192 CUMBERLAND COUNTY Jones Island 2. 193 Orange Street. 194 Sheppards 1. 195 GLOUCESTER COUNTY Shell Chemical 5. 196 Eagle Point 3. 197 HUNTERDON COUNTY Bird. 198 SALEM COUNTY Salem 1. 199 Salem 3. 200 Salem 2. 201 Point Airy. 201 WARREN COUNTY Hoffman LaRoche 4. 203 QUALITY OF GROUND-WATER RECORDS Camden County. 204 Cape May County. 204	CAPE MAY COUNTY	
CUMBERLAND COUNTY Jones Island 2	Higher Beach 2	100
Jones Island 2	nigbee beach 3	192
Jones Island 2	CUMPEN AND COUNTY	
Orange Street		9.35
Sheppards 1		
GLOUCESTER COUNTY Shell Chemical 5		
Shell Chemical 5	Sheppards 1	195
Shell Chemical 5		
Eagle Point 3	GLOUCESTER COUNTY	
Eagle Point 3	Shell Chemical 5	196
HUNTERDON COUNTY Bird		197
Bird		
SALEM COUNTY Salem 1	HUNTERDON COUNTY	
SALEM COUNTY Salem 1	Bird	198
Salem 1		. , , ,
Salem 1	CALEM COUNTY	
Salem 3	Salen Counti	
Salem 2	Oalem 1	
Point Airy		
WARREN COUNTY Hoffman LaRoche 4		
Hoffman LaRoche 4. 203 QUALITY OF GROUND-WATER RECORDS Camden County. 204 Cupe May County. 204 Cumberland County. 205	Point Airy	202
Hoffman LaRoche 4. 203 QUALITY OF GROUND-WATER RECORDS Camden County. 204 Cupe May County. 204 Cumberland County. 205		
QUALITY OF GROUND-WATER RECORDS Camden County. 204 Cape May County 204 Cumberland County 205	WARREN COUNTY	
Camden County	Hoffman LaRoche 4	203
Camden County		
Camden County	QUALITY OF GROUND-WATER RECORDS	
Cape May County	Camden County	204
Cumberland County		
	Gloucester County.	

INTRODUCTION

Water resources data for the 1982 water year for New Jersey consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground water. This volume contains water discharge at 21 gaging stations; tide summaries for 3 stations; stage and contents for 16 lakes and reservoirs; water quality for 58 surface water sites, and 78 wells; and water levels for 23 observation wells. Also included are data for 27 crest-stage partial-record stations; 7 tidal crest-stage gage and 26 low-flow partial-record stations. Locations of these sites are shown in figures 5, 6, and 7. Additional water data were collected at various sites not part of the systematic data collection program and are published as miscellaneous measurements and analyses. These data together with the data in Volume 1 represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State, Local, and Federal agencies in New Jersey.

Records of discharge or stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological Survey water-supply papers entitled, "Surface Water Supply of the United States." Through September 30, 1960, these water-supply papers were in an annual series and then in a 5-year series for 1961-65 and 1966-70. Records of chemical quality, water temperature, and suspended sediment were published from 1941 to 1970 in an annual series of water-supply papers entitled, "Quality of Surface Waters of the United States." Records of ground-water levels were published from 1935 to 1974 in a series of water-supply papers entitled "Ground-Water Levels in the United States." Water-supply papers may be consulted in the libraries of the principal cities in the United States or may be purchased from Branch of Distribution, U.S. Geological Survey, 604 South Pickett Street, Alexandria, Virginia 22304.

For water years 1961 through 1970, streamflow data were released by the Geological Survey in annual reports on a State-boundary basis. Water-quality records for water years 1964 through 1970 were similarly released either in separate reports or in conjunction with streamflow records.

Beginning with the 1971 water year, water data for streamflow, water quality, and ground water are published in offical Survey reports on a State-boundary basis. These offical Survey reports carry an identification number consisting of the two letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume of the report is identified as "U.S. Geological Survey Water-Data Report NJ-82-2." These water-data reports are for sale, in paper copy or in microfiche, by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

Additional information, including current prices, for ordering specific reports may be obtained from the District Chief at the address given on the back of the title page or by telephone (609) 989-2162.

COOPERATION

This report was prepared by the U.S. Geological Survey under cooperative agreement with the following organizations:

New Jersey Department of Environmental Protection, Robert E. Hughey, commissioner. Division of Water Resources, John W. Gaston, Jr., director.

North Jersey District Water Supply Commission, Dean C. Noll, chief engineer.

Passaic Valley Water Commission, W.E. Inhoffer, general superintendent and chief engineer.

County of Bergen, E.R. Ranuska, director of Public Works and county engineer.

County of Camden, Joseph T. Patermo, director of Camden County Planning Board.

County of Morris, James Plante, chairman of Morris County Municipal Utilities Authority.

County of Somerset, Thomas E. Decker, county engineer, and Thomas Harris, administrative engineer.

Township of West Windsor, Larry Ellery, chairman of Environmental Commission.

Township of Bridgewater, Cynthia Jacobson, chairman of Environmental Commission.

Assistance in the form of funds was given by the Corps of Engineers, U.S. Army, in collecting records for 50 surface water stations, and for the collection of sediment records at one stream-sampling station, and by the U.S. Environmental Protection Agency for the collection of chemical analyses at four stream-sampling stations. In addition, several stations were operated fully or partially from funds appropriated directly to the Geological Survey. Assistance was also furnished by the National Weather Service and the National Ocean Survey.

The following organizations aided in collecting records:

Municipalities of Atlantic City, Jersey City, Newark, New Brunswick and Spotswood; American Cyanamid Co.; Commonwealth Water Co.; Elizabethtown Water Co.; Ewing-Lawrence Sewerage Authority; Hackensack Water Co.; Johns-Manville Products Corp.; and Monmouth Consolidated Water Co.; Jersey Central Power and Light Co.

Organizations that supplied data are acknowledged in station descriptions.

ACKNOWLEDGMENTS

The water resources data for New Jersey were processed and prepared for publication under the supervision of W.R. Bauersfeld, Acting Chief, Hydrologic Records Section. The data were collected, computed and processed by other personnel as follows:

н.	Bivens	М.	J.	DeLuca	В.	D.	Gillespie	C.	M.	Pavlinchak	D.	0.	Stewart
J.	B. Campbell	J.	F.	Dudek	C.	E.	Gurney	G.	J.	Pheasant	Т.	G.	Tkacs
G.	L. Centinaro	J.	T.	Fisher	D.	A.	Harriman	W.	J.	Pisch	R.	L.	Ulery
R.	S. Cole	T.	٧.	Fusillo	J.	J.	Hochreiter	E.	Ro	igers	L.	М.	Voronin

SUMMARY OF HYDROLOGIC CONDITIONS

Streamflow increased significantly from the previous year. Streamflow in 1982 water year ranged from slightly above normal in northern New Jersey to 80 percent of normal in the south. Precipitation for the

period was 94 percent of normal. Most reservoirs showed a recovery in storage and by the end of the year averaged 88 percent of capacity compared to 67 percent at the end of the previous year.

Water year 1982 began with streamflow near normal throughout the state. However, river flow showed a steady decline until by the end of December, runoff was from 1.5 to 2.0 inches deficient. A storm on January 4, resulting in from 1.5 to 2.5 inches of precipitation, began streamflow on an upward trend but a severe cold spell during January slowed down runoff. From February through May, the precipitation was below average and below normal streamflow was again recorded. Not until June did rivers show signs of recovery. Storms on June 14, 17, and 30 resulted in more than 75 percent of the month's rainfall, which was 157 percent of normal. For the remainder of the water year, rainfall was such that in northern New Jersey streamflow runoff was about normal while in the southern part of the state it was below normal.

Streamflow at the index station for northern New Jersey, South Branch Raritan River near High Bridge, averaged 125 ft 3 /s (3.54 m 3 /s) which was 103 percent of the 64-year average. The High Bridge runoff was 0.9 inches above the 25-inch long-term average. Streamflow at the index station for southern New Jersey, Great Egg Harbor River at Folsom, averaged 71.6 ft 3 /s (2.03 m 3 /s) which was 83 percent of the 57-year average. The Folsom runoff was 3.6 inches below the 21-inch long-term average. The observed annual mean discharge of the Delaware River at Trenton was 10,230 ft 3 /s (289.7 m 3 /s) which was 87 percent of normal. However, the Delaware River is highly regulated by reservoirs and diversion. The natural flow at Trenton (adjusted for diversion and storage upstream) was 97 percent of normal for the year.

Figures 2 and 3 compare the monthly and annual discharges with past records at the three index gaging stations.

Storage in the 13 major water-supply reservoirs in New Jersey increased from 50.2 billion gallons (67 percent of capacity) on October 1, 1981 to 66.3 billion gallons (88 percent of capacity) on September 30, 1982. Storage in Wanaque Reservoir increased from 16.9 billion gallons (61 percent of capacity) on October 1, 1981 to 24.4 billion gallons (87 percent of capacity) on September 30, 1982. Pumped storage in Round Valley Reservoir decreased from 42.4 billion gallons (77 percent of capacity) on October 1, 1981 to 39.8 billion gallons (72 percent of capacity) on September 30, 1982.

Return to near normal precipitation contributed to general improvement in water quality as reflected by specific conductance. Values of monthly means of specific conductance for non-winter months at the Passaic River at Little Falls and the Maurice River at Norma indicate decreases in dissolved solids concentrations. Rainfall in June also produced the lowest recorded values of specific conductance in the Maurice River at Norma since January 1980.

Ground-water levels that were affected mainly by climatic conditions were below normal for the second consecutive year. This was true for many water-table and confined aquifers in the northern counties as well as the water-table aquifers of the Atlantic Coastal Plain. Artesian water levels in most wells tapping the heavily stressed confined aquifers of the Coastal Plain continued to show long-term net declines. Increasing withdrawals of ground water contributed to these declines. As in past years, the declines were greatest in the Potomac-Raritan-Magothy aquifer system throughout the Coastal Plain and in the Wenonah-Mount Laurel, Englishtown, Old Bridge, and Farrington aquifers in the northern part of the Coastal Plain.

Monthly water levels are compared with long-term averages at two observation wells in figure 4. The wells illustrated are Bird in Hunterdon County and Crammer in Ocean County. For further comparison, 5-year hydrographs for most of the wells included in these reports are provided with the 1982 water-level records for the specific wells.

DEFINITION OF TERMS

Terms related to streamflow, water-quality and other hydrologic data, as used in this report, are defined below. See also the table for converting Inch-pound Units to Metric Units on the inside of the back cover.

Acre-foot (AC-FT, acre-ft) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters.

Adenosine triphosphate (ATP) is the primary energy donor in cellular life processes. Its central role in living cells makes it an excellent indicator of the presence of living material in water. A measure of ATP therefore provides a sensitive and rapid estimate of biomass. ATP is reported in micrograms per liter of the original water sample.

Algae are mostly aquatic single-celled, colonial, or multi-celled plants, containing chlorophyll and lacking roots, stems, and leaves.

Algal growth potential (AGP) is the maximum algal dry weight biomass that can be produced in a natural water sample under standardized laboratory conditions. The growth potential is the algal biomass present at stationary phase and is expressed as milligrams dry weight of algae produced per liter of sample.

Aquifer is a geologic formation, group of formations, or part of a formation that contains sufficient saturated permeable material to yield significant quantities of water to wells and springs.

Aquifer codes and geologic names:

The following list shows the aquifer codes and geologic names of the formations in which the sampled wells are finished. The aquifer codes also appear in the column "Geologic Unit" in the ground-water quality tables:

```
CAPE MAY FORMATION, UNDIFFERENTIATED CAPE MAY FORMATION, ESTUARINE SAND FACIES COHANSEY SAND
112CPMY. ,
112ESRNS ,
121CNSY
121CKKD
               KIRKWOOD-COHANSEY AQUIFER SYSTEM
               STRATIFIED DRIFT
112SFDF
               RIO GRANDE WATER-BEARING ZONE OF THE KIRKWOOD FORMATION
122KRKDU .
               ATLANTIC CITY 800-FOOT SAND OF THE KIRKWOOD FORMATION MANASQUAN FORMATION
122KRKDL .
124MNSQ
               PINEY POINT AQUIFER
WENONAH-MOUNT LAUREL AQUIFER
124PNPN
211MLRW
211EGLS
               ENGLISHTOWN AQUIFER
               POTOMAC-RARITAN-MAGOTHY AQUIFER SYSTEM
211MRPA
               OLD BRIDGE AQUIFER OF THE MAGOTHY FORMATION FARRINGTON AQUIFER OF THE RARITAN FORMATION
2110DBG
231BRCK
               BRUNSWICK SHALE OR FORMATION
231SCKN
               STOCKTON FORMATION
```

Artesian means confined and is used to describe a well in which the water level stands above the top of the aquifer, tapped by the well. A flowing artesian well is one in which the water level is above land surface.

 $\underline{\text{Bacteria}}$ are microscopic unicellular organisms, typically spherical, rod-like, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants.

 $\frac{\text{Total coliform bacteria}}{\text{pollution.}} \text{ are a particular group of bacteria that are used as indicators of possible sewage pollution.} They are characterized as aerobic or facultative anaerobic, gram-negative, nonspore-forming, rod-shaped bacteria which ferment lactose with gas formation within 48 hours at 35°C. In the laboratory these bacteria are defined as all the organisms which produce colonies with a golden-green metallic sheen within 24 hours when incubated at 35°C <math display="inline">\pm$ 0.5°C on M-Endo medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 ml of sample.

Fecal coliform bacteria are bacteria that are present in the intestines or feces of warmblooded animals. They are often used as indicators of the sanitary quality of the water. In the laboratory they are defined as all organisms which produce blue colonies within 24 hours when incubated at 44.5°C \pm 0.2°C on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 ml of sample.

Fecal streptococcal bacteria are bacteria found also in the intestine of warm-blooded animals. Their presence in water is considered to verify fecal pollution. They are characterized as grampositive, cocci bacteria which are capable of growth in brain-heart infusion broth. In the laboratory they are defined as all the organisms which produce red or pink colonies within 48 hours at 35°C \pm 0.5°C on KF streptococcus medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 ml of sample.

 $\underline{\text{Bedload}}$ is the sediment which moves along in essentially continuous contact with the streambed by rolling, $\underline{\text{slid}}$ ing, and making brief excursions into the flow a few diameters above the bed.

Bed material is the unconsolidated material of which a streambed, lake, pond, reservoir, or estuary bottom is composed.

Biochemical oxygen demand (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, used for the decomposition of organic matter by microorganisms, such as bacteria.

 $\underline{\text{Biomass}}$ is the amount of living matter present at any given time, expressed as the weight per unit area or volume of habitat.

Ash mass is the mass or amount of residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of $500\,^{\circ}\text{C}$ for 1 hour. The ash mass values of zooplankton and phytoplankton are expressed in grams per cubic meter (g/m³) and periphyton and benthic organisms in grams per square meter (g/m²).

 $\underline{\text{Dry mass}}$ refers to the mass of residue present after drying in an oven at 60°C for zooplankton and 105°C for periphyton, until the mass remains unchanged. This mass represents the total organic matter, ash and sediment, in the sample. Dry mass values are expressed in the same units as ash mass.

Organic mass or volatile mass of the living substance is the difference between the dry mass and the ash mass, and represents the actual mass of the living matter. The organic mass is expressed in the same units as for ash mass and dry mass.

Wet mass is the mass of living matter plus contained water.

Bottom material: See Bed material.

<u>Cells/volume</u> refers to the number of cells of any organism which is counted by using a microscope and grid or counting cell. Many planktonic organisms are multicelled and are counted according to the number of contained cells per sample, usually milliliters (mL) or liters (L).

Chemical oxygen demand (COD) is a measure of the quantity of organic matter which can be chemically oxidized in the presence of a strong oxidant.

Chlorophyll refers to the green pigments of plants. Chlorophyll \underline{a} and \underline{b} are the two most common pigments in plants.

Continuing record station is a specified site which meets one or all conditions listed:

- 1. When chemical samples are collected daily or monthly for 10 or more months during the water year.
- 2. When water temperature records include observations taken one or more times daily.
- 3. When sediment discharge records include periods for which sediment loads are computed and are considered to be representative of the runoff for the water year.

Control designates a feature downstream from the gage that determines the stage-discharge relation at the gage. This feature may be a natural constriction of the channel, an artificial structure, or a uniform cross section over a long reach of the channel.

Control structure as used in this report is a structure on a stream or canal that is used to regulate the flow or stage of the stream or to prevent the intrusion of salt water.

Cubic feet per second per square mile $(ft^3/s/mi^2, CFSM)$ is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming that the runoff is distributed uniformly in time and area.

Cubic foot per second (ft 3 /s, cfs) is the rate of discharge representing a volume of 1 cubic foot passing a given point during 1 second and is equivalent to 7.48 gallons per second or 448.8 gallons per minute or 0.02832 cubic meters per second.

Discharge is the volume of water (or more broadly, volume of fluid plus suspended sediment), that passes a given point within a given period of time.

Instantaneous discharge is the discharge at a particular instant of time.

 $\underline{\text{Mean discharge}}$ (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period.

Dissolved refers to that material in a representative water sample which passes through a 0.45 µm membrane filter. This is a convenient operational definition used by Federal agencies that collect water data. Determinations of "dissolved" constituents are made on subsamples of the filtrate.

 $\underline{\text{Diversity index}}$ is a numerical expression of the evenness of distribution of aquatic organisms. The formula for diversity index is:

$$\overline{d} = -\sum_{i=1}^{8} \frac{n_i}{n} \log_2 \frac{n_i}{n}$$

Where n_s is the number of individuals per taxon, n is the total number of individuals, and s is the total number of taxa in the sample of the community. Diversity index values range from zero, when all the organisms in the sample are the same, to some positive number, when some or all of the organisms in the sample are different.

<u>Drainage area</u> of a stream at a specified location is that area, measured in a horizontal plane, enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into the stream above the specified point. Figures of drainage area given herein include all closed basins, or noncontributing areas, within the area unless otherwise noted.

<u>Drainage basin</u> is a part of the surface of the earth that is occupied by a drainage system, which consists of a surface stream or body of impounded surface water together with all tributary surface stream and bodies of impounded surface water.

Gage height (G.H.) is the water-surface elevation referred to some arbitrary gage datum. Gage height is often used interchangeably with the more general term "stage," although gage height is more appropriate when used with a reading on a gage.

<u>Gaging station</u> is a particular site on a stream, canal, lake, or reservoir where systematic observations of gage height or discharge are obtained. When used in connection with a discharge record, the term is applied only to those gaging stations where a continuous record of discharge is obtained.

Hardness of water is a physical-chemical characteristic that is commonly recognized by the increased quantity of soap required to produce lather. It is attributable to the presence of alkaline earths (principally calcium and magnesium) and is expressed as equivalent calcium carbonate (CaCO₃).

High tide is the maximum height reached by each rising tide.

Hydrologic unit is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as delineated by the Office of Water Data Coordination on the State Hydrologic Unit Maps; each hydrologic unit is identified by an 8-digit number.

Land-surface datum is a datum plane that is approximately at the land surface at the well.

Low tide is the minimum height reached by each falling tide.

Mean high or low tide is the average of all high or low tides, respectively, over a specified period.

Metamorphic stage refers to the stage of development that an organism exhibits during its transformation from an immature form to an adult form. This developmental process exists for most insects, and the degree of difference from the immature stage to the adult form varies from relatively slight to pronounced, with many intermediates. Examples of metamorphic stages of insects are egg-larva-adult or egg-nymph-adult.

Methylene blue active substance (MBAS) is a measure of apparent detergents. This determination depends on the formation of a blue color when methylene blue dye reacts with synthetic detergent compounds.

Micrograms per liter (UG/L, μ g/L) is a unit expressing the concentration of chemical constituents in solution as weight (micrograms) of solute per unit volume (liter) of water. One thousand micrograms per liter is equivalent to one milligram per liter.

Milligrams per liter (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in solution. Milligrams per liter represents the weight of solute per unit volume of water. Milligrams or micrograms per liter may be converted to milliequivalents (one thousandth of a gram-equivalent weight of a constituent) per liter by multiplying by the factors in Hem (1970).

National Geodetic Vertical Datum of 1929 (NGVD of 1929). A geodetic datum derived from a general adjustment of the first order level nets of both the United States and Canada, formerly called "Mean Sea Level."

NJ-WRD well number is a hyphenated, 6-digit identification number which the U.S. Geological Survey assigned to all New Jersey wells in the Ground Water Site Inventory (GWSI) data base. This numbering system was developed in 1978 to simplify identification of wells. The first two digits are a code for the county in which the well is located, and the last four digits are a sequence number. Each well added to GWSI is

assigned the next higher sequence number for the county in which the well is located. These NJ-WRD well numbers are being used now in the ground-water level descriptions, wells sampled for water-quality analyses, and on the corresponding location maps in these reports.

Organism is any living entity, such as an insect, phytoplankter, or zooplankter.

Organism count/area refers to the number of organisms collected and enumerated in a sample and adjusted to the number per area habitat, usually square meters (m^2) , acres, or hectares. Periphyton, benthic organisms, and macrophytes are expressed in these terms.

Organism count/volume refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliliters (mL) or liters (L). Numbers of planktonic organisms can be expressed in these terms.

Total organism count is the total number of organisms collected and enumerated in any particular sample.

Partial-record station is a particular site where limited streamflow data are collected systematically over a period of years for use in hydrologic analyses.

<u>Particle size</u> is the diameter, in millimeters (mm), of suspended sediment or bed material determined either by sieve or sedimentation methods. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube) determine fall diameter of particles in either distilled water (chemically dispersed) or in active water (the river water at the time and point of sampling).

<u>Particle-size classification</u> used in this report agrees with recommendations made by the American Geophysical Union Subcommittee on Sediment Terminology. The classification is as follows:

Classification	Size	(mm)	Method of analysis
Clay		- 0.004	Sedimentation.
Silt	.004	062	Sedimentation.
Sand	.062	- 2.0	Sedimentation or sieve.
Gravel	2.0	- 64.0	Sieve.

The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. Most of the organic material is removed and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native-water analysis.

Percent composition is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, mass or volume.

Periphyton is the assemblage of microorganisms attached to and growing upon solid surfaces. While primarily consisting of algae, they also include bacteria, fungi, protozoa, rotifers, and other small organisms. Periphyton is a useful indicator of water quality.

<u>Pesticides</u> are chemical compounds used to control the growth of undesirable plants and animals. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides.

Picocurie (PCI, pCi) is one trillionth (1×10^{-12}) of the amount of radioactivity represented by a curie (Ci). A curie is the amount of radioactivity that yields 3.7 x 10^{10} radioactive disintegrations per second. A picocurie yields 2.22 dpm (disintegrations per minute).

 $\frac{Plankton}{of\ lakes}$ is the community of suspended, floating, or weakly swimming organisms that live in the open water $\frac{Plankton}{of\ lakes}$ and rivers.

Phytoplankton is the plant part of the plankton. They are usually microscopic and their movement is subject to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substances. Because they are able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment, and are commonly known as algae.

Blue-green algae are a group of phytoplankton organisms having a blue pigment, in addition to the green pigment called chlorophyll. Blue-green algae often cause nuisance conditions in water.

 $\underline{\text{Diatoms}}$ are the unicellular or colonial algae having a siliceous shell. Their concentrations are expressed as number of cells per milliliter of sample.

<u>Green algae</u> have chlorophyll pigments similar in color to those of higher green plants. Some forms produce algal mats or floating "moss" in lakes. Their concentrations are expressed as number of cells per milliliter of sample.

Zooplankton is the animal part of the plankton. Zooplankton are capable of extensive movements within the water column, and are often large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, the zooplankton are a vital part of the aquatic food web. The zooplankton community is dominated by small crustaceans and rotifers.

Polychlorinated biphenyls (PCBs) are industrial chemicals that are mixtures of chlorinated biphenyl compounds having various percentages of chlorine. They are similar in structure to organochlorine insecticides.

Primary productivity is a measure of the rate at which new organic matter is formed and accumulated through photosynthetic and chemosynthetic activity of producer organisms (chiefly green plants). The rate of primary production is estimated by measuring the amount of oxygen released (oxygen method) or the amount of carbon assimilated by the plants (carbon method).

Milligrams of carbon per area or volume per unit time [mg $C/(m^2/time)$ for periphyton and macrophytes and mg $C/(m^3/time)$ for phytoplankton] are units for expressing primary productivity. They define the amount of carbon dioxide consumed as measured by radioactive carbon (carbon 14). The carbon 14 method is of greater sensitivity than the oxygen light and dark bottle method, and is preferred for use in unenriched waters. Unit time may be either the hour or day, depending on the incubation period.

Milligrams of oxygen per area or volume per unit time [mg $0_2/(m^2/time)$ for periphyton and macrophytes and mg $0_2/(m^3/time)$ for phytoplankton] are the units for expressing primary productivity. They define production and respiration rates as estimated from changes in the measured dissolved oxygen concentration. The oxygen light and dark bottle method is preferred if the rate of primary production is sufficient for accurate measurements to be made within 24 hours. Unit time may be either the hour or day, depending on the incubation period.

Radioisotopes are isotope forms of an element that exhibit radioactivity. Isotopes are varieties of a chemical element that differ in atomic weight, but are very nearly alike in chemical properties. The difference arises because the atoms of the isotopic forms of an element differ in the number of neutrons in the nucleus. For example: ordinary chlorine is a mixture of isotopes having atomic weights 35 and 37, with the natural mixture having an atomic weight of 35.453.

Radioisotopes that are determined in this report are natural uranium in $\mu g/L$ (micrograms per liter), radium as radium-226 in PCI/L, (pCi/L, picocuries per liter), gross beta in PCI/L, and gross alpha radiation as micrograms of uranium equivalent per liter ($\mu g/L$). Gross alpha and beta radioactivity associated with the fine grained (silt and clay sized) sediments in the samples are also determined.

Recoverable from bottom material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of only readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

River mile as used herein, is the distance above the mouth of Delaware Bay, measured along the center line of the navigation channel or the main stem of the Delaware River. River mile data were furnished by the Delaware River Basin Commission.

Runoff in inches (IN, in) shows the depth to which the drainage area would be covered if all the runoff for a given time period were uniformly distributed on it.

Screened interval (FT) is the length of well screen through which water enters a well, in feet below land surface.

Sediment is solid material that originates mostly from disintegrated rocks and is transported by, suspended in, or deposited from water; it includes chemical and biochemical precipitates and decomposed organic material such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are influenced by environmental factors. Some major factors are degree of slope, length of slope, soil characteristics, land usage, and quantity and intensity of precipitation.

 $\underline{\text{Mean concentration}} \text{ is the time-weighted concentration of suspended sediment passing a stream section during a 24-hour day.}$

Suspended sediment is the sediment that at any given time is maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid.

Suspended-sediment concentration is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 ft above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L).

Suspended-sediment discharge (tons) is the rate at which dry weight of sediment passes a section of a stream or is the quantity of sediment, as measured by dry weight, or by volume, that is discharged in a given time. It is computed by multiplying discharge times mg/L times 0.0027.

Suspended-sediment load is quantity of suspended sediment passing a section in a specified period.

 $\frac{\text{Total sediment discharge}}{\text{discharge}} \text{ (tons/day) is the sum of the suspended-sediment discharge and the bed-load discharge. It is the total quantity of sediment, as measured by dry weight or volume, that passes a section during a given time.}$

Solute is any substance derived from the atmosphere, vegetation, soil, or rocks that is dissolved in water.

Specific conductance is a measure of the ability of a water to conduct an electrical current and is expressed in micromhos per centimeter at 25°C. Because the specific conductance is related to the number and specific chemical types of ions in solution, it can be used for approximating the dissolved-solids content of the water. Commonly, the amount of dissolved solids (in milligrams per liter) is about 65 percent of the specific conductance (in micromhos per cm at 25°C). This relation is not constant from stream to stream or from well to well, and it may even vary in the same source with changes in the composition of the water.

Stage-discharge relation is the relation between gage height and the amount of water flowing in a channel, expressed as volume per unit of time.

Streamflow is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff." Streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

Substrate is the physical surface upon which an organism lived.

Artificial substrate is a device which is purposely placed in a stream or lake for colonization by organisms. The artificial substrate simplifies the community structure by standardizing the substrate from which each sample is taken. Examples of artificial substrates are basket samplers (made of wire cages filled with clean streamside rocks) and multi-plate samplers (made of hardboard) for benthic organism collection, and plexiglass strips for periphyton collection.

Natural substrate refers to any naturally occurring emersed or submersed solid surface, such as a rock or tree, upon which an organism lived.

Surface area of a lake is that area outlined on the latest U.S.G.S. topographic map as the boundary of the lake and measured by a planimeter in acres. In localities not covered by topographic maps, the areas are

computed from the best maps available at the time planimetered. All areas shown are those for the stage when the planimetered map was made.

Surficial bed material is that part (0.1 to 0.2 ft) of the bed material that is sampled using U.S. Series $\overline{\text{Bed-Material Samplers}}$.

Suspended, recoverable is the amount of a given constituent that is in solution after the part of a representative water-suspended sediment sample that is retained on a 0.45 μm membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Determinations of "suspended, recoverable" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) $\underline{\text{dissolved}}$ and (2) $\underline{\text{total}}$ recoverable concentrations of the constituent.

Suspended, total is the total amount of a given constituent in the part of a representative watersuspended sediment sample that is retained on a 0.45 μm membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total."

Determinations of "suspended, total" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) $\frac{\text{dissolved}}{\text{double}}$ and (2) $\frac{\text{total}}{\text{total}}$ concentrations of the constituent.

 $\frac{\text{Taxonomy}}{\text{classification}} \text{ is the division of biology concerned with the classification and naming of organisms.} \quad \text{The classification} \quad \text{of organisms is based upon a hierarchical scheme beginning with Kingdom and ending with Species at the base.} \quad \text{The higher the classification level, the fewer features the organisms have in common.} \quad \text{For example, the taxonomy of a particular mayfly, } \\ \frac{\text{Hexagenia limbata}}{\text{Hexagenia limbata}} \quad \text{is the following:} \quad \text{The property of the division of the property of the prop$

 Kingdom
 ...Animal

 Phylum
 ...Arthropoda

 Class
 ...Insecta

 Order
 ...Ephemeroptera

 Family
 ...Ephemeridae

 Genus
 ...Hexageria

 Species
 ...Hexagenia

Thermograph is a thermometer that continuously and automatically records, on a chart, the water temperatures of a stream. "Temperature recorder" is the term used to indicate the location of the thermograph or a digital mechanism that automatically records water temperature on paper tape.

Time-weighted average is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water that would be contained in a vessel or reservoir that had received equal quantities of water from the stream each day for the year.

 $\underline{\text{Tons per acre-foot}}$ indicates the dry mass of dissolved solids in 1 acre-foot of water. It is computed by multiplying the concentration in milligrams per liter by 0.00136.

Tons per day is the quantity of a substance in solution or suspension that passes a stream section during a 24-hour day.

Total is the total amount of a given constituent in a representative water-suspended sediment sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total" (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determines all of the constituent in the sample).

Total in bottom material the total amount of a given constituent in a representative sample of bottom material. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total in bottom material."

 $\frac{\text{Total load}}{\text{tons}}$ (tons) is the total quantity of any individual constituent, as measured by dry mass or volume, that is being transported in a specific amount of water (discharge) during a given time. It is computed by multiplying the total discharge, times the mg/L of the constituent, times the factor 0.0027, times the number of days.

Total, recoverable is the amount of a given constituent that is in solution after a representative water-suspended sediment sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

 $\underline{\text{WDR}}$ is used as an abbreviation for "Water-Data Report" in the summary REVISIONS paragraph to refer to previously published State annual basic-data reports. Prior to 1975, WRD was used, which was the abbreviation for "Water-Resources Data."

Weighted average is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water

passing a given location during the water year after thorough mixing in the reservoir.

WSP is used as an abbreviation for "Water-Supply Paper" in reference to previously published reports.

DOWNSTREAM ORDER AND STATION NUMBER

Since October 1, 1950, the order of listing hydrologic-station records in Survey reports is in a downstream direction along the main stream. All stations on a tributary entering upstream from a main-stream station are listed before that station. A station on a tributary that enters between two main-stream stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary on which a station is situated with respect to the stream to which it is immediately tributary is indicated by an indention in a list of stations in front of the report. Each indention represents one rank. This downstream order and system of indention show which stations are on tributaries between any two stations and the rank of the tributary on which each station is situated.

As an added means of identification, each hydrologic station and partial-record station has been assigned a station number. These are in the same downstream order used in this report. In assigning station numbers, no distinction is made between partial-record stations and other stations; therefore, the station number for a partial-record station indicates downstream-order position in a list made up of both types of stations. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The complete 8-digit number for each station such as 01463500, which appears just to the left of the station name, includes the 2-digit part number "01" plus the 6-digit downstream order number "463500."

NUMBERING SYSTEM FOR WELLS AND MISCELLANEOUS SITES

The 8-digit downstream order station numbers are not assigned to wells and miscellaneous sites where only random water-quality samples or discharge measurements are taken.

The wells and miscellaneous site numbering system of the U.S. Geological Survey is based on the grid system of latitude and longitude. The system provides the geographic location of the well or miscellaneous site and a unique number for each site. The number consists of 15 digits. The first 6 digits denote the degrees, minutes, and seconds of latitude, the next 7 digits denote degrees, minutes, and seconds of longitude, and the last 2 digits are a sequential number for wells within a 1-second grid. In the event that the latitude-longitude coordinates for a well and a miscellaneous site are the same, they are assigned sequential numbers "01", "02", etc. as one would for wells. See figure 1 below.

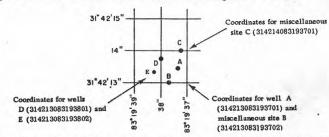


Figure 1. System for numbering wells and miscellaneous sites (latitude and longitude)

SPECIAL NETWORKS AND PROGRAMS

Some of the stations for which data are published in this report are included in special networks and programs. These stations are identified by their title, set in parentheses, under the station name.

Hydrologic bench-mark station is one that provides hydrologic data for a basin in which the hydrologic regimen will likely be governed solely by natural conditions. Data collected at a bench-mark station may be used to separate effects of natural from manmade changes in other basins which have been developed and in which the physiography, climate, and geology are similar to those in the undeveloped bench-mark basin.

National stream-quality accounting network (NASQAN) is a data collection network designed by the U.S. Geological Survey to meet many of the information demands of agencies or groups involved in national or regional water-quality planning and management. Both accounting and broad-scale monitoring objectives have been incorporated into the network design. Areal configuration of the network is based on river-basin accounting units (identified by 8-digit hydrologic-unit numbers) designated by the Office of Water Data Coordination in consultation with the Water Resources Council. Primary objectives of the network are (1) to depict areal variability of streamflow and water-quality conditions nationwide on a year-by-year basis and (2) to detect and assess long-term changes in streamflow and stream quality.

Pesticide program is a network of regularly sampled water-quality stations where samples are collected to determine the concentration and distribution of pesticides in stream where potential contamination could result from the application of the commonly used insecticides and herbicides. Operation of the network is a Federal interagency activity.

Radiochemical program is a network of regularly sampled water-quality stations where samples are collected to be analyzed for radioisotopes. The streams that are sampled represent major drainage basins in the conterminous United States.

EXPLANATION OF STAGE AND WATER-DISCHARGE RECORDS

Collection and computation of data

The base data collected at gaging stations consist of records of stage and measurements of discharge of streams or canals, and stage, surface area, and contents of lakes or reservoirs. In addition, observations of

factors affecting the stage-discharge relation or the stage-capacity relation, weather records, and other information are used to supplement base data in determining the daily flow or volume of water in storage. Records of stage are obtained from either direct readings on a nonrecording gage or from a water-stage recorder that gives either a continuous graph of the fluctuations or a tape punched at selected time intervals. Measurements of discharge are made with a current meter, using the general methods adopted by the Geological Survey. These methods are decribed in standard text-books, in Water-Supply Paper 888, and in U.S. Geological Survey Techniques of Water Resources Investigations, book 3, chapter A6.

For stream-gaging stations, rating tables giving the discharge for any stage are prepared from stage-discharge relation curves. If extensions to the rating curves are necessary to express discharge greater than measured, they are made on the basis of indirect measurements of peak discharge (such as slope-area or contracted-opening measurements, computation of flow over dams or weirs), step-backwater techniques, velocity-area studies, and logarithmic plotting. The daily mean discharge is computed from gage heights and rating tables, then the monthly and yearly mean discharge are computed from the daily figures. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the daily mean discharge is computed by the shifting-control method, in which correction factors based on individual discharge measurements and notes by engineers and observers are used in applying the gage heights to the rating tables. If the stage-discharge relation for a station is temporarily changed by the presence of aquatic growth or debris on the control, the daily mean discharge is computed by what is basically the shifting-control method.

At some stream-gaging stations the stage-discharge relation is affected by backwater from reservoirs, tributary streams, or other sources. This necessitates the use of the slope method in which the slope or fall in a reach of the stream is a factor in determining discharge. The slope or fall is obtained by means of an auxiliary gage set at some distance from the base gage. At some stations the stage-discharge relation is affected by changing stage; at these stations the rate of change in stage is used as a factor in determining discharge.

At some northern stream-gaging stations the stage-discharge relation is affected by ice in the winter, and it becomes impossible to compute the discharge in the usual manner. Discharge for periods of ice effect is computed on the basis of the gage-height record and occasional winter discharge measurements, consideration being given to the available information on temperature and precipitation, notes by gage observers and hydrologists, and comparable records of discharge for other stations in the same or nearby basins.

For a lake or reservoir station, capacity tables giving the contents for any stage are prepared from stage-area relation curves defined by surveys. The application of the stage to the capacity table gives the contents, from which the daily, monthly, or yearly change in contents is computed. Discharge over spillways is computed from a stage-discharge relation curve defined by discharge measurements.

If the stage-capacity curve is subject to changes because of deposition of sediment in the reservoir, periodic resurveys of the reservoir are necessary to define new stage-capacity curves. During the period between reservoir surveys the computed contents may be increasingly in error due to the gradual accumulation of sediment.

For some gaging stations there are periods when no gage-height record is obtained or the recorded gage height is so faulty that it cannot be used to compute daily discharge or contents. This happens when the recorder stops or otherwise fails to operate properly, intakes are plugged, the float is frozen in the well, or for various other reasons. For such periods the daily discharge are estimated on the basis of recorded range in stage, adjoining good record, discharge measurements, weather records, and comparison with other station records from the same or nearby basins. Likewise daily contents may be estimated on the basis of operator's log, prior and subsequent records, inflow-outflow studies, and other information.

The data in this report generally comprise a description of the station and tabulations of daily and monthly figures. For gaging stations on streams or canals a table showing the daily discharge and monthly and yearly discharge is given. For gaging stations on lakes and reservoirs a monthly summary table of stage and contents or a table showing the daily contents is given. Tables of daily mean gage height are included for some streamflow stations and for some reservoir stations. Records are published for the water year, which begins on October 1 and ends on September 30.

The description of the gaging station gives the location, drainage area, period of record, notations of revisions of previously published records, type and history of gages, general remarks, average discharge, and extremes of discharge or contents. The location for the gaging station and the drainage area are obtained from the most accurate maps available. River mileage, given under "LOCATION" for some stations, is that determined and used by the Corps of Engineers or other agencies. Periods for which there are published records for the present stations or for stations generally equivalent to the present one are given under "PERIOD OF RECORD."

Previously published streamflow records of some stations have been found to be in error on the basis of data or information later obtained. Revisions of such records are usually published along with the current records in one of the annual or compilation reports. In order to make it easier to find such revised records, a paragraph headed "REVISED RECORDS" has been added to the description of all stations for which revised records have been published. Listed therein are all the reports in which revisions have been published, each followed by the water years for which figures are revised in that report. In listing the water years only one number is given; for instance, 1965 stands for the water year October 1, 1964, to September 30, 1965. If no daily, monthly, or annual figures of discharge are affected by the revision, the fact is brought out by notations after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; "(m)" that only the instantaneous minimum was revised; and "(P)" that only peak discharges were revised. If the drainage area has been revised, the report in which the revised figure was first published is given. It should be noted that for all stations for which cubic feet per square mile and runoff in inches are published, a revision of the drainage area necessitates corresponding revision of all figures based on the drainage area. Revised figures of cubic feet per second per square mile and runoff in inches resulting from a revision of the drainage area only are usually not published in the annual series of reports.

The type of gage currently in use; the datum of the present gage referred to National Geodetic Vertical Datum; and a condensed history of the types, locations, and datums of previous gages used during the period of record are given under "GAGE." National Geodetic Vertical Datum is explained in "DEFINITION OF TERMS."

Information pertaining to the accuracy of the discharge records and to conditions which affect the natural flow of the gaging station is given under "REMARKS."

The average discharge for the number of years indicated is given under "AVERAGE DISCHARGE"; it is not given for stations having fewer than 5 complete years of record or for stations where changes in water

development during the period of record cause the figure to have little significance. In addition, the median of yearly mean discharges is given for stream-gaging stations having 10 or more complete years of record if the median differs from the average by more than 10 percent. Under "EXTREMES" are given first the extremes for current year, second, the extremes for the period of record, and last information available outside the period of record. Unless otherwise qualified, the maximum discharge (or contents) is the instantaneous maximum corresponding to the crest-stage obtained by use of a water-stage recorder (graphic or digital), a crest-stage gage, or a nonrecording gage read at the time of the crest. If the maximum gage height did not occur on the same day as the maximum discharge (or contents), it is given separately. Similarly, the minimum is the instantaneous minimum unless otherwise qualified. For some stations peak discharges are listed with EXTREMES FOR THE CURRENT YEAR; if they are, all independent peaks, including the maximum for the year, above the selected base with the time of occurrence and corresponding gage heights are published in tabular format. The base discharge, which is given in the table heading, is selected so that an average of about three peaks a year will be presented. Peak discharges are not published for any canals, ditches, drains, or for any stream for which the peaks are subject to substantial control by man. Time of day is expressed in 24-hour local standard time; for example, 12:30 a.m. is 0030, 1:30 p.m. is 1330. The minimums for these stations are published in a separate paragraph following the table of peaks.

Skeleton rating tables are published, immediately following EXTREMES, for stream-gaging stations where they serve a useful purpose and the dates of applicability can be easily identified.

The daily table for stream-gaging stations gives the mean discharge for each day and is followed by monthly and yearly summaries. In the monthly summary below the daily table, the line headed "TOTAL" gives the sum of the daily figures. The lines headed "MAX" and "MIN" give the maximum and minimum daily discharges, respectively, for the month. Discharge for the month also may be expressed in cubic feet per second per square mile (line headed "CFSM"), or in inches (line headed "IN"). Figures for cubic feet per second per square mile and runoff in inches are omitted if there is extensive regulation or diversion, if the drainage area includes large noncontributing areas, or if the average annual rainfall over the drainage basin is usually less than 20 inches. In the yearly summary below the monthly summary, the figures shown are the appropriate daily discharges for the calendar and water years.

Footnotes to the table of daily discharge are introduced by word "NOTE." Footnotes are used to indicate periods for which the discharge is computed or estimated by special methods because of no gage-height record, backwater from various sources, or other unusual conditions. Periods of no gage-height record are indicated if the period is continuous for a month or more or includes the maximum discharge for the year. Periods of backwater from an unusual source, of indefinite stage-relation, or of any other unusual condition at the gage site are indicated only if they are a month or more in length and the accuracy of the records is affected. Days on which the stage-discharge relation is affected by ice are not indicated. The methods used in computing discharge for various unusual conditions have been explained in preceding paragraphs.

For most gaging stations on lakes and reservoirs the data presented comprise a description of the station and a monthly summary table of stage and contents. For some reservoirs a table showing daily contents or stage is given. A skeleton table of capacity at given stages is published for all reservoirs for which records are published on a daily basis, but is not published for reservoirs for which only monthly data are given.

Data collected at partial-record stations follow the information for continuous record sites. Data for partial-record discharge stations are presented in two tables. The first is a table of discharge measurements at low-flow partial-record stations, and the second is a table of annual maximum stage and discharge at crest-stage stations. The tables of partial-record stations are followed by a listing of discharge measurements made at sites other than continuous-record or partial-record stations. Occasionally, a series of discharge measurements are made within a short time period to investigate the seepage gains or losses along a reach of a stream or to determine the low-flow characteristics of an area. Such measurements are also given in special tables following the tables of partial-record stations.

Accuracy of field data and computed results

The accuracy of streamflow data depends primarily on (1) the stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements, and (2) the accuracy of observations of stage, measurements of discharge, and interpretation of records.

The station description under "REMARKS" states the degree of accuracy of the records. "Excellent" means that about 95 percent of the daily discharges are within 5 percent; "good" within 10 percent; and "fair" within 15 percent. "Poor" means that daily discharges have less than "fair" accuracy.

Figures of daily mean discharge in this report are shown to the nearest hundredth of a cubic foot per second for discharges of less than 1 cfs; to tenths between 1.0 and 10 cfs; to whole numbers between 10 and 1,000 cfs; and to 3 significant figures above 1,000 cfs. The number of significant figures used is based solely on the magnitude of the figure. The same rounding rules apply to discharge figures listed for partial-record stations and miscellaneous sites.

Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. For such stations, figures of cubic feet per second per square mile and of runoff in inches are not published unless satisfactory adjustments can be made for diversions, for changes in contents of reservoirs, or for other changes incident to use and control. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents, unless it is so stated. Even at those stations where adjustments are made, large errors in computed runoff may occur if adjustments or losses are large in comparison with the observed discharge.

Publications

Each volume of the 1960 series of U.S. Geological Survey water-supply papers entitled "Surface Water Supply of the United States" contains a listing of the numbers of all water-supply papers in which records of surface-water data were published for the area covered by the individual volumes. Each volume also contains a list of water-supply papers that give detailed information on major floods for the area. A new series of water-supply papers containing surface-water record for the 5-year period October 1, 1965 to September 30, 1970, also will include lists of annual and special reports published as water-supply papers.

Records through September 1950 for the area covered by this report have been compiled and published in Water-Supply Paper 1302; records for October 1950 to September 1960 have been compiled and published in Water-Supply Paper 1722; records for October 1960 to September 1965 have been compiled and published in Water-Supply Paper 1902; records for October 1965 to September 1970 have been compiled and published in Water-Supply Paper 2102. These reports contain summaries of monthly and annual discharge and month-end

storage for all previously published records, as well as some records not contained in the annual series of water-supply papers. All records were reexamined and revised where warranted. Estimates of discharge were made to fill short gaps whenever practical. The yearly summary table for each gaging station lists the numbers of the water-supply papers in which daily records were published for that station.

Special reports on major floods or droughts or of other hydrologic studies for the area have been issued in publications other than water-supply papers. Information relative to these reports may be obtained from the district office.

Other data available

Information of a more detailed nature than that published for most of the gaging stations such as observations of water temperatures, discharge measurements, gage-height records, and rating tables is on file in the district office. Also most gaging-station records are available in computer-usable form and many statistical analyses have been made.

Information on the availability of unpublished data or statistical analyses may be obtained from the district office.

Records of stage or discharge collected by agencies other than the Geological Survey

Records of stage or discharge not published by the Geological Survey were collected in New Jersey at 30 sites during the water years October 1960 to current year by the following agencies: records at 4 sites were collected by the North Jersey District Water Supply Commission; at 14 sites by Passaic County; at 1 site by the National Weather Service; at 3 sites by the National Ocean Survey; at 3 sites by the Corps of Engineers; and 5 sites by Delaware River Joint Toll Bridge Commission. The National Water Data Exchange, Water Resources Division, U.S. Geological Survey, National Center, Reston, VA 22092, maintain an index of such sites. Information on records available at specific sites can be obtained upon request.

EXPLANATION OF WATER-QUALITY RECORDS

Collection and examination of data

Water samples for analyses usually are collected at or near gaging stations. The discharge records at these stations are used in conjunction with the computations of the chemical constituents and sediment loads.

The data in this report include a description of the sampling station and tabulations of the samples analyzed. The description of the sampling station gives the location, drainage area, periods of record for the water-quality data, extremes of the pertinent data, and general remarks. For ground-water sampling stations, no descriptive statements are presented. However, the well number, date of sampling, and other pertinent data are given in the table containing the chemical analyses of ground water.

Water-quality information is presented for chemical, biological, and microbiological quality, water temperature, and fluvial sediment. Chemical quality includes the concentrations of individual constituents and certain properties such as hardness, specific conductance, and pH. The biological information may include qualitative and quantitative analyses of plankton, bottom organisms, and particulate inorganic and amorphous matter present. Microbiological information includes quantitative identifications of certain bacteriological indicator organisms. Water-temperature data represent once-daily observations except for stations where a water-quality noncontinuous-digital monitor furnishes hourly temperature readings that provide daily maximum, minimum, and mean temperature data summaries. Fluvial-sediment information is given for suspended-sediment discharges and concentrations and for particle-size distribution of suspended sediment.

Prior to the 1968 water year, data for chemical constituents and concentrations of suspended sediment were reported in parts per million (ppm) and water temperatures were reported in degrees Fahrenheit (${}^{\circ}$ F). In October 1967, the U.S. Geological Survey began reporting data for chemical constituents and concentrations of suspended sediment in milligrams per liter (mg/L) and water temperatures in degrees Celsius (${}^{\circ}$ C). In waters with a density of 1.000 g/ml (grams per milliliter), parts per million and milligrams per liter can be considered equal. In waters with a density greater than 1.000 g/ml, values in parts per million should be multiplied by the density to convert to milligrams per liter. Temperatures reported in degrees Celsius may be converted to degrees Fahrenheit by using Table 1 below.

Table 1.--Degrees Celsius (°C) to degrees Fahrenheit (°F)* (Temperature reported to nearest 0.5°C)

°C	°F	°C	°F	°C	°F	°C	°F	°C	°F
0.0	32	10.0	50	20.0	68	30.0	86	40.0	104
0.5	33	10.5	51	20.5	69	30.5	87	40.5	105
1.0	34	11.0	52	21.0	70	31.0	88	41.0	106
1.5	35	11.5	53	21.5	71	31.5	89	41.5	107
2.0	36	12.0	54	22.0	72	32.0	90	42.0	108
2.5	36	12.5	54	22.5	72	32.5	90	42.5	108
3.0	37	13.0	55	23.0	73	33.0	91	43.0	109
3.5	38	13.5	56	23.5	74	33.5	92	43.5	110
4.0	39	14.0	57	24.0	75	34.0	93	44.0	111
4.5	40	14.5	58	24.5	76	34.5	94	44.5	112
5.0	41	15.0	59	25.0	77	35.0	95	45.0	113
5.5	42	15.5	60	25.5	78	35.5	96	45.5	114
6.0	43	16.0	61	26.0	79	36.0	97	46.0	115
6.5	44	16.5	62	26.5	80	36.5	98	46.5	116
7.0	45	17.0	63	27.0	81	37.0	99	47.0	117
7.5	45	17.5	63	27.5	81	37.5	99	47.5	117
8.0	46	18.0	64	28.0	82	38.0	100	48.0	118
8.5	47	18.5	65	28.5	83	38.5	101	48.5	119
9.0	48	19.0	66	29.0	84	39.0	102	49.0	120
9.5	49	19.5	67	29.5	85	39.5	103	49.5	121

*C = 5/9 (°F - 32) or °F = 9/5 (°C) + 32.

In October 1968, the Geological Survey began reporting many of the chemical constituents as well as the minor elements in micrograms per liter instead of milligrams per liter. (See "Definitions of Terms," and table for converting Inch-pound Units to International System Units, inside back cover).

Most methods for collecting and analyzing water samples to determine the kinds and concentrations of solutes are described in the U.S. Geological Survey Techniques of Water-Resources Investigations listed at the end of this section. Analysis of pesticides, herbicides, and organic substances in water are described by Goerlitz and Brown. The collection and analysis of aquatic, biological and microbiological samples are described by Greeson and others.

One sample can define adequately the water quality at a given time if the mixture of solutes throughout the stream cross section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled through many vertical sections to obtain a representative sample needed for an accurate mean concentration and for use in calculating load.

Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis.

For chemical-quality stations equipped with noncontinuous-digital monitors, the records consist of daily maximum, minimum, and mean values for each constituent measured and are based upon hourly punches beginning at 0100 hours and ending at 2400 hours for the day of record. More detailed records (hourly values) may be obtained from the U.S. Geological Survey district office (for address see Page IV).

The quality of ground water normally does not change significantly during short periods of time; infrequent sampling and analysis of ground water adequately defines ground-water quality at a given site. Water samples from wells are collected after prepumping the well and are analyzed individually.

Water temperature

Water temperatures are measured at most of the water-quality stations. In addition, water temperatures are taken at time of discharge measurements for surface-water stations. For daily stations, the water temperatures are taken at about the same time each day. Large streams have a small diurnal temperature change; shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams may be affected by waste-heat discharges. Influential factors, field measurement, and data representation of temperature are described by Stevens, Ficke and Smoot (1975).

Sediment

Suspended-sediment concentrations are determined from samples collected by using depth-integrating samplers. Samples usually are obtained at several verticals in the cross-section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross section.

During periods of rapidly changing flow or rapidly changing concentration, samples may have been collected more frequently (twice daily or, in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided-day method (time-discharge weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided-day method. For periods when no samples were concentration, samples may have been collected more frequently (twice daily or, in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided-day method (time-discharge weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided-day method. For periods when no samples were collected, daily loads of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspended-sediment loads for other periods of similar discharge.

At other stations, suspended-sediment samples were collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observations, such data are useful in establishing seasonal relations between quality and streamflow in predicting long-term sediment-discharge characteristics of the stream.

In addition to the records of the quantities of suspended sediment, records of the periodic measurements of the particle-size distribution of the suspended sediment are included.

Remark codes for water-quality data

PRINTE	D	PRINTED	
OUTPUT	REMARK	OUTPUT	REMARK
E	ESTIMATED VALUE	<	ACTUAL VALUE IS KNOWN TO BE LESS THAN THE VALUE SHOWN
>	ACTUAL VALUE IS KNOWN TO BE GREATER THAN THE VALUE SHOWN	ND	MATERIAL SPECIFICALLY ANALYZED FOR BUT NOT DETECTED
К	RESULTS BASED ON COLONY COUNT OUTSIDE THE ACCEPTABLE RANGE (NON-IDEAL COLONY COUNT)		

Publications

Table 2 below, shows the annual series of water-supply papers that give information on quality of surface waters in New Jersey.

Table 2.--Water-supply paper (WSP) numbers, water years, 1945-70

Year	WSP	Year	WSP	Year	WSP
1945	1030	1954	1350	1963	1947
1946	1050	1955	1400	1964	1954
1947	1102	1956	1450	1965	1961
1948	1132	1957	1520	1966	1991
1949	1162	1958	1571	1967	2011
1950	1186	1959	1641	1968	2091
1951	1197	1960	1741	1969	2141
1952	1250	1961	1881	1970	2151
1953	1290	1962	1941		200

· EXPLANATION OF GROUND-WATER LEVEL RECORDS

Collection of the data

Only ground-water level data from a basic network of observation wells are published herein. This basic network contains observation wells so located that the most significant data are obtained from the fewest wells in the most important aquifers.

Each well is identified by means of (1) a 15-digit number that is based on latitude and longitude (see figure 1) and (2) a local name and a NJ-WRD well number that are provided for local needs.

Water-level measurements in this report are given in feet with reference to land-surface datum (LSD, lsd). Land-surface datum is a datum plane that is approximately at land surface at each well. The altitude of the land-surface datum above NGVD 1929, and the height of the measuring point (MP) above or below land-surface datum is given in each well description.

Measurements are made in many types of wells, under varying conditions of access and at different temperatures, hence, neither the method of measurement nor the equipment can be standardized. At each observation well, however, the equipment and techniques used are those that will ensure that measurements at each well are consistent.

Water-level data in these reports were obtained from water-level recorders, water-level extremes recorders, and from periodic manual measurements. The equipment used at each well is described in the well description under the listing "Instrumentation." Water levels in wells equipped with water-level recorders are reported for every fifth day and the end of each month (eom). Beginning in the 1977 water year, water-level recorders were removed from some wells and replaced by water-level extremes recorders. The extremes are read from these recorders at about three month intervals, but the actual dates of occurrence of the extremes (highest and lowest water levels) are unknown. In these reports the water-level extremes are given with the interim dates together with the manually measured water levels.

Water levels are reported to as many significant figures as can be justified by the local conditions. For example, in a measurement of a depth to water of several hundred feet, the error in determining the absolute value of the total depth to water may be a few tenths of a foot, wheareas the error in determining the net change of water level between successive measurements may be only a hundredth or a few hundredths of a foot. For lesser depths to water the accuracy is greater. All measurements published herein are reported to a hundredth of a foot.

Publications

Table 3 below, shows the series of water-supply papers that give ground-water level data for New Jersey, 1935 to 1974. No water-level data were published in 1975. Beginning in 1976, ground-water level data for New Jersey have been published in these annual water data reports.

Table 3.--Water-supply paper (WSP) numbers, water years, 1935-74

Year	WSP	Year	WSP	Year	WSP
1935	777	1944	1016	1953	1265
1936	817	1945	1023	1954	1321
1937	840	1946	1071	1955	1404
1938	845	1947	1096	1956-57	1537
1939	866	1948	1126	1958-62	1782
1940	906	1949	1156	1963-67	1977
1941	936	1950	1165	1968-72	2140
1942	986	1951	1191	1973-74	2164
1943	986	1952	1221	1213-14	2,0,

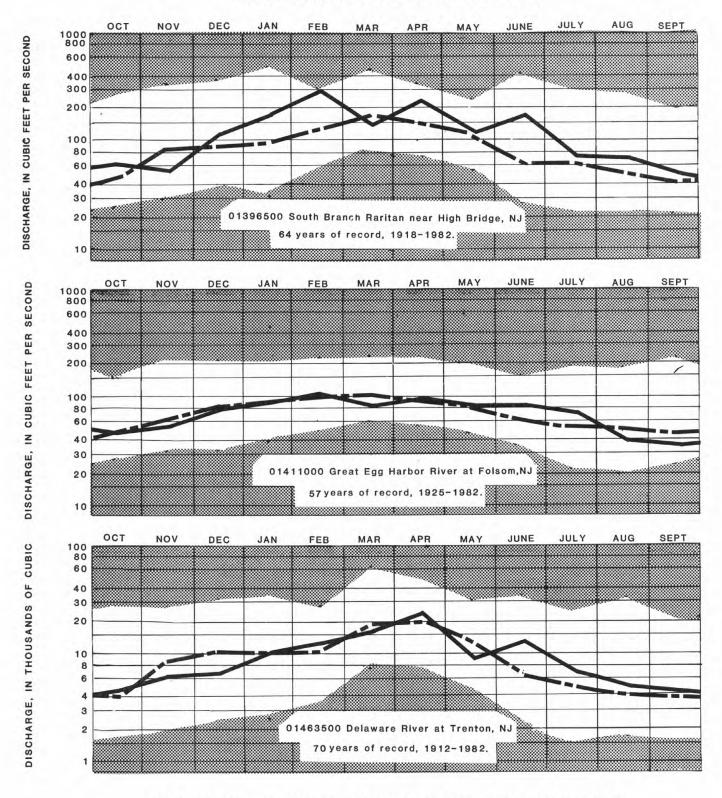
SELECTED REFERENCES

- Anderson, P. W., 1970, Occurrence and distribution of trace elements in New Jersey streams; New Jersey Division of Water Policy and Supply, Water Resources Circular 24, 24 p.
- Anderson, P.W., and Faust, S. D., 1973 Characteristics of water quality and streamflow, Passaic River basin above Little Falls, New Jersey: U.S. Geological Survey Water-Supply Paper 2026, 80 p.
- 1974, Water-quality and streamflow characteristics, Raritan River basin, New Jersey: U.S. Geological Survey Water Resources Investigations 14-74, 82 p.
- Anderson, P. W., and George, J. R., 1966, Water-quality characteristics of New Jersey streams: U.S. Geological Survey Water-Supply Paper 1819-G, 48 p.
- Barnett, P. R., and Mallory, Jr., E. C., 1971, Determination of minor elements in water by emission spectroscopy: U.S. Geological Survey Techniques of Water-Resources Investigations, book 5, Chapter A2, 31 p.

- Carter, R. W., and Davidian, Jacob, 1968, General procedure for gaging streams: U.S. Geological Survey Techniques Water-Resources Investigations, Book 3, Chapter A6, 13 p.
- Corbett, D. M., and others, 1943, Stream-gaging procedure, a manual describing methods and practices of the Geological Survey: U.S. Geological Survey Water-Supply Paper 888, 245 p.
- Fusillo, T. V., 1982, Impact of suburban suburban residential development on water resources in the area of Winslow Township, Camden County, New Jersey: U.S. Geological Survey Water-Resources Investigations 81-27, 38 p.
- Fusillo, T. V., and Voronin, L. M., 1982, Water-quality data for the Potomac-Raritan-Magothy aquifer system, Trenton to Pennsville, New Jersey, 1980: U.S. Geological Survey Open-File Report 81-814, 38 p. 2 pls.
- Fusillo, T. V., Schornick, J. C., Jr., Koester, H. E., and Harriman, D. A., 1980, Investigation of acidity and other water-quality characteristics of Upper Oyster Creek Ocean County, New Jersey: U.S. Geological Survey Water-Resources Investigations 80-10, 30 p.
- Gillespie, B. D., and Schopp, R. D., 1982, Low-flow characteristics and flow duration of New Jersey streams: U.S. Geological Survey Open-File Report 81-1110, 164 p.
- Goerlitz, D. F., and Brown, Eugene, 1972, Methods for analysis of organic substances in water: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Chapter A3, 40 p.
- Greeson, P. E., Ehlke, T. A., Irwin, G. A., Lium, B. W., and Slack, K. V., 1977, Methods for collection and analysis of aquatic biological and microbiological samples: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Chapter A4, 332 p.
- Guy, H. P., 1969, Laboratory theory and methods for sediment analysis: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Chapter C1, 58 p.
- _____1970, Fluvial sediment concepts: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter C1, 55 p.
- Guy, H. P., and Norman, V. W., 1970, Field methods for measurement of fluvial sediment: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter C2, 59 p.
- Harriman, D. A., and Velnich, A. J., 1982, Flood data in West Windsor Township, Mercer County, New Jersey through 1982 Water Year: U.S. Geological Survey Open-File Report.
- Hem, J. D., 1970, Study and interpretation of the chemical characteristics of natural water, 2d ed.: U.S. Geological Survey Water-Supply Paper 1473, 363 p.
- Hindall, S. M., and Jungblut, D. W., [no date], Sediment yields of New Jersey streams: U.S. Geological Survey Open-File Report 80-432, 1 sheet.
- Hochreiter, J. J., Jr., 1982, Chemical-quality reconnaissance of the water and surficial bed material in the Delaware River estuary and adjacent New Jersey tributaries, 1980-81: U.S. Geological Survey Water-Resources Investigations 82-36, 41 p.
- Langbein, W. B., and Iseri, K. T., 1960, General introduction of hydrologic definitions: U.S. Geological Survey Water-Supply Paper 1541-A, 29 p.
- Laskowski, S. L., 1970, Statistical summaries of New Jersey streamflow records: New Jersey Division of Water Policy and Supply, Water Resources Circular 23, 264 p.
- Lohman, S. W., and other, 1972, Definitions of selected ground-water terms-revisions and conceptual refinements: U.S. Geological Survey Water-Supply Paper 1988, 21 p.
- Luzier, J. E., 1980, Digital-simulation and projection of head changes in the Potomac-Raritan-Magothy aquifer system, Coastal Plain, New Jersey: U.S. Geological Survey Water-Resources Investigations 80-11, 72 p.
- Mansue, L. J., and Anderson, P. W., 1974, Effect of landuse and retention practices on sediment yields in the Stony Brook basin, New Jersey: U.S. Geological Survey Water-Supply Paper 1798-L.
- McCall, J. E., and Lendo, A. C., 1970, A modified streamflow data program for New Jersey: U.S. Geological Survey Open-File Report, 46 p.
- Porterfield, George, 1972, Computations of fluvial-sediment discharge: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter C3, 66 p.
- Schaefer, F. L., and Walker, R. L., 1982, Saltwater intrusion into the Old Bridge aquifer in the Keyport-Union Beach area of Monmouth County, New Jersey: U.S. Geological Survey Water-Supply Paper 2184, 21 p.
- Schornick, J. C., and Ram, N. M., 1978, Nitrification in four acidic streams in southern New Jersey: U.S. Geological Survey Water-Resources Investigations, 77-121, 51 p.
- Schornick, J. C., and Fishel, D. K., 1980, Effects of storm runoff on water quality in the Mill Creek drainage basin, Willingboro, New Jersey: U.S. Geological Survey Water-Resources Investigations 80-98, 111 p.
- Schopp, R. D., and Gillespie, B. D., 1979, Selected streamflow data for the Delaware River basin: U.S. Geological Survey Open-File Report 79-347, 16 p.
- Schopp, R. D., and Velnich, A. J., 1979, Flood of November 8-10, 1977 in Northeastern and Central New Jersey: U.S. Geological Survey Open-File Report 79-559, 32 p.
- Seaber, P. R., 1963, Chloride concentrations of water from wells in the Atlantic Coastal Plain of New Jersey, 1923-61: New Jersey Division of Water Policy and Supply, Special Report 22, 250 p.
- Skougstad, N. W., Fishman, M. J., Friedman, L. C., Erdmann, D. E., and Duncan, S. S., 1978, Methods for determination of inorganic substances in water and fluvial sediments: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Chapter A1, 626 p.

- Stankowski, S. J., 1972, Floods of August and September 1971 in New Jersey: New Jersey Division of Water Resources, Special Report 37, 329 p.
- Stankowski, S. J., and Velnich, A. J., 1974, A summary of peak stages and discharges for the flood of August 1973 in New Jersey: U.S. Geological Survey Open-File Report, 12 p.
- Stankowski, S. J., 1974, Magnitude and frequency of floods in New Jersey with effects of urbanization: New Jersey Department of Environmental Protection, Division of Water Resources, Special Report 38, 46 p.
- Stankowski, S. J., Schopp, R. D., and Velnich, A. J., 1975, Flood of July 21, 1975 in Mercer County, New Jersey: U.S. Geological Survey Water-Resources Investigations 51-75, 52 p.
- Stevens, Jr., Herbert H., Ficke, John F., and Smoot, George F., 1975, Water temperature-influential factors, field measurement, and data representation: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 1, Chapter D1, 65 p.
- U.S. Environmental Protection Agency, 1976, National Interim Primary Drinking Water Regulations: U.S. Environmental Protection Agency report EPA 570/9-76-003, 159 p.
- U.S. Geological Survey, 1976, Surface water supply of the United States, 1966-70, Part 1. North Atlantic Slope basins, Volume 2. Basins from New York to Delaware: U.S. Geological Survey Water-Supply Paper 2102, 985 p., (most recent volume).
- _____1977, Ground-water levels in the United States, 1973-74, Northeastern States: U.S. Geological Survey Water-Supply Paper 2164, 126 p., (most recent volume).
- Vecchioli, John, and Miller, E. G., 1973, Water Resources of the New Jersey part of the Ramapo River basin: U.S. Geological Survey Water-Supply Paper 1974, 77 p.
- Velnich, A.J., and Laskowski, S.L., 1979, Technique for estimating depth of 100-year flood in New Jersey: U.S. Geological Survey Open-File Report 79-419, 17 p.
- Vickers, A. A., and McCall, J. E., 1968, Surface water supply of New Jersey, Streamflow records 1961-65: New Jersey Division of Water Policy and Supply, Special Report 31, 351 p., (most recent volume).
- Vickers, A. A., 1982, Flood of August 31 September 1, 1978, in Crosswicks Creek Basin and vicinity, Central New Jersey: U.S. Geological Survey Water-Resources Investigations 80-115, 20 p.
- Vickers, A. A., Farsett, H. A., and Green, J. W., 1982, Flood peaks and discharge summaries in the Delaware River basin: U.S. Geological Survey Open-File Report 81-912, 292 p.
- Walker, R. L., 1982, Evaluation of water levels in major aquifers of the New Jersey Coastal Plain, 1978: U.S. Geological Survey Water-Resources Investigations 82-4077, 56 p.

Thirty-seven manuals by the U.S. Geological Survey have been published to date in the series on techniques describing procedures for planning and executing specialized work in water-resources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, Section A of Book 3 (Applications of Hydraulics) is on surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises. The reports listed below are for sale by the U.S. Geological Survey, Branch of Distribution, 604 South Pickett St., Alexandria, VA 22304 (authorized agent of the Superintendent of Documents, Government Printing Office).

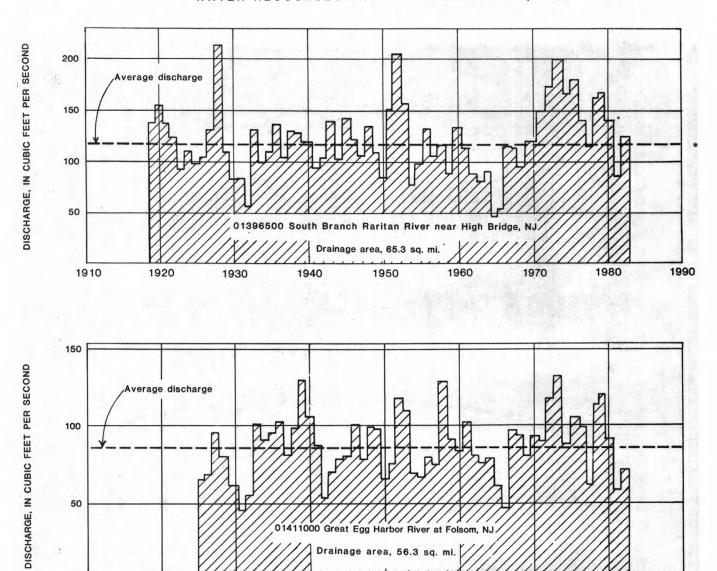

- When ordering any of these publications, please give the title, book number, chapter number, and "U.S. Geological Survey Techniques of Water-Resources Investigations". NOTE:
- 1-D1.
- Water temperature--influential factors, field measurement, and data presentation, by H. H. Stevens, Jr., J. F. Ficke, and G. F. Smoot: USGS--TWRI Book 1, Chapter D1. 1975. 65 page Guidelines for collection and field analysis of ground-water samples for selected unstable constituents, by W. W. Wood: USGS--TWRI Book 1, Chapter D2. 1976. 24 pages.

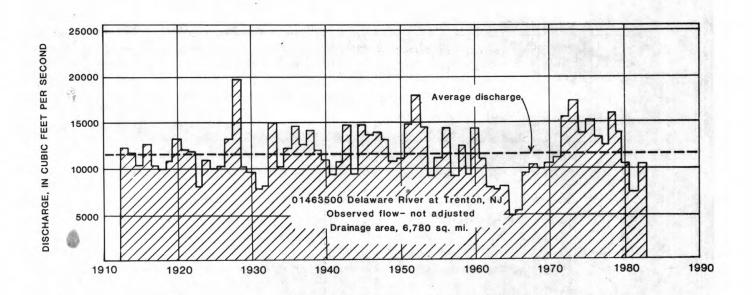
 Application of surface geophysics to ground-water investigations, by A. A. R. Zohdy, G. P. Eaton, and D. R. Mabey: USGS--TWRI Book 2, Chapter D1. 1974. 116 pages. 1-D2.
- 2-D1.
- 2-E1. Application of borehole geophysics to water-resources investigations, by W. S. Keys and L. M. MacCary: USGS--TWRI Book 2, Chapter El. 1971. 126 pages.
- General field and office procedures for indirect discharge measurements, by M. A. Benson and Tate Dalrymple: USGS--TWRI Book 3, Chapter Al. 1967. 30 pages. 3-A1.
- Measurement of peak discharge by the slope-area method, by Tate Dalrymple and M. A. Benson: USGS--TWRI Book 3, Chapter A2. 1967. 12 pages. 3-A2.
- 3-A3. Measurement of peak discharge at culverts by indirect methods, by G. L. Bodhaine: USGS--TWRI Book 3, Chapter A3. 1968. 60 pages.
- 3-A4. Measurement of peak discharge at width contractions by indirect methods, by H. F. Matthai: USGS--TWRI Book 3, Chapter A4. 1967. 44 pages.
- Measurement of peak discharge at dams by indirect methods, by Harry Hulsing: USGS--TWRI Book 3, Chapter A5. 1967. 29 pages. 3-A5.
- 3-A6. General procedure for gaging streams, by R. W. Carter and Jacob Davidian: USGS--TWRI Book 3, Chapter A6. 1968. 13 pages.
- Stage measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3, Chapter A7. $1968.\ 28$ pages. 3-A7.
- Discharge measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3, Chapter A8. 1969. 65 pages. 3-A8.
- Measurement of time of travel and dispersion in streams by dye tracing, by E. F. Hubbard, F. A. Kilpatrick, L. A. Martens, and J. F. Wilson, Jr.: USGS--TWRI Book 3, Chapter A9. 1982. 44 3-A9.
- Measurement of discharge by moving-boat method, by G. F. Smoot and C. E. Novak: USGS--TWRI Book 3, Chapter All. 1969. 22 pages. 3-A11.
- 3-B1. Aquifer-test design, observation, and data analysis, by R. W. Stallman: USGS--TWRI Book 3, Chapter B1. 1971. 26 pages.
- Introduction to ground-water hydraulics, a programed text for self-instruction, by G. D. 3-B2. Bennett: USGS--TWRI Book 3, Chapter B2. 1976. 172 pages.
- 3-B3.
- 3-C1.
- Type curves for selected problems of flow to wells in confined aquifers, by J. E. Reed: USGS--TWRI Book 3, Chapter B3. 1980. 106 pages.
 Fluvial sediment concepts, by H. P. Guy: USGS--TWRI Book 3, Chapter C1. 1970. 55 pages.
 Field methods for measurement of fluvial sediment, by H. P. Guy and V. W. Norman: USGS--TWRI 3-C2. Book 3, Chapter C2. 1970. 59 pages.
- 3-C3. Computation of fluvial-sediment discharge, by George Porterfield: USGS--TWRI Book 3, Chapter C3. 1972. 66 pages.
- 4-A1. Some statistical tools in hydrology, by H. C. Riggs: USGS--TWRI Book 4, Chapter Al. 1968. 39
- 4-A2.
- 4-B1.
- Frequency curves, by H. C. Riggs: USGS--TWRI Book 4, Chapter A2. 1968. 15 pages.

 Low-flow investigations, by H. C. Riggs: USGS--TWRI Book 4, Chapter B1. 1972. 18 pages.

 Storage analyses for water supply, by H. C. Riggs and C. H. Hardison: USGS--TWRI Book 4, 4-B2. Chapter B2. 1973. 20 pages.
- Regional analyses of streamflow characteristics, by H. C. Riggs: USGS--TWRI Book 4, Chapter 4-B3. B3. 1973. 15 pages.
- Computation of rate and volume of stream depletion by wells, by C. T. Jenkins: USGS--TWRI Book 4, Chapter D1. 1970. 17 pages. 4-D1.
- Methods for determination of inorganic substances in water and fluvial sediments, by M. W. Skougstad and others, editors: USGS--TWRI Book 5, Chapter Al. 1979. 626 pages. 5-A1.
- Determination of minor elements in water by emission spectroscopy, by P. R. Barnett and E. C. 5-A2. Mallory, Jr.: USGS--TWRI Book 5, Chapter A2. 1971. 31 pages.
- Methods for analysis of organic substances in water, by D. F. Goerlitz and Eugene Brown: USGS--TWRI Book 5, Chapter A3. 1972. 40 pages. 5-A3.
- Methods for collection and analysis of aquatic biological and microbiological samples, edited 5-A4. by P. E. Greeson, T. A. Ehlke, G. A. Irwin, B. W. Lium, and K. V. Slack: USGS--TWRI Book 5, Chapter A4. 1977. 332 pages.
- Methods for determination of radioactive substances in water and fluvial sediments, by L. L. Thatcher, V. J. Janzer, and K. W. Edwards: USGS--TWRI Book 5, Chapter A5. 1977. 95 pages. 5-A5.
- 5-C1. Laboratory theory and methods for sediment analysis, by H. P. Guy: USGS--TWRI Book 5. Chapter C1. 1969. 58 pages.
- Finite difference model for aquifer simulation in two dimensions with results of numerical 7-C1. experiments, by P. C. Trescott, G. F. Pinder, and S. P. Larson: USGS--TWRI Book 7, Chapter C1. 1976. 116 pages.
- Computer model of two-dimensional solute transport and dispersion in ground water, by L. F. Konikow and J. D. Bredehoeft: USGS--TWRI Book 7, Chapter C2. 1978. 90 pages. A model for simulation of flow in singular and interconnected channels, by R. W. Schaffranek, 7-C2.
- 7-C3. R. A. Baltzer, and D. E. Goldberg: USGS--TWRI Book 7, Chapter C3. 1981. 110 pages.

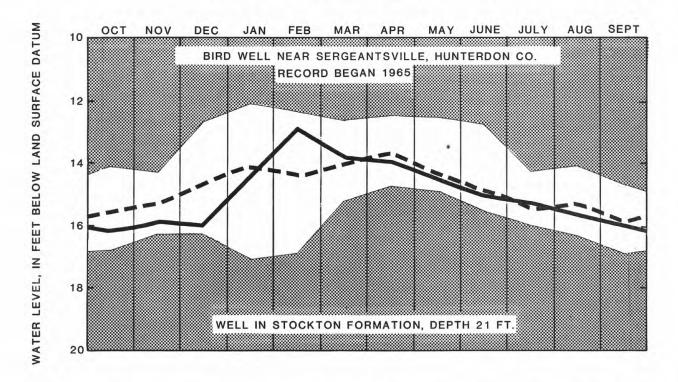
 Methods of measuring water levels in deep wells, by M. S. Garber and F. C. Koopman: USGS--
- 8-A1. TWRI Book 8, Chapter Al. 1968. 23 pages
- 8-B2. Calibration and maintenance of vertical-axis type current meters, by G. F. Smoot and C. E. Novak: USGS--TWRI Book 8, Chapter B2. 1968. 15 pages.

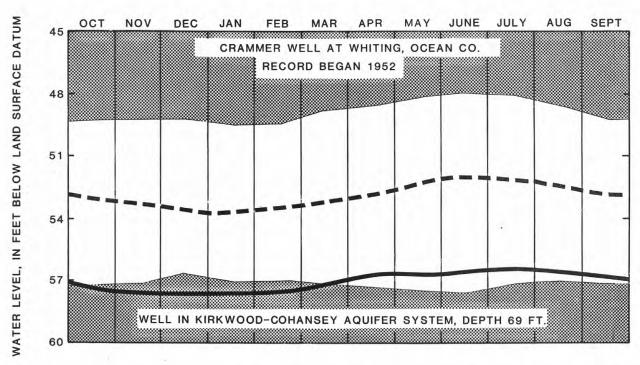



Unshaded area.--Indicates range between highest and lowest mean recorded for the month, prior to 1982 water year.

Dashed line.--Indicates normal (median of the monthly means) for the standard reference period, 1951-1980.

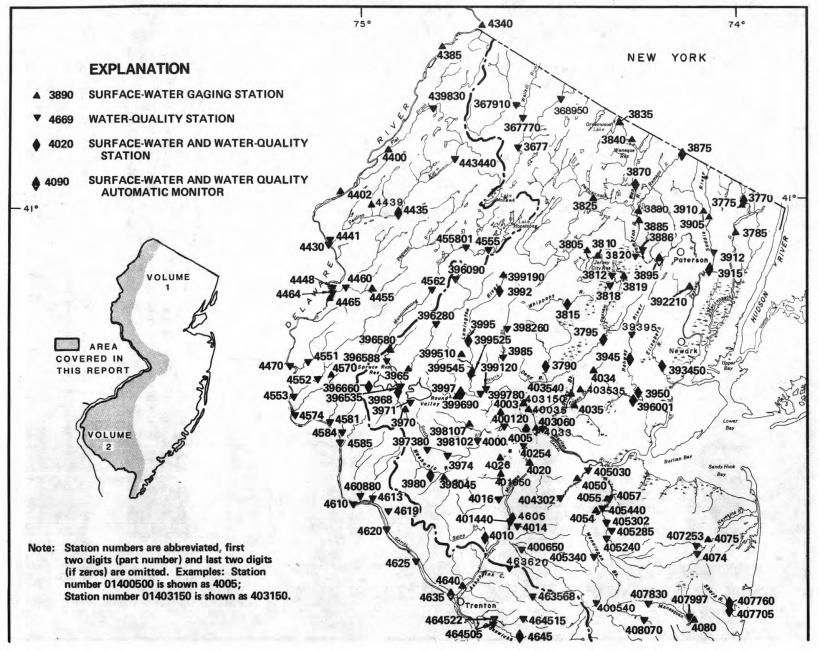
Solid line.--Indicates observed monthly mean flow for the 1982 water year.


FIGURE 2.--MONTHLY STREAMFLOW AT KEY GAGING STATIONS.



Drainage area, 56.3 sq. mi.

FIGURE 3.--ANNUAL MEAN DISCHARGE AT KEY GAGING STATIONS


Unshaded area.--Indicates range between highest and lowest recorded monthly minimum water levels, prior to the current year.

Dashed line.--Indicates average of the monthly minimum water levels, prior to current year.

Solid line.--Indicates monthly minimum water level for the current year.

FIGURE 4.--MONTHLY GROUND-WATER LEVELS AT KEY OBSERVATION WELLS.

WATER RESOURCES DATA FOR NEW JERSEY, 1982

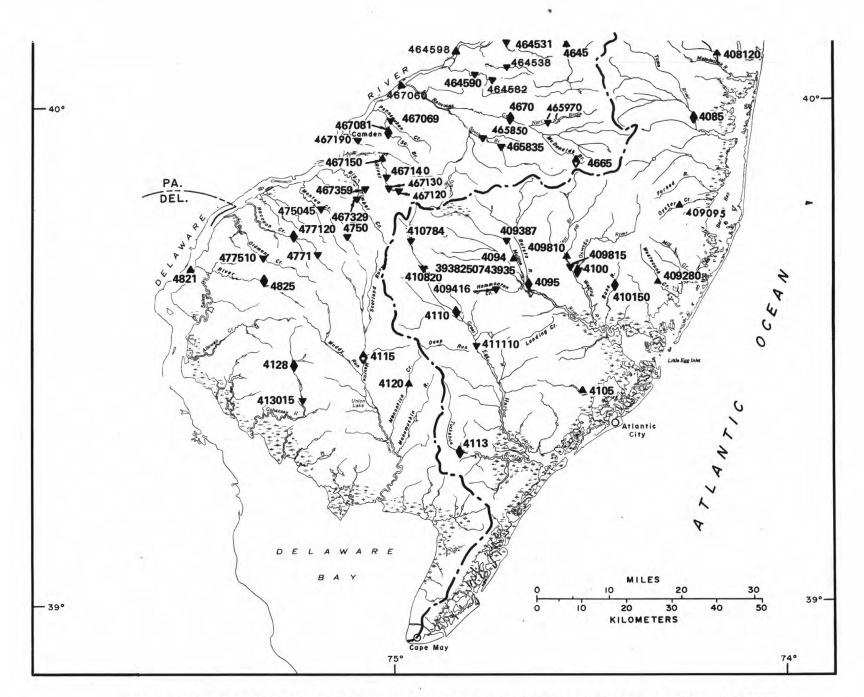
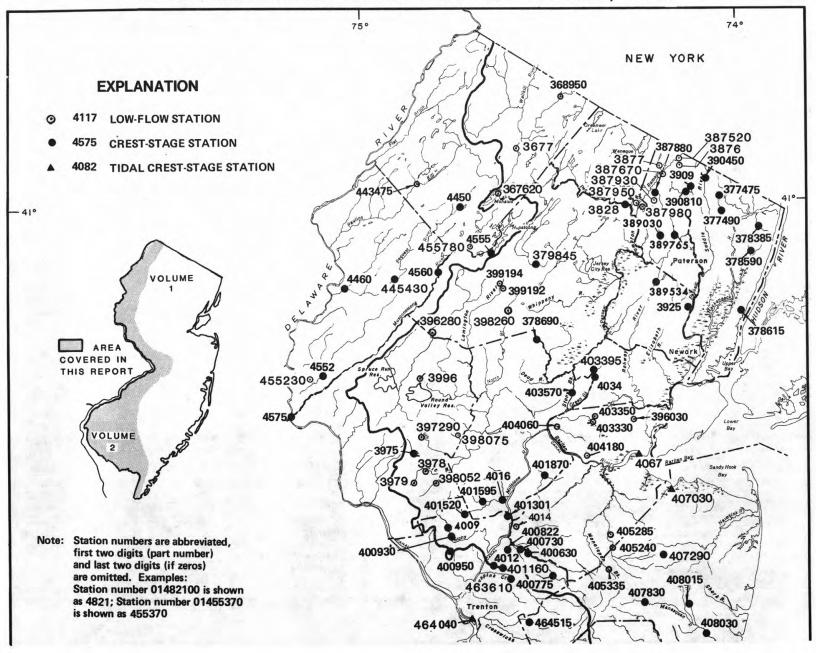



Figure 5.--Location of surface-water gaging stations and water-quality stations.

WATER RESOURCES DATA FOR NEW JERSEY, 1982

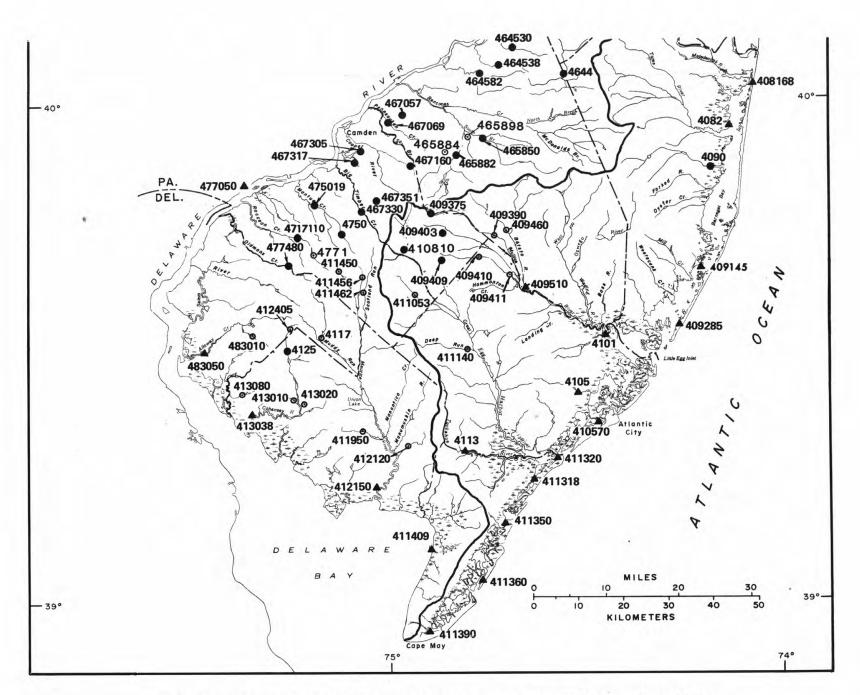
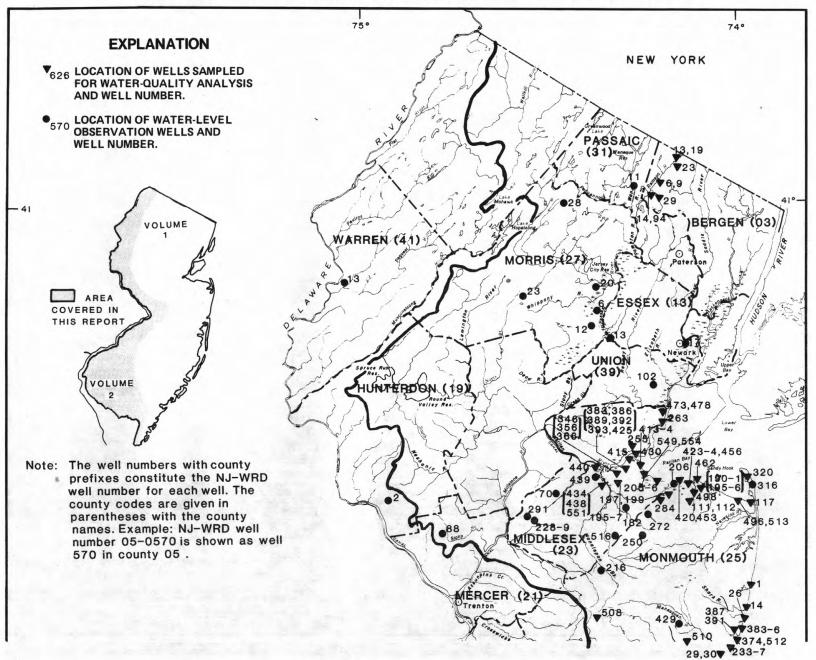



Figure 6.--Location of low-flow and crest-stage partial record stations.

WATER RESOURCES DATA FOR NEW JERSEY, 1982

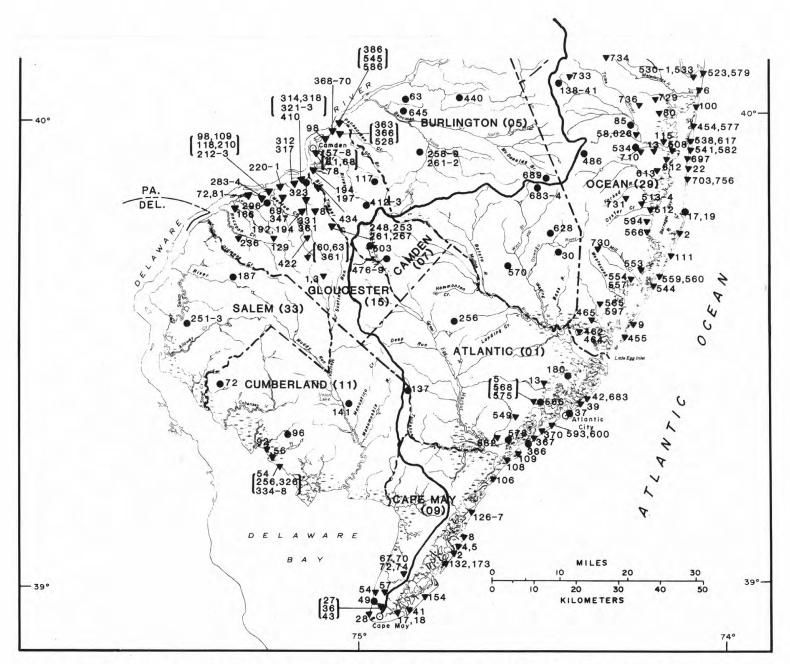


Figure 7. -- Map showing location of ground-water quality stations and observation wells.

