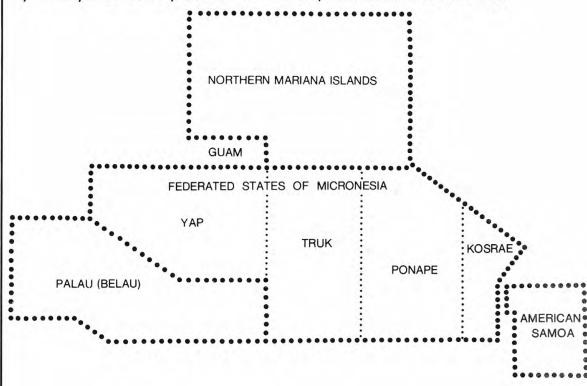

00)
a 3
a 3
a waii and Other Pacific Areas
83

Water Resources Data Hawaii and other Pacific Areas Water Year 1983

Volume 2. Guam, Northern Mariana Islands, Federated States of Micronesia, Palau, and American Samoa

U.S. GEOLOGICAL SURVEY WATER-DATA REPORT HI-83-2
Prepared in cooperation with the Governments of Guam,
Northern Mariana Islands, Federated States of Micronesia,
Palau, American Samoa, and with other agencies

CALENDAR FOR WATER YEAR 1983


									19	82										
		OCT	OBE	R]	NOV	EMB	ER					DEC	EMB	ER		
S	M	T	W	T	F	S	S	M	T	W	T	F	S	S	M	T	W	T	F	S
					1	2		1					6				1	2	3	
3		5		7												_			10	
	11						14										15			
	18					23					25	26	27		20				24	2
31	25	26	27	28	29	30	28	29	30					26	27	28	29	30	31	
								_	19	83						_				
		JANI	JARY	Z]	FEBI	RUAI	RY					MA	RCH			
S	M	T	W	T	F	S	S	M	T	W	T	F	S	S	M	T	W	T	F	S
						1			1	2	3	4	5			1	2	3	4	
2			_			_		7					12	6		8		10		
	10												19				16			
	17								22	23	24	25	26				23		25	2
	24	25	26	27	28	29	27	28						27	28	29	30	31		
30	31																			
		A	PRII						1	MAY						J	UNE			
S	M	T	W	T	F	S	S	M	T	W	T	F	S	S	M	T	W	T	F	S
					1	2	1	2	3	4	5	6	7				1		3	
3			6			9							14	5	6	7	8	9	10	
							15							12	13	14	15	16		
17	18	19	20	21	22	23	22	23	24	25				19	20	21	22	23		
24	25	26	27	28	29	30	29	30	31					26	27	28	29	30		
		J	JLY						AUG	GUST	C				SI	EPT	EMBI	ZR		
3	M	T	W	T	F	S	S	M	T	W	T	F	S	S	M	T	W	T	F	S
					1	2		1	2	3	4	5	6					1	2	
3	4	5	6	7	8	9	7	8	9	10	11	12	13	4	5	6	7	8	9	1
10	11	12	13	14	15	16	14	15	16	17	18	19	20	11	12	13	14	15	16	1
	10	19	20	21	22	23	21	22	23	24	25	26	27	18	19	20	21	22	23	2
17							28													

Water Resources Data Hawaii and other Pacific Areas Water Year 1983

Volume 2. Guam, Northern Mariana Islands, Federated States of Micronesia, Palau, and American Samoa

by Salwyn S. Chinn, Grace A. Tateishi, and Johnson J.S. Yee

U.S. GEOLOGICAL SURVEY WATER-DATA REPORT HI-83-2 Prepared in cooperation with the Governments of Guam, Northern Mariana Islands, Federated States of Micronesia, Palau, American Samoa, and with other agencies

UNITED STATES DEPARTMENT OF THE INTERIOR WILLIAM P. CLARK, Secretary

GEOLOGICAL SURVEY

Dallas L. Peck, Director

For information on the water program in Hawaii and other Pacific Areas write to District Chief, Water Resources Division U.S. Geological Survey 300 Ala Moana Boulevard, Rm. 6110
P.O. Box 50166
Honolulu, Hawaii 96850

1984

PREFACE

This volume of the annual hydrologic data report of Hawaii and other Pacific Areas is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by State, local, and Federal agencies, and the private sector for developing and managing our Nation's land and water resources. Hydrologic data for Hawaii and other Pacific Areas are contained in two volumes:

Volume 1. Hawaii

Volume 2. Guam, Northern Mariana Islands, Federated States of Micronesia, Palau, and American Samoa.

This report is the culmination of a concerted effort by dedicated personnel of the U.S. Geological Survey who collected, compiled, analyzed, verified, and organized the data, and who typed, edited, and assembled the report. In addition to the authors, who had primary responsibility for assuring that the information contained herein is accurate, complete, and adheres to Geological Survey policy and established guidelines, the following individuals contributed significantly to the collection, processing, and tabulation of the data:

David A. Beck
Gregg N. Ikehara
Rose M. Maruoka
David K. Uyematsu

Otto van der Brug Isao Yamashiro Akiko K. Tanaka Leonora L. K. Onaga

This report was prepared in cooperation with the Governments of Guam, Northern Mariana Islands, Federated States of Micronesia, Palau, American Samoa, and with other agencies under the general supervision of Stanley F. Kapustka, District Chief, Hawaii.

REPORT DOCUMENTATION	2.	3. Recipient's Accession No.				
PAGE	USGS/WRD/HD-84/062					
1. Title and Subtitle	5. Report Date					
	a for Hawaii and other Pac	cific Areas,	August 1984			
Water Year 1983. V	olume 2.		6.			
7. Author(s)	A	T C V	8. Performing Organization Rept. No.			
Salwyn S. Chinn, Gr	USGS-WDR-HI-83-02					
9. Performing Organization Name	and Address		10. Project/Task/Work Unit No.			
U.S. Geological Sur	sion	11. Contract(C) or Grant(G) No.				
300 Ala Moana Blvd.			(C)			
Honolulu, Hawaii 96		(G)				
			(G)			
12. Sponsoring Organization Name			13. Type of Report & Period Covered			
	vey, Water Resources Divis	sion	Annual - Oct. 1, 198			
300 Ala Moana Blvd.			to Sept. 30, 1983			
Honolulu, Hawaii 96	030		14.			
16. Abstract (Limit: 200 words)						
consists of records stage of a lake and report contains dis gaging stations; wa water temperature f and water quality f record stations. A the systematic data These data represent	ter resources data for the of stage, discharge, and a reservoir; and water lecharge records for 37 gaging ter quality for 9 gaging sor 36 gaging stations; and or 78 ground-water sites. dditional water data were collection program, and at that part of the National nd