HYDROLOGIC-DATA STATION RECORDS

MAURICE RIVER BASIN

01411500 MAURICE RIVER AT NORMA, NJ (National stream quality accounting network station)

LOCATION.--Lat 39°29'42", long 75°04'38", Salem County, Hydrologic Unit 02040206, on right bank just upstream from Almond Road Bridge at Norma, and 0.8 mi (1.3 km) downstream from Blackwater Branch.

DRAINAGE AREA. -- 112 mi2 (290 km2) revised.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- July 1932 to current year. Monthly discharge only for December 1933, published in WSP 1302.

REVISED RECORDS.--WSP 1382: 1933. WDR NJ-79-1: 1967(P).

GAGE.--Water-stage recorder. Concrete control since Dec. 27, 1937. Datum of gage is 46.94 ft (14.307 m) National Geodetic Vertical Datum of 1929.

REMARKS .-- Water-discharge records good. Occasional regulation by ponds above station.

AVERAGE DISCHARGE. -- 50 years, 167 ft 3/s (4.729 m 3/s), 20.07 in/yr (510 mm/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 7,360 ft 3 /s (208 m 3 /s) Sept. 2, 1940, gage height, 8.72 ft (2.658 m), from rating curve extended above 3,000 ft 3 /s (85 m 3 /s); minimum daily, 23 ft 3 /s (0.65 m 3 /s) Sept. 8, 1964, July 2, Sept. 7, 11-13, 1966.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 366 ft³/s (10.4 m³/s) Apr. 30, gage height, 3.40 ft (1.036 m), no peak above base of 380 ft³/s (10.8 m³/s); minimum, 41 ft³/s (1.16 m³/s) Sept. 19, 20, gage height, 2.36 ft (0.719 m).

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

						MEAN VALU	IES		,			
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	68 79 82 79 73	102 94 89 86 84	82 105 108 110 110	125 130 127 179 206	147 154 201 230 239	133 131 129 124 128	143 144 149 170 162	354 315 273 214 194	213 227 205 174 155	140 127 123 133 124	81 78 74 70 67	64 62 64 66 64
6 7 8 9	70 68 63 61 60	62 71 77 78 79	108 104 103 99 94	205 205 200 188 150	247 243 225 208 202	133 159 197 200 203	178 193 191 194 199	177 162 154 151 144	143 145 146 138 126	112 101 97 94 88	71 70 75 78 79	60 57 55 53 51
11 12 13 14 15	61 61 60 58 58	78 77 75 74 75	88 85 82 84 138	160 138 126 126 126	190 176 163 156 150	204 199 190 177 168	189 177 166 157 149	139 133 135 133 128	115 114 131 211 229	85 84 86 84 82	76 74 71 70 69	49 48 48 47 47
16 17 18 19 20	59 60 59 66 62	97 88 98 96 96	199 197 191 188 178	122 119 115 112 112	147 145 146 153 163	166 171 160 149 141	137 130 178 175 170	119 103 95 104 108	310 299 261 224 186	82 79 76 74 78	68 67 66 66 67	47 46 44 43 52
21 22 23 24 25	61 61 71 75	93 91 91 88 83	163 149 140 133 127	114 112 122 145 142	172 181 182 170 159	133 131 126 123 124	168 162 152 144 135	121 129 150 208 182	146 128 114 108 107	87 81 107 121 152	68 69 72 76 80	59 67 71 66 64
26 27 28 29 30 31	141 121 133 128 124 114	83 83 81 80 79	123 121 118 116 111 109	139 133 127 122 118 122	148 141 137	121 117 115 112 107	147 195 248 320 361	164 137 138 148 151 183	97 87 83 92 124	128 95 84 90 86 84	82 80 78 74 70 66	61 67 67 65 63
TOTAL MEAN MAX MIN CFSM IN.	2397 77.3 141 58 .69	2528 84.3 102 62 .75	3863 125 199 82 1.12	4367 141 206 112 1.26 1.45	4975 178 247 137 1.59 1.65	4585 148 204 107 1.32 1.52	5383 179 361 130 1.60	5046 163 354 95 1.46 1.68	4838 161 310 83 1.44 1.61	3064 98.8 152 74 .88 1.02	2252 72.6 82 66 .65 .75	1717 57.2 71 43 .51

CAL YR 1981 TOTAL 37099 MEAN 102 MAX 235 MIN 58 CFSM .91 IN 12.32 WTR YR 1982 TOTAL 45015 MEAN 123 MAX 361 MIN 43 CFSM 1.10 IN 14.95

01411500 MAURICE RIVER AT NORMA, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1923, 1953, 1960-62, 1965 to current year.

PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: January 1980 to current year.
WATER TEMPERATURES: October 1966 to January 1968 (once daily), January 1980 to current year.
SUSPENDED-SEDIMENT DISCHARGE: February 1965 to January 1968.

INSTRUMENTATION .-- Water-quality monitor since January 1980.

REMARKS.--Missing continuous water-quality records are the result of malfunction of the instrument.

EXTREMES FOR PERIOD OF RECORD.-SPECIFIC CONDUCTANCE: Maximum, 119 micromhos Jan. 24, 1982; minimum, 52 micromhos June 16, 1982.
WATER TEMPERATURE: Maximum, 28°C July 21, 1980; minimum 0.0°C on several days during winter months.

EXTREMES FOR CURRENT YEAR . --

SPECIFIC CONDUCTANCE: Maximum, 119 micromhos Jan. 24; minimum, 52 micromhos June 16. WATER TEMPERATURES: Maximum, 27.5°C July 19; minimum, 0.0°C on several days in January.

DATE	TIME	STREA FLOW INSTA TANEO	N, CON AN- DUC DUS ANC	FIC N- CT- CE	1	EMPER- ATURE DEG C)	TUR- BID- ITY (NTU)	SOL	Г	EMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL 0.7 UM-MF (COLS.	TOCO FEO KF / (COI	GAR NI LS. (1	ARD- ESS MG/L AS ACO3)
NOV 18	1135		100	73	6.2	9.0	1.0		9.8	3.0	K 1	1	330	17
JAN 13	0945		125	86	6.0	1.5	1.0		12.8	2.0	K	6	51	21
MAR 17	0930		174	77	6.2	8.0	1.0		10.5	1.4	2	6	1200	19
MAY 20	1100		110	75	6.5	19.5	1.5		7.6		6	0 2	2800	18
JUL 01	1005		144	60	6.5	22.0	1.7		6.6		13		240	15
SEP 08	1125		54	71	6.8	19.0	1.0		8.0	.3	<2		450	17
	CAI DI SC (M	CCIUM IS- DLVED MG/L S CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS SIUM DIS- SOLVE (MG/I	S- ALK M, LINI LA ED (MG	A- TY SI B I	ULFATE DIS- SOLVED (MG/L S SO4)	CHLC RIDE DIS- SOLV (MG/	FLU FLU FED SOI	JO- S: DE, IS- : LVED	ILICA, DIS- SOLVED (MG/L AS SI02)	SOLIDS RESIDUE AT 180 DEG. (DIS- SOLVEI (MG/L)	
NOV														
18 JAN		3.5	2.0	5.0	1.	. 8 5	.0	8.7		. 2	<.1	6.4	60)
		4.3	2.6	6.1	1.	. 6 4	.0	13	9	. 1	<.1	7.5	62	2
17		4.0	2.3	5.5	1.	. 7 4	.0	13	7	. 9	<.1	4.3	5'	7
		3.7	2.2	5.3	1.	. 4 7	.0	8.0	8	. 2	<.1	3.7	51	7
		3.2	1.8	4.7	1.	2 6	.0	7.0	7	. 6	<.1	5.2	62	2
SEP 08		3.3	2.0	5.3	1.	5 8	.0	7.0	8	. 2	.2	3.7	51	1
DA	ME SU PE	EDI- ENT, US- ENDED	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM	(MG/L	GE AMMO DI DI SOL (MG	N, GI NIA MO S- OI VED 1	NITRO- EN, AM- ONIA + RGANIC FOTAL (MG/L AS N)	PHOS PHORU TOTA (MG/ AS P	IS, DI L SOL L (MC	OS- PI RUS, C IS- I VED SC G/L (I	PHOS- HORUS, ORTHO, DIS- DLVED MG/L S P)	CARBON, ORGANIC TOTAL (MG/L AS C)	
NOV			4.4	3.44							1			
JAN		4	1.1	100	1.6		020	.29			020	<.010	3.5	
13 MAR	• • •	1	.34	100	1.6		030	. 41	<.0	10 <.	010	<.010	6.7	
17 MAY	• • •	3	1.4	100	1.1		030	. 27	.0	30 <.	020	.020		
20 JUL	• • •				1.5		080	.40	.0	30 <.	010	<.010		
		2	.78	100	. 8		050	.50	. 1	10 .	030	<.010		
		1	.15	100	1.5		040	.40	.0	20 .	010	<.010	2.8	3

MAURICE RIVER BASIN
01411500 MAURICE RIVER AT NORMA, NJ--Continued

DAT	E	TIME	T(SENIC OTAL JG/L S AS)	SC (U	ENIC DIS- DLVED G/L G AS)	TO'REG	IUM, TAL COV- ABLE G/L BA)	DI:		TO RE ER (U	MIUM TAL COV- ABLE G/L CD)	SO (U	MIUM IS- LVED G/L CD)	ERA (UC	JM,	MII DIS SOI (UC	RO- JM, S- LVED G/L CR)	REC ER/	ALT, FAL COV- ABLE G/L CO)
NOV												Arm								
18. JAN	• •	1135		180		160		100		63		<1		<1		10		<10		4
13.		0945		290		280		100		74		2		1		10		<10		2
20.		1100		200		200		100		77		1		1		10		<10		2
SEP 08.		1125		220		100		100		60		1				10		<10		4
08.	• •	1125		220		190		100		63		1		<1				<10	Jan.	4
DAT	E	COBALT DIS- SOLVED (UG/L AS CO	, TO	PPER, OTAL ECOV- RABLE UG/L S CU)	DI SC (U	PER, S- DLVED	TO' REC	ON, TAL COV- ABLE G/L FE)	SOI (U	ON, IS- LVED G/L FE)	TO RE ER (U	AD, TAL COV- ABLE G/L PB)	SO (U	AD, IS- LVED G/L PB)	TOT REC ERA (UC	IGA- SE, TAL COV- ABLE G/L MN)	DE SOI	NGA- SE, IS- LVED G/L MN)	TO'REC	CURY TAL COV- ABLE G/L HG)
WOW																				
NOV 18. JAN		<	1	. 7		3		350		83		6		2		20		18		<.1
13.			1	10		2		280		230		7		2		40		40		<.1
20. SEP	• •		2	4		4		810		88		4		3		40		27		.2
08.		<	1	5		5		400		120		5		3		20		16		.2
	DA	S	RCURY DIS- OLVED UG/L S HG)	ERA (UC		NICK DIS SOL (UG AS	VED /L	SEL NIU TOT (UG	M,	SEL NIU DI SOL (UG AS	M, S- VED /L	SILV TOT REC ERA (UG AS	AL OV- BLE /L	SILVE DIS SOL' (UG,	VED	ZINC TOTA RECC ERAN (UG) AS 2	AL OV- BLE /L	SOL (UG	S- VED	
	NOV						•												10	
	JAN	• • •	<.1		4		3		<1		<1		<1		<1		50		19	
			<.1		2		<1		<1		<1		<1		<1		70		23	
	MAY 20 SEP		. 2		9		8		<1		<1		<1		<1		20		4	
			.2		5		4		<1		<1	4000	<1		<1		10		8	

MAURICE RIVER BASIN 29

01411500 MAURICE RIVER AT NORMA, NJ--Continued SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		ОСТОВЕ	R		NOVEMBE	R		DECEMBE	R		JANUAR	Y
1 2 3 4 5	77 77 77 75 74	75 74 71 73 73	76 76 73 74 74	86 85 82 84 83	76 77 76 77 76	81 83 80 82 80	81 81 79 80 80	77 77 77 76 75	80 80 78 78 77	80 79 80 77 76	76 77 77 70 73	78 78 79 73 74
6 7 8 9	75 75 75 79 107	74 73 73 75 76	74 74 74 76 89	86 85 83 81	76 77 77 76 76	82 81 80 79 79	79 80 80 81 81	76 78 79 77	78 79 79 79 79	76 76 77 81 86	75 75 74 78 78	76 75 76 80 82
11 12 13 14 15	97 77 75 75 76	76 73 72 72 73	85 75 74 73 74	79 80 80 79 79	78 78 78 75 76	79 79 79 77 78	81 81 81 81 78	77 77 77 77 77	79 79 79 79 75	85 89 89 87 87	79 81 86 85 85	82 86 88 86 86
16 17 18 19 20	79 77 79 77 75	73 73 73 73 74	75 75 75 75 74	78 77 78 78 78	75 75 74 75 76	77 76 76 77 77	83 90 78 81 86	74 77 76 75 77	75 81 77 78 83	86 86 87 87 85	85 85 85 85 84	86 86 86 86
21 22 23 24 25	75 76 75 76 74	74 74 74 73 71	75 75 75 74 73	77 78 79 79 79	73 75 77 77 78	76 77 78 78 78	90 90 89 88 85	79 87 87 78 78	88 88 88 85 83	87 86 106 119 89	84 84 83 90 83	85 85 87 102 86
26 27 28 29 30 31	76 78 79 75 77 82	70 74 73 73 71 74	73 75 75 74 75 77	81 80 83 81	77 77 77 77 77	79 80 79 80 80	84 83 85 84 80	78 77 78 77 77 78	82 80 81 81 79 79	89 87 89 89 89	85 84 87 87 87 87	87 86 88 88 88
MONTH	107	70	75	86	73	79	90	72	80	119	70	84
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
	12/10	FEBRUAR			MARCH			APRIL			MAY	
1 2 3 4 5	87 84 78 74 70	84 76 71 71 68	85 82 74 73 69	84 83 83 82 79	76 76 75 75 75	82 80 81 80 77	75 75 73 72 72	72 73 71 69 71	74 74 72 70 71	===		
6 7 8 9	69 74 74 76 76	67 68 72 72 70	69 71 73 74 72	79 79 75 77 76	75 74 72 74 74	77 77 73 76 75	72 70 70 70 70	67 67 65 66 67	70 69 69 69	===	===	===
11 12 13 14 15	76 75 75 79 80	72 73 73 73 74	73 74 74 76 78	75 79 79 80 80	73 75 76 77 78	74 77 78 78 79	72 71 72 72 70	70 68 69 69	72 69 71 71 70			===
16 17 18 19 20	79 76 79 77 79	73 73 73 73 73	76 75 75 75 75	80 80 80 81 79	77 77 78 78 76	79 79 79 80 78	71 71 68 66 66	69 68 62 63 64	70 70 65 65 65	81	 74	 75
21 22 23 24 25	78 78 80 78 81	74 74 74 74 74	76 76 76 76 79	78 78 77 76 76	76 76 76 75 74	77 77 77 76 75	66 67 68 69	64 64 66 66	65 66 67 68	85 75 71 66 69	75 71 64 63 66	79 74 69 65 68
26 27 28 29 30 31	81 81 82	75 74 76	78 78 80	75 76 77 76 76	74 75 76 75 75	75 75 76 75 75 76	=======================================	=======================================	===	71 73 72 71 71 69	68 71 70 69 68 64	70 72 71 70 69 66
MONTH	87	67	75	84	72	77	75	62	69	85	63	71

01411500 MAURICE RIVER AT NORMA, NJ--Continued

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

					,	Ly Dud. O	, WATER YEA	in ouron		 	1982	
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEMB	ER
1	65	64	64	71	61	66	74	71	72	72	71	71
2	64	62	63	72	66	71	71:	70	71	74	71	72
3	65	62	63	72	65	71	71	68	69	73	71	72
	65	63	64	73	71	72	71	68	70	73	71	72
5	65	63	64	74	71	72	72	69	70	71	69	70
6	67	63	65	75	71	73	72	70	71	71	70	70
7	66	64	65	78	73	74	72	69	71	71	70	.70
8	65	64	65	75	72	74	71	68	69	72	70	71
8 9 10	67	65	66	75	73	74	70	68	69	72	71	71
10	67	65	66	76	73	75	70	69	70	73	71	71
11	67	65	66	77	75	76	70	68	69	72	71	72
12	69	66	67	76	73	74	71	68	70	72	71	72
13	69	61	66	76	73	74	69	67	68	73	71	72
14	60	54	59	75	73	74	70	68	69	7.2	71	72
15	58	54	56	76	74	75	71	69	70	71	70	71
16	56	52	53	77	74	75	72	70	71	72	71	71
17	55	53	54	78	76	77	72	71	72	72	71	71
18	56	54	55	78	76	77	73	71	72	72	70	71
19	57	56	57	77	75	76	72	71	71	73	70	71
20	59	54	57	76	73	75	73	71	72	73	69	71
21	63	59	61	75	73	74	73	71	73	72	70	71
22	63	61	62	74	73	73	71	69	70	70	69	70
23	64	63	64	76	71	73	71	70	71	70	68	69
24	65	63	64	74	71	73	72	70	71	69	68	69 69
25	64	62	63	72	70	71	70	67	69	70	69	69
26	72	63	65	72	71	71	69	66	68	71	69	70
27	68	65	66	76	71	73	68	66	67	70	69	70
28	69	66	67	76	73	74	69	68	69	70	68	69
29	67	65	66	74	70	72	70	65	68	69	68	69
30 31	66	60	63	74	70	72	71	70	70	69	68	69
31				77	73	74	72	70	71			
MONTH	72	52	63	78	61	73	74	65	70	74	68	71
YEAR	119	52	74									

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		ОСТОВЕ	R		NOVEMBE	R		DECEMBE	R		JANUAR	Y
1 2 3 4 5	17.5 17.5 15.0 14.0 16.0	15.5 15.5 13.5 12.5 13.5	16.5 16.5 14.5 13.5 14.5	13.0 13.5 13.5 13.0 12.5	11.0 11.5 12.0 11.0 10.5	12.0 12.5 13.0 12.0	6.0 7.5 7.5 7.0 7.0	4.0 6.5 6.5 6.0 6.0	4.5 7.0 6.5 6.5 7.0	6.0 5.0 4.5 7.0 6.5	5.0 3.5 3.5 4.5 5.0	5.5 4.5 4.0 6.0 6.0
6 7 8 9	16.0 16.0 14.5 13.5 13.0	15.0 14.5 13.0 12.0 11.0	15.5 15.0 14.0 12.5 12.0	14.0 12.0 10.0 10.5 10.5	12.0 9.5 8.5 8.0 9.0	13.0 10.5 9.5 9.5 9.5	6.0 4.5 5.5 5.0 4.0	4.0 4.0 4.5 4.0 3.0	5.0 4.5 5.0 4.5 3.5	5.5 6.0 5.0 3.0 1.5	4.0 5.0 2.5 2.0	5.0 5.5 4.0 2.5
11 12 13 14 15	13.5 13.0 12.5 12.5 13.0	11.5 11.5 11.0 10.5 11.0	12.5 12.5 12.0 11.5 12.0	10.5 9.5 8.0 8.5 9.5	9.0 8.0 7.0 7.5 8.0	9.5 8.5 7.5 8.0 8.5	3.5 3.5 3.5 4.0 4.5	2.5 3.0 2.0 2.5 3.5	3.0 3.0 3.0 4.0	.5 1.5 1.5 2.0 2.0	.0 .5 1.0 1.0	.0 1.0 1.5 1.5
16 17 18 19 20	13.5 13.0 13.5 13.0 11.5	11.5 11.5 11.0 11.5 10.0	12.5 12.5 12.0 12.5 11.0	10.0 9.0 9.5 9.5 10.0	9.0 8.0 9.0 8.0 8.5	9.5 8.5 9.0 9.0	3.5 3.5 3.5 2.5 2.0	2.5 2.0 2.5 1.5	3.0 3.5 2.0 1.5	2.5 1.5 1.0 2.0 3.0	.5 .0 .0 1.0	1.5 .5 .5 1.5 2.0
21 22 23 24 25	12.5 13.5 14.0 13.5 12.0	10.5 11.5 13.0 12.0 10.5	11.5 12.5 13.5 12.5 11.5	9.0 7.5 6.5 6.0 5.5	8.0 6.5 5.5 4.5	8.5 7.5 6.0 5.0	2.5 3.5 5.0 4.5 4.5	1.0 2.5 3.5 3.5 4.0	1.5 3.0 4.0 4.0	2.0 2.0 3.0 2.5 2.0	1.5 1.0 1.0 1.0	2.0 1.5 2.0 2.0
26 27 28 29 30 31	13.5 15.0 16.0 14.5 12.5	12.0 13.5 14.0 12.5 12.0 11.5	12.5 14.0 15.0 13.5 12.5	5.5 7.5 7.0 7.0 5.5	4.0 5.0 6.0 5.5 4.5	4.5 6.5 6.5 5.0	5.0 5.5 5.0 5.5 4.5	3.5 4.5 4.5 4.5 3.5 3.0	4.0 5.0 5.0 5.0 4.0	2.0 2.0 3.0 3.5 4.5 5.0	1.0 .5 1.0 2.0 2.0 4.0	1.5 1.5 2.0 2.5 3.0 4.5
MONTH	17.5	10.0	13.0	14.0	4.0	8.5	7.5	1.0	4.0	7.0	.0	2.5

31 MAURICE RIVER BASIN

> 01411500 MAURICE RIVER AT NORMA, NJ--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

			TEMPERATURE,	WATER	(DEG. C),	WATER	YEAR	OCTOBER	1981 10	SEPTEMBER	1902			
DAY	MAX	MIN FEBRUARY	MEAN	MAX	MIN MARCH	MEAN		MAX	MIN APRIL	MEAN	М	AX	MIN MAY	MEAN
1 2 3 4 5	5.5 4.5 4.5 5.5	4.0 3.0 4.0 4.0 3.0	5.0 4.0 4.5 4.5	6.5 6.5 6.5 5.5 8.0	3.5 5.0 5.5 4.5 5.5	5.0 6.0 6.0 5.0 6.5		13.0 13.0 12.0 11.5 9.5	9.5 10.5 10.5 8.5 7.0	11.5 11.5 11.0 10.5 8.5	-	 	=======================================	===
6 7 8 9	4.5 3.0 4.0 4.0 3.5	3.0 1.5 1.5 3.0 2.5	4.0 2.5 3.0 3.5 3.0	6.5 5.5 5.5 6.0 5.5	5.5 5.0 3.5 3.0 3.5	6.0 5.0 4.5 4.5		8.5 6.0 7.0 5.5 8.5	6.0 3.5 3.5 4.5 4.0	7.5 5.0 5.0 5.0 6.0	-		===	===
11 12 13 14 15	3.5 4.0 4.0 4.5 6.0	2.0 2.0 3.0 2.0 3.0	3.0 3.0 3.5 3.5 4.5	8.0 11.0 11.0 11.5 10.0	4.5 7.5 9.0 9.0	6.5 9.0 10.0 10.0 9.5		10.0 11.5 11.5 13.5 14.5	6.0 7.5 9.5 10.5 10.5	8.0 9.5 10.5 12.0 12.5			===	===
16 17 18 19 20	7.5 7.5 4.0 4.5 5.5	5.5 4.0 3.5 4.0	6.5 6.0 4.0 4.0 5.0	9.0 9.0 10.0 11.5 11.0	8.5 8.0 7.5 8.5 9.5	8.5 8.0 8.5 10.0 10.5		16.0 18.0 17.5 17.5	11.5 14.0 14.5 13.5 13.5	13.5 16.0 16.0 15.0 15.5	-	.5	19.0	20.5
21 22 23 24 25	5.0 6.0 6.5 6.0 5.5	5.0 4.5 4.0 5.5 3.5	5.0 5.0 5.5 5.5 4.5	10.5 10.5 11.0 11.5 13.0	10.0 9.0 8.0 8.5 9.0	10.0 9.5 9.5 10.0 11.0		16.5 16.0 15.5 17.0	14.5 12.5 12.0 13.0	15.5 14.0 14.0 14.5	19 17 16).5).5 7.5 5.0	19.5 17.5 16.0 15.0	20.0 18.5 17.0 15.5 15.5
26 27 28 29 30 31	4.0 4.5 5.5	2.5 2.5 3.5	3.5 3.5 4.5 	12.5 10.0 9.0 10.0 10.5 10.5	10.0 7.5 6.5 6.0 7.0 9.0	11.5 9.0 7.5 8.0 9.0		=======================================	=======================================		19 18 20 22	3.5 3.5 3.0 2.0	15.5 17.0 17.5 18.0 19.5 21.0	17.0 18.0 18.0 19.0 20.5 22.0
MONTH	7.5	1.5	4.0	13.0	3.0	8.0		18.0	3.5	11.0	23	3.0	15.0	18.5
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN		MAX	MIN	MEAN	N	XAN	MIN	MEAN
DAY	MAX	MIN JUNE	MEAN	MAX	MIN	MEAN		MAX	MIN AUGUST		N	MAX	MIN SEPTEMB	
DAY 1 2 3 4 5	MAX 22.5 22.5 22.0 20.5 19.5		22.0 21.5 21.0 20.0 19.0	MAX 23.5 23.0 22.5 22.0 22.5		MEAN 22.5 22.0 21.5 21.0 21.5		MAX 24.0 24.0 24.5 24.5 24.5			20	0.5 2.0 2.5 1.5		
1 2 3	22.5 22.5 22.0 20.5	21.0 21.0 20.0 19.5	22.0 21.5 21.0 20.0	23.5 23.0 22.5 22.0	JULY 21.5 20.5 20.5 19.5	22.5 22.0 21.5 21.0		24.0 24.0 24.5 24.5	22.0 22.0 22.5 22.5	23.0 23.0 23.5 23.5	20 22 20 20 20 20 20 20 20 20 20 20 20 2	0.5 2.0 2.5	19.0 20.0 21.0 19.0	20.0 21.0 21.5 20.5
1 2 3 4 5 6 7 8 9	22.5 22.5 22.0 20.5 19.5 20.0 19.5 18.0 20.0	21.0 21.0 20.0 19.5 18.5 18.5 17.5	22.0 21.5 21.0 20.0 19.0	23.5 23.0 22.5 22.0 22.5 23.5 25.0 25.5	JULY 21.5 20.5 20.5 19.5 20.5 19.5 20.5	22.5 22.0 21.5 21.0 21.5 21.5 21.5 21.5 24.5		24.0 24.5 24.5 24.5 24.5 24.5 24.5 24.5	AUGUST 22.0 22.5 22.5 23.0 22.5 21.0 21.5 23.0	23.0 23.0 23.5 23.5 23.5 23.5 23.5	20 22 20 20 20 20 20 20 20 20 20 20 20 2	0.5 2.5 1.5 0.5 1.0 0.5 0.0	19.0 20.0 21.0 19.0 18.0 18.5 19.0 18.5 17.5	20.0 21.0 21.5 20.5 19.5 20.0 20.0 19.0 18.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14	22.5 22.5 22.0 20.5 19.5 20.0 19.5 18.0 20.0 20.0 19.0 19.0 17.5	21.0 21.0 20.0 19.5 18.5 18.5 17.5 17.0 18.0 17.0 16.0 15.5	22.0 21.5 21.0 20.0 19.0 19.5 18.5 18.0 18.5 19.0	23.5 23.0 22.5 22.5 22.5 22.5 25.5 25.5 25.5 25	JULY 21.5 20.5 20.5 20.5 19.5 20.5 21.5 24.0 24.0 23.5 23.0 24.0	22.5 22.0 21.5 21.5 21.5 21.5 21.5 24.5 24.5 24.5 24.5 24.5 24.5		24.0 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5	AUGUST 22.0 22.5 22.5 23.0 22.5 21.0 23.5 21.0 23.5 21.0 19.5	23.0 23.0 23.5 23.5 23.5 23.5 23.0 22.5 23.0 23.5 24.5 21.5 21.0 21.0	202222222222222222222222222222222222222	0.50 2.55 1.55 1.50 1.50 1.50 1.50 1.50	SEPTEMB 19.0 20.0 21.0 19.0 18.0 18.5 19.0 18.5 17.5 18.0 19.5 19.5	20.0 21.0 21.5 20.5 19.5 20.0 19.0 18.5 19.0 20.5 20.5 20.5 20.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	22.5 22.5 22.0 20.5 19.5 20.0 20.0 20.0 19.0 17.5 17.0 18.5 20.5 22.5 22.5 22.5	18.5 17.5 17.0 18.0 18.0 18.0 17.0 18.0 17.0 18.0 17.0 18.0 20.0 21.5 21.0	22.0 21.5 21.0 20.0 19.0 19.5 18.5 18.0 18.5 19.0 18.5 17.0 16.5 17.5	23.5 23.0 22.5 22.5 22.5 25.5 25.5 25.5 25.5 25	JULY 21.5 20.5 20.5 19.5 20.5 19.5 21.5 24.0 24.0 23.5 23.0 24.0 23.5	22.0 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5		24.0 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5	AUGUST 22.0 22.5 22.5 23.0 22.5 23.0 21.5 23.0 21.5 23.0 21.5 21.0 21.5 21.0 20.5 21.0 20.5 20.5	23.0 23.0 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5	20 20 20 20 20 20 20 20 20 20 20 20 20 2	0.5 0.5 1.0 0.5 0.5 1.5 1.5 1.5 1.5 1.5 1.5 1.0 0.5 0.5 0.5	19.0 20.0 21.0 21.0 19.0 18.0 18.5 17.5 18.0 19.5 19.5 19.5 19.5 19.5	20.0 21.0 21.5 20.5 19.5 20.0 19.0 18.5 19.0 20.5 20.5 20.5 20.5 20.5 20.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 32 44 5 26 27 28 9 30	22.55 22.55 22.0.55 20.05 19.00 19.5	18.5 18.5 17.5 17.0 18.0 18.0 17.0 16.0 15.5 16.0 20.0 21.5 21.0 21.0 20.5 20.5 20.5 20.0 20.0 20.0 20.0	22.0 21.5 21.0 21.0 21.0 21.0 21.0 21.0 21.5 21.0 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5	23.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	JULY 21.55 20.55 2	222.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.		24.05555 050000 50505 00555 24.224.5 4.222.22 2332.33 310.55 24.222.22 2332.33 310.55	AUGUST 22.0 22.5 22.5 23.0 21.5 23.5 23.5 22.5 21.0 21.5 21.5 21.0 20.5 21.5 21.0 20.5 21.5 21.0 20.5 21.0 20.5	23.0 23.0 23.5 23.5 23.5 23.5 23.5 23.5 23.5 24.5 21.0 21.0 21.0 21.5 22.5 22.5 22.5 22.5 22.5	20 22 22 20 20 20 20 20 20 20 20 20 20 2	0.5 0.5 0.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1	SEPTEMB 19.0 20.0 21.0 21.0 18.0 18.5 17.5 18.0 19.5 19.5 19.5 19.6 19.6 17.0 17.0 17.0 17.0 17.0 17.0	20.0 21.0 21.5 20.5 19.5 20.0 19.0 18.5 19.0 20.5 20.5 20.5 20.5 20.5 20.5 19.0 18.5 19.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	22.55 22.05 20.05 19.0 20.0 19.0 20.0 19.0 17.5 18.5 20.2 22.5 22.5 22.5 22.5 22.5 22.5 22	18.0 17.0 18.0 17.0 18.0 17.0 18.0 17.0 18.0 17.0 18.0 20.0 21.5 21.0 20.0 21.5 21.0 20.0 20.0	22.0 21.5 21.0 20.0 19.0 19.5 18.0 18.5 19.0 18.5 17.5 17.5 21.0 22.0 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5	233.505.55 05.005.55 223.55.55 25.60.50 25.55 25	JULY 21.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20	222.50.50.50.50.50.50.50.50.50.50.50.50.50.		24.05555 050000 505050 005550 24.4.55 4.22222 2332333 310223 2211095	AUGUST 22.0 22.5 22.5 23.0 21.5 23.5 21.0 21.5 23.5 22.5 21.0 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5	23.0 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 21.0 21.0 21.0 21.5 22.6 22.6	2022 2222 2022 2022 2022 2022 2022 202	5.0.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	SEPTEMB 19.0 20.0 21.0 19.0 18.0 18.5 19.5 19.5 19.5 19.5 19.5 19.5 19.6 17.0 17.0 17.0 17.0 17.0 17.5 18.0 17.5	20.0 21.5 20.5 19.5 20.0 19.5 20.0 18.5 19.0 20.5 20.5 20.5 20.5 20.5 20.5 19.0 18.5 17.0 17.0 17.0 17.0 17.0 18.5 18.5

01412000 MENANTICO CREEK NEAR MILLVILLE, NJ

LOCATION.--Lat 39°25'12", long 74°58'00", Cumberland County, Hydrologic Unit 02040206, on right bank at upstream side of Mays Landing Road (Route 552), 0.9 mi (1.4 km) downstream of Menantico Lake, 4.0 mi (6.4 km) northeast of Millville, and 7.0 mi (11.3 km) upstream from mouth.

DRAINAGE AREA .-- 23.2 mi2 (60.1 km2), revised.

8943.6

WTR YR 1982 TOTAL

MEAN 24.5

MAX 103

MIN 6.4

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--June 1931 to September 1957, October 1977 to current year. Published as "Manantico Creek" prior to October 1978.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 36.63 ft (11.165 m) National Geodetic Vertical Datum of 1929.

REMARKS .-- Water-discharge records good. Occasional regulation from unknown source.

AVERAGE DISCHARGE. -- 31 years (water years 1932-57, 1978-82), 37.3 ft3/s (1.056 m3/s), 22.71 in/yr (577 mm/yr).

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 1,050 ft³/s (29.7 m³/s) Aug. 20, 1939, gage height, 6.21 ft (1.893 m), from rating curve extended above 300 ft³/s (8.5 m³/s); minimum, 1.4 ft³/s (0.040 m³/s) Aug. 16-18, 1936.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 106 ft 3 /s (3.00 m 3 /s) Apr. 28, gage height, 2.15 ft (0.655 m), no peak above base of 125 ft 3 /s (3.54 m 3 /s); minimum, 4.3 ft (0.12 m) May 11, 12.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 MEAN VALUES DAY OCT NOV DEC FEB APR JAN MAR MAY JUN JUL. AUG SEP 9.9 9.9 9.8 9.5 9.1 8.5 9.4 9.8 8.1 7.9 9.5 7.7 9.1 7.6 8.8 7.2 6.7 6.5 7.9 7.1 6.7 8.7 8.6 6.4 9.3 8.8 6.6 9.6 6.6 8.6 9.0 6.8 9.7 6.6 9.3 7.0 9.5 7.5 7.5 7.7 29 7.9 8.8 9.2 ---9.4 ---9.1 ------505.2 TOTAL. 244.2 363.2 25.3 15.6 18.3 29.7 19.3 11.7 MEAN 30.6 38.4 31.5 50.4 16.3 8.14 MAX 7.9 MIN 7.1 6.4 2.17 CFSM 1.32 1.66 .88 1.26 2.43 1.48 .93 .81 .58 .39 IN. .78 CAL YR 1981 TOTAL 7577.8 MEAN 20.8 IN 12.15 MAX MIN 6.8 CFSM .90

CFSM 1.06

IN 14.34

01412800 COHANSEY RIVER AT SEELEY, NJ

LOCATION.--Lat 39°28'21", long 75°15'21", Cumberland County, Hydrologic Unit 02040206, on right bank just downstream from bridge on Silver Lake Road, 0.6 mi (1.0 km) south of Seeley, 2.6 mi (4.2 km) east of Shiloh, 4.1 mi (6.6 km) north of Bridgeton, and 22.5 mi (36.2 km) upstream from mouth.

DRAINAGE AREA .-- 28.0 mi2 (72.5 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1977 to current year.

GAGE.--Water-stage recorder. Datum of gage is 26.9 ft (8.20 m) National Geodetic Vertical Datum of 1929.

REMARKS .-- Water-discharge records fair. Flow diverted above gage during summer months for irrigation.

AVERAGE DISCHARGE. -- 5 years, 37.5 ft3/s (1.062 m3/s), 18.19 in/yr (462 mm/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,490 ft 3 /s (42.2 m 3 /s) Feb. 25, 1979, gage height, 6.84 ft (2.085 m); minimum, 13 ft 3 /s (0.37 m 3 /s) Sept. 13, 1981, gage height, 2.71 ft (1.509 m).

EXTREMES FOR CURRENT YEAR.--Peak discharge above base of 250 ft3/s (7.08 m3/s) and maximum (*):

		Disch	arge	Gage h	eight			Disch	arge	Gage h	height
Date	Time	(ft^3/s)	(m^3/s)	(ft)	(m)	Date	Time	(ft^3/s)	(m^3/s)	(ft)	(m)
Apr. 28	0045	* 452	12.8	5.47	1.667	July 23	15 45	447	12.7	5.46	1.664
June 29	2300	266	7.53	5.00	1.524						

Minimum daily discharge, 15 ft3/s (0.42 m3/s) Oct. 5.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	17	23	24	39	109	22	38	36	30	26	20	21
2	21	22	44	34	60	21	27	33	54	23	19	21
2 3 4	19	23	33	26	115	22	33	32	59	24	19	22
Ji .	16	22	29	77	113	22	44	30	41	26	18	21
	15	22	30	71	45	24	30	30	33	23	18	21
5	15	22	30	(1	45	24	30	30	33	23	10	21
6	17	27	27	37	31	25	61	29	. 31	22	20	21
7	17	25	26	29	26	45	54	29	35	22	19	21
7 8	16	22	29	26	25	58	34	27	32	22	18	21
9	16	21	28	25	29	34	32	27	29	21	18	21
10	16	22	26	20	31	26	31	25	27	20	19	21
10	10	22	20	20	31	20	31	25	. 21	20	19	21
11	16	21	25	19	26	25	28	24	26	19	20	21
12	16	20	25	20	25	24	26	24	24	21	20	21
13	16	19	24	21	25	23	26	26	55	20	21	21
14	17	19	26	23	23	23	26	25	167	20	21	21
15	18	19	62	23	24	21	25	23	55	22	21	21
15	10	19	02	23	24	21	25	23	99	22	21	21
16	18	24	81	22	25	27	25	22	30	25	21	21
17	18	23	60	21	25	29	27	22	33	21	21	21
18	18	23	34	21	26	25	69	22	31	19	21	21
19	25	21	27	21	32	24	43	24	26	19	21	21
20	23	21	24	22	35	23	43 33	25	24	41	21	22
20	23	21	24	2. 2.	3.7	23	33	2)	24	-71	2. 1	2.2
21	21	19	22	22	30	23	33	29	23	57	21	21
22	21	18	24	21	28	23	39	29	23	24	21	23
23	22	17	27	28	25	23	42	30	22	199	21	28
24	30	18	27	32	25	23	36	30	22	79	22	21
25	26	18	26	28	24	23	35	33	22	25	23	21
	20	10	20	20	24							2.1
26	43	18	25	25	22	24	48	33	17	23	21	21
27 28	33	18	24	23	23	23 22	101	31	16	22	21	27
28	31	18	2.4	22	23	22	258	39	17	22	21	24
29	26	16	24	22		22	75	63	69	21	21	21
30	25	16	23	23		23	44	46	84	21	21	21
31	25		23	46		31		32		22	21	
31	25		23	40		31		32		22	21	
TOTAL	658	615	953	889	1050	803	1423	930	1157	971	630	650
MEAN	21.2	20.5	30.7	28.7	37.5	25.9	47.4	30.0	38.6	31.3	20.3	21.7
MAX	43	27	81	77	115	58	258	63	167	199	. 23	28
MIN	15	16	22	19	22	21	• 25	22	16	19	18	21
CFSM	. 76	.73	1.10	1.03	1.34	.93	1.69	1.07	1.38	1.12	.73	.78
											.84	.86
IN.	.87	.82	1.27	1.18	1.39	1.07	1.89	1.24	1.54	1.29	.04	.00

CAL YR 1981 TOTAL 9074 MEAN 24.9 MAX 118 MIN 14 CFSM .89 IN 12.06 WTR YR 1982 TOTAL 10729 MEAN 29.4 MAX 258 MIN 15 CFSM 1.05 IN 14.25

COHANSEY RIVER BASIN

01412800 COHANSEY RIVER AT SEELEY, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1975 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

											OXY	CEN					
			STRI FLO INST		SPE- CIFIC CON- DUCT-		PH 1	ГЕМРЕІ		YGEN, DIS-	DEM. BI CH		COLI- FORM, FECAL EC	, 57	REP-	HAR NES (MG	S
DA	TE	TIME		EOUS FS) (ANCE (UMHOS)	(UN	ITS)	ATURI (DEG (MG/L)	5	DAÝ G/L)	BROTH (MPN)		CAL MPN)	CAC	
OCT																	
		1045		18	220		6.8	11.	.5	10.1		1.8	13	0	920		56
		1030		25	203		6.9	6	• 5	11.2		<1.1	<	2	33		49
		1215		25	193		6.9	11.	.5	12.0		3.1		2	<2		58
		1040		33	188		6.9	17	.0	8.3		2.8	5 4	0	920		55
		1120		20	210		6.9	23	.0	7.8	1	1.3	23	0	170		56
		1030		21	221	1	6.3	22	.0	8.7		5.1	<20	0	310		56
	DATE	(MG	VED /L	MAGNI SIUN DIS- SOLVI (MG/I	M, SOE DI ED SOL	OIUM, S- VED	POTAS SIUI DIS- SOLVI (MG/I	M, L'ED	ALKA- INITY LAB (MG/L AS	SULF TOT (MC	TAL G/L	SULFAT DIS- SOLVI (MG/I	ED S	HLO- IDE, IS- OLVED MG/L	SOL (MC	E, S- VED	
	DATE	AS	CA)	AS MO	j) AS	NA)	AS K) (CACO3) AS	S)	AS SO	4) A	S CL)	AS	F)	
	OC T 15 FEB	. 1	1	7	.0	14,	4	. 4	17		<.1	22		27		<.1	
	24 APR		9.9	6	.0	11	4	. 1	11			50		24		<.1	
	13 JUN	. 1	1	7	. 3	14	3	. 4	10			24		27		.1	
	08 JUL	. 1	1	6	. 8	11	4	. 2	15		<.5	19		55		.1	
	13 AUG	. 1	1	6	. 9	13	. 4	. 3	14			21		24		.1	
	23	. 1	1	6	. 9	15	4	.0	16			. 21		29		.1	
		SILI DIS SOL (MG	VED	SOLID: RESID AT 18 DEG. DIS SOLV	UÉ NI O C C NII - TC	TRO- SEN, TRITE DTAL	NITR GEN NO2+N TOTA (MG/	, 03 A L	NITRO- GEN, MMONIA TOTAL	MONIA ORGA		NITRO GEN TOTAL	, P	HOS- HATE, OTAL MG/L			
	DATE			(MG/		3 N)	AS N		AS N)		N)	AS N		PO4)	AS		
	OC T 15 FEB		6.0	1	45		4.	6	-		<.05			. 18		2.4	
	24 APR		6.8	1	39		4.	8	-		. 15	5.	0	. 15		1.3	
	13 JUN		6.8	1	22	.030	4.	4	E.16	0			- 1	18		2.8	
	08 JUL		5.6	1	24	.050	3.	5	.11	0	1.20	4.	7	. 45		5.0	
	13 AUG		7.6			.040	3.	9	.09	0	. 39	4.	3	.12		2.2	
	23		6.9	1	37	<.010	3.	7	. 14	0	. 32	4.	0 .	.18		7.6	

COHANSEY RIVER BASIN
01412800 COHANSEY RIVER AT SEELEY, NJ--Continued
WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
OCT	40.00				40		4.4	
15 JUN	1045	30	1	<10	10	<1	10	7
08	1040	10	3	<10	20	<1	10	9
			MANGA-					
	IRON,	LEAD,	NESE,	MERCURY	NICKEL,		ZINC,	
	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	SELE-	TOTAL	
	RECOV-	RECOV-	RECOV-	RECOV-	RECOV-	NIUM,	RECOV-	and the second
	ERABLE (UG/L	ERABLE (UG/L	ERABLE (UG/L	ERABLE (UG/L	ERABLE (UG/L	TOTAL (UG/L	ERABLE (UG/L	PHENOLS
DATE	AS FE)	AS PB)	AS MN)	AS HG)	AS NI)	AS SE)	AS ZN)	(UG/L)
OC T								
15 JUN	360	3	50	<.1	7	<1	20	<1
08	2400	10	150	.3	6	<1	10	6

COHANSEY RIVER BASIN

01413015 COHANSEY RIVER AT BRIDGETON, NJ

LOCATION.--Lat 39°25'54", long 75°14'11", Cumberland County, Hydrologic Unit 02040206, at bridge on Washington Street in Bridgeton, 1.3 mi (2.1 km) downstream from Sunset Lake, and 18.6 mi (29.9 km) upstream from mouth.

DRAINAGE AREA .-- 47.3 mi2 (122.5 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1975 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

		-		SPI	LIC					OXYO	PN	BI	GEN AND, O- EM-	F	OLI- ORM, ECAI	,	STR	F.D.	HAI		
DAT	E	T	IME	DUC	CT-		PH (TS)	AT	PER- URE G C)	SOI	S- VED	IC 5	AL, DAY G/L)	В	EC ROTI	H	TOCO FEC (MP	CCI	(MC	J/L	
OCT 15.		1.2	230		3200		7.0		13.0		9.4		6.0		51	40		170		320	
FEB 24.			3	1					3							-		300		96	
APR			300		850		7.1		5.5		0.2		3.8			30		79			
13. JUN	• •	10	045		175		6.9		10.0		9.7		3.0)	11	70		490		48	
O8. JUL	• •	09	920		184		6.9		18.5		7.0		3.0)	240	00		790		51	
13.		09	950		238		6.8		25.0		4.7		3.6	,	91	40	2	400		54	
AUG 23.		12	230		600		6.2		22.0		7.0		1.9		700	00		330		81	
DATI	Ε	DIS SOI (MC	CIUM S- LVED G/L CA)	DI SOI (MC	GNE- IUM, IS- VED G/L MG)		3-	S SO (M	TAS- IUM, IS- LVED G/L K)	ALK LINI LA (MC AS	TY B	DI SO (M	FATE S- LVED G/L SO4)	R D S	HLO- IDE, IS- OLVE MG/I S CI	ED	FLU RID DI SOL (MG AS	E, S- VED /L	SILI DIS SOL (MC AS	VED G/L	
OCT																					
15. FEB	• •	2	24	(52	49	0		19	32	2	1	10		710			.2		6.6	
24. APR			12	1	16	14	10		8.1	27	,		40		240			<.1		7.1	
13.			9.4		5.9		1		3.2	16	;		22		22			. 1		7.0	
JUN 08.			9.8		6.4		1		3.8	19)		19		21			.1		5.0	
JUL 13.			9.7		7.3		25		4.0	21			21		37			.2		8.2	
AUG 23.			11		13		2		6.0	28			31		140		9	.1		7.2	
23.	• •				3		_		0.0	20					140					1.2	
	DA	TE	RES: AT DEC D: SOI	IDS, IDUE 180 G. C IS- LVED G/L)	NIT TO	TRO- GEN, TRITE DTAL MG/L G N)	NO2	TRO- EN, 2+NO3 TAL IG/L N)	AMN TO (N	TRO- GEN, MONIA OTAL MG/L G N)	GEN MON ORC TO	TRO- I, AM- IIA + GANIC TAL IG/L IG/L	N T	ITRO GEN, OTAL MG/L S N)		PHO: PHA TOTA (MG	TE, AL /L	ORG TO	BON, ANIC TAL G/L C)		
	oci			4550															2.0		
	FEE			1750				1.5				E.65			1		.10		3.2		
	APF			545				3.0	F	2.480		1.60		4.6		1	.00		2.5		
	JUN			109		.020		3.3		.220		1.00		4.3			.21		3.4		
		3		112		.020		2.5		.170		.87		3.4			.25		3.9		
	13	3		163		.030		2.0		.150		.99		3.0		. 38	.31		3.3		
	AUC 23			338		.030		2.1		.120		1.20		3.3			. 44		3.6		

01434000 DELAWARE RIVER AT PORT JERVIS, NY

LOCATION.--Lat 41°22'14", long 74°41'52", Pike County, Pa., Hydrologic Unit 02040104, on right bank 250 ft (76 m) downstream from bridge (on U.S. Highways 6 and 209) between Port Jervis, N.Y. and Matamoras, Pa., 1.2 mi (1.9 km) upstream from Neversink River, and 6.5 mi (10.5 km) downstream from Mongaup River. Water-quality sampling site at discharge station.

DRAINAGE AREA. -- 3,076 m12 (7,967 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1904 to current year.

REVISED RECORDS .-- WSP 756: Drainage area. WSP 1031: 1905-36. WRD NY 1971: 1970.

GAGE.--Water-stage recorder. Datum of gage is 415.35 ft (126.599 m) National Geodetic Vertical Datum of 1929.
October 1904 to August 13, 1928, nonrecording gage at bridge 250 ft (76 m) upstream at present datum; operated by U.S. Weather Bureau prior to June 20, 1914.

REMARKS.--Records good. Flow regulated by Lake Wallenpaupack and by Toronto, Cliff Lake, and Swinging Bridge Reservoirs (see Reservoirs in Delaware River Basin) and smaller reservoirs. Large diurnal fluctuations at medium and low flows caused by powerplants on tributary streams. Subsequent to September 1954, entire flow from 371 mi² (961 km²) of drainage area controlled by Pepacton Reservoir, and subsequent to October 1963, entire flow from 454 mi² (1,176 km²) of drainage area controlled by Cannonsville Reservoir (see Reservoirs in Delaware River Basin). Part of flow from these reservoirs diverted for New York City municipal supply. Remainder of flow (except for conservation releases and spill) impounded for release during periods of low flow in the lower Delaware River basin, as directed by the Delaware River Master.

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 233,000 ft³/s (6,600 m³/s) Aug. 19, 1955, gage height, 23.91 ft (7.288 m), from floodmarks in gage house, from rating curve extended above 89,000 ft³/s (2,520 m³/s) on basis of slope-area measurement of peak flow; maximum gage height, 26.6 ft (8.118 m) Feb. 12, 1981 (ice jam), from floodmarks; minimum observed discharge, 175 ft³/s (4.96 m³/s) Sept. 23, 1908, gage height, 0.6 ft (0.18 m).

EXTREMES OUTSIDE PERIOD OF RECORD.—The U.S. Weather Bureau reported a discharge of 205,000 ft³/s (5,810 m³/s) Oct. 10, 1903, gage height, 23.1 ft (7.04 m), from rating curve extended above 70,000 ft³/s (1,980 m³/s) by velocity-area studies; stage on Mar. 8, 1904, was 25.5 ft (7.77 m), ice jam.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 34,300 ft³/s (971 m³/s) Apr. 4, gage height, 9.05 ft (2.758 m); maximum gage height, 15.82 ft (4.822 m) Feb. 5 (ice jam); minimum discharge, 941 ft³/s (26.6 m³/s) Oct. 1, gage height, 1.87 ft (0.570 m); minimum daily, 1,070 ft³/s (30.3 m³/s) Oct. 25.

		DISCHA	RGE, IN	CUBIC FEET	PER SEC	OND, WATER EAN VALUES	YEAR OO	CTOBER 1981	TO SEPTE	MBER 1982		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1690	3640	1740	2130	1600	2110	16100	5870	2290	5170	1450	1580
2	1850	3100	2050	2300	2300	2190	17400	5300	4300	4360	1430	1880
2 3 4	1680	3500	3130	2600	3700	2230	14300	5230	5230	3720	1450	1880
4	1640	3200	3480	3060	6400	1850	28300	5300	4570	3010	1430	1940
5	1590	3030	2960	8490	13000	2330	21800	4780	4040	2670	1400	1850
6	1530	2990	2690	8580	10500	1690	16700	4270	4040	2430	1580	1810
7 8	1340	3280	2330	6670	8200	2250	14100	4040	5670	2800	1630	1740
8	1500	2940	2430	5360	6400	2410	11800		6480	2600	1630	1660
9	1830	2370	2560	4450	5200	2290	10000	2760	5700	2350	1780	1740
10	1710	2130	2270	3800	4700	2090	8890	2670	4720	2090	2170	1830
11	1590	2780	2150	2800	4200	2070	8710	2940	4190	1450	2190	1900
12	1510	2580	2030	2450	3350	2670	8450	2620	3910	1510	1920	1920
13	1530	2560	1880	2990	3330	3990	7980	2350	3960	2150	1830	1990
14	1680	2450	1580	3200	3250	5840	8150	2170	6410	2330	1540	1940
15	1510	1660	1610	3300	2990	8230	8020	1920	5980	2090	1590	1680
16	1560	1740	1780	3000	3060	8230	7770	1660	4850	2090	1610	1710
17	1580	1780	1990	2700	3560	7530	7450	1530	4630	1990	1560	1710
18	1540	1900	1760	2600	3480	7130	18100	1510	4600	1510	1510	1800
19	1340	1960	1630	2600	3280	9020	20000	1690	4300	1540	1760	1760
20	1230	2030	1140	2400	2890	9660	14700	1810	3740	1990	1740	1730
21	1630	2540	1100	2400	2560	11100	12400	1980	3200	2110	1740	1730
22	1540	2800	1150	2200	2800	12400	10400	1540	3080	2110	1590	1760
23	1540	2510	2500	2300	2870	12500	8840	1450	3060	1880	1710	1740
24	1280	2430	2800	2200	2800	12200	8070	1730	2990	1690	1590	1710
25	1070	2390	4300	1900	2670	13600	7530	2470	2600	1500	1630	1590
26	1540	2130	3500	2100	2390	18900	7130	2370	2290	1340	1760	1640
27	1780	1850	2850	2100	1880	20900	8670	2150	1810	1710	1800	1730
28	5360	1800	2710	2000	1730	13900	9340	2090	1810	1850	1300	1450
29 30	9390	1800	2960	1900		10700	8020	2270	2510	1810	1680	1480
30	5670	1690	2500	1750		9110	6750		4270	1530	1690	1740
31	4220		2170	1450		9290		2110		1300	1630	
TOTAL	66450	73560	71730	97780	115090	230410	355870		121230	68680	51320	52620
												1754
												1990
MIN	1070	1660	1100	1450	1600	1690	6750	1450	1810	1300	1300	1450
								86120 2778 5870				

CAL YR 1981 TOTAL 1175820 MEAN 3221 MAX 42100 MIN 1070 WTR YR 1982 TOTAL 1390860 MEAN 3811 MAX 28300 MIN 1070

01434000 DELAWARE RIVER AT PORT JERVIS, NY -- Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1957-60, 1964 to current year.

CHEMICAL DATA: 1958-59 (e), 1964-65 (c), 1966 (a), 1967-68 (c), 1969-76 (d).

MINOR ELEMENTS DATA: 1970 (a), 1972-73 (a), 1974-76 (c).

PESTICIDE DATA: 1974 (a).

ORGANIC DATA: 0C--1974 (b), 1975 (d).

NUTRIENT DATA: 1968 (a), 1969-76 (d).

BIOLOGICAL DATA: BIOLOGICAL DATA: Bacteria--1973-76 (d).
Phytoplankton--1974 (b), 1975-76 (c).
Periphyton--1976 (a).
SEDIMENT DATA: 1959 (c), 1976 (c).

PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: January 1973 to September 1973.
WATER TEMPERATURES: February 1957 to September 1960, January 1973 to September 1973, June 1974 to current year.
SUSPENDED-SEDIMENT DISCHARGE: February 1957 to September 1960, March 1970 to June 1976.

INSTRUMENTATION .-- Temperature recorder since January 1973.

REMARKS. -- No temperature record Apr. 26 to July 27, due to instrument malfunctions.

EXTREMES FOR PERIOD OF DAILY RECORD.-WATER TEMPERATURES: Maximum (water years 1957-59, 1973-81), 30.0°C July 13, 1981; minimum (water years 1958-60, 1973, 1975-82), freezing point on many days during winter periods.

EXTREMES FOR CURRENT YEAR . --

WATER TEMPERATURES: Minimum, freezing point on many days during winter period.

TEMPERATURE (DEG. C) OF WATER, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBE	R		NOVEMBE	R		DECEMBE	R		JANUAR	Y.
1 2 3 4 5	14.0 13.5 13.0 12.5 13.0	11.5 12.5 12.0 11.5 11.5	13.0 13.0 12.5 12.0 12.5	10.0 10.0 10.0 9.5 10.0	9.0 9.0 9.0 8.5 8.5	9.5 9.5 9.5 9.5	2.0 2.0 2.5 2.0 2.5	1.0 1.5 2.0 1.5 2.0	1.0 2.0 2.0 2.0 2.5	.0 .0 .0	.0 .0 .0	.0
6 7 8 9	13.0 13.0 12.0 12.0 11.5	12.5 12.0 11.0 10.5 10.0	12.5 12.5 11.5 11.0 11.0	10.5 9.5 7.5 6.5 6.0	9.0 7.0 6.5 6.0 5.0	9.5 8.0 7.0 6.5 5.5	2.0 1.0 1.5 1.5	.5 .5 1.0 .5	1.5 1.0 1.5 1.0	.0 .5 .0	.0 .0 .0	.0
11 12 13 14 15	11.5 11.5 11.5 12.0 11.5	10.0 10.0 10.0 10.0	11.0 11.0 11.0 11.0	7.0 6.5 6.0 6.0	5.0 5.5 4.5 4.0 5.5	6.0 6.0 5.0 5.5 6.0	.5 1.0 .5 .5	.0	.5 .5 .0	.0 .0 .0	.0 .0 .0	.0
16 17 18 19 20	12.0 11.5 11.0 10.0	10.5 10.0 10.0 9.0 8.0	11.0 11.0 10.0 9.5 9.0	6.5 7.5 7.5 8.0 8.0	6.0 6.5 7.0 7.0 7.5	6.0 7.0 7.0 7.5 8.0	.0 .0 .0	.0 .0 .0	.0 .0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0
21 22 23 24 25	10.0 11.0 11.0 10.5 9.0	8.5 9.5 10.5 9.0 8.0	9.0 10.0 11.0 10.0 9.0	8.0 6.0 5.0 4.0 3.5	6.0 5.0 4.0 3.5 2.5	7.0 5.5 4.5 4.0 3.0	.5 .0 .0	.0 .0 .0	.0	.0 .0 .0	.0 .0 .0	.0
26 27 28 29 30 31	9.5 10.5 10.5 10.5 9.5 9.5	8.5 9.5 10.5 10.0 9.0 9.0	9.0 10.0 10.5 10.5 9.0 9.0	2.5 3.5 3.5 3.5 2.5	2.0 2.5 3.0 2.5 2.0	2.5 3.0 3.5 3.0 2.0	.0	.0	.0 .0 .0 .0	.0 .0 .0 .0	.0	.0
MONTH	14.0	8.0	11.0	10.5	2.0	6.0	2.5	.0	•5	.5	.0	0

01434000 DELAWARE RIVER AT PORT JERVIS, NY--Continued
TEMPERATURE (DEG. C) OF WATER, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

		1	EMPERATUR	E (DEG. C) O	F WATER,	WATER	YEAR OCTOBER	1981 10	SEPTEMBER	1982		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUAR	Y		MARCH			APRIL			MAY	
1 2	.0	.0	.0	1.0	.0	1.0	6.0	5.5	6.0 5.5			
3	.0	.0	.0	1.0	.0	.5	5.5	5.0	5.0			
5	.0	.0	.0	1.0	.0	.0	3.5	3.5	4.5 3.5			
6	.5	.0	.0	1.0	.0	.5	3.5	1.5	2.5			
7 8	.0	.0	.0	1.0	.5	.5	1.5	1.0	1.0			
9	.5	.0	.5	.5	. 0	.5	3.0	1.5	2.5			
10	.0	.0	.0	1.5	.0	1.0	4.5	2.5	3.5			
11 12	.0	.0	.0	2.0 3.5	.5 1.5 1.5	1.0	5.5	4.0	4.5 5.0			
13 14	.5	.0	.0	2.0	1.5	1.5	5.0	4.5	4.5 5.5			
15	.5	.0	.0	2.0	1.0	1.5	7.5	5.5	6.5			
16	1.0	.0	.5	2.0	1.5	1.5	9.0	7.0	8.0			
17 18	1.0	.0	.0	2.0 3.0	1.5	2.0	11.0 10.5	9.0	9.5 10.0			
19 20	1.0	.0	.0	3.0	2.0	2.5	9.0	7.5	8.5 9.0			
21 22	1.0	.5	•5	3.0 2.5	2.0	2.0	10.5 10.0	9.5	10.0 9.5			
23 24	1.5	.0	1.0	3.0 4.0	1.5	2.0	9.5 12.5	8.0 8.5	8.5 10.0			
25	•5	.0	.0	5.0	2.5 3.5	3.5 4.5	13.5	11.0	12.0			
26	.5	.0	.5	5.0	4.0	5.0						
27 28	1.0	.0	•5 •5	4.0 2.5	2.5	3.5						
29 30				3.5 5.0	2.0 3.5	3.0 4.5						
31				6.0	5.0	5.5						
MONTH	1.5	.0	.0	6.0	.0	2.0	13.5	.5	6.5			
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	MIN JUNE	MEAN	MAX	MIN JULY	MEAN	MAX	MIN AUGUST	MEAN	MAX	MIN SEPTEMB	
1	MAX		MEAN	MAX		MEAN	24.5	AUGUST	24.0	20.0	SEPTEMB 20.0	ER 20.0
1 2	MAX		MEAN	MAX		MEAN	24.5 25.0 25.5	AUGUST 23.0 23.0 23.5		20.0 22.0 23.0	SEPTEMB 20.0 20.0 21.0	20.0 21.0 22.0
1 2 3	MAX		MEAN	MAX		MEAN	24.5 25.0 25.5 26.0	AUGUST 23.0 23.0 23.5	24.0 24.0 24.5 25.0	20.0 22.0 23.0 21.5	20.0 20.0 21.0 19.5	20.0 21.0 22.0 20.0
1 2 3 4 5	MAX		MEAN	MAX		===	24.5 25.0 25.5 26.0 27.0	AUGUST 23.0 23.0 23.5 23.5 24.5	24.0 24.0 24.5 25.0 26.0	20.0 22.0 23.0 21.5 20.5	20.0 20.0 21.0 19.5 18.0	20.0 21.0 22.0 20.0 19.5
1 2 3 4 5	MAX		MEAN	MAX		===	24.5 25.0 25.5 26.0 27.0 26.0 26.5	AUGUST 23.0 23.0 23.5 23.5 24.5 24.5	24.0 24.0 24.5 25.0 26.0	20.0 22.0 23.0 21.5 20.5	SEPTEMB 20.0 20.0 21.0 19.5 18.0	20.0 21.0 22.0 20.0 19.5
1 2 3 4 5 6 7 8 9	MAX		MEAN	MAX		===	24.5 25.0 25.5 26.0 27.0	AUGUST 23.0 23.5 23.5 24.5 24.5 24.5 24.5 24.0 23.5	24.0 24.0 24.5 25.0 26.0 25.5 25.5 24.5	20.0 22.0 23.0 21.5 20.5 21.0 20.5 19.0 20.0	SEPTEMB 20.0 20.0 21.0 19.5 18.0 18.5 18.5 18.0 17.5	20.0 21.0 22.0 20.0 19.5 20.0 19.5 18.5 18.5
1 2 3 4 5 6 7 8	MAX		MEAN	MAX		===	24.5 25.0 25.5 26.0 27.0 26.0 26.5 25.5	AUGUST 23.0 23.0 23.5 23.5 24.5 24.5	24.0 24.0 24.5 25.0 26.0	20.0 22.0 23.0 21.5 20.5 21.0 20.5 19.0	SEPTEMB 20.0 20.0 21.0 19.5 18.0 18.5 18.0 17.5 18.5	20.0 21.0 22.0 20.0 19.5
1 2 3 4 5 6 7 8 9 10	MAX		MEAN	MAX			24.5 25.0 25.5 26.0 27.0 26.0 26.5 25.5 25.5	AUGUST 23.0 23.5 23.5 24.5 24.5 24.5 24.5 23.5 23.5	24.0 24.0 24.5 25.0 26.0 25.5 24.5 24.5 24.5	20.0 22.0 23.0 21.5 20.5 21.0 20.5 19.0 20.0 21.0	SEPTEMB 20.0 20.0 21.0 19.5 18.0 18.5 18.5 18.0 17.5 18.5	20.0 21.0 22.0 20.0 19.5 20.0 19.5 18.5 20.0 20.0
1 2 3 4 5 6 7 8 9 10 11 12 13	MAX		MEAN	MAX			24.5 25.0 25.0 26.0 27.0 26.5 25.5 25.5 24.5 23.0 23.0	AUGUST 23.0 23.5 23.5 24.5 24.5 24.5 24.0 23.5 23.5 21.0 21.0	24.0 24.0 24.5 25.0 26.0 25.5 24.5 24.5 24.5 24.5 22.0 22.0	20.0 22.0 23.0 21.5 20.5 21.0 20.5 19.0 21.0	SEPTEMB 20.0 20.0 21.0 19.5 18.0 18.5 18.0 17.5 18.0 19.0 19.0	20.0 21.0 22.0 20.0 19.5 20.0 19.5 18.5 18.5 20.0 20.0 20.0 20.5
1 2 3 4 5 6 7 8 9 10	MAX		MEAN	MAX			24.5 25.0 25.5 26.0 27.0 26.5 25.5 25.5 24.5 23.0 23.0	AUGUST 23.0 23.0 23.5 23.5 24.5 24.5 24.5 24.5 24.5 24.5 22.5 21.0	24.0 24.0 24.5 25.0 26.0 25.5 24.5 24.5 24.5 23.0 22.0 22.0 22.0	20.0 22.0 23.0 21.5 20.5 21.0 20.5 19.0 21.0	SEPTEMB 20.0 20.0 21.0 19.5 18.0 18.5 18.5 18.5 18.5 19.0 19.0	20.0 21.0 22.0 20.0 19.5 20.0 19.5 18.5 20.0 20.0 20.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	MAX		MEAN	MAX	JULY		24.5 25.0 25.5 26.0 27.0 26.0 26.5 25.5 25.5 25.5 24.5 23.0 23.0 23.5	AUGUST 23.0 23.5 23.5 24.5 24.5 24.5 24.0 23.5 21.0 21.0 20.5	24.0 24.0 24.5 25.0 26.0 25.5 24.5 24.5 24.5 24.5 22.0 22.0 22.0 22.5	20.0 22.0 23.0 21.5 20.5 21.0 20.5 19.0 20.0 21.0 21.5 21.5 21.5 21.5	SEPTEMB 20.0 20.0 21.0 19.5 18.0 18.5 18.0 17.5 18.0 19.0 19.5 19.0 19.5 20.0	20.0 21.0 22.0 20.0 19.5 20.0 19.5 18.5 20.0 20.0 20.5 20.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	MAX		MEAN	MAX	JULY		24.5 25.0 25.5 26.0 27.0 26.5 25.5 25.5 24.5 23.0 23.0 23.5 24.0	AUGUST 23.0 23.5 23.5 24.5 24.5 24.5 24.0 23.5 21.0 21.0 20.5	24.0 24.0 24.5 25.0 26.0 25.5 24.5 24.5 24.5 22.0 22.0 22.0 22.0 22.5	20.0 22.0 23.0 21.5 20.5 21.0 20.5 19.0 21.0 21.5 21.5 21.5 21.5 21.5 21.5	SEPTEMB 20.0 20.0 21.0 19.5 18.0 18.5 18.0 17.5 18.5 19.0 19.5 20.0 20.0 19.0	20.0 21.0 22.0 20.0 19.5 20.0 19.5 18.5 20.0 20.5 20.5 20.5 20.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	MAX		MEAN	MAX	JULY		24.5 25.0 25.0 26.0 27.0 26.5 25.5 25.5 24.0 23.0 23.5 23.5 24.0 24.5	AUGUST 23.0 23.5 23.5 24.5 24.5 24.5 24.0 23.5 21.0 21.0 20.5 21.5 22.5 21.5	24.0 24.0 24.5 25.0 26.0 25.5 24.5 24.5 24.5 22.0 22.0 22.0 22.0 22.5 23.0 22.5	20.0 22.0 23.0 21.5 20.5 19.0 20.0 21.0 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5	SEPTEMB 20.0 20.0 21.0 19.5 18.0 18.5 18.0 17.5 18.0 19.0 19.5 20.0 20.0 19.5 19.5 21.0	20.0 21.0 22.0 20.0 19.5 20.0 19.5 18.5 20.0 20.5 20.5 20.5 20.5 20.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	MAX		MEAN	MAX	JULY		24.5 25.0 25.0 27.0 26.0 27.0 26.5 25.5 25.5 23.0 23.0 23.5 23.5 24.0 24.0	AUGUST 23.0 23.5 23.5 24.5 24.5 24.5 24.5 22.5 21.0 21.0 20.5 21.5	24.0 24.0 24.5 25.0 26.0 25.5 24.5 24.5 24.5 22.0 22.0 22.0 22.5 22.5 23.0 23.0	20.0 22.0 23.0 21.5 20.5 21.0 20.5 19.0 21.0 21.5 21.5 21.5 21.5 21.5 21.5 21.5	SEPTEMB 20.0 20.0 21.0 18.5 18.0 18.5 18.5 18.0 17.5 18.5 20.0 20.0 19.5 20.0	20.0 21.0 22.0 20.0 19.5 20.0 19.5 18.5 20.0 20.5 20.5 20.5 20.5 20.5 20.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	MAX		MEAN	MAX	JULY		24.5 25.0 25.5 26.0 27.0 26.5 25.5 25.5 24.0 23.0 23.0 23.0 24.0 23.5 24.0 23.0 23.0 23.0 23.0 23.0	AUGUST 23.0 23.5 23.5 24.5 24.5 24.5 24.0 23.5 21.0 21.0 20.5 21.5 22.5 21.5 21.5	24.0 24.0 24.5 25.0 26.0 25.5 24.5 24.5 24.5 24.5 22.0 22.0 22.0 22.5 23.0 22.5 23.0 22.5 23.0 22.5 23.0 22.5 23.0 22.5 23.0 22.5 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0	20.0 22.0 23.0 21.5 20.5 19.0 20.0 21.0 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5	SEPTEMB 20.0 20.0 21.0 19.5 18.0 18.5 18.5 18.5 19.0 19.5 19.5 20.0 20.0 19.5 16.0 15.0	20.0 21.0 22.0 20.0 19.5 20.0 19.5 18.5 20.0 20.5 20.5 20.5 20.5 20.5 20.5 19.5 19.5
1 2 3 3 4 5 6 7 8 9 10 11 2 13 14 15 16 17 18 19 2 0 21 2 23	MAX		MEAN	MAX	JULY		24.50 25.05 26.05 27.0 26.55 25.55 23.0 23.0 23.0 23.0 24.0 23.0 24.0 23.0 24.0 23.0 24.0 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25	AUGUST 23.0 23.0 23.5 24.5 24.5 24.5 24.5 24.5 21.0 21.0 20.5 21.5 21.5 21.5 21.5	24.0 24.0 24.5 25.0 26.0 25.5 24.5 24.5 24.5 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22	20.0 22.0 23.0 21.5 20.5 21.0 20.5 19.0 21.0 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5	SEPTEMB 20.0 21.0 21.0 19.5 18.0 18.5 18.5 18.5 19.0 19.5 19.5 20.0 20.0 17.5 16.0 14.5 14.5	20.0 21.0 22.0 20.0 19.5 18.5 20.0 20.5 20.5 20.5 20.5 20.5 20.5 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 20 21 22	MAX		MEAN	MAX	JULY		24.5 25.0 25.0 26.0 27.0 26.5 25.5 25.5 24.0 23.0 23.0 24.0 24.0 23.0 24.0 23.0 24.0 23.0 24.0 24.0 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25	AUGUST 23.0 23.5 23.5 24.5 24.5 24.5 24.0 23.5 21.0 21.0 20.5 21.5 22.5 21.5 21.5	24.0 24.0 24.5 25.0 26.0 25.5 24.5 24.5 24.5 22.0 22.0 22.0 22.0 22.5 23.0 22.5 23.0 22.5 23.0 22.5 23.0 22.5	20.0 22.0 23.0 21.5 20.5 19.0 20.0 21.0 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5	SEPTEMB 20.0 21.0 21.0 19.5 18.0 18.5 18.0 17.5 18.0 19.0 19.5 20.0 20.0 19.5 16.0 15.0	20.0 21.0 22.0 20.0 19.5 20.0 19.5 18.5 18.5 20.0 20.5 20.5 20.5 20.5 20.5 20.5 19.5 11.0 11.5
1 2 3 3 4 5 6 7 8 9 10 11 2 13 14 5 16 17 18 19 2 0 2 1 2 2 3 2 4 2 5 2 6	MAX		MEAN	MAX	JULY		24.5 25.0 25.0 27.0 26.0 27.0 26.5 25.5 25.5 25.5 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0	AUGUST 23.0 23.5 23.5 24.5 24.5 24.5 24.5 22.5 21.0 21.0 21.0 21.5 21.5 21.5 21.5 21.5 21.5	24.0 24.0 24.5 25.0 26.0 25.5 24.5 24.5 24.5 22.0 22.0 22.0 22.5 23.0 22.5 22.5 23.0 22.5 22.5 22.5 22.5 22.5 22.5	20.0 22.0 23.0 21.5 20.5 19.0 20.0 21.0 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5	SEPTEMB 20.0 21.0 19.5 18.0 18.5 18.5 18.5 19.0 19.5 19.5 20.0 20.0 19.5 16.0 14.5 14.5 14.5	20.0 21.0 22.0 20.0 19.5 20.0 19.5 18.5 20.0 20.5 20.5 20.5 20.5 20.5 17.0 17.0 15.5 15.0 14.5 15.5 16.0
1 2 3 4 5 6 7 8 9 10 11 2 13 14 5 16 7 18 19 20 21 22 32 42 5 26 27	MAX		MEAN		JULY		24.5 25.0 25.0 27.0 26.0 27.0 26.5 25.5 25.5 23.0 23.0 23.0 23.5 24.0 23.5 24.0 23.5 24.0 23.5 24.0 23.5 24.0 23.0 24.0 25.5 25.5 26.0 27.0 27.0 28.0	AUGUST 23.0 23.5 23.5 24.5 24.5 24.5 24.5 24.0 23.5 21.0 21.0 21.0 20.5 21.5 22.5 21.5 21.5 21.5 20.5 19.0 19.5 20.5	24.0 24.0 24.5 25.0 26.0 25.5 24.5 24.5 24.5 24.5 24.5 22.0 22.0 22.0 22.0 22.5 23.0 22.5 23.0 22.5 23.0 22.5 23.0 22.0 22.0 22.0 22.1 22.0 22.0 22.0 22.0 22.0	20.0 22.0 23.0 21.5 20.5 19.0 20.0 21.0 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.6 21.5 21.7 21.5	SEPTEMB 20.0 21.0 21.0 19.5 18.0 18.5 18.0 17.5 18.0 19.0 19.5 19.0 19.5 19.0 19.5 14.5 14.5 14.5 14.5 15.0 15.6	20.0 21.0 22.0 20.0 19.5 20.0 19.5 18.5 20.0 20.5 20.5 20.5 20.5 20.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19
1 2 3 4 5 6 7 8 9 10 11 2 3 4 5 16 7 8 9 10 11 2 3 4 5 16 7 18 19 0 2 1 2 2 3 4 5 2 6 7 8 2 9	MAX		MEAN		JULY		24.5 25.0 25.0 26.0 27.0 26.5 25.5 25.5 23.0 23.0 23.0 23.0 24.0 23.5 24.0 23.5 24.0 23.5 23.0 21.5 22.0 21.5 22.0 21.5 22.0	AUGUST 23.0 23.5 23.5 24.5 24.5 24.5 24.5 21.0 21.0 21.0 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5	24.0 24.0 24.5 25.0 26.0 25.5 24.5 24.5 24.5 24.5 24.5 22.0 20.0	20.0 22.0 23.0 21.5 20.5 19.0 20.0 21.0 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5	SEPTEMB 20.0 21.0 21.0 19.5 18.0 18.5 18.5 18.5 19.0 19.5 19.5 20.0 20.0 17.5 16.0 14.5 14.5 15.0 15.5 16.0 17.0	20.0 21.0 22.0 20.0 19.5 18.5 20.0 20.5 20.5 20.5 20.5 20.5 20.5 20
1 2 3 4 5 6 7 8 9 10 11 2 3 4 5 17 8 9 10 11 2 3 4 5 17 8 19 10 2 12 2 3 4 5 2 6 7 2 8	MAX		MEAN		JULY		24.5 25.0 25.0 26.0 27.0 26.5 25.5 25.5 23.0 23.0 23.0 23.0 24.0 24.0 22.0 22.0 22.0 22.5 22.5 22.5 22.5 23.0	AUGUST 23.0 23.5 23.5 24.5 24.5 24.5 24.5 22.5 21.0 21.0 20.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21	24.0 24.0 24.5 25.0 26.0 25.5 24.5 24.5 24.5 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22	20.0 22.0 23.0 21.5 20.5 19.0 20.0 21.0 21.5 21.5 21.5 21.5 21.5 21.5 21.6 21.5 21.5 21.6 21.5 21.5 21.6 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5	SEPTEMB 20.0 21.0 21.0 21.0 19.5 18.0 17.5 18.0 17.5 18.0 19.5 20.0 20.0 19.5 14.5 14.5 14.5 15.0 15.0 16.0	20.0 21.0 21.0 22.0 20.0 19.5 18.5 20.0 20.5 20.5 20.5 20.5 20.5 17.0 15.0 16.0 16.0 17.0
1 2 3 4 5 6 7 8 9 10 11 2 13 14 5 16 7 18 19 20 21 22 32 4 25 26 27 8 29 30	MAX		MEAN		JULY		24.5 25.0 25.0 26.0 27.0 26.5 25.5 25.5 25.5 24.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23	AUGUST 23.0 23.5 23.5 24.5 24.5 24.5 24.5 22.5 21.0 21.0 20.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21	24.0 24.0 24.5 25.0 26.0 25.5 24.5 24.5 24.5 24.5 24.5 22.0	20.0 22.0 23.0 21.5 20.5 19.0 20.0 21.0 21.5 21.5 21.5 21.5 21.5 21.5 21.6 16.5 15.5 15.5 16.0 16.0 17.0	SEPTEMB 20.0 21.0 19.5 18.0 18.5 18.5 18.5 19.0 19.5 19.0 19.5 19.5 19.5 19.5 19.6 19.6 15.0 14.5 14.5 15.0 16.0 16.0 16.5	20.0 21.0 22.0 20.0 19.5 20.0 19.5 18.5 20.0 20.5 20.5 20.5 20.5 20.5 17.0 15.5 16.0 16.5 17.0 17.0

01437500 NEVERSINK RIVER AT GODEFFROY, NY

LOCATION.--Lat 41°26'28", long 74°36'07", Orange County, Hydrologic Unit 02040104, on right bank just upstream from highway bridge on Graham Road, 0.5 mi (0.8 km) downstream from Basher Kill, 0.8 mi (1.3 km) southeast of Godeffroy, 1.7 mi (2.7 km) south of Cuddebackville, and 8.5 mi (13.7 km) upstream from mouth.

DRAINAGE AREA. -- 307 mi2 (782 km2), revised.

CAL YR 1981 TOTAL 107047 WTR YR 1982 TOTAL 131042 MEAN 293

MEAN 359

PERIOD OF RECORD. -- August to October 1903, July 1937 to current year. Gage heights and discharge measurements, August 1909 to April 1914. Twice-daily figures of discharge, January 1911 to December 1912, which do not represent daily mean discharges because of diurnal fluctuation. August to October 1903, published as "Navesink River at Godeffroy, NY."

REVISED RECORDS .-- WSP 821: Drainage area. WSP 1502: 1951(M).

GAGE.--Water-stage recorder. Datum of gage is 459.66 ft (140.104 m) National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers). Prior to Apr. 30, 1914, nonrecording gages at same site (August to October 1903 at datum 0.98 ft or 0.299 m higher).

REMARKS.--Records fair except those for winter periods, which are poor. Prior to 1949, diurnal fluctuation at low and medium flow caused by powerplant at Cuddebackville. Subsequent to June 1953, entire flow from 91.8 mi² (237.8 km²) of drainage area controlled by Neversink Reservoir (see Reservoirs in Delaware River Basin). Part of flow diverted for New York City municipal supply. Remainder of flow (except for conservation releases and spill), impounded for release during periods of low flow in the lower Delaware River basin, as directed by the Delaware River Master.

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 33,000 ft 3 /s (935 m 3 /s) Aug. 19, 1955, gage height, 12.49 ft (3.087 m), from rating curve extended above 11,000 ft 3 /s (312 m 3 /s) on basis of slope-area measurement of peak flow; practically no flow several times in July 1911.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 3,540 ft³/s (100 m³/s) Apr. 18, gage height 6.43 ft (1.960 m); minimum discharge, 82 ft³/s (2.32 m³/s) Oct. 1, gage height, 3.14 ft (0.957 m); minimum gage height, 3.09 ft (0.942 m) July 27.

		DISCHA	RGE, IN	CUBIC FEET	PER SECO	OND, WATER	YEAR OCT	OBER 1981	TO SEPTE	MBER 1982		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	101 159 140 122 114	197 179 165 149 146	186 279 347 302 275	220 249 212 389 1210	220 290 513 1100 950	230 230 210 190 230	1530 1180 1150 2070 1340	594 540 503 480 421	461 622 541 465 446	406 322 298 288 261	165 134 128 125 149	117 122 143 128 117
6 7 8 9	118 143 134 117 111	165 183 179 165 155	253 216 240 220 186	899 799 600 450 390	760 660 560 500 450	250 273 329 280 300	1150 999 882 800 716	390 377 348 335 319	545 971 752 635 540	228 208 197 183 172	140 131 149 183 216	119 119 114 117 114
11 12 13 14 15	109 106 111 119 114	149 146 140 134 140	183 197 179 162 186	340 310 300 310 310	420 380 350 310 345	295 421 648 753 802	735 730 679 735 669	296 281 283 274 251	473 441 545 961 709	162 169 159 149 143	172 143 128 117 117	114 111 109 109 111
16 17 18 19 20	114 119 125 143 149	169 186 179 165	186 183 193 140 130	280 250 230 210 200	367 412 379 360 354	765 742 732 898 939	604 595 2520 1520 1560	236 226 221 211 318	576 750 635 522 471	140 143 146 140 172	106 101 103 96 94	125 114 101 101 103
21 22 23 24 25	134 125 128 186 179	228 204 201 201 183	140 160 212 317 284	200 190 180 170 170	347 336 319 290 270	1070 1100 1160 1180 1240	1210 937 694 569 486	281 268 289 343 332	416 372 446 389 332	176 131 125 119 114	111 103 98 96 137	114 119 146 140 122
26 27 28 29 30 31	179 220 357 284 236 236	186 193 186 176 162	240 232 228 220 197 179	170 170 160 170 160 150	250 240 240 	1690 1470 1110 950 859 969	493 1030 1120 811 669	299 271 256 419 454 429	298 302 302 423 631	111 109 143 169 131	162 137 134 125 122 117	125 190 249 172 165
TOTAL MEAN MAX MIN	4732 153 357 101	5183 173 228 134	6652 215 347 130	10048 324 1210 150	11972 428 1100 220	22315 720 1690 190	30183 1006 2520 486	10545 340 594 211	15972 532 971 298	5551 179 406 109	4039 130 216 94	3850 128 249 101

MIN 62

MIN 94

MAX 4360

MAX 2520

01438500 DELAWARE RIVER AT MONTAGUE, NJ

LOCATION.--Lat 41°18'33", long 74°47'44", Pike County, PA, Hydrologic Unit 02040104, on right bank 0.4 mi (0.6 km) upstream from toll bridge on U.S. Route 206 at Montague, 0.8 mi (1.3 km) downstream from Sawkill Creek, and at mile 246.3 (396.3 km).

DRAINAGE AREA .-- 3,480 mi2 (9,013 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--March 1936 to September 1939 (gage heights only, published as "at Milford, PA"). October 1939 to current year. Monthly discharge only for some periods, published in WSP 1302.

REVISED RECORDS .-- WDR-NJ-81-2: 1980.

GAGE.--Water-stage recorder. Datum of gage is 369.93 ft (112.755 m) National Geodetic Vertical Datum of 1929. Prior to Feb. 9, 1940, nonrecording gage on upstream side of left span of subsequently dismantled bridge at present site at datum 70 ft (21.3 m) lower.

REMARKS.--Water-discharge records excellent except those for winter months, which are good. Diurnal fluctuations at medium and low flow caused by powerplants on tributary streams. Flow regulated by Lake Wallenpaupack and by Pepacton, Cannonsville, Swinging Bridge, Toronto, Cliff Lake, and Neversink Reservoirs (see Delaware River Rasin, reservoirs in) and smaller reservoirs. Diversion from Pepacton, Cannonsville, and Neversink Reservoirs (see Delaware River Basin, diversions).

AVERAGE DISCHARGE. -- 43 years, 5,839 ft 3/s (165.4 m 3/s), unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 250,000 ft 3 /s (7,080 m 3 /s) Aug. 19, 1955, gage height, 35.15 ft (10.714 m), from rating curve extended above 90,000 ft 3 /s (2,550 m 3 /s) on basis of flood-routing study; minimum, 382 ft 3 /s (10.8 m 3 /s) Aug. 24, 1954, gage height, 3.83 ft (1.167 m), minimum daily, 412 ft 3 /s (11.7 m 3 /s) Aug. 23, 1954.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of October 10, 1903, reached a stage of 35.5 ft (10.82 m) from floodmark, present datum.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 35,200 ft 3 /s (997 m 3 /s) Apr. 4, gage height, 13.54 ft (4.127 m), maximum gage height 18.82 ft (5.736 m) Feb. 4, ice jam; minimum discharge, 1,060 ft 3 /s (30.0 m 3 /s) Oct. 1, gage height, 4.56 ft (1.390 m).

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 3310 2750 1670 TOTAL MEAN 7160 MAX MIN

CAL YR 1981 TOTAL 1342320 MEAN 3678 MAX 47000 MIN 1200 WTR YR 1982 TOTAL 1596450 MEAN 4374 MAX 29200 MIN 1270

01439830 BIG FLAT BROOK AT TUTTLES CORNER, NJ

LOCATION.--Lat 41°12'00", long 74°48'56", Sussex County, Hydrologic Unit 02040104, at bridge on State Route 521 in Tuttles Corner, 0.7 mi (1.1 km) west of intersection of U.S. Route 206 with State Route 521, 1.2 mi (1.9 km) south of Layton, and 2.0 mi (3.2 km) upstream from Little Flat Brook.

DRAINAGE AREA .-- 28.3 mi2 (73.3 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1964, 1976 to June 1982 (discontinued).

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)
FEB									
25 APR	1100	69	87	7.2	.0	14.0	<.9	<20	<2
05 JUN	1000	177	61	6.6	2.0	13.3	<.4	<20	<2
03	1130	98	65	7.0	14.5	10.3	E3.1	<20	240
DATE	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
	ONOOJ,	no on,	AD HU)	AD NA)	AD K)	CROOS	AD D	AD DOT	AD OL)
FEB 25 APR	28	7.4	2.3	5.8	.9	10		13	6.9
05 JUN	18	5.0	1.4	2.8	.5	7.0		13	4.8
03	22	6.0	1.6	2.5	•3	12	<.5	10	4.5
DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHATE, TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
FEB									
25 APR	<.1	5.1	58	<.010	<.10	E.160	.20	.09	1.4
05 JUN	. <.1	3.7	39	<.010	E.30	.150	E.35	.06	2.6
03	<.1	4.5	49	<.010	<.10	.100	.30	.06	4.3

113

01439830 BIG FLAT BROOK AT TUTTLES CORNER, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DELAWARE RIVER BASIN

			X.	BERYL-			CHRO-	
		ALUM-		LIUM,	BORON,	CADMIUM	MIUM,	COPPER,
		INUM,	ADDENTA	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL
		DIS-	ARSENIC	RECOV-	RECOV-	RECOV-	RECOV-	RECOV-
	TTME	SOLVED	TOTAL	ERABLE	ERABLE	ERABLE	ERABLE	ERABLE
D. 4 M.D.	TIME	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L
DATE		AS AL)	AS AS)	AS BE)	AS B)	AS CD)	AS CR)	AS CU)
JUN								
03	1130	30	1	<10	20	<1	10	5
								-
			MANGA-					
	IRON,	LEAD,	NESE,	MERCURY	NICKEL,		ZINC,	
	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	SELE-	TOTAL	
	RECOV -	RECOV -	RECOV-	RECOV-	RECOV -	NIUM,	RECOV-	
	ERABLE	ERABLE	ERABLE	ERABLE	ERABLE	TOTAL	ERABLE	PHENOLS
	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	
DATE	AS FE)	AS PB)	AS MN)	AS HG)	AS NI)	AS SE)	AS ZN)	(UG/L)
JUN								
03	350	1	40	<.1	<1	<1	20	<1
	350	1	40	<.1	<1	<1	20	<1

01440000 FLAT BROOK NEAR FLATBROOKVILLE, NJ

LOCATION.--Lat 41°06'24", long 74°57'09", Sussex County, Hydrologic Unit 02040104, on right bank 1.0 mi (1.6 km) upstream from Flatbrookville, and 1.5 mi (2.4 km) upstream from mouth.

DRAINAGE AREA. -- 64.0 mi2 (165.8 km2), revised.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- July 1923 to current year.

REVISED RECORDS.--WSP 781: Drainage area. WSP 1432: 1924(M), 1928(M), 1929, 1930(M), 1932, 1933(M), 1936, 1938(M), 1939-40, 1949(M), 1952-53(M). WDR-NJ-80-2: 1970(M).

GAGE.--Water-stage recorder. Concrete control since Aug. 19, 1929. Datum of gage is 347.73 ft (105.988 m) National Geodetic Vertical Datum of 1929. Prior to Jan. 6, 1926, nonrecording gage at same site and datum.

REMARKS .- - Water-discharge records good. Flow occasionally regulated by ponds above station.

AVERAGE DISCHARGE. -- 59 years, 109 ft3/s (3.087 m3/s) 22.74 in/yr (578 mm/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 9,560 ft³/s (271 m³/s) Aug. 19, 1955, gage height, 12.58 ft (3.834 m) from high-water mark in gage house, from rating curve extended above 2,000 ft³/s (56.6 m³/s) on basis of slope-area measurement of peak flow; minimum, 3.6 ft³/s (0.10 m³/s) Sept. 25, 26, 1964, Sept. 11, 1966, but may have been lower during period of ice effect, Feb. 2-11, 1981.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 650 ft3/s (18.4 m3/s) and maximum (*):

		Disch	arge	Gage h	eight
Date	Time	(ft3/s)	(m^3/s)	(ft)	(m)
Feb. 4	06 45	*1730	49.0	5.60	1.707
June 30	1115	884	25.0	4.17	1.271

Minimum discharge, 8.5 ft3/s (0.24 m3/s) Oct. 17, gage height, 1.78 ft (0.543 m).

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	32	19	18	67	109	65	164	180	119	247	35	21
2	34	17	74	77	1 42	67	144	165	174	160	32	21
3	28	15	75	492	276	67	172	149	143	131	30	23
4	19	14	53	386	823	55	492	137	1 49	1 32	29	22
5	15	14	43	229	356	68	290	125	118	108	28	20
6	14	17	37	174	2 48	74	245	117	125	92	26	19
7	14	21	33	139	267	81	217	112	138	83	24	18
8	13	20	32	115	210	126	197	105	122	76	24	18
9	12	18	33	98	131	91	186	101	102	69	54	17
10	12	17	30	169	1 42	96	184	95	89	61	60	16
11	11	15	27	10	195	92	211	86	81	58	40	15
12	11	14	27	90	163	1 46	210	80	76	63	34	14
13	12	14	24	78	94	218	200	79	104	63	30	14
14	10	14	. 23	73	116	261	190	75	257	54	26	14
15	9.6	15	28	69	85	272	165	70	162	49	25	14
16	9.5	16	32	64	90	235	1 49	66	120	47	23	14
17	8.9	18	41	61	124	234	140	61	130	43	22	15
18	9.5	18	32	62	102	233	208	59	117	41	24	14
19	12	17	30	73	96	256	167	55	96	45	. 22	14
20	13	19	35	75	91	260	134	55	88	92	20	14
			123									
21	11	30	42	71 66	91	252	119	53	78	128	20	15 17
22	11	28	39		89	238	108	52	72	71	18	17
23	12	23	56	74	85	208	97	61	122	56	18	23
24	28	21	49	83	93	184	90	80	99	50	18	28
25	26	20	45	71	81	167	84	78	77	44	57	21
26	24	18	43	61	73	176	125	64	67	40	81	18
27	32	19	41	59	78	178	336	54	65	37	42	42
28	46	19	38	61	69	1 46	312	51	66	39	32	67
29	40	19	29	57		131	252	249	86	43	27	38
30	29	17	39	54		122	203	189	626	37	23	29
31	22		64	55		120		133		35	21	
TOTAL	580.5	5 46	1212	3313	4519	4919	5791	3036	3868	2294	965	635
MEAN	18.7	18.2	39.1	107	161	159	193	97.9	129	74.0	31.1	635
MAX	46	30	75	492	823	272	492	2 49	626	2 47	81	67
MIN	8.9	14	18	10	69	55	84	51	65	35	18	14
CFSM	.29	.28	.61	1.67	2.52	2.48	3.02	1.53	2.02	1.16	. 49	.33
IN.	.34	.32	.70	1.93	2.63	2.86	3.37	1.76	2.25	1.33	.56	.37
TM.	• 34	• 36	. 10	11.73	2.03	2.00	3.31	1.10	2.23	1.33	.50	. 51

CAL YR 1981 TOTAL 27012.6 MEAN 74.0 MAX 1550 MIN 8.9 CFSM 1.16 IN 15.70 WTR YR 1982 TOTAL 31678.5 MEAN 86.8 MAX 823 MIN 8.9 CFSM 1.36 IN 18.41

01440200 DELAWARE RIVER BELOW TOCKS ISLAND DAMSITE, NEAR DELAWARE WATER GAP, PA

LOCATION.--Lat 41°00'42", long 75°05'09", Warren County, NJ, Hydrologic Unit 02040105, on left bank 40 ft (12 m) streamward from River Road, 1.0 mi (1.6 km) downstream from Tocks Island, 3.7 mi (6.0 km) northeast of Delaware Water Gap, PA, 4.0 mi (6.4 km) upstream from bridge on Interstate Highway 80, and at mile 216.1 (347.7 km).

DRAINAGE AREA. -- 3,850 mi² (9,970 km²) approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- May 1964 to current year.

GAGE. -- Water-stage recorder. Datum of gage is 293.64 ft (89.501 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records poor. Diurnal fluctuation at medium and low flow caused by powerplants on tributary streams. Flow regulated by Lake Wallenpaupack, and by Pepacton, Cannonsville, Swinging Bridge, Toronto, Cliff Lake, and Neversink Reservoirs (see Delaware River Basin, reservoirs in) and smaller reservoirs. Diversion from Pepacton, Cannonsville, and Neversink Reservoirs (see Delaware River Basin, diversions).

AVERAGE DISCHARGE. -- 18 years, 6,388 ft3/s (181.0 m3/s), unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 103,000 ft 3 /s (2,920 m 3 /s) June 30, 1973, gage height, 23.82 ft (7.260 m); minimum daily, 580 ft 3 /s (16.4 m 3 /s) July 7, 8, 1965.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 51,000 ft 3 /s (1,445 m 3 /s) Feb. 5, gage height, 16.14 ft (4.919 m) ice jam; minimum daily discharge, 1,400 ft 3 /s (39.6 m 3 /s) Oct. 21.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

						MEAN VAL	LUES					
DAY	OC T	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1940	4760	2260	3190	3310	2740	16100	8880	3750	8660	1910	1960
2	2210	4050	2820	3870	3810	3330	22600	7670	5330	7210	2010	2000
3	2440	4190	3620	3740	7060	3280	18600	7360	7600	6160	1960	2580
3 4	1910	4000	4870	4200	13100	3090	30700	7300	7360	5540	1910	2370
5	2010	3780	4580	10600	18500	2900	32400	6890	6 490	4750	1890	2340
6	2010	36 40	3920	1 4200	16500	3220	23100	6260	6110	4170	1820	2220
7	1830	4080	3560	10900	16900	2840	19200	5860	7110	3970	1940	2160
8	1610	3430	3130	9330	13300	3590	15800	5530	9370	3960	2000	2060
9	1980	3360	3340	7580	10800	3650	13500	4450	8480	3650	4300	2040
10	2180	2890	3300	5540	10000	3600	11900	3990	7260	3300	4530	2050
11	1940	3280	2730	3560	8490	3310	11400	4210	6 450	2900	3760	2160
12	1830	3420	2630	40 40	7280	3500	11300	4110	5890	3070	3170	2160
13	1820	3210	2570	3890	6230	6000	10800	3610	5790	3130	2760	2170
14	1780	3140	2290	3840	6350	7950	10600	3 4 3 0	8520	3280	2450	2220
15	1870	2400	2140	4080	5690	10600	10600	3200	9760	3170	2280	2180
16	1730	2250	2430	3910	5550	11700	10200	2810	8050	2850	2190	1990
17	1770	2340	2400	3680	5960	11100	9870	2530	7140	2840	2060	1950
18	1690	2 450	2520	3250	6090	10200	16400	2380	7360	2620	2030	1930
19	1710	25 40	2370	3260	5640	11300	27700	2520	7150	2220	2110	2000
20	1510	26 40	2090	3 490	5100	13900	20200	2610	6 4 40	2720	2110	1980
21	1400	2880	1690	3350	4420	14100	16600	2880	5590	3480	2110	1980
22	1870	35 40	1610	3130	4170	16200	13700	2770	5000	3140	2000	2040
23	1730	3460	2040	2960	4390	17200	11600	2340	5 36 0	2860	2030	2170
24	1880	3230	3310	3020	4520	15600	10500	2690	5210	2560	1930	2170
25	1470	3130	4900	3000	4380	17200	9690	3410	4600	2310	3100	2080
26	1500	2990	5340	2610	4370	20900	9200	3720	4070	2080	3610	1930
27	2110	2650	4210	2730	3770	28200	11500	3370	3580	1980	2740	2230
28	3310	2 460	3700	2840	2880	19800	13200	3160	3250	2440	2120	2550
29	10700	2420	39 40	2810		14400	11900	4240	49 40	2600	2250	2190
30	7980	2360	4330	2670		12100	10100	4350	8740	2450	2160	1980
31	5710		3380	2590		11 400		3790		2140	2050	
TOTAL	77430	9 49 70	98020	141860	208560	308900	460960	132320	191750	108210	75290	6 38 40
MEAN	2498	3166	3162	4576	7449	9965	15370	4268	6392	3491	2429	2128
MAX	10700	4760	5340	1 4200	18500	28200	32400	8880	9760	8660	45 30	2580
MIN	1400	2250	1610	2590	2880	2740	9200	2340	3250	1980	1820	1930

CAL YR 1981 TOTAL 1585730 MEAN 4344 MAX 48000 MIN 1250 WTR YR 1982 TOTAL 1962110 MEAN 5376 MAX 32400 MIN 1400

01443000 DELAWARE RIVER AT PORTLAND, PA

LOCATION.--Lat 40°55'26", long 75°05'46", Northampton County, Hydrologic Unit 02040105, at walkbridge connecting Portland, PA and Columbia, NJ, and 0.5 mi (0.8 km) upstream of Paulins Kill.

DRAINAGE AREA. -- 4, 165 mi2 (10, 787 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

		***	IIII QUALI	LII DRIA,	HAILK ILA	in ourobbin	MA.	OBI TEMBER	1702	
			SPE- CIFIC CON- DUCT-	PH	TEMPER-		OXYGEN DEMAND, BIO- CHEM- ICAL,	FORM, FECAL, EC	STREP- TOCOCCI	HARD- NESS (MG/L
DAT	E	TIME	ANCE (UMHOS)	(UNITS)	(DEG C)	SOLVED (MG/L)	5 DAY (MG/L)	BROTH (MPN)	FECAL (MPN)	AS CACO3)
OCT 08.		1030	90	7.5	11.0	9.9	E1.6	<20	22	29
MAR 02.		1050	98	7.3	1.0	14.6	E1.8	20	2	27
APR 20.		1250	64	6.7	9.0	11.0	<.9	<20	<20	19
JUN 07.		1100	77	7.0	16.0	9.0	E1.7	<20	240	26
JUL 21.		1030	94	7.0	24.0	8.1	E1.9	<20	79	30
AUG										
24.	•••	1030	94	7.6	18.5	8.8	E2.2	<20	8	32
DAT	E	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
OCT								1		
O8.	••	8.8	1.8	4.4	.9	16	<.1	11	6.8	<.1
O2.		8.0	1.7	5.1	. 8	13		12	8.5	<.1
20. JUN	• •	5.9	1.1	3.0	.7	8.0		10	5.8	<.1
O7.	••.	7.6	1.6	5.1	. 6	17		10	6.2	<.1
21. AUG		9.1	1.7	4.5	. 4	21	1	12	7.3	.1
24.		9.6	2.0	4.3	.7	21		10	7.7	.1
DAT	E	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHATE, TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 08.		1.1	49	.010	.20		<.05		.12	1.8
MAR 02.		3.2	61	<.010	.50	.110	.36	.86	.06	3.4
APR			47			.200	.40		.09	2.7
JUN		2.8		.020	.61			1.0		
JUL		3.1	52	<.010	.30	.080	.47	.77	.37	3.5
AUG		2.5		.010	.30	.110	.49	.79	.09	3.2
24.	••	1.6	55	<.010	.40	.050	.27	.67	.09	2.1

47

DELAWARE RIVER BASIN

01443000 DELAWARE RIVER AT PORTLAND, PA--Continued

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
OCT 08	1030	10	3	<10	10	1	<10	6
DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS
OCT 08	80	1	10	<.1	1	<1	20	1

01443440 PAULINS KILL AT BALESVILLE, NJ

LOCATION.--Lat 41°06'20", long 74°45'19", Sussex County, Hydrologic Unit 02040105, at bridge on unnamed road at Balesville, 2.2 mi (3.5 km) downstream from Dry Brook, and 3.4 mi (5.5 km) north of Newton.

DRAINAGE AREA. -- 67.1 mi2 (173.8 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- January 1979 to current year.

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

DATE	TIME	STREAM FLOW, INSTAN TANEOUS (CFS)	C I CO DU S AN	E- FIC N- CT- CE (HOS) (U	PH NITS)	AT	MPER-	YGEN, DIS- SOLVED	DEI B: CH IC	GEN MAND, IO- HEM- CAL, DAY MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	TOC	REP- OCCI CAL IPN)	HARI NESS (MG, AS CACO	S /L
OCT 29 FEB	1 300	6	5	498	7.8		9.0	10.8		2.8	>2 4000)	5 400		180
25 APR	1250	11	2	415	7.6		.0	14.0		E1.5	50)	2		150
22 MAY	1150	12	0	378	8.2		10.0	12.2		E1.8	80)	23		130
25 JUL	1100	8	0	465	8.0		12.0	10.0		E2.0	1700)	920		180
14 AUG	1030	11	5	398	7.8		21.0	8.3		E2.0	490)	920		150
03	1045	4	6	543	8.0		17.5	8.8		E1.6	330)	2400		220
DATE	CALC: DIS- SOL' (MG. AS (IUM - VED S /L (AGNE- SIUM, DIS- OLVED MG/L S MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	DI SOI (MO	CAS- IUM, IS- LVED G/L K)	ALKA- LINITY LAB (MG/L AS CACO3	TOT	FIDE FAL G/L S)	SULFA DIS- SOLV (MG/ AS SO	TE R: DI ED SC L (N	HLO- IDE, IS- OLVED MG/L S CL)	FLUO RIDE DIS SOLV (MG/ AS F	ED L	
OCT															
29 FEB	. 4	7	15	23		3.3	120		. 1	48		42		.2	
25 APR	• 3	8	13	24		1.8	100			27		41		.1	
22 MAY	. 3	4	12	20		1.5	100			27		37		.1	
25 JUL	. 4	5	16	- 23		1.6	1 42			29		43		.1	
14 AUG	. 3	7	13	21		1.4	121			20		35		.2	
03	. 50	6	20	27		1.2	170			30		46		.2	
DATE	SILIC DIS- SOL (MG, AS SIO:	CA, RE AT VED D /L	LIDS, SIDUE 180 EG. C DIS- OLVED MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	GE NO2- TO3	TAL G/L	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	GEN MONIA ORGA	(A +	NITR GEN TOTA (MG/ AS N	, P! L TO L (!	HOS- HATE, OTAL MG/L PO4)	CARBO ORGAN TOTA (MG/ AS C	IĆ L L	
OCT 29 FEB		8.0	300	.017		1.3	_		.72	2.	0	. 45	7	.5	
25 APR		5.4	243	<.010		1.1	E. 49		.86	2.	0	.28		.0	
22 MAY		3.5	222	.020)	.70	<.05	0 1	E.55			.21	1	.9	
25 JUL		7.2	297	.060)	1.3	.08	0 1	E. 40			.37	2	.9	
14 AUG		7.2	255	.060)	.60	.15)	.92	1.	5	. 44	8	.6	
03		5.5	329	.020)	1.0	.080)	.57	1.	6	. 44	1	.1	

Jic

DELAWARE RIVER BASIN

01443440 PAULINS KILL AT BALESVILLE, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

				BERYL-			CHRO-	
		ALUM-		LIUM.	BORON,	CADMIUM	MIUM,	COPPER.
		INUM.		TOTAL	TOTAL	TOTAL	TOTAL	TOTAL
		DIS-	ARSENIC	RECOV-	RECOV-	RECOV-	RECOV-	RECOV-
		SOLVED	TOTAL	ERABLE	ERABLE	ERABLE	ERABLE	ERABLE
	TIME	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L
DATE		AS AL)	AS AS)	AS BE)	AS B)	AS CD)	AS CR)	AS CU)
OCT								
29	1300	<10	1	<10	40	<1	10	10
			MANGA-					
	IRON,	LEAD,	NESE,	MERCURY	NICKEL,		ZINC,	
	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	SELE-	TOTAL	
	RECOV-	RECOV-	RECOV-	RECOV-	RECOV-	NIUM,	RECOV-	
	ERABLE	ERABLE	ERABLE	ERABLE	ERABLE	TOTAL	ERABLE	PHENOLS
	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	
DATE	AS FE)	AS PB)	AS MN)	AS HG)	AS NI)	AS SE)	AS ZN)	(UG/L)
OCT								
29	280	2	60	<.1	2	<1	50	6

01443500 PAULINS KILL AT BLAIRSTOWN, NJ

LOCATION.--Lat 40°58'44", long 74°57'15", Warren County, Hydrologic Unit 02040105, on right bank 1,200 ft (370 m) upstream from bridge on State Highway 94 in Blairstown, 1,400 ft (430 m) upstream from Blairs Creek, and 10 mi (16 km) upstream from mouth. Water-quality samples collected at bridge 1,200 ft (370 m) downstream from gage at high flows.

DRAINAGE AREA . -- 126 mi2 (326 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1921 to September 1976, October 1977 to current year.

REVISED RECORDS .-- WSP 971: 1942. WSP 1382: 1952-53(M).

GAGE.--Water-stage recorder and concrete control (Aug. 1, 1931, to Aug. 3, 1941, concrete control at site 280 ft or 85 m, downstream). Datum of gage is 335.86 ft (102.370 m) National Geodetic Vertical Datum of 1929. Prior to May 24, 1922, nonrecording gage and May 24, 1922, to July 31, 1931, water-stage recorder, at site of former highway bridge 1,300 ft (400 m) downstream at different datum. Aug. 1, 1931 to July 28, 1939, water-stage recorder at site 100 ft (30 m) downstream at present datum.

REMARKS.-Water-discharge records good except those for winter periods, which are fair. Diurnal fluctuation caused by powerplant above station and flow regulated slightly by Swartswood Lake.

AVERAGE DISCHARGE.--60 years, (water years 1922-76, 1978-82) 193 ft3/s (5.466 m3/s), 20.80 in/yr (528 mm/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 8,750 ft 3 /s (248 m 3 /s) Aug. 19, 1955, gage height, 11.12 ft (3.389 m) from high-water mark in gage house; minimum, about 2.8 ft 3 /s (0.08 m 3 /s) Nov. 1, 1922; minimum daily, 5 ft 3 /s (0.14 m 3 /s) Aug. 13, 14, 1930.

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 1,000 ft3/s (28.3 m3/s) and maximum (*):

Date	Time	Discha (ft³/s)		Gage h	eight (m)	Date	Time	Discha (ft³/s)		Gage h	eight (m)
Jan. 5 Feb. 4	06 45 0 9 3 0	1180 *1300	33.4 36.8	3.82 *a4.65	1.164	Aug. 9	1030	1210	34.3	3.91	1.192

DISCHARGE IN CHRIC EFFT BED SECOND WATER YEAR OCTORED 1001 TO SERTEMBER 1002

a Ice jam.

Minimum discharge, 26 ft3/s (0.74 m3/s) Oct. 18.

		DISCHA	RGE, IN	CUBIC FEE	T PER SECO	OND, WATE	ER YEAR OCT LUES	TOBER 1981	TO SEPT	EMBER 198	2	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	39	56	44	96	206	165	253	326	253	385	77	92
2	57	53	156	151	278	165	2 30	295	3 30	278	70	101
3	56	49	159	133	664	174	260	269	286	248	66	168
3	49	47	122	467	1170	156	576	2 49	274	260	66	131
5	44	48	97	1080	805	160	435	229	238	228	63	103
6	40	55	81	666	561	180	404	211	2 39	195	63	91 85
7	41	60	76	462	418	214	371	200	268	174	59	85
8	41	55	91	376	364	355	350	182	228	161	57	79
9	38	47	100	312	336	268	344	177	197	1 45	594	74
10	34	45	91	261	305	225	331	165	172	1 35	5 41	71
11	32	43	75	218	269	230	373	143	158	118	376	68
12	31	44	75	211	243	3 36	361	1 30	1 46	256	292	6.4
13	30	41	68	182	231	444	339	124	201	288	234	60
14	33	41	64	184	211	4 35	325	124	424	218	203	58
15	36	45	80	172	200	420	287	111	356	173	178	56
16	32	46	89	158	235	381	265	104	290	1 45	150	50
17	30	47	86	144	303	390	258	99	503	128	137	59
18	29	45	86	142	244	392	389	92	456	111	127	59 59 54
19	38	44	70	167	232	387	356	88	349	100	111	53
20	42	51	65	169	230	370	305	86	295	183	100	52
21	38	68	69	140	260	35 7	280	84	255	259	92	56
22	34	65	73	130	243	350	255	84	235	192	85	61
23	35	54	82	140	234	320	234	94	347	146	83	88
24	58	50	108	160	240	294	218	101	301	123	81	97
25	54	48	110	130	213	275	206	99	240	105	236	79
26	62	43	94	120	184	300	237	92	205	96	313	66
	78	42	94	115	181	311	459	84	188	88	213	110
27	105	44		116	171			83	177	107	164	1 48
29	98	42	89 85	110		262 240	518 450	40 4	300	110	131	108
30	76	40		105						96	109	88
31	61		81 73	130		228	371	398 318	591	83	98	
	4 1174	4 115 0			0004		400 00		0500		F460	0.1170
TOTAL	1 471	1 458	2733	7147	9231	9008	10040	5245	8502	5334	5169	2479
MEAN	47.5	48.6	88.2	231	330	291	335	169	283	172	167	82.6
MAX	105	68	159	1080	1170	444	576	404	591	385	594	168
MIN	29	40	44	96	171	156	206	83	1 46	83	57	52
CFSM	. 38	. 39	. 70	1.83	2.62	2.31	2.66	1.34	2.25	1.37	1.33	.66
IN.	. 43	. 43	.81	2.11	2.73	2.66	2.96	1.55	2.51	1.57	1.53	.73
CAL YR	1981 TOTAL	50025	MEAN	137 MAX	1470 M	TN 29	CFSM 1.09	IN 14.77	7			

CAL YR 1981 TOTAL 50025 MEAN 137 MAX 1470 MIN 29 CFSM 1.09, IN 14.77 WTR YR 1982 TOTAL 67817 MEAN 186 MAX 1170 MIN 29 CFSM 1.48 IN 20.02

01443500 PAULINS KILL AT BLAIRSTOWN, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1921, 1925, 1957-60, 1962-63, 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	TIME T	TREAM- C FLOW, C NSTAN- D ANEOUS A	PE- IFIC ON- UCT- NCE MHOS) (UI	A	EMPER-	XYGEN, DIS- SOLVED (MG/L)	BI CH IC 5	AND,	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	(MC	SS G/L
OCT	1040	21	200	0.0		11.0		FO 6	<20	<		162
14 MAR		31	380	8.2	7.5	11.8		E2.6				
04 APR	1050	152	364	8.0	.0	14.3		E1.9	220	2	3	134
20 MAY	1050	309	328	8.1	12.0	10.8		<1.0	170	1;	3	125
25 JUL	1200	99	380	7.9	15.0	10.0		E2.1	220	1 30).	1 49
14 AUG	1200	219	357	8.0	22.0	8.6		E2.0	790	1600)	143
03 SEP	1230	65	403	8.6	20.5	9.5		E1.9	230	70)	173
27	1045	102	430	8.2	16.0	10.0		E2.3	170	350)	172
DATE	CALCIUM DIS- SOLVE (MG/L AS CA	DIS- SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L	POTAS- SIUM, DIS- SOLVER (MG/L AS K)	LINITY LAB	SULF TOT (MG	AL /L	SULFAT DIS- SOLVI (MG/I AS SO	DIS ED SOL (MG	E, R: - I VED SO /L ()	UO- IDE, DIS- DLVED MG/L S F)	
OC T												
14 MAR	40	15	18	1.6	130			25	3	4	.1	
04 APR	34	12	16	1.5	110			27	3	0	.1	
20	32	11	16	1.2	95			22	3	0	<.1	
25 JUL	35	15	18	1.1	123			23	3	2	.1	
14 AUG	34	14	19	.8	117			19	3	0	.1	
03 SEP	43	16	18	.9	1 36			18	3	0	.1	
27	41	17	20	1.9	125		<.5	24	3	3	.2	
DATE	SILICA DIS- SOLVE (MG/L AS SIO2)	AT 180	GEN, NITRITE TOTAL (MG/L	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN,	- GEN, MONI A ORGA TOT (MG	A + NIC AL	NITRO GEN: TOTAL (MG/L	PHA TOT	TE, ORG	RBON, GANIC OTAL MG/L	
OCT												
14 MAR	-	- 236	.010	. 25	5 -	- <	.05		-	. 18	2.7	
04 APR		209	E.010	.80	.13	0	.63	1.	4	. 12	3.9	
20 MAY	2.	9 198	.020	.50	.25	0	. 35	. 8	35	.12	3.2	
25 JUL		9 229	E.020	.20	.08	0 E	. 35			.18	2.9	
1 4 AUG	. 5.	2 214	.020	. 30	.13	0	.60	. 9	90	.25	4.3	
03 SEP	. 5.	5 264	<.010	.10	<.05	0	.58		58	.18	5.1	
27	. 2.	4 235	<.010	.10	E.05	0	. 37		47	. 15	2.6	

01443500 PAULINS KILL AT BLAIRSTOWN, NJ--Continued

	TIME	NITRO- GEN, NH 4 + ORG. TOT IN BOT MAT (MG/KG	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG	ALUM- INUM, DIS- SOLVED (UG/L	ARSENIC TOTAL (UG/L	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L	BORON, TOTAL RECOV- ERABLE (UG/L	CADMIUM TOTAL RECOV- ERABLE (UG/L	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G
DATE		AS N)	AS C)	AS C)	AS AL)	AS AS)	AS AS)	AS BE)	AS B)	AS CD)	AS CD)
OC T 14 SEP	1040	783	4.5	13			0				<1
27	1045	2900	2.2	21	10	1	<1	<10	40	<1	<1
DATE	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO-MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
OC T		<1	<10		2		260		<10	14.	620
SEP 27	10	3	10	5	5	2 40	1900	3	30	20	50
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)		PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 14 SEP		<.01		<10	-	<1	_	25	1	<1.0	<.1
27	CHLOR-DANE, TOTAL IN BOT-TOM MA-TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL	9 ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	<pre></pre>	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)
OC T 14 SEP	1.0	<.1	.1	, .2	<.1	<.1	<.1	<.1	<.1	<.1	<.1
27	<1.0	1.0	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1
	TO IN TOM TE	TAL TO BOT- IN MA- TON RIAL TI	HION, ON DTAL CH BOT- TOT M MA- BO ERIAL	ILOR, THE TOTAL BOTTOM BOTTOM BOTTOM	ARA- THION, THE TOTOM BOMATL.	ION, TO IN IN OTTOM TOM NATL. TH	REX, TOTAL TO MA- TO ERIAL T	ERIAL MAT	R- PH INE TO IN TOM TOM TERIL TE	DENE, THE TO BOT IN MA TOMERIAL TE	RI- ION, TAL BOT- MA- CRIAL /KG)
	4	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.10	<1.0	<.1
SEI 2	P 7	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<1.00	(10	<.1

01443900 YARDS CREEK NEAR BLAIRSTOWN, NJ

LOCATION.--Lat 40°58'51", long 75°02'25", Warren County, Hydrologic Unit 02040105, on left bank 100 ft (30 m) upstream from bridge on Hainesburg-Mount Vernon Road, 1.4 mi (2.3 km) downstream of Yards Creek Reservoir, 2.2 mi (3.5 km) northeast of Hainesburg, 2.4 mi (3.9 km) upstream from mouth, and 4.2 mi (6.8 km) west of Blairstown.

DRAINAGE AREA. -- 5.34 mi² (13.83 km²), revised.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1966 to current year.

REVISED RECORDS. -- WDR NJ-77-2: 1976. WDR NJ-79-2: 1977 (m).

GAGE.--Water-stage recorder and concrete control. Altitude of gage is 608 ft (185 m), from topographic map.

REMARKS.--Water-discharge records fair except those for periods of no gage-height record, which are poor. No gage-height record Dec. 12 to Jan. 29, Apr. 6 to May 5, and Aug. 22 to Sept. 30. Complete regulation by the Jersey Central Power and Light Co., at Yards Creek Reservoir 1.4 mi (2.3 km) above station.

AVERAGE DISCHARGE. -- 16 years, 10.9 ft 3/s (0.309 m3/s).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 583 ft³/s (16.5 m³/s), Feb. 24, 1977, gage height, 3.92 ft (1.195 m); no flow Sept. 12, 1971.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 342 ft³/s (9.69 m³/s) Jan. 5, gage height, 3.43 ft (1.045 m); minimum, 0.59 ft³/s (0.017 m³/s) Oct. 11.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

		DISCHI	inde, in	COBIC FEE	I FER SEC	MEAN VAL		TOBER 196	1 TO SEFT	EMDER 190		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.81 1.3 .87 1.0	1.4 1.2 1.1 1.1	1.7 6.1 2.7 3.5 4.9	2.0 2.5 2.2 21 180	20 17 34 43 39	4.9 4.9 5.6 5.7	20 17 20 19 15	21 17 16 15	27 41 39 43 40	39 44 42 36 31	1.2 1.0 1.0 1.0	1.9 2.2 2.3 2.0 1.8
6 7 8 9	.79 .83 .84 .84	2.6 2.1 1.3 1.1	1.7 1.6 2.6 2.0 1.8	92 31 7.6 9.0 6.2	39 37 28 12	5.2 6.6 5.8 5.3 6.0	16 18 13 10 8.2	15 16 14 12 12	35 26 12 12 12	31 25 11 12 11	1.6 2.7 1.2 39 28	1.8 1.7 1.8 1.7
11 12 13 14 15	.75 .76 .75 .82	1.1 1.0 1.0 1.6 1.1	2.1 1.3 1.6 2.2 3.8	4.1 3.5 3.1 11 6.7	14 15 12 13	5.8 9.9 9.1 8.1 7.0	7.1 6.5 7.1 7.7 6.4	12 12 13 11 2.2	8.9 3.4 6.8 5.5 3.5	10 20 12 12 12	24 23 23 24 20	1.6 1.7 1.7 1.6 1.5
16 17 18 19 20	.78 .76 .99 1.2 .83	1.3 1.1 1.1 .85 1.8	4.7 2.8 3.2 2.7 2.3	5.1 6.0 5.2 6.4 7.9	12 12 13 13	9.2 22 22 22 21	5.6 4.9 11 6.8 5.5	1.9 1.7 1.7 1.7	3.8 9.9 18 16	12 12 11 10 13	18 19 19 19	1.7 1.5 1.4 1.5
21 22 23 24 25	.79 .78 1.6 1.7	2.9 2.0 1.1 1.0	2.0 2.2 2.5 2.0 1.4	9.7 18 19 24 13	12 11 12 12 13	20 18 18 20 20	6.0 5.1 4.2 3.8 3.5	1.8 2.1 2.1 1.7 1.7	11 11 14 12 17	12 12 6.7 1.4 1.3	20 8.2 2.1 1.8 5.8	1.9 2.6 6.3 2.2 1.7
26 27 28 29 30 31	1.7 3.1 5.2 2.3 1.8 1.8	2.9 1.1 .98 1.8 .92	1.1 1.1 2.4 1.6 1.3	11 9.4 8.8 12 17	15 6.1 5.0	22 22 20 17 18 19	3.3 92 83 42 27	1.6 1.6 1.9 29 23	15 13 11 24 27	1.3 1.3 2.2 1.6 1.3	20 7.7 2.6 2.3 2.0 1.8	1.5 7.1 2.4 1.8 1.6
TOTAL MEAN MAX MIN	39.17 1.26 5.2 .74	41.85 1.40 2.9 .85	74.1 2.39 6.1 1.1	571.4 18.4 180 2.0	494.1 17.6 43 5.0	405.0 13.1 22 4.9	494.7 16.5 92 3.3	299.5 9.66 29 1.6	528.8 17.6 43 3.4	448.4 14.5 44 1.3	361.1 11.6 39 1.0	63.8 2.13 7.1 1.4

CAL YR 1981 TOTAL 2342.17 MEAN 6.42 MAX 122 MIN .73 WTR YR 1982 TOTAL 3821.92 MEAN 10.5 MAX 180 MIN .74

01444100 PAULINS KILL AT MOUTH AT COLUMBIA, NJ

LOCATION.--Lat 40°55'14", long 75°05'18", Warren County, Hydrologic Unit 02040206, at bridge on U.S. Route 46 in Columbia, 2.3 mi (3.7 km) southwest of Polkville, and 3.2 mi (5.2 km) southeast of Knowlton.

DRAINAGE AREA . -- 177 mi2 (458 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

DATE	FL INS TIME TAM	REAM- CI LOW, CO STAN- DO NEOUS AN	PE- IFIC ON- ICT- ICE (HOS) (UN	A	MPER- TURE	XYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND BIO- CHEM- ICAL, 5 DAY (MG/L	FE E	OTH F	STREP- OCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
OCT											
1.4	1 300		410	8.4	11.0	13.4	E2.	1	20	13	170
MAR 01	1000		344	7.9	1.5	12.9	E1.	2	80	17	130
APR	1000		344	1.3		12.9					130
20	1150		309	7.8	12.0	10.4	<1.	0	130	13	120
MAY 25	1300		370	7.9	13.5	10.0	E1.	7	170	49	150
JUL	1 300	7.00	310	1.9	13.5	10.0	21.				130
14	1230			7.7	22.0	8.6	E2.	0	490	5 40	120
AUG 24 SEP	1215		360	8.2	16.0	10.4	E2.	3	210	22	160
27	1 300		418	8.2	16.0	10.1	E2.	4	700	170	180
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	LINITY LAB	SULF TOT (MG	IDE D AL S /L (ILFATE IS- SOLVED MG/L S SO4)	CHLO- RIDE, DIS- SOLVEI (MG/L AS CL	(MG/	E, S- VED 'L
OC T		200						02.0	To and Table		A 11 34 1
14 MAR	. 40	16	17	1.7	1 40			25	30	•	(.1
01 APR	. 32	12	15	1.5	93			25	28		(.1
20	. 30	11	14	1.1	92			22	26	•	(.1
25 JUL	. 35	15	15	1.1	122		<.5	24	27		(.1
1 4	. 29	12	15	.7	106			19	25		.1
24 SEP	. 38	15	12	1.1	123			18	21		.2
27	. 43	17	18	1.7	124		<.5	25	30		.1
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN,	- GEN, MONI A ORGA TOT (MG	A + N NIC AL I	ITRO- GEN, OTAL MG/L S N)	PHOS- PHATE TOTAL (MG/L AS PO4	TOTA (MG/	NIĆ LL 'L
OCT											
14 MAR		241	.010	. 40	-	- <	.05		.0	9 2	2.4
01 APR	5.2	210	.010	1.0	<.05	0 1	.50	2.5	.0	9 2	2.1
20 MAY	. 3.4	179	.020	.50	.20	0	.50	1.0	.1	2 2	2.6
25 JUL	3.7	240	E.020	.60	.08	0 E	. 40	17 57	.1	5 2	2.6
1 4 AUG	5.0	199	.020	.30	.15	0	.53	.83	.1	8	4.7
24 SEP	3.7	192	<.010	.50	<.05	0	. 32	.82	.1	2 3	3.5
27	2.4	230	<.010	. 30	E.06	0	. 42	.72	.1	5 2	2.4

DELAWARE RIVER BASIN
01444100 PAULINS KILL AT MOUTH AT COLUMBIA, NJ--Continued
WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
MAY	-							
25 SEP	1300	<10	1	<10	<10	1	10	4
27	1 300	10	1	<10	20	<1	10	7
	IRON, TOTAL RECOV-	LEAD, TOTAL RECOV-	MANGA- NESE, TOTAL RECOV-	MERCURY TOTAL RECOV-	NICKEL, TOTAL RECOV-	SELE- NIUM,	ZINC, TOTAL RECOV-	
	ERABLE (UG/L	ERABLE	ERABLE	ERABLE	ERABLE	TOTAL	ERABLE	PHENOLS
DATE	AS FE)	(UG/L AS PB)	(UG/L AS MN)	(UG/L AS HG)	(UG/L AS NI)	(UG/L AS SE)	(UG/L AS ZN)	(UG/L)
MAY 25 SEP	250	4	50	<.1	2	<1	20	2
27	210	4	40	<.1	2	<1	10	3

01444800 DELAWARE RIVER NEAR RICHMOND, PA (BELVIDERE, NJ)

LOCATION.--Lat 40°49'44", long 75°05'06", Warren County, NJ, Hydrologic Unit 02040104, at bridge at Belvidere, 200 ft (61 m) upstream from Pequest River, and 4.1 mi (6.5 km) southwest of Buttzville.

DRAINAGE AREA. -- 4,378 mi2 (11,339 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1964, 1976 to June 1982 (discontinued).

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

					,					.,	-			.,,,,			
DATE	E	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	F LNU)	PH CTS)	AT	PER- URE G C)	SOL	EN, S- VED /L)	OXYG DEMA BIO CHE ICA 5 D (MG	ND, - M- L, AY	COL FOR FEC EC BRC	M, AL, TH	TOCO	REP- DCCI CAL PN)	NES (MC	G/L
OCT 08		1200	112		7.5		12.5		9.7	E	2.6		<20		170		33
MAR 01		1150	119		7.1		2.0		3.1		1.1		<20		<2		35
APR 26		1150	85		7.1		12.0		1.5		1.7		<20		2		28
JUN 08		1030	83		7.2		16.0		9.2		1.3		50		350		28
			MAGNE-				TAS-	ALK						CHI	.0-	FLU	
DATE		CALCIUM DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L AS MG)	SODI DIS SOLV (MG AS	ED	SOI SOI (MC	IUM, IS- LVED G/L K)	LINI LA (MG AS	TY B /L	SULF TOT (MG AS	AL /L	SULF DIS SOL (MG AS S	VED /L	RII DIS SOI (MC	DE,	RII DI SOI (MC	DE, IS- VED G/L F)
OCT 08		9.9	2.1		6.1		.9	21			.1	1	5		8.2		<.1
MAR 01		10	2.5		6.0		.8	17					4		9.0		<.1
APR 26		7.9	1.9		4.6		.7	15				1	4		6.9		<.1
JUN 08		8.2	1.9		3.9		.7	17			<.5	1	0		6.7		<.1
			SOLIDS,							NIT	RO-						
DATE		SILICA, DIS- SOLVED (MG/L AS SIO2)	RESIDUÉ AT 180 DEG. C DIS- SOLVED (MG/L)		AL /L	NO2- TO	TRO- EN, +NO3 TAL G/L N)	NIT GE AMMO TOT (MG AS	N, NIA AL /L	GEN, MONI ORGAL TOTA (MG, AS	A + NIC AL /L	NIT GE TOT (MG AS	AL /L	PHA TOT	OS- ATE, FAL	CARE ORGA TOT (MC	NIC CAL G/L
OCT		DIOZ,	(Hd/L)	AD	.,	NO.	14 /	AU		AD .		A.O.		no i	047	A.D	0,
08 MAR		.9	60		007		.15			<	.05				.09		2.5
01 APR		3.4	78	<.	010		.60	<.	050		. 25		.85		.12		2.0
26 JUN		2.3	56	<.	010		.60	<.	050	<	.05				.09		2.6
08		3.1	60	<.	010		.30		080		. 44		.74		.09		3.1
	DA	TE I	I SIME (LUM- NUM, DIS- OLVED UG/L S AL)	TO (U	ENIC TAL G/L AS)	LI TO RE ER (U	RYL- UM, OTAL COV- ABLE G/L BE)	TO RE ER (U	RON, TAL COV- ABLE G/L B)	TO'RE	MIUM FAL COV- ABLE G/L CD)	TO REC	RO- UM, TAL COV- ABLE G/L CR)	TO RE ER (U	PER, TAL COV- ABLE G/L CU)	
	OCT 08 JUN	1	200	10		2		<10		10		1		20		7	
			1030	20		<1		<10		10		<1		10		6	
	DA	TC RE EF	TAL T CCOV- R RABLE E IG/L (EAD, OTAL ECOV- RABLE UG/L S PB)	TO RE ER (U	NGA- SE, TAL COV- ABLE G/L MN)	TO RE ER (U	CURY TAL COV- ABLE G/L HG)	RE ER.	KEL, TAL COV- ABLE G/L NI)	TO'	LE- UM, FAL G/L SE)	TO' REC ER.	NC, TAL COV- ABLE G/L ZN)		NOLS	
	OCT		80	1	A.S	20	A.S	<.1	AD	2	20	<1		20	,,,	<1	
	JUN		510					<.1		2				10		2	
	- 0		-1.1.7			0				770		-					

01445500 PEQUEST RIVER AT PEQUEST, NJ

LOCATION.--Lat 40°49'50", long 74°58'43", revised, Warren County, Hydrologic Unit 02040105, on right bank at Pequest, 100 ft (30 m) upstream from CONRAIL (formerly Lehigh and Hudson River Railway) bridge, and 300 ft (91 m) downstream from Furnace Brook.

DRAINAGE AREA . -- 106 mi2 (275 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1921 to current year. Monthly discharge only for October 1921, published in WSP 1302. REVISED RECORDS. -- WSP 1902: 1940(M), 1945, 1955(M), 1957, 1959(M).

GAGE.--Water-stage recorder. Concrete control since Sept. 29, 1929. Datum of gage is 398.78 ft (121.548 m) National Geodetic Vertical Datum of 1929. Prior to June 22, 1926, nonrecording gage at site 10 ft (3 m) upstream at same datum.

REMARKS .-- Water-discharge records good .

AVERAGE DISCHARGE.--61 years, 153 ft3/s (4.333 m3/s), 19.23 in/yr (488 mm/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,130 ft³/s (60.3 m³/s) Jan. 25, 1979, gage height, 5.97 ft (1.820 m) from floodmark; minimum, 12 ft³/s (0.34 m³/s) Aug. 17-22, Dec. 10, 1965.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 650 ft³/s (18.4 m³/s) and maximum (*):

		Disch	arge	Gage h	eight			Disch	arge	Gage h	eight	
Date		Time	(ft^3/s)	(m^3/s)	(ft)	(m)	Date	Time	(ft^3/s)	(m^3/s)	(ft)	(m)
Jan.	4	1915	788	22.3	3.45	1.052	June 30	0230	652	18.5	3.13	
Feb.	4	1800	*927	26.3	3.76	1.146	Aug. 10	0615	681	19.3	3.20	0.975
June	17	0800	677	19.2	3.19	0.972						

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

Minimum discharge, 30 ft 3 /s (0.85 m 3 /s) Oct. 16, 17, 18, gage height, 1.24 ft (0.378 m).

MEAN VALUES AUG SEP DAY OCT NOV JUL. DEC JAN FEB MAR APR MAY JUN 72 8 4 4 1 35 1 47 1 48 1 35 1 30 1.12 2 40 2 42 78 ---3 42 ---------TOTAL MEAN 52.2 58.6 65.0 85.7 MAX 8 44 5 48 MIN CFSM 1.26 1.22 2.53 2.30 1.53 . 55 .81 1.48 1.79 2.43 .57 .62 1.44 1.40 .68 IN. 1.71 2.71 .93 2.06

TOTAL MEAN 105 CAL YR 1981 IN 13.42 IN 19.09 WTR YR 1982 TOTAL **MEAN 149** MAX 844 MIN CFSM 1.41

01446000 BEAVER BROOK NEAR BELVIDERE, NJ

LOCATION.--Lat 40°50'40", long 75°02'48", Warren County, Hydrologic Unit 02040105, 2,000 ft (610 m) upstream from mouth, and 2.0 mi (3.2 km) east of Belvidere.

DRAINAGE AREA . - - 36.7 mi2 (95.1 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1923-25, 1958, 1976 to May 1982 (discontinued).

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
MAR 02	1250	352	7.9	4.5	13.4	E1.7	90	17	175
APR 05	1150	354	7.8	4.0	13.2	<.8	40	240	154
MAY 19	1130	418	8.1	16.5	9.6	E1.8	700	130	184
		MAGNE-		POTAS-	ALKA-			CHLO-	FLUO-
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SIUM, DIS- SOLVED (MG/L AS K)	LINITY LAB (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)
MAR									
02 APR	42	17	9.6	1.2	140		30	18	<.1
05 MAY	37	15	10	1.1	120		26	23	.1
19	44	18	10	1.0	163	<.5	27	22	<.1
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L. AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHATE, TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
MAR						1			- 40
02 APR	4.9	238	<.010	1.2	<.050	•55	1.8	.06	1.5
05 MAY	5.1	202	.010	.80	. 170	E.45		.09	2.5
19	4.3	270	.010	1.0	<.050	.30	1.3	.09	2.8
ī	DATE	IN I SC IME (U	DLVED TO	LI TO SENIC RE DTAL ER	TAL TO CCOV- RE RABLE EF	TAL TO ECOV- RE RABLE EF	MIUM MI TAL TO CCOV- RE RABLE ER	TAL TO CCOV- RE RABLE ER	PER, TAL COV- ABLE G/L CU)
MA		130	<10	1	<10	<10	<1	10	4
	IR TO RE ER (U	ON, LE	EAD, NEOTAL TO	ANGA- ESE, MER OTAL TO ECOV- RE RABLE ER	CURY NIC	CKEL, DTAL SECOV- NI RABLE TO	ZI LE- TO LUM, RE DTAL ER	INC, DTAL CCOV- RABLE PHE	NOLS G/L)
MA :1	Y 19	210	6	30	<.1	5	<1	100	6

01446400 PEQUEST RIVER AT BELVIDERE, NJ

LOCATION.--Lat $40^{\circ}49'45"$, long $75^{\circ}04'44"$, Warren County, Hydrologic Unit 02040105, at last highway bridge before mouth in Belvidere, and 0.3 mi (0.4 km) upstream from mouth.

DRAINAGE AREA. -- 157 mi2 (407 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1957, 1962, 1976 to May 1982 (discontinued).

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

DATE	F IN TIME TA	REAM- CO LOW, CO STAN- DO NEOUS AN	PE- IFIC DN- JCT- NCE MHOS) (UN	A'	MPER- TURE	XYGEN, DIS- SOLVED	BIO- FO CHEM- FI ICAL, F 5 DAY BI	EC TOC ROTH FE	CREP- NECOCCI (N	ARD- ESS MG/L AS ACO3)
OCT 08	1330	74	482	8.5	11.0	11.9	E1.9	170	350	210
MAR	1330	14	402	0.5	11.0	11.9	E1.9	170	350	210
02 APR	1200	215	442	8.3	5.0	14.1	E1.9	20	5	190
05 MAY	1200	440	370	8.2	5.0	13.5	E1.5	50	79	160
19	1230	175	455	8.2	16.5	10.2	E2.8	490	130	190
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3	SULFID TOTAL (MG/L) AS S)	SOLVED (MG/L	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	
OCT 08	49	22	13	1.7	190	2	1 35	24	<.1	
MAR			167							
02 APR	45	20	11	1.4	160	-	- 33	23	<.1	
05 MAY	37	17	13	1.2	130	-	- 29	22	<.1	
19	44	20	9.9	1.1	180	-	- 29	30	<.1	
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L	NITRO- GEN, NO2+NO3 TOTAL (MG/L	NITRO- GEN, AMMONIA TOTAL (MG/L	MONÍA ORGANI TOTAL (MG/L	+ NITRO- C GEN, TOTAL (MG/L	PHOS- PHATE, TOTAL (MG/L	CARBON, ORGANIC TOTAL (MG/L	
DATE	2102)	(MG/L)	AS N)	AS N)	AS N)	AS N)	AS N)	AS PO4)	AS C)	
OCT O8 MAR	5.3	282	.010	.79	-	- <.0	5	.12	4.4	
02 APR	5.6	279	<.010	1.0	<.050	.3	6 1.4	.09	2.4	
05 MAY	6.0	195	.010	.80	. 170	E.8	0	.15	3.9	
19	4.4	233	.020	1.0	<.050	. 4	5 1.4	.12	3.9	

01446400 PEQUEST RIVER AT BELVIDERE, NJ--Continued

DATE	TIME	NITRO- GEN, NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)
OCT 08	1330	4740	14	23	<10	3	0	<10	40	1	<1
DATE	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO-MIUM, RECOV. FM BOT-TOM MA-TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
OCT 08	20	1	<10	5	5	160	60	1	20	20	140
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 08	<.1	<.01	3	<10	<1	<1	20	22	1	2	<1.0
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT											
08	<.1	9.0	1.9	<.1	<.1	<.1	.2	<.1	<.1	<.1	<.1
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOTTOM MATERIL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 08	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.10	<1.0	<.1

AUG

SEP

01446500 DELAWARE RIVER AT BELVIDERE, NJ

LOCATION.--Lat 40°49'36", long 75°05'02", Warren County, Hydrologic Unit 02040105, on left bank at Belvidere, 800 ft (240 m) downstream from Pequest River, and at channel mile 197.7 (318.1 km).

DRAINAGE AREA. -- 4,535 mi2 (11,746 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1922 to current year.

REVISED RECORDS.--WSP 781: 1933(M). WSP 951: 1940-41, Drainage area. WSP 1432: 1923, 1924(M).

GAGE.--Water-stage recorder. Datum of gage is 226.43 ft (69.016 m) National Geodetic Vertical Datum of 1929. Prior to Jan. 1, 1929, nonrecording gage at site 200 ft (61 m) upstream at same datum.

REMARKS.--Water-discharge records good. Diurnal fluctuations at medium and low flow caused by powerplants on tributary streams. Flow regulated by Lake Wallenpaupack, and by Pepacton, Cannonsville, Swinging Bridge, Toronto, Cliff Lake, and Neversink Reservoirs (see Delaware River Basin, reservoirs in) and smaller reservoirs. Diversion from Pepacton, Cannonsville, and Neversink Reservoirs (see Delaware River Basin, diversions).

AVERAGE DISCHARGE. -- 60 years, 7,888 ft3/s (223.4 m3/s), unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 273,000 ft 3 /s (7,730 m 3 /s) Aug. 19, 1955, gage height, 30.21 ft (9.208 m) from high-water mark in gage house, from rating curve extended above 170,000 ft 3 /s (4,810 m 3 /s) on basis of flood-routing study; minimum, 609 ft 3 /s (17.2 m 3 /s) Sept. 28, 29, 1943, gage height, 2.11 ft (0.643 m).

EXTREMES OUTSIDE PERIOD OF RECORD.—Flood of Oct. 10, 1903, reached a stage of 28.6 ft (8.72 m), from floodmark, discharge, 220,000 ft 3 /s (6,230 m 3 /s) from rating curve extended above 170,000 ft 3 /s (4,810 m 3 /s).

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 44,500 ft³/s (1,260 m³/s) Apr. 5, gage height, 11.90 ft (3.627 m); minimum, 1,500 ft³/s (42.5 m³/s) Dec. 21, gage height, 2.99 ft (0.911 m).

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

				ME	AN VALUES				
OC T	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL
2270	5660	2710	4150	3900	3770	17000	11400	5180	10200 8490
	2270	77.1	2270 5660 2710	2270 5660 2710 4150	OCT NOV DEC JAN FEB 2270 5660 2710 4150 3900	OCT NOV DEC JAN FEB MAR 2270 5660 2710 4150 3900 3770	2270 5660 2710 4150 3900 3770 17000	OCT NOV DEC JAN FEB MAR APR MAY 2270 5660 2710 4150 3900 3770 17000 11400	OCT NOV DEC JAN FEB MAR APR MAY JUN 2270 5660 2710 4150 3900 3770 17000 11400 5180

				9				7.55				52131
1	2270	5660	2710	4150	3900	3770	17000	11400	5180	10200	2250	2310
2	2490	4980	4080	4490	4490	4220	24100	10100	7390	8490	2370	2360
3	2740	4660	4650	3990	8320	4410	21300	9 470	9380	7250	2310	30.40
4	2610	4680	5580	7160	15 400	4060	32 400	9190	9570	6530	2250	2790
5	2340	4340	5 480	14500	21800	3690	37000	8730	8300	5600	2230	
2	2340	4340	5 460	14500	21800	3090	37000	6730	6300	5000	2230	2760
6	2310	4430	4770	17600	19400	4370	26500	7900	8000	4910	2150	2620
7	2330	4520	4320	1 4 4 0 0	1 4900	4190	22400	7330	8580	4680	2280	2550
8	2160	4440	3940	11900	11800	5610	18900	6900	10600	4670	2350	2430
9	2170	4160	4190	8930	10400	5200	16600	5890	9960	4300	5060	2400
10	25 40	3450	4110	6530	9190	4610	14900	5190	8620	3890	5340	2420
11	2400	3430	3490	4190	7770	4730	1 4600	5130	75 30	3410	4430	25 40
12	2270	3880	3320	4760	6770	5380	14500	5110	6800	3620	3740	2550
13	2150	3610	3290	4580	6310	8280	13700	4670	7070	3690	3250	2560
14	2170	3560	3000	4520	5890	10 40 0	13300	4350	10 400	3870	2890	2620
15	2270	3160	2860	4810	5700	13200	13200	4030	11700	3730	2690	
15	2210	3100	2800	4610	5 /00	1 3200	1 3200	. 4030	:11700	3/30	2690	2570
16	2140	2760	3060	4610	5810	14600	12500	36 40	9720	3360	2580	2340
17	2150	2870	2980	4340	6720	1 4200	12200	3290	9960	3350	2430	. 2300
18	2190	2900	3260	3830	6650	13300	16900	3090	9490	3090	2390	2270
19	2250	2970	2590	3840	6590	1 4100	29500	3020	8 420	2620	2490	2350
20	2050	3110	2290	4110	6230	16700	22400	3170	7590	3210	2490	2330
21	1000	3450	1880	2050	F000	16000	40000	2270	6500	11400	0.1100	
21	1920			3950	5920	16900	18800	3370	6590	4100	2490	2330
22	2210	3980	2140	3690	5510	19000	16100	3430	5890	3700	2350	2400
23	2250	4010	2610	3490	5630	19900	1 40 00	3130	6310	3370	2390	2560
24	2570	3710	3730	3560	5880	18200	12400	3270	6140	3020	2270	2560
25	2330	3570	4940	3530	5 490	19200	11500	3790	5 420	2720	3650	2450
26	2160	3450	5 4 4 0	3080	4680	22200	11200	4280	4790	2450	4250	2270
27	2870	3160	4840	3220	4550	30400	1 4900	3950	4220	2330	3230	2630
28	4150	2930	4360	3340	4130	23000	16600	36 40	3830	2880	2500	3000
29	10700	2830	4470	3310		17100	15200	7030	5820	3060	2650	2580
30	9600	2770	4330	3140		14700	13000	6580	10300	2890	25 40	2330
31	6900		3560	3050		1 3800	13000	5590		2520	2420	2330
31	6900		3500	3050		1 3000		2290		2520	2.420	
TOTAL	93660	111430	116270	174600	225830	373420	537600	169660	233570	127510	88710	75220
MEAN	3021	3714	3751	5632	8065	12050	17920	5 473	7786	4113	2862	2507
MAX	10700	5660	5580	17600	21800	30 40 0	37000	11400	11700	10200	5340	3040
MIN	1920	2760	1880	3050	3900	3690	11200	3020	3830	2330	2150	2270
	, , , ,	2100	1000	5050	3,00	50,0	,,200	5020	330	-550	m 100	

CAL YR 1981 TOTAL 1985570 MEAN 5440 MAX 49200 MIN 1330 WTR YR 1982 TOTAL 2327480 MEAN 6377 MAX 37000 MIN 1880

01447000 DELAWARE RIVER AT NORTHAMPTON STREET AT EASTON, PA

LOCATION.--Lat 40°41'30", long 75°12'15", Northampton County, Hydrologic Unit 02040105, at bridge on Northampton Street in Easton, 600 ft (182 m) upstream from Lehigh River, and 0.2 mi (0.3 km) downstream from U.S. Route 22 toll bridge in Easton.

DRAINAGE AREA. -- 4,717 mi2 (12,217 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1976 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

		SPE- CIFIC CON- DUCT-	РН	TEMPER-	OXYGEN, DIS-	OXYGEN DEMAND, BIO- CHEM- ICAL,	COLI- FORM, FECAL, EC	STREP- TOCOCCI	HARD- NESS (MG/L
DATE	TIME	(UMHOS)	(UNITS)	(DEG C)	SOLVED (MG/L)	5 DAY (MG/L)	BROTH (MPN)	FECAL (MPN)	AS CACO3)
OCT 19 FEB	1400	147	7.7	12.0	11.5	E2.6	<20	33	51
09	1250	124	7.0	.5	14.2	E1.0	<20	22	40
APR 21	1300	88	6.7	10.5		<.6	<20	2	28
JUN 07	1230	119	7.5	16.5		E1.8	20	170	44
JUL 21	1230	154	7.5	26.0	8.8	E2.1	330	130	54
AUG 24	1345	174	8.6	20.0	9.3	E2.2	20	33	66
SEP 23	1215	157	7.9	17.5	9.2	E1.4	40	170	59
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
OCT 19 FEB	14	3.8	7.4	1.0	30		20	13	<.1
09	11	3.0	6.0	.9	18		15	8.9	<.1
APR 21	7.9	2.0	3.9	.7	15		12	6.5	<.1
JUN 07	12	3.3	6.6	.8	29		14	7.9	<.1
JUL 21	15	4.1	6.8	.7	39		16	9.8	.1
AUG 24	18	5.1	6.0	.8	45		18	10	<.1
SEP 23	16	4.7	7.2	1.1	33	<.5	18	9.5	<.1
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHATE, TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
ост 19	.9	91	<.010	.40		.50	.90	.12	1.5
FEB 09	4.4				120				
APR		53	.020	.90	.130	.28	1.2	.09	2.9
21 JUN	2.8	- 57	<.010	.60	.260	E.35		.06	3.1
07 JUL	3.7	77	<.010	.50	.060	.58	1.1	.09	4.1
21 AUG	2.8	101	.010	.50	<.050	.40	.90	.12	3.7
24 SEP	2.1	89	.010	.60	.050	.24	.84	.09	2.8
23	2.1	98	<.010	.80	.100	.21	1.0	.15	3.0

01447000 DELAWARE RIVER AT NORTHAMPTON STREET AT EASTON, PA--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
SEP								
23	1215	20	3	<10	20	<1	<10	3
	IRON, TOTAL RECOV-	LEAD, TOTAL RECOV-	MANGA- NESE, TOTAL RECOV-	MERCURY TOTAL RECOV-	NICKEL, TOTAL RECOV-	SELE- NIUM,	ZINC, TOTAL RECOV-	
	ERABLE (UG/L	ERABLE (UG/L	ERABLE (UG/L	ERABLE (UG/L	ERABLE (UG/L	TOTAL (UG/L	ERABLE (UG/L	PHENOLS
DATE	AS FE)	AS PB)	AS MN)	AS HG)	AS NI)	AS SE)	AS ZN)	(UG/L)
SEP								
23	120	24	10	<.1	3	<1	20	1

01455100 LOPATCONG CREEK AT PHILLIPSBURG, NJ

LOCATION.--Lat 40°40'38", long 75°10'13", Warren County, Hydrologic Unit 02040105, at bridge on Lock Street in Phillipsburg, and 0.9 mi (1.4 km) upstream from mouth.

DRAINAGE AREA .-- 14.2 mi2 (36.8 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1959-62, January 1979 to May 1982 (discontinued).

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

DATE	F IN TIME TA	REAM- CONTROL OF CONTR	PE- IFIC ON- UCT- NCE MHOS) (UI	A?	MPER- TURE S	YGEN, DIS- OLVED	BIO- FO CHEM- FE ICAL, E 5 DAY BE	C TOC	CREP- NECOCCI (N	ARD- ESS MG/L AS ACO3)
OCT 07	1200	7.2	454	7.8	11.5	10.2	E2.5	5400	220	220
FEB 04	1200	62	262	7.7	3.0	14.1	E2.2	1100	2400	95
APR 07 MAY	1145	32	402	8.3	6.5	13.6	<.9	940	49	150
24	1130	32	325	7.2	11.0	9.7	E1.5	3500	2400	140
DATE OCT 07	CALCIUM DIS- SOLVED (MG/L AS CA)	DIS- SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFID TOTAL (MG/L AS S)	SOLVED (MG/L	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	
04	. 23	9.2	12	2.5	62	-	- 24	17	.1	
APR 07 MAY	35	16	14	1.4	120	_	- 33	25	<.1	
24	31	15	6.9	1.3	107	<.	5 32	10	<.1	
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	AT 180	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	MONÍA	+ NITRO- C GEN, TOTAL (MG/L	PHOS- PHATE, TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)	
ост									16 18	
07 FEB		228	<.010	4.3		E.0		<.06	.1	
04 APR	9.0		.050	2.1		.8	2 2.9	.25	3.4	
07 MAY	. 12	204	<.010	2.8	E.200	-		.06	.5	
24	. 13	212	.010	2.6	.050	E.0	5	.12	1.0	

01455100 LOPATCONG CREEK AT PHILLIPSBURG, NJ--Continued

DATE	TIME	NITRO- GEN, NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)
OCT 07	1200	2450	5.8	21			0		(22)		<1
MAY 24	1130				70	1		<10	10	<1	22
24							-	(10	10	11	
DATE	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
OCT 07		2	<10		3		140		20		330
MAY	-	2	(10		3		140		20	-	330
24	10			2		220		2		20	
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT											
07 MAY		<.01		<10		<1		21		2	<1.0
24	<.1		2		<1		30		1		
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT											
07 MAY	<.1	6.0	<.1	.5	.7	<.1	<.1	<.1	<.1	<.1	<.1
24											
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOTTOM MATERIL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT										450	
07 MAY	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.10	<1.0	<.1
24											

01455200 POHATCONG CREEK AT NEW VILLAGE, NJ

LOCATION.--Lat 40°42'57", long 75°04'20", Warren County, Hydrologic Unit 02040105, at bridge on Edison Road, 0.4 mi (0.6 km) southeast of New Village, and 4.3 mi (6.9 km) upstream from Merrill Creek.

DRAINAGE AREA .-- 33.3 mi2 (86.2 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1959, 1962 and January 1979 to current year.

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

						OXYGEN				
DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)	
OCT										
19 FEB	1230	217	8.0	9.0	11.9	E5.3	5400	>2400	73	
04 APR	1300	129	7.4	1.0	14.8	2.8	490	>2400	34	
07	1015	178	7.8	.0	14.4	E1.8	110	49	53	
MAY 24	1230	172	7.3	12.0	9.8	E2.4	1700	1600	58	
JUL 12	1030	198	7.5	21.0	8.4	2.6	>2400	>2400	. 73	
AUG 19	1030	226	8.1	17.0	11.5	<1.2	1100	350	83	
SEP 23	1030	201	8.4	15.5	10.5	E2.4	9200	>2400	77	
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	
OCT 19	17	7.3	10	3.6	48		22	15	.1	
FEB						7				
04 APR	8.5	3.2	8.0	1.9	17	4 1 1	14	11	.1	
07 MAY	13	5.0	10	1.2	30		19	16	<.1	
24 JUL	14	5.6	8.3	1.6	40		18	10	<.1	
12 AUG	17	7.3	11	1.8	50		18	11	<.1	
19 SEP	19	8.6	9.7	1.6	66		18	12	.1	
23	18	7.9	9.9	2.4	55	<.5	18	14	<.1	
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHATE, TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)	
OCT							7			
19 FEB	12	141	.050	1.7		.80	2.5	1.60	5.6	
04 APR	7.4	93	.040	.80		.98	1.8	. 37	5.2	
07 MAY	11	90	.010	1.0	.630	E1.00		.37	2.2	
24 JUL	13	105	.070	1.3	.200	E.60		. 44	4.3	
12 AUG	15	129	.030	1.4	.150	.83	2.2	.40	4.6	
19 SEP	12	138	.020	1.7	<.050	. 41	2.1	. 55	3.8	
23	13	135	.030	1.7	.050	.42	2.1	.77	2.0	

01455200 POHATCONG CREEK AT NEW VILLAGE, NJ--Continued

			40	,	n rann oo				-		
DATE	TIME	NITRO- GEN, NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)
OCT 19 SEP	1230	31200	.1	11			<1				<1
23	1030				10	1		<10	30	<1	
DATE	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO-MIUM, RECOV. FM BOT-TOM MA-TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
OCT							1111		2.2		21
19 SEP		9	<10		5		2600		20		72
23	10			4		220		4		<10	
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 19 SEP		<.01		<10		<1		27		2	<1.0
23	<.1		2		<1		20		<1		
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT											
19 SEP	<.1	<1.0	1.2	1.5	<.1	<.1	.2	<.1	<.1	<.1	<.1
23											
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOTTOM MATERIL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 19 SEP	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	₹.10	<1.0	<.1
23											

01455300 POHATCONG CREEK AT CARPENTERSVILLE, NJ

LOCATION.--Lat 40°37'30", long 75°11'10", Warren County, Hydrologic Unit 02040105, at bridge on Carpentersville-Riegelsville Road in Carpentersville, and 2,000 ft (610 m) upstream from mouth.

DRAINAGE AREA .-- 57.0 mi2 (147.6 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1959-62, 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	CON- DUCT-	PH	A'	MPER- TURE EG C)	DXYGEN, DIS- SOLVED (MG/L)	DEM BI CH IC	IO- F HEM- F CAL, DAY E	OLI- ORM, ECAL, EC ROTH MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
OCT 07 FEB	1030		. 31	1 7	.9	11.5	10.8		4.2	490	540	170
04 APR	1100	105	15	0 7	.2	1.0	14.1		3.2	9200	>2400	46
07 MAY	1315	12	26	1 8	. 4	3.5	14.3		<1.2	490	27	100
24 JUL	1000		. 25	0 7	. 8	12.0	9.7		E2.3	1700	920	100
12 AUG	1230		. 30	3 7	. 9	20.0	9.2		E1.3	2400	>2400	130
19 SEP	1200		. 34	2 8	. 4	15.0	9.5		<1.0	1300	130	150
23	1345		32	9 8	.2	14.5	9.8		E2.1	1700	>2400	150
DAT	(MC	CIUM S S- D LVED SC G/L (M	DLVED SO	DIUM, IS- LVED MG/L S NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	LINIT	SULF TOT (MG	AL /L	SULFATE DIS- SOLVEI (MG/L AS SO4)	DIS- SOLV (MG/	ED SOIL (MC	DE, IS- LVED G/L
OCT 07.		36	19	9.3	2.1	130		4	28	10		<.1
FEB 04.		11	4.4	7.9	2.7				14		. 3	.1
APR 07.		22	11	8.1	1.4				24	13	42.0	<.1
MAY 24.		23	11	6.8	1.5			<.5	24		. 8	<.1
JUL 12.		29	15	9.4	1.5				24		.7	<.1
AUG 19.		33	17	7.4	1.7				27	10		<.1
SEP 23.		33	17	8.4	1.9				25	11		.1
DAT	SIL: DI: SOI (MC	SOLICA, RES S- AT LVED DE G/L I	JIDS, BIDUE N 180 EG. C NI DIS- T DLVED (ITRO- GEN,	NITRO- GEN, IO2+NO3 TOTAL (MG/L AS N)	NITRO GEN	, MONÍ IA ORGA L TOT L (MG	AM- A + NIC AL /L	NITRO- GEN, TOTAL (MG/L AS N)		E CARE	
OCT												
07. FEB	••	8.7	207	<.010	2.2			.40	2.6	118	34	1.6
O4. APR	••	6.1	94	.050	.90		1	.20	2.1		45	8.9
O7.		8.1	126	.010	1.6	. 40	00 E	.45	-		21	1.5
24. JUL	••	12	162	.050	2.0	<.09	50 E	.40			28	2.4
12.	••	12	197	<.010	1.8	E.12	20	.22	2.0		21	2.0
19. SEP		11		<.010	2.2	. 0	50	.41	2.6		25	2.0
23.	••	10	199	<.010	1.7	<.0!	50	.35	2.0	-	44	.1

01455300 POHATCONG CREEK AT CARPENTERSVILLE, NJ--Continued

DATE	TIME	NITRO- GEN, NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)
MAY 24 SEP	1000				20	1		<10	<10	-<1	
23	1345	360	1.2	8.7			<1				<1
DATE	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
MAY 24 SEP	10		-	3		480		3		. 30	
23	384	1	10		1		700		<10		270
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
MAY											
24 SEP	<.1		<1		<1		50		1		10015
23	-77	<.01		<10		<1		13		<1	<1.0
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
MAY 24 SEP											
23	<.1	<1.0	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOTTOM MATERIL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
MAY 24										-22	
SEP 23	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<1.00	<10	<.1

01455500 MUSCONETCONG RIVER AT OUTLET OF LAKE HOPATCONG, NJ

LOCATION.--Lat 40°55'00", long 74°39'55", Morris County, Hydrologic Unit 02040105, just upstream of bridge on Warren County Route 43 and 300 ft (91 m) downstream from Lake Hopatcong dam, in Landing.

DRAINAGE AREA .-- 25.3 mi2 (65.5 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1962, 1976 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

		SPE- CIFIC				OXYGEN DEMAND, BIO-	COLI- FORM,		HARD-
DATE	TIME	CON- DUCT- ANCE (UMHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	CHEM- ICAL, 5 DAY (MG/L)	FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	NESS (MG/L AS CACO3)
OCT 05	1030	222	7.7	13.0	10.4	3.6	20	26	53
JAN 27	1045	244	7.5	.5	13.5	E2.3	<20	<2	53
APR 05	1030	247	7.6	5.0	12.0	E1.3	<20	2	53
JUN 09	1230	235	7.2	18.0	8.4	E2.4	<20	920	53
JUL 13	1200	232	7.2	25.5	8.0	2.7	<20	79	51
AUG 16	1 300	236	8.1	23.0	8.5	E2.5	<20	1600	53
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
OC T 05	14	4.5	20	.8	26	<.1	14	35	۲.1
JAN 27	14	4.5	21	1.1	25		19	38	<.1
APR 05	14	4.4	23	.9	26		18	44	<.1
JUN 09	14	4.4	22	.9	28		17	40	<.1
JUL 13	13	4.5	24	.6	26		15	40	<.1
AUG 16	14	4.4	22	. 3	29	11-	15	41	<.1
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHATE, TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
ос т 05	3.0	119	.020	.05		E.20		.06	3.2
JAN 27	4.3	132	.010	.12		.33	. 45	.06	2.4
APR 05	1.6	109	<.010	. 12	.150	E.65	. 45	.00	1.8
JUN 09	1.1	138	<.010	<.10	.080	.70		.15	2.9
JUL 13	1.5	133	<.010		.070	. 45	7 1 1 10	.06	3.8
AUG 16	3.1	1'43	<.010	.20	.060	.63	0.2	.06	3.9
10	3.1	143	1.010	. 20	.000	.03	.83	.00	3.9

71

DELAWARE RIVER BASIN 01455500 MUSCONETCONG RIVER AT OUTLET OF LAKE HOPATCONG, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

CHRO-MIUM, TOTAL BERYL-COPPER, ALUM-INUM, DIS-CADMIUM TOTAL LIUM, TOTAL BORON, TOTAL ARSENIC RECOV-RECOV-RECOV-RECOV-RECOV-SOLVED TOTAL ERABLE ERABLE ERABLE ERABLE ERABLE TIME (UG/L (UG/L (UG/L (UG/L (UG/L (UG/L (UG/L DATE AS AL) AS AS) AS BE) AS B) AS CD) AS CR) AS CU) OCT 05... 1030 10 40 4 2 <10 <1 10 MANGA-NESE, TOTAL NICKEL, IRON, LEAD, MERCURY ZINC, TOTAL TOTAL TOTAL TOTAL TOTAL SELE-NIUM, TOTAL RECOV-RECOV-RECOV-RECOV-RECOV-RECOV-ERABLE (UG/L AS PB) PHENOLS ERABLE ERABLE ERABLE ERABLE ERABLE (UG/L AS FE) (UG/L AS MN) (UG/L AS ZN) (UG/L (UG/L (UG/L (UG/L) DATE AS HG) AS NI) AS SE) OCT 05... 110 5 50 <.1 2 <1 20 2

01455801 MUSCONETCONG RIVER AT LOCKWOOD, NJ

LOCATION.--Lat 40°55'10", long 74°44'07", Sussex County, Hydrologic Unit 02040105, at bridge in Lockwood, at boundary between Sussex County and Morris County, 0.2 mi (0.4 km) southeast of Cage Hill, 0.4 mi (0.7 km) south of Jefferson Lake, and 0.9 mi (1.4 km) downstream from Lubbers Run.

DRAINAGE AREA .-- 60.1 mi2 (155.7 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

				7					OXY	CEN					
DATE		STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFI CON- DUCT ANCE (UMHO	c -		TEMPE ATUR (DEG	R- E	XYGEN, DIS- SOLVED (MG/L)	DEM BI CH IC 5	AND, C O- F EM- F AL, DAY B	OLI- ORM, ECAL, EC ROTH MPN)	STR TOCO FEC (MP	AL	HAR NES (MG AS	S /L
OCT 05	1145	20		858	7 7	10	.0	8.8		6.3	330		600		100
JAN					7.7										120
27 APR	1230	115		312	7.6		.0	14.1		E1.8	<20		2		78
05 JUN	1200	152	2	234	7.7	6	.0	12.5		E1.2	<20		1 40		65
09 JUL	1100	118	2	273	7.6	17	•5	8.0		<5.2	1300	>2	400		77
13 AUG	1130	87	2	270	7.4	23	.0	7.4		E1.9	170	1	600		79
16	1145	58	3	320	7.9	20	.0	7.7		E2.1	70		350		89
DATE	CALCI DIS- SOLV (MG/ AS C	UM SI DI ED SOL L (MG	S- VED S	SODIUM, DIS- SOLVED (MG/L AS NA)	POTA SIU DIS SOLV (MG/ AS K	M, L ED L	ALKA- INITY LAB (MG/L AS CACO3	SULF TOT (MG	AL /L	SULFATE DIS- SOLVED (MG/L AS SO4)	DIS SOL (MG	E, - VED /L	FLUO RIDE DIS SOLV (MG/ AS F	ED L	
OC T 05	. 28	1	13	20	1	.8	83			19	3	9		. 1	
JAN 27	. 20		6.9	24	1	.2	43			20	4	4	<	.1.	
APR 05	. 16		6.1	17		. 7	37			17	3	4	<	.1	
JUN 09	. 19		7.1	24	1	.2	48		<.5	14	. 3	8	<	.1	
JUL 13	. 19		7.7	25		.5	50			15	3	8		.1	
AUG 16	. 22		8.2	23		.8	58			15	4	4		.1	
DATE	SILIC DIS- SOLV (MG/ AS SIO2	AT 1 ED DEC L DI SOL	DUÉ 180	NITRO- GEN, IITRITE TOTAL (MG/L AS N)	NITR GEN NO2+N TOTA (MG/ AS N	ОЗ А L L	NITRO GEN, MMONI TOTAL (MG/L AS N)	MONÍ A ORGA TOT (MG	AM- A + NIC AL /L	NITRO- GEN, TOTAL (MG/L AS N)	PHO PHA TOT (MG AS P	TE, AL /L	CARBO ORGAN TOTA (MG/ AS C	IĆ L L	
OCT 05 JAN	. 9	.2	183	.260	1.	3	-	- E1	.20		. 1	.20	3	.5	
27	. 6	.9	164	.010		30	-	-	. 75	1.0		.12	2	.6	
APR 05	. 3	.5	102	<.010		20	.27	0 E	.60			.15	2	.1	
JUN 09	. 4	.8	153	.050		30	.23	0 1	.20	1.5		. 44	3	.5	
JUL 13	. 5	.5	151	.100		40	.18	0	.71	1.1		.37	1	. 1	
AUG 16	. 5	.1	183	.190		80	.28	0	.76	1.6		. 49	3	.8	

73

01455801 MUSCONETCONG RIVER AT LOCKWOOD, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DELAWARE RIVER BASIN

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
JUN 09	1100	30	2	<10	30	1	10	12
DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS
JUN 09	750	3	100	<.1	1	<1	20	<1

01456200 MUSCONETCONG RIVER AT BEATTYSTOWN, NJ

LOCATION.--Lat 40°48'48", long 74°50'32", Warren County, Hydrologic Unit 02040105, at bridge at Beattystown, 1.6 mi (2.6 km) upstream of Hanes Brook, 2.1 mi (3.4 km) northeast of Stephensburg, and 3.5 mi (5.7 km) northeast of Scrappy Corner.

DRAINAGE AREA. -- 90.3 mi2 (233.9 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

APR 05 1330 280 258 8.5 6.5 13.7 <.9 50 33 81 JUN 09 1000 165 284 7.8 16.0 9.6 E4.2 70 350 94 JUL 13 1000 112 301 8.0 21.5 8.6 <.9 270 130 98 AUG		DATE	TIME	STREA FLOW INSTA TANEO (CFS	IM- C I, CI IN- D OUS A	PE- IFIC ON- UCT- NCE MHOS)		PH ITS)	AT	IPER- URE	S	GEN, DIS- DLVED	DEM BI CH IC	GEN AND, O- EM- AL, DAY IG/L)	F	OLI- ORM, ECAL, EC ROTH MPN)	TOC	REP- OCCI CAL PN)	HAR NES (MG AS CAC	S /L
JAN 27 1400	(
APR 05 1330			1330		42	411		8.2		12.5		11.8		E3.2		40				150
05 1330	1		1400			338		7.8		•5		13.8		3.3		<20		5		100
09 1000 165 284 7.8 16.0 9.6 E4.2 70 350 94 JUL 13 1000 112 301 8.0 21.5 8.6 <.9 270 130 98 106 1030 80 322 8.0 17.0 8.8 <1.2 80 170 110 110 110 110 110 110 110 110 11		05	1330	2	280	258		8.5		6.5		13.7		<.9		50		33		81
13 1000 112 301 8.0 21.5 8.6 <.9 270 130 98 AUG 16 1030 80 322 8.0 17.0 8.8 <1.2 80 170 110 MAGNE- SIUM, DIS- DIS- DIS- SOLVED (MG/L) DIS- SOLVED SOLVED (MG/L) (MG/L) DATE AS CA) AS MG)		09	1000	1	65	284		7.8		16.0		9.6		E4.2		70		350	160	94
16 1030 80 322 8.0 17.0 8.8 <1.2 80 170 110		13	1000	1	12	301		8.0		21.5		8.6		<.9		270		130		98
CALCIUM SIUM, SODIUM, DIS- DIS-	F		1030		80	322		8.0		17.0		8.8		<1.2		80		170		110
05 34 15 18 1.9 120 <.1 21 31 .1 JAN 27 24 10 22 1.3 70 21 40 <.1 APR 05 19 8.2 18 .9 52 18 32 <.1 JUN 09 22 9.4 19 1.0 70 15 31 <.1 JUL 13 23 9.9 17 .8 77 15 30 .1 AUG 16 27 11 16 .7 88 15 31 .1 SOLIDS, SILICA, RESIDUE NITRO- NITRO- GEN, AM- GEN, GEN, MONIA + NITRO- PHOS- CARBON, SOLVED DEG. C NITRITE NO2+NO3 AMMONIA ORGANIC GEN, PHATE, ORGANIC (MG/L DIS- TOTAL TOTA		DATE	DIS SOL (MG	VED /L	SIUM, DIS- SOLVED (MG/L	DIS SOLV	ED /L	SI DI SOL (MG	UM, S- VED /L	LINI LA (MG AS	TY B /L	TOT	AL /L	DI:	S- LVED G/L	RII DIS SOI (MC	DE, S- LVED	RIDE DIS- SOLVI (MG/I	ED	
27 24 10 22 1.3 70 21 40 <.1 APR 05 19 8.2 18 .9 52 18 32 <.1 JUN 09 22 9.4 19 1.0 70 15 31 <.1 JUL 13 23 9.9 17 .8 77 15 30 .1 AUG 16 27 11 16 .7 88 15 31 .1 SOLIDS, SILICA, RESIDUE NITRO- NITRO- GEN, AM- GEN, GEN, GEN, MONIA + NITRO- PHOS- CARBON, SOLVED DEG. C NITRITE NO2+NO3 AMMONIA ORGANIC GEN, PHATE, ORGANIC (MG/L DIS- TOTAL AS SOLVED (MG/L		05	. 3	4	15	1	8		1.9	120			<.1	:	21		31		. 1	
05 19 8.2 18 .9 52 18 32 <.1 JUN 09 22 9.4 19 1.0 70 15 31 <.1 JUL 13 23 9.9 17 .8 77 15 30 .1 AUG 16 27 11 16 .7 88 15 31 .1 SOLIDS, SILICA, RESIDUE NITRO- OF		27	. 2	4	10	2	22		1.3	70					21	1	40	<.	. 1	
09 22 9.4 19 1.0 70 15 31 <.1 JUL 13 23 9.9 17 .8 77 15 30 .1 AUG 16 27 11 16 .7 88 15 31 .1 SOLIDS, SILICA, RESIDUE NITRO- NITRO- GEN, AM- GEN, AM- GEN, AM- GEN, AM- MONIA + NITRO- PHOS- CARBON, SOLVED DEG. C NITRITE NO2+NO3 AMMONIA ORGANIC GEN, PHATE, ORGANIC (MG/L DIS- TOTAL AS SOLVED (MG/L		05	. 1	9	8.2	1	8		.9	52					18		32	<	. 1	
13 23 9.9 17 88 77 15 30 .1 AUG 16 27 11 16 .7 88 15 31 .1 SOLIDS, SILICA, RESIDUE NITRO- NITRO- NITRO- GEN, AM- DIS- AT 180 GEN, GEN, GEN, GEN, MONIA + NITRO- PHOS- CARBON, SOLVED DEG. C NITRITE NO2+NO3 AMMONIA ORGANIC GEN, PHATE, ORGANIC (MG/L DIS- TOTAL TOT		09	. 2	2	9.4	1	9		1.0	70				4 - 13	15	1	31	<	.1	
16 27 11 16 .7 88 15 31 .1 SOLIDS, SILICA, RESIDUE NITRO- NITRO- GEN, AM- GEN, AT 180 GEN, GEN, GEN, MONIA + NITRO- PHOS- CARBON, SOLVED DEG. C NITRITE NO2+NO3 AMMONIA ORGANIC GEN, PHATE, ORGANIC (MG/L DIS- TOTAL		13	. 2	3	9.9	1	7		.8	77					15		30 .		.1	
SILICA, RESIDUÉ NITRO- NITRO- GEN, AM- DIS- AT 180 GEN, GEN, GEN, MONIA + NITRO- PHOS- CARBON, SOLVED DEG. C NITRITE NO2+NO3 AMMONIA ORGANIC GEN, PHATE, ORGANIC MG/L AS SOLVED (MG/L (M			. 2	7	11	1	6		.7	88					15		31		. 1	
05 7.0 222 .070 1.6 E.35 1.10 3.1 JAN 27 8.7 187 .030 .8070 1.5 .52 2.3 APR 05 5.4 136 .020 .50 .230 E.6534 2.5 JUN 09 6.7 167 .040 .60 .090 .63 1.2 .80 3.8 JUL 13 6.3 180 .030 .60 .100 .47 1.1 .44 3.5 AUG		DATE	DIS SOL (MG AS	CA, F - A VED /L	RESIDUÉ T 180 DEG. C DIS- SOLVED	GE NITE TOT (MC	N, ITE AL	GE NO2+ TOT (MG	N, NO3 AL /L	GE AMMO TOT (MG	N, NIA AL /L	GEN, MONI ORGA TOT (MG	AM- A + NIC AL /L	TO:	EN, TAL G/L	PHA TO:	ATE, FAL	ORGAN: TOTAL (MG/I	ic.	
JAN 27 8.7 187 .030 .8070 1.5 .52 2.3 APR 05 5.4 136 .020 .50 .230 E.6534 2.5 JUN 09 6.7 167 .040 .60 .090 .63 1.2 .80 3.8 JUL 13 6.3 180 .030 .60 .100 .47 1.1 .44 3.5 AUG																				
APR 05 5.4 136 .020 .50 .230 E.6534 2.5 JUN 09 6.7 167 .040 .60 .090 .63 1.2 .80 3.8 JUL 13 6.3 180 .030 .60 .100 .47 1.1 .44 3.5			•	7.0	222		070	1	.6			E	.35				1.10			
05 5.4 136 .020 .50 .230 E.6534 2.5 JUN 09 6.7 167 .040 .60 .090 .63 1.2 .80 3.8 JUL 13 6.3 180 .030 .60 .100 .47 1.1 .44 3.5 AUG	-			8.7	187		030		.80				.70		1.5		.52	2	. 3	
09 6.7 167 .040 .60 .090 .63 1.2 .80 3.8 JUL 13 6.3 180 .030 .60 .100 .47 1.1 .44 3.5 AUG		05		5.4	136		020		.50		230	E	.65				.34	2	.5	
13 6.3 180 .030 .60 .100 .47 1.1 .44 3.5		09		6.7	167		040		.60		090		.63		1.2		.80	3	. 8	
16 7.1 187 .020 .70 .160 .55 1.2 .37 3.3		13		6.3	180		030		.60		100		.47		1.1		.44	3	.5	
		16		7.1	187		020		.70		160		.55		1.2		.37	3	. 3	

01456200 MUSCONETCONG RIVER AT BEATTYSTOWN, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	TIME	NITRO- GEN, NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)
OCT	1220	16000	0	0.11	10			<10	50	<1	<1
05	1330	16000	. 8	8.4	10	2	0	<10	50	- (1	()
DATE	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
OCT											
05	10	1	<10	6	2	150	240	1	<10	20	260
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 05	<.1	<.01	2	<10	<1	<1	20	15	<1	4	<1.0
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT											
05	<.1	3.0	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOTTOM MATERIL (UG/KG)	TOXA-PHENE, TOTAL IN BOT-TOM MA-TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 05	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.10	<1.0	<.1

01457000 MUSCONETCONG RIVER NEAR BLOOMSBURY, NJ

LOCATION.--Lat 40°40'20", long 75°03'40", Warren County, Hydrologic Unit 02040105, on right bank just downstream from highway bridge, 1.5 mi (2.4 km) upstream from Bloomsbury, and 9.5 mi (15.3 km) upstream from mouth.

DRAINAGE AREA. -- 141 mi2 (365 km2), revised.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- July 1903 to March 1907, July 1921 to current year.

REVISED RECORDS.--WSP 521: Drainage area. WSP 1051: 1944-45. WSP 1382: 1904-06, 1922, 1923-29(M), 1931(M), 1933-34(M), 1936(M), 1940, 1942(M), 1944-45(M), 1951-52(M).

GAGE.--Water-stage recorder. Concrete control since Sept. 29, 1932. Datum of gage is 274.83 ft (83.768 m) National Geodetic Vertical Datum of 1929. July 1903 to Mar. 31, 1907, nonrecording gage at bridge 15 ft (4.6 m) upstream at different datum. July 26 to Sept. 12, 1921, nonrecording gage at bridge at present datum.

REMARKS.--Water-discharge records good except those for period of ice effect (Jan. 7 to Jan. 28), which are fair. Flow regulated by Lake Hopatcong (see Delaware River Basin, reservoirs in). Diurnal fluctuation caused by small powerplants above station.

AVERAGE DISCHARGE.--64 years (water years 1904-06, 1922-82), 233 ft³/s (6.599 m³/s), unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 7,200 ft³/s (204 m³/s) Jan. 25, 1979, gage height, 8.50 ft (2.591 m) from floodmark, from rating curve extended above 1,800 ft³/s (51.0 m³/s) on basis of slope-area measurement at gage height 6.95 ft (2.118 m); minimum, 8.1 ft³/s (0.23 m³/s) Aug. 2, 1955; minimum daily 27 ft³/s (0.76 m³/s) Sept. 8, 1966.

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 1,000 ft 3/s (28.3 m 3/s) and maximum (*):

Date		Time	Disch (ft ³ /s)	(m³/s)	Gage h	eight (m)	Date	Time	Disch (ft 3/s)		Gage h	eight (m)
Jan.	4	1730	1130	32.0	3.79	1.155	June 17	0715	1130	32.0	3.79	1.155

Minimum discharge, 50 ft 3/s (1.42 m3/s) Oct. 1.

		DISCH	ARGE, IN	CUBIC FEET	PER SEC	OND, WATER		CTOBER 198	1 TO SEPTI	EMBER 1982		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	52	131	92	169	387	198	213	496	329	412	127	. 89
	80	121	302	211	694	195	197	457	470	332	122	113
3		113	270	190	1630	195	328	416	341	298	116	143
3	79 68	108	220	677	966	186	540	391	302	288	111	134
5	61	104	200	867	684	198	403	359	274	259	109	140
6	60	116	185	6.87	555	204	360	332	274	240	113	136
7	61	114	172	576	463	314	339	313	304	213	107	126
8	60	103	181	514	408	363	315	296	284	195	104	105
9	58	99	181	422	378	275	313	279	249	182	284	93
10	58	93	160	337	347	244	309	263	226	173	406	86
11	56	89	158	288	309	250	344	246	210	166	299	81
12	56	85	199	241	312	303	351	230	194	182	259	77
13	56	84	211	223	321	311	337	222	281	197	220	75
14	56	83	205	209	305	309	319	211	447	181	189	74
15	58	81	247	202	304	309 282	296	200	387	168	170	223
16	58	97	278	188	319	265	276	190	361	157	149	287
17	58	101	262	173	327	285	267	181	816	147	136	238
18	60	92	240	164	306	287	386	174	582	138	128	229
19	79	86	242	176	306	273	355	168	476	132	117	228
20	77	111	274	191	331	261	316	169	4 16	149	110	229
21	73	128	258	178	338	263	310	167	373	160	104	23.9
22	67	115	226	153	326	273	286	167	3 32	147	98	247
23	70	105	236	147	304	255	269	181	330	133	94	265
24	103	99	269	178	295	243	256	195	302	126	98	258
25	98	95	250	163	254	234	247	179	274	118	136	161
26	118	92	236	144	214	252	342	164	252	114	131	133
27	136	89	235	133	208	243	498	152	234	120	118	227
28	335	87	243	129	202	215	623 596	147	225 258	178	107	296 263
29	267	85	188	126		202	596	411	258	196	99	263
30	182	86	117	119		193	533	4 17	531	154	93	252
31	151		97	214		199		392		136	89	
TOTAL	2851	2992	6634	8389	11793	7770	10524	8165	10334	5791	4543	5247
MEAN	92.0	99.7	214	271	421	251	351	263	344	187	147	175
MAX	335	131	302	867	1630	363	623	496	816	4 12	4 06	296
MIN	52	81	92	119	202	186	197	147	194	114	89	74

CAL YR 1981 TOTAL 59186 MEAN 162 MAX 1150 MIN 51 WTR YR 1982 TOTAL 85033 MEAN 233 MAX 1630 MIN 52

01457400 MUSCONETCONG RIVER AT RIEGELSVILLE, NJ

LOCATION.--Lat 40°35'32", long 75°11'20", Warren County, Hydrologic Unit 02040105, at bridge on State Highway 13 in Riegelsville, 0.2 mi (0.3 km) north of Mount Joy, and 0.2 mi (0.3 km) upstream from mouth.

DRAINAGE AREA . -- 156 mi2 (404 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1962, 1976 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	COI DUC S ANG	FIC N- CT- CE	PH UNITS)	TEMP ATU (DEG	ER- RE	DXYGEN, DIS- SOLVED (MG/L)	DEM BI CH IC	IO- IEM- IAL, DAY	COLI- FORM, FECAL, EC BROTH (MPN)	TOC	REP- OCCI CAL PN)	HARD- NESS (MG/L AS CACO3)
OCT 07	1400	70	5	390	8.0	1	2.5	10.2		E2.6	220		220	160
FEB 10	1300	225	5	291	7.5		2.0	13.8		E1.9	170		11	96
MAR 17	1300	370)	284	7.6		5.5	12.5		E1.5	330	>	2400	110
JUN 08	1300	230		283	7.7		5.0	9.8		E1.9	1300		350	110
JUL	-							77.5						
12 AUG	1300	120		321	8.1		1.5	9.4		<.3	790		130	130
19	1330	82	2	339	8.2	1	7.0	8.8		1.6	700		180	130
DATE	(MG	IUM S - I VED SO /L (N	MAGNE- SIUM, DIS- DLVED MG/L S MG)	SODIUM DIS- SOLVED (MG/L AS NA	, SI DI SOL (MG	S- VED /L	ALKA LINITY LAB (MG/I AS CACO	Y SULF TOT (MG	AL /L	SULFAT DIS- SOLVE (MG/L AS SO4	E RID DIS D SOL (MG	VED /L	FLUC RIDE, DIS- SOLVE (MG/I AS F)	E D
OCT 07 FEB	. 3	4	19	17		1.7	120			26	2	2	<.	.1
10 MAR	. 2	2	10	23		1.3	63			19	3	1	<.	. 1
17	. 2	4	11	17		1.2	73			20	2	8	<.	. 1
JUN 08	. 2	4	11	13		1.3	81		<.5	17	2	5		.1
JUL 12	. 2	9	14	13		.9	102			18	2	2	<.	. 1
AUG 19	. 2	9	15	12		1.3	97			22	2	4	<.	. 1
DATE	(MG AS	CA, RES - AT VED DI /L I	JIDS, BIDUE 180 EG. C DIS- DLVED	NITRO GEN, NITRIT TOTAL (MG/L AS N)	GE	NO3 AL	NITRO GEN AMMONI TOTAI (MG/I AS N)	MONÍ IA ORGA TOT (MG	AM- A + NIC AL /L	NITROGEN, TOTAL (MG/L AS N)	PHA TOT (MG	TE, AL /L	CARBON ORGANI TOTAL (MG/L AS C)	ić
OCT 07		8.2	194	<.01	0 1	. 8		E	.20			.18	2.	. 9
FEB 10		9.9	187	.07	0 1	.3	. 18	30	.59	1.9		. 15	2.	5
MAR 17		6.9	167	.02	0 1	.2	. 22	20 E	.72			.18	2.	2
JUN 08		8.9	172	.03	0 1	. 4	.09		.56	2.0		.25	3.	5
JUL 12		7.1	170	<.01		. 4	. 26		.38	1.8		.21	2.	0
AUG 19		8.7	192	.03	0 1	.6	.07	70	.84	2.4		.18	2.	1

01457400 MUSCONETCONG RIVER AT RIEGELSVILLE, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
JUN 08	1300	<10	1	<10	20	<1	20	12
DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS (UG/L)
JUN 08	1200	7	70	.2	2	<1	20	. 1

01458100 HAKIHOKAKE CREEK AT MILFORD, NJ

LOCATION.--Lat 40°34'06", long 75°05'44", Hunterdon County, Hydrologic Unit 02040105, at bridge on Bridge Street at Milford, and 4,000 ft (1,220 m) upstream from mouth.

DRAINAGE AREA. -- 17.2 mi2 (44.5 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1959-62, 1976 to May 1982 (discontinued).

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

DATI	3	TIME	SPE- CIF CON- DUC ANCI	IC - - -	PH (UNITS)	TEMPER- ATURE (DEG C)	SOL	SEN, IS- VED	DEMAI BIO- CHEI ICAI 5 DI (MG	ND, M- L,	COLI FORM FECA EC BROT (MPN	L, STI	REP- DCCI CAL PN)	HARD- NESS (MG/L AS CACO3)
FEB 01.		1000		1 48	7.0	.0	1	4.0	-	5.6	2	30 >:	2 400	33
MAR 24.		1330		208	9.5	9.0	1	4.9	E	1.4	<	20	2	76
MAY 24.		10 45		169	8.0	11.0	1	1.6	Е	1.8	35	00	920	77
DATI		CALCIUM DIS- SOLVEM (MG/L AS CA	DI: D SOLY (MG)	JM, S S- VED S VL	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	LINI LA (MC	TY AB G/L	SULF TOT (MG AS	AL /L	SULFA DIS- SOLV (MG/ AS SO	TE RII	LO- DE, S- LVED G/L CL)	FLUO- RIDE, DIS- SÓLVED (MG/L AS F)
FEB														
O1.		8.	9 :	2.7	9.5	3.0	19)			13		15	.1
24. MAY	• •	19		5.9	9.2	1.3	48	3			25		12	<.1
24.	• •	19		7.2	7.5	1.2	57	7		<.5	24		8.9	<.1
DATI	Ξ	SILICA DIS- SOLVE (MG/L AS SIO2)	AT 18	DUÉ 30 . C N S- VED	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	GE	CAL G/L	NIT GEN, MONI ORGAL TOT (MG AS	AM- A + NIC AL /L	NITR GEN TOTA (MG/ AS N	PH. L TO	OS- ATE, FAL G/L PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
FEB														
O1.	• •	5.	0	89	.020	1.2				.88	2.	1	. 45	7.8
24. MAY		11		123	.010	1.4	<.	050	E	. 37	13	4	.06	3.3
24.		15		1 30	.010	1.2	<.	050	E	.10			.12	1.0
	DI	ATE	TIME	ALUM INUM DIS SOLV (UG/ AS A	A, S- ARS VED TO 'L (U	ENIC RTAL EG/L (ERYL- IUM, OTAL ECOV- RABLE UG/L S BE)	TO RE ER (U	RON, TAL COV- ABLE G/L B)	REC ER/	MIUM FAL COV- ABLE G/L CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	TO RE ER (U	PER, TAL COV- ABLE G/L CU)
	MAY	4	1045		20	1	<10		<10		<1	20		10
	DA MA	ATE (IRON, FOTAL RECOV- ERABLE (UG/L AS FE)	LEAD TOTA RECO ERAE (UG/ AS F	MA O, NE LL TO OV- RE BLE ER CL (U PB) AS	NGA- SE, ME TAL T COV- R ABLE E G/L (MN) A	RCURY OTAL ECOV- RABLE UG/L S HG)	TO RE ER (U	KEL, TAL COV- ABLE G/L NI)	TOT	E- JM, TAL G/L SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)		nols G/L)
	2	4	150		3	20	<.1		<1		<1	30		5

01458400 HARIHOKAKE CREEK NEAR FRENCHTOWN, NJ

LOCATION.--Lat 40°32'53", long 75°04'09", Hunterdon County, Hydrologic Unit 02040105, at bridge on Frenchtown-Milford Road, 1,600 ft (490 m) upstream from mouth, and 1.5 mi (2.4 km) north of Frenchtown.

DRAINAGE AREA. -- 9.75 mi2 (25.26 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1959-62, 1976 to May 1982 (discontinued).

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

DATE	TIME	STREAM FLOW INSTAM TANEOM (CFS	, CO N- DU US AN	FIC N- CT- CE	PH (UNITS)	TEMP ATU (DEG	ER- RE	OXYGEN, DIS- SOLVED (MG/L)	BI CH IC	GEN AND, O- EM- AL, DAY G/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
FEB 01	1130	102		108	6.6		.0	14.3		5.8	50	>2400	28
MAR			20										
24 MAY	1215		30	153	9.2		8.0	14.7		E1.6	<2	<20	54
24	1230		15	146	7.6	1	2.0	10.2		E1.4	790	>2400	47
DATE	CALC DIS SOL (MG AS	VED :	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIU DIS- SOLVE (MG/ AS N	M, SI DI D SOL L (MG	S- VED /L	ALK LINIT LAE (MG/ AS CACO	S SUL L TO	FIDE OTAL MG/L S S)	SULFAT DIS- SOLVI (MG/I	TE RID DIS ED SOL L (MG	E, RI - D VED SO /L (M	LUO- DE, IS- LVED G/L F)
FEB 01 MAR		7.8	2.0	4	.6	3.1	18		-2	12		9.1	.1
24	. 1	6	3.5	6	.7	1.3	26			20		9.3	<.1
MAY 24	. 1	4	2.9	5	.0	1.4	36		<.5	15		7.0	<.1
DATE FEB	SILI DIS SOL (MG AS	CA, R - A VED /L	OLIDS, ESIDUE T 180 DEG. C DIS- SOLVED (MG/L)	NITR GEN NITRI TOTA (MG/ AS N	, GE TE NO2+ L TOT L (MG	NÓ3 AL /L	NITE GEN AMMON TOTA (MG/ AS N	O- GEN MON IIA ORO L TO L (N	TRO- I, AM- IIA + GANIC OTAL MG/L B N)	NITRO GEN TOTAL (MG/I AS N	, PHA L TOT L (MG	TE, ORG	BON, ANIC TAL G/L C)
01		3.8	68	.0	30 1	.5			1.20	2.	7	.58	12
MAR 24		6.8	88	E.0	10 1	.9	<.0	50	E.34			.06	2.7
MAY 24		8.9	83	.0	20	.90	.0	50	E.20		- 22	.18	1.6
	DATE	TIM	IN D SO E (U	UM- UM, IS- LVED G/L AL)	ARSENIC TOTAL (UG/L AS AS)	BER LIU TOT REC ERA (UG	M, AL OV- BLE /L	BORON TOTAL RECOVERABLE (UG/L AS B)	TC RE E EF	MIUM TAL COV- ABLE G/L CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	
	MAY	P										Laboratoria de la compansión de la compa	
	24	123	0	40	1		<10	<10)	<1	10	6	
	DATE	IRON TOTA RECO ERAB (UG/ AS F	L TO V- RE LE ER L (U	AD, TAL COV- ABLE G/L PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERC TOT REC ERA	AL OV- BLE /L	NICKEL, TOTAL RECOV- ERABLI (UG/L AS NI)	SE NI E TO	LE- UM, TAL G/L SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS	
	MAY 24	in Vo. 1	60	3	10		<.1		4	<1	40	2	

01458500 DELAWARE RIVER AT FRENCHTOWN, NJ

LOCATION.--Lat 40°31'34", long 75°03'55", Hunterdon County, Hydrologic Unit 02040105, at bridge at Frenchtown, 1,000 ft (300 m) upstream from Nishisakawick Creek, and 3.4 mi (5.5 km) southeast of Milford.

DRAINAGE AREA. -- 6, 420 mi² (16,628 km²).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to May 1982 (discontinued).

WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

		WAI	EN QUA	LIII D	AIA,	WAIL	N IEA	n oc	TOBE	1 190			EMDEN	1902				
DAT	ΓE	TIM	C C D	PE- IFIC ON- UCT- NCE MHOS)	P)		TEMP	RE	SOI	GEN, IS- LVED G/L)	CHI ICA 5 I	AND,	COL FOR FEC EC BRO	M, AL, TH	STF TOCO FEC	AL	HAR NES (MG AS CAC	S /L
OCT		100		198				6.0		0 0		/1 2		80		22		70
FEB 08.		100				7 1	10			9.3		<1.3				33		
MAR				135		7.1		.0		14.5	1	E1.6		130		33		37
MAY		094		107		7.6		4.5		12.5		3.2		490		110		32
25.	1	103		195		7.7		5.0		8.7		2.7		80		110		72
DAT	ΓE	CALCI DIS- SOLV (MG/ AS C	UM : ED SC L (1	AGNE- SIUM, DIS- OLVED MG/L S MG)	SODI DIS SOLV (MG AS	ED /L	POTA SII SOL (MG AS	UM, S- VED /L	LIN: LA (MC	AB G/L	TO:	FIDE FAL G/L S)	SULF DIS SOL (MG AS S	VED /L	(MC	DE, S- VED		E, S- VED
OCT O1.		18		6.0	1	1		1.3	42			<.1	2	2	-	16		.1
FEB 08		9		3.0		5.6		1.1	19					6		9.2		<.1
MAR 25			.6	2.5		5.6		. 7	10					4		8.8		<.1
MAY 25		18		6.5	1			1.3	49			<.5		3		12		. 1
		,,,		LIDS,							NT	rro-		5				
DAT	ΓE	SILIC DIS- SOLV (MG/ AS SIO2	A, RE AT ED D	SIDUE 180 EG. C DIS- OLVED	NIT GE NITR TOT (MG AS	N, ITE AL /L	NIT GE NO2+ TOT (MG AS	N, NO3 AL /L	AMMO TO:	TRO- EN, ONIA TAL G/L N)	GEN MON ORGA TO (MO	AM- IA + ANIC TAL G/L N)	NIT GE TOT (MG AS	AL /L	PHA	J/L	CARE ORGA TOT (MC	NIC AL G/L
OC T		2	.2	107		047		. 88				. 18	1	. 1		. 34		
FEB 08			.2			070		.90				.65		.6		.12		2.7
MAR			.6	59		010		.60		070	-	E.30				. 15		3.2
MAY 25			.2	123		050		.0		.080		E.35				.25		2.2
			TIME	AL IN D SO (U	UM- UM, IS- LVED G/L	ARS TO	SENIC TAL	BE LI TO RE ER	RYL- UM, TAL COV- ABLE G/L	BO TO RE ER (U	RON, TAL COV- ABLE G/L B)	C AI	OMIUM OTAL ECOV- RABLE	REC ERA (UC		C OP TO R E ER	PER, TAL COV- ABLE G/L CU)	
	OC:	ATE T		но	AL)	но	AS)	но	BE)	AS		A	S CD)	n o		no.		
	O MA	1 Y	1000		20		2		<10		<10		1		20		9	
	2	5	1030		10		1		<10		10		1		10		4	
	D	ATE	IRON, TOTAL RECOVERABL (UG/L AS FE	TO RE E ER (U	TAL COV- ABLE G/L PB)	NE TO RE ER (U	NGA- SE, TAL COV- ABLE G/L MN)	TO RE ER (U	CURY TAL COV- ABLE G/L HG)	TO RE ER (U	KEL, TAL COV- ABLE G/L NI)	N: T(ELE- IUM, DTAL IG/L S SE)	R EC	NC, FAL COV- ABLE G/L ZN)		NOLS G/L)	
	OC O	Г 1	1 4	0	9		40		<.1		5		<1		50		1	
	MA		26	0	6		60		<.1		5		<1		180		7	

01460500 DELAWARE AND RARITAN CANAL AT KINGSTON, NJ

LOCATION.--Lat 40°22'24", long 74°37'08", Middlesex County, Hydrologic Unit 02040105, on right bank at canal lock at Kingston, and 250 ft (76 m) upstream from new bridge on State Highway 27.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- March 1947 to current year.

GAGE.--Two water-stage recorders and concrete control. Datum of gage is 40.00 ft (12.192 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good. The canal diverts water from the Delaware River at Raven Rock and discharges into Raritan River at New Brunswick. Some water wasted to the Millstone River 500 ft (152 m) above station. During part or all of many days in February to June, practically all water in the canal was diverted from Carnegie Lake at aqueduct over Millstone River 2.0 mi (3.2 km) upstream of gage (see Delaware River Basin, diversion and withdrawals).

AVERAGE DISCHARGE .-- 35 years, 75.1 ft3/s (2.127 m3/s).

EXTREMES FOR PERIOD OF RECORD. -- Maximum daily discharge, 174 ft3/s (4.93 m3/s) Apr. 6, 1957; no flow many days in many years.

EXTREMES FOR CURRENT YEAR.--Maximum daily discharge, 76 ft³/s (2.15 m³/s) April 22, May 31, June 1,2; no flow part or all of many days October through February and May 25.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	30 30 30 31 31	.02 .08 .08 .07	.00 .00 .00	.00 .00 .00	.00 .00 11 .68	55 55 55 55 55	53 57 60 65 65	68 67 66 66 65	76 76 74 72 71	60 61 57 56 59	13 13 13 13	17 13 18 20 20
6 7 8 9	28 31 29 29 30	.17 .18 .18 .09	.00 .00 .00	.00 .00 .00	31 33 36 39 42	56 57 59 58 57	64 63 58 58	63 62 62 62 62	70 71 66 62 55	58 65 69 68 61	13 13 13 14 43	20 19 20 26 28
11 12 13 14	29 29 29 30 30	.00 .00 .00	.00 .00 .00	.00 .00 .00	4 4 4 4 4 4 45 45	56 56 55 55	59 58 57 57	60 60 60 37	52 55 57 67 67	59 47 33 33 33	30 14 16 16 16	22 16 16 16 16
16 17 18 19 20	42 55 50 40 55	.00 .00 .00	.00 .00 .00	.00	48 52 54 54 55	55 55 55 54 53	57 58 60 59 58	14 17 17 17 16	63 64 64 59	33 33 32 32 17	17 17 17 16 16	15 21 28 21 22
21 22 23 24 25	60 59 52 44 45	.00 .00 .00	.00 .00 .00	.00 .00 .00	55 55 55 54 54	53 53 53 53	58 59 65 67 66	48 62 61 62 24	47 59 66 72 69	9.6 21 39 43 41	16 16 16 16 18	32 34 34 37 37
26 27 28 29 30 31	46 47 48 49 32	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00	53 54 55	54 53 53 53	66 72 76 74 70	16 50 56 58 62 76	68 66 64 59 58	40 28 38 55 29	24 24 18 18 18	34 35 48 55 48
TOTAL MEAN MAX MIN	1170.01 37.7 60 .01	.96 .032 .18	.00	43.00 1.39 33 .00	1127.68 40.3 55	1696 54.7 59 53	1854 61.8 76 53	1527 49.3 76 11	1921 64.0 76 47	1322.6 42.7 69 9.6	5 42 17.5 43 13	787 26.2 55 13
CAL YR WTR YR				54.3 32.9	MAX 99 MAX 76	MIN .00 MIN .00						

01460880 LOCKATONG CREEK AT RAVEN ROCK, NJ

LOCATION.--Lat 40°24'58", long 75°01'05", Hunterdon County, Hydrologic Unit 02040105, at bridge, on Raven Rock-Rosemont Road, and 0.7 mi (1.1 km) upstream from mouth.

DRAINAGE AREA .-- 22.9 mi2 (59.3 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1956, 1959-62, 1976 to June 1982 (discontinued).

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococcci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	AT	PER- URE G C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	
FEB 08	1330	26	136	6.8		.0	14.0	E1.5	<20	23	37
MAR	1330	20	130	0.0		.0	14.0	21.5	120	23	131.
24	1045	11	167	7.7		6.5	12.9	<1.3	<20	<2	51
JUN 02	1030	69	136	7.4		16.0	9.7	E1.8	2400	>2400	48
	CALC DIS SOL (MG	IUM SI - DI VED SOI	IS- DIS	IUM, S S- D VED SO	TAS- IUM, IS- LVED G/L	ALKA LINIT LAB (MG/ AS	Y SULF	IDE DIS	FATE RI S- DI LVED SO	DE, RI S- D LVED SO	UO- DE, IS- LVED G/L
DATE	AS	CA) AS	MG) AS	NA) AS	K)	CACO	3) AS	S) AS S	SO4). AS	CL) AS	F)
FEB 08		8.8	3.6	5.3	1.9	13		2	23	7.4	.1
24	. 1	2	5.2	8.7	1.9	17		2	29	9.9	<.1
JUN 02	. 1	1	4.9	6.8	2.4	21		<.5 2	27	8.0	. 1
DATE	SILIO DIS SOL (MG, AS	VED DEC	DUÉ NI 180 GI G. C NITI IS- TO: LVED (MO	EN, GI RITE NO2- TAL TO: G/L (MG	TRO- EN, +NO3 TAL G/L N)	NITR GEN AMMON TOTA (MG/ AS N	O- GEN, , MONI IA ORGA L TOT L (MG	A + NIT NIC GE AL TOT /L (MC	EN, PH. TAL TO	ATE, ORG. TAL TO	BON, ANIC TAL G/L C)
FEB											
08	. 10)	63	.040	1.9			.33	2.2	.09	2.2
24 JUN		7.8	93 E	.020	1.8	<.0	50 E	.54		.06	3.6
02		9.6	123	.030	1.4	E.2	60 1	.20 2	2.6	.28	9.4
	DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	LI TO RE ER (U	RYL- UM, TAL COV- ABLE G/L BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	
	JUN										
	02	1030	30	1		<10	40	<1	<10	2	
	DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	TO RE ER (U	CURY TAL COV- ABLE G/L HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS (UG/L)	
	IUN		,		AU	,		NO UL)	NO ZN)	(00/1)	
	02	1200	3	40		<.1	6	<1	30	2	

01461000 DELAWARE RIVER AT LUMBERVILLE, PA

LOCATION.--Lat 40°24'27", long 75°02'16", Bucks County, Hydrologic Unit 02040105, at pedestrian bridge at Lumberville, 1.4 mi (2.3 km) upstream of Lockatong Creek.

DRAINAGE AREA. -- 6,598 mi2 (17,089 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)	
OCT 01	1130	197	8.0	16.0	9.4	<1.1	<20	22	70	
FEB 08	1200	134	7.0	.0	14.6	E1.2	20	33	41	
MAR 25	1215	109	7.5	5.0	12.8	E1.8	50	6	32	
MAY 25	1245	204	7.9	16.0	9.6	E2.4	490	540	69	
JUL 26	1330	195	8.7	25.0	8.8	E2.1	<20	13	77	
AUG 26	1230	242	8.0	20.0	8.4	E2.0	1300	49	89	
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	
OCT O1 FEB	18	6.1	9.7	1.3	41	<.1	23	16	<.1	
08	11	3.3	7.1	1.0	21		16	11	<.1	
25	8.6	2.5	5.8	.8	16		14	8.8	<.1	
MAY 25	17	6.4	9.6	1.3	42	120	23	12	<.1	
JUL 26	20	6.6	8.5	1.1	50		21	13	.1	
AUG 26	23	7.7	10	1.5	56		28	14	<.1	
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHATE, TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)	
OCT 01	1.8	117	.042	.88		.11	.99	.28	2.8	
FEB 08	4.8	108	.090	.90		•33	1.2	.12	1.7	
MAR 25	3.6	64	.010	.60	.070	E.60		.15	3.0	
MAY 25	4.2	124	E.050	1.1	.080	E.40	-	.25	2.7	
JUL 26	4.0	136	.050	1.0	.090	.56	1.6	.31	4.4	
AUG 26	3.7	142	.090	1.4	.120	.94	2.3	.44	5.1	

25

DELAWARE RIVER BASIN 01461000 DELAWARE RIVER AT LUMBERVILLE, PA--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
OCT 01	1130	20	2	<10	<10	1	20	10
DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS (UG/L)
OCT 01	160	10	30	<.1	6	<1	50	1

01461300 WICKECHEOKE CREEK AT STOCKTON, NJ

LOCATION.--Lat 40°24'41", long 74°59'13", Hunterdon County, Hydrologic Unit 02040105, at bridge on State Route 29 in Stockton, 900 ft (270 m) upstream from mouth.

DRAINAGE AREA .-- 26.6 mi2 (68.9 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1959-63, 1976 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
FEB 25	1030	2.	590	7.4	.0	14.3	E1.4	20	<2	46
MAR 25	1345	40	840	9.6	10.5	13.4	2.3	<20	<2	53
JUN 02	1200	107	345	7.8		10.1	E2.0	790	>2400	39
JUL 26	1130	12	229	8.7		10.0	E1.9	60	1600	58
AUG 26	1100	13	209	7.8		10.3	<.1	170	540	51
DATE	CALCI DIS- SOLV (MG/	MACIUM SI LUM SI PED SOI	GNE- IUM, SOD IS- DI LVED SOL	PO' IUM, S: S- D: VED SOI G/L (MG	TAS- ALFIUM, LINI IS- LA LVED (MC	A- ITY AB SULF	SULFA IDE DIS- AL SOLV /L (MG/	CHLO TE RIDE DIS- ED SOLV L (MG/	FLUC, RIDE DIS ED SOLV	ED
FEB 25	. 11		4.6	71	1.9 22	2	42	86		.1
MAR 25	. 12	2	5.6 1	30	1.8 32	2	55	150	<	.1
JUN 02	. 9	0.2	3.9	51	1.7 27	,	<.5 34	68		.1
JUL 26	. 14	1	5.7	19	1.6 47	,	24	16		.1
AUG 26	. 12	2	5.1	18	1.5 44	1	20	. 15	<	.1
			IDS,				RO-			
DATE	SILIO DIS- SOLV (MG/ AS SIO2	/ED DEC	180 G G. C NIT IS- TO LVED (M	EN, GRITE NO2- TAL TO G/L (MO	EN, GE +NO3 AMMO TAL TO	TAL TOT	A + NITR NIC GEN AL TOTA /L (MG/	, PHAT L TOTA L (MG/	E, ORGAN L TOTA L (MG/	IC L L
FEB 25	. 11		248 <	.010	2.1 E.	080	.38 2.	5 .	12 1	.1
MAR 25	. 8	3.1	383	.010	1.4 <.	050 E	.40		09 3	.0
JUN 02	. 10)	211	.010	.70 E.	060	.60 1.	3 .	15 5	.1
JUL 26	. 6	5.3	146	.020	2.1 .	090	.13 2.	2 .	06 2	. 4
AUG 26	. 11		125	.010	1.8 <.	050	.47 2.	3 .	15 3	.2
	DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	
	JUN 02	1200	10	1	<10	330	<1	10	3	
		IRON,	LEAD,	MANGA- NESE,	MERCURY	NICKEL,	, i	ZINC,	,	
	DATE	TOTAL RECOV- ERABLE (UG/L AS FE)	TOTAL RECOV- ERABLE (UG/L AS PB)	TOTAL RECOV- ERABLE (UG/L	TOTAL RECOV- ERABLE (UG/L	TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	TOTAL RECOV-	PHENOLS	
	JUN	NO FE)	AS FB)	AS MN)	AS HG)	NO NI)	NO SE)	AD ZN)	(UG/L)	
	02	760	1	30	<.1	1	<1	30	1	

01461900 ALEXAUKEN CREEK NEAR LAMBERTVILLE, NJ

OCATION.--Lat 40°22'51", long 74°56'54", Hunterdon County, Hydrologic Unit 02040105, at bridge on State Route 29, 0.4 mi (0.6 km) upstream from mouth, and 1.1 mi (1.8 km) north of Lambertville.

RAINAGE AREA. -- 14.8 mi2 (38.3 km2).

WATER-QUALITY RECORDS

ERIOD OF RECORD.--Water years 1959-63, 1976 to May 1982 (discontinued).

OOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)
FEB									
01 MAR	1300		160	7.8	.0	14.1	4.5	310	>2400
31 MAY	0930	12	292	8.4	7.0	13.5	E2.2	<20	33
24	1 400	7.1	249	7.9	12.5	10.9	E1.7	790	5 40
DATE	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
FEB									
01 MAR	45	11	4.3	8.1	2.5	20	18	13	.1
31	81	20	7.5	8.9	1.6	39	34	13	<.1
24	85	21	7.8	9.5	1.7	53	37	12	<.1
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHATE, TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
FEB									- "
01 MAR	8.3	97	.030	1.7		1.00	2.7	.55	5.4
31 MAY	8.9	157	.020	1.6	.070	E.40		.06	6.3
24	12	163	.020	1.4	<.050	. 15	1.6	.09	1.5

01462000 DELAWARE RIVER AT LAMBERTVILLE, NJ

LOCATION.--Lat 40°21'53", long 74°56'57", Hunterdon County, Hydrologic Unit 02040105, at U.S. Route 202 bridge connecting Lambertville, NJ, and New Hope, PA, and 600 ft (183 m) upstream of Swan Creek.

DRAINAGE AREA. -- 6,680 mi2 (17,301 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1976 to June 1982 (discontinued).

WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DAT	'E	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
OCT 01.		1330	232	8.2	16.0	9.3	E1.6	230	240	88
FEB 25.		1200	221	7.7	.0	12.1	E1.7	70	6	58
APR 01.		0930	124	7.6	7.0	11.7	E2.7	20	79	37
JUN 02.		1345	182	7.6	19.0	8.7	E2.8	5400	>2400	62
			MAGNE-		POTAS-	ALKA-			CHLO-	FLUO-
DAT	ſΈ	CALCIUM DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SIUM, DIS- SOLVED (MG/L AS K)	LINITY LAB (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)
OCT 01. FEB		22	8.1	11	1:5	53	<.1	25	17	.1
25.		15	4.9	- 10	1.2	31		20	15	<.1
APR 01.		10	3.0	6.0	.7	18		17	8.5	<.1
JUN 02.		16	5.4	7.5	1.2	39	<.5	22	9.9	<.1
DAT	ΓE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHATE, TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 01.		2.1	129	.025	1.0		.15	1.1	.28	2.5
FEB 25		4.9	107	.020	1.1	E.180	.45	1.5	.25	1.5
APR 01.		3.4	95	.010	.70	.120	E.75		.15	2.2
JUN 02.		5.3	107	.050	1.3	E.110	.70	2.0	.21	5.8
		ATE	IME (U	G/L (SENIC RIOTAL E	OTAL TO ECOV- RI RABLE EI UG/L (U	OTAL TO ECOV- RI RABLE E UG/L (U	DMIUM MI DTAL TO ECOV- RE RABLE EF UG/L (U	DTAL TO ECOV- RE RABLE ER JG/L (U	PER, TAL COV- ABLE G/L CU)
	0 0 0 0	1 1	330	30	2	<10	<10	1	20	10
			345	<10	1	<10	20	<1	<10	6
	D	TO RE ER (U	TAL TO COV- RE RABLE EN	CAD, NI OTAL TO CCOV- RI RABLE EI IG/L (I	DTAL TO ECOV- R RABLE E JG/L (OTAL TO ECOV- RI RABLE EI UG/L (1	ECOV- N RABLE TO UG/L (ELE- TO IUM, RE OTAL EF UG/L (U	JG/L	NOLS
	0	1	230	3	30	<.1	7	<1	40	6
		2	1600	14	130	<.1	2	<1	70	<1

01462500 DELAWARE RIVER AT WASHINGTON CROSSING, NJ

LOCATION.--Lat 40°17'20", long 74°52'08", Mercer County, Hydrologic Unit 02040105, at bridge at Washington Crossing, 1.4 mi (2.3 km) upstream of Jacobs Creek.

DRAINAGE AREA. -- 6,735 mi2 (17,444 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DAT	E	TI	ME	SPE CIF CON DUC ANC	IC T- E		PH ITS)		PER- JRE G C)	SOL	SEN, IS- LVED	CHI IC. 5	AND,	COL FOR FEC EC BRO (MP	M, AL, TH	STR TOCO FEO	AL	HAR NES (MG AS CAC	S /L
MAR															-		72		
10. APR		13			217		7.8		2.0		13.8		E1.7		50		17		61
O1.	• •	11	30		123		7.7		7.5	1	11.5		E2.4		<20		14		38
25. JUL	• •	14	00		207		7.8	15	16.5		9.8		E2.4		130		920		71
26. AUG		10	00		174		8.2	2	24.5		8.6		E2.1		<20		4		78
26.		09	30		230		7.8		19.0		8.0		<.8		340		26		90
DAT	E	CALC DIS SOL (MG AS	VED /L	SI DI SOL (MG	NE- IUM, IS- IVED I/L MG)	DIS SOL		S: D: SOI	TAS- IUM, IS- LVED G/L K)	AS	TY B G/L	TO'	FIDE TAL G/L S)	SULF DIS SOL (MG AS S	- VED /L	(MC	DE, S- LVED	FLU RID DI SOL (MG AS	E, S- VED /L
MAR 10.		1	6		5.2		11		1.5	36	5			2	0	1	8		<.1
APR 01.		1			3.1		5.8		.7	20				1			9.2		<.1
MAY 25.		1			6.4		9.3		1.3	45			<.5	2			13		<.1
JUL													1.5						
AUG		2			6.7		8.9		1.0	50				2			13		.1
26.	• •	2	3		7.8		9.0		1.2	58	3			2	5		13		<.1
		SILI DIS SOL (MG AS	VED /L	DI	DUÉ	NIT TO	TRO- EN, RITE TAL G/L	NO2- TO	TRO- EN, +NO3 TAL G/L	AMMO TO	TRO- EN, ONIA TAL	GEN MON ORG TO (M	TRO- , AM- IA + ANIC TAL G/L	NIT GE TOT (MG	N, AL /L	PHA TOT (MC		CARB ORGA TOT (MG	NIC AL /L
DAT	E	SIO	2)	(MC	/L)	AS	N)	AS	N)	AS	N)	AS	N)	AS	N)	AS F	04)	AS	C)
MAR 10. APR			4.8		123		.020		1.2	5	230		E.78				.21		2.5
O1.	• •		3.5		66		.010		.70	<.	050		E.40				.12		1.8
25.			4.3		135		.060	- 1	1.1	9	080		E.35				.25		2.6
JUL 26.			3.9		140		.050		.90		070		.47	1	. 4		.28		2.8
AUG 26.			3.0		137		.080		1.3		090		.69	2	.0		.28		4.6
	D	ATE	Т	IME .	IN D SO (U	UM- UM, IS- LVED G/L AL)	TO (U	ENIC TAL G/L AS)	TO RE EF	CRYL- UM, OTAL CCOV- RABLE IG/L BE)	TC RE ER (U	RON, TAL COV- ABLE G/L B)	TO RE ER (U	MIUM TAL COV- ABLE G/L CD)	TO'RE	RO- UM, TAL COV- ABLE G/L CR)	TO RE ER (U	PER, TAL COV- ABLE G/L CU)	
	MA			lino						440		40				10		4	
	2	5	1	400		40		1		<10		10		1		10		4	
	D.	ATE	TO RE ER (U	ON, TAL COV- ABLE G/L FE)	TO RE ER (U	AD, TAL COV- ABLE G/L PB)	NE TO RE ER (U	NGA- SE, TAL COV- ABLE G/L MN)	TC RE ER (U	CURY TAL COV- ABLE G/L HG)	TO RE ER (U	KEL, TAL COV- ABLE G/L NI)	NI TO	LE- UM, FAL G/L SE)	TO'RE	NC, TAL COV- ABLE G/L ZN)		NOLS G/L)	
	MA 2	Y 5		400		8		70		<.1		6		<1		60		2	

01463500 DELAWARE RIVER AT TRENTON, NJ (National stream quality accounting network, Pesticide program, and Radiochemical program station)

LOCATION.--Lat 40°13'18", long 74°46'42", Mercer County, Hydrologic Unit 02040105, on left bank 450 ft (137 m) upstream from Calhoun Street Bridge at Trenton, 0.5 mi (0.8 km) upstream from Assunpink Creek, and at mile 134.5 (216 km). DRAINAGE AREA. -- 6.780 mi² (17.560 km²).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--February 1913 to current year. October 1912 to February 1913 monthly discharge only, published in WSP 1302. Gage-height records collected in this vicinity since 1904 are contained in reports of the National Weather Service.

REVISED RECORDS.--WSP 951: Drainage area. WSP 1302: 1913-20. WSP 1382: 1924, 1928. GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929. Prior to Sept. 30, 1965, at

datum 7.77 ft (2.368 m) higher. Feb. 24, 1913, to Oct. 2, 1928, nonrecording gage on downstream side of highway bridge at site 500 ft (152 m) downstream.

bridge at site 500 ft (152 m) downstream.

REMARKS.--Water-discharge records good. Diurnal fluctuations at medium and low flow caused by powerplants on tributary streams. Flow regulated by Lakes Wallenpaupack and Hopatcong, and by Pepacton, Cannonsville, Swinging Bridge, Toronto, Cliff Lake, Neversink, and Wild Creek Reservoirs (see Delaware River Basin, reservoirs in) and smaller reservoirs. Diversion from Pepacton, Cannonsville, and Neversink Reservoirs and to Delaware and Raritan Canal (see Delaware River Basin, diversions). Water diverted just above station by borough of Morrisville, PA, and city of Trenton for municipal supply (see Delaware River Basin, diversions).

AVERAGE DISCHARGE.--70 years, 11,671 ft³/s (330.5 m³/s), unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 329,000 ft³/s (9,320 m³/s) Aug. 20, 1955, elevation, 28.60 ft (8.717 m) from high-water mark in gage house, from rating curve extended above 230,000 ft³/s (6,510 m³/s); minimum, 1,180 ft³/s (33.4 m³/s) Oct. 31, 1963, elevation, 7.26 ft (2.213 m). Flow in Delaware and Raritan Canal not included.

not included.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood of Oct. 11, 1903, reached an elevation of about 28.5 ft (8.69 m) National Geodetic Vertical Datum of 1929, discharge estimated, 295,000 ft³/s (8,350 m³/s). Maximum elevation since 1903, 30.6 ft (9.33 m) National Geodetic Vertical Datum of 1929, Mar. 8, 1904, from floodmark (ice jam). EXTREMES FOR CURRENT YEAR.—Peak discharges above base of 50,000 ft³/s (1,420 m³/s) and maximum (*):

		m/	Disch		Elevat		200	4.05	Disch		Elevat	
Date		Time	(ft^3/s)	(m 3/S) (ft)	(m)	Date	Time	(ft^3/s)	(m3/s)	(ft)	(m)
Jan. Feb.	13	1845 Unknown	53200 54000	1510 1530	14.26 a*17.44		Apr. 5	1015	*54900	1550	14.39	4.386
		jam. n discharge,	2,760	ft3/s	(78.2 m³/s)	Oct. 22,	gage height, 7.9	4 ft (2.42)) m).			

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4	3590 3690 3790 3880	9050 7990 7220 7070	5510 7940 9330 8670	6970 9890 8700 20900	7050 9100 25000 34300	6740 6470 6810 6770	19400 26400 28900 43000	18100 16100 14600 13800	12000 13500 17800 17900	16900 15500 13100 13400	4430 3990 4120 3970	4470 4460 4680 5550
5	3950	6530	9140	30800	28100	6430	51000	13000	16800	11200	3860	4980
6	3550 3620	6400 7590	8110 7170	29500 25300	30400 22500	6580 7900	40000 33400	12100 11300	15300 15000	9750 8690	3820 3720	4800 4600
8	3580	8290	6760	20100	18200	12000	28500	10800	15000	8060	3770	4490
9	3320	7250	6670	15800	16200	10200	24700	10200	15700	7670	8410	4640
10	3200	6890	6690	13000	14800	8880	21800	8970	14100	7100	13300	4510
11	3600	5930	6450	7550	13100	8100	21800	8310	12300	6580	9750	4500
12	3580	5420	5680	7250	11100	8600	21700	8230	11300	5990	7880	4520
13	3460	5530	5460	9150	10000	12000	20400	7730	11800	7140 6790	6640 5880	4490 4460
14 15	3280 3310	5380 5930	5330 6040	8100 8500	9210 8780	15100	19500	7210	18600			
	3310	3930	0040	0500	0700	17100	19100	6900	18700	6680	5200	4150
16	3320	6010	7940	7600	8860	19500	18000	6530	16800	6290	4860	4220
17	3090	6440	6540	7600	10500	20000	16600	6080	21000	5740	4630	4020
18	3050	5500	5880	6400	11100	18900	19100	5720	17300	5590	4420	3910
19	3260	5420	5700	6700	10300	18200	32000	5350	15300	5260	4300	3870
20	3280	5440	4900	7200	10300	21000	31400	5360	13800	4970	4300	4350
21	3070	5870	4670	6700	10200	22400	27500	5890	12400	5750	4240	4040
22	2870	6220	4130	6050	9890	24200	23600	6050	11000	6450	4150	4010
23	3140	6530	4520	5900	9430	25300	19800	6040	10100	5870	3990	4230
24	3660	6330	6610	6150	9960	24900	17200	6030	10400	5310	4010	4310
25	4230	5870	7180	6100	9660	24200	15400	6530	9600	4820	4260	4260
26	4200	5600	8210	5650	8330	25600	15300	7270	8630	4510	7570	3990
27	4120	5410	8030	5200	7550	33800	22000	7320	8310	4260	7370	4100
28 29	7300 10400	5080 5310	7570 7200	5350 5250	7340	33000	28000	6420 11000	7730	4690 5900	5920	4860 5050
30	15700	5530	7030	5350		25000 20600	24500 20700	15200	8300 16300	5300	4950 4770	4390
31	11400	3330	6480	5250		18300	20700	14100		4870	4610	
TOTAL	139490	189030	207540	319960	381260	514580	750700	288240	412770	230130	167090	132910
MEAN	4500	6301	6695	10320	13620	16600	25020	9298	13760	7424	5390	4430
MAX	15700	9050	9330	30800	34300	33800	51000	18100	21000	16900	13300	5550
MIN	2870	5080	4130	5200	7050	6430	15300	5350	7730	4260	3720	3870

CAL YR 1981 TOTAL 2896550 MEAN 7936 MAX 60600 MTN 1900 WTR YR 1982 TOTAL 3733700 MEAN 10230 MAX 51000 MIN 2870

01463500 DELAWARE RIVER AT TRENTON, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1945 to current year.

PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: June 1968 to September 1978, May 1979 to current year.
pH: June 1968 to September 1978, May to September 1978, February 1980 to current year.
WATER TEMPERATURES: October 1944 to September 1978, May 1979 to current year.
DISSOLVED OXYGEN: October 1962 to September 1978, May 1979 to current year.
SUSPENDED-SEDIMENT DISCHARGE: Water years 1949 to 1981.

INSTRUMENTATION. -- Temperature recorder since October 1944, water-quality monitor since October 1962.

REMARKS.--Missing continuous water-quality records are the result of malfunction of sensor or sampling mechanism. Unpublished records of suspended sediment discharge for the period October 1, 1981 to March 31, 1982 are available in files of the district office.

EXTREMES FOR PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE: Maximum, 400 micromhos Jan. 24, 1959; minimum, 50 micromhos Mar. 19, 1945. pH: Maximum, 10.2 July 5, 6, 1971, June 14, 15, 1974; minimum, 5.3 June 22, 1972. WATER TEMPERATURES: Maximum, 34.0°C June 18, 1957; minimum 0.0°C on many days during winter months. DISSOLVED OXYGEN: Maximum, 18.4 mg/L January 10, 1980; minimum, 4.0 mg/L Nov. 9, 1972.

EXTREMES FOR CURRENT YEAR .--

SPECIFIC CONDUCTANCE: Maximum, 244 micromhos Aug. 21; minimum, 88 micromhos Mar. 28 and Apr. 5. pH: Maximum, 9.5 July 19, 27; minimum, 7.2 Oct. 22 and Aug. 9, 10. WATER TEMPERATURES: Maximum, 32.0°C July 19; minimum 0.0°C on many days during winter months. DISSOLVED OXYGEN: Maximum, 15.4 mg/L Dec. 21; minimum, 5.0 mg/L Aug. 10.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
NOV										
17 JAN	1130	6600	150	7.6	8.0	2.5	11.6		K27	100
28	1015	23000	181	7.5	.0	1.1	13.6	3.3	К4	52
MAR 15	1115	16900	154	7.5	4.5	6.3	12.5	1.4	К9	340
MAY 19	1200	5350	187	8.5	21.5	2.6	9.4	3.4	К9	K590
JUL 08	0910					2.2	8.5		27	K1300
SEP		7950	171	8.2	23.5					
09	1230	4660	210	7.6	21.0	<1.0	10.1	1.2	65	84
DATE	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)
NOV		2.2	10/2	5-0	-59-60	5.0	42		2.7	
17 JAN	54	14	4.5	7.9	1.2	33	22	9.8	<.1	2.3
28 MAR	63	16	5.6	10	1.3	38	23	13	.1	5.6
15 MAY	48	13	3.8	8.5	1.0	27	21	14	<.1	4.1
19 JUL	68	17	6.1	8.2	1.1	47	23	11	<.1	1.7
08	63	16	5.7	7.5	.8	42	19	9.6	<.1	4.0
SEP	80	20	7.2	9.3	1.4	52	22	12	.1	2.5
DATE	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	PHOS- PHORUS, ORTHO, DIS- SOLVED (MG/L AS P)
NOV								22.5		1.023
17 JAN	88	6	107	100	.83	.050	.38	.090	.060	.050
28 MAR	112				1.3	.250	.70	.080	.070	.060
15 MAY	98	23	1050	92	.94	.040	.49	.090	.040	.030
19	115	7	101	100	.90	<.010	.76	.100	.050	.030
JUL 08	104	5	107	100						
SEP 09	113	5	63	70	1.1	.040	.30	.090	.080	.060

01463500 DELAWARE RIVER AT TRENTON, NJ--Continued

DATE	TIME	ARSENIC TOTAL (UG/L AS AS)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	BARIUM DIS- SOLVED (UG/L AS BA)	RECOV- ERABLE (UG/L	CADMIU DIS- SOLVE (UG/L	RECOV- D ERABLE (UG/L		COBALT, TOTAL RECOV- ERABLE (UG/L AS CO)	COBALT, DIS- SOLVED (UG/L AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
NOV						,						nt, 007
17 MAR	1130	1	. 1	<100	2	6	<	1 . 20	10	1	1	12
15 APR	1115	1	<1	100	3!	5 '1	<	1 <10	<10	<1	<1	12
20	0856				-		-	- 1000	- 1			
19 SEP	1200	1	1	<100	4	1	1	1 10	<10	2	2	7
09	1230	2	1	100	3	0 <	(1 10	<10	1	<1	5
DATE	COPPER, DIS- SOLVED (UG/L AS CU)	(UG/L	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVE (UG/L AS PB	D ERABLI	MANGA NESE, DIS- SOLVE (UG/L	TOTAL RECOV- D ERABLE (UG/L	MERCURY DIS- SOLVED (UG/L	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)
NOV 17	8	240	15	5	<	1 3	n 1	3 <.1	<.1	4	2	<1
MAR 15			20	10		2 7		2 .2		5	1	
APR 20				10						,	100	<1
MAY		100	15	4	-	2 7		2 .2		9	4	
19 SEP												<1
09	14	110	9	7	<			3 <.1		1	1	<1
DATE	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	(UG/L	SILVER, DIS- SOLVED (UG/L AS AG)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	SOL VE	D (UG/L AS	SUSP. D TOTAL (UG/L AS	DIS- SOLVEI (PCI/I AS SR/	AS SR/	RADIUM 226, DIS- SOLVED, RADON METHOD (PCI/L)	URANIUM DIS- SOLVED, EXTRAC- TION (UG/L)	PCB, TOTAL (UG/L)
NOV 17	<1	<1	<1	120	1	7 <1.	8 <.	5 1.8	3 <.4	.07	.05	- 1114
MAR 15			<1	50		1 -			A 1			
APR 20							5 (1)	14.10	0.2 6			<.10
MAY 19		<1	<1	60		3 <2.	3 <.	4 1.1	· · · · · · · · · · · · · · · · · · ·	.04	.03	<.10
SEP 09			<1	20		4 -	_			g		
] 1	PCB, TOTAL IN BOT- TOM MA- TERIAL	NAPH- THA- LENES, POLY- I CHLOR. T	PCN, TOTAL N BOT-		ALDRIN, TOTAL IN BOT- TOM MA- TERIAL	CHLOR- DANE, TOTAL (UG/L)	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, T	DDD, TOTAL N BOT- OM MA- TERIAL	DDE, TOTAL	DDE, FOTAL N BOT- DM MA- TERIAL UG/KG)
	NOV 17	2		<1.0		<.1		2.8		3.4		1.3
	17 MAR 15								4 4			
	APR		<.10		<.01		<.10		<.01	i i i	<.01	
	20 MAY			<1.0				7.0				
	19 SEP 09	45	<.10	<1.0	<.01	<.1	<.10	7.0	<.01	2.9	<.01	2.4

01463500 DELAWARE RIVER AT TRENTON, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	DDT, TOTAL (UG/L)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL (UG/L)	DI- ELDRIN TOTAL (UG/L)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL (UG/L)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL (UG/L)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL (UG/L)
NOV											
17 MAR		32			<.1		<.1		<.1		
15 APR											
20 MAY	<.01		<.01	<.01		<.01		<.01		<.01	<.01
19 SEP	<.01	10	<.01	<.01	•3	<.01	<.1	<.01	<.1	<.01	<.01
09											
DATE	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL (UG/L)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL (UG/L)	METH- OXY- CHLOR, TOTAL (UG/L)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOTAL (UG/L)	METHYL TRI- THION, TOTAL (UG/L)	MIREX, TOTAL (UG/L)
NOV											
17 MAR	<.1		<.1		<.1			<.1			
15 APR	77										
20		<.01		<.01		<.01	<.01		<.01	<.01	<.01
19 SEP	<.1	<.01	<.1	<.01	<.1	<.01	<.01	<.1	<.01	<.01	<.01
09											
DATE	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL (UG/L)	PER- THANE TOTAL (UG/L)	PER- THANE IN BOTTOM MATERIL (UG/KG)	TOX- APHENE, TOTAL (UG/L)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOTAL TRI- THION (UG/L)	2,4-D, TOTAL (UG/L)	2, 4-DP TOTAL (UG/L)	2,4,5-T TOTAL (UG/L)	SILVEX, TOTAL (UG/L)
NOV											
17 MAR	<.1			<.10		<1.0					
15 APR			(++								
20 MAY		<.01	<.10		<1		<.01	<.01	<.01	<.01	<.01
19 SEP	<.1	<.01	<.10	<1.00	<1	<10	<.01	.05	<.01	<.01	<.01
09											

DELAWARE RIVER BASIN

01463500 DELAWARE RIVER AT TRENTON, NJ--Continued

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

	31	201110 0	ONDOGIANOL	(HICKOPHIO)	S/CH AI	25 DEG. C	, walle ile	in ouron	LK 1901 1	O SEFIEMBER	1902	
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		ОСТОВЕ	R		NOVEMBE	R		DECEMBE	R		JANUAR	Y
1 2 3 4 5	217 209 207 213 205	209 197 201 204 195	213 203 203 208 199	132 138 142 150 149	123 132 137 142 143	1 29 1 3 4 1 3 9 1 4 5 1 4 5		=		183 181 184 183 170	170 164 180 104 125	176 172 183 140 159
6 7 8 9	198 202 200 202 203	191 197 197 196 200	195 200 198 199 202	146 167 175 154 142	144 147 155 141 140	145 155 166 146 141	=			157 132 134 144 161	134 126 129 135 144	148 128 132 139 153
11 12 13 14	208 208 203 204 205	204 199 198 201 200	206 203 200 203 202	147 149 155 159	142 147 150 153 160	1 43 148 153 157 166	===	===	==	168 179 193 194 184	162 168 181 183 180	165 173 188 190 181
16 17 18 19	202 204 202 201 200	197 200 184 194 196	200 202 198 199 198	173 158 165 168 174	157 155 158 163 169	167 156 163 165 173	223 220 212	218 213 208	218 210	184 182 187 188 192	181 178 181 184 184	183 180 184 187 187
21 22 23 24 25	207 213 214 215 218	200 206 207 211 209	204 209 211 213 212	174 176 177 168 160	171 172 169 158 157	172 174 174 162 158	221 213 218 220 216	210 211 211 200 203	213 212 215 211 212	194 187 197 203 202	188 182 182 194 195	191 183 187 199 197
26 27 28 29 30 31	218 215 202 201 193 123	215 188 189 194 123 119	217 208 197 198 154 120				211 183 174 183 184 177	184 168 167 174 178	197 174 170 177 181 174	208 203 197 197 201 204	202 192 191 195 196 202	206 197 195 196 199 203
MONTH	218	119	199	177	123	155	223	167	197	208	104	177
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUAR			MARCH			APRIL			MAY	
1 2 3 4 5	219 210 215 161 152	187 183 134 140 146	198 193 172 155 150	196 193 196 194 193	189 189 192 188 189	1 92 191 1 94 191 1 91	134 120 106 121 112	113 99 93 103 88	120 111 96 112 95	133 139 142 145 146	130 135 139 142 144	131 137 140 143 145
6 7 8 9	147 130 132 142 148	126 128 129 133 142	131 129 131 138 145	202 208 199 207 211	192 190 172 194 193	196 204 187 201 200	99 105 114 122 130	89 99 106 114 121	93 102 110 118 126	150 154 156 159 163	145 150 153 156 158	148 152 154 157 159
11 12 13 14 15	155 157 166 170 172	150 152 156 163 168	153 154 161 166 170	222 223 209 199 169	203 205 200 169 151	208 211 206 183 160	141 143 136 138 137	130 133 132 132 131	135 136 134 135 134	169 174 174 178 184	163 169 170 170	165 171 172 173 181
16 17 18 19 20	174 184 185 172 176	168 174 173 167 169	171 177 181 170 172	152 139 142 142 142	139 134 137 139 129	145 137 140 141 136	132 135 142 138 102	130 130 134 96 92	131 132 137 121 96	188 191 191 198 204	185 188 189 191 198	186 189 190 195 201
21 22 23 24 25	190 195 200 203 200	176 184 193 196 189	183 188 196 199	129 123 116 111 110	120 116 111 107 106	123 119 113 109 108	104 107 115 126 125	100 101 107 115 121	102 104 110 118 123	212 213 209 201 209	204 206 201 197 199	208 209 206 199 201
26 27 28 29 30	188 194 197 	184 187 193 	186 189 194 	106 104 92 97 104 113	102 92 88 90 97	104 100 89 93 101	131 141 137 128 130	124 127 120 126 128	127 136 126 127 129	210	193	198
MONTH	219	126	170	223	88	154	143	88	119	213	130	173

01463500 DELAWARE RIVER AT TRENTON, NJ--Continued SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEMB	ER
1				158	142	148	218	217	218	218	210	214
2				152	147	150	224	217	219	221	210	218
3				153	147	150	225	219	222	225	204	219
4				162	149	155	227	224	225	231	227	229
5				166	161	163	227	224	225	231	221	226
6				169	165	166	229	224	226	221	219	220
7				176	169	172	231	229	230	219	215	217
8				182	176	178	235	231	234	216	211	214
9				186	182	183	237	221	231	218	214	215
10	137	1 33	1 35	189	1 86	1 87	233	177	1 91	226	219	2 22
11	142	138	139	194	190	193	199	185	193	226	219	221
12	150	143	146	198	195	196	211	194	204	221	214	217
13	151	148	150	212	197	204	222	212	217	220	214	215
14	155	146	149	211	203	207	229	223	226	213	210	211
15	151	143	148	205	200	203	233	228	231	211	206	209
16	143	140	141	203	199	201	232	227	229	211	206	208
17	150	133	144	203	200	202	234	230	232	219	206	211
18	164	148	156	208	203	206	236	233	234	232	220	224
19	165	162	163	210	206	208	241	234	236	233	230	232
20	165	161	163	212	207	209	241	239	240	235	226	232
21	162	160	161	220	211	216	244	238	241	242	232	238
22	166	160	162	218	207	214	239	234	236	239	216	225
23	171	165	169	210	199	206	237	232	235	218	205	213
24	179	171	176	201	199	200	235	230	233	224	216	219
25	180	176	178	203	199	201	236	220	228	230	223	226
26	181	176	178	206	200	202	241	230	233	230	227	228
27	188	181	183	213	206	208	241	199	222	228	210	219
28	190	184	187	216	208	213	199	188	191	221	215	218
29	185	173	180	219	209	214	201	189	195	225	218	223
30	187	161	180	227	220	224	211	200	206	220	213	215
31				220	217	218	215	210	212			
MONTH	190	133	161	227	142	193	244	177	222	242	204	220
YEAR	244	88	179									

PH (STANDARD UNITS), WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBE			NOVEMBE		11117	DECEMBE			JANUAR	
	30.0							DECEMBE	· N	2.1		
1 2	9.1	8.1	8.6	7.7	7.6	7.6				8.1	7.7	7.8
3	9.0	8.0	8.5	7.9 7.8	7.6	7.6 7.7				7.8	7.6	7.7
4	9.2	8.1	8.7	7.9	7.6	7.7				7.7	7.3	7.5
5	9.3	8.1	8.7	7.9	7.7	7.8				7.7	7.4	7.6
6	9.1	8.1	8.6	7.9	7.6	7.8		-222		7.6	7.5	7.6
7	9.2	8.0	8.6	7.9	7.7	7.8				7.5	7.5	7.5
8	9.3	8.1	8.7	8.0	7.7	7.8				7.6	7.5	7.6
9	9.3	8.2	8.8	8.1	7.7	7.8				7.6	7.6	7.6
10	9.4	8.2	8.9	7.9	7.7	7.8			3 7 7 7	7.9	7.6	7.7
11	9.4	8.3	9.0	8.1	7.6	7.8				7.8	7.7	7.7
12	9.4	8.4	9.0	8.3	7.7	7.9				7.8	7.7	7.7
13	9.4	8.4	9.0	8.4	7.7	8.0				7.8	7.5	7.8
14	9.4	8.5	9.0	8.4	7.7	8.0				7.8	7.7	7.8
15	9.3	8.5	9.0	8.2	7.7	7.9				7.7	7.7	7.7
16	9.2	8.4	8.9	8.2	7.7	7.9				7.7	7.7	7.7
17	9.2	8.3	8.8	8.2	7.7	7.8				7.7	7.7	7.7
18	9.0	8.1	8.6	8.1	7.7	7.8	8.1	7.8		7.7	7.7	7.7
19	8.9	7.8	8.3	8.7	7.7	8.1	8.3	7.8	8.0	7.7	7.7	7.7
20	9.0	7.9	8.5	8.2	7.8	7.9	8.3	7.8	8.0	7.8	7.7	7.7
21	9.1	8.0	8.5	8.5	7.7	8.0	8.4	7.8	8.1	7.8	7.7	7.8
22	9.0	7.2	8.4	8.5	7.9	8.1	8.1	7.8	7.9	7.8	7.7	7.7
23	7.9	7.5	7.7	8.5	7.9	8.1	8.3	7.7	7.9	7.8	7.7	7.8
24	8.7	7.6	8.1 7.9	8.6 8.7	7.9	8.1	7.9	7.7	7.8	7.8 7.8	7.8	7.8
	0.4	1.1	1.9	0.1	1.9	8.2	8.0	1.1	1.0	1.0	1.0	1.0
26	8.1	7.6	7.8				8.0	7.7	7.8	7.9	7.8	7.8
27	8.2	7.6	7.8				7.8	7.6	7.7	7.9	7.8	7.8
28 29	7.7	7.6	7.6				8.1 8.1	7.6	7.8 7.8	7.9 7.9	7.8	7.8
30	7.6	7.6					8.2	7.7	7.9	7.8	7.7	7.8
31	7.6	7.6	7.6				8.2	7.7	7.9	7.8	7.7	7.8
MONTH	9.4	7.2	8.5	8.7	7.6	7.9	8.4	7.6	7.9	8.1	7.3	7.7
100000000000000000000000000000000000000					,	1	0.4	1.0		0.1		

01463500 DELAWARE RIVER AT TRENTON, NJ--Continued

PH (STANDARD UNITS), WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

			PH	(SIANI	DAND ON	LID), WA	ILN ILAN	OCTOBER 19	OI TO SEE	IEMBER 19	02	-	
DAY	MAX	MIN FEBRUAR	MEAN		MAX	MIN MARCH	MEAN	MAX	MIN APRIL	MEAN	MAX	MIN	MEAN
1 2 3 4 5	7.7 7.8 7.7 7.7 7.6	7.7 7.5 7.5 7.5 7.5 7.6	7.7 7.7 7.6 7.6 7.6		8.2 8.3 8.4 8.2 8.4	7.9 7.9 7.9 7.9 7.9	8.0 8.0 8.1 8.0 8.1	7.8 7.8 7.7 7.8 7.6	7.7 7.7 7.5 7.5 7.5	7.8 7.8 7.6 7.6 7.5	7.9 8.0 8.1 8.1	7.7 7.8 7.8 7.8 7.8	7.8 7.9 7.9 7.9 8.0
6 7 8 9	7.6 7.6 7.7 7.7	7.4 7.5 7.6 7.6 7.7	7.5 7.6 7.6 7.7 7.7		8.3 8.0 7.8 7.8 8.0	7.9 7.8 7.7 7.7	8.1 7.9 7.7 7.8 7.9	7.5 7.6 7.7 7.7 7.8	7.5 7.5 7.6 7.7 7.7	7.5 7.6 7.6 7.7 7.7	8.4 9.1 8.7 9.0 9.1	7.9 8.0 8.1 8.0 8.2	8.1 8.4 8.3 8.5 8.6
11 12 13 14 15	7.8 7.8 7.7 7.8 7.8	7.7 7.7 7.7 7.7 7.7	7.7 7.8 7.7 7.7 7.8		8.3 8.4 8.1 7.9 7.8	7.8 7.9 7.8 7.7 7.7	8.0 8.1 7.9 7.8 7.8	7.8 7.9 7.9 7.9 8.0	7.7 7.8 7.8 7.8 7.8	7.8 7.8 7.9 7.9	9.1 9.0 8.9 9.0 9.1	8.2 8.2 7.9 7.9 8.1	8.6 8.6 8.4 8.5 8.7
16 17 18 19 20	7.8 7.8 7.8 7.8 7.8	7.8 7.8 7.7 7.7	7.8 7.8 7.8 7.7 7.8		7.7 7.7 7.8 7.9 7.9	7.7 7.6 7.7 7.7	7.7 7.6 7.8 7.8	8.0 8.0 7.8 7.9 7.6	7.8 7.8 7.6 7.6	7.9 7.9 7.8 7.8 7.6	9.0 8.9 8.8 8.7 8.7	8.4 8.2 8.0 7.8 7.7	8.8 8.7 8.5 8.2 8.2
21 22 23 24 25	7.8 7.9 7.9 7.9 8.0	7.7 7.8 7.8 7.8 7.8	7.8 7.8 7.8 7.8 7.9		7.8 7.7 7.6 7.6 7.6	7.7 7.6 7.6 7.5 7.6	7.7 7.7 7.6 7.6 7.6	7.6 7.7 7.8 7.8 7.9	7.6 7.6 7.6 7.7 7.7	7.6 7.6 7.7 7.7 7.8	8.2 7.8 7.8 7.8 7.9	7.6 7.6 7.6 7.6 7.6	7.8 7.7 7.7 7.7 7.7
26 27 28 29 30 31	8.0 8.0 8.1	7.8 7.8 7.8	7.9 7.9 7.9		7.6 7.6 7.5 7.6 7.7	7.6 7.5 7.5 7.6 7.6	7.6 7.6 7.5 7.5 7.6 7.7	7.7 7.7 7.7 7.8 7.9	7.7 7.6 7.6 7.7 7.7	7.7 7.6 7.7 7.7 7.8	7.9	7.6	7.7
MONTH	8.1	7.4	7.7		8.4	7.5	7.8	8.0	7.5	7.7	9.1	7.6	8.2
DAY	MAX	MIN	MEAN		MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	MIN JUNE	MEAN		MAX	MIN	MEAN	MAX	MIN AUGUST	MEAN	MAX	MIN SEPTEMB	
1 2 3 4 5	MAX		MEAN		7.9 8.0 7.8 8.0 8.0		7.9 7.9 7.8 7.9 7.9	8.6 8.6 8.7 8.8 8.7		8.1 8.1 8.2 8.3 8.2	MAX		
1 2 3			MEAN	ſ	7.9 8.0 7.8 8.0	JULY 7.8 7.8 7.8 7.8	7.9 7.9 7.8 7.9	8.6 8.6 8.7 8.8	7.5 7.5 7.5 7.5 7.7	8.1 8.1 8.2 8.3	МАХ		
1 2 3 4 5 6 7 8		JUNE			7.9 8.0 7.8 8.0 8.0 8.2 8.5 8.7 8.8	JULY 7.8 7.8 7.8 7.9 7.8 7.8 7.7	7.9 7.9 7.8 7.9 7.9 7.9 8.1 8.2 8.3	8.6 8.6 8.7 8.8 8.7 8.3 8.6 8.6	7.5 7.5 7.5 7.7 7.7 7.4 7.4 7.6 7.2	8.1 8.1 8.2 8.3 8.2 7.9 8.0 8.1 7.7	МАХ		
1 2 3 4 5 6 7 8 9 10 11 12 13 14	8.0 8.0 8.3 8.4 8.7	JUNE 7.9 8.1 8.2	7.9		7.9 8.0 7.8 8.0 8.0 8.2 8.7 8.8 9.1 9.0 9.0	JULY 7.8 7.8 7.8 7.8 7.8 7.8 7.7 7.7 7.9 8.0 7.8 8.0	7.9 7.9 7.8 7.9 7.9 8.1 8.2 8.3 8.6	8.6 8.6 8.7 8.8 8.7 8.3 8.6 8.3 7.4 7.5 7.7 8.0	7.5 7.5 7.5 7.7 7.7 7.4 7.4 7.6 7.2 7.2 7.3 7.5 7.6	8.1 8.1 8.2 8.3 8.2 7.9 8.0 8.1 7.7 7.3	МАХ		
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	8.0 8.3 8.4 8.7 8.7 8.4 8.2 8.1	JUNE 7.9 7.9 8.1 8.2 8.5 8.3 8.1 7.9 8.0 8.0	7.9 7.9 8.2 8.3 8.6 8.5		7.9 8.0 7.8 8.0 8.2 8.7 8.1 9.0 9.0 9.0 8.9 9.1 9.2 9.5	JULY 7.8 7.8 7.8 7.8 7.8 7.8 7.7 7.7 7.7 7.9 8.0 7.8 8.0 7.8 8.0 8.2	7.99 7.98 7.99 7.99 7.99 8.23 8.66 8.54 8.45 8.45 8.47 8.60	8.6 8.6 8.7 8.3 8.6 8.3 7.4 7.5 7.7 8.2 8.5	7.5 7.5 7.5 7.7 7.7 7.4 7.6 7.2 7.3 7.6 7.6 7.6 7.6 7.6 8.0 9.8.1	8.1 8.1 8.2 8.3 8.2 7.9 8.1 7.7 7.3 7.4 6.7 8.0 8.3 8.2 8.3 8.6	MAX		
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 3 4 2 5 26 27 28 9 30	8.0 8.3 8.4 8.7 8.2 8.3 8.4 8.7 8.3 8.4 8.7 8.3 8.4 8.7 8.9 9.0 9.4 8.0	JUNE 7.9 7.9 8.1 8.2 8.5 8.3 8.1 7.9 8.0 8.0 8.1 8.0 8.1 8.0 8.1 8.7 7.7	7.9 7.9 8.3 8.6 8.5 8.1 8.0 8.1 8.2 8.1 8.2 8.3 8.1 8.1		7.9 8.0 7.8 8.0 8.5 8.8 8.7 8.1 9.0 9.0 9.0 9.1 8.9 9.1 9.0 9.0 9.1 8.1 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	JULY 7.8 7.8 7.8 7.8 7.8 7.7 7.7 7.7 7.9 8.0 7.8 8.0 8.2 7.9 7.8 8.0 8.2 7.9 8.0 8.2 7.9 7.8 8.0 8.7 7.6 8.7 7.8 8.0 8.7 7.8	7.99 7.99 7.99 7.99 7.99 7.99 8.12 8.6 8.5 8.5 8.7 8.6 8.6 8.5 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6	8.66.78.7 8.66.34 7.70.25 8.88.900 99.91.8 8.15.88.8 8.89.00 99.89.18 8.15.88.8	AUGUST 7.5 7.5 7.5 7.7 7.4 7.6 7.2 7.3 7.6 7.6 7.6 8.0 7.6 8.1 8.1 8.3 8.3 7.7 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6	8.1 1.2 8.1 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1	MAX		
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 3 24 5 26 7 28 9	8.0 8.338.47 8.1 8.1 8.338.457 8.428.1 8.338.457 8.9004	JUNE 7.9 7.9 8.1 8.2 8.5 8.3 8.1 7.9 8.0 8.0 8.1 8.0 8.1 8.0 8.1 8.0 8.1 7.8	7.9 7.9 8.2 8.3 8.6 8.1 8.1 8.2 8.2 8.3 8.4 8.5 8.1		7.90 7.80 8.00 8.57 8.10 9.00 9.12 9.00 9.18 9.13 9.10 9.10 9.10 9.10 9.10 9.10 9.10 9.10	JULY 7.8 7.8 7.8 7.8 7.8 7.7 7.7 7.9 8.0 7.8 8.0 7.8 8.0 8.2 7.9 7.8 8.0 8.2 7.9 8.0 8.2 7.9 8.0 8.2 7.9	7.99 7.99 7.99 7.99 7.99 7.99 8.12 8.6 8.5 8.5 8.5 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6	8.66.8.78.7 8.66.8.88.7 8.66.34 7.78.02.5 8.89.00 9.12.91.8 8.89.00 9.12.91.8 8.61.58	7.5 7.5 7.5 7.7 7.7 7.4 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6	8.1 8.2 8.3 7.9 8.1 7.3 7.6 8.7 8.9 8.5 6.6 8.6 8.6 8.6 8.6 8.6 8.7 8.0	MAX		

01463500 DELAWARE RIVER AT TRENTON, NJ--Continued
TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

			TEMPERATURE,	WATER	(DEG. C),	WATER	YEAR OCTOBER	1981 TO	SEPTEMBE	R 1982			
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	
		OCTOBE	R		NOVEMBER	}		DECEMBE	R		JANUAR	Y	
1 2 3 4 5	18.0 17.0 15.5 16.0 17.0	16.0 15.0 14.0 13.0 14.5	17.0 16.5 14.5 14.5 15.5	11.5 12.5 12.5 12.5 12.0	11.0 11.0 11.0 10.5 11.0	11.0 11.5 11.5 11.5		===	===	3.0 2.5 2.0 4.0 4.0	2.0 2.0 1.5 2.0 3.0	2.5 2.0 1.5 3.0 3.5	
6 7 8 9	16.5 15.5 14.5 14.0 15.0	15.5 13.5 13.0 12.0 11.5	16.0 14.5 13.5 13.0 13.0	12.5 10.5 9.5 10.0 9.0	10.5 9.0 8.5 8.5 8.0	11.5 9.5 9.0 9.0 8.5	===	===		3.0 2.0 2.0 1.5	2.0 1.5 1.5 .0	2.5 2.0 1.5 1.0	
11 12 13 14 15	15.5 15.0 15.0 15.5 16.0	12.0 12.5 11.5 11.5 12.0	13.5 13.5 13.0 13.5 13.5	9.5 9.0 8.5 8.0 8.5	8.0 7.5 6.5 7.0 7.5	8.5 8.0 7.5 7.5 8.0	===	===	===	.0	.0	.0 .0 .0	
16 17 18 19 20	15.5 15.5 13.5 13.0 13.0	13.0 12.0 12.5 10.5 9.5	14.0 13.5 13.0 12.0	9.0 8.5 9.0 10.0 9.5	8.0 8.0 8.5 8.0 9.0	8.5 8.0 8.5 9.0 9.5	2.0	1.0	 .5 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	
21 22 23 24 25	14.0 14.0 13.5 14.0 11.5	10.5 11.5 13.0 11.5 10.5	12.0 13.0 13.0 12.5 11.0	9.0 7.5 7.0 6.0	7.5 7.0 6.0 5.5 5.0	8.5 7.0 6.5 6.0 5.5	.0 .5 3.0 2.0 2.5	.0 .5 1.5 2.0	.0 1.5 2.0 2.5	.0 .0 .0	.0 .0 .0	.0 .0 .0	
26 27 28 29 30 31	12.0 14.0 14.5 13.0 12.0	11.0 12.0 13.0 12.0 11.0	11.5 13.0 13.5 13.0 11.5				2.0 1.5 2.0 3.0 2.5 2.0	1.5 1.5 1.0 2.0 1.5	1.5 1.5 1.5 2.5 2.0 1.5	.0 .0 .0 .0	.0 .0 .0	.0	
MONTH	18.0	9.5	13.5	12.5	5.0	9.0	3.0	.0	1.5	4.0	.0	.5	
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	
		FEBRUAR	Y		MARCH			APRIL			MAY		
1 2 3 4 5	.0 1.0 1.5 1.0	.0 .0 .0 1.0	.0 .0 .0 1.0	4.0 4.5 5.0 3.5 5.5	2.5 3.0 3.5 3.0 3.0	3.5 4.0 4.0 3.0 4.0	8.5 8.5 8.0 7.5 5.5	6.5 7.0 7.0 5.5 5.0	7.5 8.0 7.5 7.0 5.0	14.5 15.5 16.0 16.5 17.0	13.5 13.5 14.0 14.5 15.0	14.0 14.5 15.0 15.5 16.0	
6 7 8 9	1.0 1.0 1.0 1.5	.0 .0 .0 1.0	.5 .5 .5 1.0	4.0 3.5 3.0 3.0	3.0 3.0 1.5 2.0	3.5 3.0 2.5 2.5 2.5	5.0 3.0 3.5 3.5	3.5 2.5 2.0 3.0 3.0	4.0 3.0 3.0 3.0 4.0	17.0 18.5 17.5 17.5 18.0	15.5 16.5 16.5 16.5 15.5	16.5 17.5 17.0 17.0 16.5	
11 12 13 14 15	1.5 1.5 1.5 2.0 3.5	.5 1.0 1.0	1.0 1.0 1.5 1.5 2.5	4.5 7.0 6.5 6.5 5.5	3.0 4.5 5.5 5.5 4.5	4.0 5.5 6.0 6.0 5.0	6.5 7.5 8.0 9.0 9.5	4.5 5.5 6.5 7.0 7.5	5.5 6.5 7.5 8.0 8.5	18.5 19.0 20.0 21.5 22.0	15.5 16.5 18.0 18.5 19.0	17.0 17.5 19.0 19.5 20.5	
16 17 18 19 20	4.5 4.0 3.0 2.5 3.0	3.5 3.0 2.5 2.0 2.0	4.0 3.5 3.0 2.5 2.5	5.0 4.0 5.0 6.0 6.5	4.0 3.5 3.5 4.5 5.5	4.5 4.0 4.5 5.5 6.0	11.0 13.0 13.0 13.0 12.0	9.0 10.5 12.0 12.0	10.0 12.0 12.5 12.5 11.5	23.0 23.0 23.0 23.0 24.0	19.5 21.0 21.0 20.5 21.0	21.0 22.0 21.5 21.5 22.5	
21 22 23 24 25	3.0 4.0 4.5 4.0 3.5	3.0 3.0 3.0 3.5 2.0	3.0 3.5 4.0 4.0 3.0	6.0 6.0 6.0 6.5	5.0 4.5 4.5 4.5 5.0	5.5 5.0 5.5 5.5	11.5 12.0 12.0 13.0 14.0	11.0 10.5 10.5 11.0 12.0	11.0 11.0 11.5 12.0 13.0	22.5 20.5 18.5 17.0 18.0	20.5 18.5 17.0 16.0 16.0	21.5 19.5 17.5 16.5 17.0	
26 27 28 29 30	2.5 2.5 4.0	1.0 1.5 1.5	1.5 2.0 2.5	7.0 6.0 5.0 5.0 6.0	6.0 5.5 4.0 3.5 4.0	6.5 6.0 4.5 4.5	13.5 14.5 14.0 14.0 14.5	13.0 13.5 12.5 12.0 12.5	13.5 14.0 13.0 13.0 13.5	21.0	17.0	19.0	
31 MONTH	4.5	.0	2.0	7.0	5.5 1.5	6.5 4.5	14.5	2.0	9.0	24.0	13.5	18.0	
2002.124	7.55	1.7	517							234.75	200		

01463500 DELAWARE RIVER AT TRENTON, NJ--Continued

				0146350	DO DELAWARE	RIVER	AT TRENTON,	NJCont	cinued			
			TEMPERAT	TURE, WATE	ER (DEG. C),	WATER	YEAR OCTOBER	1981 TO	SEPTEMBER	1982		
DAY	MAX	MIN	MEAN	MAZ	X MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEME	BER
1				22.5		22.0	28.0	24.5	26.0	22.0	20.5	21.0
2				22.5		21.5	28.5	25.0	26.5	24.5	21.0	22.5
3				22.0		21.0	28.5	25.0	26.5	25.0	22.5	23.5
5				21.5		20.0	29.0	25.0	27.0	23.5	21.5	22.5
5				22.0	20.0	21.0	29.0	25.5	27.0	24.0	20.5	22.0
6				23.0		21.5	27.0	25.0	26.0	25.0	21.0	23.0
7				24.0		22.5	28.0	24.0	26.0	24.0	21.5	22.5
8				26.0		24.5	28.0	25.0	26.0	22.0	20.5	21.5
10	19.0	18.5	10.0	27.5		26.0	27.0	25.0	26.0	23.0	20.0	21.0
10	19.0	10.5	19.0	28.0	25.0	26.5	25.5	24.0	25.0	24.0	20.0	22.0
11	19.0	18.0	18.5	27.5		26.5	25.5	23.0	24.0	25.0	21.5	23.0
12	18.5	17.5	18.0	28.5		26.5	24.5	22.0	23.0	25.0	21.5	23.5
13	18.0	16.0	17.0	28.5		27.5	25.0	22.0	23.5	25.5	22.0	23.5
14	16.5	15.5	16.0	27.5		27.0	25.5	22.0	23.5	25.5	23.0	24.0
15	18.0	15.5	17.0	28.5	26.0	27.0	26.0	22.5	24.0	25.5	22.5	24.0
16	20.0	17.5	19.0	29.5	26.5	28.0	27.0	23.0	25.0	25.0	23.0	24.0
17	20.5	19.0	20.0	30.0	27.0	28.5	26.5	24.0	25.0	24.5	21.5	23.0
18	21.5	19.5	20.5	30.5		29.0	27.0	23.0	24.5	23.5	20.5	21.5
19	21.5	20.5	21.0	32.0		30.0	27.0	23.0	25.0	23.5	19.5	21.5
20	22.0	20.5	21.0	30.0	27.5	29.0	25.5	23.5	24.5	21.0	19.0	20.0
21	22.0	20.5	21.0	29.0	26.0	27.5	25.0	23.0	24.0	20.0	18.5	19.0
22	22.5	21.0	21.5	28.5		27.0	25.0	21.5	23.0	19.0	18.0	18.5
23	22.5	21.0	21.5	27.0	25.5	26.5	23.5	22.0	22.5	20.0	17.5	18.5
24	22.5	21.0	21.5	28.		26.5	26.0	22.0	23.5	20.5	17.5	19.0
25	22.5	21.0	21.5	28.5	5 25.0	27.0	25.0	23.0	24.0	20.5	17.5	19.0
26	24.0	21.5	22.5	29.5	26.0	27.5	24.5	22.0	23.5	19.5	17.5	18.5
27	24.5	22.5	23.5	30.5		28.0	23.5	22.0	23.0	20.5	18.5	19.5
28	25.0	23.0	24.0	28.0		27.0	23.5	21.0	22.0	21.0	18.5	19.5
29	24.0	22.5	23.5	27.5		26.0	23.0	19.5	21.0	20.5	18.5	19.5
30	23.5	22.0	22.5	26.0		25.5	21.5	20.0	20.5	19.0	18.5	19.0
31				26.5	5 24.0	25.0	22.0	19.5	20.5			·
MONTH	25.0	15.5	20.5	32.0	19.0	26.0	29.0	19.5	24.0	25.5	17.5	21.5
YEAR	32.0	.0	13.0									
			OXYGEN. I	DISSOLVED	(DO), MG/I	WATER	YEAR OCTOBER	1981 TO	SEPTEMBER	1982		
DAY	MAX	MIN	MEAN.	MA		MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAI	HAA			PIA			PIAX			PIAA		
		OCTOBE	, n		NOVEMBER			DECEMBE	z.K		JANUA	11
1	12.9	8.6	10.5	11.3	3 10.6	11.0				14.4	13.3	13.8
2	11 0	7 6	0.7	11 1	10 2	10 0				12 0	12 2	12 E

DAY	MAX	MIN	MEAN		MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		ОСТОВЕ	R			NOVEMBE	R		DECEMBE	R		JANUAR	Y
1 2 3 4 5	12.9 11.9 12.5 13.7 13.5	8.6 7.6 8.9 9.4 9.3	10.5 9.7 10.6 11.2 11.1		11.3 11.4 11.4 11.7 10.8	10.6 10.3 10.7 10.5 9.8	11.0 10.8 11.0 11.1		===	=======================================	14.4 13.8 13.9 13.5 13.0	13.3 13.2 13.6 12.7	13.8 13.5 13.7 13.0 12.8
6 7 8 9	12.9 12.4 13.1 13.9 14.5	9.1 8.8 9.1 9.5 9.9	10.7 10.4 10.9 11.4 11.8		10.6 10.7 11.5 11.7 11.9	9.6 10.1 10.5 10.9 11.3	10.1 10.3 10.9 11.2 11.5	===	=======================================		13.4 13.5 13.6 13.8 14.2	13.1 13.5 13.5 13.6 13.8	13.3 13.5 13.6 13.7 14.1
11 12 13 14 15	13.6 14.0 14.6 14.8 14.4	9.7 9.7 10.0 10.1 9.9	11.3 11.7 12.0 12.0		12.4 12.8 13.3 13.3 12.6	11.0 11.0 11.6 11.6 11.2	11.6 11.9 12.4 12.3 11.8	===		=======================================	14.4 14.4 13.4 13.3 13.1	14.2 13.2 13.0 12.9 12.8	14.3 13.9 13.2 13.1 13.0
16 17 18 19 20	13.6 14.3 12.4 12.6 14.1	9.4 9.6 8.9 8.6 10.3	11.3 11.5 10.6 10.6 11.8	7,-	11.8 12.5 11.1 12.6 11.5	10.3 10.1 10.0 9.9 10.2	11.0 11.2 10.5 11.2 10.8	14.3 14.8 15.1	13.6 13.5 13.7	14.1 14.5	13.1 13.4 13.8 14.1	13.0 13.3 13.6 14.0 13.9	13.1 13.3 13.8 14.0 14.1
21 22 23 24 25	14.0 13.3 11.4 12.5 11.9	10.3 9.7 8.9 9.4 10.1	11.7 11.2 10.0 10.7 10.8		12.1 12.5 12.7 13.6 13.7	10.4 10.8 10.8 11.7 12.2	11.1 11.4 11.8 12.5 12.8	15.4 14.9 15.0 14.4 14.1	14.4 14.0 13.6 13.4 13.4	14.8 14.4 14.1 13.8 13.6	14.2 14.0 14.2 14.0	13.9 13.8 13.9 13.8 13.7	14.0 13.9 14.1 14.0 13.8
26 27 28 29 30 31	10.9 9.9 9.8 9.2 10.9	9.0 8.1 8.7 8.7 9.6	10.1 8.9 9.2 8.8 10.3 11.0		=======================================			14.5 14.2 14.8 14.6 14.9	13.4 13.7 13.7 13.6 13.6	13.9 13.9 14.1 14.0 14.1 14.3	14.0 14.1 14.0 13.9 13.8 13.7	13.8 13.9 13.9 13.7 13.6	13.9 14.0 13.9 13.8 13.7
MONTH	14.8	7.6	10.8		13.7	9.6	11.3	15.4	13.4	14.1	14.4	12.7	13.7

> 01463500 DELAWARE RIVER AT TRENTON, NJ--Continued OXYGEN, DISSOLVED (DO), MG/L, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DAY MAX				,	DIODOLVED (E	,,		TERN OCTOBER	1,01 10	DEI TEILE	.,,,,,		
1	DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
2 19.2 13.0 13.1 14.2 12.8 13.5 12.2 11.8 12.0 10.5 9.4 9.7 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5			FEBRUAR	Y		MARCH			APRIL			MAY	
7 14.0 13.9 14.0 14.0 14.0 15.4 13.6 13.4 13.6 12.9 13.2 12.2 8.5 10.0 8 14.0 13.9 14.0 13.4 13.5 13.5 13.6 13.7 13.4 13.6 13.5 13.5 13.5 13.6 14.9 13.5 13.6 13.7 13.4 13.5 13.5 13.5 13.6 14.9 13.8 14.2 13.3 12.9 13.2 12.5 8.7 10.4 11 13.9 13.5 13.6 14.9 13.8 14.2 13.3 12.9 13.2 12.5 8.7 10.4 11 13.9 13.7 13.8 14.9 13.8 14.2 13.3 12.9 13.2 12.5 8.7 10.4 11 13.9 13.7 13.8 14.9 13.8 14.2 13.3 12.9 13.2 12.5 8.7 10.4 11 13.0 13.7 13.8 14.9 13.5 14.2 13.3 12.9 13.2 12.8 12.5 8.7 10.4 11 13.9 13.7 13.8 14.9 13.5 13.1 13.6 12.0 12.3 11.8 12.1 11.5 7.6 10.1 13.1 13.7 13.8 13.7 13.5 13.6 13.2 12.1 12.0 12.3 11.8 12.1 11.5 7.6 10.1 13.1 13.7 13.8 13.7 13.5 13.6 13.2 12.1 12.0 12.3 11.8 12.1 11.5 7.6 10.1 13.1 13.6 13.2 13.1 13.8 13.7 13.5 13.6 13.2 12.1 12.8 12.2 11.7 11.9 12.3 7.5 9.5 15.1 13.1 13.8 13.7 13.5 13.6 13.2 12.1 12.4 12.6 12.2 11.7 11.9 12.3 7.5 9.5 15.1 13.1 13.8 13.2 12.4 12.4 12.6 12.0 12.3 11.8 11.7 12.3 8.2 10.2 11.7 11.9 12.6 12.3 7.5 9.5 13.1 13.1 13.5 13.6 13.2 12.1 12.4 12.6 12.0 12.3 11.8 11.7 12.3 8.2 10.2 11.7 11.9 12.6 12.3 7.5 9.5 13.1 13.3 13.5 12.8 12.2 12.4 12.6 12.0 11.3 11.7 12.3 8.2 10.2 10.2 11.7 11.9 12.6 12.0 12.3 12.4 12.6 12.9 12.4 12.6 12.0 12.3 11.8 11.7 12.3 8.2 10.2 12.4 12.6 12.9 12.4 12.6 12.5 12.5 12.6 12.9 12.4 12.6 12.5 12.5 12.6 12.9 12.4 12.6 12.5 12.5 12.6 12.9 12.4 12.6 12.5 12.5 12.6 12.9 12.4 12.6 12.5 12.5 12.6 12.9 12.4 12.6 12.6 12.9 12.5 12.5 12.6 12.0 12.8 12.8 12.2 12.7 12.8 12.8 12.2 12.7 12.8 12.8 12.2 12.7 12.8 12.8 12.2 12.7 12.8 12.8 12.2 12.7 12.8 12.8 12.2 12.8 12.8 12.2 12.8 12.8	2 3 4	13.2 13.7 13.9	13.0 13.1 13.6	13.1 13.5 13.7	14.2 14.7 14.2	12.8 12.5 13.2	13.5 13.5 13.6	12.2 12.1 12.2	11.8 11.6 11.7	12.0 12.0 11.9	10.5 10.4 9.9	9.4 9.0 8.7	9.9 9.6 9.2
12	7 8 9	14.0 14.2 13.9	13.9 13.9 13.6	14.0 14.0 13.8	14.0 13.9 13.8	13.4 13.5 13.5	13.6 13.7 13.6	13.4 13.7 13.4	12.9 13.4 13.2	13.2 13.5 13.3	12.2 10.7 11.7	8.5 8.5 8.5	10.0 9.5 9.9
17	12 13 14	13.9 13.8 13.9	13.7 13.7 13.7	13.8 13.7 13.8	14.9 13.4 12.6	13.1 12.1 12.0	13.8 12.9 12.3	12.6 12.3 12.2	12.2 11.8 11.7	12.4 12.1 11.9	11.9 11.5 12.3	8.6 7.6 7.5	10.1 9.5 9.9
22 13.7 12.8 13.2 12.9 12.4 12.6 11.2 10.8 11.0 8.4 7.1 7.7 7.5 23 13.6 12.9 13.3 12.9 12.5 12.7 11.3 10.6 10.9 8.7 7.5 8.0 24 12.8 12.4 12.5 12.9 12.6 12.8 11.1 10.3 10.8 9.2 8.0 8.5 25 13.1 12.2 12.5 12.9 12.6 12.8 11.1 10.3 10.8 9.2 8.0 8.5 25 13.1 12.2 12.7 12.8 12.5 12.6 10.9 9.6 10.4 9.5 8.4 8.5 25 13.1 12.2 12.7 12.8 12.5 12.6 10.9 9.6 10.4 9.5 8.4 8.5 26 11.1 10.3 10.8 9.2 8.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	17 18 19	13.3 13.6 13.7	13.1 13.2 13.5	13.2 13.4 13.6	12.5 13.1 12.9	12.4 12.5 12.4	12.5 12.8 12.6	11.4 10.6 10.8	10.6 10.4 10.5	11.1 10.5 10.6	11.5 11.1 10.7	7.8 7.6 7.4	9.6 9.4 8.9
27	22 23 24	13.7 13.6 12.8	12.8 12.9 12.4	13.2 13.3 12.5	12.9 12.9 12.9	12.4 12.5 12.6	12.6 12.7 12.8	11.2 11.3 11.1	10.8 10.6 10.3	11.0 10.9 10.8	8.4 8.7 9.2	7.1 7.5 8.0	7.7 8.0 8.5
DAY MAX MIN MEAN MAX MIN MEAN MAX MIN MEAN MIN MIN MEAN MIN MIN MEAN MIN MIN MEAN MIN MIN	27 28 29 30	14.5	13.7	14.1 13.9	12.4 13.0 13.4 13.4	12.2 12.5 13.1 12.9	12.3 12.8 13.3 13.2	9.8 10.5 10.7 10.8	8.6 9.4 10.2 10.2	9.2 10.1 10.4	===	===	===
JUNE	MONTH	14.5	12.2	13.6	15.2	12.0	13.1	13.7	8.6	11.5	12.6	6.6	9.4
Table Tabl													
2 8.3 7.6 8.0 11.2 6.6 8.7 10.2 6.9 8.2 3 8.8 8.3 7.9 8.1 11.4 6.8 8.8 10.4 6.9 8.4 4 9.3 8.2 8.7 10.9 6.7 8.5 10.6 7.3 8.8 6 9.3 8.2 8.7 10.9 6.7 8.5 10.6 7.3 8.8 6 10.2 8.2 9.1 10.5 6.4 8.3 10.9 7.4 8.9 7.1 8.8 8 11.0 8.0 9.3 10.6 6.6 8.3 10.6 7.6 8.8 9.2 10.0 7.4 8.8 9.1 10.5 6.4 8.3 10.6 7.6 8.8 9.2 10.8 8.2 9.1 10.5 6.4 8.3 10.6 7.6 8.8 9.2 10.8 8.2 8.4 12.1 7.5 9.7 5.9 5.0 5.3 11.2 7.8 9.3 11.8 8.9 8.2 8.4 12.1 7.5 9.7 5.9 5.0 5.3 11.2 7.8 9.3 11.4 8.9 8.2 8.8 8.8 11.7 7.1 9.2 7.3 6.2 6.7 11.1 7.8 9.2 13 9.0 8.5 8.8 11.7 7.2 9.3 8.8 6.5 7.6 11.2 7.7 9.2 13 9.0 8.5 8.8 11.7 7.2 9.3 8.8 6.5 7.6 11.2 7.7 9.2 14 9.1 8.8 8.9 11.2 6.9 8.9 9.3 7.3 8.2 10.7 7.5 8.7 15 9.3 8.9 9.1 11.5 7.1 9.0 10.1 7.3 8.5 10.3 7.3 8.5 10.3 7.3 8.5 10.8 8.9 11.4 6.9 8.9 9.3 7.3 8.2 10.7 7.5 8.6 18 8.1 17.8 8.9 9.2 11.2 6.9 8.9 9.3 12.3 7.4 9.5 10.4 7.5 8.5 10.3 7.3 8.5	DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
77 10.2 8.2 9.1 10.5 6.4 8.3 10.6 7.4 8.8 8 9.2 10.6 8.7 8.2 8.4 12.1 7.5 9.7 5.9 5.0 5.3 11.2 7.8 9.3 11 8.9 8.2 8.5 11.1 7.3 9.0 6.3 5.7 6.0 11.1 7.8 9.2 12 9.3 8.4 8.8 11.7 7.1 9.2 7.3 6.2 6.7 11.1 7.8 9.2 13 9.0 8.5 8.8 11.7 7.2 9.3 8.8 6.5 7.6 11.2 7.7 9.2 13 9.0 8.5 8.8 11.7 7.2 9.3 8.8 6.5 7.6 11.2 7.7 9.2 13 9.0 8.5 8.8 11.7 7.2 9.3 8.8 6.5 7.6 11.2 7.7 9.2 13 9.3 8.9 9.1 11.5 7.1 9.0 10.1 7.3 8.5 10.3 7.3 8.5 10.3 7.3 8.5 10.3 7.3 8.5 10.3 7.5 8.7 8.7 15 9.3 8.9 9.1 11.5 7.1 9.0 10.1 7.3 8.5 10.3 7.3	DAY	MAX		MEAN	MAX		MEAN	MAX			MAX		
14 9.1 8.8 8.9 9.1 11.2 6.9 8.9 9.3 7.3 8.2 10.7 7.5 8.7 15 9.3 8.9 9.1 11.5 7.1 9.0 10.1 7.3 8.5 10.3 7.3 8.5 16 9.3 8.9 9.1 11.5 7.1 9.0 10.1 7.3 8.5 10.3 7.3 8.5 16 9.3 8.5 8.9 12.0 7.2 9.4 11.3 7.3 9.0 9.5 7.2 8.1 17 8.5 7.8 8.1 12.8 7.2 9.8 11.4 7.6 8.9 10.1 7.2 8.5 18 8.1 7.8 8.0 11.4 6.9 9.3 12.3 7.4 9.5 10.4 7.5 8.6 19 8.4 7.9 8.1 14.0 6.9 10.1 13.1 7.8 10.1 10.7 7.5 8.9 20 8.8 8.0 8.3 9.4 7.0 8.2 12.2 7.9 9.8 8.6 7.8 8.1 12.2 7.9 9.8 8.6 7.8 8.1 12.1 8.8 7.8 8.2 11.3 6.7 8.8 13.6 8.1 10.5 9.7 8.3 8.9 23 10.0 7.6 8.8 10.3 6.8 8.3 11.0 8.0 9.3 10.1 7.9 9.0 24 10.0 8.1 9.0 12.1 7.0 9.3 12.4 7.7 9.8 10.9 8.5 9.4 25 10.1 8.2 9.0 13.2 7.4 10.0 10.1 7.9 9.0 10.8 8.8 9.7 26 10.9 8.1 9.3 13.6 7.6 10.1 10.1 7.9 9.0 10.8 8.8 9.7 28 11.4 7.5 9.1 9.2 13.1 6.9 9.7 8.6 7.7 11.1 8.7 9.7 11.1 8.7 9.7 11.1 8.7 9.7 11.1 7.7 9.2 13.1 6.9 9.7 8.1 11.3 6.7 8.2 11.3 6.9 8.9 10.1 7.9 9.0 9.7 8.3 9.9 10.1 7.9 9.0 10.8 8.8 9.7 11.1 7.7 9.2 13.1 6.9 9.7 8.1 11.1 8.7 9.7 11.1 8.7 9.7 11.1 8.7 9.7 11.1 8.7 9.7 11.1 8.7 9.7 11.1 8.7 9.7 11.1 8.7 9.7 11.1 8.7 9.7 11.1 8.7 9.7 11.1 8.7 9.7 11.1 8.7 9.7 11.1 8.3 10.7 8.2 9.1 11.3 1.7 1.2 9.3 6.7 7.9 10.9 7.5 9.0 9.7 8.2 8.7 11.3 6.9 8.9 11.2 8.2 9.3 10.2 6.4 8.0 11.2 8.2 9.3 10.	1 2 3	MAX	JUNE	MEAN	7.6 8.3 8.8	JULY 7.2 7.6 7.9 8.1	7.5 8.0 8.1 8.5	10.9 11.2 11.4 11.7	6.7 6.6 6.8 6.8	8.6 8.7 8.8 9.0	9.5 10.2 10.4 10.0	7.2 6.9 6.9 7.1	8.1 8.2 8.4 8.4
17 8.5 7.8 8.1 12.8 7.2 9.8 11.4 7.6 8.9 10.1 7.2 8.5 18 8.1 7.8 8.0 11.4 6.9 9.3 12.3 7.4 9.5 10.4 7.5 8.6 19 8.4 7.9 8.1 14.0 6.9 10.1 13.1 7.8 10.1 10.7 7.5 8.9 20 8.8 8.0 8.3 9.4 7.0 8.2 12.2 7.9 9.8 8.6 7.8 8.1 21 8.8 7.8 8.3 11.3 6.5 8.6 12.9 7.6 10.0 10.0 7.7 8.8 22 8.8 7.7 8.2 11.3 6.7 8.8 13.6 8.1 10.5 9.7 8.3 8.9 23 10.0 7.6 8.8 10.3 6.8 8.3 11.0 8.0 9.3 10.1 7.9 9.0 24 10.0 8.1 9.0 12.1 7.0 9.3 12.4 7.7 9.8 10.9 8.5 9.4 25 10.1 8.2 9.0 13.2 7.4 10.0 10.1 7.9 9.0 10.8 8.8 9.7 26 10.9 8.1 9.3 13.6 7.6 10.1 10.1 7.9 9.0 10.8 8.8 9.7 28 11.4 7.5 9.1 13.1 6.9 9.7 8.6 7.0 7.7 11.1 8.7 9.7 28 11.4 7.5 9.1 9.0 6.9 8.1 9.8 7.1 8.3 10.7 8.3 9.2 29 8.4 7.4 7.7 10.4 6.7 8.2 10.8 7.4 8.8 10.7 8.2 9.1 30 7.4 7.1 7.2 9.3 6.7 7.9 10.9 7.5 9.0 9.7 8.2 8.1 30 7.4 7.1 7.2 9.3 6.7 7.9 10.9 7.5 9.0 9.7 8.2 8.1 30 7.4 7.1 7.2 9.3 6.7 7.9 10.9 7.5 9.0 9.7 8.2 8.1 30 7.4 7.1 7.2 9.3 6.7 7.9 10.9 7.5 9.0 9.7 8.2 8.1 30 7.4 7.1 7.2 9.3 6.7 7.9 10.9 7.5 9.0 9.7 8.2 8.1 30 7.4 7.1 7.2 9.3 6.7 7.9 10.9 7.5 9.0 9.7 8.2 8.1 30 7.4 7.1 7.2 9.3 6.7 7.9 10.9 7.5 9.0 9.7 8.2 8.7 31 10.2 6.4 8.0 11.2 8.2 9.3	1 2 3 4 5 6 7 8 9		JUNE		7.6 8.3 8.3 8.8 9.3 9.9 10.2 11.0	JULY 7.2 7.6 7.9 8.1 8.2 8.3 8.2 8.0 7.6	7.5 8.0 8.1 8.5 8.7 9.0 9.1 9.3 9.4	10.9 11.2 11.4 11.7 10.9 9.0 10.5 10.6 9.1	6.7 6.6 6.8 6.8 6.7 6.2 6.4 6.6 5.8	8.6 8.7 8.8 9.0 8.5 7.6 8.3 7.0	9.5 10.2 10.4 10.0 10.6 10.9 10.9	7.2 6.9 6.9 7.1 7.3 7.4 7.4 7.6 7.8	8.1 8.2 8.4 8.4 8.8 8.9 8.8 9.2
22 8.8 7.7 8.2 11.3 6.7 8.8 13.6 8.1 10.5 9.7 8.3 8.9 23 10.0 7.6 8.8 10.3 6.8 8.3 11.0 8.0 9.3 10.1 7.9 9.0 24 10.0 8.1 9.0 12.1 7.0 9.3 12.4 7.7 9.8 10.9 8.5 9.4 25 10.1 8.2 9.0 13.2 7.4 10.0 10.1 7.9 9.0 10.8 8.8 9.7 26 10.9 8.1 9.3 13.6 7.6 10.1 10.1 7.5 8.6 11.3 8.9 9.9 27 11.1 7.7 9.2 13.1 6.9 9.7 8.6 7.0 7.7 11.1 8.7 9.7 28 11.4 7.5 9.1 9.0 6.9 8.1 9.8 7.1 8.3 10.7 8.3 9.2 29 8.4 7.4 7.7 10.4 6.7 8.2 10.8 7.4 8.8 10.7 8.2 9.1 30 7.4 7.1 7.2 9.3 6.7 7.9 10.9 7.5 9.0 9.7 8.2 8.1 1.4 7.5 9.1 9.3 6.7 7.9 10.9 7.5 9.0 9.7 8.2 8.1 1.4 7.1 8.6 14.0 6.4 8.9 13.6 5.0 8.5 11.3 6.9 8.9	1 2 3 4 5 6 7 8 9 10	8.7 8.9 9.3 9.0	JUNE 8.2 8.2 8.4 8.5 8.8	8.4 8.5 8.8 8.8 8.9	7.6 8.3 8.3 8.8 9.3 9.9 10.2 11.0 11.5 12.1	JULY 7.2 7.6 7.9 8.1 8.2 8.3 8.2 8.0 7.6 7.5 7.3 7.1 7.2 6.9	7.5 8.0 8.1 8.5 8.7 9.0 9.1 9.3 9.7 9.0 9.3 8.9	10.9 11.2 11.4 11.7 10.9 9.0 10.5 10.6 9.1 5.9 6.3 7.3 8.8	AUGUST 6.7 6.6 6.8 6.7 6.2 6.4 6.6 5.8 5.0	8.6 8.7 8.8 9.0 8.5 7.6 8.3 7.0 5.3 6.0 7.6 8.2	9.5 10.2 10.4 10.0 10.6 10.9 10.6 11.0 11.2	7.2 6.9 6.9 7.1 7.3 7.4 7.6 7.8 7.8 7.7	8.1 8.2 8.4 8.8 8.8 8.8 9.2 9.3 9.2 9.2 8.7
27 11.1 7.7 9.2 13.1 6.9 9.7 8.6 7.0 7.7 11.1 8.7 9.7 28 11.4 7.5 9.1 9.0 6.9 8.1 9.8 7.1 8.3 10.7 8.3 9.2 29 8.4 7.4 7.7 10.4 6.7 8.2 10.8 7.4 8.8 10.7 8.2 9.1 30 7.4 7.1 7.2 9.3 6.7 7.9 10.9 7.5 9.0 9.7 8.2 8.7 31 10.2 6.4 8.0 11.2 8.2 9.3 8.7 8.2 8.7 8.9 MONTH 11.4 7.1 8.6 14.0 6.4 8.9 13.6 5.0 8.5 11.3 6.9 8.9	1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 17 8 19	8.7 8.7 8.9 9.0 9.1 9.3 8.5 8.1 8.4	JUNE 8.2 8.2 8.4 8.5 8.8 8.9 8.5 7.8	 8.4 8.5 8.8 8.9 9.1 8.9 8.1	7.6 8.3 8.8 9.3 9.9 10.2 11.0 11.5 12.1 11.1 11.7 11.7 11.7 11.7 11.5	JULY 7.2 7.6 7.9 8.1 8.2 8.3 8.2 8.0 7.6 7.5 7.3 7.1 7.2 6.9 7.1 7.2 6.9 6.9	7.5 8.0 8.15 8.7 9.1 9.3 9.4 9.7 9.2 9.3 9.9 9.0 9.3	10.9 11.2 11.4 11.7 10.9 9.0 10.5 10.6 9.1 5.9 6.3 7.3 8.8 9.3 10.1 11.3 11.4 12.3	AUGUST 6.7 6.6 6.8 6.7 6.2 6.4 6.6 5.8 5.0 5.7 6.5 7.3 7.3 7.4 7.8	8.6 8.7 8.8 9.5 7.6 8.3 7.0 8.3 7.0 8.5 6.0 7.6 8.5 9.9 5.1	9.5 10.2 10.4 10.0 10.6 10.9 10.6 11.0 11.1 11.1 11.2 10.7 10.3	7.2 6.9 6.9 7.1 7.3 7.4 7.6 7.8 7.7 7.5 7.7 7.5 7.5	8.1 1 2 4 4 8 8 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9
MONTH 11.4 7.1 8.6 14.0 6.4 8.9 13.6 5.0 8.5 11.3 6.9 8.9	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 34	8.7 8.9 9.3 9.3 9.3 8.1 9.3 8.4 8.8 8.8 8.8 8.8	JUNE 8.2 8.2 8.4 8.5 8.8 7.9 8.0 7.8 7.7 8.1	8.4 8.5 8.8 8.8 8.9 9.1 8.1 8.3 8.3 8.2 8.9	7.6 8.3 8.8 9.3 9.9 10.2 11.0 11.5 12.1 11.7 11.7 11.7 11.7 11.2 11.5 12.8 11.4 14.0 9.4	JULY 7.2 7.6 7.9 8.1 8.2 8.3 8.2 8.0 7.5 7.1 7.2 6.9 7.0 6.5 7.0 6.7 7.0	7.5 8.0 8.1 8.5 9.1 9.3 9.7 9.2 9.9 9.9 9.8 9.9 9.9 10.1 8.8 8.8 9.9 9.1 8.8 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9	10.9 11.2 11.4 11.7 10.9 9.0 10.5 10.6 9.1 5.9 6.3 7.3 8.8 9.3 10.1 11.3 11.4 12.3 13.1 12.2 12.9 13.6 11.0 12.4	AUGUST 6.7 6.6 6.8 6.7 6.2 6.4 6.6 5.8 5.0 5.7 6.5 7.3 7.3 7.6 7.8 7.9 7.6 8.1 8.7	8.678.05 8.8.05 7.633.03 6.762.5 9.951.8 10.538	9.5 10.2 10.4 10.0 10.6 10.9 10.9 10.6 11.0 11.2 11.1 11.2 10.7 10.3 9.5 10.1 10.4 10.7 8.6	7.2 6.9 7.1 7.3 7.4 7.6 7.8 7.7 7.8 7.7 7.5 7.3	ER 8.12448 8.88.89.3 222275 15691 8.909.4
	1 2 3 4 5 6 7 8 9 10 11 2 13 14 5 16 7 18 19 20 21 22 34 25 26 27 28 9 30	8.7 8.9 9.3 9.3 9.3 9.3 8.1 8.4 8.8 8.8 8.8 10.0 10.1	JUNE 8.2 8.4 8.5 8.8 8.9 8.5 7.8 7.7 7.6 8.1 8.2 8.1 7.7 7.5 4 7.1	8.588.889.1 8.588.889.1 8.188.3 8.289.0 9.0 9.177.2	7.6 8.3 8.8 9.3 9.9 10.2 11.0 11.5 12.1 11.7 11.7 11.7 11.7 11.2 11.3 10.3 11.3 10.3 11.3 11.3 11.3 11.3	JULY 7.26 7.69 8.22 8.32 8.66 7.57 7.12 7.29 7.6 6.77 7.6 6.77 7.6 6.77 7.6 6.77 7.6 6.77 7.6 6.77 7.6 6.77	7.5 8.0 8.1 8.5 9.1 9.1 9.3 9.7 9.2 9.3 9.9 9.8 9.9 9.8 9.1 8.8 10.0 10.1 10.1 10.1 10.1 10.1 10.	10.9 11.2 11.4 11.7 10.9 9.0 10.5 10.6 9.1 5.9 6.3 7.3 8.8 9.3 10.1 11.3 11.4 12.3 13.1 12.2 12.9 13.6 11.0 12.4 10.1	AUGUST 6.7 6.66 6.8 6.7 6.46 6.8 6.7 7.3 7.66 7.3 7.64 8.7 7.9 7.01 7.5	8.78.05 8.78.05 7.63.303 7.62.5 6.76.25 9.95.18 10.53.80 10.53.80 10.53.80 10.53.80	9.5 10.2 10.4 10.0 10.6 10.9 10.9 10.6 11.0 11.2 11.1 11.2 10.7 10.3 9.5 10.1 10.7 8.6 10.0 9.7 10.1 10.9 10.9	7.2 6.9 7.1 7.4 7.6 7.8 7.7 7.5 7.7 7.5 7.7 7.5 7.7 7.5 7.7 7.5 8.8 8.7 8.8 8.2 8.2	ER 8.12448 9.88.23 22.2275 1.56.91 8.90.47 9.72.17 9.72.17
	1 2 3 4 5 6 7 8 9 10 11 2 3 14 5 16 7 8 9 10 11 2 3 14 5 16 7 8 9 20 2 2 2 3 4 5 2 2 2 2 2 3 3 3 1	8.7 8.9 9.3 9.1 9.3 9.3 8.1 8.4 8.8 8.8 8.8 8.8 10.0 10.1	JUNE 8.2 8.4 8.5 8.8 8.7 7.8 7.6 8.1 7.7 7.6 8.1 7.7 7.4 7.1	8.4 8.5 8.8 8.9 9.1 8.1 8.3 8.8 8.9 9.0 9.0 9.1 7.7 7.2	7.6 8.3 8.8 9.3 9.9 10.2 11.5 12.1 11.7 11.7 11.7 11.7 11.7 11.5 12.0 11.4 14.0 9.4 11.3 11.3 11.3 12.1 13.2	JULY 7.26 7.69 8.12 8.38.06 7.5 7.12 9.10 7.26 9.0 6.57 7.4 6.99 7.4 6.99 6.7	7.8.01 8.57 9.13 9.99 9.99 9.99 10.1 8.88 9.90 10.1 10.1 10.1 10.1 10.1 10.1 10.1	10.9 11.2 11.4 11.7 10.9 9.0 10.5 10.6 9.1 5.9 6.3 7.3 8.8 9.3 10.1 11.3 11.4 12.3 13.1 12.2 12.9 13.6 11.0 12.4 10.1 10.1 8.6 9.8 10.9 11.2	AUGUST 6.7 6.8 6.7 6.8 6.7 6.4 6.8 6.7 7.3 7.3 7.4 7.9 7.5 7.1 7.5 8.2	8.678.05 8.78.05 7.625 9.95.18 9.5380 10.5380 8.77.88.89.3	9.5 10.2 10.4 10.0 10.6 10.9 10.9 10.6 11.0 11.2 11.1 11.2 10.7 10.3 9.5 10.1 10.4 10.7 8.6 10.0 9.7 10.1 10.9 10.9	7.29 6.99 7.13 7.44 7.88 7.75 7.75 7.53 7.75 7.75 7.75 7.75 7.75	ER 8.2448 9.8823 222755 15691 89047 97217-

01463568 ASSUNPINK CREEK AT CARSONS MILLS, NJ

LOCATION.--Lat 40°13'05", long 74°33'08", Mercer County, Hydrologic Unit 02040105, at bridge at Carsons Mills, 0.1 mi (0.2 km) upstream from New Sharon Branch, and 1.3 mi (2.0 km) northeast of Pages Corner.

DRAINAGE AREA .-- 12.5 mi2 (32.4 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to May 1982 (discontinued).

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DA	TE		STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
JAN		0945	13	121	6.5	2.0	10.1		22		
MAR			1,37	134	6.5	2.0	12.1	.9	33	7	. 39
JUN		1400	16	112	6.7	11.0	11.5		5	10	43
01	• • •	1400	40	114	7.2	20.0	8.3	2.3	130	79	38
	DATE	CALCI DIS- SOLV (MG/ AS C	UM SI DI ED SOL L (MG		UM, SI ED SOI	IUM, LINI IS- LA LVED (MO G/L AS	AB SULF	AL SOL	ATE RID - DIS VED SOL /L (MG	E, RID - DI VED SOL	S- VED /L
	JAN 29	. 8	.2	4.5	4.5	2.7	4.0	2	8	9.9	.2
	MAR 18	. 9	•3	4.9	4.1	2.2	5.0	2	9	9.2	.1
	JUN 01	. 8		4.2	3.6		9.0	<.5 2	4	8.2	.2
				IDS,				TRO-			
	DATE	SILIC DIS- SOLV (MG/ AS SIO2	A, RESI AT 1 ED DEG L DI SOL	DUE NIT	IN, GI RITE NO2- TAL TO G/L (MG	EN, GI +NO3 AMM TAL TO G/L (M	TRO- GEN, EN, MONIONIA ORGA TAL TOT G/L (MO	AM- IA + NIT ANIC GE TAL TOT G/L (MG	AL TOT	TE, ORGA AL TOT	NIC AL
	JAN	5102	, (110	, , , , ,,	.,	n, no	,	,	,		diam'r.
	29 MAR	. 5	.3	84				.70		.06	
	18 JUN	. 4	.3	66 <.	010 -	1.1	.200 E	.62		.09	1.7
	01	. 3	. 8	80 .	010	.60	.110	.70 1	.3	.15	4.8
		DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	
		JUN	11100	410			20		10		
		01	1400	<10	1	<10	20	1	10	5	
		DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS (UG/L)	
		JUN									
		01	1400	4	140	<.1	7	<1	10	1	

01463620 ASSUNPINK CREEK NEAR CLARKSVILLE, NJ

LOCATION.--Lat 40°16'11", long 74°40'20", Mercer County, Hydrologic Unit 02040105, on left bank 200 ft (61 m) upstream from bridge on Quaker Bridge Road, 1.9 mi (3.1 km) south of Clarksville, 2.0 mi (3.2 km) upstream from Shipetaukin Creek, and 7.6 mi (12.2 km) upstream of mouth.

DRAINAGE AREA .-- 34.3 mi2 (88.8 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1963, 1965, 1967, and 1979 to current year.

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Water Resources Division. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)
JAN	20.00					A11-1	4-3		
25 MAR	1045	71	1 49	5.9	2.0	11.3	1.8	46	49
17	1030	76	136	7.3	7.0	12.3	2.0	2	9
26 JUL	1 400	65	137	7.7	22.0	11.0	<2.0	2	50
26 AUG	0925	67	128	7.1	27.0	7.6	E2.0	<20	23
17	1310	59	118	7.0	26.0	8.5	E2.1	20	350
DATE	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
JAN									
25	46	9.7	5.2	5.7	2.7	7.0	26	13	. 1
MAR 17 MAY	43	9.4	4.8	7.2	2.7	7.0	27	12	.1
26 JUL	40	8.6	4.6	4.5	2.4	20	19	11	.2
26 AUG	43	9.0	5.0	6.6	2.2	21	14	12	.2
17	39	8.2	4.4	5.2	1.9	18	15	11	.2
	SILICA, DIS- SOLVED (MG/L AS	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED	NITRO- GEN, NITRITE TOTAL (MG/L	NITRO- GEN, NO2+NO3 TOTAL (MG/L	NITRO- GEN, AMMONIA TOTAL (MG/L	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L	NITRO- GEN, TOTAL (MG/L	PHOS- PHATE, TOTAL (MG/L	CARBON, ORGANIC TOTAL (MG/L
DATE	SI02)	(MG/L)	AS N)	AS N)	AS N)	AS N)	AS N)	AS PO4)	AS C)
JAN 25 MAR	7.4	96		2.5		.25	2.7	.12	1.6
17	4.9	89	.020	1.9	.110	E2.30		.15	2.4
MAY 26	1.2	83	.030	1.1	.100	E.30		.09	4.6
JUL 26	3.2	94	.020	. 40	.120	.72	1.1	.12	5.4
AUG 17	1.7	82	<.010	. 40	.080	.60	1.0	.06	4.2

CAL YR 1981 WTR YR 1982 TOTAL

35 40 2

48313

MEAN

MEAN 132

97.0

MAX

MAX

1280

DELAWARE RIVER BASIN

01464000 ASSUNPINK CREEK AT TRENTON, NJ

LOCATION.--Lat 40°13'27", long 74°44'58", Mercer County, Hydrologic Unit 02040105, on left bank upstream from Chambers Street Bridge in Trenton, and 1.5 mi (2.4 km) upstream from mouth.

DRAINAGE AREA .-- 90.6 mi2 (234.7 km2), revised.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- August 1923 to current year.

GAGE.--Water-stage recorder. Concrete control since July 10, 1932. Datum of gage is 24.76 ft (7.547 m) National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark).

REMARKS.--Water-discharge records good. Records include water diverted from outside the basin since February 1954 for municipal supply which returns to Assunpink Creek through Ewing-Lawrence Sewerage Authority Treatment Plant, 2.4 mi (3.9 km) above station (records given herein). In addition there is an average inflow of about 2.0 ft³/s (0.057 m³/s) from industrial use of water that originates outside the basin. Some diversion for irrigation in headwater area during summer months. Flow regulated by several flood-control reservoirs upstream of gage since mid-1970's.

AVERAGE DISCHARGE. -- 59 years, 128 ft3/s (3.625 m3/s), unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,450 ft³/s (154 m³/s) July 21, 1975, gage height, 14.61 ft (4.453 m), from high-water mark in gage house; minimum, 1.0 ft³/s (0.028 m³/s) Aug. 21, Oct. 22, 1931, gage height, 0.25 ft (0.076 m); minimum daily, 4.0 ft³/s (0.11 m³/s) July 21, Aug. 8, Sept. 2, 1929.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 900 ft3/s (25.5 m3/s) and maximum (*):

			Disch	arge	Gage h	eight			Disch	arge	Gage h	eight
Date		Time	(ft^3/s)	(m^3/s)	(ft)	(m)	Date	Time	(ft^3/s)	(m^3/s)	(ft)	(m)
Jan.	4	1345	*1970	55.8	8.67	2.643	Apr. 3	2315	1470	41.6	7.43	2.265
Feb.	3	0715	15 40	43.6	7.60	2.316	Apr. 28	0015	928	26.3	5.94	1.811

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

Minimum discharge, 30 ft3/s (0.85 m3/s) Sept. 19, 20, gage height, 2.52 ft (0.768 m).

DAY	.002											
	OC T	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	48	70	122	229	597	100	116	179	156	93	63	67
2	65	93	308	180	332	101	94	161	181	82	61	60
2	47	70	137	133	1210	101	362	148	132	162	59	123
3	44	66	111	1280	678	109	660	137	118	176	56	55
	45	63	101					127	112	104	55	47
5	45	0.3	101	713	413	135	285	127	112	104	55	47
6	50	106	88	385	328	129	321	119	103	90	54	44
7	48	71	8 4	315	276	317	285	112	106	84	50	5 4 5 2
8	43	64	101	266	243	360	264	104	93	80	47	52
9	42	66	87	227	246	220	275	99	86	75	69	42
10	41	74	79	188	2 35	186	251	94	81	70	82	41
			2.								120	
11	40	64	74	158	204	173	251	88	77	67	58	39 37
12	42	58	71	136	175	164	212	85	73	70	129	37
13	42	56	68	125	160	153	190	83	267	65	61	38
1 4	41	54	80	121	1 4 4	1 38	177	80	286	61	53	39
15	42	72	427	114	137	129	158	76	165	60	47	39
16	42	96	574	106	1 40	129	1 45	71	228	59	47	42
17	40	88	330	100	136	147	149	70	512	56	46	39
18	56	103	239	96	124	128	343	68	264	53	45	37
19		84	193	92	171	120	202	67	195	54	43	35
20	59 45	150	160	91	169		168		159	161	43	67
20	45	150	100	91	169	113	100	95	159	101	44	07
21	44	110	140	89	163	109	152	112	137	97	44	59
22	43	90	129	85	154	106	1 38	95	121	74	39	69
23	57	83	141	157	136	101	127	91	127	69	42	160
23	74	78	144	180	128	98	120	80	100	67	46	58
25	54	73	125	144	119	95	111	93	91	62	207	50
26	107	66	116	128	110	95	316	80	83	67	66	46
27	119	65	112	113	106	87	388	76	79	70	55	132
28	125	63	114	106	101	82	552	108	79	187	49	63
												54
29	90	59	104	101		82	270	40 3	257	93	43	
30	84	60	96	100		82	209	217	152	76	44	51
31	69		91	125		116		173		68	44	
TOTAL	1788	2315	4746	6383	7135	4205	7291	3591	4620	2652	1848	1739
MEAN	57.7	77.2	153	206	255	136	243	116	154	85.5	59.6	58.0
MAX	125	150	574	1280	1210	360	660	403	512	187	207	160
MIN	40	54	68	85	101	82	94	67	73	53	39	35
(+)	11.2	11.5	13.8	12.8	18.4	15.6	19.6	15.2	14.2	12.8	11.4	11.4

[†] Inflow from outside the basin, 2.4 mi (3.9 km) upstream of station through plant of Ewing-Lawrence Sewerage Authority, in cubic feet per second.

MIN 30

MTN 35

+ 12.6

+ 14.0

103 01464500 CROSSWICKS CREEK AT EXTONVILLE, NJ

LOCATION.--Lat 40°08'15", long 74°36'02", Mercer County, Hydrologic Unit 02040201, on right bank upstream from highway bridge in Extonville, 0.5 mi (0.8 km) upstream from Pleasant Run, and 0.7 mi (1.1 km) downstream from Mercer-Monmouth County line.

DRAINAGE AREA .-- 81.5 mi2 (211.1 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- August 1940 to October 1951, October 1952 to current year.

REVISED RECORDS .-- WDR NJ-79-2: 1971(M).

GAGE.--Water-stage recorder and concrete control. Datum of gage is 24.94 ft (7.602 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good. Flow regulated occasionally by lakes above station.

AVERAGE DISCHARGE.--41 years (water years 1941-51, 1953-82), 135 ft3/s (3.823 m3/s), 21.92 in/yr (557 mm/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,860 ft 3 /s (138 m 3 /s) Sept. 1, 1978, gage height, 14.18 ft (4.322 m); minimum 13.1 ft 3 /s (0.37 m 3 /s) Feb. 14, 1942 (result of freezeup); minimum daily, 16 ft 3 /s (0.45 m 3 /s) Aug. 30 to Sept. 3, Sept. 12, 1966.

EXTREMES FOR CURRENT YEAR.--Peak discharge above base of 750 ft^3/s (21.2 m^3/s) and maximum (*):

			Disch	arge	Gage h	eight				Disch	arge	Gage h	eight
Date		Time	(ft^3/s)	(m^3/s)	(ft)	(m)	Date		Time	(ft^3/s)	(m^3/s)	(ft)	(m)
Jan.	5	1100	884	25.0	7.40	2.256	June	17	1800	1180	33.4	8.39	2.557
Feb.	4	0800	778	22.0	6.99	2.131	July	29	1400	*1230	34.8	8.53	2.600
Anr	30	0100	820	23 5	7 10	2 102							

AHC

Minimum discharge, $36 \text{ ft}^3/\text{s}$ (1.02 m³/s) Oct. 1, gage height, 2.41 ft (0.735 m).

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 MEAN VALUES

DAY	OC T	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	36	75	59	115	449	88	112	162	150	291	119	47
2	51	71	160	175	359	88	95	138	123	139	97	49
3	50	67	174	124	428	89	96	119	102	109	83	73
й	113	64	116	35.8	684	86	239	107	89	153	73	73 67
2 3 4 5	43 40	62	106	791	331	104	158	99	90	116	67	51
,	40	02	100	191	331	104	150	99	90	110	07	21
6	40	71	98 86	376	193	104	179	92 88	98	92	67	47
7	49	87	86	186 142	150	182	301	88	96	80	62	45
8	48	72	84	142	123	35.8	195	84	93	74	56	46
9	42	67	90	123	121	358 228	1 75	82	87	80	64	45
6 7 8 9	41	64	80	110	143	153	157	77	79	67	75	46 45 42
				122								
11	39	64	75	92 92 103 118	125	1 30	1 41 126	73	74	59	71	41
12	40	62	72	92	111	121	126	70	70	59	69	40
12 13 14	40	58	69	103	107	113	1 15	72	99	72	74	39 39
14	40	57	67	118	102	107	113	70	381	63	61	39
15	44	57	238	124	99	99	105	66	316	58	54	40
16	44	86	517	121	105	05	99	64	212	58	50	113
17	42	86	525	116	105	95 1 16	00	67	941	55	49	43 47
10	41	118	26 4	108	97	114	99 263	59	686	51	50	41
10	78	110	157	97	102	104	2 42	56	245	49	48	
16 17 18 19 20	66			97			2 42					39 45
20	00	93	121	96	132	98	1 45	58	160	62	47	45
21 22 23	49	94	112	94	122	94	123	87	124	75	57 55	81 67
22	47	79	93	90	120	91	107	89	105	58	55	67
23	46	71	101	95	107	86	97	93	95	49	48	93
24	72	66	114	281	101	83	92	91	85	49	66	86
24 25	73	64	102	278	95	83 82	88	117	79	46	79	58
26	1 48	62	94	177	87	83	0.7	121	75	45	89	51
26 27	138	60		177 121	86	80	97 231	131 98	73	66	64	80
21			91	121			231					80
28 29	194	60	92	104 98	87	75	41 4	105	71	292	58	93
29	150	57	89	98		75	480	5 78	69	10 40	51	
30 31	97	54	82	95		75	239	552	278	451	49	54
31	82		78	170		79		221		157	47	
TOTAL	2010	2158	4206	5170	4871	3480	5123	3865	5245	4115	1999	1649
MEAN	64.8	71.9	1 36	167	174	112	171	125	175	1 33	6 4.5	55.0
MAX	194	118	525	791	684	358	480	578	941	1040	119	93
MIN	36	54	59	90	86	75	88	56	69	45	47	20
			1 67									.68
CFSM	.80	.88	1.67	2.05	2.14	1.37	2.10	1.53	2.15	1.63	.79	.08
IN.	.92	.98	1.92	2.36	2.22	1.59	2.34	1.76	2.39	1.88	.91	. 75
				1111		4 4	ALLEN S					

CAL YR 1981 TOTAL WTR YR 1982 TOTAL 33635 43891 MIN 29 MIN 36 MAX 1040 CFSM 1.47 MEAN 120 IN 20.03

01464500 CROSSWICKS CREEK AT EXTONVILLE, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1965 to current year.

PERIOD OF DAILY RECORD.-WATER TEMPERATURES: October 1966 to June 1970.
SUSPENDED-SEDIMENT DISCHARGE: February 1965 to June 1970.

WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATI		TIME	STRE FLO INST TANE (CF	AM- CI W, CO AN- DU COUS AN	CT- CE	PH NITS)	AT	MPER- TURE CG C)	SOI	GEN, IS- LVED G/L)	CHI IC.	AND,	COL FOR FEC BRC	AL,	TOC	REP- OCCI CAL PN)	HAR NES (MG AS CAC	S /L
FEB 08. MAR		1050		121	1 45	7.0		1.0		12.2		3.9		80		20		43
31.		1030		76	176	7.2		9.0		9.7		3.2		<20		70		52
MAY 27.		1000		98	147	7.1		17.5		6.8		>4.4		79		21		45
JUL 20.		1030		49	189	7.2		25.5		4.6		5.1		80		790		51
AUG 05.		1040		68	154	7.1		23.0		5.7		2.2		70		490		48
SEP 29.		1045		58	159	7.1		17.5		6.8		8.4		330		490		47
	DATE	(MG	VED	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SI		ALKA LINIT LAF (MG/ AS CAC	Y L	SULFI TOTA (MG	AL /L	SULFA DIS- SOLV (MG/) AS SO	ED L	CHL RID DIS SOL (MG AS	E, VED /L	FLUC RIDI DIS SOLI (MG,	E, S- VED /L	
	FEB 08	. 1	3	2.5	7.0		2.2	16				24		1	1		.2	
	31	1	6	3.0	9.8		2.8	23				28		1	3		. 4	
	MAY 27	1	4	2.4	6.4		2.5	20			4.5	21		1	0		.3	
	JUL 20	1	6	2.7	11		2.9	30				21		1	3		. 4	10
	AUG 05	. 1	5	2.6	8.0		2.5	22				26		1	1		.3	
	SEP 29	. 1	5	2.4	8.6		3.3	20				18		1	3		.3	
	DATE	SILI DIS SOL (MG AS	VED /L	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	GE	NO3 AL L	NITH GEN AMMON TOTA (MG/ AS N	I, IIA L 'L	MITTO GEN, MONIA ORGAN TOTA (MG, AS	AM- NIC AL	NITR GEN TOTA (MG/	Ĺ	PHO PHA TOT (MG AS P	TE, AL /L	CARBO ORGA TOTA (MG,	NIC AL /L	
	FEB 08		8.6	80			.80			3	. 40	4.	2		. 49		3.1	
	31		8.6	122	. 0 40	1	.0	. 9	70	E 1	. 40				.73		4.6	
	27 JUL		8.7	101	.080	1	.1		90	E 1	. 10				.67		6.1	
	20 AUG	. 1	1	138	.240	. 1	.6		420	1	.50	3.	1		.70		6.6	
	05 SEP	. 1	2	127	.100	1	.3		460	1	. 10	2.	4		.61		7.1	
	29		9.2	98	.090	1	.2	E.	170	1	. 10	2.	3		.52		3.8	

DELAWARE RIVER BASIN

01464500 CROSSWICKS CREEK AT EXTONVILLE, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
MAY 27	1000	<10	2	<10	20	1	10	6
DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS (UG/L)
MAY 27	4100	13	80	.1	4	<1	30	12

01464505 CROSSWICKS CREEK AT GROVEVILLE, NJ

LOCATION.--Lat 40°10'26", long 74°40'48", Mercer County, Hydrologic Unit 02040201, at bridge on U.S. Route 130 in Groveville, 0.3 mi (0.5 km) upstream from Doctors Creek, and 0.6 mi (1.0 km) southwest of Yardville.

DRAINAGE AREA. -- 98.2 mi2 (254.3 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1976 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
JAN 25	1105	325	6.8	.0	12.2	25	49	3500	57
31	1230	228	7.2	9.0	10.6	2.7	94	490	56
MAY 26	0940	177	7.1	15.0	8.5	<4.8	350	2400	48
JUL 20	1330	126	7.4	26.0	5.6	4.8	3300	1700	49
AUG 05	1235	180	7.1	23.5	6.0	1.8			51
SEP 29	1215	262	7.2	18.0	7.2	16	1100	700	53
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
JAN 25 MAR	13	5.9	20	3.2	11	1	25	62	.2
31	16	3.8	20	2.5	25		30	28	.5
MAY 26	14	3.2	8.9	3.0	21		25	16	•3
JUL 20	14	3.4	20	3.4	28		25	26	.4
AUG 05	15	3.3	11	2.9	20		25	16	.3
SEP 29	16	3.2	25	4.4	24	<.5	23	35	.4
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHATE, TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
JAN 25	8.6	181		1.1		3.60	4.7	.58	13
MAR 31	8.7	152	.040	1.4	.460	E1.45		.67	5.2
MAY 26	8.7	93	.070	1.4	.430	E.95		.70	8.5
JUL 20	10	159	.090	1.9	.520	1.20	3.1	.80	12
AUG 05	11	135	.060	1.6	.240	.97	2.6	.70	
SEP 29	10	163	.120	1.5	E1.10	2.00	3.5	.83	7.1

01464505 CROSSWICKS CREEK AT GROVEVILLE, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

		ALUM-		BERYL- LIUM,	BORON.	CADMIUM	CHRO-	COPPER.
		INUM.		TOTAL	TOTAL	TOTAL	TOTAL	TOTAL
		DIS-	ARSENIC	RECOV-	RECOV-	RECOV-	RECOV-	RECOV-
		SOLVED	TOTAL	ERABLE	ERABLE	ERABLE	ERABLE	ERABLE
	TIME	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L
DATE		AS AL)	AS AS)	AS BE)	AS B)	AS CD)	AS CR)	AS CU)
SEP								
29	1215	20	2	<10	60	1	10	5
			MANGA-					
	IRON,	LEAD,	NESE,	MERCURY	NICKEL,		ZINC,	
	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	SELE-	TOTAL	
	RECOV-	RECOV-	RECOV-	RECOV-	RECOV -	NIUM,	RECOV-	
	ERABLE	ERABLE	ERABLE	ERABLE	ERABLE	TOTAL	ERABLE	PHENOLS
	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	
DATE	AS FE)	AS PB)	AS MN)	AS HG)	AS NI)	AS SE)	AS ZN)	(UG/L)
SEP								
29	2200	3	40	.1	4	<1	10	1

107

01464515 DOCTORS CREEK AT ALLENTOWN, NJ

LOCATION.--Lat 40°10'37", long 74°35'57", Monmouth County, Hydrologic Unit 02040201, at bridge on Breza Road in Allentown, and 0.8 mi (1.3 km) downstream from Conines Millpond dam.

DRAINAGE AREA . -- 17.4 mi2 (45.1 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

	DATE	TIME	STRE FLO INST TANE (CF	AM- W, AN- OUS	SPE- CIFIC CON- DUCT- ANCE UMHOS)		PH ITS)	AT	PER- URE G C)	SOI	GEN, IS- LVED G/L)	BI CH IC 5	AND, O-	COLI- FORM, FECAL EC BROTH (MPN)	, S TO F	TREP- COCCI ECAL	HARD- NESS (MG/I AS CACO:	L
F	TEB 08	1340		26	156				2.0		12.6		2.4	11	0	240		43
A	01	0940		23	149		7 2								0			
N	YAY						7.3		10.0		11.3		2.1			34		52
	26	1250		35	145		7.1		17.5		8.4		<2.4	33		920		48
	20 AUG	1200		12	190		7.2		25.5		4.9		4.5	54		540	18	63
5	10 SEP	1100		10	167		7.2		23.5		5.8		1.4	70	00	800		58
	28	0945		25	166		7.4		18.0		7.7		6.0	130	00	800		57
	DATE	DIS SOI (MC	CIUM S- LVED G/L CA)	MAGNE SIUM DIS- SOLVE (MG/L AS MG	, SOD DI D SOL (M	IUM, S- VED G/L NA)		VED /L	ALKA LINIT LAB (MG/ AS CACO	Y L	SULF TOT (MG AS	AL /L	SULFAT DIS- SOLVE (MG/L AS SOL	E F	HLO- RIDE, DIS- BOLVED MG/L IS CL)	FLUO- RIDE, DIS- SOLVE (MG/L AS F)	D	
	FEB 08		9.8	4.	5	6.1		3.2	12				24		13		2	
	01 MAY		12	5.	4	6.1		2.7	15				27		13		2	
	26		11	5.	1	4.5		2.4	19			<.5	22		12		2	
	JUL 20		15	6.	3	8.7		3.4	32				17		14	y Tie	3	
	AUG 10		14	5.	7	6.2		3.5	33				15		14		3	
	SEP 28		14	5.	4	6.5		4.3	31				16		13		3	- * 1
	DATE	DIS SOI (MC	LVED G/L	SOLIDS RESIDU AT 180 DEG. DIS- SOLVE (MG/L	E NI G C NIT TO	TRO- EN, RITE TAL G/L N)	NIT GE NO2+ TOT (MG	NO3	NITR GEN AMMON TOTA (MG/ AS N	ÍA L L	NIT GEN, MONI ORGA TOT (MG	AM- A + NIC AL /L	NITRO GEN, TOTAI (MG/I	. 1	PHOS- PHATE, TOTAL (MG/L 5 PO4)	CARBON ORGANI TOTAL (MG/L AS C)	Ċ	
	FEB 08		7.8	7	0		1	.7				.65	2.1		.31	1.	5	
	APR 01		3.2	10		.020		.80	•	40		.80			.28			
	MAY 26		6.4	10		.020		.80		20		.60			.25			
	JUL 20		8.4	12		.140		.80	1.4			.30	3.	1	1.10			
	AUG 10		6.6	9									1.5		.80			
	SEP					.050		.42	E.5			. 10						
	28		8.2		9	.030		.29	E.6	50		.20	1.5		.80	3.		
DATE	TIME	GEN + O TOT BOT (M		CARBON INOR- GANIC TOT IN BOT MA (G/KG AS C)	TOT T BOT	BON, RG + ANIC . IN MAT /KG C)	SOL (UC	M, S- VED	ARSEN TOTA (UG/ AS A	L	(UG	AL OT- MA- IAL	LIUM TOTAL RECOV ERABI (UG/I	V- 1 LE 1	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	TOTAL RECOV	F - T E	ADMIUM RECOV. M BOT- OM MA- TERIAL (UG/G AS CD)
MAY 26	. 1250			_				10		1			<	10	10	12	1	
SEP 28		q	60		2	4.7						<1						<1
-0	. 0,77	,		•	-													

01464515 DOCTORS CREEK AT ALLENTOWN, NJ--Continued

	CHRO-	CHRO-	COBALT,		COPPER,		IRON,	2012	LEAD,	MANGA-	MANGA-
	MIUM, TOTAL RECOV- ERABLE	MIUM, RECOV. FM BOT- TOM MA-	RECOV. FM BOT- TOM MA- TERIAL	COPPER, TOTAL RECOV- ERABLE	RECOV. FM BOT- TOM MA- TERIAL	IRON, TOTAL RECOV- ERABLE	RECOV. FM BOT- TOM MA- TERIAL	LEAD, TOTAL RECOV- ERABLE	RECOV. FM BOT- TOM MA- TERIAL	NESE, TOTAL RECOV- ERABLE	NESE, RECOV. FM BOT- TOM MA-
DATE	(UG/L AS CR)	TERIAL (UG/G)	(UG/G AS CO)	(UG/L AS CU)	(UG/G AS CU)	(UG/L AS FE)	(UG/G AS FE)	(UG/L AS PB)	(UG/G AS PB)	(UG/L AS MN)	TERIAL (UG/G)
MAY											
26 SEP	10		:	5		2100		7		90	
28		3	10		5		6700		40		160
	MERCURY TOTAL RECOV- ERABLE (UG/L	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G	NICKEL, TOTAL RECOV- ERABLE (UG/L	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G	SELE- NIUM, TOTAL (UG/L	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL	ZINC, TOTAL RECOV- ERABLE (UG/L	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G	PHENOLS	PCB, TOTAL IN BOT- TOM MA- TERIAL	PCN, TOTAL IN BOT- TOM MA- TERIAL
DATE	AS HG)	AS HG)	AS NI)	AS NI)	AS SE)	(UG/G)	AS ZN)	AS ZN)	(UG/L)	(UG/KG)	(UG/KG)
MAY 26 SEP	. 4		6		<1		50		9		
28		<.01		<10		<1		42		8	<1.0
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
MAY											
26 SEP											
28	<.1	8.0	5.4	2.3	3.0	<.1	3.9	1.1	<.1	<.1	<.1
	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL.	LINDANE TOTAL IN BOT- TOM MA- TERIAL	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL	METH- OXY- CHLOR, TOT. IN BOTTOM MATL.	METHYL PARA- THION, TOT. IN BOTTOM MATL.	METHYL TRI- THION, TOT. IN BOTTOM MATL.	MIREX, TOTAL IN BOT- TOM MA- TERIAL	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL	PER- THANE IN BOTTOM MATERIL	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL
DATE	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)
MAY			and a fair	1 (due pas 5 gr	d'archere i						
MAY 26 SEP					185	122					- 3
28	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<1.00	<10	<.1

01464522 DOCTORS CREEK AT ROUTE 130 NEAR YARDVILLE, NJ

LOCATION.--Lat 40°10'31", long 74°40'33", Mercer County, Hydrologic Unit 02040201, at bridge on U.S. Route 130, 0.3 mi (0.5 km) upstream from mouth, 0.4 mi (0.7 km) northwest of Groveville, 0.6 mi (1.0 km) southwest of Yardville, and 2.5 mi (4.0 km) southwest of Haines Corner.

DRAINAGE AREA .-- 25.8 mi2 (66.8 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)	
JAN 25	1315	252	6.8	.0	12.8	1.8	13	26	48	
MAR 31	1415	177	7.1	9.5	11.1	2.4	240	130	54	
MAY 26	1100	156	7.3	16.5	9.2	<4.6	>2400	920	52	
JUL 28	1245	104	6.7	22.5	7.1	6.0			30	
10	1315	184	7.4	24.5	7.4	.6	500	920	61	
SEP 28	1215	173	7.6	17.5	9.1	1.0	240	1600	56	
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	
JAN 25	14	3.1	36	3.2	11*		30	38	.2	
MAR 31	12	5.8	10	2.8	14		28	20	.2	
MAY 26	12	5.4	5.7	2.4	19		24	14	.2	
JUL 28	7.0	3.1	4.5	2.9	8.0		15	9.2	.2	
AUG 10	14	6.4	10	3.4	27		20	21	.2	
SEP 28	13	5.7	7.5	4.1	24	<.5	19	17	.2	
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO-GEN, TOTAL (MG/L AS N)	PHOS- PHATE, TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)	
JAN 25 MAR	7.0	149		2.0		.50	2.5	.18	2.1	
31 MAY	4.0	122	.040	1.8	.360	E.85		.21	3.5	
26 JUL	6.7	121	.040	1.5	.210	E.60		.21	3.8	
28 AUG	3.6	74	.200	1.1	.120	3.10	4.2	1.30	19	
10 SEP	7.5	117	.050	1.6	E.130	.57	2.2	.34	3.8	
28	7.6	105	.040	1.1	E.050	.47	1.6	.55	2.9	

01464522 DOCTORS CREEK AT ROUTE 130 NEAR YARDVILLE, NJ--Continued

DATE	TIME	NITRO- GEN, NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)
SEP											
28	1215	1200	4.0	9.4	10	2	<1	<10	30	1	<1
DATE	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TÖTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
SEP											
28	10	3	10	6	1	910	4800	6	10	20	60
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)		SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
SEP 28	<.1	<.01	4	<10	<1	<1	<10	19	<1	<1	<1.0
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
SEP											
28	<.1	2.0	2.0	1.6	2.0	<.1	• 3	<.1	<.1	<.1	.<.1
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOTTOM MATERIL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
SEP 28	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<1.00	<10	<.1

01464538 CRAFTS CREEK AT COLUMBUS, NJ

LOCATION.--Lat 40°04'44", long 74°43'07", Burlington County, Hydrologic Unit 02040201, at bridge on Columbus-Mansfield Road, 0.4 mi (0.6 km) north of Columbus, and 6.0 mi (9.6 km) northeast of Mount Holly.

DRAINAGE AREA. -- 5.38 mi2 (13.94 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- February 1981 to May 1982 (discontinued).

WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DAT	ΓE		STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
JAN		11100	0 11	100			10.0			40	
MAR		1400	8.4	182	6.2	.0	12.0	.7	2	<2	55
MAY		1305	2.2	175	6.7	11.0	11.9		<20	<2	54
27	• • •	1140		160	6.8	19.5	9.5	>.3	330	27	53
	DATE	CALCI DIS- SOLV (MG/ AS C	UM SI DI ED SOI L (MO	IS- DIS LVED SOL	IUM, S: S- D: VED SOI G/L (MG	IUM, LINI IS- LA LVED (MC G/L AS	AB SULF	TAL SOL	ATE RID - DIS VED SOL /L (MG	E, RII - DI VED SOI /L (MC	S- VED S/L
	JAN 20	. 12		6.0	5.6	3.0	3.0	3	7 1	4	.1
	MAR 24	. 11		6.5	6.2	3.3	7.0	3	7 1	6	.2
	MAY 27	. 12		5.5	4.4	3.2 10		<.5 3	1 1	2	.2
	DATE	SILIC DIS- SOLV (MG/ AS SIO2	AT 1 ED DEC L DI SOI	IDUE NI 180 G G. C NIT IS- TO LVED (M	EN, GRITE NO2- TAL TO G/L (M	EN, GE +NO3 AMMO TAL TOT	TRO- GEN, EN, MONIONIA ORGA TAL TOTA G/L (MO	IA + NIT ANIC GE FAL TOT G/L (MG	/L (MG	TE, ORGA AL TOTA /L (MC	ANIĆ FAL G/L
	JAN										
	20 MAR	. 12		108		2.1		.18 2	2.3	.18	1.7
	24 MAY	. 10		109		1.8	.550 E	1.40		-	1.7
	27	. 12		119	.020	1.2	.110 E	E.35		.09	3.9
		DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	
		MAY									
		27	1140	100	1	<10	10	1	10	4	
		DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS	
		MAY 27	1800	4	260	.2	7	<1	10	11	

01464582 ASSISCUNK CREEK NEAR COLUMBUS, NJ

LOCATION.--Lat 40°03'13", long 74°44'34", Burlington County, Hydrologic Unit 02040201, at bridge on Petticoat Bridge Road, 0.1 mi (0.2 km) downstream from Assiscunk Branch, 1.7 mi (2.7 km) southwest of Columbus, and 4.0 mi (6.4 km) northeast of Mount Holly.

DRAINAGE AREA .-- 10.9 mi (28.2 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- January 1981 to May 1982 (discontinued).

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	TEMP ATU (DEG	ER- RE S	YGEN, DIS- OLVED MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
JAN 20	1145	9.2	176	6.2		.0	9.6	1.1	<2	8	52
MAR									112		2.5
24 MAY	1125	6.7	169	6.4		8.5	10.9		<2	8	54
27	1320	4.8	170	6.5	1	9.5	6.9	>1.0	1600	350	55
DATE	CALC: DIS- SOL: (MG,	TUM S: - D: /ED SOI /L (MC	IS- DI LVED SOL G/L (M	IUM, S S- D VED SC G/L (M	TAS- SIUM, DIS- DLVED G/L S K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFI TOTA (MG/ AS S	AL SOLY L (MG)	VED SOL	DE, RII	DE, IS- LVED G/L
JAN											
20 MAR	. 1:	3	4.8	4.8	3.8	4.0		43	2 1	12	.2
24 MAY	. 1:	3	5.3	5.5	4.0	6.0		42	2 1	13	• 3
27	. 14	4	4.9	4.8	4.3	10		<.5 35	5 1	12	•3
DATE	SILIO DIS- SOL' (MG, AS SIO:	VED DEC	IDUÉ NI 180 G G. C NIT IS- TO LVED (M	EN, G RITE NO2 TAL TO G/L (M	TRO- EN, 2+NO3 TAL IG/L N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	MONI	AM- A + NITI NIC GEI AL TOTA /L (MG/	N, PHA AL TOT VL (MC	TAL TO	BON, ANIC FAL G/L C)
JAN 20	. 15		118	-20	1.1			.28 1	. 4	.12	1.3
MAR 24				.010	.90	<.050		.54		.15	1.8
MAY											5.0
27	. 10	0	126	.030	.70	.300	E	.70		.25	5.0
	DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	LIU TOI REC ERA (UG	TAL T COV- R ABLE E	ORON, OTAL ECOV- RABLE UG/L S B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	
1	YAM					100					
	27	1320	10	2	2	<10	20	1	10	3	
	DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERC TOT REC E ERA	COV- R BLE E	CKEL, OTAL ECOV- RABLE UG/L S NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS	
	MAY 27	4600	6	260)	1.8	4	<1	20	12	

01464590 ASSISCUNK CREEK NEAR BURLINGTON, NJ

LOCATION.--Lat 40°04'19", long 74°47'57", Burlington County, Hydrologic Unit 02040201, at bridge on Old York Road, 1.4 mi (2.3 km) southwest of Bustleton, 2.8 mi (4.5 km) northeast of Deacons, 3.2 mi (5.1 km) east of Burlington, and 4.2 mi (6.8 km) upstream from mouth.

DRAINAGE AREA .-- 37.4 mi2 (96.9 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1976 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)	
JAN									1	
20 MAR	0920	188	6.0	.0	8.1	. 4	2	5	59	
24 JUN	0955	171	6.8	7.0	11.4	a gille t a e s	630	8	56	
03	1310	167	6.8	19.5	8.0	1.4	1300	540	53	
JUL 14	1045	175	7.1	23.0	6.2	2.7	800	1700	56	
04 SEP	1330	168	6.8	23.0	6.9	1.5	1700	490	57	
27	1345	166	6.9	18.0	8.1	1.5	92000	>24000	50	
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	
JAN										
20 MAR	14	5.8	7.3	3.6	7.0		41	17	.2	
24 JUN	13	5.6	6.7	3.5	8.0		40	15	.2	
03 JUL	13	5.1	5.0	3.5	12		35	10	.2	
14 AUG	13	5.6	6.0	4.2	10		30	15	• 3	
04 SEP	14	5.3	6.5	3.7	14		33	12	.3	
27	12	4.9	7.5	5.5	7.0	.9	32	16	.3	
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHATE, TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)	
JAN 20	15	129		1.4		.32	1.7	.52	1.2	
MAR										
24 JUN	.12	114	.010	1.0	.070	E.57	7-	.12	2.2	
03 JUL	15	106	.030	1.2	.100	.65	1.8	.28	6.1	
14 AUG	13	116	.020	.80	.180	.48	1.3	.28	5.0	
04 SEP	17	124	.010	.80	.050	.55	1.3	.45	5.8	
27	11	108	.010	.70	E.050	. 44	1.1	.28	5.3	

DELAWARE RIVER BASIN

01464590 ASSISCUNK CREEK NEAR BURLINGTON, NJ--Continued

DATE	TIME	NITRO- GEN, NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)
SEP					-			24.10			
27	1345	1200	.1	8.4	20	2	<1	<10	40	1	<1
DATE	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
SEP 27	10	4	10	5	5	2400	4800	8	40	90	70
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
SEP											
27	<.1	<.01	4	<10	<1	<1	10	28	<1	<1	<1.0
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
SEP 27	1.7	8.0	33	96	1.0	<.1	<.1	<.1	<.1	<.1	<.1
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOTTOM MATERIL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
SEP											
27	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<1.00	<10	<.1

01464598 DELAWARE RIVER AT BURLINGTON, NJ

LOCATION.--Lat 40°04'42", long 74°52'28", Burlington County, Hydrologic Unit 02040201, on left bank at the intake canal of the Public Service Electric and Gas Company, 0.3 mi (0.5 km) downstream from Burlington-Bristol Bridge, 1.4 mi (2.3 km) downstream from Assiscunk Creek, and at channel mile 117.54 (189.12 km), revised.

DRAINAGE AREA .-- 7.160 mi2 (18.540 km2).

PERIOD OF RECORD.-TIDE ELEVATIONS: July 1964 to current year. March 1921 to July 1926, January 1931 to November 1939, August 1951 to June 1954, July 1957 to June 1964, in files of Philadelphia District Corps of Engineers.

REVISED RECORDS .-- WDR NJ-76-1: 1973(m).

GAGE.--Water-stage recorder. Datum of gage is -12.90 ft (-3.932 m) National Geodetic Vertical Datum of 1929. Prior to May 20, 1971, water-stage recorder at site 0.7 mi (1.1 km) upstream at same datum. Gage-height record converted to elevation above or below (-) National Geodetic Vertical Datum of 1929 for publication.

REMARKS.--Summaries for months with short periods of no gage-height record have been estimated with negligible or no loss of accuracy unless otherwise noted. Some periods cannot be estimated and are noted by dash (--) lines.

EXTREMES FOR PERIOD OF RECORD. -- Maximum elevation, 8.74 ft (2.664 m) Oct. 25, 1980; minimum, -6.60 ft (-2.012 m) Feb. 26, 1967.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum elevation known, 10.8 ft (3.29 m) Aug. 20, 1955, from high-water mark at site 1.4 mi (2.3 km) upstream; minimum, -9.1 ft (-2.77 m) Dec. 31, 1962, at present site.

EXTREMES FOR CURRENT YEAR .-- Maximum elevation recorded, 7.19 ft (2.192 m) Jan. 5; minimum recorded, -5.57 ft (-1.698 m) Apr. 7.

Summaries of tide elevations during current year are as follows:

TIDE ELEVATIONS, IN FEET, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

		OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
Max imum	Elevation	6.14	6.51	5.91	7.19	6.16	6.01	6.82	6.22	6.92	6.40	6.10	6.13
high tide	Date	18	15	27	5	6	26	3	25	20	22	5	22
Minimum	Elevation	-3.71	-3.55	-4.26		-3.81	-3.77	-5.57	-3.49	-3.05	-3.19	-3.40	-3.15
low tide	Date	8	22	6		27	28	7	9	23	20	20	4
Mean high t	ide	4.68	4.71	4.32		4.77	4.83	4.96	5.27	5.85	5.31	5.13	5.13
Mean water	level	1.19	1.24	0.87		1.26	1.34	1.37	1.52	2.12	1.52	1.40	1.51
Mean low ti	de	-2.51	-2.46	-2.81		-2.40	-2.35	-2.36	-2.49	-1.85	-2.52	-2.57	-2.37

NOTE .-- Missing or doubtful record on Jan. 5, Jan. 8-31.

01465835 SOUTH BRANCH RANCOCAS CREEK AT RETREAT, NJ

LOCATION.--Lat 39°55'23", long 74°43'05", Burlington County, Hydrologic Unit 02040202, at bridge on light-duty road in Retreat, 40 ft (12.2 m) upstream of Friendship Creek, 1.2 mi (1.9 km) southwest of Buddtown, and 1.8 mi (2.9 km) northeast of Beaverville.

DRAINAGE AREA .-- 44.1 mi2 (114.2 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1975 to June 1982 (discontinued).

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

DATE		STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFI CON- DUCT ANCE	IC - - - -	A	MPER- TURE S	YGEN, DIS- SOLVED MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	EC T BROTH	STREP- OCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
JAN	1005	50		84					2	10	11
21 MAR	1225	53		84	4.2	.0	10.7	•5	2	10	- 11
25 JUN	1055	40		87	4.3	11.0	10.5	.6	<2	<2	11
07	1215	57		57	4.4	18.5	6.3	3.2	23	94	8
DATE	CALCI DIS- SOLV (MG/	UM SI DI ED SOI L (MC	S- VED S	SODIUM, DIS- SOLVED (MG/L	POTAS- SIUM, DIS- SOLVED (MG/L	LINITY LAB (MG/L AS	SULF TOT (MG	AL SOLY	DIS- VED SOLVE 'L (MG/L	RIDE DIS D SOLV (MG/	;, ;= ;ED ;L
DATE	AS C	A) AS	MG)	AS NA)	AS K)	CACO3	AS	S) AS SO	04) AS CL) AS F	,
JAN 21 MAR	. 2	.6	1.2	2.8	1.0	1.0		17	5.	6 <	. 1
25 JUN	. 2	. 6	1.1	3.2	.8	<1.0		12	4.	7	.1
07	. 1	. 9	.9	2.3	. 8	<1.0		<.5 1°	4.	9 <	. 1
	SILIC DIS- SOLV (MG/ AS	ED DEC	DUÉ 180	NITRO- GEN, NITRITE TOTAL (MG/L	NITRO- GEN, NO2+NO3 TOTAL (MG/L	GEN,	MONÍ	AM- A + NITH NIC GEN AL TOTA	, PHATE	ORGAN TOTA (MG/	IIC L 'L
DATE	SI02) (MC	3/L)	AS N)	AS N)	AS N)	AS	N) AS I	I) AS PO4) AS (:)
JAN 21	6	.1	55	22	.30			.28	.58 .0	0 7	7.5
MAR	. 0	• 1	,,		.30	-		.20			
25 JUN	. 3	. 4	38	<.010	.20	<.05) E	.25	1	2 6	5.5
07	. 4	.6	44	<.010	.06	.13)	.86	.92 .1	8 12	2

DELAWARE RIVER BASIN

01465835 SOUTH BRANCH RANCOCAS CREEK AT RETREAT, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	TIME	ALUM- INUM, _DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV _T ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
JUN 07	1215	300	1	<10	60	1	10	5
DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS
JUN	AU IL,	NO 1D)	NO HIN	AB IId)	AD NI)	NO DE	AU ZN	(00/1)
07	2300	10	30	•3	6	<1	20	6

01465850 SOUTH BRANCH RANCOCAS CREEK AT VINCENTOWN, NJ

LOCATION.--Lat 39°56'22", long 74°45'50", Burlington County, Hydrologic Unit 02040202, at bridge on Lumberton-Vincentown Road at Vincentown, 2.9 mi (4.7 km) southeast of Lumberton, and 3.1 mi (5.0 km) upstream from Southwest

DRAINAGE AREA. -- 64.5 mi2 (167.1 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1925, 1959-62, 1975 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE CIF CON DUC ANC (UMH	IC T- E	A	MPER- TURE PEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND BIO- CHEM- ICAL, 5 DAY (MG/L	FO FE E	C TOTH	STREP- OCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
JAN 21	0935	64		77	5.4	.0	10.3	1.	2	900	24	20
MAR 25	0925	56		92	6.1	9.5	10.3		9	49	17	23
JUN 07	1025	63		58	5.9	18.5	7.1	2.:	2	79	920	18
JUL 14	1245	33		62	6.0	25.5	5.8	1.	1	<20	1300	16
AUG 04	1045	24		76	6.5	24.0	5.9	3.	8	50	490	21
SEP 27	1110	34		73	6.6	18.5	7.5	2.		33	5 40	20
-11.1.	1110			13								1.00
DATE	(MG	IUM S - D VED SO /L (M	GNE- IUM, IS- LVED G/L MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	LINIT	Y SULF L TOT (MG	IDE DIAL S	LFATE IS- OLVED MG/L SO4)	CHLO- RIDE, DIS- SOLVE (MG/L AS CL	RIDE DIS D SOLV (MG/	E, S- /ED /L
JAN			172.30		C. E. W.		-					
21 MAR		5.7	1.5	3.2	1.2	2.	0		20	6.	7	<.1
25 JUN		6.6	1.7	4.2	1.2	2 4.	0		18	6.	6	<.1
07 JUL		4.9	1.3	3.1	1.1	5.	0	<.5	13	6.	1 .	<.1
14 AUG		4.6	1.2	4.3	.7	7 1.	0		12	6.	3 .	<.1
04 SEP		6.5	1.2	5.0	1.3	9.	0		14	6.	6	<.1
27		5.9	1.3	4.0	1.9	2.	0		14	6.	4	.1
DATE	(MG AS	CA, RES - AT VED DE /L D	IDS, IDUE 180 G. C IS- LVED G/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN	O- GEN, , MONI IA ORGA L TOI L (MG	A + N NIC AL T	ITRO- GEN, OTAL MG/L S N)	PHOS- PHATE TOTAL (MG/L AS PO4	ORGAN TOTA (MG/	NIĆ AL /L
JAN												
21 MAR		6.6	59		.50)		. 32	.82	.0		5.8
25 JUN		3.8	59	<.010	. 40	.0	70 E	.50		.1	5 6	5.7
07 JUL		5.5	64	<.010	.26	.1	20	.83	1.1	.3	4 1:	3
14 AUG		6.0	60	.010	.20	.2	40	.98	1.2	.5	2 15	5
04 SEP		5.8	68	<.010	. 40	.0	70	.77	1.2	. 4	4 12	2
27		4.4	59	<.010	. 10	E.0	50	. 46	.56	.2	1 5	5.8

DELAWARE RIVER BASIN

01465850 SOUTH BRANCH RANCOCAS CREEK AT VINCENTOWN, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
JUN								
07	1025	210	2	<10	70	1	20	10
			MANGA-					
	IRON,	LEAD,	NESE,	MERCURY	NICKEL,		ZINC,	
	TOTAL RECOV-	TOTAL RECOV-	TOTAL RECOV-	TOTAL RECOV-	TOTAL RECOV-	SELE- NIUM.	TOTAL RECOV-	
	ERABLE	ERABLE	ERABLE	ERABLE	ERABLE	TOTAL	ERABLE	PHENOLS
	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	
DATE	AS FE)	AS PB)	AS MN)	AS HG)	AS NI)	AS SE)	AS ZN)	(UG/L)
JUN								
07	2300	7	30	.2	19	<1	20	13

01465970 NORTH BRANCH RANCOCAS CREEK AT BROWNS MILLS, NJ

LOCATION.--Lat 39°58'04", long 74°34'48", Burlington County, Hydrologic Unit 02040202, at bridge on Lakehurst Road at outflow of Mirror Lake in Browns Mills, 1.5 mi (2.4 km) north of Browns Mills Junction, and 2.0 mi (3.2 km) northwest of outflow of Country Lake.

DRAINAGE AREA. -- 27.4 mi2 (71.0 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1975 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

DATE	TIME	STRE FLO INST TANE (CF	CAM- COW, COUS A	SPE- SIFIC SON- OUCT- ANCE	PH (UNITS)	AT	IPER- URE	SOL	1	DXYGEN DEMANI BIO- CHEM- ICAL 5 DAY (MG/I), CO F F	OLI- ORM, EC AL, EC ROTH MPN)	TOC	CREP- COCCI CCAL MPN)	HARD- NESS (MG/L AS CACO3)
JAN 26	1040		47	65	4.6		2.0	1	1.6		. 7	<2		2	1	1
MAR 23	1350		33	36	4.8		9.5	1	0.7	1.	. 0	<2		<2	1	0
JUN 03	0910		62	41	5.0		20.5		7.6	1	. 3	79		<2		9
JUL 13	1045		35	39	5.3		25.5		5.8	1	. 2	<200		<200		8
AUG					3 13											
11 SEP	1030		24	38	5.6		25.5		6.6		. 3	5		<20		9
21	1035		18	38	6.2		20.5		7.9		. 4	17		175		0
DATE	(MC	VED	MAGNE- SIUM, DIS- SOLVEI (MG/L AS MG)	DIS- SOLVE (MG/	M, SI D SOI L (MC	TAS- IUM, IS- LVED I/L K)	ALKA LINIT LAF (MG/ AS CACO	ry B 'L	SULFII TOTA (MG/I	DE I L : L	ULFATE DIS- SOLVED (MG/L S SO4)	CHL RID DIS SOL (MG AS	E, VED /L	FLUC RIDE DIS SOLV (MG/ AS E	E, B- /ED /L	
JAN																
26 MAR		2.5	1.2	2 3	. 7	.8	<1.	0			1 4		5.5	•	<.1	
23 JUN		2.4	1.0) 3	. 3	.9	1.	0			13		4.3		(.1	
03 JUL		2.1	1.0) 2	. 3	. 7	4.	0	2.		9.0		3.9		(.1	
13 AUG		1.9	. 9) 2	. 4	.2	3.	.0			8.0		4.6		(.1	
11 SEP		2.1	. 9) 2	. 4	. 4	3.	0			8.0		4.0		(.1	
21		2.2	1.0) 2	. 8	.6	5.	0	<	.5	8.0		4.6		(.1	
DATE	(MC	VED	SOLIDS, RESIDUE AT 180 DEG. O DIS- SOLVEI (MG/L)	NITR GEN NITRI TOTA (MG/	TE NO24 L TOT L (MC	TAL G/L	NITE GEN AMMON TOTA (MG/ AS N	I, IIA L 'L	NITRO GEN, AI MONIA ORGAN TOTAL (MG/I AS N	H- HIC L	NITRO- GEN, TOTAL (MG/L AS N)	PHO: PHA TOT. (MG: AS PO	TE, AL /L	CARBO ORGAN TOTA (MG/ AS O	NIĆ NL 'L	
JAN 26		4.8	40)		.10				35	. 45		.06		3.9	
MAR 23		3.1	33	3 <.0	10	.10	<.0	050	E . !	57		<	.06	2	2.6	
JUN 03		3.0	30	(.0	10	(.10	. 1	100		45			.09	16	5	
JUL 13		2.5	4	<.0	10	<.10	.0	70		39			. 12	8	3.0	
AUG 11		1.4	31	<.0	10	.10	.0	90		51			. 15		7.2	
SEP 21		1.2	43	3 .0	10	.10	.0	90		39			. 12		3.6	

DELAWARE RIVER BASIN

01465970 NORTH BRANCH RANCOCAS CREEK AT BROWNS MILLS, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
SEP								
21	1035	30	2	<10	10	<1	10	6
	IRON, TOTAL RECOV-	LEAD, TOTAL RECOV-	MANGA- NESE, TOTAL RECOV-	MERCURY TOTAL RECOV-	NICKEL, TOTAL RECOV-	SELE- NIUM.	ZINC, TOTAL RECOV-	
	ERABLE (UG/L	ERABLE (UG/L	ERABLE (UG/L	ERABLE (UG/L	ERABLE (UG/L	TOTAL (UG/L	ERABLE (UG/L	PHENOLS
DATE	AS FE)	AS PB)	AS MN)	AS HG)	AS NI)	AS SE)	AS ZN)	(UG/L)
SEP								
21	1800	8	10	.2	1	<1	10	1

01466500 MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ (Hydrologic bench-mark station)

LOCATION.--Lat 39°53'05", long 74°30'20", Burlington County, Hydrologic Unit 02040202, on right bank in Lebanon State Forest, 25 ft (7.6 m) upstream from Butterworth Road Bridge, 3.4 mi (5.5 km) upstream from confluence with Cooper Branch, and 7.0 mi (11.3 km) southeast of Browns Mills.

DRAINAGE AREA. -- 2.35 mi2 (6.09 km2), revised.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1953 to current year. Prior to October 1962, published as "McDonald Branch in Lebanon State Forest".

GAGE.--Water-stage recorder and concrete control. Datum of gage is 117.73 ft (35.884 m) National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark).

REMARKS.--Water-discharge records good except those for January, which are fair. Gage-height record is collected above concrete control and discharge record, which includes leakage around control, is at site 785 ft (239 m) downstream.

AVERAGE DISCHARGE. -- 29 years, 2.30 ft 3/s (0.065 m 3/s), 13.52 in/yr (343 mm/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 35 ft³/s (0.991 m³/s) Aug. 25, 1958, gage height, 2.33 ft (0.710 m); minimum daily, 0.8 ft³/s (0.023 m³/s) July 6, 19, 1967.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 6.5 ft³/s (0.18 m³/s) Apr. 28, gage height, 1.67 ft (0.509 m), no peak above base of 7.0 ft³/s (0.198 m³/s); minimum, 0.90 ft³/s (0.025 m³/s) Oct. 17, 21, 22, 23, gage height, 1.15 ft (0.351 m).

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 MEAN VALUES DAY OCT NOV DEC FEB MAY JUN JUL AUG SEP JAN APR 1.0 1.0 1.4 .99 1.4 2.2 2.7 1.1 1.8 1.5 1.6 2.6 1.0 1.0 1.2 1.4 2.5 1.3 1.3 1.3 2.3 2.0 2.0 1.5 1.4 1.1 2.3 .99 .99 1.1 1.3 2.7 1.5 1.9 1.5 3.8 .98 .97 1.0 1.5 1.6 1.8 5 .98 .97 1.0 2.3 3.0 1.6 1.5 1.9 2.2 6 .97 2.0 1.0 1.0 2.9 2.5 1.7 1.9 2.0 1.9 1.5 1.1 1.4 .96 1.0 1.0 2.4 2.2 2.1 1.8 2.0 1.9 1.9 1.0 .98 . 95 2.0 1.9 8 1.0 2.2 2.3 1.6 1.9 1.8 1.3 1.0 .95 1.0 1.9 2.1 2.6 1.8 1.9 1.6 1.9 1.3 1.0 10 .95 .97 1.8 1.0 1.0 1.9 2.4 1.9 1.9 1.6 1.3 .96 .97 2.2 1.6 1.8 1.0 .99 1.8 12 .95 .97 .97 1.5 1.9 2.2 1.8 1.5 1.8 1.0 13 .97 1.3 .95 .97 1.6 1.9 2.0 1.6 1.8 2.0 1.6 1.0 .94 3.4 .99 1.8 1.9 1.9 1.6 1.7 1.6 1.0 15 .94 1.8 3.6 1.2 1.0 .96 1.4 1.6 1.7 1.8 1.6 1.7 16 .94 1.0 1.7 1.6 1.8 1.8 1.5 1.6 3.0 1.6 1.2 1.0 17 .93 4.2 1.2 1.0 1.5 1.5 1.8 1.9 1.5 1.6 1.6 .99 18 .95 1.4 1.5 2.0 4.2 1.5 1.2 .99 19 .99 1.0 1.5 1.8 1.8 1.8 1.5 3.0 1.5 1.2 .99 20 .96 1.0 1.5 1.6 1.9 1.5 2.6 1.4 1.1 1.1 1.7 1.6 21 .93 1.0 1.4 1.5 1.9 1.8 1.7 2.4 1.4 1.1 1.7 1.6 1.6 .97 1.4 22 .92 1.3 1.3 1.3 1.5 1.6 1.5 2.2 1.1 1.7 1.1 23 .97 2.0 1.4 .95 1.9 2.2 1.2 1.0 .99 .97 2.9 1.9 1.4 1.2 1.6 2.1 1.0 25 1.0 .97 2.4 1.3 1.6 1.6 1.4 2.6 1.9 1.4 1.4 .99 26 1.3 .97 1.9 1.3 1.3 1.7 2.4 1.9 1.3 1.3 1.6 1.6 1.7 1.0 27 .97 1.3 1.6 1.5 2.3 1.1 1.5 28 1.2 .97 4.8 1.2 1.0 1.6 2.2 2.1 29 .96 1.3 1.5 2.4 2.8 1.8 1.0 ---30 1.1 .94 1.6 3.2 2.1 3.3 1.6 1.0 31 1.0 1.2 1.7 1.5 2.2 1.5 1.1 TOTAL 30.82 29.47 53.7 1.73 2.7 37.52 55.4 60.5 70.5 38.7 31.06 56.1 55.0 57.9 .99 1.79 1.25 MEAN .98 1.21 2.00 1.77 1.93 1.95 2.35 1.04 MAX 1.5 1.2 3.8 MIN .92 .94 .97 1.3 1.6 1.5 1.3 1.1 .99 1.5 1.4 . 44 .42 .53 CESM .42 .52 .85 .82 .83 1.00 .85 .49 TN. .49 . 47 .59 .88 .89 .87 .92 .96 1.12

CAL YR 1981 TOTAL 481.57 MEAN 1.32 MAX 3.9 MIN .89 CFSM .56 IN 7.62 WTR YR 1982 TOTAL 576.67 MEAN 1.58 MAX 5.2 MIN .92 CFSM .67 IN 9.12

01466500 MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1963 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1968 to current year. WATER TEMPERATURES: October 1960 to current year.

INSTRUMENTATION .-- Temperature recorder since October 1960, water-quality monitor since October 1968.

REMARKS.--Interruptions in the record were due to malfunctions of the instrument.

EXTREMES FOR PERIOD OF DAILY RECORDS .--

SPECIFIC CONDUCTANCE: Maximum, 182 micromhos June 16, 1969; minimum, 19 micromhos Aug. 25, 1979.
WATER TEMEPRATURES: Maximum, 22.0°C Aug. 1, 1970; minimum, 0.0°C on many days during winter months.

EXTREMES FOR CURRENT YEAR .--

SPECIFIC CONDUCTANCE: Maximum, 104 micromhos Jan. 6; minimum, 25 micromhos Oct. 9, 18. WATER TEMPERATURES: Maximum, 17.5°C June 18, 30 and July 21; minimum, 1.5°C Feb. 4, 5.

DA	TE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
		1130	.97	31	4.8	9.0	3.1	1.7	<1	39	4	.7	.6
		1345	1.9	60	4.2	4.0	7.7	.3	K2	80	4	.8	.6
		1200	2.7	87	4.0	3.0	9.6	.3	K 1	140	7	1.2	.9
		1100	1.5	47	4.3	13.5	2.8		<4	88	3	.5	. 4
		1045	2.8	62	4.1	16.5	2.2		39	180	3	.6	. 4
SEP 09		1330	1.0	28	4.6	13.5	3.2	.3	<2	780	2	•3.	.3
DA	TE	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)
NOV		NO 11117	NO N7	OMOOJ,	ND 0047	NO OL	NO 17	01027	(110, 11)	(110,2)	(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1		
		2.3	.6	<1.0	8.2	4.4	<.1	5.9	26	1	.00	100	.02
		1.8	. 4	<1.0	7.8	3.3	<.1	3.9	27	1	.00	100	.10
		1.7	.5	<1.0	11	3.8	<.1	3.2	38	1	.00	100	.11
		1.6	.2	<1.0	7.0	3.6	<.1	3.3	25	1	.00	100	<.10
		1.5	<.1	<1.0	7.0	3.4	<.1	2.6	40	3	.02	100	<.10
		1.8	<.1	1.0	2.0	3.3	<.1	4.1	7	3	.00	100	<.10
	TE	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L	NITRO- GEN, AMMONIA TOTAL (MG/L	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L	NITRO- GEN, TOTAL (MG/L	NITRO- GEN DIS- SOLVED (MG/L	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C)
		AS N)	AS N)	AS N)	AS N)	AS N)	AS N)	AS N)	AS F)	AS F)	AS C)	AS C)	NO 07
NOV 12 JAN		.02	.020	.020	<.10	<.10			,020	.020		1.0	.1
		.06	.050	<.010	.28	.11	.38	.17	.010	<.010	2.2		
		.11	.030	<.010	.51	.11	.62	.22	.010	<.010		6.5	.1
JUL		<.10	.020	<.010	.38	.23			<.010	<.010	5.2		1//
		<.10	.020	.020	.40	.20			.010	.010		13	.1
		<.10	.010	<.010	.30	.30			<.010	<.010	2.0		

01466500 MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	TIME	ARSENIC TOTAL (UG/L AS AS)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	BARIUM, DIS- SOLVED (UG/L AS BA)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COBALT, DIS- SOLVED (UG/L AS CO)
NOV 12	1130							- 22			22
MAR 09	1200	2	2	<100	30	<1	1	1	10	10	<3
MAY 20	1100			1						19	13
JUL 01	1045	1	<1	<100	20	<1	1	/1	10	-	
01	1045		\(\)	(100	20	(1		<1	10	1	<3
DATE	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	LITHIUM DIS- SOLVED (UG/L AS LI)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY DIS- SOLVED (UG/L AS HG)
NOV											
12 MAR										-26	
09	8	<10	190	130	6	<10	<4	40	39	<.1	<.1
20 JUL											
01	12	<10	410	340	4	<10	<4	40	14	.1	.1
DATE	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	SILVER, DIS- SOLVED (UG/L AS AG)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	VANA- DIUM, DIS- SOLVED (UG/L AS V)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)	GROSS ALPHA, DIS- SOLVED (UG/L AS U-NAT)	GROSS ALPHA, SUSP. TOTAL (UG/L AS U-NAT)
NOV 12			3.22			- 22					
MAR 09	<10	<1	<1	<1	<1	14	<6.0	60	40		
MAY 20										1.9	<.4
JUL 01	10	<1	<1	<1	<1	8	<6.0	40	25		
DATE	GROSS ALPHA, DIS- SOLVED (PCI/L AS U-NAT)	GROSS BETA, DIS- SOLVED (PCI/L AS CS-137)	GROSS BETA, SUSP. TOTAL (PCI/L AS CS-137)	GROSS BETA, DIS- SOLVED (PCI/L AS SR/ YT-90)	GROSS BETA, SUSP. TOTAL (PCI/L AS SR/ YT-90)	RADIUM 226, DIS- SOLVED, RADON METHOD (PCI/L)	URANIUM DIS- SOLVED, EXTRAC- TION (UG/L)	CYANIDE TOTAL (MG/L AS CN)	PCB, TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)
NOV 12					22	22				8	
MAR 09								<.01			
MAY 20	1.3	1.6	<.4	1.5	<.4	2.9	.01		<.10	42	<.10
JUL 01	1.5	1.0				2.9	.01	<.01			
01					CIII OD				-		-
DATE	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL (UG/L)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL (UG/L)	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL (UG/L)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL (UG/L)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL (UG/L)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
NOV 12	<1.0		<.1		15		35	22	23		15
MAR 09	X1.0				19		39			- 2	
MAY						. 04		/ 01		/ 01	
20 JUL	1.5	<.01		<.10		<.01	-	<.01		<.01	
01											

01466500 MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

																			m.a.		
I	DATE	DI- AZINO TOTA (UG/	N, I	DI- ELDRIN FOTAL (UG/L)	ELDR TOT IN B TOM TER (UG/	IN, CAL SOT- EN MA- SUL	IDO- FAN, OTAL	ENI SULF TOT IN E TOM TER (UG/	FAN, FAL BOT- MA- RIAL	ENDR TOT (UG		ENDF TOT IN F TOM TER (UG/	MA-	ETHI TOT	ON,	HEPT CHLC TOTA (UG/	OR, T	HEP CHL TOT N B OM TER UG/	OR, AL OT- MA- IAL	HEPT CHLO EPOXI TOTA (UG/	R DE L
MC	v																				
	12					.3			<.1				<.1				1		<.1		
MA	l R					• 5					257						-				
	9																				
MA JU	20	٧.	01	<.01			<.01			<	.01			<	.01	<.	.01			۷.	01
(11																				
	DA		HEPTA CHLOR EPOXII TOT. I BOTTO MATI	R DE IN DM LIN	IDANE OTAL UG/L)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MAI THI TOT	ON,	METI OX CHL TOT (UG	Y- OR, AL	OX: CHI TOT: BO:	TH- Y- LOR, IN TTOM ATL. /KG)	PA TH:	THYL RA- ION, TAL G/L)	METH TRI THIO TOTA (UG/	N,	MIRE TOT (UG/	AL	MIR TOT IN B TOM TER (UG/	AL OT- MA- IAL	
	NOV																				
	MAR		<.	. 1		<.1						<.1								<.1	
	MAY																				
	JUL			-	<.01			.01	<	.01				<.01	<.	01	<.	01			
	01	• • •																			
			PARA- THION	I, TH	PER-	PER- THANE IN BOTTOM MATERIL	APHE		TOX. PHET TOT. IN BO TOM TER	NE, AL OT- MA-		TAL RI-		4-D,	2, 4- TOTA		2,4,5 TOTA	5-T	SILV		
	DA	TE	(UG/L		IG/L)	(UG/KG)		G/L)	(UG/I			G/L)		G/L)	(UG/L		(UG/		(UG		
	NOV																				
			-			<.10			<	1.0											
				-																	
	JUL	• • •	<.0	01	<.10			<1				(.01		<.01	<.	01	<.	01	<	.01	
	01	• • •		-																	

01466500 MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ--Continued

SPECIFIC	CONDUCTANCE	(MICROMHOS/CM	AT	25	DEG.	C),	WATER	YEAR	OCTOBER	1981	TO	SEPTEMBER	1982	
 P 7723	312012								0.62				162.0	

	٥.	LOII IO O	ONDOGIANOL	, (IIIONOIIIIO	S/OII AI	E) DEG. O)	, walth ith	n oolob	Lin 1901 .	O DEI IEIIDEN	1,002	
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBE	R		NOVEMBE	R		DECEMBE	R		JANUAR	Y
1 2 3 4 5	30 30 30 30 29	29 29 29 29 28	30 30 30 29 28	39 37 36 35 34	37 36 34 33 32	38 37 35 34 33	30 35 35 32 32	26 30 32 31 31	27 34 33 31 32	50 52 52 76 97	43 50 50 50 76	47 51 51 65 82
6 7 8 9	28 28 28 28 28	27 26 26 25 26	28 27 28 27 27	33 33 33 32 31	32 32 31 31 30	33 32 32 31 31	32 32 31 31 31	31 31 31 30 30	32 32 31 31 30	104 100 94 87 80	98 93 87 80 75	101 96 90 83 77
11 12 13 14 15	28 27 27 27 28	27 26 26 26 26	28 26 27 27 27	30 30 29 29 29	29 26 28 28 28	29 29 29 28 29	30 30 29 30 49	29 29 28 28 32	30 29 29 28 41	74 68 63 60 57	68 63 59 57 55	71 66 61 58 56
16 17 18 19 20	27 27 28 29 29	26 26 25 26 28	27 26 26 28 29	30 31 31 31 30	29 28 30 29 29	29 29 31 30 29	65 68 64 69	51 64 59 60 66	58 66 62 66 68	55 54 53 52 51	54 53 51 50 49	54 54 52 51 50
21 22 23 24 25	29 29 29 30 33	28 28 28 29 29	28 28 28 29 30	30 30 29 29 29	29 28 28 28 28	29 29 29 28 28	66 61 56 54 53	60 56 54 53 51	63 58 55 53 52	50 49 59 62 62	48 48 47 59 61	49 48 52 61 61
26 27 28 29 30 31	44 39 40 41 41	34 36 39 40 40 38	41 37 39 40 41 40	27 27 27 27 27 	26 26 26 26 26	27 27 27 27 27 27	52 50 48 47 46 45	50 48 47 46 45 43	51 49 48 47 45 44	61 58 55 53 52 52	58 55 52 50 49	59 57 54 51 50
MONTH	44	25	30	39	26	30	69	26	44	104	43	62
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUAR	Y		MARCH			APRIL			MAY	
1 2 3 4 5	63 67 97 102 100	52 62 68 96 92	58 65 85 99 96	60 59 58 57 59	59 58 57 56 57	59 58 57 57 58	53 52 54 56 55	51 50 50 54 53	52 51 51 55 54	83 78 74 70 65	76 72 70 64 64	80 74 72 67 65
6 7 8 9	93 86 80 75 73	86 80 75 72 71	90 83 77 73 72	67 85 89 93 94	59 68 83 84 87	61 74 85 90 90	67 68 67 68 70	53 66 62 62 67	61 67 64 65 69	65 62 61 59 58	62 60 59 57 56	63 61 60 58 57
11 12 13 14 15	71 70 67 66 64	68 66 65 64 63	70 67 66 65 64	88 85 81 78 73	83 81 77 74 70	85 82 79 75 72	71 68 65 63 61	68 65 63 60 58	69 66 64 61 59	56 56 55 54 53	54 54 53 53 52	55 55 54 53 52
16 17 18 19 20	67 67 67 67 70	64 65 64 63 68	65 66 65 65	69 69 68 65	67 68 66 65 63	68 69 68 66 64	58 56 64 65 63	55 54 56 63 59	57 55 62 64 61	52 51 50 49 48	50 49 48 47 46	51 50 49 48 47
21 22 23 24 25	70 70 68 68 66	68 67 66 66 64	69 68 67 67 65	63 61 60 59 58	61 60 58 57 56	62 61 59 58 57	60 58 57 55 54	57 56 55 53 52	58 57 56 54 52	50 52 58 60 74	48 49 53 58 58	49 50 56 59 68
26 27 28 29 30 31	66 63 62	62 61 60	63 62 61	57 56 54 53 51	55 54 52 51 49	56 55 53 52 50	61 93 96 96 90	51 62 90 88 82	54 69 93 92 86	74 67 67 70 69 67	66 64 63 68 64 65	70 65 65 69 67 66
MONTH	102	52	71	94	49	65	96	50	63	83	46	60

01466500 MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ--Continued

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

		5011 10 0	ONDOOTHNOL	(MICKOMHO)	37 OII HI	LJ DEG.	0,,	WILLIN ID	nn oolob	L. 1,01	 	1902	
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN		MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY				AUGUST			SEPTEMB	ER
1 2 3 4 5	67 64 61 59 57	64 61 58 56 56	65 62 60 57 56	64 62 60 60 58	61 59 57 57 55	62 61 59 58 56		41 39 38 37 39	39 37 36 35 34	40 38 37 36 36	30 30 31 30 30	29 29 29 29 29	30 30 30 30 29
6 7 8 9	57 56 55 53 52	55 54 53 51 50	56 55 54 52 51	55 53 52 52 50	53 51 50 50 48	54 52 51 51 49		40 39 37 36 36	38 37 35 35 35	39 38 36 35 36	30 30 29 29 29	28 28 28 28 28	29 29 29 29 28
11 12 13 14 15	51 49 66 72 74	49 47 47 67 69	50 48 51 70 71	48 47 46 45 44	47 46 44 43	48 46 45 44 43		36 34 34 33 33	34 33 32 32 32	35 34 33 33 32	29 29 28 28 28	28 27 27 26 26	28 28 27 27
16 17 18 19 20	69 74 74 70 66	66 69 69 65 63	67 71 72 68 64	43 43 42 41 40	42 41 40 40 39	43 42 41 40 39		33 32 32 32 32	31 31 31 31 30	32 32 31 31 31	28 27 28 27 32	26 26 26 26 27	27 27 27 27 27 29
21 22 23 24 25	63 61 59 57 56	61 58 57 55 54	62 60 58 56 55	39 39 38 38 37	38 38 37 37 36	39 38 38 37 37		31 31 32 31 38	30 30 30 30 31	31 30 31 31 36	32 31 31 29 29	30 30 29 28 28	31 30 30 29 28
26 27 28 29 30 31	54 53 58 69 69	52 52 51 58 64	53 52 53 61 67	37 36 46 47 46 43	36 34 34 45 43	36 35 40 46 45 42		36 34 33 32 31 31	34 33 31 31 30 30	35 34 32 31 31 30	29 30 29 27 28	28 27 27 26 26	28 29 28 27 27
MONTH	74	47	59	64	34	46		41	30	34	32	26	28
YEAR	104	25	49										

TEMPERATURE,	WATER	(DEG.	C),	WATER	YEAR	OCTOBER	1981	TO	SEPTEMBER	1982
--------------	-------	-------	-----	-------	------	---------	------	----	-----------	------

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	
OCTOBER				NOVEMBE	R		DECEMBER			JANUARY			
1 2 3 4 5	12.5 12.5 12.0 12.5 12.5	11.5 11.5 11.5 11.0 11.5	12.0 12.0 11.5 11.5	11.5 11.5 11.5 11.0	10.5 10.5 10.5 10.0 9.5	11.0 11.0 11.0 10.5 10.5	8.0 8.5 8.5 8.5	7.0 8.5 8.0 8.0 8.0	7.5 8.5 8.0 8.5 8.5	6.5 6.5 6.5 6.0	6.5 6.0 6.0 4.5	6.5 6.0 6.5 5.5	
6 7 8 9	12.0 12.0 12.0 12.5 11.5	11.5 11.5 11.5 10.5	12.0 12.0 11.5 11.0 11.0	11.0 10.5 10.5 10.5	10.5 9.5 9.5 9.5 9.5	11.0 10.0 10.0 10.0 10.0	8.0 8.0 8.5 8.0 7.5	7.5 7.5 8.0 7.5 7.0	7.5 8.0 8.0 7.5 7.0	4.5 4.5 4.5 4.0 3.5	4.0 4.0 4.0 3.5 2.5	4.0 4.5 4.0 4.0 3.0	
11 12 13 14 15	11.5 11.0 11.0 11.0	10.0 10.0 9.5 9.0 9.5	10.5 10.0 10.0 10.0	10.0 9.5 9.0 9.5 10.0	9.5 9.0 8.5 9.0 9.5	10.0 9.0 9.0 9.0 9.5	7.5 7.5 7.0 7.0 6.5	7.0 7.0 6.5 6.5	7.0 7.0 7.0 6.5 6.5	3.0 3.0 3.5 4.0 4.0	2.5 3.0 3.0 3.5 3.5	3.0 3.0 3.5 4.0	
16 17 18 19 20	11.0 10.5 11.0 10.5 10.5	9.5 9.5 9.5 10.0 9.5	10.0 10.0 10.5 10.5	10.0 9.5 10.0 10.0	9.5 9.0 9.5 9.5 9.5	10.0 9.5 10.0 9.5 10.0	6.0 6.0 5.5 4.5	5.5 5.5 5.5 4.5 4.0	6.0 5.5 5.5 5.0 4.5	4.5 4.0 4.0 4.5 5.0	3.5 3.0 3.0 4.0	4.0 3.5 3.5 4.0 5.0	
21 22 23 24 25	11.0 11.5 11.5 11.0 10.5	9.5 10.0 11.0 10.0 9.5	10.5 10.5 11.0 10.5 10.0	10.0 9.5 9.0 8.5 8.5	9.5 9.0 8.5 7.5 8.0	9.5 9.0 9.0 8.5 8.0	4.5 5.0 6.0 6.0	3.5 4.5 5.0 5.5	4.0 5.0 5.5 5.5 6.0	5.0 4.5 5.0 5.0 4.0	4.5 4.5 4.0 4.0	5.0 4.5 5.0 4.5 4.0	
26 27 28 29 30 31	11.0 12.0 12.0 11.5 11.5	10.5 11.0 11.5 11.0 11.0	11.0 11.5 11.5 11.5 11.0	8.0 9.0 8.5 8.5 8.0	7.5 8.0 8.0 8.0 7.5	8.0 8.5 8.5 8.5 7.5	6.0 6.5 6.5 6.5 6.5	5.5 6.0 6.5 6.0 5.5	5.5 6.5 6.5 6.0 6.0	4.0 4.5 4.5 5.0 5.5	3.5 3.5 4.0 4.0 5.0	3.5 3.5 4.0 4.5 4.5 5.5	
MONTH	12.5	9.0	11.0	11.5	7.5	9.5	8.5	3.5	6.5	6.5	2.5	4.5	

01466500 MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

			TEMPERATURE,	WATER	(DEG. C),	WATER	YEAR OCTOBER	1981 TO	SEPTEMBER	1982			
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN		MAX	MIN	MEAN	
		FEBRUA			MARCH		APRIL			MAY			
1 2 3 4 5	5.5 4.5 4.5 2.5 2.0	5.0 4.5 2.5 1.5	5.5 4.5 3.5 2.0 1.5	5.0 5.0 5.0 6.0	4.0 4.5 4.5 4.5 5.0	4.5 5.0 5.0 5.5	8.5 8.5 8.5 8.5 8.0	7.5 8.0 8.0 7.5 7.0	8.0 8.0 8.0 8.0 7.5	10.5 11.5 11.5 11.5 11.5	9.5 10.0 10.5 10.5	10.0 10.5 11.0 11.0	
6 7 8 9	2.5 2.5 3.0 3.5 3.5	2.0 2.0 2.0 2.5 3.0	2.0 2.0 2.5 3.0	5.5 5.0 4.0 3.0 2.5	5.0 4.0 3.5 2.5 2.0	5.0 5.0 4.0 3.0 2.5	7.5 6.0 6.0 5.5 6.0	6.0 5.0 5.0 5.0	6.5 5.5 5.5 5.5	11.5 12.0 12.0 12.0 12.5	10.5 11.5 11.5 11.5	11.0 11.5 11.5 12.0 12.0	
11 12 13 14 15	3.5 3.5 3.5 4.0 4.5	3.0 3.0 3.5 3.0 3.5	3.0 3.0 3.5 3.5 4.0	4.0 5.0 5.5 6.0 6.0	2.5 4.0 4.5 5.5	3.5 4.5 5.0 5.5 5.5	6.0 6.5 7.0 8.0 8.0	5.0 5.5 6.0 6.5 7.0	5.5 6.0 6.5 7.0 7.5	12.5 12.5 12.5 12.5 12.5	11.5 11.5 12.0 12.0 11.5	12.0 12.0 12.0 12.0	
16 17 18 19 20	5.0 5.0 4.5 4.5 5.0	4.5 4.5 4.5 4.5	5.0 5.0 4.5 4.5	6.0 6.0 6.5 6.5 7.0	5.5 5.5 5.6 6.0 6.5	6.0 6.0 6.5 6.5	8.5 9.5 10.0 9.5 10.0	7.0 8.5 9.0 8.5 9.0	8.0 9.0 9.5 9.0 9.5	12.5 13.0 13.0 13.5 13.5	11.5 12.5 12.0 12.5 13.0	12.0 12.5 12.5 13.0 13.5	
21 22 23 24 25	5.0 5.0 5.0 5.0	4.5 5.0 4.5 5.0 4.0	5.0 5.0 5.0 5.0 4.5	7.0 7.5 7.5 7.5 8.0	7.0 7.0 7.0 6.5 7.0	7.0 7.0 7.0 7.0 7.5	10.5 10.0 10.0 10.5 10.5	9.5 9.0 8.5 9.0 9.5	10.0 9.5 9.0 9.5 10.0	13.5 13.0 12.5 12.5 12.5	13.0 12.5 12.5 12.0 12.0	13.5 13.0 12.5 12.5 12.5	
26 27 28 29 30 31	4.5 4.5 5.0	4.0 4.0 4.5	4.0 4.5 4.5 	8.0 7.5 7.0 7.0 7.5 8.0	7.5 6.5 6.5 6.0 6.5 7.5	7.5 7.0 6.5 6.5 7.0 7.5	10.5 11.0 11.0 9.5 10.0	10.0 10.5 9.5 8.5 9.0	10.5 10.5 10.5 9.0 9.5	13.0 13.5 13.5 14.0 14.5	12.5 13.0 13.5 13.5 13.5	13.0 13.5 13.5 13.5 14.0 14.5	
MONTH	5.5	1.5	4.0	8.0	2.0	5.5	11.0	5.0	8.0	14.5	9.5	12.5	
DAY	MAX	MIN	MEAN	MAY	MIN	MEAN	MAY	MIN	MEAN	MAX	MIN	MEAN	
DRI	HAX	JUNE	MEAN	MAX	MIN JULY	MEAN	MAX	AUGUST	MEAN	HAA	SEPTEME		
1	15.0	14.5	14.5	17.0	16.5	16.5	16.5	15.0	15.5	14.0	13.5	14.0	
2 3 4 5	15.0 14.5 14.5 14.0	14.5 14.0 14.0 14.0	14.5 14.5 14.0 14.0	16.5 16.0 15.5 15.5	15.5 15.5 15.0 15.0	16.0 15.5 15.5 15.0	16.5 16.5 16.0 15.5	15.0 15.0 15.0 15.0	15.5 15.5 15.5 15.5	14.5 14.5 14.0 13.5	14.0 13.5 13.5 12.5	14.0 14.0 13.5 13.0	
6 7 8 9 10	14.0 14.0 13.5 14.0 13.5	14.0 13.5 13.5 13.0 13.0	14.0 13.5 13.5 13.5 13.5	15.0 15.5 15.5 16.0 16.5	14.5 14.5 15.0 15.5 15.0	15.0 15.0 15.5 15.5	15.5 16.5 16.5 16.0 16.0	15.0 15.0 15.0 15.0 15.0	15.5 15.5 15.5 15.5 15.5	13.5 13.5 13.5 13.0 13.5	12.5 12.5 13.0 12.0 12.5	13.0 13.0 13.0 12.5 13.0	
11 12 13 14 15	13.5 13.0 13.0 13.5 14.0	13.0 13.0 13.0 13.0	13.5 13.0 13.0 13.0	16.0 16.5 16.5 16.0 16.0	15.5 15.5 15.5 15.5	16.0 16.0 16.0 15.5	15.5 15.5 16.0 16.0 16.0	15.0 14.5 14.5 14.5 14.0	15.5 15.0 15.0 15.0 14.5	14.0 14.0 13.5 14.0 14.0	13.0 13.0 13.0 13.0	13.0 13.5 13.5 13.5 13.5	
16 17 18 19 20	15.5 17.0 17.5 17.0	14.0 15.5 17.0 17.0	15.0 16.5 17.0 17.0	16.5 15.5 16.5 17.0 16.5	15.5 15.0 15.5 16.0 16.0	15.5 16.5 16.0	15.5 15.5 15.5 15.5 14.5	14.0 14.5 14.0 14.0 14.0	14.5 14.5 14.5 14.5 14.6	13.5 14.0 13.0	13.5 13.0 12.5	13.5	
21 22 23 24 25	16.5 16.5 16.0 15.5 15.0	16.0 16.0 15.5 15.0 14.5	16.5 16.0 16.0 15.0 14.5	17.5 17.0 15.5 16.5 16.0	15.5 15.0 15.0 15.0	16.0 16.0 15.5 15.5	14.0 14.0 13.5 14.0 15.0	13.5 13.5 13.5 13.5 13.5	14.0 13.5 14.0 14.5	13.0 13.0 13.0 12.5	12.5 12.5 12.5 11.0	12.5 12.5 	
26 27 28 29 30	16.0 16.0 16.5 17.0 17.5	14.5 15.5 16.0 15.5 17.0	15.5 16.0 16.5 16.5	16.0 15.5 16.0 17.0 16.0	15.0 14.5 15.0 15.5 15.5	15.0 15.0 15.5 16.0 15.5 15.5	14.5 14.5 14.5 14.0 14.0	14.0 13.5 13.0 13.5 13.5	14.0 14.0 14.0 13.5 13.5	13.0 13.5 13.0	12.0 12.5 13.0	13.0	
MONTH	17.5	13.0	15.0	17.5	14.5	15.5	16.5	13.0	14.5	14.5	11.0	13.0	
YEAR	17.5	1.5	10.0				3372						

01467000 NORTH BRANCH RANCOCAS CREEK AT PEMBERTON, NJ

LOCATION.--Lat 39°58'10", long 74°41'05", Burlington County, Hydrologic Unit 02040202, on right bank at downstream side of bridge on Hanover Street at Pemberton, 12 mi (19 km) upstream from confluence with South Branch.

DRAINAGE AREA. -- 118 mi2 (306 km2), revised.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- September 1921 to current year.

REVISED RECORDS. -- WSP 1302: 1922-23. WSP 1382: 1933.

GAGE.--Water-stage recorder above concrete dams. Datum of gage is 31.19 ft (9.507 m) National Geodetic Vertical Datum of 1929. Prior to June 9, 1923, nonrecording gage and June 9, 1923 to Aug. 9, 1951, water-stage recorder at site 600 ft (183 m) downstream at datum 6.54 ft (1.993 m) lower.

REMARKS.--Water-discharge records good. Flow regulated occasionally by operation of gate in dam and by ponds above station.

AVERAGE DISCHARGE. -- 61 years, 171 ft3/s (4.843 m3/s), 20.92 in/yr (531 mm/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,730 ft³/s (49.0 m³/s) Aug. 31, 1939, gage height, 10.77 ft (3.283 m) from high-water mark at site and datum then in use; minimum daily, 9.0 ft³/s (0.25 m³/s) Sept. 29, 1932.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, $474 \text{ ft}^3/\text{s}$ (13.4 m³/s) Apr. 28, gage height 2.25 ft (0.686 m), no peak above base of 600 ft³/s (17.0 m³/s); minimum, 47 ft³/s (1.33 m³/s) Sept. 9, 10, gage height, 1.48 ft (0.451 m).

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

MEAN VALUES AUG SEP DAY OC T NOV DEC JAN FEB MAR APR MAY JUN JUL 132 1 45 3 46 2 42 1.91 55 72 1 48 68 56 1 45 2 48 1 48 57 1 43 66 77 1 44 1 46 1 45 1 45 1 40 ------TOTAL 26 45 88.2 69.4 57.8 MEAN 73.9 1 45 38 4 114 MAX MIN 1.42 1.45 .96 . 49 CFSM .63 .75 1.23 1.50 1.64 1.32 1.54 1.41 .68 .55 1.72 1.72 1.64 1.62

CAL YR 1981 TOTAL. MEAN 110 MAX 433 MIN 49 CESM .93 IN 12.68 WTR YR 1982 TOTAL MEAN 133 MAX 463 MIN CFSM 1.13 IN 15.25

01467000 NORTH BRANCH RANCOCAS CREEK AT PEMBERTON, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1923-24, 1958, 1962-69, 1975 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

DATE	TIME	STRE FLC INST TANE (CF	CAM- C CAN- D COUS A	PE- IFIC ON- UCT- NCE MHOS) (PH UNITS)	AT	MPER- FURE EG C)	OXYGEN, DIS- SOLVED (MG/L)	DEM BI CH IC	GEN MAND, IO- HEM- CAL, DAY MG/L)	COL FOR FEC BRC	AL,	TOC	REP- OCCI CAL IPN)	HARD- NESS (MG/I AS CACO:	
JAN																
26 MAR	1310		202	72	4.3		.0	12.6		.7		2		12		9
25 JUN	1310		1 45	6 4	4.4		10.0	10.9		. 7		2		2		8
03	1045		155	51	4.5		20.0	7.0		1.2		33	>	2400		7
JUL 13 AUG	1245		87	44	5.1		25.0	6.1		1.0		500		5 40		8
11 SEP	1230		76	40	5.1		24.5	6.2		<.9		<20		<200		7
21	1 300		64	40	5.5		17.0	8.0		.6		170		920		8
DATE	CALC DIS SOL (MG AS	VED /L	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM DIS- SOLVED (MG/L AS NA	DI SOL (MG	UM, S- VED /L	ALKA LINIT LAB (MG/ AS CACO	Y SULI L TO' (MG	FIDE TAL G/L S)	SULFA DIS- SOLV (MG/ AS SO	ED L	CHLC RIDI DIS- SOL' (MG, AS C	E, VED	FLUC RIDI DIS SOLV (MG/ AS I	E, S- VED /L	
JAN																
26 MAR	•	2.1	.8	3.	2	.8	1.	0		13			5.6		<.1	
25 JUN		1.9	.8	3.	2	.6	<1.	0		10			4.6		.2	
03 JUL		1.7	. 7	2.	4	.5	2.	0	<.5	9	.0		4.6		<.1	
13 AUG		1.9	.8	2.	8	. 4	2.	0		8	.0		5.0		<.1	
11 SEP		1.7	.7	2.	7	. 4	2.	0		6	.0	- 3	4.5		(.1	
21	6 6	2.0	.9	3.	1	.8	3.	0	<.5	8	.0	- 5	4.9	3	<.1	
DATE	SILIO DIS- SOL' (MG, AS- SIO:	VED /L	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO GEN, NITRIT TOTAL (MG/L AS N)	GE E NO2+ TOT (MG	N, NO3 AL /L	NITR GEN AMMON TOTA (MG/ AS N	O- GEN , MONI IA ORGA L TO' L (MO	TRO-, AM- IA + ANIC TAL G/L N)	NITRO GEN TOTA (MG/) AS N	Ľ L	PHOS PHAT TOTA (MG/	TE, AL	CARBO ORGAN TOTA (MG/	NIC NL 'L	
JAN	510		(11071)	AU N	AD.	.,	AD N	, ,	,	no n	,		,			
26 MAR		4.9	42	-	-	.10			.18		28		.06		7.0	
25 JUN		3.6	29	<.01	0 <	.10	. 1	70 1	E.25				.09		4.5	
03 JUL		3.9	33	.01	0 <	.10	.0	50	. 35				.12	8	3.9	
13 AUG		4.2	44	<.01	0	.10	.0	70	. 42		52	-	.18	8	3.7	
11		3.9	36	.01	0 <	. 10	.0	90	. 45			-	.18	8	3.5	
SEP 21		3.8	41	<.01	0 <	.10	.1	30	. 42	/-			.12		3.0	

DELAWARE RIVER BASIN

01467000 NORTH BRANCH RANCOCAS CREEK AT PEMBERTON, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
JUN								
03 SEP	1045	230	1	<10	30	<1	10	6
21	1300	80	1	<10	20	<1	10	6
	IRON, TOTAL RECOV- ERABLE (UG/L	LEAD, TOTAL RECOV- ERABLE (UG/L	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L	MERCURY TOTAL RECOV- ERABLE (UG/L	NICKEL, TOTAL RECOV- ERABLE (UG/L	SELE- NIUM, TOTAL (UG/L	ZINC, TOTAL RECOV- ERABLE (UG/L	PHENOLS
DATE	AS FE)	AS PB)	AS MN)	AS HG)	AS NI)	AS SE)	AS ZN)	(UG/L)
JUN 03 SEP	1900	25	40	.2	2	<1	30	15
21	1700	7	30	.3	3	<1	10	<1

133

01467060 DELAWARE RIVER AT PALMYRA, NJ

LOCATION.--Lat 40°01'05", long 75°02'16", Philadelphia County, PA, Hydrologic Unit 02040202, on right bank opposite Palmyra, 0.5 mi (0.8 km) upstream from Tacony-Palmyra Bridge, 3.5 mi (5.6 km) downstream from Rancocas Creek, and at channel mile 107.55 (173.05 km), revised.

DRAINAGE AREA .-- 7,850 mi2 (20,330 km2).

PERIOD OF RECORD. -- December 1962 to current year. Tidal volumes published from December 1962 to September 1970.

GAGE.--Water-stage recorder. Datum of gage is -10.00 ft (-3.048 m) National Geodetic Vertical Datum of 1929. Gage-height record converted to elevation above or below (-) National Geodetic Vertical Datum of 1929 for publication.

REMARKS.--Some periods of low tide are affected by sluggish or plugged intake and the record is estimated with negligible loss in accuracy. Some periods cannot be estimated and are noted by dash (--) lines.

EXTREMES FOR PERIOD OF RECORD.--Maximum elevation, 8.23 ft (2.508 m) Oct. 25, 1980; minimum, -8.6 ft (-2.6 m) Dec. 31, 1962.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum elevation known since 1899, 8.9 ft (2.7 m) Aug. 24, 1933, from profile furnished by Corps of Engineers, U.S. Army.

EXTREMES FOR CURRENT YEAR.--Maximum elevation, a6.5 ft (1.981 m) Jan. 5, maximum elevation recorded, 6.26 ft (1.908 m) Apr. 3; minimum recorded, a-5.60 ft (-1.707 m) Apr. 7.

Summaries of tide elevations during current year are as follows:

TIDE ELEVATIONS, IN FEET, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

		OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
Maximum	Elevation	5.59	5.91		a6.5		5.43	6.26	5.63			5.63	5.70
high tide	Date	18	15		a5		7	3	25			5	22
Minimum	Elevation	-3.40	-3.30			-3.20	-3.20	a-5.60	-3.10			-3.10	-3.00
low tide	Date	20	7	-4-		8	8	7	9			20,21	4
Mean high t	ide	4.08	4.06	-42			4.24	4.23	4.51			4.54	4.53
Mean water	level	1.10	1.10				1.10	1.10	1.30			1.30	1.40
Mean low ti	lde	-2.30	-2.30				-2.20	-2.30	-2.40			-2.40	-2.20

a - Estimated by comparison with Delaware River at Burlington, NJ (sta 01464598) and Delaware River at Delaware Memorial Bridge, Wilmington, DE (sta 01482100).

NOTE .-- Missing or doubtful record on Dec. 6-Jan. 6, Jan. 12-Feb. 5, Feb. 18-28, May 26-June 1, June 9-Aug. 4.

01467069 NORTH BRANCH PENNSAUKEN CREEK NEAR MOORESTOWN, NJ

LOCATION.--Lat 39°57'07", long 74°58'10", Burlington County, Hydrologic Unit 02040202, at bridge on Kings Highway, 200 ft (61 m) downstream from outlet of Strawbridge Lake, 0.6 mi (1.0 km) northwest of Moorestown Mall, 0.8 mi (1.3 km) southeast of Lenola, and 1.8 mi (2.9 km) southwest of Moorestown.

DRAINAGE AREA .-- 12.8 mi2 (33.1 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIF CON- DUC ANC	IC - T- E	A	EMPER- ATURE DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYG DEMA BIC CHE ICA 5 D (MG	ND, C - F M- F L,	OLI- ORM, ECAL, EC ROTH MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)	
OCT 20 FEB	1230	1.5		247	7.1	10.5	8.0		6.2	1600	1600	62	
01 MAR	1100	7.0		314	6.5	1.5	11.8		7.8	350	>2400	46	
24 JUN	1130	2.8	-	328	6.7	10.5	10.2			50	<2	85	
23	1415	2.3		281	6.7	23.0	8.0		5.8	130	>2400	80	
JUL 07 AUG	1240	1.8		232	7.3	23.5	9.0		4.5	540	350	75	
10 SEP	1220	4.2		204	6.6	26.0	4.9		4.5	>2400	>2400	57	
30	1030			242	7.2	19.5	7.4	1	8	240	240	62	
DAT	(MG	IUM S VED SO	IS-	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVEI (MG/L AS K)	LINIT LAB	SULF L TOT (MG	AL /L	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO RIDE DIS- SOLV (MG/ AS C	, RID DI ED SOL L (MG	E, S- VED /L	
OCT 20.	1	7	4.7	16	5.9	8.	0	<.1	48	23		.2	
FEB 01.		3	3.4	37	3.7				29	61		.2	
MAR 24.		3	6.8	22	4.9		0		74	37		.2	
JUN 23.		2	6.1	13	5.4				65	26		.3	
JUL 07.		1	5.4	13	4.5		•		45	20		.2	
AUG 10.		6	4.1	12	4.6				41	16		.3	
SEP 30.		7	4.7	15	5.2			<.5	38	23		.2	
DAT	SILI DIS SOL (MG	SOL CA, RES AT VED DE /L D	IDS, IDUE 180	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	- NITE	O- GEN, MONI IA ORGA L TOT L (MG	RO- AM- A + NIC AL	NITRO- GEN, TOTAL (MG/L AS N)	PHOS PHAT TOTA (MG/ AS PO	- CARE E, ORGA L TOT L (MG	ON, NIC AL	
OCT 20. FEB		6.9	149		.55	5	2	.20	2.8		98	4.4	
01.		5.2	180		.70)	1	.00	1.7		44	4.8	
MAR 24. JUN	1	1	190	E.020	.80	1.1	0 E2	.00			28	2.6	
23. JUL	1	1	173	.050	.80	.7	30 2	.00	2.8	1 3	52	4.9	
07.	1	1	171	.070	.60	.2	30 1	.50	2.1.		80	4.4	
10. SEP		7.0	126	.050	. 40	E1.0	0 2	.00	2.4		80	7.6	
30.		7.1	153	.050	. 40	E.9	50				44	3.6	

DELAWARE RIVER BASIN

01467069 NORTH BRANCH PENNSAUKEN CREEK NEAR MOORESTOWN, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
OCT								
20 SEP	1230	<10	2	<10	60	<1	10	13
30	1030	10	4	<10	60	2	10	9
			MANGA-					
	IRON, TOTAL RECOV-	LEAD, TOTAL RECOV-	NESE, TOTAL RECOV-	MERCURY TOTAL RECOV-	NICKEL, TOTAL RECOV-	SELE- NIUM.	ZINC, TOTAL RECOV-	
	ERABLE	ERABLE	ERABLE	ERABLE	ERABLE	TOTAL	ERABLE	PHENOLS
DATE	(UG/L AS FE)	(UG/L AS PB)	(UG/L AS MN)	(UG/L AS HG)	(UG/L AS NI)	(UG/L AS SE)	(UG/L AS ZN)	(UG/L)
OCT								
20 SEP	5100	14	150	<.1	15	<1	60	9
30	5300	16	150	.1	10	<1	30	4

01467081 SOUTH BRANCH PENNSAUKEN CREEK AT CHERRY HILL, NJ

LOCATION.--Lat 39°56'30", long 75°00'05", Camden County, Hydrologic Unit 02040202, on left bank on downstream wingwall of bridge on Mill Road in Cherry Hill, 1.1 mi (1.8 km) south of Maple Shade and 3.8 mi (6.1 km) upstream from confluence with the North Branch.

DRAINAGE AREA. -- 8.98 mi² (23.26 km²), revised.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1967 to September 1976, October 1977 to current year.

GAGE. -- Water-stage recorder. Datum of gage is 8.12 ft (2.475 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records poor. Diurnal fluctuations from unknown source.

AVERAGE DISCHARGE.--14 years, (water years 1968-76, 1978-82) 18.4 ft3/s (0.521 m3/s), 27.27 in/yr (693 mm/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 868 ft³/s (24.6 m³/s) Aug. 28, 1978, gage height, 10.19 ft (3.106 m); maximum gage height, 11.34 ft (3.456 m) Aug. 28, 1971; minimum discharge, 2.6 ft³/s (0.073 m³/s) Oct. 6, 9, 10, 11, 1970, gage height, 1.71 ft (0.521 m).

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

EXTREMES FOR CURRENT YEAR.--Peak discharge above base of 300 ft3/s (8.50 m3/s) and maximum (*);

			Discha	arge	Gage h	eight
Date		Time	(ft^3/s)	(m^3/s)	(ft)	(m)
Apr.	28	0015	438	12.4	7.44	2.268
May	29	0300	*461	13.1	7.62	2.323

Minimum discharge, 2.5 ft 3 /s (0.071 m 3 /s) Sept. 19.

			•			MEAN VAL	UES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	17 15 5.4 4.9 4.9	7.1 7.1 7.1 6.6 6.8	20 44 13 17 21	49 22 14 205 69	70 25 186 38 20	10 10 15 13	20 13 41 43 16	19 18 17 18	26 30 23 12 16	4.4 4.2 3.9 4.2 3.9	5.4 5.3 5.3 5.3	5.3 6.1 22 5.2 4.6
6 7 8 9	8.0 5.9 4.6 4.5 4.6	11 4.1 3.4 3.3 3.9	9.9 7.8 11 8.1 6.9	28 20 17 16 14	16 12 11 20 20	22 82 47 19 14	103 30 19 19	15 15 15 15	9.7 8.8 8.2 7.8	3.8 4.0 4.1 4.3 4.4	18 5.8 5.4 7.3	4.8 4.7 4.6 4.6
11 12 13 14	4.6 4.7 5.6 8.0 7.8	3.4 3.1 3.2 3.2 7.5	6.4 6.4 6.4 18	13 13 12 15	12 10 9.4 8.8 8.7	13 23 16 13	14 13 13 14 8.6	15 15 31 21 15	7.7 7.4 109 69 15	4.2 4.0 3.8 3.8 3.7	5.3 12 5.5 5.2 4.9	4.5 4.3 4.4 4.3
16 17 18 19 20	7.4 7.4 17 27 13	36 12 21 7.2 8.0	92 29 19 13 11	11 11 14 12 10	10 9.2 11 32 22	16 20 13 12 11	8.6 13 74 18	14 14 13 12 12	21 48 12 9.7 8.7	4.0 4.2 4.2 4.4 5.2	5.3 7.1 8.0 4.7 4.8	4.7 4.5 3.9 2.9
21 22 23 24 25	9.2 9.4 12 17 18	6.6 5.2 4.9 4.6 4.7	9.8 9.7 14 12	9.2 8.4 34 29	22 16 13 12	11 11 10 10 9.7	13 11 11 10 11	12 14 17 15 36	8.1 7.9 7.3 6.8 6.0	6.0 5.5 5.9 5.5 5.2	6.2 4.3 9.2 6.9	5.0 12 15 4.1 3.9
26 27 28 29 30 31	58 35 66 19 9.0 7.5	4.8 4.7 4.8 4.7	9.1 10 10 9.0 8.2 9.0	13 14 9.3 9.5 13	9.7 10 10 	10 9.4 8.6 8.5 8.6	95 202 32 22	15 13 105 425 40 27	6.2 5.4 11 5.9 4.3	5.3 5.3 68 9.8 9.3 6.0	5.8 5.5 5.4 5.1 5.3	4.1 27 5.8 5.1 4.9
TOTAL MEAN MAX MIN CFSM IN.	437.4 14.1 66 4.5 1.57 1.81	214.8 7.16 36 3.1 .80 .89	595.7 19.2 125 6.4 2.14 2.47	776.4 25.0 205 8.4 2.78 3.22	654.8 23.4 186 8.7 2.61 2.71	518.8 16.7 82 8.5 1.86 2.15	961.2 32.0 202 8.6 3.56 3.98	1044 33.7 425 12 3.75 4.32	528.9 17.6 109 4.3 1.96 2.19	214.5 6.92 68 3.7 .77	226.7 7.31 18 4.3 .81	206.3 6.88 27 2.9 .77 .85

CAL YR 1981 TOTAL 4762.9 MEAN 13.0 MAX 170 MIN 3.1 CFSM 1.45 IN 19.73 WTR YR 1982 TOTAL 6379.5 MEAN 17.5 MAX 425 MIN 2.9 CFSM 1.95 IN 26.42

01467081 SOUTH BRANCH PENNSAUKEN CREEK AT CHERRY HILL, NJ--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1970-73, 1975 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIF: CON- DUC: ANCI	IC - r- E		EMPER- ATURE DEG C)	OXYGEN, DIS- SOLVED (MG/L)	BI CH IC 5	AND, CO- FEM- FAL, DAY F	COLI- CORM, ECAL, EC BROTH	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
OCT 06	1100	4.8		420	7.4	17.0	4.7		7.2	2100	790	80
FEB 22	1045	15		331	7.1	5.0	10.5		4.9	490	80	84
MAR 18	1030	13		340	7.0	8.0	10.2			170	790	91
JUN 17	1345	23		208	6.9	21.0	6.5		6.4	3500	2800	58
JUL 07	1100	E4.0		361	7.3	21.0	5.1		6.6	11000	35000	85
10	1000	7.9		178	6.6	24.0	4.5		6.7	7900	13000	47
DATE	CALC: DIS- SOLV (MG/ AS (TUM S - D /ED SO: /L (M	IS-	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS SIUM DIS- SOLVE (MG/L AS K)	, LINI	TY B SULF /L TO:	FIDE FAL G/L S)	SULFATE DIS- SOLVEI (MG/L AS SO4)	DIS- SOLV (MG/	E, RID DI VED SOL 'L (MG	E, S- VED /L
OCT 06 FEB	. 2	3	5.6	33	10	58		<.1	37	28	3	•3
22 MAR	. 2	3	6.4	28	5.	4 30			55	42	2	.2
18 JUN	. 25	5	6.9	24	5.	8 21			63	31	r-	.2
17 JUL	. 10	5	4.5	11	4.	1 22		<.5	37	12	1	<.1
07 AUG	. 2	3	6.8	28	8.	4 39			50	30)	•3
10	. 13	3	3.5	11	4.	6 20			26	12	2	.2
DATE	SILIO DIS- SOLV (MG, AS	CA, RES AT VED DE VL D SO		NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO GEN, NO2+NO TOTAL (MG/L AS N)	GEI 3 AMMOI	RO- GEN N, MONI NIA ORGA AL TO: /L (MO	ANIC TAL G/L	NITRO- GEN, TOTAL (MG/L AS N)	PHOS PHAT TOTA (MG/ AS PC	TE, ORGA L TOT 'L (MG	NIĆ AL /L
OCT 06 FEB	. 1	4	213		.8	4	E	5.30		- 5.	.40	5.6
22 MAR	. 1	1	216		1.2	1.2	20 2	2.40	3.6	1.	30	5.2
18 JUN	. 14	4	193	.090	1.4	1.9	90 E	3.00		- 1.	30	3.1
17 JUL		9.8	164	.080	.6	0 1.	10	1.60	2.2		.98 1	3
07 AUG	. 15	5	237	.490	1.5	3.	40	4.70	6.2	3.	.00	5.6
10		7.6	109	.130	.8	0 E1.	50 2	2.30	3.1	2.	.00	6.8

01467081 SOUTH BRANCH PENNSAUKEN CREEK AT CHERRY HILL, NJ--Continued

DATE	TIME	NITRO- GEN, NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT, MAT (G/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)
OCT 06 JUN	1100	654	.2	2.9	20	3	0	<10	270	1.	<1
17	1345				30	3		<10	80	1	
DATE	CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR)	CHRO-MIUM, RECOV. FM BOT-TOM MA-TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
OCT 06	20	5	<10	10	7	1100	490	2	30	70	14
JUN		,	110				490		30		14
17	20			14		4100		15		120	7-
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT	20.20				1.0						
06 JUN	<.1	<.01	1	<10	<1	<1	30	32		. 6	<1.0
17	.2		7		<1		50		<1		
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT											
06 JUN	<.1	18	7.8	1.8	3.1	.0	1.4	.1	<.1	<.1	. 2
17											
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOTTOM MATERIL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT											
06 JUN	. 1	.2	<.1	<.1	<.1	<.1	<.1	. <.1	<.10	<1.0	<.1
17											

01467120 COOPER RIVER AT NORCROSS ROAD AT LINDENWOLD, NJ

LOCATION.--Lat 39°49'43", long 74°58'55", Camden County, Hydrologic Unit 02040202, at bridge on Norcross Road in Lindenwold, 50 ft (15 m) downstream from outflow of Linden Lake, 1.1 mi (1.8 km) southwest of Gibbstown, and 1.7 mi (2.8 km) south of Glendale.

DRAINAGE AREA .-- 1.13 mi2 (2.93 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)
OCT	141								
07 FEB	1045	<.10	79	7.1	15.0	8.1	1.9	5	2
22 MAR	1200	<.10	82	6.8	4.0	11.9	2.7	17	2
24	1300	<.10	100	7.2	10.5	10.6		<2	<2
JUN 24	1145	<.10	74	6.8	23.0	8.0	2.6	4	17
JUL 15	1030	<.10	75	6.8	26.0	6.1	3.4	7	170
AUG 12	1015	<.10	82	6.0	22.0	5.6	2.8	33	33
DATE	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT	-		8.16					4	
07 FEB	22	7.0	1.0	3.8	1.6	11	.1	11	8.1
22 MAR	21	6.4	1.2	7.6	1.4	11		13	11
24 JUN	23	6.9	1.3	6.8	1.5	10		14	9.8
24 JUL	23	7.4	1.1	5.8	.6	15	<.5	7.0	8.4
15 AUG	23	7.4	1.2	4.8	. 4	16		5.0	8.6
12	22	6.8	1.2	5.3	2.8	16		18	10
DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHATE, TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 07	<.1	1.4	58		<.05		<.05	.12	5.2
FEB 22	<.1	3.5	66		<.10	<.050	.35	.06	3.2
MAR 24	<.1	1.5	56	E.020	<.10	<.050	E.72	.12	4.4
JUN 24	<.1	1.3	57						9.1
JUL 15	.1	1.4	62	.010	<.10	.200	.79	.18	8.5
AUG						.200			0.5

01467120 COOPER RIVER AT NORCROSS ROAD AT LINDENWOLD, NJ--Continued

DATE	TIME	NITRO- GEN, NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)		ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)
OCT O7 JUN	1045	689	2.4	8.9	30	2	0	<10	<10	1	<1
24	1145				30	4	-In	<10	11 11	<1	
DATE	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
OCT 07 JUN	10	<1	<10	18	28	780	250	4	60	20	- 11
24	10			4		2800		2		70	
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT O7 JUN	.1	<.01	5	<10	.<1	<1	30	13	13	26	<1.0
24	.1		5		<1		60		9		
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOTAL	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 07 JUN	32	72	6.0	6.3	2.4	<.1	64	<.1	<.1	<.1	<.1
24											10.44
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOTTOM MATERIL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 07 JUN	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.10	<1.0	<.1
24											

01467130 COOPER RIVER AT KIRKWOOD, NJ

LOCATION.--Lat 39°50'11", long 75°00'06", Camden County, Hydrologic Unit 02040202, at outlet of Kirkwood Lake in Kirkwood, 100 ft (30 m) east of tracks of Pennsylvania-Reading Seashore Lines, and 1.0 mi (1.6 km) north of Laurel Springs.

DRAINAGE AREA. -- 5.14 mi2 (13.2 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1964, 1967, 1976 to June 1982 (discontinued).

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
OCT 08	1045	410	7.2	14.0	0 5	12	350	70	49
FEB	1045	410	7.3	14.0	8.5	13	350	70	49
03 MAR	1200	229	6.9	3.0	11.0	9.6	>2400	>2400	33
22 JUN	1030	340	7.2	10.0	9.2	5.9	130	50	50
22	1300	272	7.6	25.0	10.0	15	230	80	49
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
OCT 08 FEB	15	2.8	33	9.1	36	<.1	22	55	.2
03 MAR	10	2.0	22	3.2	5.0		16	31	-1
22 JUN	15	3.1	28	6.4	39		24	41	.1
22	15	2.7	21	5.8	7.0	<.5	17	38	.2
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHATE, TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT									
08 FEB	6.8	183		.39		E11.0		1.10	6.8
03 MAR	4.6	125		.30		4.80	5.1	.45	8.8
22 JUN	6.8	150	.020	.10	8.70	E8.70		1.10	9.5
22	6.6	143	.160	.40	E5.30	6.80	7.2	.58	10

01467130 COOPER RIVER AT KIRKWOOD, NJ--Continued

							W				
DATE	TIME	NITRO- GEN, NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)
OCT 08 JUN	1045	643	.2	7.5	30	5	0	<10	220	1	<1
22	1300				120	4		<10	140	1	
DATE	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
OCT 08 JUN	10	2	<10	8	5	900	580	13	50	60	6
22	10			7		1300		11		50	
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
	no no,	AD IIG)	NO NI	AD NI)	NO DE	(00/0)	AD ZN)	AD ZII)	(00/11/	(00/110)	(00/10/
OCT 08 JUN	.1	<.01	2	<10	<1	<1	30	. 37	19	15	<1.0
22	<.1		4		<1		40		5		
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 08 JUN	<.1	17	4.6	3.4	1.8	<.1	.5	<.1	<.1	<.1	<.1
22						,					
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOTTOM MATERIL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT											
08 JUN	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.10	<1.0	<.1
22											

01467140 COOPER RIVER AT LAWNSIDE, NJ

LOCATION.--Lat 39°52'14", long 75°00'59", Camden County, Hydrologic Unit 02040202, at bridge on Woodcrest Road in Lawnside, 0.2 mi (0.3 km) upstream from the New Jersey Turnpike, and 1.7 mi (2.7 km) upstream from Tindale Run.

DRAINAGE AREA.--12.7 mi² (32.9 km²).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1964-65, 1976 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	TIME	STRE. FLOV INST. TANE. (CF:	AM- CI W, CO AN- DU OUS AN	E- FIC N- CT- CE (HOS) (UI	A	EMPER- TURE DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND BIO- CHEM- ICAL, 5 DAY (MG/L	, CO FO FE E BR	C T	STREP- OCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
OC T 20 FEB	1030	39		400	7.2	11.0	5.6	11		<200	<200	55
03 MAR	1030	600		190	6.8	2.0	11.3	7.	3	1600	>2400	31
22 JUN	0900	39		342	7.2	9.0	7.6	14		2800	1700	56
22 JUL	1045	44		322	6.8	21.0	2.0	11	>2	4000	5 400	55
15 AUG	1200	42		352	7.3	25.0	1.2	8.	7 >	2400	920	59
31 SEP	1030			370	6.4	20.0	3.2	11		1300	4900	59
29	1030			369	7.3	19.5	3.4	>26	1	6000	1 3000	55
DATE	DIS SOI (MC	CIUM S- LVED G/L CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	LINIT	SULF L TOT (MG	IDE D	ILFATE IS- OLVED MG/L S SO4)	CHLO- RIDE, DIS- SOLVE (MG/L AS CL	RIDI DIS D SOLV	E, S- VED /L
OC T												
20 FEB		16	3.6	34	9.2	2 40		<.1	26	45		.2
03 MAR		8.9	2.2	20	3.2	? 7.	0		17	30		.1
22 JUN		16	3.8	30	7.1	57			32	33		.2
JUL		16	3.6	24	7.6	18			24	30		.3
AUG		17	4.0	27	8.3				24	36		.3
31 SEP		17	3.9	32	9.5				27	38		• 3
29	•	16	3.6	27	8.8	6.		<.5	24	38		• 3
DATE	(MC	ICA, S- LVED G/L	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN	RO- GEN, I, MONI IIA ORGA L TOT 'L (MG	A + N NIC AL T	ITRO- GEN, OTAL MG/L S N)	PHOS- PHATE TOTAL (MG/L AS PO4	ORGAN	NIĆ AL /L
OCT												
20 FEB		13	196		.63			.00	8.6	4.8		9.8
03 MAR		3.9	107		. 40			.50	2.9	.9		7.0
22 JUN		12	164	.070	.30			.30		4.2		8.0
22 JUL		12	161	.110	.20			.90	9.1	4.7		
15 AUG		13	181	.040	<.05			.7		5.2		
31 SEP 29		12 12	199 178	.220	1.2	7.5		.60	11	5.9		31
29	•	12	1/8	.190	.70	E7.2	.0 7	.30	8.0	5.2	0 .	7.5

01467140 COOPER RIVER AT LAWNSIDE, NJ--Continued

DATE	TIME	NITRO- GEN, NH 4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)
OC T 20 SEP	1030				<10	3		<10	2 40	<1	
29	1030	710	.7	12	10	5	1	<10	190	<1	1
DATE	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
OC T 20 SEP	10			21		2800		5		70	
29	10	5	10	21	24	3900	9000	7	30	80	20
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT											
20 SEP	<.1		4		<1		60				
29	.1	<.01	5	<1,0	<1	<1	30	60	8	11	<1.0
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OC T											
20 SEP										-	
29	<.1	24	7.9	<.1	1.6	<.1	.8	<.1	<.1	<.1	<.1
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOTTOM MATERIL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT											
SEP			-				3.0			-	AV 1
29	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<1.00	<10	<.1

145

01467150 COOPER RIVER AT HADDONFIELD, NJ

LOCATION.--Lat 39°54'11", long 75°01'19", Camden County, Hydrologic Unit 02040202, on right bank of Wallworth Lake in Pennypacker Park, 200 ft (61 m) upstream from bridge on State Highway 41 (Kings Highway) in Haddonfield, 0.6 mi (1.0 km) upstream from North Branch Cooper River, and 7.7 mi (12.4 km) upstream from mouth.

DRAINAGE AREA .-- 17.0 mi2 (44.0 km2), revised.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1963 to current year.

REVISED RECORDS .-- WRD-NJ 1969: 1967(M).

GAGE.--Water-stage recorder above concrete dam. Datum of gage is 9.29 ft (2.832 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good. Occasional regulation at low flow from Kirkwood Lake, other small lakes and wastewater treatment plants.

AVERAGE DISCHARGE.--19 years, 35.5 ft 3/s (1.005 m 3/s), 27.71 in/yr (704 mm/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,300 ft 3 /s (93.5 m 3 /s) Aug. 28, 1971, gage height, 5.46 ft (1.664 m); minimum, 0.8 ft 3 /s (0.023 m 3 /s) Nov. 13, 1972, gage height, 1.07 ft (0.326 m) regulation from unknown source; minimum daily, 1.2 ft 3 /s (0.034 m 3 /s) June 27, 1964.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 500, ft 3/s (14.2 m 3/s) and maximum (*):

			Discha	arge	Gage h	eight
Date		Time	(ft^3/s)	(m^3/s)	(ft)	(m)
Apr.	28	0315	676	19.1	2.98	0.908
May		0215	*797	22.6	3.15	0.960

Minimum discharge, 14 ft 3/s (0.40 m 3/s) Nov. 4, July 18, 25, Aug. 29, gage height, 1.42 ft (0.433 m).

DISCHARGE,	IN	CUBIC	FEET	PER	SECOND,	WATER	YEAR	OCTOBER	1981	TO	SEPTEMBER	1982
					MFA	M VATIII	25					

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	17 61 23 18 18	18 18 18 17	91 36 35 36	82 33 25 252 77	98 38 248 70 38	29 28 32 29 33	40 36 62 64 36	32 30 29 30 27	34 41 29 31 39	33 26 30 33 23	20 19 20 18 20	17 17 47 21 17
6 7 8 9	19 21 16 16 17	33 25 21 19	23 22 24 22 20	35 30 27 26 23	33 29 28 37 37	42 113 98 36 31	145 59 37 35 31	26 26 26 26 25	32 30 28 27 25	21 20 20 19 18	28 21 19 22 22	16 17 18 17
11	18	18	19	21	28	29	28	24	26	21	19	16
12	20	17	19	20	26	36	30	24	26	21	27	16
13	20	17	19	21	26	30	31	31	143	18	21	17
14	20	17	32	24	26	29	31	36	163	18	18	16
15	20	22	213	24	26	27	29	26	39	17	17	16
16	19	94	190	24	28	32	27	25	33	17	17	17
17	19	34	53	22	26	36	30	25	43	17	18	16
18	33	49	33	22	29	29	120	24	28	16	18	16
19	51	24	26	21	55	27	36	23	26	16	16	16
20	25	23	24	22	40	26	27	25	28	22	17	32
21	23	21	23	22	38	28	20	39	25	21	19	23
22	24	19	24	23	32	27	24	28	23	18	16	30
23	34	20	28	51	28	27	21	35	24	18	27	27
24	43	22	27	53	27	27	17	34	23	17	26	20
25	46	19	24	30	26	26	17	57	23	16	32	18
26 27 28 29 30 31	106 65 123 26 22 19	18 18 18 17 18	23 24 25 23 22 20	25 23 23 22 26 57	25 25 27 	27 25 24 25 26 42	61 119 364 56 37	33 27 148 379 52 36	22 22 43 142 114	16 16 212 44 24 22	21 21 19 15 16 16	18 46 24 19 17
TOTAL	1002	710	1244	1186	1194	1076	1670	1408	1332	850	625	624
MEAN	32.3	23.7	40.1	38.3	42.6	34.7	55.7	45.4	44.4	27.4	20.2	20.8
MAX	123	94	213	252	248	113	364	379	163	212	32	47
MIN	16	17	19	20	25	24	17	23	22	16	15	16
CFSM	1.90	1.39	2.36	2.25	2.51	2.04	3.28	2.67	2.61	1.61	1.19	1.22
IN.	2.19	1.55	2.72	2.60	2.61	2.35	3.65	3.08	2.91	1.86	1.37	1.37

CAL YR 1981 TOTAL 11220 MEAN 30.7 MAX 237 MIN 13 CFSM 1.81 IN 24.55 WTR YR 1982 TOTAL 12921 MEAN 35.4 MAX 379 MIN 15 CFSM 2.08 IN 28.27

01467190 COOPER RIVER AT CAMDEN, NJ

LOCATION.--Lat 39°55'35", long 75°05'03", Camden County, Hydrologic Unit 02040202, at bridge on U.S. Routes 130 and 30 in Camden, 3.4 mi (5.5 km) upstream from mouth, 3.5 mi (5.6 km) northwest of Haddonfield, and 3.7 mi (6.0 km) downstream from North Branch Cooper River.

DRAINAGE AREA .-- 35.2 mi2 (91.2 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1970-71, 1976 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE		T	IME	DU AN	FIC N- CT-	P (UNI	H TS)	TEM!		OXYG DI: SOL (MG.	S- VED	OXYGE DEMAN BIO- CHEN ICAI 5 DA (MG/	ID, I-	COLI FORM FECA EC BROT (MPN	, н	STREI OCOCO FECAI (MPN)	CI	HARD- NESS (MG/L AS CACO3)
FEB 04		1	100		195		6.9		2.0		9.9	(5.6	>24	00	>240	00	33
MAR 25		1	130		370		7.3		11.0		5.7	- 1	1.0	2	30	2	30	
JUN													3 49					
17 JUL	•	1	130		173		6.8	1	22.0		5.6		3.7	18	00	130	00	43
20 AUG		1	300		348		7.9		29.0		9.1	9	0.0	4	90	101	13	71
12		1	200		331		7.5		25.0		7.0		5.5	9	20		79	60
DATE		DI SO	CIUM S- LVED G/L CA)	SO SO (M	GNE- IUM, IS- LVED G/L MG)	SODI DIS SOLV (MG AS	ED /L	D: SO: (MC	TAS- IUM, IS- LVED G/L K)	ALK LINI LA (MG AS CAC	TY B /L	SULFA DIS- SOLV (MG/ AS SO	/ED	CHLO RIDE DIS- SOLV (MG/ AS C	ED L	FLUO- RIDE DIS- SOLVI (MG/I	ED L	SILICA, DIS- SOLVED (MG/L AS SIO2)
FEB																		
04			9.1		2.5	2	0		2.9	19		18	3	27			. 1	4.4
25 JUN																		
17			12		3.1		9.6		3.8	15		22	2	12		<	. 1	6.5
JUL 20			20		5.0	2	9		8.0	37		29	9	32			.3	12
AUG 12			17		4.3	2	3		1.3	42		33	3	30	-		.3	11
	D	ATE	RES AT DE D	IDS, IDUE 180 G. C IS- LVED G/L)	ONIT TO (M	TRO- EN, RITE TAL G/L N)	NO2 TO	TRO- EN, +NO3 TAL G/L N)	AMM TO	TRO- EN, ONIA TAL G/L N)	GEN MON ORG TO (M	TRO- ,AM- IA + ANIC TAL G/L N)	NIT GEI TOT (MG	N, AL /L	PHOS PHAT TOTA (MG/ AS PO	E, C L L	TO:	BON, ANIC FAL G/L C)
		4		115				.60				2.70	3	.3	1.	20		11
		5				.100		.80	6	.40	E	7.80			1.	10		
		7		103		.050		.70	2	.40						80	10.3	11
		0		200		.110		.30	5	.40		8.40	8	.7		73		7.9
	AU 1	2		164		.110		.50	5	.10		7.20	7	.7		92		7.7

01467329 SOUTH BRANCH BIG TIMBER CREEK AT BLACKWOOD TERRACE, NJ

LOCATION.--Lat 39°48'05", long 75°04'27", Gloucester County, Hydrologic Unit 02040202, at bridge on Blackwood-Clementon Road at Blackwood Terrace, 1,000 ft (305 m) upstream from Bull Run, and 2.0 mi (3.2 km) northeast of Fairview.

DRAINAGE AREA .-- 19.1 mi2 (49.5 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)		A	MPER- TURE EG C)	OXYGEN, DIS- SOLVED (MG/L)	BI CH IC 5	AND, CO O- FO EM- FO AL, DAY B	EC T ROTH	STREP- OCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)
OCT 19	1030	37	131		7.0	11.5	8.2		7.8	540	920	39
FEB												
18 MAR	1000	29	137		6.9	3.0	11.1		3.6	13	79	42
25 JUN	1300	15	144		7.6	12.5	11.6		2.0	130	20	42
23 JUL	1130	26	123		6.9	23.0	8.7		2.4	3500	330	36
19 AUG	1035	15	120		7.2	27.5	5.9		2.7	130	330	35
31	1315	14	127		6.3	20.0	7.7		1.8	130	920	36
DATE	CALCI DIS- SOLV (MG/ AS (DI VED SOL 'L (MG	UM, SOI S- DI VED SOI /L (N	OIUM, S- VED IG/L S NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	LINIT	Y SULF L TOT (MC	TAL G/L	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVE (MG/L AS CL	RIDE DIS D SOLV (MG/	E, S- VED 'L
OCT												
19 FEB	. 11	7	2.9	8.5	2.8	25		<.1	13	10		.1
18	. 12	2	2.9	10	2.4	20			15	15	<	.1
MAR 25	. 12	2	3.0	8.0	2.2	22			17	12		.1
JUN 23	. 10)	2.6	5.8	2.0	22		<.5	14	9.	8	.1
JUL 19	. 9	0.6	2.6	5.5	1.9	23			10	9.	8 <	. 1
AUG 31		.7	2.8	7.3	2.2	7.5			11	9.	4 <	.1
	SILIC DIS- SOLV (MG/	SOLI CA, RESI AT 1	DS, DUE NI 80 C . C NII S- TO	TRO- EN, RITE TAL	NITRO- GEN, NO2+NO3 TOTAL (MG/L	NITR GEN	O- GEN, , MONI IA ORGA L TOT	ANIC	NITRO- GEN, TOTAL (MG/L	PHOS-PHATE	, ORGAN	IIĆ L
DATE	SIO2			N)	AS N)	AS N			AS N)	AS PO4		
OCT												
19 FEB	4	1.7	86		1.1			.50	1.6	.7	0 2	2.9
18 MAR	. 6	5.0	100		1.5	•3	70	.80	2.3	. 4	4 4	.7
25	. 4	1.8	83	.040	1.4	.2	80 E	.80	:	.3	7 3	3.2
JUN 23	. 5	5.4	77	.050	1.0	.1	40	.67	1.7	.5	2 3	3.6
JUL 19	. 4	1.9	90	.040	.90	.2	30	.74	1.6	.5	5 4	. 1
AUG 31	. 5	5.1	78		1.3	.1	70	.62	1.9	-	- 3	3.1

148

DELAWARE RIVER BASIN

01467329 SOUTH BRANCH BIG TIMBER CREEK AT BLACKWOOD TERRACE, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
OCT					R-		711 714	
19 JUN	1030	<10	1	<10	40	.<1	10	7
23	1130		1	<10	30	1	10	3
DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS
OCT								
19 JUN	1100	4	20	.1	2	<1	50	2
23	1600	8	30	<.1	2	<1	10	3

01467359 NORTH BRANCH BIG TIMBER CREEK AT GLENDORA, NJ

LOCATION.--Lat 39°50'04", long 75°04'02", Camden County, Hydrologic Unit 02040202, at bridge on State Route 168 in Glendora, 0.5 mi (0.8 km) downstream from Otter Brook, 1.0 mi (1.6 km) southeast of Clements Bridge, and 1.6 mi (2.6 km) north of Mechanicsville.

DRAINAGE AREA .-- 18.8 mi2 (48.7 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

	TIME	SPE- CIFIC CON- DUCT- ANCE	РН	TEMPER-	OXYGEN, DIS- SOLVED	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY	COLI- FORM, FECAL, EC BROTH	STREP- TOCOCCI FECAL	HARD- NESS (MG/L AS
DATE	11112	(UMHOS)	(UNITS)	(DEG C)	(MG/L)	(MG/L)	(MPN)	(MPN)	CACO3)
OCT 19 FEB	1215	163	7.0	12.0	6.8	11	920	>2400	40
16 MAR	- 1130	218	7.3	8.0	6.2	5.1	130	240	47
22	1130	230	7.2	7.0	8.5	3.6	330	80	56
JUN 09	1300	192	7.0	19.5	4.2	5.8	490	3500	49
JUL 19	1210	208	7.1	27.0	3.1	3.5	280	800	50
AUG 31	1200	210	6.2	18.0	4.0	2.9	130	22000	50
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- STUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
OCT 19 FEB	12	2.5	12	4.9	24	<.1	19	11	.2
16 MAR	14	2.8	13	4.1	37		24	14	.2
22	17	3.2	17	4.8	34		25	14	.2
JUN 09	15	2.9	13	3.9	33	<.5	21	12	.2
JUL 19	15	3.1	15	4.6	42		19	14	.2
AUG 31	15	3.1	17	4.8	40		21	14	.2
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHATE, TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
ост	- 2555			******		200	1.700 (11)	ave are 3	
19 FEB	7.1	105		1.6		1.60	3.2	2.00	3.8
16 MAR	8.5	117		.80	1.60	2.80	3.6	1.20	5.5
22 JUN	9.2	127		1.1	2.60	E4.10		2.30	4.9
09 JUL	8.9	114	.190	1.3	1.10	E2.20		1.41	
19 AUG	8.8	136	.320	1.1	.870	1.80	2.9	1.70	4.2
31	6.8	118	.160	1.8	.550	1.20	3.0	1.00	1.9

DELAWARE RIVER BASIN

01467359 NORTH BRANCH BIG TIMBER CREEK AT GLENDORA, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
OCT								
19 JUN	1215	<10	2	<10	180	<1	10	15
09	1300	30	2	<10	280	1	10	26
DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L	NICKEL, TOTAL RECOV- ERABLE (UG/L	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS
DAIL	AS FE)	AS PB)	AS MN)	AS HG)	AS NI)	AS SE)	AS ZN)	(UG/L)
OCT 19 JUN	3000	11	70	<.1	6	<1	60	11
09	5700	17	70	<.1	22	<1	40	* 2

01475000 MANTUA CREEK AT PITMAN, NJ

LOCATION.--Lat 39°44'14", long 75°06'53", Gloucester County, Hydrologic Unit 02040202 at bridge on Delsea Drive in Pitman, and 2.0 mi (3.2 km) upstream from Porch Branch.

DRAINAGE AREA. -- 6.05 mi2 (15.67 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1958-59, 1962, 1975 to June 1982 (discontinued).

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DA	TE	TIME	FLO INST	EAM- COW, COTAN- DEOUS A	PE- IFIC ON- UCT- NCE MHOS)		PH ITS)	TEMP	ER- RE	DXYGE DIS SOLV	N, ED	XYGEN EMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	F	OLI- ORM, ECAL, EC ROTH MPN)	TOC	REP- N OCCI (CAL	ARD- ESS MG/L AS ACO3)	
OCT																		
13	3	1030		7.6	120		7.3	1:	2.0	10	.0	.9	Ö	13		<2	31	7
JAN 26		1200			151		7.2		1.5	12	. 3	1.7		33		6	36	;
MAR		1100		0 2													31	,
JUN		1100		8.2	127		7.3		9.0	11								
09		0930		9.0	99		7.2	1	8.0	8	.6	1.9	r.	33		350	33	3
	DATE	CALC DIS SOL (MG AS	VED /L	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVI	ED /L	POTA SIU DIS SOLV (MG/ AS K	JM, S- /ED /L	ALKA- LINITY LAB (MG/I AS CACO:	s L	ULFII TOTAI (MG/I AS S)	DE DI	FATE S- LVED IG/L SO4)	DIS SOL (MG	E, VED /L	FLUO- RIDE, DIS- SOLVEI (MG/L AS F)		
	OCT		0 1	4.0		5.2		. 6	14		,	. 1	15		9.1	<.1		
	13 JAN		8.1					2.6			`							
	26 MAR		8.3	3.7		8.4	2	2.5	16			-	18	1	6	<.1		
	30	F 15	8.2	4.1		5.1	1	1.9	11			-	20		9.7	<. *	i.	
	09		7.5	3.4		4.1	2	2.1	16		<.	.5	13		7.9	<.		
	DATE	SILI DIS SOL (MG AS	VED /L	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NIT GE NITR TOT.	N, ITE AL /L	NITE GEN NO2+N TOTE (MG/ AS N	N, NO3 AL /L	NITRO GEN AMMONI TOTAL (MG/I	O- G , M IA O L	NITRO EN, AN ONIA PRGANT TOTAL (MG/I AS N	1- + NI IC C L TC	TRO- SEN, STAL MG/L S N)	PHO PHA TOT (MG AS P	TE, AL /L	CARBON, ORGANIC TOTAL (MG/L AS C)		
	OC T 13 JAN		4.7	69	c .		1.	. 2			<.0	05		<	.06	1.9)	
	26		6.5	93	3		2.	. 4				20	2.6		.06	1.5	5	
	MAR 30		4.9	91							E.	40			.06	3.:	3	
	JUN 09		5.2	81		020		.99	.0	60		53	1.6		.12	3.8	3	
DATE	TIME	NIT GEN, + OR TOT BOT	RO- NH 4 G. IN MAT	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBINOR ORGATOT.	ON, G + NIC IN MAT	ALUM INUM DIS SOLV (UG/ AS A	M- M, S- VED	ARSENTOTAL	A I I I L L	RSENT TOTAL N BOT OM MA TERIA (UG/O	IC BE L LI I - TO A - RE AL EF G (U	ERYL- IUM, OTAL ECOV- RABLE IG/L B BE)	BOR TOT REC ERA (UG	ON, AL OV- BLE /L	C ADMIUN TOTAL RECOV- ERABLE (UG/L AS CD)	CAI FM FM TOI	DMIUM ECOV. BOT- M MA- ERIAL JG/G S CD)
OC T 13 JUN	1030	53	88	.1		2.5		10		2		1 ,	<10	6	80	<	1	<1
09	0930							30		7	-		<10	1	20	<	1	
DATE	CHRO-MIUM, TOTAL RECOVERABLE (UG/L AS CR	FM E E TOM TER	OV. BOT-	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPP TOT REC ERA (UG	AL OV- BLE /L	COPPE RECO FM BO TOM I TERI (UG/ AS C	OV. OT- MA- IAL	IRON TOTA RECO ERABI (UG/) AS F	L F V- T LE L	IRON RECO M BO OM M TERIA (UG/O AS F	V. LI I - TO A - RI AL EF G (U	EAD, OTAL ECOV- RABLE IG/L B PB)	TER (UG	OÝ. OT- MA- IAL /G	MANGA- NESE, TOTAL RECOV- ERABLI (UG/L AS MN)	RI FM TOI	ANGA- ESE, ECOV. BOT- M MA- ERIAL JG/G)
OC T 13	1	0	5	<10)	6		8	3	60	32	00	1		100	10	0	32
JUN 09	1	0		-		8			15	00			6	i.		80	0	

01475000 MANTUA CREEK AT PITMAN, NJ--Continued

DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OC T 13 JUN	.1	<.01	3	<10	<1	<1	30	22	<1	8	<1.0
09	<.1		4		<1		20		1		
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OC T 13 JUN 09	<.1 	4.0	19	4.4	1.6	<.1 	1.5	<.1 	<.1 	<.1 	<.1
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOTTOM MATERIL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OC T 13 JUN 09	<.1 	<.1 	<.1 	<.1 	<.1 	<.1 	<.1 	<.1 	<.10	<1.0	<.1

01475045 MANTUA CREEK AT MANTUA, NJ

LOCATION.--Lat 39°47'42", long 75°10'21", Gloucester County, Hydrologic Unit 02040202, at bridge on State Route 45 in Mantua, 0.9 mi (1.4 km) downstream from Chestnut Branch, 1.3 mi (2.1 km) east of Gates of Heaven Memorial Park, and 2.4 mi (3.9 km) northwest of Barnsboro.

DRAINAGE AREA .-- 31.1 mi2 (80.6 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1975 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)	
ост										
19	1030	172	7.1	12.0	8.1	10	2400	5400	50	
FEB 18	1200	220	7.3	2.5	10.7	E2.3	<200	<200	47	
MAR 30	1230	200	7.4	9.5	12.0				56	
JUN 09	1100	175	7.1	17.5	7.1	2.6	1600	1600	54	
JUL 12	1300	168	7.2	25.0	5.4	3.0	1400	3100	54	
AUG 25	1030	168	6.1	22.0	5.1	3.0	3300	35000	49	
SEP 23	1145	168	7.4	18.5	9.3	5.6	2600	2200	50	
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFIDE TOTAL (MG/L AS S)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	
OCT 19	14	3.7	9.4	4.4	24		22	15	.2	
FEB 18	. 13	3.6	15	2.6	21		32	23	.2	
MAR 30	16	4.0	11	2.5	27		34	12	.3	
JUN 09	. 15	3.9	11	2.8	29	<.5	24	9.6	.2	
JUL 12	. 15	3.9	10	2.6	35		21	11	.2	
AUG 25	14	3.4	9.8	2.9	33		19	11	.2	
SEP 23	. 14	3.6	11	3.3	28		22	15	.2	
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHATE, TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)	
OCT 19	7.6	110		.84		.60	1.4	.58	3.8	
FEB									2.6	
18 MAR		135	. 27	1.4	.340	.70	2.1	. 18		
30	8.0	131				E.40		.15	2.6	
09 JUL	. 11	109	.030	.80	.080	-75	1.5	.34	3.8	
12 AUG	9.4	121	.010	.60	.120	.54	1.1	.40	3.7	
25 SEP	9.4	97	.010	.62	<.050	1.10	1.7	. 44	4.8	
23	8.9	112	.030	.70	<.050	.91	1.6	•37	3.4	

154

DELAWARE RIVER BASIN

01475045 MANTUA CREEK AT MANTUA, NJ--Continued

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
JUN								*
09	1100	40	3	<10	50	<1	<10	10
DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS (UG/L)
JUN								
09	2500	12	80	.1	12	<1	20	10

01477100 RACCOON CREEK NEAR MULLICA HILL, NJ

LOCATION.--Lat 39°42'31", long 75°12'05", Gloucester County, Hydrologic Unit 02040202, at bridge on Cedar Grove-Richwood Grove Road, 0.6 mi (1.0 km) upstream from Miery Run, 1.0 mi (1.6 km) downstream from outflow of Ewan Lake, 2.5 mi (4.0 km) southeast of Mullica Hill, and 4.0 mi (6.4 km) southwest of Pitman.

DRAINAGE AREA .-- 10.1 mi2 (26.2 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1953-63, 1975 to June 1982 (discontinued).

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

DATE	TIME TA	REAM- C. LOW, CO STAN- DI NEOUS AI	PE- IFIC ON- JCT- NCE (UN	A	MPER- TURE S	(YGEN, DIS- SOLVED (MG/L)	BIO- F CHEM- F ICAL, 5 DAY F	EC TOO	REP- COCCI CAL	HARD- NESS (MG/L AS CACO3)
OCT 14	1230		155	7 2	14.5	10.2			49	51
FEB	1230		155	7.3	11.5	10.3			49	51
17 MAR	1030	15.5%	135	6.6	4.5	11.7	E1.4	49	17	50
29 JUN	1100	11	155	7.3	8.5	11.7	. 4	33	33	54
10	1200	14	130	7.1	19.5	8.3	1.5	240	350	46
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	DIS-	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	LINITY LAB	SULFI TOTA (MG/	L SOLVEI	DIS- SOLVED (MG/L	FLUO- RIDE, DIS- SOLVE (MG/L AS F)	D
OCT 14	. 14	3.8	3.2	3.3	17		.1 24	11	<.	1
FEB 17	. 13	4.2	4.0	3.0	11		28	9.6	<.	1
MAR 29	. 14	4.5	3.7	2.8	10		22	15		1
JUN 10	. 12	4.0	3.2	2.9	16	<	.5 26	8.8	<.	1
	SILICA, DIS- SOLVED (MG/L AS	AT 180 DEG. C DIS- SOLVED	NITRO- GEN, NITRITE TOTAL (MG/L	NITRO- GEN, NO2+NO3 TOTAL (MG/L	GEN, AMMONIA TOTAL (MG/L	MONÍA ORGAN TOTA (MG/	M- + NITRO- IC GEN, L TOTAL L (MG/L	PHATE, TOTAL (MG/L	CARBON ORGANI TOTAL (MG/L	Ċ
DATE	SI02)	(MG/L)	AS N)	AS N)	AS N)	AS N	1) AS N)	AS PO4)	AS C)	
OCT 14 FEB	. 5.9	103	195	1.4	-	- <.	05	.09	2.	4
17	6.6	112	124	2.4	.380		48 2.9	.09	2.	3
29 JUN	6.2	96	.020	2.3	E.170) E.	20	.06	2.	7
10	6.1	91	.010	1.6	.070		48 2.1	.09	3.	3

01477100 RACCOON CREEK NEAR MULLICA HILL, NJ--Continued

		NITRO- GEN, NH4 + ORG. TOT IN	CARBON, INOR- GANIC, TOT IN	CARBON, INORG + ORGANIC TOT. IN	ALUM- INUM, DIS-	ARSENIC	ARSENIC TOTAL IN BOT- TOM MA-	BERYL- LIUM, TOTAL RECOV-	BORON, TOTAL RECOV-	CADMIUM TOTAL RECOV-	CADMIUM RECOV. FM BOT- TOM MA-
	TTME	BOT MAT	BOT MAT	BOT MAT	SOLVED	TOTAL	TERIAL	ERABLE	ERABLE	ERABLE	TERIAL
DATE	TIME	(MG/KG AS N)	(G/KG AS C)	(G/KG AS C)	(UG/L AS AL)	(UG/L AS AS)	(UG/G AS AS)	(UG/L AS BE)	(UG/L AS B)	(UG/L AS CD)	(UG/G AS CD)
OCT											
14 JUN	1230	193	<.1	7.6	30	2	0	<10	<10	2	<1
10	1200				40	1		<10	20	1	
DATE	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
OCT 14	10	<1	<10	10	1	240	910	14	<10	20	6
JUN 10	10			5		680		15		40	
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 14	.1	<.01	<1	<10	<1	<1	40	18	8	<1	<1.0
JUN 10	<.1		2	110	<1		10		<1		
10			2		(1						
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT											
14 JUN	<.1	2.0	8.6	7.0	3.9	<.1	.3	<.1	<.1	<.1	<.1
10											
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOTTOM MATERIL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 14	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.10	<1.0	۲.1
JUN 10											

01477120 RACCOON CREEK NEAR SWEDESBORO, NJ

LOCATION.--Lat 39°44'28", long 75°15'33", Gloucester County, Hydrologic Unit 02040202, on right bank 25 ft (8 m) downstream from county bridge No. 5-F-3 on Harrisonville-Gibbstown Road, 1.8 mi (2.9 km) weșt of Mullica Hill, and 2.8 mi (4.5 km) east of Swedesboro.

DRAINAGE AREA. -- 26.9 mi² (69.7 km²), revised.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- May 1966 to current year.

GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929. Prior to July 28, 1969, at datum 7.96 ft (2.426 m) higher. July 28, 1969 to Sept. 30, 1969, at datum 5.96 ft (1.817 m) higher.

REMARKS.--Water-discharge records poor.

WTR YR 1982 TOTAL 12282.0

MEAN 22.8 MEAN 33.6

AVERAGE DISCHARGE. -- 16 years, 41.4 ft3/s (1.172 m3/s), 18.80 in/yr (478 mm/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,530 ft³/s (100 m³/s) Aug. 10, 1967, elevation, 17.44 ft (5.316 m) present datum; minimum daily, 2.9 ft³/s (0.082 m³/s) July 14, Aug. 27, 28, Sept. 10, 1966.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 300 ft3/s (8.50 m3/s) and maximum (*):

		Disch	arge	Gage h	eight			Disch	arge	Gage h	eight
Date	Time	(ft^3/s)	(m^3/s)	(ft)	(m)	Date	Time	(ft^3/s)	(m^3/s)	(ft)	(m)
Feb. 3 Apr. 28	Unknown 0730	401 317	11.4	11.09	3.380 3.210	May June	06 45 02 45	401 *478	11.4	11.09 11.52	3.380 3.511

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

Minimum discharge, 11 ft 3 /s (0.31 m 3 /s) part or all of Sept. 12-20.

				JODIO 1 EE		MEAN VAL	UES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	14	19	21	45	250	32	44	42	38	48	17	. 14
	26	19	43	40	74	32 32	32	36	67	30	16	14
2 3 4	19	19	30	30	355	33	39	30	41	29	16	20
4	16	18	24	166	150	32	44	27	36	37	15	15
5	15	18	27	103	80	34	34	25	42	28	17	14
6	15	22	24	45	56	35	89	28	44	24	30	14
7	15	20	22	36	44	76	66	29	39	23	21	13
8	14	18	22	32	35	105	42	28	34	22	19	13
9	15	18	21	30	45	50	40	28	32	22	22	13
9 10	15	18	20	29	60	40	40	27	29	21	19	13
11	15	18	19	31	45	38	35	25	30	20	17	12
12	15	18	19	32	36	37	34	26	29	21	18	12
13	15	17	19	22	32	36	34	29	144	20	17	12
14	15	17	21	24	31	34	34	27	291	19	16	12
15	15	17	85	25	32	32	32	25	67	19	16	13
16	15	23	137	24	34	32	30	24	44	19	15	12
17	15	21	62	23	36	39	38	24	38	18	15	11
18	16	22	39	22	37	34	76	24	34	16	17	11
19	24	19	33	21	52	32	43	23		16	16	11
20	18	19	28	22	56	31	35	25	30	17	1 4	14
21	17	19	25	22	50	30	32	67	33	18	14	14
22	16	17	26	22	45	30	30	40	29	17	14	16
23	17	17	31	35	38	29	29	36	35	19	15	16
24	25	17	30	60	36	28	28	38	26	18	20	14
25	21	17	27	45	34	28	27	42	24	16	20	13
26	45	17	25	30	32	28	49	37	23	15	17	13
27	36	17	25	25	33	27	88	30	22	15	16	25
28	29	17	25	21	33	26	237	68	22	64	15	17
29	24	17	24	20		26	79	268	65	19	14	15
30	21	17	23	25		27	51	66	89	16	14	14
31	20		22	100		35		45		17	1 4	
TOTAL	598	552	999	1207	1841	1128	1511	1289	1508	703	526	420
MEAN	19.3	18.4	32.2	38.9	65.8	36.4	50.4	41.6	50.3	22.7	17.0	14.0
MAX	45	23	137	166	355	105	237	268	291	64	30	25
MIN	14	17	19	20	31	26	27	23	22	15	14	11
CFSM	.72	.68	1.20	1.45	2.45	1.35	1.87	1.55	1.87	.84	.63	.52
IN.	.83	.76	1.38	1.67	2.55	1.56	2.09	1.78	2.09	.97	.73	.58
CAL YR	1981 TOTA	L 8327.		22.8 M	IAX 209	MIN 9.1	CFSM .8	85 IN	11.52	(3	

CFSM 1.25

MIN 11

MAX 355

IN 16.98

01477120 RACCOON CREEK NEAR SWEDESBORO, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1965 to current year.

PERIOD OF DAILY RECORD.-WATER TEMPERATURES: May 1966 to September 1973.
SUSPENDED-SEDIMENT DISCHARGE: June 1966 to September 1969.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)
FEB									
17 MAR	1200	36	169	7.3	5.0	11.8	<1.3	130	17
29 JUN	1230	26	181	7.4	8.0	12.4	.7	49	<2
10 JUL	1015	30	162	7.2	17.0	8.9	1.1	5 40	5 40
12 AUG	1100	22	177	7.4	23.0	7.7	1.9	350	1600
25	1330	22	190	6.8	21.0	7.8	1.4	260	1600
	HARD- NESS (MG/L AS	CALCIUM DIS- SOLVED (MG/L	MAGNE- SIUM, DIS- SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L	POTAS- SIUM, DIS- SOLVED (MG/L	ALKA- LINITY LAB (MG/L AS	SULFATE DIS- SOLVED (MG/L	CHLO- RIDE, DIS- SOLVED (MG/L	FLUO- RIDE, DIS- SOLVED (MG/L
DATE	CACO3)	AS CA)	AS MG)	AS NA)	AS K)	CACO3)	AS SO4)	AS CL)	AS F)
FEB 17 MAR	63	19	3.8	7.5	3.0	21	32	13 11	.2
29	66	20	4.0	5.8	2.8	26	31		.2
JUL JUL	58	17	3.7	5.0	3.0	25	26	8.2	.2
12 AUG	65	20	3.7	5.9	3.1	34	26	9.2	.3
25	66	21	3.2	7.6	3.5				<.1
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHATE, TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
FEB									
17 MAR	10	123		2.0	E.280	.28	2.3	.34	
29 JUN	9.0	122	.020	1.7	.050	E.25		.28	2.5
10	9.9	107	.020	1.9	.080	. 45	2.4	. 37	3.1
JUL 12 AUG	11	117	.020	1.1	. 1 40	. 39	1.5	. 44	3.3
25	10		.010	1.3	.050	.60	1.9	.65	

01477510 OLDMANS CREEK AT PORCHES MILL, NJ

LOCATION.--Lat 39°41'57", long 75°20'01", Salem County, Hydrologic Unit 02040206, at bridge on Kings Highway in Porches Mill, 150 ft (46 m) downstream of tributary from outflow of lake at Porches Mill, 1.0 mi (1.6 km) north of Seven Stars, and 2.1 mi (3.3 km) southeast of Auburn.

DRAINAGE AREA .-- 21.0 mi2 (54.4 km2).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1975 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)
FEB									
17	1330		182	7.2	5.0	11.3	<1.0	13	8
MAR	1200		1.2		12.00	25.2	100		2.2
31 JUN	1230		197	7.2	10.0	10.6	1.6	79	79
10 JUL	0900	24	156	7.1	18.0	7.5	1.7	170	>2400
20 AUG	1040	2.8	212	7.5	25.0	7.0	1.7	. 540	220
25	1200	3.2	208	6.7	22.0	7.7	1.7	490	1300
DATE	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
FEB									
17 MAR	72	21	4.7	3.9	3.1	19	33	15	<.1
31 JUN	72	21	4.8	4.1	3.0	24	30	12	.2
10 JUL	56	16	4.0	3.4	3.2	23	24	8.1	.2
20 AUG	88	27	5.0	4.6	3.1	42	25	14	•3
25	78	23	5.1	3.6	3.3	39	22	16	•3
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHATE, TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
FEB									
17 MAR	11	134		3.0	.400	.48	3.5	.12	2.5
31 JUN	7.4	151	.020	2.4	.070	E.55		.12	3.7
10 JUL	9.7	144	.030	1.7	.150	.71	2.4	.31	4.8
20 AUG	12	159	.020	1.2	.120	.67	1.9	.31	3.6
25	10	130	.010	1.4	<.050	.90	2.3	.25	4.3

01482100 DELAWARE RIVER AT DELAWARE MEMORIAL BRIDGE, AT WILMINGTON, DE

LOCATION.--Lat 39°41'21", long 75°31'19", New Castle County, Hydrologic Unit 02040205, on pier of right tower of downstream bridge of dual bridges at Wilmington, 2.0 mi (3.2 km) downstream from Christina River and at channel mile 67.70 (107.64 km).

DRAINAGE AREA. -- 11,030 mi2 (28,570 km2).

TIDE ELEVATION DATA

PERIOD OF RECORD. -- July 1967 to current year. Tidal volumes published from July 1967 to September 1973.

GAGE.--Water-stage recorder and water-quality monitor. Datum of gage is -10.00 ft (-3.048 m) National Geodetic Vertical Datum of 1929. Gage-height record converted to elevation above or below (-) National Geodetic Vertical Datum 1929 for publication.

REMARKS. -- Refer to U.S. Geological Survey Water Resources Data Report PA-79-1 for water-quality data.

EXTREMES FOR PERIOD OF RECORD. -- Maximum, 7.88 ft (2.402 m) Oct. 25, 1980; minimum, -5.86 ft (-1.786 m) Apr. 4, 1975.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum elevation known, 8.4 ft (2.56 m) Nov. 23, 1950, furnished by Corps of Engineers, U.S. Army; minimum, -9.1 ft (-2.77 m) Dec. 31, 1962.

EXTREMES FOR CURRENT YEAR.--Maximum elevation recorded, 5.56 ft (1.695 m) June 19; minimum recorded, -5.82 ft (1.774 m) Apr. 7.

Summaries of tide elevations during current year are as follows:

TIDE	ELEVATIONS.	IN	FEET.	WATER	YEAR	OCTOBER	1981	TO	SEPTEMBER	1982

		OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
Maximum	Elevation	5.03	5.50	4.79	5.20	4.95	4.81	5.23	5.21	5.56	5.22	4.92	5.04
high tide	Date	18	15	27	4	21	7	3	24	19	22	4	16
Minimum	Elevation	-2.82	-2.95	-3.80	-4.22	-3.07	-3.89	-5.82	-2.71	-2.43	-2.38	-2.55	-2.28
low tide	Date	8	7	6	12	27	28	7	9	23	19	20	4
Mean high t	tide	3.53	3.51	3.09			3.47	3.32	4.07	4.56	4.09	3.92	3.97
Mean water	level	1.00	0.98	0.57			0.78	0.61	1.24	1.67	1.24	1.17	1.32
Mean low ti	lde	-1.61	-1.67	-2.04			-1.87	-2.23	-1.74	-1.36	-1.76	-1.70	-1.46

NOTE. -- Missing or doubtful record on Jan. 1-Feb. 28.

01482500 SALEM RIVER AT WOODSTOWN, NJ

LOCATION.--Lat 39°38'36", long 75°19'52", Salem County, Hydrologic Unit 02040206, on right end of Memorial Lake Dam at Woodstown, 0.2 mi (0.3 km) upstream from small brook, and 0.3 mi (0.5 km) downstream from Pennsylvania-Reading Seashore Lines bridge.

DRAINAGE AREA .-- 14.6 mi2 (37.8 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--March to September 1940, December 1941 to current year. Prior to October 1952, published as "Salem Creek at Woodstown".

REVISED RECORDS. -- WSP 1432: 1951(M). WSP 1702: 1959.

GAGE.--Water-stage recorder above concrete dam. Datum of gage is 19.49 ft (5.941 m) National Geodetic Vertical Datum of 1929. Prior to Oct. 1, 1977 at datum 10.00 ft (3.048 m) higher.

REMARKS.--Water-discharge records fair except those below 10 ft3/s (0.28 m3/s), which are poor.

AVERAGE DISCHARGE.--40 years (water years 1943-82), $18.9 \text{ ft}^3/\text{s}$ (0.535 m³/s), 17.58 in/yr (447 mm/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 22,000 ft³/s (623 m³/s) Sept. 1, 1940, gage height, 17.98 ft (5.480 m) present datum, from floodmark, from rating curve extended above 220 ft³/s (6.23 m³/s) on basis of slope-area measurement of peak flow at site 0.5 mi (0.8 km) downstream; no flow for short periods during many years just after waste gate was closed and water was below spillway.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 312 ft 3 /s (8.84 m 3 /s) Feb. 3, gage height, 11.77 ft (3.587 m), no peak above base of 350 ft 3 /s (9.91 m 3 /s); minimum daily discharge, 1.2 ft 3 /s (0.034 m 3 /s) Oct. 11.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

MEAN VALUES OCT AUG SEP DAY NOV DEC JAN FEB MAR APR MAY JUN JIII. 6.9 6.9 1.5 6.9 5.0 95 10 28 19 15 18 13 4.9 6.9 6.9 7.0 2 22 16 16 51 12 28 10 11 8.4 3.2 6.9 13 203 10 18 14 13 6.9 12 22 10 11 9.3 54 59 10 25 13 15 6.1 7.8 3.2 5 3.2 5.8 8.5 28 27 11 16 12 14 13 9.7 6.1 6 3.2 21 63 12 23 10 6.8 13 12 3.2 4.2 2.4 9.9 10 34 12 84 8.6 6.9 16 61 3.2 8.6 6.7 20 8.6 3.2 8 9.0 67 10 26 1.3 13 18 19 6.9 3.2 7.6 5.5 7.8 9.6 1.3 3.2 3.2 10 1.3 6.9 5.0 24 20 20 8.6 15 6.9 3.2 14 3.2 6.9 11 1.2 6.9 5.0 7.8 16 16 15 8.1 3.2 3.2 13 8.1 12 1.3 6.1 5.0 8.2 13 17 6.9 12 7.8 3.2 3.2 13 1.3 5.0 5.0 7.9 12 17 8.6 83 12 8.6 136 2.4 1.7 15 1.4 5.4 30 8.7 12 11 8.6 34 6.9 3.2 13 3.2 2.1 16 2.1 8.9 47 8.6 13 13 10 8.6 19 6.9 6.9 17 1.7 10 20 8.1 13 18 11 8.3 16 5.0 1.7 9.2 6.9 18 2.6 13 12 15 45 6.9 5.0 1.3 8.6 22 13 19 6.1 10 6.9 30 13 5.0 2.5 4.4 15 7.1 12 20 8.6 8.6 7.3 31 12 3.2 5.0 8.4 7.4 18 8.6 21 2.9 8.1 29 12 13 4.8 22 7.4 24 10 7.6 5.0 7.3 6.9 11 5.0 45 7.0 23 2.6 6.7 9.3 17 9.3 10 10 11 5.0 34 24 6.9 5.0 8.8 24 14 10 8.6 9.4 10 11 5.0 12 25 7.1 4.1 7.8 17 12 10 8.6 9.7 10 12 3.2 9.0 12 4.0 26 20 7.0 11 9.8 23 10 9.5 11 9.9 9.8 7.0 45 9.4 8.6 7.8 27 18 9.1 10 9.1 8.2 3.2 8.6 18 7.0 8.0 8.6 165 46 8.6 6.9 28 10 6.9 5.8 29 9.7 6.6 7.6 8.6 36 107 14 6.9 4.1 6.9 30 7.6 2.1 6.4 8.4 ---8.6 23 25 36 6.9 6.9 31 6.9 ---6.0 46 ---16 15 475.3 174.8 142.3 TOTAL 149.6 195.2 320.0 397.3 794 500.7 766.5 764.7 339.9 4.74 5.64 6.51 11.0 MEAN 4.83 10.3 12.8 28.4 16.2 25.6 15.3 25.5 12 12 45 MAX 20 10 47 54 203 67 165 107 136 6.1 3.2 1.3 1.2 2.1 5.0 6.9 8.6 8.6 6.9 8.6 MIN 10 . 75 . 33 . 45 1.95 . 39 CFSM .88 1.11 1.75 1.05 1.75 . 45 . 36 .87 IN. . 38 .50 .82 1.01 2.02 1.28 1.95 1.21 1.95

CAL YR 1981 TOTAL 4239.82 MEAN 11.6 MAX 138 MIN .00 CFSM .80 IN 10.80 WTR YR 1982 TOTAL 5020.30 MEAN 13.8 MAX 203 MIN 1.2 CFSM .95 IN 12.79

01482500 SALEM RIVER AT WOODSTOWN, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1973 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

							OVVCEN		
DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)
FEB									
25 APR	1030	12	223	7.4	3.0	12.4	E3.1	33	11
14	1145	12	201	7.4	13.0	10.3	3.2	2	7
JUN 08 JUL	1310	26	164	7.2	19.5	8.3	5.7	>2400	>2400
13 SEP	1 3 3 0	8.6	223	7.7	30.5	6.1	3.9	79	49
01	1130	6.9	215	8.6	22.0	9.4	5.5	<20	70
DATE	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
FEB									
25 APR	74	16	8.2	8.0	4.9	16	35	20	.1
14 JUN	72	16	7.9	7.9	3.6	17	37	14	.2
08 JUL	58	12	6.7	4.2	5.5	17	19	21	.2
13 SEP	83	19	8.7	6.5	5.5	42	28	14	.3
01	74	16	8.3	7.3	4.8	36	29	18	.2
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHATE, TOTAL (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)
FEB 25	8.0	143		3.0	E.410	.76	3.8	. 44	4.0
APR 14	7.9	133	.030	2.6	.330	.95	3.6	. 31	5.0
JUN 08	6.5	125	.060	2.3	.250	2.00	4.3	.80	9.1
JUL 13	8.4	162	.070	.60	. 400	1.40	2.0	.70	6.7
01	4.1	1 4 4	<.010	.20	.130	1.40	1.6	.55	3.5

RESERVOIRS IN DELAWARE RIVER BASIN

01416900 PEPACTON RESERVOIR.--Lat 42°04'38", long 74°58'04", Delaware County, NY, Hydrologic Unit 02040102, near release chamber at Downsville Dam on East Branch Delaware River, and 1.6 mi (2.6 km) east of Downsville, NY. DRAINAGE AREA, 371 mi² (961 km²). PERIOD OF RECORD, September 1954 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Board of Water Supply, City of

New York).

Reservoir is formed by an earthfill rockfaced dam; storage began Sept. 15, 1954. Usable capacity 140,190 mil gal (530.6 hm³) between minimum operating level, elevation, 1,152.0 ft (351.13 m) and crest of spillway, elevation, 1,280.0 ft (390.14 m). Capacity: at crest of spillway 149,700 mil gal (566.6 hm³); at minimum operating level, 9,609 mil gal (36.37 hm³); at still of diversion tunnel, elevation, 1,143.0 ft (348.39 m), 6,098 mil gal (23.08 hm³); in dead storage below release outlet, elevation, 1,126.50 ft (343.357 m), 1,898 mil gal (7.184 hm³). Figures given herein represent total contents. Reservoir impounds water for diversion through East Delaware Tunnel to Rondout Reservoir on Rondout Creek, in Hudson River basin (see Delaware River Basin, diversions), for water supply to City of New York; for release during periods of low flow in the lower Delaware River basin, as directed by the Delaware River Master; and for conservation release. No diversion prior to Jan. 6, 1955. Records furnished by Bureau of Water Resources Development and Department of Environmental Protection. City of New York.

In the lower Delaware River basin, as directed by the Delaware River master; and for conservation release diversion prior to Jan. 6, 1955. Records furnished by Bureau of Water Resources Development and Departme Environmental Protection, City of New York.

EXTREMES FOR PERIOD OF RECORD: Maximum contents observed, 154,027 mil gal (583.0 hm³) Apr. 5, 1960, elevation, 1,282.27 ft (390.836 m); minimum observed (after first filling), 9,575 mil gal (36.24 hm³) Dec. 26, 1964, elevation, 1,151.92 ft (351.105 m).

EXTREMES FOR CURRENT YEAR: Maximum contents observed, 150,780 mil gal (570.7 hm³) Apr. 25, elevation, 1,280.53 ft (390.306 m); minimum observed, 76,020 mil gal (287.7 hm³) Oct. 26, elevation, 1,232.08 ft

(375.538 m).

01424997 CANNONSVILLE RESERVOIR.--Lat 42°03'46", long 75°22'29", Delaware County, NY, Hydrologic Unit 02040101, in emergency gate tower at Cannonsville Dam on West Branch Delaware River, and 1.8 mi (2.9 km) southeast of Stilesville, NY. DRAINAGE AREA, 454 mi² (1,176 km²). PERIOD OF RECORD, October 1963 to current year. REVISED RECORDS, WRD-NY 1972: 1966. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of

RECORDS, WRD-NY 1972: 1966. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Board of Water Supply, City of New York).

Reservoir is formed by an earthfill rockfaced dam; storage began Sept. 30, 1963, usable capacity 95,706 mil gal (362.2 hm³) between minimum operating level, elevation, 1,040.0 ft (316.99 m) and crest of spillway, elevation, 1,150.0 ft (350.52 m). Capacity, at crest of spillway, 98,618 mil gal (373.3 hm³); at minimum operating level, 2,912 mil gal (11.02 hm³); at mouth of inlet channel to diversion tunnel, elevation, 1,035.0 ft (315.47 m), 1,892 mil gal (7.161 hm³); in dead storage below release outlet elevation, 1,020.5 ft (311.05 m), 328 mil gal (1.241 hm³). Figures given herein represent total contents. Impounded water is diverted for New York City water supply via West Delaware Tunnel to Rondout Reservoir in Hudson River basin (see Delaware River Basin, diversion); is released in Delaware River for downstream low flow augmentation as directed by Delaware River Master; and is released for conservation flow in the Delaware River. No diversion prior to Jan. 29. 1964. Records furnished by Bureau of Water Resources Development, City of New York.

EXTREMES FOR PERIOD OF RECORD: Maximum contents observed, 108,116 mil gal (409.2 hm³) Mar. 15, 1977, elevation, 1,155.85 ft (352.303 m); minimum observed (after first filling), 11,901 mil gal (45.05 hm³)
Nov. 7, 1968, elevation, 1,066.24 ft (324.990 m).

EXTREMES FOR CURRENT YEAR: Maximum contents, 102,352 mil gal (387.4 hm³) Apr. 5, elevation, 1,152.32 ft (351.227 m); minimum, 30,908 mil gal (117.0 hm³) Oct. 23, elevation, 1,094.25 ft (333.527 m).

01428900 PROMPTON RESERVOIR.--Lat 41°35'18", long 75°19'39", Wayne County, PA, Hydrologic Unit 02040103, at dam on West Branch Lackawaxen River, 0.3 mi (0.5 km) north of Prompton, 0.4 mi (0.6 km) upstream from highway bridge and 0.5 mi (0.8 km) upstream from Van Auken Creek. DRAINAGE AREA, 59.6 mi² (154 km²). PERIOD OF RECORD, December 1960 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers).

of 1929 (levels by Corps of Engineers).

Reservoir formed by an earth and rockfill dam with ungaged bedrock spillway at elevation 1,205.00 ft (367.284 m); storage began July 1960. Capacity at elevation 1,205.00 ft (367.284 m) is 51,700 acre-ft (63.7 hm³). Ordinary minimum (conservation) pool elevation, 1,125.00 ft (342.900 m) capacity, 3,420 acre-ft (4.22 hm³). Reservoir is used for flood control and recreation. Figures given herein represent total contents. Regulation is accomplished by discharge through an ungated tunnel. Records furnished by Corps of Engineers. EXTREMES FOR PERIOD OF RECORD: Maximum contents, 8,170 acre-ft (10.1 hm³) June 29, 1973, elevation, 1,138.40 ft (346.984 m); minimum (after first filling), 2,920 acre-ft (3.60 hm³) Sept. 27, 1964, elevation, 1,123.20 ft (342.351 m).

EXTREMES FOR CURRENT YEAR: Maximum contents, 8,040 acre-ft (9.91 hm³) Mar. 26, elevation, 1,138.05 ft (346.878 m); minimum, 3,560 acre-ft (4.39 hm³) Sept. 22-27, elevation, 1,125.22 ft (342.967 m).

01429400 GENERAL EDGAR JADWIN RESERVOIR .-- Lat 41°36'44", long 75°15,55", Wayne County, PA, Hydrologic Unit O2040103, at dam on Dyberry Creek, 0.45 mi (0.72 km) upstream from unnamed tributary, 2.4 mi (3.9 km) north of Honesdale, and 2.9 mi (4.7 km) upstream from mouth. DRAINAGE AREA, 64.5 mi² (167.1 km²). PERIOD OF RECORD, October 1959 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers).

Reservoir formed by an earth and rockfill dam with ungated, concrete spillway at elevation, 1,053.00 ft (320.954 m); storage began in October 1959. Capacity at elevation 1,053.00 ft (320.954 m) is 24,500 acre-ft (30.2 hm³). Reservoir is used for flood control. Figures gives bearing (30.2 hm³). Reservoir is used for flood control. Figures given herein represent total contents. Regulation is accomplished by discharge through an ungated tunnel. Records furnished by Corps of Engineers.

EXTREMES FOR PERIOD OF RECORD: Maximum contents, 6,520 acre-ft (8.04 hm³) June 19, 1973, elevation

1,017.40 ft (310.104 m); no storage many times.

EXTREMES FOR CURRENT YEAR: Maximum contents, 780 acre-ft (0.972 hm³) Apr. 4, elevation, 991.80 ft (302.301 m); minimum, 540 acre-ft (0.668 hm³) Oct. 27, elevation, 989.43 ft (301.578 m).

01431700 LAKE WALLENPAUPACK.--Lat 41°27'35", long 75°11'10", Wayne County, PA, Hydrologic Unit 02040103, at dam on Wallenpaupack Creek at Wilsonville, 1.2 mi (1.9 km) south of Hawley and 1.5 mi (2.4 km) upstream from mouth. DRAINAGE AREA, 228 mi² (591 km²). PERIOD OF RECORD, January 1926 to current year. GAGE, vertical staff. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Pennsylvania Power and Light Co.).

Reservoir formed by concrete gravity-type and earthfill dam with concrete spillway at elevation 1,176.00 ft (358.445 m) in two sections. Spillway equipped with roller gate, 14 ft high (4.267 m) on each section. Storage began Nov. 3, 1925; water in reservoir first reached minimum pool elevation in January 1926. Total capacity at elevation 1,190.00 ft (362.712 m), top of gates, is 209,300 acre-ft (258 hm³) of which 157,800 acre-ft (195 hm³) is controlled storage above elevation 1,160.00 ft (353.568 m), minimum pool. Reservoir is used for generation of hydrolelectric power. Figures given herein represent usable contents. Records furnished by Pennsylvania Power and Light Co.

Power and Light Co.

EXTREMES FOR PERIOD OF RECORD: Maximum contents, 178,200 acre-ft (220 hm³) Aug. 19-21, 1955, elevation, 1,193.45 ft (363.764 m); minimum (after first filling), 12,280 acre-ft (15.1 hm³) Mar. 28, 1958, elevation, 1,162.60 ft (354.360 m).

EXTREMES FOR CURRENT YEAR: Maximum contents, 141,100 acre-ft (174.0 hm³) Apr. 19-21, elevation, 1,187.10 ft (361.828 m); minimum, 59,720 acre-ft (73.6 hm³) Nov. 13, elevation, 1,172.1 ft (357.256 m).

RESERVOIRS IN DELAWARE RIVER BASIN -- Continued

01433000 SWINGING BRIDGE RESERVOIR.--Lat 41°34'25", long 74°47'00", Sullivan County, NY, Hydrologic Unit 02040104, at dam on Mongaup River, and 1.8 mi (2.9 km) northwest of Fowlersville, NY. DRAINAGE AREA, 118 mi² (306 km²) excluding Cliff Lake, Lebanon Lake, and Toronto Reservoir. PERIOD OF RECORD, January 1930 to current year. REVISED RECORDS, WSP 1552: 1951-54. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Orange and Rockland Utilities, Inc.). All capacity figures given herein are based on zero storage at minimum operating pool level, 1,010 ft (308 m).

Reservoir is formed by an earthfill dam; storage began Jan. 19, 1930. Usable capacity, 1,436.6 mil ft³ (40.7 hm³) between elevations 1,010.0 ft (307.85 m), minimum operating pool, and 1,071.2 ft (326.50 m), top of flashboards. Capacity below elevation 1,010.0 ft (307.85 m), minimum operating pool, about 212.7 mil ft³ (6.02 hm³). Reservoir is used for storage of water for power. Figures given herein represent contents above 1,010.0 ft (307.85 m). Water is received from Cliff Lake, Lebanon Lake, and Toronto Reservoir. Records furnished by Orange and Rockland Utilities, Inc.

EXTREMES FOR PERIOD OF RECORD: Maximum contents, 1,461.6 mil ft³ (41.4 hm³) Mar. 14, 1977, elevation, 1,071.8 ft (326.68 m); minimum (after first filling), -141.4 mil ft³ (4.00 hm³) Dec. 2, 1938, elevation, 987.5 ft (300.99 m).

987.5 ft (300.99 m).

EXTREMES FOR CURRENT YEAR: Maximum contents, 1,307 mil ft³ (37.0 hm³) Apr. 5, elevation, 1,068.0 ft (325.53 m); minimum, 869.9 mil ft³ (24.6 hm³) Mar. 12, elevation, 1,055.8 ft (321.81 m).

01433100 TORONTO RESERVOIR.--Lat 41°37'15", long 74°49'55", Sullivan County, NY, Hydrologic Unit 02040104, at dam on Black Lake Creek, and 2.5 mi (4.0 km) southeast of village of Black Lake, NY. DRAINAGE AREA, 23.2 mi² (60.1 km²). PERIOD OF RECORD, January 1926 to current year. REVISED RECORDS, WSP 1552: 1951-54. WSP 1702: 1959(M). Nonrecording gage. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Orange and Rockland Utilities, Inc.). All capacity figures given herein are based on zero storage at minimum operating pool level, 1,165.0 ft (355.09 m).

Reservoir is formed by an earthfill dam completed July 24, 1926; storage began Jan. 13, 1926. Usable capacity, 1,098.2 mil ft³ (31.1 hm³) between elevations 1,165.0 ft (355.09 m), minimum operating pool, and operating pool, about 26.8 mil ft³ (0.759 hm³). Reservoir is used for storage of water for power. Figures given herein represent contents above 1,165.0 ft (355.09 m). Records furnished by Orange and Rockland Utilities, Inc.

EXTREMES FOR PERIOD OF RECORD: Maximum contents observed, 1.171.2 mil ft³ (33.2 hm³) July 20. 1945.

EXTREMES FOR PERIOD OF RECORD: Maximum contents observed, 1,171.2 mil ft³ (33.2 hm³) July 20, 1945, elevation, 1,222.0 ft (372.47 m). minimum observed (after first filling), -26.8 mil ft³ (0.759 hm³) Nov. 15, 1928, elevation, 1,144.5 ft (348.84 m).

EXTREMES FOR CURRENT YEAR: Maximum contents observed, 1,063 mil ft³ (30.1 hm³) June 25, elevation, 1,219.0 ft (371.55 m); minimum observed, 214.7 mil ft³ (6.08 hm³) Sept. 30, elevation, 1,185.2 ft (361.25 m).

01433200 CLIFF LAKE.--Lat 41°35'00", long 74°47'40", Sullivan County, NY, Hydrologic Unit 02040104, at dam on Black Lake Creek, and 2.5 mi (4.0 km) northwest of Fowlersville, NY. DRAINAGE AREA, 6.46 mi² (16.7 km²) excluding area above Toronto Reservoir. PERIOD OF RECORD, January 1939 to current year. REVISED RECORDS, WSP 1552: 1951-54. WRD-NY 1975: 1974(m). Nonrecording gage. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Orange and Rockland Utilities, Inc.). All capacity figures given herein are based on zero storage at minimum operating pool level, 1,043.3 ft (318.0 m).

Reservoir is formed by a concrete gravity-type dam; storage began Jan. 6, 1939. Usable capacity, 136.06 mil ft³ (3.85 hm³) between elevations 1,043.3 ft (318.00 m), minimum operating pool, and 1,072.0 ft (326.75 m), top of permanent flashboards. Capacity below elevation 1,043.3 ft (318.00 m), minimum operating pool, about 6.54 mil ft³ (0.185 hm³). Reservoir is used for storage of water for power. Water is received from Toronto and Lebanon Lake reservoirs and is discharged through a tunnel into Swinging Bridge Reservoir. Figures given herein represent contents above 1,043.3 ft (318.00 m). Records furnished by Orange and Rockland Utilities, Inc.

Utilities, Inc.

EXTREMES FOR PERIOD OF RECORD: Maximum contents observed, 145.44 mil ft³ (4.12 hm³) July 30, 31, 1945, elevation, 1,073.1 ft (327.08 m); minimum observed (after first filling), about 6.54 mil ft³ (0.185 hm³) Mar. 16, 1963, elevation, 1,038.0 ft (316.38 m).

EXTREMES FOR CURRENT YEAR: Maximum contents observed, 121.3 mil ft³ (3.44 hm³) July 9, elevation, 1,070.2 ft (326.20 m); minimum observed, 34.1 mil ft³ (0.966 hm³) Mar. 12, elevation, 1,055.6 ft (321.75 m).

1,070.2 ft (326.20 m); minimum observed, 34.1 mil ft³ (0.966 hm²) Mar. 12, elevation, 1,055.6 ft (321.75 m).

01435900 NEVERSINK RESERVOIR.--Lat 41°49'40", long 74°38'21", Sullivan County, NY, Hydrologic Unit 02040104, at a gate-house at Neversink Dam on Neversink River, and 2 mi (3 km) southwest of Neversink, NY. DRAINAGE AREA, 91.8 mi² (238 km²). PERIOD OF RECORD, June 1953 to current year. GAGE, nonrecording gage read daily at 0900. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Board of Water Supply, City of New York). Reservoir is formed by an earthfill rockfaced dam; storage began June 2, 1953. Usable capacity 34,941 mil gal (132.25 hm³) between minimum operating level, elevation, 1,319.0 ft (402 m) and crest of spillway, elevation, 1,440.0 ft (438.9 m). Capacity at crest of spillway, 37,146 mil gal (140.6 hm³); at minimum operating level, 2,205 mil gal (8.35 hm³); dead storage below diversion sill and outlet sill at elevation 1,314.0 ft (400.5 m), 1,680 mil gal (6.36 hm³). Figures given herein represent total contents. Reservoir impounds water for diversion through Neversink-Grahamsville Tunnel to Rondout Reservoir on Rondout Creek, in Hudson River basin, for water supply of City of New York (see Delaware River Basin, diversions); for release during periods of low flow in the lower Delaware River basin, as directed by the Delaware River Master; and for conservation release. No diversion prior to Dec. 3, 1953. Records furnished by Bureau of Water Resources Development and Department of Environmental Protection, City of New York.

EXTREMES FOR PERIOD OF RECORD: Maximum contents observed, 37,978 mil gal (143.7 hm³) Apr. 25, 1961, elevation, 1,340.65 ft (439.421 m); minimum observed (after first filling), 1,985 mil gal (7.513 hm³)
Nov. 25, 1964, elevation, 1,316.98 ft (401.415 m).

EXTREMES FOR CURRENT YEAR: Maximum contents observed, 37,419 mil gal (141.6 hm³) Apr. 20, elevation, 1,440.55 ft (439.080 m); minimum observed, 18,196 mil gal (68.9 hm³) Oct. 26, elevation, 1,393.68 ft (424.7

(424.794 m).

01447780 FRANCIS E. WALTER RESERVOIR (formerly published as Bear Creek Reservoir).--Lat 41°06'45", long 75°43'15", Luzerne County, PA, Hydrologic Unit 02040106, at dam on Lehigh River, 2,200 ft (670 m) downstream from Bear Creek and 5 mi (8 km) northwest of White Haven. DRAINAGE AREA, 289 mi² (749 km²). PERIOD OF RECORD, February 1961 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers).

of 1929 (levels by Corps of Engineers).

Reservoir formed by an earthfill embankment covered with a rock shell, with concrete spillway at elevation 1,450.0 ft (441.96 m); storage began Feb. 17, 1961; water in reservoir first reached conservation pool elevation in June 1961. Total capacity at elevation 1,450.0 ft (441.96 m) is 110,700 acre-ft (136 hm³) of which 108,700 acre-ft (134 hm³) is controlled storage above elevation 1,300.0 ft or 396.24 m (conservation pool). Dead storage is 2,000 acre-ft (2.47 hm³). Reservoir is used for flood control and recreation. Figures given herein represent total contents. Flow regulated by three gates and low flow by-pass system. Records furnished by Corps of Engineers.

EXTREMES FOR PERIOD OF RECORD: Maximum contents, 42,600 acre-ft (52.5 hm³) June 26, 1972, elevation, 1,398.20 ft (426.171 m); minimum (after establishment of conservation pool), 981 acre-ft (1.21 hm³) July 6, 1982, elevation, 1,287.70 ft (392.490 m).

EXTREMES FOR CURRENT YEAR: Maximum contents, 38,950 acre-ft (48.0 hm³) Oct. 28, elevation, 1,394.16 ft (424.940 m); minimum, 980 acre-ft (1.21 hm³) July 6, elevation, 1,287.70 ft (392.490 m).

RESERVOIRS IN DELAWARE RIVER BASIN -- Continued

- 01449400 PENN FOREST RESERVOIR.--Lat 40°55'45", long 75°33'45", Carbon County, PA, Hydrologic Unit 02040106, at dam on Wild Creek near Hatchery, PA, 0.7 mi (1.1 km) upstream from Hatchery, 2.6 mi (4.2 km) upstream from Wild Creek Dam, 4.4 mi (7.1 km) upstream from mouth, and 10 mi (16 km) northeast of Palmerton. DRAINAGE AREA, 16.5 mi² (42.7 km²). PERIOD OF RECORD, October 1958 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by city of Bethlehem). Reservoir formed by an earthfill dam, with ungated concrete spillway at elevation 1,000.00 ft (304,800 m); storage began in October 1958. Capacity at elevation 1,000.00 ft (304.800 m) is 19,980 acre-ft (24.6 hm²). Reservoir is used for municipal water supply. Figures given herein represent total contents. Regulation is done by valves on pipe through dam. Records furnished by city of Bethlehem. Figures given herein include diversion, since October 1969, from Tunkhannock Creek basin into Wild Creek basin.

 EXTREMES FOR PERIOD OF RECORD: Maximum contents, 20,520 acre-ft (25.3 hm³) Mar. 28, 1978, elevation, 1,000.92 ft (305.080 m); minimum, 176 acre-ft (0.217 hm³) Oct. 6, 1965, elevation, 902.40 ft (275.052 m).

 EXTREMES FOR CURRENT YEAR: Maximum contents, 20,320 acre-ft (25.1 hm³) June 30, elevation, 1,000.58 ft (304.977 m); minimum, 11,730 acre-ft (14.5 hm³) Oct. 27, elevation, 979.15 ft (298.445 m).
- 01449700 WILD CREEK RESERVOIR.--Lat 40°53'50", long 75°33'50", Carbon County, PA, Hydrologic Unit 02040106, at dam on Wild Creek near Hatchery, PA, 1.6 mi (2.6 km) upstream from mouth, 2.4 mi (3.9 km) south of Hatchery, and 7.5 mi (12 km) northeast of Palmerton. DRAINAGE AREA, 22.2 mi² (57.5 km²). PERIOD OF RECORD, January 1941 to current year. Nonrecording gage. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by city of

Reservoir formed by earthfill dam, with concrete ungated spillway at elevation 820.00 ft (249.936 m); storage began January 27, 1941; water in reservoir first reached minimum pool elevation in February 1941. Total capacity at elevation 820.00 ft (249.936 m) is 12,500 acre-ft (15.4 hm³) of which 12,000 acre-ft (15 hm³) is controlled storage. Reservoir is used for municipal water supply. Figures given herein represent usable contents. Regulation is accomplished by valves on pipe through dam. Records furnished by city of Bethlehem. Since October 1969 the basin upstream has received diversion from Tunkhannock Creek basin.

EXTREMES FOR PERIOD OF RECORD: Maximum contents, 12,880 acre-ft (15.9 hm³) May 23, 1942, elevation, 822.93 ft (250.829 m); minimum (after first filling), 2,680 acre-ft (3.30 hm³) Nov. 15, 1966, elevation,

774.10 ft (235.946 m)

EXTREMES FOR CURRENT YEAR: Maximum contents, 12,170 acre-ft (15.0 hm³) July 1, elevation, 820.56 ft (250.107 m); minimum, 9,640 acre-ft (11.9 hm³) Sept. 28, elevation, 811.16 ft (247.242 m).

01449790 BELTZVILLE LAKE. -- Lat 40°50'56", long 75°38'19", Carbon County, PA, Hydrologic Unit 02040106, at dam on Pohopoco Creek, 0.45 mi (0.72 km) upstream from gaging station on Pohopoco Creek, 0.55 mi (0.88 km) upstream from Sawmill Run and 2.3 mi (3.7 km) northeast of Parryville. DRAINAGE AREA, 96.3 mi² (249.4 km²). PERIOD OF RECORD, February 1971 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers).

Reservoir formed by an earth and rockfill dam with ungated, partially lined spillway at elevation 651.00 ft (198.425 m); storage began Feb. 8, 1971. Capacity at elevation 651.00 ft (198.425 m) is 68,300 acre-ft (84.2 hm³). Ordinary minimum (conservation) pool elevation, 628.00 ft (191.414 m), capacity, 41,250 acre-ft (50.9 hm³). Dead storage is 1,390 acre-ft (1.71 hm³). Reservoir is used for recreation, flood control, low flow augmentation and water supply. Figures given herein represent total contents. Regulation is accomplished by a multi-level water-quality outlet system and two flood-control gates. Records furnished by Corps of

EXTREMES FOR PERIOD OF RECORD: Maximum contents 49,730 acre-ft (61.3 hm3) Jan. 29, 1976, elevation, 636.30 ft (193.944 m); minimum, 16,343 acre-ft (20.2 hm³) Jan. 31, Feb 1, 1981, elevation, 591.41 ft (180.262 m).

EXTREMES FOR CURRENT YEAR: Maximum contents 43,200 acre-ft (53.2 hm³) June 30, elevation, 630.00 ft (192.024 m); minimum, 36,390 acre-ft (44.8 hm³) Sept. 18, elevation, 622.63 ft (189.778 m).

- 01455 400 LAKE HOPATCONG.--Lat 40°55'00", long 74°39'50", Morris County, Hydrologic Unit 020 40105, in gatehouse of Lake Hopatcong Dam on Musconetoong River at Landing. DRAINAGE AREA, 25.3 mi² (65.5 km²), revised. PERIOD OF RECORD, February 1887 to current year. Monthend contents only prior to October 1950, published in WSP 1302. GAGE, water-stage recorder. Prior to June 24, 1928, daily readings obtained by measuring from high-water mark to water surface converted to gage height, present datum. Datum of gage is 914.57 ft (278.761 m).

 Lake is formed by concrete spillway and earthfill dam completed about 1828. Crest of spillway was lowered 0.11 ft (0.034 m) in 1925. Usable capacity, 7,459,000,000 gal (28.23 hm³) between (gage height -2.6 ft or -0.792 m, sills of gates and 9.00 ft or 2.743 m, crest of spillway). Flow regulated by four gates (3 by 5 ft or 0.914 by 1.524 m), also by one 24-inch (0.610 m) pipe with gate valve to recreation fountain 250 ft (76.2 m) downstream from dam. Dead storage, about 8,117,000,000 gal (30.72 hm³). Figures given herein represent usable capacity. Lake used for recreation.

 EXTREMES FOR PERIOD OF RECORD: Maximum contents, 8,532,000,000 gal (32.29 hm³) June 24, 1972, gage height, 10.27 ft (3.130 m); minimum, 1,525,000,000 gal (5.77 hm³) Dec. 29, 1960, gage height, 0.65 ft (0.198 m).

 EXTREMES FOR CURRENT YEAR: Maximum contents, 7,863,000,000 gal (29.76 hm³) June 17-19, gage height, 9.48 ft (2.90 m); minimum contents, 5,521,000,000 gal (20.90 hm³) Sept. 30, gage height, 6.60 ft (2.012 m).

01469200 STILL CREEK RESERVOIR.--Lat 40°51'25", long 75°59'30". Schuylkill County, PA, Hydrologic Unit 02040106, at dam on Still Creek, 1 mi (1.6 km) upstream from mouth and 2.3 mi (3.7 km) north of Hometown, PA. DRAINAGE AREA, 8.5 mi² (22.0 km²). PERIOD OF RECORD, January 1933 to current year. Nonrecording gage. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Panther Valley Water Co.).

Reservoir formed by earth fill dam, with ungated concrete spillway at elevation 1,182.00 ft (360.274 m); storage began in February 1933. Capacity at elevation, 1,182.00 ft (360.274 m) is 8,290 acre-ft (10.2 hm²). Reservoir is used for municipal water supply. Figures given herein represent total contents. Regulation is accomplished by valves on pipe through dam. Records furnished by Panther Valley Water Co.

EXTREMES FOR PERIOD OF RECORD: Maximum contents, 8,570 acre-ft (10.6 hm³) Oct. 15, 1955, elevation, 1,182.92 ft (360.554 m), but may have been greater during 1950 and 1951 water years; minimum (after initial filling), 588 acre-ft (0.725 hm³) Dec. 8, 1944, elevation, 1,136.70 ft (346.466 m).

EXTREMES FOR CURRENT YEAR: Maximum contents, 8,410 acre-ft (10.4 hm³) June 7, elevation, 1,182.40 ft (360.396 m); minimum, 7,400 acre-ft (9.12 hm³) Dec. 9, elevation, 1,178.90 ft (359.329 m).

01470870 BLUE MARSH LAKE.-Lat 40°22'45", long 76°01'59", Berks County, Hydrologic Unit 02040203, at dam on Tulpehocken Creek, 0.8 mi (1.3 km) upstream from gaging station on Tulpehocken Creek, 1.0 mi (1.6 km) northeast of Blue Marsh, 1.9 mi (3.1 km) upstream from Reber's Bridge, and 5.1 mi (8.2 km) southeast of Bernville. DRAINAGE AREA, 175 mi² (453 km²). PERIOD OF RECORD, April 1979 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers).

Reservior formed by earthfill dam, with concrete ungated spillway at elevation 307.00 ft (93.574 m). Storage began April 23, 1979. Capacity at elevation, 307.00 ft (93.574 m) is 50,000 acre-ft (61.6 hm³). Dead storage is 3,000 acre-ft (3.70 hm³). Reservoir is used for flood control, water supply, and recreation. Figures herein represent total contents. Records furnished by Corps of Engineers.

EXTREMES FOR PERIOD OF RECORD: Maximum contents, 29,580 acre-ft (36.5 hm³) Feb. 5, 1982, elevation, 295.31 ft (90.010 m); minimum, 17,528 acre-ft (21.6 hm³) Apr. 8, 25, elevation, 284.90 ft (86.838 m).

EXTREMES FOR CURRENT YEAR: Maximum contents, 29,580 acre-ft (36.5 hm²) Feb. 5, elevation, 295.31 ft (90.010 m); minimum, 17,530 acre-ft (21.6 hm³) Apr. 8, elevation, 284.90 ft (86.838 m).

RESERVOIRS IN DELAWARE RIVER BASIN -- Continued

01472200 GREEN LANE RESERVOIR.—Lat 40°20'30", long 75°28'45", Montgomery County, PA, Hydrologic Unit 02040203, at dam on Perkiomen Creek at Green Lane, PA, 0.4 mi (0.6 km) west of Green Lane and 2.1 mi (3.4 km) upstream from Unami Creek. DRAINAGE AREA, 70.9 mi² (183.6 km²). PERIOD OF RECORD, December 1956 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Philadelphia Suburban Water Co.).

Reservoir formed by concrete, gravity-type dam, with ungated spillway at elevation 286.00 ft (87.173 m); storage began December 21, 1956. Capacity at spillway level, elevation 286.00 ft (87.173 m), 13,430 acre-ft (16.6 hm³). Reservoir is used for municipal water supply. Figures given herein represent total contents. Regulation is accomplished by valves on pipe through dam. Records furnished by Philadelphia Suburban Water Co. EXTREMES FOR PERIOD OF RECORD: Maximum contents, 17,030 acre-ft (21.0 hm³) June 23, 1972, elevation, 290.05 ft (88.407 m); minimum (after first filling), 1,270 acre-ft (1.57 hm³) Aug. 25, 1957, elevation, 251.60 ft (76.688 m).

EXTREMES FOR CURRENT YEAR: Maximum contents, 14,230 acre-ft (17.5 hm³) June 16, elevation, 286.90 ft (87.447 m); minimum, 9,930 acre-ft (12.2 hm³) Oct. 22, elevation, 281.28 ft (85.734 m).

MONTHEND ELEVATION AND CONTENTS, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

Date	Elevation (feet)	Contents (million gallons)	Change in contents (equivalent in ft3/s)	Elevation (feet)	Contents (million gallons)	(equivalent	Elevation (feet)	Contents (acre- feet)	Change in contents (equivalent in ft3/s)
	01416900 PI	EPACTON RE	SERVOIR ‡	01424997 CAN	NONSVILLE	RESERVIOR ‡	01428900 PI	ROMPTON RES	SERVOIR +
Sept. 30 Oct. 31 Nov. 30 Dec. 31	1,235.03 1,236.40 1,236.59 1,237.31	79,700 81,450 81,694 82,625	+87.3 +12.6 +46.5	1,100.91 1,103.78 1,111.52 1,117.22	37,083 39,926 48,079 54,539	+1 42 + 420 + 322	1,130.19 1,133.92 1,135.60 1,135.65	4,980 6,550 7,200 7,220	+25.5 +10.9 +.3
CAL YR 198	31 -	-	+98.0	-	-	+65.3	-	-	+5.1
Jan. 31 Feb. 28 Mar. 31 Apr. 30 May 31 June 30 July 31 Aug. 31 Sept. 30	1,244.92 1,256.00 1,266.23 1,280.33 1,276.61 1,279.38 1,274.42 1,266.26 1,257.39	92,885 109,176 125,618 150,410 143,621 148,659 139,712 125,669 111,335	+512 +900 +821 +1,279 -339 +260 -447 -701	1,118.37 1,130.14 1,147.90 1,150.90 1,149.70 1,151.13 1,142.89 1,127.68 1,109.29	55,881 70,441 95,424 100,066 98,162 100,436 87,963 67,301 45,642	+67.0 +840 +1,247 +239 -95.0 +117 -623 -1,031 -1,117	1,135.64 1,135.68 1,136.60 1,126.60 1,125.89 1,126.21 1,125.48 1,125.49	7,220 7,230 7,450 3,950 3,750 3,840 3,630 3,640	0 +3.6 -58.8 -3.3 +1.5 -3.4 +.2
WTR YR 198	2 -	1-	+134		-	+36.3	-	-	-1.9
Date	Elevation (feet)	Contents (acre- feet)	Change in contents (equivalent in ft3/s)	Elevation (feet)	Contents (acre- feet)	Change in contents (equivalent in ft3/s)	Elevation (feet)	Contents (million cu ft)	Change in contents (equivalent in ft3/s)
01429400	GENERAL EDG	AR JADWIN	RESERVOIR +	01431700 L	AKE WALLEN	PAUPACK +	01433000 SWING	GING BRDIG	E RESERVOIR +
Sept. 30 Oct. 31 Nov. 30 Dec. 31	989.46 989.46 989.50 989.46	550 550 560 550	- 0 +.2 2	1,174.60 1,174.90 1,173.50 1,175.90	72,720 74,280 67,000 79,570	+25.4 -122.4 +204.4	1,064.9 1,064.5 1,060.6 1,059.7	1,188 1,173 1,031 1,000	-5.6 -54.5 -11.7
CAL YR 198	11 -	-	+.3	-	-	+22.4		-	-3.0
Jan. 31 Feb. 28 Mar. 31 Apr. 30 May 31 June 30 July 31 Aug. 31 Sept. 30	989. 46 989. 46 989. 46 989. 46 989. 46 989. 46 989. 46 989. 46	550 550 550 550 550 550 550 550	0 0 0 0 0 0	1,178.80 1,182.60 1,186.10 1,185.40 1,185.40 1,184.30 1,182.40 1,181.50 1,180.90	95,120 115,800 135,400 134,200 131,400 125,300 114,700 109,800 106,500	+252.9 +372.3 +318.8 -20.2 -45.5 -102.5 -172.1 -79.7 -55.5	1,057.8 1,057.8 1,067.3 1,067.3 1,061.8 1,064.6 1,059.2 1,062.5 1,060.8	936 936 1,280 1,206 1,074 1,176 983 1,099	-24.1 0 +129 -28.2 -49.5 +39.5 -72.2 +43.4 -23.4
WTR YR 198	2 -	-	. 0	-	-	+46.7	-	-	-4.7

167

RESERVOIRS IN DELAWARE RIVER BASIN--Continued MONTHEND ELEVATION AND CONTENTS, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

Date	Elevation (feet)	Contents (million cu ft)	Change in contents (equivalent in ft ³ /s)	Elevation (feet)	Contents (million cu ft)	Change in contents (equivalent in ft ³ /s)	Elevation (feet)	Contents (million cu ft)	Change in contents (equivalent in ft ³ /s)
	01433100	TORONTO RES	SERVOIR +	01433200	CLIFF LAKE	RESERVOIR +	01435900	NEVERSINK	RESERVOIR #
Sept. 30 Oct. 31 Nov. 30 Dec. 31	1,190.7 1,185.5 1,188.2 1,191.2	312 220 266 321	-34.3 +17.9 +20.6	1,066.0 1,065.0 1,060.4 1,059.7	90.3 83.7 56.1 52.4	-2.5 -10.6 -1.4	1,398.70 1,397.29 1,397.58 1,397.27	19,889 19,404 19,503 19,397	-24.2 +5.1 -5.3
CAL YR 198	1 - •	-	+7.0	-	-	4	-	-	+62.2
Jan. 31 Feb. 28 Mar. 31 Apr. 30 May 31 June 30 July 31 Aug. 31 Sept. 30	1,195.4 1,200.0 1,207.3 1,215.9 1,217.0 1,218.0 1,209.0 1,194.4 1,185.2	409 516 706 958 995 1,029 753 387 215	+32.7 +44.4 +70.9 +97.2 +13.6 +13.1 -103 -137 -66.5	1,058.0 1,058.2 1,067.8 1,065.8 1,066.7 1,066.7 1,064.9 1,060.9	44.2 45.1 103 88.9 65.1 95.1 83.0 93.0 58.8	-3.1 +.4 +21.6 -5.4 -8.9 +11.6 -4.5 +3.7 -13.2	1,400.40 1,412.36 1,421.07 1,439.05 1,429.33 1,434.55 1,428.90 1,420.72 1,411.56	20, 483 24,941 28,491 36,678 32,324 34,512 31,902 28,344 24,628	+5 4.2 +2 46 +177 +422 -217 +113 -130 -178 -192
WTR YR 198	2 -	i e	-3.1	-	11-	-1.0	-	-	+20.1
Date	Elevation (feet)	Contents (acre- feet)	Change in contents (equivalent in ft ³ /s)	Elevation (feet)	Contents (acre- feet)	Change in contents (equivalent in ft ³ /s)	Elevation (feet)	Contents (acre- feet)	Change in contents (equivalent in ft3/s)
0	1447780 FR	ANCIS E. WA	LTER LAKE #	01449400	PENN FOREST	RESERVOIR +	01449700	WILD CREEK	RESERVOIR +
Sept. 30 Oct. 31 Nov. 30 Dec. 31	1,392.05 1,392.64 1,370.01 1,370.21	37,200 37,672 21,426 21,546	+7.7 -273 +2.0	982.71 979.50 980.54 982.02	12,910 11,840 12,150 12,670	-17.4 +5.2 +8.5	812.26 815.39 815.25 815.23	9,950 10,810 10,770 10,770	+14.0 -0.7
CAL YR 198	1 -	-	+27.1	-	-	+7.0	-	-	+1.4
Jan. 31 Feb. 28 Mar. 31 Apr. 30 May 31 June 30 July 31 Aug. 31 Sept. 30	1,368.45 1,369.65 1,370.27 1,368.51 1,352.17 1,298.00 1,299.69 1,300.00 1,304.08	20,518 21,210 21,582 20,550 12,848 1,780 1,966 2,000 2,409	-16.7 +12.5 +6.1 -17.3 -125 -186 +3.0 +.6 +6.9	986.83 990.25 999.09 1,000.12 1,000.19 1,000.5 1,000.11 1,000.09 999.58	14, 420 15, 750 19,570 20,050 20,090 20,320 20,040 20,030 19,790	+28.5 +23.9 +62.1 +8.1 +.7 +3.9 -4.6 -2 -4.0	815.35 816.08 816.98 820.32 820.54 818.79 815.81 811.69	10,800 11,000 11,250 12,100 12,090 12,160 11,750 10,920 9,790	+.5 +3.6 +4.1 +14.3 2 +1.2 -6.7 -13.5
WTR YR 198	32 -	-	-48.1	-	-	+9.5	(F)	•	2
Date	Elevation (feet)	Contents (acre- feet)	Change in contents (equivalent in ft3/s)	Gage Height (feet)	Contents (million gallons)	Change in contents (equivalent in ft3/s)	Elevation (feet)	Contents (acre- feet)	Change in contents (equivalent in ft ³ /s)
	01449790 B	ELTZVILLE L	AKE †	01455400	LAKE HOPAT	CONG +	01469200	STILL CREEK	RESERVOIR +
Sept. 30 Oct. 31 Nov. 30 Dec. 31	628.08 628.19 628.02 628.00	41,330 41,430 41,270 41,250	+1.6 -2.7 3	8.86 8.82 9.08 7.74	7,343 7,310 7,526 6,425	-1.6 +11.1 -54.9	1,180.50 1,179.80 1,179.20 1,179.90	7,850 7,650 7,480 7,680	-3.3 -2.9 +3.3
CAL YR 198	31 -		+33.5	-	-	+1.5	-	-	+2.1
Jan. 31 Feb. 28 Mar. 31 Apr. 30 May 31 June 30 July 31 Aug. 31 Sept. 30	627.70 627.84 627.89 628.01 629.07 629.93 627.88 627.98 623.04	40,960 41,100 41,150 41,260 42,270 43,130 41,140 41,230 36,730	-4.7 +2.5 +.8 +16.4 +14.5 -32.4 +1.5	7.36 7.46 7.76 9.34 8.91 9.45 9.10 9.04 6.60	6,120 6,200 6,442 7,745 7,384 7,888 7,543 7,493 5,521	-15.2 +4.4 +12.1 +67.2 -18.0 -23.4 -14.7 -2.5	1,181.50 1,182.00 1,182.20 1,182.10 1,182.00 1,182.30 1,181.90 1,181.80 1,181.40	8,140 8,290 8,350 8,320 8,290 8,380 8,260 8,230 8,110	+7.5 +2.7 +1.0 5 5 +1.5 -2.0 5
WTR YR 198	32 -	-	-6.4	-	-	-7.7	-	-	+.4

168

DELAWARE RIVER BASIN

RESERVOIRS IN DELAWARE RIVER BASIN--Continued

MONTHEND ELEVATION AND CONTENTS, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

Date	levation (feet)	Contents (acre- feet)	Change in contents (equivalent in ft3/s)	Elevation (feet)	Contents (area- feet)	Change in contents (equivalent in ft3/s)	
	01470870	BLUE MA	RSH LAKE +	01472200	GREEN LANE	E RESERVOIR +	
Sept. 30 Oct. 31 Nov. 30 Dec. 31	289.88 290.37 289.95 290.15	22,760 23,330 22,840 23,070	-8.2	282.24 281.66 281.32 285.21	10,520 10,160 9,950 12,730	-5.9 -3.5 +45.2	
CAL YR 1981	-	-	+6.3	2	-	+2.8	
Jan. 31 Feb. 28 Mar. 31 Apr. 30 May 31 June 30 July 31 Aug. 31 Sept. 30	289.90 290.24 285.54 288.15 291.52 290.23 290.00 290.11 289.96	22,780 23,180 18,150 20,840 24,690 23,170 22,900 23,030 22,850	+7.2 -81.8 +45.2 +62.6 -25.5 -4.4 +2.1	285.91 285.90 286.05 286.06 286.15 285.88 285.70 285.25	13,350 13,480 13,480 13,490 13,560 13,420 13,330 13,170 12,770	+10.1 2 +2.3 +.2 +1.1 -2.4 -1.5 -2.6 -6.7	
WTR YR 1982	-	-	+.1	-	-	+3.1	

Elevation at 0900 hours on first day of following month. Elevation or gage height at 2400 hours. Observed. Estimated. Elevation at 0900 hours.

DIVERSIONS AND WITHDRAWALS

WITHDRAWALS FROM THE DELAWARE RIVER BASIN

- 01415200 Diversion from Pepacton Reservoir, NY, on East Branch Delaware River to Rondout Reservoir on Rondout Creek, in Hudson River basin, for municipal supply of city of New York. No diversion prior to Jan. 6, 1955. Records furnished by Board of Water Supply and Department of Water Resources, city of New York. REVISIONS (Water Years).--WRD-NY 1972: 1970.

 REVISED RECORDS, WRD NY 1971: 1970. Revised figures of diversion for the water year 1980, superseding those published in the report for 1980 are given herein.
- 01423900 Diversion from Cannonsville Reservoir, NY, on West Branch Delaware River to Rondout Reservoir on Rondout Creek, in Hudson River basin, for municipal supply of city of New York. No diversion prior to Jan. 29, 1964. Records furnished by Board of Water Supply, city of New York.

 REVISED RECORDS: Revised figures of diversion for the water year 1980, superseding those published in the report for 1980 are given herein.
- 01435800 Diversion from Neversink Reservoir, NY, on Neversink River to Rondout Reservoir on Rondout Creek, in Hudson River basin, for municipal supply of city of New York. No diversion prior to Dec. 3, 1953. Records furnished by Board of Water Supply and Department of Water Resources, city of New York.

 REVISIONS: Revised figures of diversion for the water years 1976 and 1977, superseding those published in the reports for 1976 and 1977 are given herein.
- 01436520 Village of Woodridge, NY, diverts water from East Pond Reservoir, tributary to Neversink River, for municipal supply outside of basin. Records furnished by village of Woodridge.
- 01437360 Diversion from Bear Swamp Reservoir, NY, tributary to Neversink River, by the New York State Training School, Otisville, NY, for water supply outside of basin. Records furnished by Delaware River Basin Commission.
- 01447750 Diversion from Bear Creek, PA, tributary to Lehigh River, by Bear Creek Gas and Water Company for water supply outside of basin. Records furnished by Delaware River Basin Commission.
- 01448830 Diversion from Hazle Creek Watershed by Hazelton Joint Sewerage Authority for municipal water supply. Waste effluent from the municipal water system is released to the Susquehanna River. Records furnished by Delaware River Basin Commission.
- 01460500 Diversion by Delaware and Raritan Canal from Delaware River at Raven Rock, for municipal and industrial use. Water is discharged into the Raritan River at New Brunswick. Records of discharge are collected on the Delaware and Raritan Canal at Kingston, (see station 01460500). Canal was closed for repair from Oct. 30 to June 8.

WITHDRAWALS BY CITY OF NEW YORK DIVERSION, IN CUBIC FEET PER SECOND, WATER YEARS OCTOBER 1975 TO SEPTEMBER 1977

Month	NEVERSINK RESERVOI 01435800	R	NEVERSINK RESERVOIR 01435800
October	211 288 311		218 250 306
CAL YR 1975	293	CAL YR 1976	290
January. February. March. April. May. June. July. August. September.	260 216 272 281 434 286 408 294 248		256 149 129 380 303 233 386 321 232
WTR YR 1976	293	WTR YR 1977	264

DIVERSION, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

Month	PEPACTON RESERVOIR 01415200	CANNONSVILLE RESERVOIR 01423900	NEVERSINK RESERVOIR 01435800
October	693	351	144
November	570 375	288 267	114 104
CAL YR 1981	499	386	117
January	0.15	582	90.8
February	0	396	11.7
March	352	395	103
April	242	2.06	277
May	531	234	349
June	368	168	98.0
July	693	376	157
August	696	208	153
September	696	3.46	158
WTR YR 1982	438	273	148

DELAWARE RIVER BASIN

DIVERSIONS AND WITHDRAWALS--Continued

MISCELLANEOUS WITHDRAWALS FROM BASIN

	EAST POND RESERVOIR 01436520	BEAR SWAMP RESERVOIR *01437360	BEAR CREEK 01447750	HAZLE CREEK 01448830	DELAWARE & RARITAN CAN 01460500	AL
October	.5	DATA NOT	0	3.9	37.7	a52.2
November	.1	AVAILABLE	0	3.9	.03	a74.6
December	1	NVNI BRODE	Ö	3.9 3.9	0	a65.9
CAL YR 1981	. 4		6.0	3.9	54.3 CAL YR 198	0 a88.8
January	.3		0	3.7	0	a63.0
February	.3		0	3.9	0	a59.0
March	.3		2.2	3.9	0	a91.8
April	.3		14.5	3.6	0	a92.2
May	. 4		3.3	3.9	0	a77.8
June	.5		0	3.4	34.2	a49.1
July	.6		. 0	3.9	27.0	a27.3
August	.6		. 0	3.3	17.5	a21.5
September	.5		0	4.0	26.2	a22.7
WTR YR 1982	. 4		1.7	3.8	10.6 WTR YR 198	1 a58.1

- * Data not available this year but, from past records, withdrawal is approximately 0.5 ft³/s (0.014 m³/s). a Corrected figures of diversion to Delaware and Raritan Canal for water year 1981, superseding those published in

DIVERSIONS WITHIN THE DELAWARE RIVER BASIN

- 01463480 Diversion from the Delaware River at the Morrisville Filtration Plant for municipal supply, by the Borough of Morrisville, PA. The water withdrawn at this site is returned to the basin after treatment, only slightly diminished by consumptive uses and losses in transmission. Records furnished by the Borough of Morrisville, PA.
- 01463490 Diversion from the Delaware River just above the Trenton gaging station for municipal supply by the city of Trenton, NJ. The water being withdrawn is returned to the basin after treatment only slightly diminished by consumptive uses and losses in transmission. Records furnished by the City of Trenton.

 CORRECTION.--The station number for the diversion by the City of Trenton has been changed to 01463490 to prevent confusion with the gaging station.
- 01467030 Diversion from the Delaware River at the Torresdale Intake for municipal supply, by the City of Philadelphia, PA. The water being withdrawn at this intake is returned to the basin after treatment only slightly diminished by consumptive uses and losses in transmission. Records furnished by the Delaware River Basin Commission.
- 01474500 Diversion from the Schuylkill River at the Belmont and Queen Lanes Intakes for municipal supply, by the City of Philadelphia, PA. The water being withdrawn at these intakes is returned after treatment within the Delaware River basin only slightly diminished by consumptive uses and losses in transmission. Records furnished by the Delaware River Basin Commission.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

	WITHDRAWAL BOROUGH OF MORRISVILLE 01463480	WITHDRAWAL CITY OF TRENTON 01463490	CI	THDRAWAL TY OF ADELPHIA	
Month			DELAWARE RIVER TORRESDALE 01467030	BELMONT	KILL RIVER QUEEN LANE 74500
October November December	6.2 5.89 5.82	50.3 48.3 48.3	299 272 276	87.7 91.0 92.4	176 174 189
CAL YR 1981	6.30	50.5	308	98.3	175
January. February March. April May. June July. August September	5.93 5.85 5.68 5.88 5.93 6.55 6.15 5.95	52.2 56.3 49.4 47.5 59.1 58.1 56.0	297 288 274 278 293 298 344 311	99.5 99.2 91.3 91.4 89.0 95.9 103 100 98.2	178 171 171 156 160 161 173 159
WTR YR 1982	6.01	51.7	295	94.9	168

DELAWARE RIVER BASIN

DIVERSIONS AND WITHDRAWALS--Continued

DIVERSIONS IMPORTED INTO BASIN

- 01367630 Water diverted from Morris Lake, tributary to the Wallkill River (Hudson River basin), by the Newton Water and Sewer Authority for municipal use. After use the water is released into the Paulins Kill (Delaware River basin). Records furnished by the Delaware River Basin Commission.
- 01578420 Water diverted from West Branch Octoraro Creek (Susquehanna River basin) at the McCray Plant of the Octoraro Water Co., for municipal use. After use the water is released into the Delaware River basin. Records furnished by the Delaware River Basin Commission.
- 01578450 Water diverted from Octoraro Lake (Susquehanna River basin) by Chester Water Authority for municipal use.

 After use the water is released into the Delaware River basin. Records furnished by the Delaware River Basin
 Commission.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

Month	MORRIS LAKE 01367630	ОСТО	RARO CREEK
		OCTORARO WATER CO. 01578420	CHESTER WATER AUTHORITY 01578450
October. No vember. December.	1.4 1.4 1.4	1.9 1.9 1.8	49.0 44.1 44.1
CAL YR 1981	1.4	2.1	47.9
January February March April May June July August September	1.5 1.6 1.5 1.4 1.4 1.4	2.0 1.9 1.7 1.6 1.8 1.8 1.7	44.9 46.5 43.6 41.0 41.5 42.5 45.2 42.2
WTR YR 1982	1.4	1.8	43.9

As the number of streams on which streamflow information is likely to be desired far exceeds the number of stream-gaging stations feasible to operate at one time, the Geological Survey collects limited streamflow data at sites other than stream-gaging stations. When limited streamflow data are collected on a systematic basis over a period of years for use in hydrologic analyses, the site at which the data are collected is called a partial-record station. Data collected at these partial-record stations are usable in low-flow or floodflow analyses, depending on the type of data collected. In addition, discharge measurements are made at other sites not included in the partial-record program. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Records collected at partial-record stations are presented in two tables. The first is a table of discharge measurements at low-flow partial-record stations, and the second is a table of annual maximum stage and discharge at crest-stage stations. Discharge measurements made at miscellaneous sites for both low flow and high flow are given in a third table.

Low-flow partial-record stations

Measurements of streamflow in New Jersey made a low-flow partial-record stations are given in the following table. Most of these measurements were made during periods of base flow when streamflow is primarily from ground-water storage. These measurements, when correlated with the simultaneous discharge of a nearby stream where continuous records are available, will give a picture of the low-flow potentiality of a stream. The column headed "Period of record" shows the water years in which measurements were made at the same, or practically the same, site.

Discharge measurements made at low-flow partial-record stations during water year 1982

	product ge meabares	made at low-flow partial-record a	ocacions durin	g waver yea	1 1902	
Station number	Station name	Location	Orainage area (mi²)	Period of record	Measure Date	Discharge (ft³/s)
		Maurice River basin	4.05.4			(/ 0/
01411450	Still Run at Aura, NJ	Lat 39°40'23", long 75°07'50", Gloucester County, at bridge on Aura-Glassboro Road, 0.4 mi (0.6 km) east of Aura, 1.0 mi (1.6 km) upstream of Silver Lake, and 2.6 mi (4.2 km) southeast of Glassboro.	3.21 (8.31 km ²)	1966, 1976-82	9-16-82	.79
01411456	Little Ease Run near Clayton, NJ	Lat 39°39'32", long 75°04'04", Gloucester County, at bridge on Academy Road, 0.9 mi (1.4 km) west of Fries Mill, 1.3 mi (2.1 km east of Clayton, and 1.4 mi (2.3 km downstream from Beaverdam Branch.		1966, 1976-82	8-13-82 9-16-82	1.6
01411462	Scotland Run at Franklinville, NJ	Lat 39°37'05", long 75°03'36", Gloucester County, at bridge on State Route 538, 0.9 mi (1.4 km) east of Franklinville, 2.7 mi (4.3 km) upstream of Malaga Lake, and 2.8 mi (4.5 km) southeast of Clayton.	14.8 (38.3 km ²)	1976-82	8-13-82 9-16-82	7.3
01411700	Muddy Run at Centerton, NJ	Lat 39°31'28", long 75°10'09", Salem County, 180 ft (55 m) downstream of unnamed right bank tributary, 200 ft (60 m) downstream of bridge on New Jersey Routes 540 and 553 in Centerton, and 4.7 mi (7.6 km) south of Elmer.	36.5 (94.6 km ² , Revised)	1976-82	8-13-82 9-17-82	13 11
01411950	Buckshutem Creek near Laurel Lake, NJ	Lat 39°20'51", long 75°03'47", Cumberland County, at bridge on State Route 555 (Dividing Creek Road), 1.3 mi (2.1 km) upstream of Gravelly Run, 1.8 mi (2.9 km) west of Laurel Lake, and 3.6 mi (5.2 km) southwest of Millville.	12.9 (33.4 km ²)	1976-77, 1980-82	8-13-82 9-16-82	.20
01412120	Muskee Creek near Port Elizabeth, NJ	Lat 39°18'56", long 74°57'31", Cumberland County, at bridge on State Route 548, 1.3 mi (2.1 km) east of Port Elizabeth, 1.9 mi (3.1 km) upstream from mouth, and 2.8 mi (4.5 km) northeast of Mauricetown.	13.1 (33.9 km²)	1969, 1976-82	8-13-82	9.0
		Cohansey River basin				- 58
01412405	Cohansey River near Beals Mill, NJ	Lat 39°31'29", long 75°15'59", Cumberland County, at bridge on Beals Mill Road, 1,300 ft (400 m) downstream of Beals Mill and Bostwick Lake, and 1.6 mi (3.0 km) west of Deerfield Street.	9.44 (24.45 km ²)	1976-82	8-12-82 9-17-82	3.3 3.3

Discharge measurements made at low-flow partial-record stations during water year 1982--Continued

Station number	Station name	Location	Drainage area (mi²)	Period of record	Measure Date	ements Discharge (ft³/s)
		Cohansey River basinContinued				
01413010	Barrett Run near Bridgeton, NJ	Lat 39°26'58", long 75°15'42", Cumberland County, at bridge on Mary Elmer Drive, 1,800 ft (550 m) upstream from Mary Elmer Lake, and 2.1 mi (3.4 km) north- west of the intersection of State Routes 49 and 77 in Bridget	7.02 (18.18 km²)	1966, 1976-82	8-12-82 9-17-82	1.7
01413020	Indian Fields Branch at Bridgeton, NJ	Lat 39°26'04", long 75°13'08", Cumberland County, at bridge on Manheim Avenue in Bridgeton, 1,300 ft (400 m) upstream of East Lake.	4.64 (12.02 km ²)	1976-82	8-12-82 9-17-82	3.8 3.7
		Stow Creek basin				
01413080	Raccoon Ditch at Davis Mill, NJ	Lat 39°25'26", long 75°22'01", Cumberland County, at bridge on County Highway 90 at Davis Mill, 2.8 mi (4.5 km) upstream from mouth, and 4.3 mi (6.9 km) southwest of Shiloh.	3.19 (8.26 km ²)	1976-78, 1980-82	8-12-82	1.9
		Delaware River basin				
01443475	Trout Brook near Middleville, NJ	Lat 41°03'03", long 74°51'23", Sussex County, at bridge on County Highway 612, 0.4 mi (0.6 km) upstream from mouth, 0.5 mi (0.8 km) southeast of Middleville, and 5.1 mi (8.2 km) west of Newton.	24.0 (62.2 km ²)	1979-82	5-14-82 8-16-82	1.7
01445800	Honey Run near Ramseyburg, NJ	Lat 40°53'44", long 75°01'04", Warren County, at bridge on Hope-Delaware Road, 2.3 mi (3.7 km) northeast of Ramsey- burg, 2.8 mi (4.5 km) southwest of Hope, and 3.1 mi (5.0 km) upstream from mouth.	2.21 (5.72 km ²)	1981-82	11-04-81 5-13-82 8-17-82 9-17-82	1.5 2.0 1.2 .42
01455200	Pohatcong Creek at New Village, NJ	Lat 40°42'57", long 75°04'20", Warren County, at bridge on Edison Road, 0.4 mi (0.6 km) southeast of New Village, and 4.3 mi (6.9 km) upstream from Merrill Creek.	33.3 (86.2 km ² , Revised)	1960-69‡, 1979-80, 1982	7-16-82	24
01455230	Merrill Creek at Coopersville, NJ	Lat 40°42'25", long 75°06'54", Warren County, at bridge on Lows Hollow Road at Coopersville, 0.9 mi (1.4 km) north of Stewartsville, 2.1 mi (3.4 km) upstream from mouth, and 3.3 mi (5.3 km) east of Phillipsburg.	3.85 (9.97 km ²)	1981-82	11-04-81 5-14-82 8-17-82 9-17-82	2.2 5.8 3.3 1.8
01455780	Lubbers Run at Lockwood, NJ	Lat 40°55'36", long 74°43'09", Sussex County, at bridge on U.S. Route 206 at Lockwood, 1.0 mi (1.6 km) upstream from mouth, and 1.5 mi (2.4 km) northwest of Stanhope.	16.3 (42.2 km ²)	1982	11-04-81 5-14-82 8-16-82 9-16-82	12 23 13 4.2
01465884	Sharps Run at Route 541 at Medford, NJ	Lat 39°54'18", long 74°49'30", Burlington County, at bridge on Route 541 (Argonne Highway) in Medford, 0.7 mi (1.1 km) upstream from mouth, 1.2 mi (1.9 km) northeast of Oliphants Mills, and 2.6 mi (4.2 km) north- west of Medford Lakes.	4.41 (11.42 km²)	1982	11-12-81 5-12-82 8-17-82	1.1 1.5 .38
01465898	Little Creek near Lumberton, NJ	Lat 39°56'16", long 74°47'38", Burlington County, at bridge on Eayrestown Road, 0.6 mi (1.0 km) upstream from mouth, 1.9 mi (3.1 southeast of Lumberton, and 3.0 m (4.8 km) northeast of Medford.	19.2 (49.7 km ²) km)	1982	11-12-81 5-12-82 8-17-82	7.3 22 .87

174

DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

Discharge measurements made at low-flow partial-record stations during water year 1982--Continued

Station number	Station name	Location	Drainage area (mi²)	Period of record	Measur	ements Discharge (ft³/s)
number.		Delaware River basinContinued	(1112)	1 0001 0	2400	(10 / 5/
01477100	Raccoon Creek near Mullica Hill, NJ	Lat 39°42'31", long 75°12'05", Gloucester County, at highway bridge on Cedar Grove-Richwood Road 0.6 mi (1.0 km) upstream from Miery Run, 1.0 mi (1.6 km) downstream from outlet of Ewan Lake, 2.5 mi (4.0 km) southeast of Mullica Hill, and 4.0 mi (6.4 km) southwest of Pitman.	10.1 (26.2 km ²)	1959-63, 1966, 1980, 1982	5-20-82	12
01483010	Deep Run near Alloway, NJ	Lat 39°32'34", long 75°21'18", Salem County, at bridge on Telegraph Road, 0.8 mi (1.3 km) upstream from Elkinton Mill Pond, 1.3 mi (2.1 km) south of Alloway, and 2.5 mi (4.0 km) northwest of Pecks Corner.	5.30 (13.73 km²)	1979-82	8-12-82	3.9

[#] Operated as a continuous-record gaging station.

CREST-STAGE PARTIAL-RECORD STATIONS

The following table contains annual maximum discharges for crest-stage stations. A crest-stage gage is a device which will register the peak stage occurring between inspections of the gage. A stage-discharge relation for each gage is developed from discharge measurements made by indirect measurements of peak flow or by current meter. The date of the maximum discharge is not always certain but is usually determined by comparison with nearby continuous-record stations, weather records, or local inquiry. Only the maximum discharge for each water year is given. Information on some lower stages may have been obtained, and discharge measurements may have been made for purposes of establishing the stage-discharge relation, but these are not published herein. The years given in the period of record represent water years for which the annual maximum has been determined. The gage heights are heights on the upstream side of the bridge, above the dam or at the discontinued continuous-record gaging station unless otherwise noted.

ANNUAL MAXIMUM DISCHARGE AT CREST-STAGE PARTIAL-RECORD STATIONS

Station	Station name	Location	Drainage	Period	Annu	al maximu	m
No.			area (mi²)	of record	Date	Gage height (feet)	Discharge (ft³/s)
		Cohansey River	basin				
01412500	West Branch Cohansey River at Seeley, NJ	Lat 39°29'06", long 75°15'33", Cumberland County, on right bank 15 ft (4.6 m) upstream from county bridge, Highway 31, at Seeley, 450 ft (137 m upstream from mouth and 4.1 m (6.6 km) northwest of Bridgel Datum of gage is 42.23 ft (12 National Geodetic Vertical Da 1929.	Revised) ni con. 2.872 m)	1952-67‡, 1968-82	d5-12-81 7-23-82	2.54 3.54	
		Delaware River	basin				
*01445000	Pequest River at Huntsville, NJ	Lat 40°58'52", long 74°46'36", (revised), Sussex County, on right bank, 20 ft (6.1 km) upstream from highway bridge in Huntsville, and 0.4 mi (0.6 km) downstream from East Branch. Datum of gage is 553.81 ft (168.801 m) National Geodetic Vertical Datum of 1929.	31.0 (80.3 km ² , Revised)	1940-62‡, 1963-82	2-04-82	3.49	195
01445430	Pequest River at Townsbury, NJ	Lat 40°51'06", long 74°56'02", Warren County, upstream of highway bridge in Townsbury, 2.8 mi (4.5 km) northeast of Pequest and 8.7 mi (13.9 km) west of Hackettstown. Altitude of gage is 480 ft (146 months) National Geodetic Vertical Datum of 1929 (from Topographic map).	(239.6 km²)	1977-80‡, 1981-82	2-04-82	5.10	2,570
*01446000	Beaver Brook near Belvidere, NJ	Lat 40°50'40", long 75°02'48, Warren County, on right bank, 2,000 ft (610 m) up- stream from mouth, and 2 mi (3 km) east of Belvidere. Datum of gage is 303.36 ft (92.464 m) National Geodetic Vertical Datum of 1929.	36.7 (95.1 km², Revised)	1922-61‡, 1963-82	1-04-82	h3.39	h355
*01455200	Pohatcong Creek at New Village, NJ	Lat 40°42'57", long 75°04'20", Warren County, at bridge on Edison Road, 0.4 mi (0.6 km) southeast of New Village, and 4.3 mi (6.9 km) upstream from Merrill Creek. Datum of gage is 308.32 ft (93.976 m) National Geodetic Vertical Datum of 1929.	33.3 (86.2 km ² , Revised)	1960-69‡, 1970-82	2-04-82	5.69	1,360
01455500	Musconetcong River at outlet of Lake Hopatcong, NJ	Lat 40°55'00", long 74°39'55", Morris County, on left bank just upstream of highway bridge 300 ft (91 m) down- stream from Lake Hopatcong Dam in Landing. Datum of gage is 904.99 ft (275.841 m) National Geodetic Vertical Datum of 1929.	(65.5 km², Revised)	1929-75‡, 1976-82	19-13-82	3.52	240

DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

CREST-STAGE PARTIAL-RECORD STATIONS

ANNUAL MAXIMUM DISCHARGE AT CREST-STAGE PARTIAL-RECORD STATIONS--CONTINUED

Station	Station name	Location	Drainage	Period	Annua	al maximum	n
no.			area (mi²)	of record	Date	gage height (feet)	Discharge (ft³/s)
		Delaware River	basinContinued		W.E.		
01456000	Musconetcong River near Hackettstown, NJ	Lat 40°53'10", long 74°46 (revised), Warren Count on right bank 75 ft (21 upstream from Saxton Fa Dam, 0.5 mi (0.8 km) up from Erie-Lackawanna Rabridge, and 3.0 mi (4.6 northeast of Hackettstc Datum of gage is 630.9 (192.307 m) National General Country (192.307 m) National Country (192.307 m)	y, (178.5 km², 3 m) Revised) ills sstream illway bwn. 3 ft	1921-73‡, 1974-82	2-03-82	2.40	690
		Vertical Datum of 1929					
01457500	Delaware River at Riegelsville, NJ	Lat 40°35'36", long 75°1 Warren County, at suspe sion bridge at Riegels- ville, 600 ft (183 m) v stream from Musconetcol River (flow of which is included in the record- for this station since Oct. 1, 1931). Datum gage is 125.12 ft (38. National Geodetic Vert Datum of 1929.	en- (16,390 km²) 	1906-71‡, 1972-82	4-05-82	13.64	52,000
01463610	Assunpink Creek at Edinburg, NJ	Lat 40°15'28", long 74°3' Mercer County, on left downstream side of Old Trenton Road Bridge (R 535), 0. 1 mi (1.6 km) west of Edinburg, 0.5 m (0.8 km) upstream from Bridegroom Run and 3.0 (4.8 km) north of Robb ville. Datum of gage: 63.46 ft (19.343 m) Na Geodetic Vertical Datum 1929.	bank, (64.7 km²) bute mi ins- is tional	1979-82	1-04-82	bf<5.46	g
01464400	Crosswicks Creek at New Egypt, NJ	Lat 40°04'03", long 74°3 Ocean County, at upstr- side of bridge on Stat Route 528 in New Egypt 300 ft (91 m) downstre- from Oakford Lake Dam. of gage is 43.46 ft (1 National Geodetic Vert Datum of 1929.	eam (106.7 km², e Revised) , and am Datum 3.247 m)	1968-82	6-17-82	20.22	798
01464515	Doctors Creek at Allentown, NJ	Lat 40°10'37", long 74°3 Monmouth County, at br on Breza Road in Allen and 0.8 mi (1.3 km) do stream from Conines Mi dam. Datum of gage is (15.539 m) National Ge Vertical Datum of 1929	idge (45.1 km², town, Revised) wn- llpond 50.98 ft	1968-82	6-17-82	b4.17	355
01464530	Blacks Creek at Mansfield Square, NJ	Lat 40°07'02", long 74°4 Burlington County, at on Mansfield Square-Cr. Road, 0.4 mi (0.6 km) Mansfield Square, and (5.5 km) upstream from Datum of gage is 12.44 (3.792 m) National Geovertical Datum of 1929	bridgé (51.0 km²) osswicks east of 3.4 mi mouth. ft detic	1978-82	7-29-82	b8.83	980
01464538	Crafts Creek at Columbus, NJ	Lat 40°04'44", long 74°4 Burlington County, at on Columbus-Mansfield 0.4 mi (0.6 km) north Columbus, and 6.0 mi (northeast of Mount Hol Datum of gage is 33.71 (10.275 m) National Ge Vertical Datum of 1929	bridge (13.93 km² road, of 9.6 km) ly. ft odetic	1978-82	7-29-82	b8.50	423

DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

CREST-STAGE PARTIAL-RECORD STATIONS

ANNUAL MAXIMUM DISCHARGE AT CREST-STAGE PARTIAL-RECORD STATIONS--Continued

Station	Station name	Location	Drainage	Period	Annu	al maximum	n
No.	Station name	Location	Drainage area (mi²)	of record	Date	Gage height (feet)	Discharge (ft³/s)
		Delaware River bas	inContinued				
01464582	Assiscunk Creek near Columbus, NJ	Lat 40°03'13", long 74°44'34 Burlington County, at brid, on Petticoat Bridge Road, (2.7 km) southwest of Colu 4.0 mi (6.4 km) northeast Mount Holly, and 0.1 mi (0 downstream from Assiscunk	ge (28.2 km ² 1.7 mi mbus, of .2 km)	1978-82 ²)	7-29-82	b7.17	460
01465850	South Branch Rancocas Creek at Vincentown, NJ	Lat 39°56'22", long 74°45'50' Burlington County, on left bank 150 ft (46 m) downstream from highway bridge on Lumberton-Vincentown road, 0.8 mi (1.3 km) west of Vincentown, 2.9 mi (4.7 southeast of Lumberton, an 3.1 mi (5.0 km) upstream f Southwest Branch. Datum ogage is 13.17 ft (4.014 m) National Geodetic Vertical Datum of 1929.	(167.1 km², Revised) km) d rom f	1962-75‡, 1976-82	4-28-82	5.92	522
01465882	Southwest Branch Rancocas Creek at Route 70 at Medford, NJ	Lat 39°54'16", long 74°48'48 (revised), Burlington County, at bridge on State Route 70, 0.6 mi (1.0 km) northeast of Medford, and 4.2 mi (6.8 km) upstream from mouth. Datum of gage is 20.72 ft (6.315 m) National Geodetic Vertical Datum of 1929.	(124.1 km ²)	1975-82	5-29-82	, b5.92	1,800
01467057	Pompeston Creek at Cinnaminson, NJ	Lat 40°00'11", long 74°59'00 Burlington County, at U.S. Route 130 bridge, 0.7 mi (1.1 km) northwest of Cinn minson, 1.7 mi (2.7 km) up stream from mouth, and 2.1 (3.4 km) east of Palmyra. Datum of gage is 11.36 ft (3.463 m) National Geodeti Vertical Datum of 1929.	(14.94 km², Revised)	1975-82	5-29-82	b3.52	290
01467069	North Branch Pennsauken Creek near Moorestown, NJ	Lat 39°57'10", long 74°58'10 Burlington County, at brid on Route 41 (Kings Highway 1.7 mi (2.8 km) southwest Moorestown. Datum of gage is 5.9 ft (1.80 m) Nationa Geodetic Vertical Datum of 1929.	ge (33.2 km ²) of	1975-82	5-29-82	4.75	480
*01467160	North Branch Cooper River near Marlton, NJ	Lat 39°53'20", long 74°58'08 Camden County, at bridge on blacktop road to Spring dale, 2.5 mi (4.0 km) west of Marlton. Datum of gage 36.36 ft (11.083 m) Nation Geodetic Vertical Datum of 1929.	(13.83 km², Revised)	1964-82	7-28-82	b2.63	152
*01467305	Newton Creek at Collingswood, NJ	Lat 39°54'30", long 75°03'13 Camden County, at bridge o Park Avenue in Collingswoo 0.3 mi (0.5 km) east of Cuthbert Avenue. Datum of gage is 18.74 ft (5.712 m) National Geodetic Vertical Datum of 1929.	on (3.44 km², od, Revised)	1964-82	5-29-82	3.04	142
01467317	South Branch Newton Creek at Haddon Heights, NJ	Lat 39°52'45", long 75°04'26 Camden County, at bridge o Haddon Heights Park in Had Heights, and 2.6 mi (4.2 k south of Collingswood. Da of gage is 23.34 ft (7.114 National Geodetic Vertical Datum of 1929.	on (1.63 km²) ddon km) atum 4 m)	1964-82	5-29-82	3.08	34

DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

CREST-STAGE PARTIAL-RECORD STATIONS

ANNUAL MAXIMUM DISCHARGE AT CREST-STAGE PARTIAL-RECORD STATIONS--Continued

Station	Station name	Location	Drainage	Period	Annu	al maximu	n
No.			area (mi²)	of record	Date	Gage height (feet)	Discharge (ft³/s)
		Delaware River basin-	Continued		1		
*01467330	South Branch Big Timber Creek at Blackwood, NJ	Lat 39°48'17", long 75°04'33", (revised), Camden County, at bridge on Lower Landing Road in Blackwood, and 3.0 mi (4.8 km) upstream from mouth Datum of gage is 8.41 ft (2.563 m) National Geodetic Vertical Datum of 1929.	(54.1 km ² , Revised)	1964-82	4-28-82	ъ4.00	315
01467351	North Branch Big Timber Creek at Laurel Road at Laurel Springs, NJ	Lat 39°49'07", long 75°00'56", Camden County, at bridge on Laurel Road in Laurel Springs and 2.5 mi (4.0 km) upstream from confluence with the Sout Branch. Datum of gage is 26.89 ft (8.196 m) National Geodetic Vertical Datum of 1929.	s, Revised)	1975-82	5-29-82	1.98	405
01475000	Mantua Creek at Pitman, NJ	Lat 39°44'14", long 75°06'53", Gloucester County, on left (1 abutment of Wadsworth Dam, F 0.9 mi (1.4 km) east of Pitman, and 2.0 mi (3.2 km) upstream from Porch Branch. Datum of gage is 68.51 ft (20.882 m) National Geodetic Vertical Datum of 1929.	6.05 15.67 km², Revised)	1940-76‡, 1977-82	5-29-82	2.20	267
01475019	Mantua Creek at Salina, NJ	Lat 39°46'13", long 75°07'59", Gloucester County, at bridge on Salina-Sewell Road, 0.2 mi (0.3 km) downstream of Bees Branch, and 0.5 mi (0.8 km) west of Salina. Datum of gage is 11.67 ft (3.557 m) National Geodetic Vertical Datum of 1929.	14.1 (36.5 km ² , Revised)	1975-82	4-28-82	5.53	468
01477110	Raccoon Creek at Mullica Hill, NJ	Lat 39°44'10", long 75°13'30", Gloucester County, at bridge State Routes 45 and 77 in Mullica Hill, 1,200 ft (370 m) downstream of Mullica Hill Pond and 5.5 mi (8.8 km) west of Pitman. Datum of gas is 21.91 ft (6.678 m) Nationa Geodetic Vertical Datum of 19	(40.4 km²)	1978-82	6-14-82	bf<1.75	g<250
01477480	Oldmans Creek near Harrisonville, NJ	Lat 39°41'40", long 75°18'38", Salem County, at bridge on Harrisonville Station Road, 2.4 mi (3.8 km) west of Harrisonville, and 2.8 mi (4.5 km) north of Woodstown. Datum of gage is 16.58 ft (5.054 m) National Geodetic Vertical Datum of 1929.		1975-82	6-14-82	4.49	240

Also a low-flow partial-record station.

e

^{**}

Also a tidal crest-stage station.
Discharge not determined.
Operated as a continuous-record gaging station.
Estimated.

Downstream side of bridge. Not previously published.

d Revised.

Peak did not reach bottom of gage.
Peak discharge for the period was less than the minimum recordable discharge. g

May have been higher during period of missing record Jan. 15-Mar. 30. Peak due to reservoir release. h

i

DISCHARGE MEASUREMENT AT MISCELLANEOUS SITES

Measurements of streamflow at points other than gaging stations are given in the following table. Those that are measurements of base flow are designated by an asterisk (*); measurements of peak flow by a dagger (†).

DISCHARGE MEASUREMENTS MADE AT MISCELLANEOUS SITES DURING WATER YEAR 1982

			Drainage	Measured previously		urements
Stream	Tributary to	Location	area (mi²)	(water years)	Date	Discharge (ft³/s)
		Delaware River basin				
01443440 Paulins Kill	Delaware River	Lat 41°06'20", long 74°45'19", Sussex County, at bridge in Balesville, 2.3 mi (3.7 km) upstream from Paulins Kill Lake, and 3.0 mi (4.8 km) north of Newton.	67.1 (173.8 km ²)	1979-81	6-10-82	*71
01446400 Pequest River	Delaware River	Lat 40°49'45", long 75°04'44", Warren County, at bridge on State Route 519, in Belvidere, 1,400 ft (430 m) upstream of mouth.	157 (407 km ² , Revised)	1950,53, 1955,74, 1977-81	11-10-81 1-08-82 3-25-82 6-09-82 9-07-82	88 450 249 257 99
01455801 Musconetcong River	Delaware River	Lat 40°55'10", long 74°44'07", Sussex County, at bridge at Lockwood 0.2 mi (0.3 km) downstream from Lubbers Run, and 1.5 mi (2.4 km) northwest of Stanhope.	60.1 (155.7 km ² , Revised)	1979-81	6-29-82	80
01464408 Crosswicks Creek tributary No. 2 tributary	Crosswicks Creek tributary No. 2	Lat 40°04'40", long 74°31'17", Ocean County, at bridge on Moorhouse Road, 100 ft (30 m) north, on road, of unnamed Tri- butary, 0.4 mi (0.6 km) from mouth at Crosswicks Creek Tri- butary No. 2, 0.5 mi (0.7 km) north of intersection of Moor- house road spur and Lakewood Road 0.7 mi (1.2 km) northeast of railroad bridge over Cross- wicks Creek, and 0.7 mi (1.2 km) northeast of junction of Moorhouse and Lakewood Roads in New Egypt.	- e	÷ .	11-05-81	ab*.25
01477510 Oldmans Creek	Delaware River	Lat 39°41'57", long 75°20'01", Salem County, at bridge on Kings Highway in Porches Mill, 1.0 mi (1.6 km) north of Seven Stars, and 3.1 mi (4.8 km) north of Woodstown.	21.0 (54.4 km ²)	1979-81	5-20-82	*22

^{*} Base flow.a Not previously published.b Field estimate.

The following table contains annual maximum stages for tidal crest-stage stations. The information is obtained from a crest-stage gage or a water-stage recorder located at each site. A crest-stage gage is a device which will register the peak stage occurring between inspections of the gage. All stages are elevations above National Geodetic Vertical Datum of 1929 unless otherwise noted. Only the maximum stage is given. Information on some other high stages may have been obtained but is not published herein. The years given in the period of record represent water years for which the annual maximum has been determined.

ANNUAL MAXIMUM STAGES AT TIDAL CREST-STAGE PARTIAL-RECORD STATIONS

				Annual	maximum
Station No.	Station name	Location	Period of record	Date	Elevation NGVD* (feet)
01411395	Cape May Canal at North Cape May, NJ	Lat 38°58'02", long 74°57'25", Cape May County, on Cape May Canal on slip of Cape May, New Jersey to Lewes, Delaware, ferry, 0.5 mi (0.8 km) east of west end of Cape May Canal, and 0.8 mi (1.3 km) south of North Cape May.	1965-82		C
01411409	Delaware Bay at Reeds Beach, NJ	Lat 39°06'32", long 074°53'39", Cape May County, at boat ramp in Cooks Beach, 0.2 mi (0.3 km) south of Reeds Beach, 4.8 mi (7.7 km) northwest of Cape May Court House, and 5.8 mi (9.3 km) north of Villas.	1979-82	11-15-81	6.62
01412150	Maurice River at Bivalve, NJ	Lat 39°13'42", long 75°02'12", Cumberland County, on right bank on bulkhead piling on the south side of Bivalve, and 1.3 mi (2.1 km) south of Port Norris.	1965-82	11-15-81	f
01413038	Cohansey River at Greenwich, NJ	Lat 39°23"02", long 075°20'58" Cumberland County, at Greenwich Pier, 0.7 mi (1.1 km) southwest of Greenwich, and 5.8 mi (9.3 km) southwest of Shiloh.	1979-82	11-15-81	5.28
01464040	Delaware River at Marine Terminal, Trenton, NJ	Mercer County, on left bank	1921-46‡, 1951-54‡, 1957-82‡e	1-04-82	o11.95
01477050	Delaware River at Chester, PA	Lat 39°49'52", long 75°19'58", Gloucester County, on left bank on floodgate at mouth of Repaupo Creek 2.2 mi (3.5 km) northeast of Bridgeport, 5.5 mi (8.8 km) north of Swedesboro, and at channel mile 84.00 mi (135.16 km) prior to October 1980 located at Reynolds Aluminum Company pier in Chester, PA at channel mile 82.30 mi (132.42 km).	1972-77‡, 1979-82	6-30-82	b2.38
01483050	Alloway Creek at Hancocks Bridge, NJ	Lat 39°30'31" long 75°27'39", Salem County, on left bank at downstream side of Mill Street bridge in Hancocks Bridge, 0.4 mi (0.6 km) downstream from Lower Alloway Creek and 4.0 mi (6.4 km) south of Salem.	1980-82	11–15–81	4.56

National Geodetic Vertical Datum of 1929 (NGVD).

Operated as a continuous-record gaging station.

Gage datum; not National Geodetic Vertical Datum of 1929 datum.

Furnished by National Ocean Survey.
Not previously published.
Operated by National Ocean Survey since March 1975.
Recorded elevations unreliable.

395150074284201. Local I.D., Lebanon State Forest 23-D Obs. NJ-WRD Well Number, 05-0689. LOCATION.--Lat 39°51'52", long 74°28'48", Hydrologic Unit 02040202, in Lebanon State Forest, Woodland Township. Owner: U.S. Geological Survey.

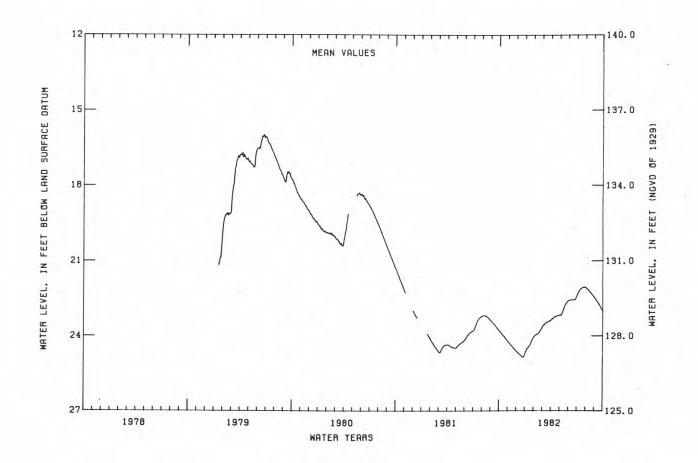
AQUIFER. --Kirkwood-Cohansey aquifer system of Miocene age.
WELL CHARACTERISTICS.--Drilled water-table observation well, diameter 8 in (203 mm), depth 33 ft (10.1 m), open-end

WELL CHARACTERISTICS.--Drilled water-table observation well, diameter 8 in (203 mm), depth 33 ft (10.1 m), open-end cement casing.

INSTRUMENTATION.--Water-level recorder.

DATUM.--Land-surface datum is 152.02 ft (46.336 m), revised, above National Geodetic Vertical Datum of 1929.

Measuring point: Top of 8 inch casing, 0.70 ft (0.210 m) above land-surface datum.


PERIOD OF RECORD.--September 1955 to April 1975, January 1979 to current year. Records for 1955 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 14.37 ft (4.380 m), revised, below land-surface datum, Sept. 11, 1958; lowest, 25.80 ft (7.864 m), revised, below land-surface datum, Feb. 19-20, 1966.

EXTREMES FOR CURRENT YEAR.--Highest water level, 22.03 ft (6.715 m) below land-surface datum, July 28; lowest, 24.86 ft (7.577 m) below land-surface datum, Dec. 24-25.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 MEAN VALUES

						21-11-11-11	· · · · · · · · · · · · · · · ·					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10	23.84 23.92	24.27 24.35	24.67 24.72		23.97 23.93	23.57	23.30 23.25	23.13 23.02	22.55 22.54	22.25 22.15	22.11	22.55
15 20	23.99	24.41			23.89	23.47	23.22	22.87	22.54	22.10	22.24	22.71
25	24.13	24.55	24.85	24.15	23.72	23.39	23.16	22.65	22.50	22.04	22.36	22.92
EOM	24.21	24.61	24.68	24.03	23.66	23.35	23.15	22.57	22.37	22.06	22.47	23.01
MEAN	24.00	24.42	24.75	24.35	23.87	23.47	23.22	22.86	22.52	22.12	22.25	22.73
WTR YR	1982	MEAN	23.38	HIGH 22	2.03 JUL 2	8	LOW	24.85 DEC	23 AND	OTHERS		

395525074502601. Local I.D., Medford 4 Obs. NJ-WRD Well Number, 05-0262. LOCATION.--Lat 39°55'24", long 74°50'25", Hydrologic Unit 02040202, at Medford Public Shooting Grounds, Medford Township. Owner: U

Township.

Owner: U.S. Geological Survey.

AQUIFER.—-Potomac-Raritan-Magothy aquifer system of Cretaceous age.

WELL CHARACTERISTICS.—-Drilled artesian observation well, diameter 6 in (152 mm), depth 1,145 ft (349.0 m), screened 1,125 to 1,145 ft (342.9 to 349.0 m).

INSTRUMENTATION.—-Water-level extremes recorder, February 1977 to current year. Water-level recorder, January 1968

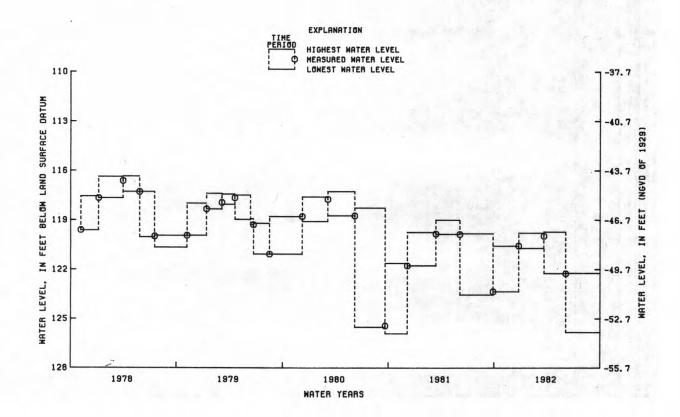
WATER-LEVEL EXTREMES

INSTRUMENTATION.--Water-level extremes recorder, February 1977 to current year. Water-level recorder, January 1968 to July 1975.

DATUM.--Land-surface datum is 72.32 ft (22.043 m) above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 2.56 ft (0.780 m) above land-surface datum.

PERIOD OF RECORD.--January 1968 to July 1975, February 1977 to current year. Records for 1968 to 1975 are unpublished and are available in files of New Jersey District Office.


EXTREMES FOR PERIOD OF RECORD.--Highest water level, 94.24 ft (28.724 m) below land-surface datum, Mar. 13, 1968; lowest, 125.91 ft (38.377 m) below land-surface datum, between Sept. 18 and Dec. 4, 1980.

EXTREMES FOR CURRENT YEAR.--Highest water level, 119.71 ft (36.488 m) below land-surface datum, between Mar. 19 and June 2; lowest, 125.82 ft (38.350 m) below land-surface datum, between June 2 and Oct. 6, 1982.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

MEASURED WATER LEVEL

		PERIOD			HIGHEST WATER LEVEL	LOWEST WATER LEVEL	1	DATE	WATER LEVEL
SEPT.	25,	1981 TO DE	C. 23,	1981	120.56	123.34	DEC.	23, 1981	120.56
DEC.	23,	1981 TO MA	R. 19,	1982	119.78	120.71	MAR.	19, 1982	119.97
MAR.	19,	1982 TO JU	INE 2,	1982	119.71	122.24	JUNE	2, 1982	122.24
JUNE	2,	1982 TO 00	ст. 6,	1982	122.22	125.82	OCT.	6, 1982	125.59

395525074502505. Local I.D., Medford 5 Obs. NJ-WRD Well Number, 05-0261. LOCATION.--Lat 39°55'25", long 74°50'25", Hydrologic Unit 02040202, at Medford Public Shooting Grounds, Medford

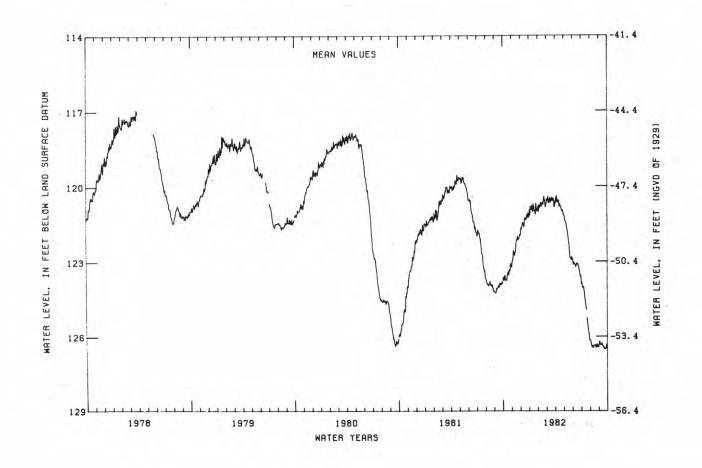
Township.
Owner: U.S. Geological Survey.

AQUIFER.--Potomac-Raritan-Magothy aquifer system of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in (152 mm), depth 750 ft (229 m), screened 740 to 750 ft (226 to 229 m).
INSTRUMENTATION.--Water-level recorder.

DATUM.--Land-surface datum is 72.60 ft (22.128 m) above National Geodetic Vertical Datum of 1929.

Measuring point: Top edge of recorder shelf, 3.60 ft (1.100 m) above land-surface datum.

PERIOD OF RECORD.--January 1968 to March 1975, March 1977 to current year. Records for 1968 to 1977 are unpublished and are available in files of New Jersey District Office.


EXTREMES FOR PERIOD OF RECORD. --Highest water level, 94.46 ft (28.791 m) below land-surface datum, Mar. 1, 1968; lowest, 126.54 ft (38.569 m) below land-surface datum, Sept. 21, 1982.

EXTREMES FOR CURRENT YEAR. --Highest water level, 120.26 ft (36.655 m) below land-surface datum, Apr. 6; lowest,

126.54 ft (38.569 m) below land-surface datum, Sept. 21.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	A UG	SEP
5	123.72	122.84			120.87	120.52	120.61	121.38	123.03	124.02	126.32	126.34
10	123.74	122.75	121.44	120.82	120.72	120.68	120.64	121.53	123.13	124.10	126.40	126.27
15	123.62	122.29	121.28	120.78	120.71	120.66	120.79	121.88	123.11	124.60	126.37	126.39
20	123.53	121.99			120.49	120.55	120.81	122.37	123.15		126.35	126.48
25	123.37	122.06		120.83	120.74	120.53	121.00		123.39	125.67	126.30	126.49
EOM	123.21	121.95	121.19		120.71	120.63	121.15		123.60	126.13	126.35	126.43
MEAN	123.51	122.39	121.39	120.91	120.71	120.58	120.75	122.07	123.20	124.80	126.36	126.39
WTR YR	1982	MEAN	122.76	HIGH 12	0.38 APR	6	LOW	126.52 SEP	21			

395524074502501. Local I.D., Medford 1 Obs. NJ-WRD Well Number, 05-0258. LOCATION.--Lat 39°55'24", long 74°50'25", Hydrologic Unit 02040202, at Medford Public Shooting Grounds, Medford Township.

Owner: U.S. Geological Survey.
AQUIFER.--Potomac-Raritan-Magothy aquifer system of Cretaceous age.

WATER-LEVEL EXTREMES

WELL CHARACTERISTICS. -- Drilled artesian observation well, diameter 6 in (152 mm), depth 410 ft (125.0 m), screened 400 to 410 ft (121.9 to 125.0 m).

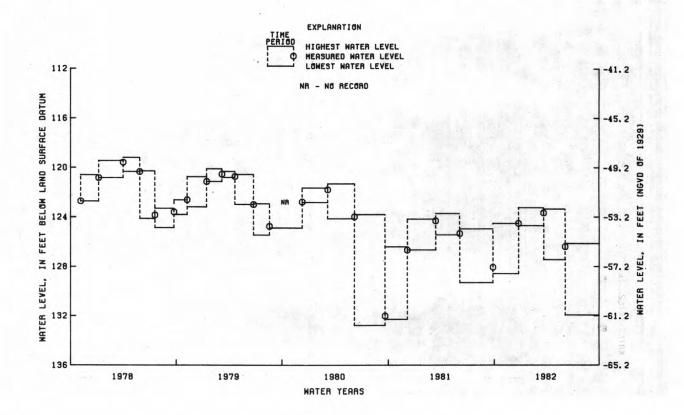
INSTRUMENTATION. -- Water-level extremes recorder, February 1977 to current year. Water-level recorder, October 1963

to August 1975.

DATUM .- Land-surface datum is 70.77 ft (21.571 m) above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 2.87 ft (0.875 m) above land-surface datum.

PERIOD OF RECORD.—October 1963 to August 1975, February 1977 to current year. Records for 1963 to 1975 are unpublished and are available in files of New Jersey District Office.


EXTREMES FOR PERIOD OF RECORD.—Highest water level, 85.22 ft (25.975 m) below land-surface datum, Feb. 16-19, 1964; lowest, 132.78 ft (40.471 m) below land-surface datum, between June 5 and Sept. 18, 1980.

EXTREMES FOR CURRENT YEAR.—Highest water level, 123.23 ft (37.561 m) below land-surface datum, between Dec. 23 and Mar. 19; lowest, 131.94 ft (40.215 m) below land-surface datum, between June. 2 and Oct. 6, 1982.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

MEASURED WATER LEVEL

HIGHEST LOWEST WATER WATER WATER PERIOD LE VEL LEVEL DATE SEPT. 25, 1981 TO DEC. 23, 1981 124.51 128.59 DEC. 23, 1981 124.51 DEC. 23, 1981 TO MAR. 124.70 19, 1982 19, 1982 123.23 MAR. 123.66 19, 1982 TO JUNE 2, 1982 123.33 127.44 JUNE 2, 1982 126.39 JUNE 2, 1982 TO OCT. 6, 1982 126.12 131.94 OCT. 6, 1982 130.35

MEASURED WATER LEVEL

BURLINGTON COUNTY

395524074502502. Local I.D., Medford 2 Obs. NJ-WRD Well Number, 05-0259. LOCATION.--Lat 39°55'24", long 74°50'25", Hydrologic Unit 02040202, at Medford Public Shooting Grounds, Medford

Township.
Owner: U.S. Geological Survey.

AQUIFER.--Englishtown aquifer of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in (152 mm), depth 263 ft (80.2 m), screened 253 to 263 ft (77.1 to 80.2 m).

INSTRUMENTATION. -- Water-level extremes recorder, February 1977 to current year. Water-level recorder, October 1963

to August 1975.

WATER-LEVEL EXTREMES

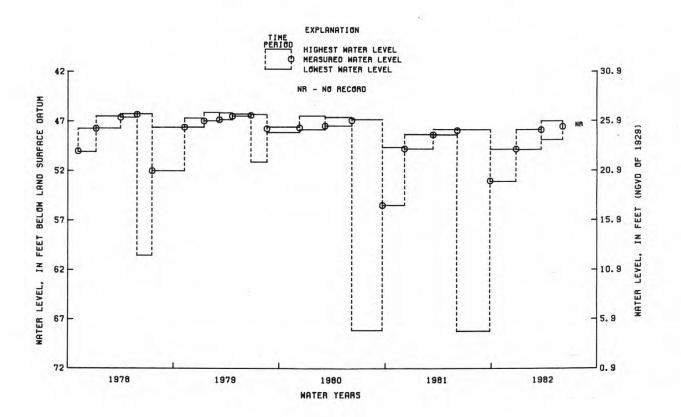
DATUM.--Land-surface datum is 72.92 ft (22.226 m) above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 3.40 ft (1.036 m) above land-surface datum.

REMARKS.-Water level affected by nearby pumping.

PERIOD OF RECORD.--October 1963 to August 1975, February 1977 to current year. Records for 1963 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 45.42 ft (13.844 m) below land-surface datum, April 27, 1973;


lowest, 111.96 ft (34.125 m) below land-surface datum, July 9, 1964.

EXTREMES FOR CURRENT YEAR.--Highest water level, 46.97 ft (14.316 m) below land-surface datum, between Mar. 19 and June 2; lowest, 53.12 ft (16.191 m) below land-surface datum, between Sept. 25 and Dec. 23, 1981.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

HIGHEST LOWEST

	PERIOD	WATER LEVEL	WATER LEVEL	DATE	3	WATER LEVEL
SEPT. 25	, 1981 TO DEC.	23, 1981 49.81	53.12	DEC. 23	1981	49.81
DEC. 2	3, 1981 TO MAR.	19, 1982 47.83	49.86	MAR. 19	1982	47.87
MAR. 1), 1982 TO JUNE	2, 1982 46.97	48.88	JUNE 2	, 1982	47.55
JUNE :	, 1982 TO OCT.	6, 1982	-22	OCT. 6	1982	50.23

400010074521601. Local I.D., Willingboro 2 Obs. NJ-WRD Well Number, 05-0645.
LOCATION.--Lat 40°00'10", long 74°52'16", Hydrologic Unit 02040202, at Bridge Street and Tiffany Lane, Willingboro.
Owner: Willingboro Municipal Utilities Authority.
AQUIFER.--Potomac-Raritan-Magothy aquifer system of Cretaceous age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in (152 mm), depth 441 ft (134.4 m), screened 431 to 441 ft (131.4 to 134.4 m).

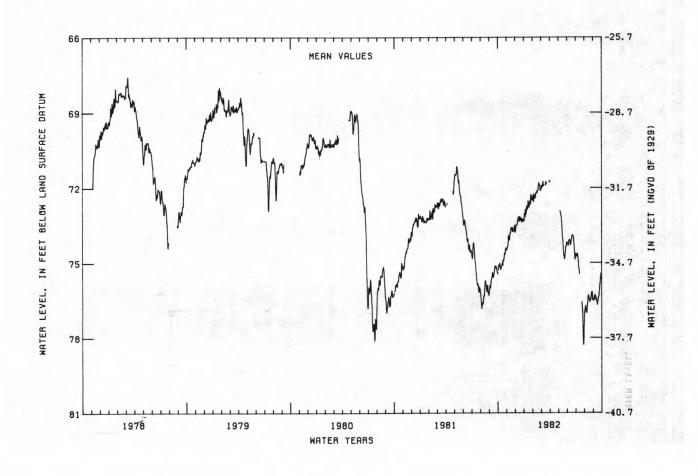
INSTRUMENTATION.--Water-level recorder.

DATUM.--Land-surface datum is 40.30 ft (12.283 m) above National Geodetic Vertical Datum of 1929.

Measuring point: Top edge of recorder shelf, 2.00 ft (0.610 m) below land-surface datum.

Measuring point: Top edge of recorder shelf, 2.00 ft (0.610 m) below land-surface datum.

REMARKS.--Water level affected by nearby pumping.


PERIOD OF RECORD.--March 1966 to September 1975, March 1977 to current year. Records for 1966 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 49.79 ft (15.176 m) below land-surface datum, June 21, 1967; lowest, 79.00 ft (24.079 m) below land-surface datum, July 29, 1977.

EXTREMES FOR CURRENT YEAR.--Highest water level, 71.44 ft (21.775 m) below land-surface datum, Mar. 7; lowest, 78.57 ft (23.948 m) below land-surface datum, July 28.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982
MEAN VALUES

											A 10	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	75.06	74.19	73.48	73.03	72.39	71.86			74.13	74.61	76.86	76.27
10	75.25	74.05	73.14	72.73	72.22	71.87		73.16	74.14	75.16	76.70	76.39
15	75.02	73.56	73.12	72.59	72.13	71.88		73.97	74.02		76.38	76.51
20	74.90	73.57	73.29					74.65	73.91		76.48	76.19
25	74.63	73.68	73.33	72.43				74.49	74.41	77.23	76.16	75.58
EOM	74.48	73.76			72.05	71.70		74.19	74.61	77.02	76.45	75.63
MEAN	74.89	73.84	73.30	72.66	72.13	71.85		74.02	74.20	76.00	76.54	76.18
WTR YR	1982	MEAN	74.22	HIGH	71.70 MAR	31	I.OW	78.27 JU	I. 28			

MEASURED WATER LEVEL

9, 1982

5, 1982

62.25

63.00

JUNE

OCT.

BURLINGTON COUNTY

WATER-LEVEL EXTREMES

9, 1982

5, 1982

400213074510801. Local I.D., Willingboro 1 Obs. NJ-WRD Well Number, 05-0063. LOCATION.--Lat 40°02'13", long 74°51'08", Hydrologic Unit 02040202, on the west side of Rancocas Road about 2 mi (3.2 km) north of Rancocas.

Owner: Willingboro Municipal Utilities Authority.

AQUIFER.--Potomac-Raritan-Magothy aquifer system of Cretaceous age.

WELL CHARACTERISTICS. -- Drilled artesian observation well, diameter 6 in (152 mm), depth 294 ft (89.6 m), screened 284

to 294 ft (86.6 to 89.6 m).
INSTRUMENTATION.--Water-level extremes recorder, February 1977 to current year. Water-level recorder, March 1966 to September 1975.

DATUM.--Land-surface datum is 45.45 ft (13.853 m) above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 0.76 ft (0.232 m) above land-surface datum.

19, 1982 TO JUNE

9, 1982 TO OCT.

MAR.

JUNE

Measuring point: Front edge of cutout in recorder nousing, 0.76 ft (0.232 m) above land-surface datum.

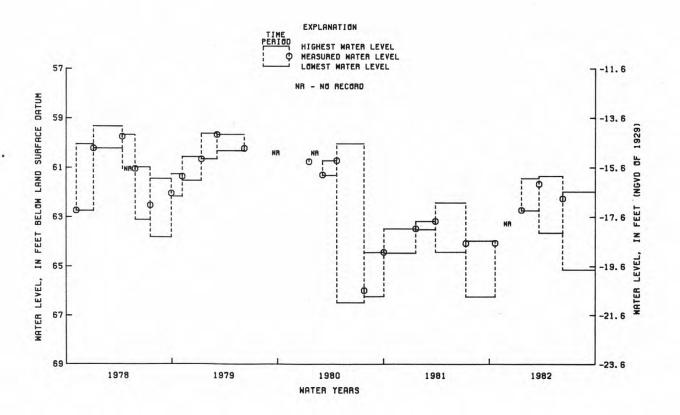
REMARKS.--Water level affected by nearby pumping.

PERIOD OF RECORD.--March 1966 to September 1975, February 1977 to current year. Records for 1966 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 46.25 ft (14.097 m) below land-surface datum, Mar. 19, 1966; lowest, 68.47 ft (20.870 m) below land-surface datum, between July 12 and Sept. 22, 1977.

EXTREMES FOR CURRENT YEAR.--Highest water level, 61.34 ft (18.696 m) below land-surface datum, between Mar. 19 and June 9; lowest, 65.14 ft (19.855 m) below land-surface datum, between June 9 and Oct. 5, 1982.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982


HIGHEST LOWEST WATER WATER LEVEL WATER PERIOD LEVEL DATE OCT. 19, 1981 TO JAN. 18, 1982 JAN. 18, 1982 62.72 61.66 JAN. 18, 1982 TO MAR. 19. 1982 61.43 62.74 MAR. 19, 1982

63.65

65.14

61.34

61.97

400242074422301. Local I.D., Rhodia Corp. 1 Obs. NJ-WRD Well Number, 05-0440. LOCATION.--Lat 40°02'42", long 74°42'23", Hydrologic Unit 02040201, on the lands of Rhodia Corporation near Jobstown.

Owner: Rhodia Corporation.

AQUIFER.--Potomac-Raritan-Magothy aquifer system of Cretaceous age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 8 in (203 mm), depth 615 ft (187.5 m), revised, screened 603 to 613 ft (183.8 to 186.8 m).

INSTRUMENTATION .-- Water-level extremes recorder, April 1977 to current year. Water-level recorder, December 1968 to March 1975.

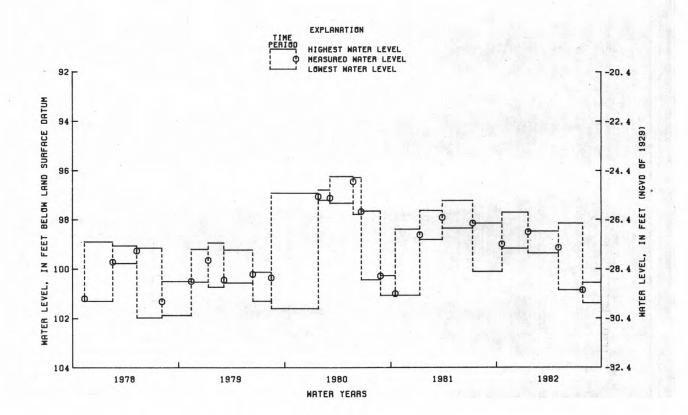
March 1975.

DATUM.--Land-surface datum is 71.65 ft (21.839 m) above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 2.22 ft (0.677 m) above land-surface datum.

PERIOD OF RECORD.--December 1968 to March 1975, April 1977 to current year. Records for 1968 to 1975 are unpublished and are available in files of New Jersey District Office.

and are available in files of New Jersey District Office.


EXTREMES FOR PERIOD OF RECORD.--Highest water level, 86.55 ft (26.380 m) below land-surface datum, Dec. 31, 1969; lowest, 104.13 ft (31.739 m) below land-surface datum, between Apr. 28 and Aug. 8, 1977.

EXTREMES FOR CURRENT YEAR.--Highest water level, 97.71 ft (29.782 m) below land-surface datum, between Oct. 19 and Jan. 18; lowest, 101.39 ft (30.904 m) below land-surface datum, between July 27 and Oct. 1, 1982.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

WATER-LEVEL EXTREMES MEASURED WATER LEVEL

		PERIOD			HIGHEST WATER LEVEL	LOWEST WATER LEVEL		DATE		WATER LEVEL	
OCT.	19,	1981 TO JA	AN. 18,	1982	97.71	99.18	JAN.	18,	1982	98.51	
JAN.	18,	1982 TO MA	му з,	1982	98.48	99.37	MAY	3,	1982	99.14	
MAY	3,	1982 TO JU	JLY 27,	1982	98.15	100.86	JULY	27,	1982	100.86	
JULY	27,	1982 TO 00	CT. 1,	1982	100.55	101.39	OCT.	1,	1982	100.99	

MEASURED WATER LEVEL

CAMDEN COUNTY

394922074563301. Local I.D., Elm Tree Farm 2 Obs. NJ-WRD Well Number, 07-0412.
LOCATION.--Lat 39°49'22", long 74°56'30", Hydrologic Unit 02040202, about 200 ft (61 m) northeast of Thomas Road and about 2 mi (3.2 km) northwest of Berlin.
Owner: New Jersey Water Company.
AQUIFER.--Potomac-Raritan-Magothy aquifer system of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in (152 mm), depth 1,092 ft (332.8 m), screened 1,082 to 1,092 ft (329.8 to 332.8 m).

INSTRUMENTATION .-- Water-level extremes recorder, February 1977 to current year. Water-level recorder, January 1963

to June 1975.

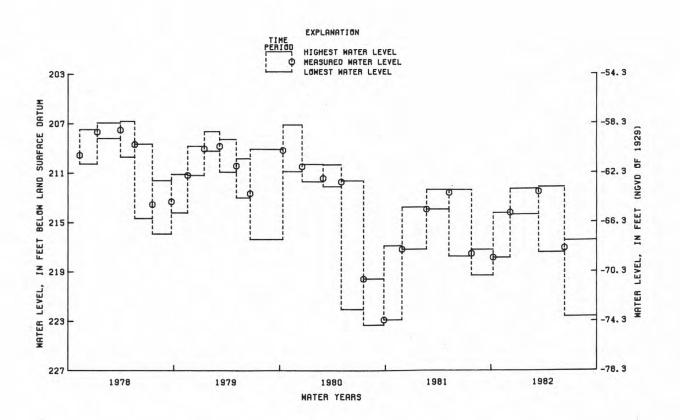
DATUM.-Land-surface datum is 148.68 ft (45.318 m) above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 1.76 ft (0.536 m) above land-surface datum.

REMARKS.--Well was originally screened 1,217 to 1,227 ft (370.9 to 374.0 m); rehabilitated August 1969.

WATER-LEVEL EXTREMES

REMARKS.--Well was originally screened 1,217 to 1,227 ft (370.9 to 374.0 m); rehabilitated August 1969.


PERIOD OF RECORD.--January 1963 to June 1975, February 1977 to current year. Records for 1963 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 166.06 ft (50.615 m) below land-surface datum, July 21, 1965; lowest, 223.32 ft (68.068 m) below land-surface datum, between July 15 and Sept. 24, 1980.

EXTREMES FOR CURRENT YEAR.--Highest water level, 212.14 ft (64.660 m) below land-surface datum, between Mar. 12 and June 10; lowest, 222.62 ft (67.855 m) below land-surface datum, between June 10 and Oct. 6, 1982.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

HIGHEST LOWEST WATER WATER WATER PERIOD DATE LE VEL LEVEL. OCT. 6, 1981 TO DEC. 214.22 4. 1981 214.22 217.84 DEC. 4, 1981 DEC. 4, 1981 TO MAR. 12, 1982 212.28 214.38 MAR. 12, 1982 MAR. 12, 1982 TO JUNE 10, 1982 212.14 217.43 JUNE 10, 1982 217.09 220.87 JUNE 10, 1982 TO OCT. 222.62 OCT. 6, 1982 216.46 6, 1982

CAMDEN COUNTY

394922074563302. Local I.D., Elm Tree Farm 3 Obs. NJ-WRD Well Number, 07-0413.
LOCATION.--Lat 39°49'22", long 74°56'30", Hydrologic Unit 02040202, about 200 ft (61 m) northeast of Thomas Road and about 2 mi (3.2 km) northwest of Berlin.
Owner: New Jersey Water Company.

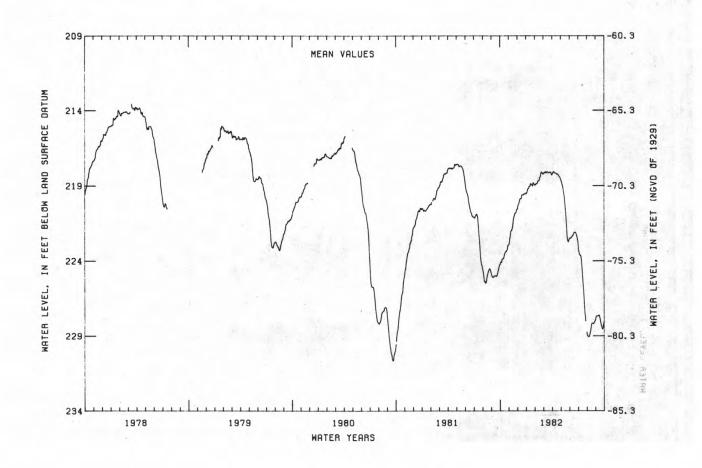
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in (152 mm), depth 717 ft (218.5 m), screened 706 to 717 ft (215.2 to 218.5 m).

INSTRUMENTATION.--Water-level recorder.

DATUM.--Land-surface datum is 148.73 ft (45.333 m), revised, above National Geodetic Vertical Datum of 1929.

Measuring point: Top edge of recorder shelf, 0.60 ft (0.180 m) above land-surface datum.

PERIOD OF RECORD.--December 1963 to April 1975, March 1977 to current year. Records for 1963 to 1977 are unpublished and are available in files of New Jersey District Office.


EXTREMES FOR PERIOD OF RECORD.--Highest water level, 174.21 ft (53.099 m) below land-surface datum, Feb. 6, 1964; lowest, 230.66 ft (70.305 m) below land-surface datum, Sept. 19-20, 1980.

EXTREMES FOR CURRENT YEAR.--Highest water level, 218.02 ft (66.452 m) below land-surface datum, Apr. 6; lowest,

229.06 ft (69.817 m) below land-surface datum, Aug. 7-8.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	224.11	222.34	220.20	219.20	218.87	218.13	218.10	218.86	222.48	223.52	229.03	227.68
10	223.87	221.98	219.86	219.04	218.67	218.15	218.13	219.36	222.34	223.66	228.91	227.64
15	223.67	221.41	219.73	218.86	218.60	218.08	218.19	220.11	222.17	224.66	228.40	227.80
20	223.39	220.91	219.59	218.95	218.22	218.14	218.23	221.37	222.08	226.04	228.15	228.30
25	223.29	220.75	219.54		218.14	218.12	218.38	222.65	222.29	227.61	228.15	228.54
EOM	222.93	220.54	219.53	218.94	. 218.23	218.27	218.57	222.51	222.70	228.76	227.90	228.04
MEAN	223.59	221.46	219.78	219.03	218.53	218.13	218.24	220.63	222.32	225.10	228.48	227.98
WTR YR	1982	MEAN	221.94	HIGH 2	18.05 MAR	8 AND OT	HERS	LOW	229.05	AUG 7 ANI	OTHERS	

CAMDEN COUNTY

395229074571201. Local I.D., Hutton Hill 1 Obs. NJ-WRD Well Number, 07-0117.
LOCATION.--Lat 39°52'29", long 74°57'12", Hydrologic Unit 02040202, about 800 ft (243.8 m) northeast of intersection of Kresson and Cropwell Roads, Cherry Hill Township.
Owner: New Jersey Water Company.
AQUIFER.--Potomac-Raritan-Magothy aquifer system of Cretaceous age.

WELL CHARACTERISTICS .-- Drilled artesian observation well, diameter 6 in (152 mm), depth 562 ft (171.3 m), screened 552 to 562 ft (168.2 to 171.3 m). INSTRUMENTATION .-- Water-level extremes recorder, February 1977 to current year. Water-level recorder, August 1967 to

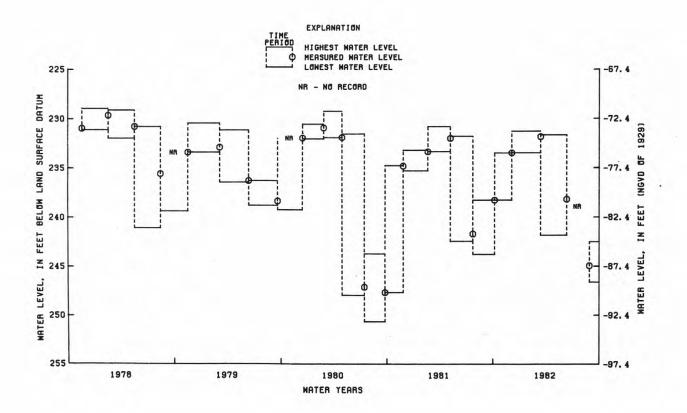
April 1975.

DATUM.--Land-surface datum is 157.61 ft (48.040 m) above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 1.89 ft (0.576 m) above land-surface datum.

PERIOD OF RECORD.--August 1967 to April 1975, February 1977 to current year. Records for 1967 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 200.77 ft (61.195 m) below land-surface datum, Mar. 23, 1968;


lowest, 250.65 ft (76.398 m) below land-surface datum, between July 15 and Sept. 24, 1980.

EXTREMES FOR CURRENT YEAR.--Highest water level, 231.27 ft (70.491 m) below land-surface datum, between Dec. 4 and Mar. 12; lowest, 246.63 ft (75.173 m) below land-surface datum, between Aug. 27 and Oct. 6, 1982.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

WATER-LEVEL EXTREMES MEASURED WATER LEVEL

		PERI	OD				HIGHEST WATER LEVEL	LOWEST WATER LEVEL		DATE		WATER LEVEL	
OCT.	6,	1981	то	DEC.	4,	1981	233.48	238.28	DEC.	4,	1981	233.48	
DEC.	4,	1981	TO	MAR.	12,	1982	231.27	233.48	MAR.	12,	1982	231.85	
MAR.	12,	1982	TO	JUNE	10,	1982	231.65	241.85	JUNE	10,	1982	238.20	
JUNE	10,	1982	TO	AUG.	27,	1982			AUG.	27,	1982	244.95	
AUG.	27,	1982	TO	OCT.	6,	1982	242.50	246.63	OCT.	6,	1982	243.19	

CAPE MAY COUNTY

WATER-LEVEL EXTREMES

385804074574201. Local I.D., Higbee Beach 3 Obs. NJ-WRD Well Number, 09-0049.
LOCATION.--Lat 38°58'04", long 74°57'42", Hydrologic Unit 02040206, on the north bank of the west end of the Cape May Canal, Lower Township.
Owner: U.S. Geological Survey.
AQUIFER.--Cohansey Sand of Miocene age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in (152 mm), depth 250 ft (76.2 m), screened 241

to 250 ft (73.5 to 76.2 m).
INSTRUMENTATION. -- Water-level extremes recorder, May 1977 to current year. Water-level recorder, June 1965 to

September 1975.

September 1975.

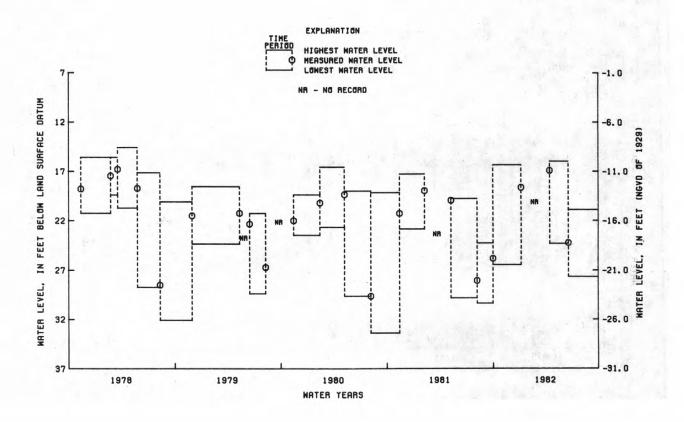
DATUM.--Land-surface datum is 6.00 ft (1.83 m) above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 3.00 ft (0.914 m) above land-surface datum.

REMARKS.--Water level affected by tidal fluctuation.

PERIOD OF RECORD.--June 1965 to September 1975, May 1977 to current year. Records for 1975 to 1980 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 13.16 ft (4.011 m) below land-surface datum, Dec. 21, 1965; lowest, 34.22 ft (10.430 m), revised, below land-surface datum, July 31, 1974. The low of record of 35.63 ft on August 20, 1974 published in WSP 2164 was in error.

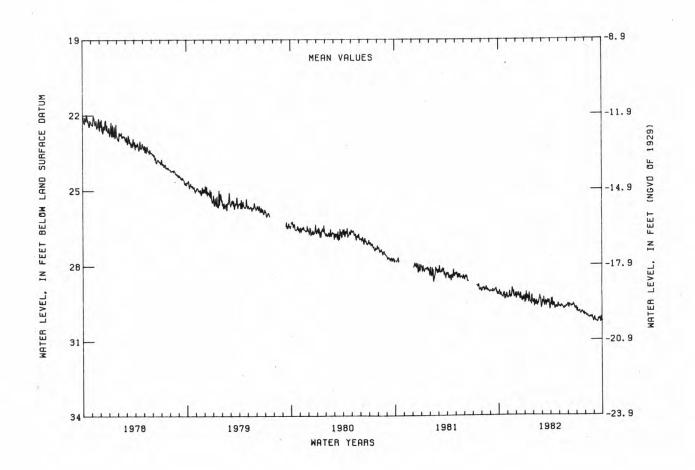

EXTREMES FOR CURRENT YEAR.--Highest water level, 19.97 ft (4.868 m) below land-surface datum, between Apr. 13 and June 17, lowest. 27.66 ft (8.431 m) below land-surface datum, between June 17 and Oct. 7, 1982.

June 17; lowest, 27.66 ft (8.431 m) below land-surface datum, between June 17 and Oct. 7, 1982.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

MEASURED WATER LEVEL

HIGHEST LOWEST WATER WATER DATE PERIOD LEVEL SEPT. 29, 1981 TO JAN. 26.46 5. 1982 16.34 JAN. 5. 1982 18.65 5, 1982 TO APR. 13, 1982 13, 1982 16.92 APR. 13, 1982 TO JUNE 17, 1982 15.97 24.31 JUNE 17, 1982 24.23 27.66 OCT. JUNE 17, 1982 TO OCT. 7, 1982 20.88 7, 1982 21.49



CUMBERLAND COUNTY

391828075120902. Local I.D., Jones Island 2 Obs. NJ-WRD Well Number, 11-0096.
LOCATION.--Lat 39°18'29", long 75°12'08", Hydrologic Unit 02040206, about 1.7 mi (2.7 km) south of Cedarville at Jones Island, Lawrence Township.
Owner: Cumberland County.
AQUIFER.--Piney Point aquifer of Eocene age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 4 in (102 mm), depth 375 ft (114 m), screened 365 to 375 ft (111 to 114 m).
INSTRUMENTATION.--Water-level recorder.
DATUM.--Land-surface datum is 10.10 ft (3.078 m) above National Geodetic Vertical Datum of 1929.
Measuring point: Top edge of recorder shelf, 1.90 ft (0.579 m) above land-surface datum.
PERIOD OF RECORD.--March 1977 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 19.99 ft (6.093 m) below land-surface datum, Mar. 22, 1977; lowest, 30.35 ft (9.251 m) below land-surface datum, Sept. 24, 1982.
EXTREMES FOR CURRENT YEAR.--Highest water level, 28.72 ft (8.754 m) below land-surface datum, Nov. 15; lowest, 30.35 ft (9.251 m) below land-surface datum, Sept. 24.

WATER	LEVEL,	IN	FEET	BELOW	LAND	SURFACE	DATUM,	WATER	YEAR	OCTOBER	1981	TO	SEPTEMBER	1982
						ME	EAN VALL	UES						

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	29.16	29.19	29.20	29.28	29.57	29.41	29.59	29.68	29.56	29.83	30.00	30.23
10	29.21	29.27	29.15	29.27	29.47	29.61	29.57	29.64	29.61	29.85	30.03	30.24
15	29.18	28.87	29.09	29.21	29.53	29.61	29.72	29.71	29.63	29.93	30.10	30.17
20	29.32	29.00				29.48	29.63	29.66	29.58	29.83	30.05	30.14
25	29.26	29.20				29.42	29.65	29.62	29.73	29.94	30.02	30.25
EOM	29.30	29.31	29.43			29.54	29.66	29.55	29.69	29.95	30.21	30.22
MEAN	29.18	29.16	29.26	29.34	29.48	29.50	29.59	29.65	29.63	29.88	30.07	30.19
WTR YR	1982	MEAN	29.58	HIGH	28.87 NOV	15	LOW	30.28 SEP	13 AND	OTHERS		

CUMBERLAND COUNTY

392219075011301. Local I.D., Orange Street Obs. NJ-WRD Well Number, 11-0141.
LOCATION.--Lat 39°22'19", long 75°01'13", Hydrologic Unit 02040206, about 0.2 mi (0.3 km) northeast of Route 47 on Orange Street, Millville.
Owner: Millville City Water Department.
AQUIFER.--Kirkwood-Cohansey aquifer system of Miocene age.
WELL CHARACTERISTICS.--Drilled water-table observation well, diameter 12 in (305 mm), depth 149 ft (45.4 m), screened 114 to 149 ft (34.7 to 45.4 m).

JUNE 17, 1982 TO OCT.

WATER-LEVEL EXTREMES

7, 1982

114 to 149 ft (34.7 to 45.4 m).

INSTRUMENTATION .- - Water-level extremes recorder, March 1977 to current year. Water-level recorder, October 1962 to September 1975.

DATUM.--Altitude of land-surface datum is 22 ft (6.7 m), from topographic map.

Measuring point: Front edge of cutout in recorder housing, 4.26 ft (1.298 m) above land-surface datum.

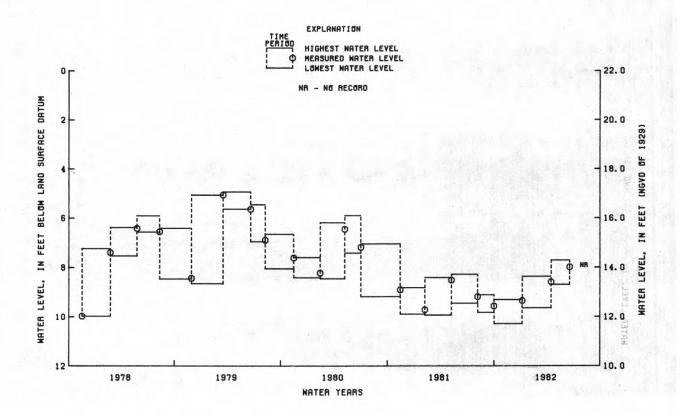
PERIOD OF RECORD.--October 1962 to September 1975, March 1977 to current year. Records for 1962 to 1980 are unpublished and are availabe in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 4.94 ft (1.506 m) below land-surface datum, between Mar. 16 and

June 19, 1979; lowest, 11.37 ft (3.466 m) below land-surface datum, Feb. 10, 1966.

EXTREMES FOR CURRENT YEAR.--Highest water level, 7.71 ft (2.350 m) below land-surface datum, between Apr. 14 and June 17; lowest, 10.29 ft (3.136 m) below land-surface datum, between Sept. 30 and Jan. 5, 1982.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982


MEASURED WATER LEVEL

7, 1982

9.92

OCT.

HIGHEST LOWEST WATER WATER WATER LEVEL DATE PERIOD LE VEL LEVEL 10.29 JAN. 5, 1982 9.35 SEPT. 30, 1981 TO JAN. 5, 1982 9.30 5, 1982 TO APR. 9.65 APR. 14, 1982 8.59 JAN. 14, 1982 8.36 14, 1982 TO JUNE 17, 1982 7.71 8.70 JUNE 17, 1982 7.99

CUMBERLAND COUNTY

392442075191601. Local I.D., Sheppards 1 Obs. NJ-WRD Well Number, 11-0072. LOCATION.--Lat 39°24'42", long 75°19'16", Hydrologic Unit 02040206, near the south end of Sheppards Mill Pond, about 3.5 mi (5.6 km) south of Shiloh.

Owner: Cumberland County.

AQUIFER .-- Wenonah-Mount Laurel aquifer of Cretaceous age.

WELL CHARACTERISTICS .-- Drilled artesian observation well, diameter 4 in (102 mm), depth 638 ft (194.5 m), screened

603 to 623 ft (183.8 to 189.9 m).

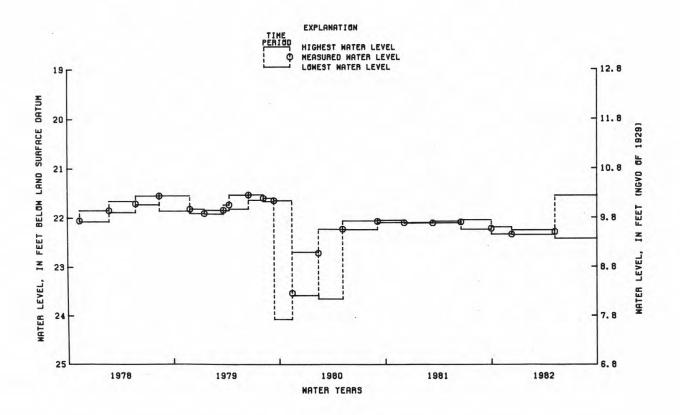
INSTRUMENTATION. -- Water-level extremes recorder, May 1977 to current year.

DATUM. -- Land-surface datum is 31.80 ft (9.693 m) above National Geodetic Vertical Datum of 1929.

DATUM.--Land-surface datum is 31.80 ft (9.693 m) above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 1.75 ft (0.533 m) above land-surface datum.

PERIOD OF RECORD.--May 1977 to current year. Periodic manual measurements, March 1973 to June 1975. Records for 1973 to 1981 are unpublished and are available in files of New Jersey District Office.


EXTREMES FOR PERIOD OF RECORD.--Highest water level, 21.44 ft (6.535 m) below land-surface datum, between May 11 and Aug. 12, 1977; lowest, 24.08 ft (7.340 m) below land-surface datum, between Sept. 13 and Nov. 14, 1979.

EXTREMES FOR CURRENT YEAR.--Highest water level, 21.55 ft (6.568 m) below land-surface datum, between May 6 and Nov. 3, 1982; lowest, 22.43 ft (6.837 m) below land-surface datum, between May 6 and Nov. 3, 1982.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

WATER-LEVEL EXTREMES MEASURED WATER LEVEL

		PERIO	DD.				HIGHEST WATER LEVEL	LOWEST WATER LEVEL	1	DATE		WATER LEVEL
SEPT. 30	ο,	1981	TO	DEC.	9,	1981	22.19	22.34	DEC.	9,	1981	22.34
DEC.	9,	1981	TO	MAY	6,	1982	22.25	22.35	MAY	6,	1982	22.29
MAY 6	6,	1982	TO	NOV.	3,	1982	21.55	22.43	NOV.	3,	1982	22.43

GLOUCESTER COUNTY

394942075131701. Local I.D., Shell Chemical 5 Obs. NJ-WRD Well Number, 15-0296.
LOCATION.--Lat 39°49'42", long 75°13'17", Hydrologic Unit 02040202, near the intersection of Mantua Grove Road and Route 295, West Deptford Township.

Notice 295, west beptied lownship.
Owner: Shell Chemical Company.

AQUIFER.--Potomac-Raritan-Magothy aquifer system of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in (152 mm), depth 327 ft (99.7 m), screened

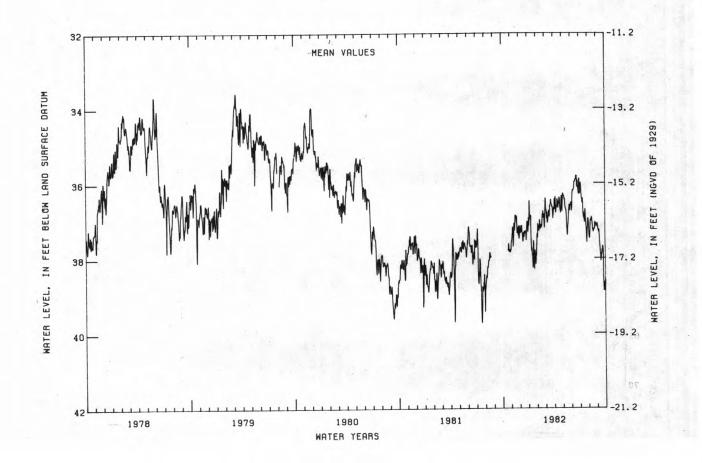
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in (152 mm), depth 327 ft (99.7 m), screened 322 to 326 ft (98.1 to 99.4 m).

INSTRUMENTATION.--Water-level recorder.

DATUM.--Land-surface datum is 20.76 ft (6.328 m) above National Geodetic Vertical Datum of 1929.

Measuring point: Top edge of recorder shelf, 2.90 ft (0.880 m) above land-surface datum.

REMARKS.--Water level affected by nearby pumping.


PERIOD OF RECORD.--June 1962 to current year. Records for 1962 to 1977 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 27.75 ft (8.458 m) below land-surface datum, Dec. 6, 1962; lowest, 40.63 ft (12.384 m) below land-surface datum, July 21, 1977.

EXTREMES FOR CURRENT YEAR.--Highest water level, 35.37 ft (10.781 m) below land-surface datum, June 20-21; lowest, 39.14 ft (11.930 m) below land-surface datum, Sept. 29.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

						MEAN VA	LUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	37.78 37.79 37.79	37.32 37.41 36.86 36.88 37.34 37.41	37.33 37.31 37.30	37.94 37.90 38.07	37.23 37.13 37.11 36.85 37.06 36.85	36.80 37.01 36.90 36.55 36.64 36.65	36.69 36.66 36.66 36.38 36.79 36.75	36.32 36.54 36.87 37.13 36.64 36.54	36.34 36.16 35.94 35.79 36.12 35.88	35.99 36.52 36.91 36.90 37.22 36.93	37.47 36.96 37.01 37.28 37.03 37.13	37.24 37.57 38.00 37.78 38.86 38.58
MEAN		37.26	37.29	37.60	37.08	36.74	36.58	36.70	36.13	36.74	37.14	37.88
WTR YR	1982	MEAN	37.04	HIGH 35	.79 JUN 2	20	LOW	38.88 SEP	29			

MEASURED WATER LEVEL

3, 1982

60.83

NOV.

GLOUCESTER COUNTY

395232075094201. Local I.D., Eagle Point 3 Obs. NJ-WRD Well Number, 15-0323. LOCATION.--Lat 39°52'35", long 75°09'50", revised, Hydrologic Unit 02040202, at the Texaco Eagle Point Refinery, West Deptford Township.

Owner: Texaco Incorporated.

SEPT. 7, 1982 TO NOV.

AQUIFER. -- Potomac-Raritan-Magothy aquifer system of Cretaceous age.

WELL CHARACTERISTICS. -- Drilled artesian observation well, diameter 8 in (203 mm), depth 276 ft (84.1 m), screened 255 to 275 ft (77.7 to 83.8 m), revised.

INSTRUMENTATION. -- Water-level extremes recorder, April 1981 to current year. Water-level recorder, November 1949 to

WATER-LEVEL EXTREMES

3, 1982

July 1975.

DATUM.--Land-surface datum is 20.96 ft (6.389 m) above National Geodetic Vertical Datum of 1929.

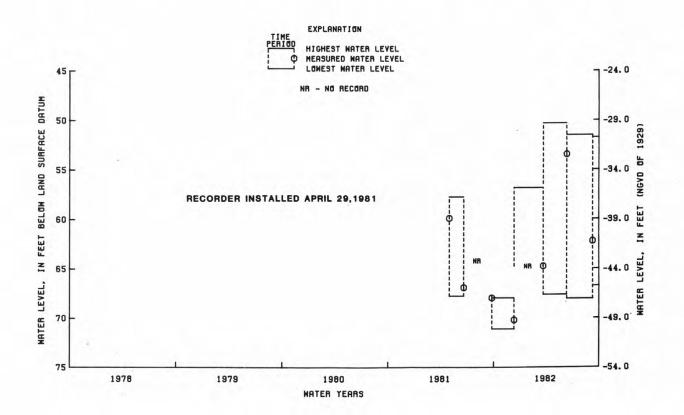
Measuring point: Top of casing, 3.00 ft (0.914 m) above land-surface datum, revised.

REMARKS.--Water level affected by tidal fluctuation and nearby pumping.

PERIOD OF RECORD.--November 1949 to July 1975, April 1981 to current year. Periodic manual measurements, October 1976 to March 1981. Records for 1975 to 1981 are unpublished and are available in files of New Jersey District

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 37.70 ft (11.491 m) below land-surface datum, Nov. 25, 1950; lowest, 87.30 ft (26.609 m) below land-surface datum, June 28, 1963.

EXTREMES FOR CURRENT YEAR. -- Highest water level, 50.28 ft (15.325 m) below land-surface datum, between Mar. 19 and


June 9; lowest, 71.10 ft (21.671 m) below land-surface datum, between Sept. 23 and Dec. 9, 1981.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

HIGHEST LOWEST WATER WATER WATER PERIOD LE VEL LEVEL DATE LEVEL SEPT. 23, 1981 TO DEC. 9, 1981 67.96 71.10 DEC. 9, 1981 70.18 64.73 DEC. 9. 1981 TO MAR. 19, 1982 56.82 MAR. 19, 1982 ---53.44 MAR. 19, 1982 TO JUNE 9, 1982 50.28 67.62 JUNE 9, 1982 JUNE 9, 1982 TO SEPT. 68.03 SEPT. 62.22 7, 1982 51.47 7, 1982

66.71

51.71

HUNTERDON COUNTY

402644074563601. Local I.D., Bird Obs. NJ-WRD Well Number, 19-0002. LOCATION.--Lat 40°26'44", long 74°56'36", Hydrologic Unit 02040105, at U.S. Post Office, Sergeantsville.

Owner: Phillip Fleming.

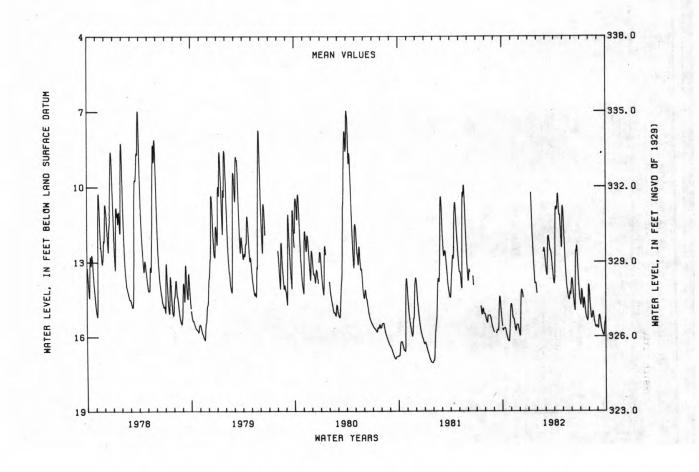
AQUIFER.--Stockton Formation of Triassic age.

WELL CHARACTERISTICS.--Dug water-table observation well, diameter 3 ft (0.9 m), depth 21 ft (6.4 m), lined with

INSTRUMENTATION .-- Water-level recorder.

DATUM.--Land-surface datum is 342.00 ft (104.242 m) above National Geodetic Vertical Datum of 1929.

Measuring point: Top edge of recorder shelf, 1.50 ft (0.460 m) above land-surface datum.


PERIOD OF RECORD.--June 1965 to July 1970, May 1977 to current year. Periodic manual measurements, September 1970 to September 1976. Records for 1965 to 1976 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 6.91 ft (2.106 m) below land-surface datum, Mar. 28-29, 1978 and Apr. 2, 1980; lowest, 17.04 ft (5.194 m) below land-surface datum, Jan. 26-28, 1981.

EXTREMES FOR CURRENT YEAR.--Highest water level, 10.11 ft (3.082 m) below land-surface datum, Jan. 9; lowest, 16.18 ft (4.932 m) below land-surface datum, Oct. 24.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	15.65	15.08	14.36			13.43	10.90	11.80	13.95	14.25	14.69	15.19
10	15.63	15.30	14.22	10.59		11.98	10.86	13.07	14.70	14.62	15.24	15.34
15	15.91	15.70		12.17		12.32	10.55	13.93	12.64	14.43	14.96	15.72
20	16.14	15.51		13.28		12.58	11.13	14.37	12.47	15.04	15.38	15.90
25	16.01	15.56		13.84	12.46	13.17	12.17	14.35	13.72	15.29	15.61	15.48
EOM	14.67	15.89				13.85	10.75	13.85	14.49	13.89	15.60	15.03
MEAN	15.72	15.42		12.82		12.88	11.38	13.41	13.71	14.70	15.15	15.52
WTR YR	1982	MEAN	14.10	HIGH	10.23 JAN	9	LOW	16.17 OCT	23 AND	OTHERS		

MEASURED WATER LEVEL

13, 1982

30.58

OCT.

SALEM COUNTY

393348075275701. Local I.D., Salem 1 Obs. NJ-WRD Well Number, 33-0251.
LOCATION.--Lat 39°33'48", long 75°27'55", Hydrologic Unit 02040206, about 300 ft (91 m) south of the intersection of Elm and Magnolia Streets, Salem.
Owner: U.S. Geological Survey.
AQUIFER.--Potomac-Raritan-Magothy aquifer system of Cretaceous age.

JUNE

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in (152 mm), depth 709 ft (216 m), screened 699 to 709 ft (213 to 216 m).

INSTRUMENTATION.--Water-level extremes recorder, May 1977 to current year. Water-level recorder, December 1965 to

August 1975.

WATER-LEVEL EXTREMES

9, 1982 TO OCT. 13, 1982

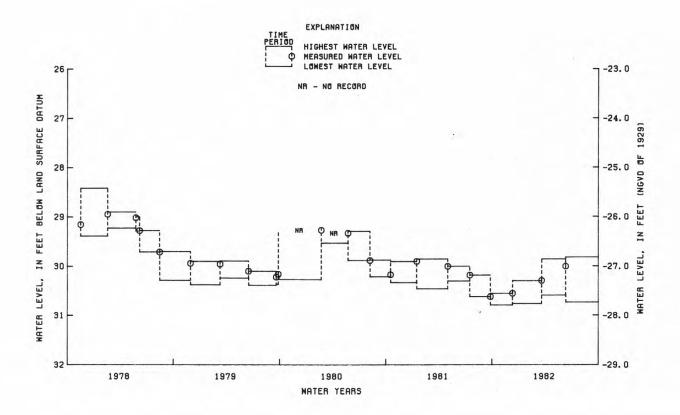
August 1975.

DATUM.--Land-surface datum is 3.00 ft (0.914 m) above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 2.87 ft (0.875 m) above land-surface datum.

PERIOD OF RECORD.--December 1965 to August 1975, May 1977 to current year. Records for 1965 to 1980 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 14.97 ft (4.563 m) below land-surface datum, Dec. 13, 1965; lowest, 30.79 ft (9.385 m) below land-surface datum, between Sept. 24 and Dec. 9, 1981.


EXTREMES FOR CURRENT YEAR.--Highest water level, 29.81 ft (9.086 m) below land-surface datum, between June 9 and Oct. 13, 1982; lowest, 30.79 ft (9.385 m) below land-surface datum, between Sept. 24 and Dec. 9, 1981.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

HIGHEST LOWEST WATER WATER WATER PERIOD LE VEL LEVEL DATE LEVEL SEPT. 24, 1981 TO DEC. 9, 1981 30.55 30.79 DEC. 9, 1981 30.55 9, 1981 TO MAR. 30.76 MAR. 18, 1982 30.29 DEC. 18. 1982 30.29 18, 1982 TO JUNE 9, 1982 29.85 30.59 JUNE 9, 1982 30.00

30.73

29.81

SALEM COUNTY

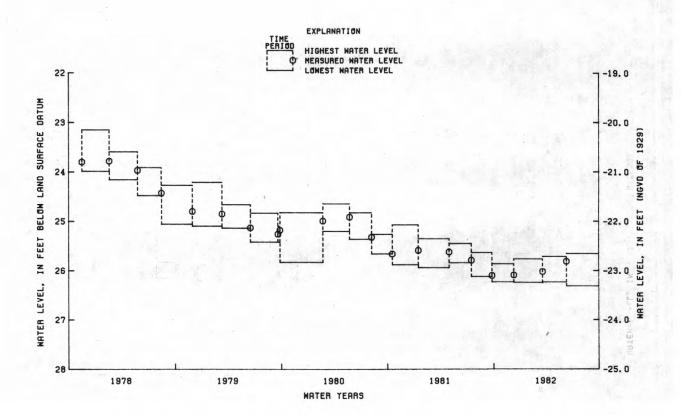
WATER-LEVEL EXTREMES

393348075275703. Local I.D., Salem 3 Obs. NJ-WRD Well Number, 33-0253.
LOCATION.--Lat 39°33'48", long 75°27'55", Hydrologic Unit 02040206, about 300 ft (91 m) south of the intersection of Elm and Magnolia Streets, Salem.
Owner: U.S. Geological Survey.
AQUIFER.--Potomac-Raritan-Magothy aquifer system of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in (152 mm), depth 340 ft (103.6 m), screened 335 to 340 ft (102.1 to 103.6 m).
INSTRUMENTATION.--Water-level extremes recorder, May 1977 to current year. Water-level recorder, November 1965 to

August 1975.

August 1975.

DATUM.--Land-surface datum is 3.00 ft (0.914 m) above National Geodetic Vertical Datum of 1929.
Measuring point: Front edge of cutout in recorder housing, 2.30 ft (0.701 m) above land-surface datum.


PERIOD OF RECORD.--November 1965 to August 1975, May 1977 to current year. Records for 1965 to 1981 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 12.28 ft (3.743 m) below land-surface datum, February 13, 1966; lowest, 26.31 ft (8.019 m) below land-surface datum, between June 9 and Oct. 13, 1982.

EXTREMES FOR CURRENT YEAR.--Highest water level, 25.65 ft (7.818 m) below land-surface datum, between June 9 and Oct. 13, 1982.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

		PERIO	OD.				HIGHEST WATER LEVEL	LOWEST WATER LEVEL		DATE		WATER LEVEL
SEPT.	24,	1981	TO	DEC.	9,	1981	25.86	26.23	DEC.	9,	1981	26.09
DEC.	9,	1981	TO	MAR.	18,	1982	25.76	26.24	MAR.	18,	1982	26.02
MAR.	18,	1982	TO	JUNE	9,	1982	25.71	26.23	JUNE	9,	1982	25.81
JUNE	9,	1982	TO	OCT.	13,	1982	25.65	26.31	OCT.	13,	1982	26.13

SALEM COUNTY

393348075275702. Local I.D., Salem 2 Obs. NJ-WRD Well Number, 33-0252. LOCATION.--Lat 39°33'48", long 75°27'55", Hydrologic Unit 02040206, about 300 ft (91 m) south of the intersection of Elm and Magnolia Streets, Salem.

Owner: U.S. Geological Survey.

Owner: U.S. Geological Survey.

AQUIFER.--Wenonah-Mount Laurel aquifer of Cretaceous age.

WELL CHARACTERISTICS.--Drilled water-table observation well, diameter 4 in (102 mm), depth 96 ft (29.3 m), screened 91 to 96 ft (27.7 to 29.3 m).
INSTRUMENTATION. -- Water-level extremes recorder, May 1977 to current year. Water-level recorder, November 1965 to

July 1975.

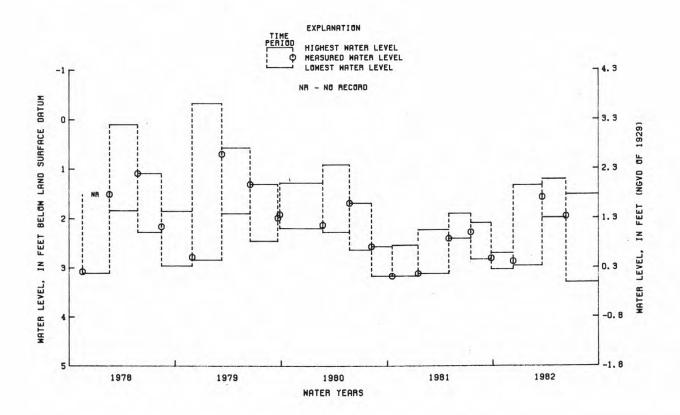
DATUM.--Land-surface datum is 3.25 ft (0.991 m) above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 2.77 ft (0.844 m) above land-surface datum.

PERIOD OF RECORD.--November 1965 to July 1975, May 1977 to current year. Records for 1965 to 1981 are unpublished

and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 0.33 ft (0.101 m) above land-surface datum, between Nov. 28,


1978 and Mar. 9, 1979; lowest, 6.45 ft (1.966 m) below land-surface datum, Sept. 9, 1966.

EXTREMES FOR CURRENT YEAR. --Highest water level, 1.21 ft (0.369 m) below land-surface datum, between Mar. 18 and June 9; lowest, 3.30 ft (1.006 m) below land-surface datum, between June 9 and Oct. 13, 1982.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

WATER-LEVEL EXTREMES MEASURED WATER LEVEL

		PERIOD				HIGHEST WATER LEVEL	LOWEST WATER LEVEL		DATE		WATER LEVEL
SEPT.	24,	1981 T	DEC.	9,	1981	2.70	3.03	DEC.	9,	1981	2.87
DEC.	9,	1981 T	MAR.	18,	1982	1.33	2.96	MAR.	18,	1982	1.58
MAR.	18,	1982 T	JUNE	9,	1982	1.21	1.99	JUNE	9,	1982	1.96
JUNE	9,	1982 T	O OCT.	13,	1982	1.52	3.30	OCT.	13,	1982	3.28

SALEM COUNTY

394037075191501. Local I.D., Point Airy Obs. NJ-WRD Well Number, 33-0187. LOCATION.--Lat 39°40'37", long 75°19'14", Hydrologic Unit 02040206, at intersection of Point Airy and Woodstown-Swedesboro Roads, 1 mi (1.6 km) north of Woodstown Borough boundary. Owner: U.S. Geological Survey.

Owner: U.S. Geological Survey.

AQUIFER.—Potomac-Raritan-Magothy aquifer system of Cretaceous age.

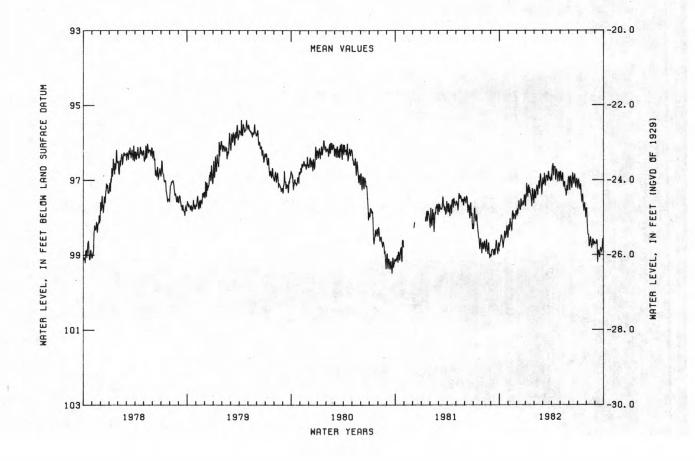
WELL CHARACTERISTICS.—Drilled artesian observation well, diameter 6 in (152 mm), depth 672 ft (204.8 m), screened 664 to 672 ft (202.4 to 204.8 m).

INSTRUMENTATION.—Water-level recorder.

DATUM.—Land-surface datum is 73.00 ft (22.250 m), revised, above National Geodetic Vertical Datum of 1929.

Measuring point: Top of 6 inch casing, 1.80 ft (0.550 m) above land-surface datum.

REMARKS.—Water level affected by nearby pumping.


PERIOD OF RECORD.—February 1959 to August 1975, March 1977 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level, 78.55 ft (23.942 m) below land-surface datum, Mar. 6, 1959; lowest, 100.52 ft (30.638 m) below land-surface datum, Aug. 6-7, 1977.

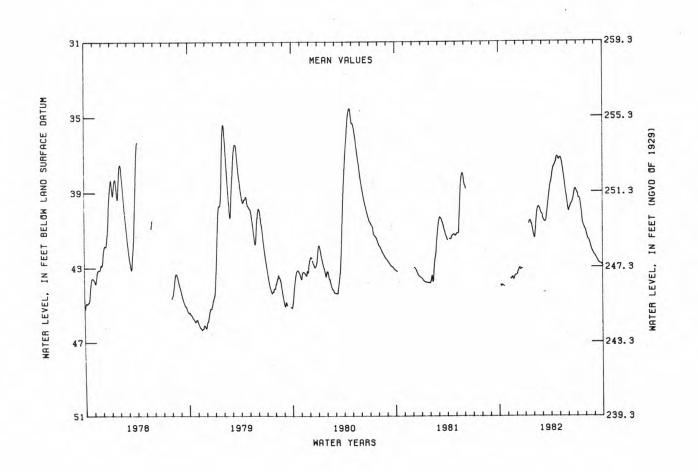
EXTREMES FOR CURRENT YEAR.—Highest water level, 96.48 ft (29.407 m) below land-surface datum, Apr. 6; lowest, 99.35 ft (30.282 m) below land-surface datum, Sept. 10.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	98.57	98.29	97.79	97.25	97.48	97.08	96.73	97.01	97.01	97.03	98.22	98.68
10	98.57	98.25	97.69	97.15	97.25	97.15	96.68	96.81	97.17	97.19	98.63	99.20
15	98.69	97.90	97.50			96.92	96.94	97.10	96.94	97.49	98.55	98.99
20	98.38	97.94	97.64			96.92	96.78	97.26	96.90	97.56	98.82	98.81
25	98.43	98.05	97.61	97.28		96.94	96.89	97.14	97.20	97.66	98.58	98.83
EOM	98.48	97.91	97.69	97.25		96.91	97.03	96.92	97.03	97.83	98.69	98.91
MEAN	98.53	98.06	97.66	97.36	97.20	96.97	96.81	97.08	97.03	97.44	98.53	98.84
WTR YR	1982	MEAN	97.63	HIGH	96.56 APR	6	LOW	99.20 SEP	10			

WARREN COUNTY

405050075033201. Local I.D., Hoffmann LaRoche 4 Obs. NJ-WRD Well Number, 41-0013. LOCATION.--Lat 40°50'50", long 75°03'32", Hydrologic Unit 02040105, 1 mi (1.6 km) northeast of Belvidere on Route 46. Owner: Hoffmann LaRoche, Incorporated. AQUIFER.--Stratified drift of Pleistocene age.


WELL CHARACTERISTICS .-- Drilled semi-artesian observation well, diameter 8 in (203 mm), depth 87 ft (26.5 m), screened 67 to 87 ft (20.4 to 26.5 m), revised.

67 to 87 ft (20.4 to 26.5 m), revised.
INSTRUMENTATION.—Water-level recorder.
DATUM.—Land-surface datum is 290.30 ft (88.483 m) above National Geodetic Vertical Datum of 1929.

Measuring point: Top edge of recorder shelf, 2.20 ft (0.670 m) above land-surface datum.
REMARKS.—Water level affected by stage of Delaware River.
PERIOD OF RECORD.—September 1960 to current year.
EXTREMES FOR PERIOD OF RECORD.—Highest water level, 30.10 ft (9.174 m) below land-surface datum, July 5, 1972;
lowest, 46.59 ft (14.201 m) below land-surface datum, Sept. 18, 1977.
EXTREMES FOR CURRENT YEAR.—Highest water level, 37.09 ft (11.305 m) below land-surface datum, Apr. 23; lowest, 44.03 ft (13.420 m) below land-surface datum, Oct. 19.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	A UG	SEP
5						40.43	38.09	37.18	39.85	39.13	41.27	42.44
10	43.99		43.04		40.15	40.57	37.67	37.46	39.65	39.33	41.49	42.57
15	43.96	43.52	43.10	40.57	39.78	40.44	37.52	37.98	39.52	39.73	41.66	42.74
20		43.61	43.03	40.55	39.84	39.79	37.21	38.60	39.18		41.96	42.80
20 25		43.46				39.13	37.14	39.15	38.84	40.78	42.14	42.82
EOM		43.38		41.28	40.16	38.49	37.24	39.85	38.95	40.99	42.33	42.93
MEAN		43.52	43.15	40.77	40.28	39.88	37.56	38.23	39.40	39.97	41.74	42.67
WTR YR	1982	MEAN	40.61	HIGH	37.10 APR	23	LOW	44.00 OCT	9 AND	OTHERS		

QUALITY OF GROUND WATER

WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

CAMDEN COUNTY

WELL NUMBE		LATITUDE	LONGITUDE	ELEV. OF LAND SURFACE DATUM (FT. ABOVE NGVD)	SCREENED INTERVAL (FT)	GEOLOGIC UNIT	DATE OF SAMPLE	TEMPER- ATURE (DEG C)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
194 197 57 58 61	NJ ZINC CO 4-DEEP NJ ZINC CO 3-DEEP OUR LADY LORDS HOSP-STBY WEST JERSEY HOSPITAL 1 CAMDEN CITY WD-CITY 4	39 53 08 39 53 13 39 55 39 39 55 39 39 55 41	075 07 44 075 08 04 075 05 41 075 06 30 075 06 22	5 30 30	249-279 223-253 237-258 119-140 131-156	211MRPA 211MRPA 211MRPA 211MRPA 211MRPA	82-09-16 82-09-16 82-09-21 82-09-21 82-07-06	15.0 15.0 14.0 15.5 17.5	355 880 397 770 710	6.7 6.4 6.0 6.4 6.3	22 64 73 75 47
68 78 98 528 545	CAMDEN CITY WD-CITY 13 CAMDEN CITY WD-CITY 5N NEW JERSEY WC-CAMDEN 52 CAMDEN CITY WD-PUCHACK 7 CAMDEN CITY WD-MORRIS 11	39 55 57 39 56 15 39 57 15 39 58 35 39 59 00	075 05 35 075 06 33 075 05 19 075 03 02 075 03 25	22 18 20	185-225 134-169 147-198 140-180 124-154	211MRPA 211MRPA 211MRPA 211MRPA 211MRPA	82-07-06 82-07-06 82-07-19 82-07-13 82-07-12	16.0 14.0 13.0	640 380 482 167 265	6.1 6.1 6.1 5.4 6.7	50 33 44 15 20
363 366 368 369 370	CAMDEN CITY WD-PUCHACK 2 CAMDEN CITY WD-PUCHACK 1 CAMDEN CITY WD-DELAIR 1 CAMDEN CITY WD-DELAIR 2 CAMDEN CITY WD-DELAIR 3	39 58 42 39 58 45 39 58 48 39 58 51 39 58 53	075 03 12 075 03 12 075 03 47 075 03 55 075 03 48	10 10 5	126-165 108-140 103-139 109-144 87-129	211MRPA 211MRPA 211MRPA 211MRPA 211MRPA	82-09-15 82-07-13 82-09-15 82-09-15	14.0 15.0 15.0	337 280 280 294 214	5.9 6.4 6.8 6.9	40 23 23 30 18
586 386	CAMDEN CITY WD-MORRIS 12 CAMDEN CITY WD MORRIS 3A	39 59 14 39 59 34	075 03 24 075 02 29		86-117 73-103	211MRPA 211MRPA	82-07-13 82-07-12		215 700	7.2 6.5	16 30

Geologic unit (aquifer):

211MRPA - Potomac-Raritan-Magothy aquifer system

CAPE MAY COUNTY

WELL Number	LOCAL R IDENTIFIER	LATITUDE	LONGITUDE	ELEV. OF LAND SURFACE DATUM (FT. ABOVE NGVD)	SCREENED INTERVAL (FT)	GEOLOGIC UNIT	DATE OF SAMPLE	TEMPER- ATURE (DEG C)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
28 36	CAPE MAY CITY WD 1 HARBESON-WALKER REF CO 2 CAPE MAY CITY WD 2 CAPE MAY CITY WD 3 LOWER TWP MUA 2	38 56 43 38 56 43 38 57 01 38 57 24 38 59 05	074 55 33 074 57 55 074 55 28 074 55 21 074 56 25	12 10 10 15 12	277-306 235-265 174-282 -276 212-247	121CNSY 121CNSY 121CNSY 121CNSY 121CNSY	82-09-16 82-09-16 82-09-16 82-09-16 82-09-16	15.5 15.5 15.5 15.5	420 980 490 300	7.5 7.4 7.5 7.5 7.7	52 210 72 20 15
70 72	LOWER TWP MUA 3 WILDWOOD WD RIO GRAND 38 WILDWOOD WD RIO GRAND 36 WILDWOOD WD RIO GRAND 31 WILDWOOD WD RIO GRAND 29	38 59 19 39 01 35 39 01 37 39 01 38 39 01 39	074 55 18 074 53 52 074 53 52 074 53 50 074 53 49		262-302 461-590 48- 63 108-135 191-231	121CNSY 122KRKDU 112CPMY 112ESRNS 121CNSY	82-09-16 82-09-15 82-09-15 82-09-15 82-09-15	15.0 15.5 13.5 13.5 14.5	190 510 225 190 166	7.7 7.9 6.1 7.8 7.6	7.7 78 27 12 11

Geologic unit (aquifer):

112CPMY - Cape May Formation, Undifferentiated 112ESRNS - Cape May Formation, Estuarine Sand Facies 121CNSY - Cohansey Sand

122KRKDU - Rio Grande water-bearing zone of the Kirkwood Formation

QUALITY OF GROUND WATER

WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

CUMBERLAND COUNTY

WELL NUMBER	LOCAL R IDENTIFIER	LAT	riti	UDE	LONG	GIT	UDE	ELEV. OF LAND SURFACE DATUM (FT. ABOVE NGVD)	SCREENED INTERVAL (FT)	GEOLOGIC UNIT	DATE OF SAMPLE	TEMPER- ATURE (DEG C)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	
334	WEISGERBER, FRANK	39	16	11	075	13	43	5	400*	124PNPN	82-09-01	15.0	535	42	
	MOOTZ, CHARLES	39	16	12	075	13	46	5	430*	124PNPN	82-09-01		580	47	
	STANGER, GEORGE	39	16		075	13	55	5	440*	124PNPN	82-09-01		870	180	
	GANDY, MILES-GANDYS BEACH	39	16	18	075	13	54	5	378-402	124PNPN	82-09-01	15.0	3580	1000	
256	MYERS, H	39	16	19	075	13	57	5	399-409	124PNPN	82-09-01		950	180	
336	ROSSI, EDWARD	39	16	20	075	14	06	5	400*	124PNPN	82-09-02		560	47	
337	COVE ROAD WATER ASSOC.	39	16	22	075	14	14	5	373-393	124PNPN	82-09-02		625	54	
	MAZZOLA, JOSEPH	39		23	075	14	18	5	400*	124PNPN	82-09-02		650	54 58 77	
	MONEY ISL MARINA 1	39			075	14	15	4	350-370	124PNPN	82-09-02		730	77	
92	BAY PT ROD & GUN CLUB 2	39	17	46	075	15	10	5	397-417	124PNPN	82-09-02		780	79	

^{*} Total depth of well.

Geologic unit (aquifer):

124PNPN - Piney Point aquifer

206

QUALITY OF GROUND WATER

WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

GLOUCESTER COUNTY

WELL NUMBE		LATITUDE	LONGITUDE	ELEV. OF LAND SURFACE DATUM (FT. ABOVE NGVD)	SCREENED INTERVAL (FT)	GEOLOGIC UNIT	DATE OF SAMPLE	TEMPER- ATURE (DEG C)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
1 3 361 60 63	CLAYTON BORO WD 3 CLAYTON BORO WD 4 GLASSBORO BORO WD 5 GLASSBORO BORO WD 3 GLASSBORO BORO WD 4	39 39 12 39 40 15 39 41 41 39 42 05 39 43 08	075 05 22 075 05 58 075 07 10 075 07 58 075 07 02	133 140 140 150 146	746-800 670-740 600-657 562-612 549-599	211MRPA 211MRPA 211MRPA 211MRPA 211MRPA	82-09-17 82-09-17 82-08-17 82-08-17 82-08-17	21.0 20.0 19.5 19.5	1030 835 640 690 545	8.4 8.5 8.4 8.4	140 100 59 66 40
248 422 129 253 236	WASHINGTON TWP MUA 5-73 PITMAN BORO WD P4 SO JERSEY WS CO 1 WASHINGTON TWP MUA 6-64 SWEDESBORO BORO WD 3	39 43 39 39 43 45 39 44 08 39 44 37 39 44 34	075 04 33 075 08 04 075 13 30 075 02 50 075 18 43	125 125 35 152 75	559-618 498-568 263* 584-652 241-312	211MR PA 211MR PA 211MR PA 211MR PA 211MR PA	82-08-18 82-07-23 82-09-22 82-08-18 82-08-17	19.0	378 580 950 292 403	8.3 8.5 8.2 8.2 7.1	8.8 45 170 2.8 43
261 267 8 192 194	WASHINGTON TWP MUA 1 WASHINGTON TWP MUA 3 WOODBURY CTY WD-SEWEL 2A MANTUA MUA 5 MANTUA MUA 4	39 45 20 39 45 46 39 46 28 39 46 41 39 47 32	075 02 18 075 04 00 075 08 13 075 11 09 075 10 36	100 150 21 88 10	581-612 575-640 240-304 315-337 230-265	211MRPA 211MRPA 211MRPA 211MRPA 211MRPA	82-08-13 82-08-13 82-08-17 82-08-17	18.5 15.0 17.5	242 242 390 461 456	8.1 8.0 7.8 7.9	1.6 1.8 26 39 39
166 283 284 69 210	PENNS GROVE WC-BRIDGPT 2 SHELL CHEM CO 3 SHELL CHEM CO 4 GREENWICH TWP WD 3. PAULSBORO WD 6-73	39 47 55 39 49 19 39 49 19 39 49 19 39 49 21	075 21 08 075 12 56 075 12 56 075 16 19 075 14 17	30 10	65- 85 358-383 127-157 108-168 185-227	211MRPA 211MRPA 211MRPA 211MRPA 211MRPA	82-08-13 82-08-17 82-08-17 82-09-22 82-08-13	15.5 15.0 13.0	196 740 384 132 260	5.0 7.6 7.2 5.3 5.8	14 140 23 11 34
212 347 72 81 331	PAULSBORO WD 4-51 GREENWICH TWP WD 5 EI DUPONT REPAUNO 3 EI DUPONT REPAUNO 5 WOODBURY WD RAILROAD 5	39 49 29 39 49 32 39 49 36 39 49 45 39 49 55	075 14 47 075 17 22 075 17 47 075 17 17 075 09 08	10 10	192-220 82-117 91-101 81- 99 405-457	211MRPA 211MRPA 211MRPA 211MRPA 211MRPA	82-08-13 82-09-22 82-08-24 82-08-24 82-08-13	15.0 13.5 15.0	339 237 480 255 288	6.6 5.8 5.3 5.5 7.6	35 26 110 39 18
213 98 109 360 118	PAULSBORO WD 5-57 MOBIL OIL-GREENWICH 45 MOBIL OIL-GREENWICH 41 WOODBURY CITY WD 6-81 MOBIL OIL-GREENWICH 47	39 49 47 39 50 05 39 50 27 39 50 34 39 50 36	075 14 16 075 15 23 075 15 03 075 08 42 075 15 01	3 20 30	135-175 95-118 230-259 211-305 220-240	211MR PA 211MR PA 211MR PA 211MR PA 211MR PA	82-08-13 82-08-11 82-08-11 82-08-13 82-08-11	15.5 16.5 14.5	226 2100 750 309 440	4.6 5.2 5.5 7.7 6.1	19 120 100 17 110
221 220 312 373 434	ESSEX CHEM-OLIN 2-1970 ESSEX CHEM-OLIN 1-1954 W DEPTFORD TWP MUA 6 W DEPTFORD TWP MUA 7 WESTVILLE BORO WD 6	39 50 48 39 50 51 39 51 07 39 51 26 39 51 42	075 14 01 075 13 49 075 09 46 075 08 56 075 07 10	10 20 28	215-235 234-256 322-372 323-363 267-317	211MRPA 211MRPA 211MRPA 211MRPA 211MRPA	82-07-23 81-10-13 82-08-18 82-08-18 82-09-17	16.0 14.5 14.5	980 1100 342 247 336	6.7 6.9 7.9 7.8 7.3	150 190 42 23
314 318 321 322 323	TEXACO EAGLE PT 6 TEXACO EAGLE PT 2 TEXACO EAGLE PT 5 TEXACO EAGLE PT 3 TEXACO EAGLE PT 3	39 51 53 39 52 07 39 52 21 39 52 22 39 52 35	075 09 46 075 09 30 075 08 56 075 09 18 075 09 50	17 13 20	280-318 259-289 237-277 258-288 255-275	211MRPA 211MRPA 211MRPA 211MRPA 211MRPA	82-08-09 81-10-09 82-08-09 81-10-09 81-10-09	14.5 14.5 15.5	275 300 402 540 820	6.5 6.4 7.2 6.7 6.6	22 27 16 32 38
410	TEXACO EAGLE PT 4A	39 52 13	075 09 36	21 5 5	255-275 256-296 256-296	211MRPA 211MRPA 211MRPA	82-09-07 81-10-09 82-08-09	14.5	770 510 565	6.6 6.5 6.7	39 30 30

^{*} Total depth of well.

Geologic unit (aquifer):

²¹¹MRPA - Potomac-Raritan-Magothy aquifer system

PAGE	PAGE
Accuracy of field data and computed results 10	Collection and computation of data 8
Acknowledgments 1	Collection and examination of data
Acre-foot, definition of	Collingswood, Newton Creek at
Adenosine triphosphate, definition of	Color unit, definition of
Algae, definition of	Columbus, Assiscunk Creek near113,177
Algal growth potential (AGP), definition of 2	Crafts Creek at112,176
Allentown, Doctors Creek at	Computations, accuracy of results
Alloway, Deep Run near	Continuing record station, definition of
Aquifer code list and geologic names 2	Control, definition of
Aquifer, definition of	Control structure, definition of
Artesian, definition of	Cooper River at Camden
Ash mass, definition of	at Kirkwood141
Assiscunk Creek near Burlington 114	at Lawnside143
near Columbus	at Norcross Road at Lindenwold
Assunpink Creek at Carsons Mills	North Branch near Marlton
at Trenton	Coopersville, Merrill Creek at
near Clarksville 101	Crafts Creek at Columbus112,176
Aura, Still Run at	Crest-stage partial-record stations
Bacteria, definition of	Crosswicks Creek at Extonville
Balesville, Paulins Kill at	at Groveville
Barrett Run near Bridgeton	Tributary No. 2 Tributary at New Egypt 179
Beals Mills, Cohansey River near	Cubic feet per second per square mile, definition of. 4 Cubic foot per second definition of
Bear Creek, PA, diversions	Cubic foot per second, definition of
Beattystown, Musconetcong River at	Ground-water quality
Beaver Brook near Belvidere 58,175	
Bedload, definition of	Davis Mill, Raccoon Ditch at
Bed material, definition of	Deep Run near Alloway
Belvidere, Beaver Brook near	Delaware and Raritan Canal at Kingston
Delaware River at 61	Delaware and Raritan Canal, diversions
Pequest River at	Delaware Bay at Reeds Beach
Big Flat Brook at Tuttles Corner	Delaware Memorial Bridge, Wilmington, DE, Delaware River at
North Branch at Laurel Road at Laurel Springs 178	Delaware River at Belvidere
South Branch, at Blackwood	at Burlington
South Branch, at Blackwood Terrace	at Chester, PA
Biomass, definition of	at Frenchtown81
Bird observation well	at Lambertville88
Bivalve, Maurice River at	
Blacks Creek at at Mansfield Square	ar the second of
Blackwood Terrace, South Branch Big Timber Creek at 147	
Blairstown, Paulins Kill at 50	at Palmyra 133
Yards Creek near	
Blue green algae, definition of	at Portland, PA
Blue Marsh Lake, PA	
Bottom material 3	at Trenton 90
Bridgeton, Barrett Run near	
Cohansey River at	
Browns Mills, North Branch Rancocas Creek at 121	Delaware River basin, crest-stage partial-record
Buckshutem Creek near Laurel Lake	
Burlington, Assiscunk Creek near	하는 사람들은 사람들은 사람들은 사람들은 사람들이 가장 사람들이 되었다. 그렇게 되었다면 살아보고 있다면 살아보고 있다면 살아보다면 살아보다
Burlington County, ground-water levels	
	Diversions and withdrawals in
Camden County, ground-water levels	
Ground-water quality	
Cannonsville Reservoir	Diatoms, definition of
Cape May Canal at North Cape May 180	
Cape May County, ground-water quality	
Ground-water levels	
Carsons Mills, Assunpink Creek at	
Cells/volume, definition of	
CFS-day, definition of	
Chemical oxygen demand, definition of	Drainage area, definition of4
Cherry Hill, South Branch Pennsauken Creek at 136	
Chester, PA, Delaware River at	
Cinnaminson, Pompeston Creek at	
Clarksville, Assunpink Creek near 101	East Pond Reservoir, NY, diversions
Clayton, Little Ease Run at	
Cliff Lake, NY	
at Greenwich 180	Elm Tree Farm 3 observation well
at Seeley	Extonville, Crosswicks Creek at 103
near Beals Mills	
Cohansey River basin	
crest-stage partial-record stations in	
discharge measurements at low flow partial-record	The state of the s

	PAGE
Lubbers Run at Lockwood. Lumberton, Little Creek near Lumberville, Delaware River at	173 173 84
Mansfield Square, Blacks Creek at	176 153 51,178 178
Marlton, North Branch Cooper River near	177 26 172
Maurice River at Bivalve	180 26 123 6
Mean discharge, definition of. Mean high or low tide, definition of. Medford, SW Branch Rancocas Creek at Route 70 at Sharps Run at Route 541 at	4 177 173
Medford 1 observation well	184 185 182 183
Medford 5 observation well Menantico Creek near Millville Merrill Creek at Coopersville Metamorphic stage, definition of Methylene blue active substance, definition of	32 173 4
Micrograms per gram, definition of	4 173 79
Milligrams per liter, definition of	4 32 41 134,177
Morris Lake, diversions. Morrisville, PA, Borough of, diversions. Muddy Run at Centerton. Mullica Hill, Raccoon Creek at	171 170 172 178
Raccoon Creek near	74 72,179 70,175
at Riegelsville	77 76 176 172
National Geodetic Vertical Datum of 1929 (NGVD of 1929)	4
definition of. National substrate, definition of. Natural substrate. Neversink Reservoir, NY	8 6 6 167,169
Neversink River at Godeffroy, NY	176 179 177 177
New Village, Pohatcong Creek at	173,175 4 26 180
Numbering system for wells and miscellaneous sites Octoraro Creek, West Branch, PA, diversions Octoraro Lake, diversions	171 171
Oldmans Creek at Porches Mill. near Harrisonville. Orange Street observation well Organic mass, definition of.	159,179 178 194
Organism, definition of	3 5 5 5 11
Palmyra, Delaware River at	133 175 5 172
Tidal crest-stage Particle size, definition of Particle-size classification Paulins Kill at Balesville at Blairstown.	180 5 5 48,179 50
at Mouth at Columbia	54 130 165,167 134,177 136

PAGE		PAGE
Pepacton Reservoir, NY	Special networks and programs	8
Pequest River at Belvidere 59,179	Specific conductance, definition	
at Huntsville	Stage and water discharge record	
at Pequest 57	Stage-discharge relation, defin	
at Townsbury	Still Creek Reservoir, PA	
Percent composition, definition of 5	Still Run at Aura	
Periphyton, definition of 5	Stockton, Wickecheoke Creek at.	
Pesticide program, definition of 8	Stow Creek basin, discharge mea	
Pesticides, definition of 5	partial-record stations in.	
Philadelphia, PA, City of Philadelphia, diversions 170	Streamflow, definition of	
Phillipsburg, Lopatcong Creek at	Substrate, definition of	6
Phytoplankton, definition of 5	Surface area, definition of	
Picocurie, definition of	Surficial bed material	
Pitman, Mantua Creek at151,178	Suspended recoverable, definition	on of 7
Plankton, definition of5	Suspended sediment, definition	
Pohatcong Creek at Carpentersville	Suspended-sediment concentration	
at New Village	Suspended-sediment discharge, de	
Point Airy observation well	Suspended-sediment load, defini	
Polychlorinated biphenyls, definition of 5	Suspended, total, definition of	
Pompeston Creek at Cinnaminson	Swedesboro, Raccoon Creek near.	
Porches Mill, Oldmans Creek at	Swinging Bridge Reservoir, NY	
Port Elizabeth, Muskee Creek near	Tours definition of	7
Port Jervis, NY, Delaware River at	Taxonomy, definition of	
Primary productivity, definition of	Terms, definition of	
Prompton Reservoir, PA	Thermograph, definition of	
Publications, ground water	Tidal crest-stage stations	
Surface water	Time-weighted average, definition	
Water quality 12	Tocks Island Damsite, Delaware	
Techniques of water-resources investigations 16	Delaware Water Gap, PA Tons per acre-foot	
Todailed of Marci - Cooki oco InvestiBariona	Tons per day, definition of	
Raccoon Creek at Mullica Hill	Toronto Reservoir, NY	
near Mullica Hill	Total, definition of	
near Swedesboro	Total coliform bacteria, defini	
Raccoon Ditch at Davis Mill	Total in bottom material, defin	
Radiochemical program, definition of	Total load, definition of	
Radioisotopes, definition of	Total organism count	
Ramseyburg, Honey Run near	Total, recoverable, definition	
Rancocas Creek, North Branch, at Browns Mills 121	Total sediment discharge, defin	
at Pemberton	Townsbury, Pequest River at	
South Branch, at Retreat	Trenton, Assunpink Creek at	
at Vincentown119,177	City of, diversions	
Southwest Branch, at Route 70 at Medford 177	Delaware River at	
Raven Rock, Lockatcong Creek at 83	Delaware River at Marine Term	
Records collected by other agencies	Trout Brook near Middleville	
Recoverable from bottom material	Tuttles Corner, Big Flat Brook	at 42
Reeds Beach, Delaware Bay at		
Remark codes for water-quality data 12	Vincentown, South Branch Rancoc	as Creek at119,177
Reservoirs: See Lakes and reservoirs		160 166
Retreat, South Branch Rancocas Creek at	Wallenpaupack, Lake, PA	1611 167
Rhodia Corp. 1 observation well	Walter, Francis E., Reservoir,	PA104, 107
Richmond, PA, Delaware River near	Warren County, ground-water leve	
Riegelsville, Delaware River at	Washington Crossing, Delaware R	iver at
Musconetcong River at	Water Quality Records, explanat	
	Water temperature	
Runoff in inches, definition of	WDR, definition of	
Solom County, ground unter levels	Weighted average, definition of	
Salem County, ground-water levels	Wet mass, definition of	
Salem 1 observation well	Wickecheoke Creek at Stockton Wild Creek Reservoir, PA	
Salem 2 observation well	Willingboro 1 observation well.	
Salem River at Woodstown	Willingboro 2 observation well.	100
Salina, Mantua Creek at	Wilmington, DE, Delaware River	
Screened interval, definition of	Memorial Bridge	
Scotland Run at Franklinville	Withdrawals from the Delaware R	
Sediment	Woodridge, NY, diversions	1/0
Sediment, definition of	Woodstown, Salem River at	
Seeley, Cohansey River at	Weighted average	
West Branch Cohansey River at 175	WSP, definition of	
Selected references		
Sharps Run at Route 541 at Medford 173	Yards Creek near Blairstown	53
Shell 5 observation well	Yardville, Doctors Creek at Rou	
Sheppards 1 observation well		
Solute, definition of 6	Zooplankton, definition of	5

FACTORS FOR CONVERTING INCH-POUND UNITS TO INTERNATIONAL SYSTEM UNITS (SI)

The following factors may be used to convert the inch-pound units published herein to the International System of Units (SI). This report contains both the inch-pound and SI unit equivalents in the station manuscript descriptions.

Multiply inch-pound units	Ву	To obtain SI units
	Length	
inches (in)	2.54x10 ¹	millimeters (mm)
feet (ft)	2.54x10 ⁻² 3.048x10 ⁻¹	meters (m) meters (m)
miles (mi)	1.609x10°	kilometers (km)
	Area	
acres	$4.047x10^3$	square meters (m ²)
	4.047x10 ⁻¹	square hectometers (hm ²)
	4.047×10^{-3}	square kilometers (km²)
square miles (mi ²)	2.590x10°	square kilometers (km²)
	Volume	
gallons (gal)	3.785x10°	liters (L)
ganons (gar)	3.785x10°	cubic decimeters (dm ³)
	3.785×10^{-3}	cubic meters (m ³)
million gallons	3.785×10^{3}	cubic meters (m ³)
THE SWITCH SWITCH	3.785x10 ⁻³	cubic hectometers (hm³)
cubic feet (ft ³)	2.832x101	cubic decimeters (dm ³)
,	2.832x10 ⁻²	cubic meters (m ³)
cfs-days	2.447×10^{3}	cubic meters (m ³)
,,-	2.447x10 ⁻³	cubic hectometers (hm³)
acre-feet (acre-ft)	1.233x10 ³	cubic meters (m ³)
	1.233x10 ⁻³	cubic hectometers (hm ³)
	1.233x10 ⁻⁶	cubic kilometers (km³)
	Flow	
cubic feet per second (ft ³ /s)	2.832x10 ¹	liters per second (L/s)
cubic feet per second (it /s)	2.832x10 ¹	cubic decimeters per second (dm ³ /s)
	2.832x10 ⁻²	cubic meters per second (m³/s)
gallons per minute (gal/min)	6.309x10 ⁻²	liters per second (L/s)
Barrons ber marace (Barlinar)	6.309x10 ⁻²	cubic decimeters per second (dm ³ /s)
	6.309x10 ⁻⁵	cubic meters per second (m³/s)
million gallons per day	4.381x10 ¹	cubic decimeters per second (dm ³ /s)
Seriono Por de,	4.381x10 ⁻²	cubic meters per second (m³/s)
	Mass	
tons (short)	9.072x10 ⁻¹	magagrama (Ma) ar matria tana
tons (short)	9.072X10	megagrams (Mg) or metric tons

U.S.MAIL

U.S. DEPARTMENT OF THE INTERIOR Geological Survey, 430 Federal Building 402 E. State Street Trenton, NJ 08608

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE \$300
SPECIAL 4TH CLASS BOOK RATE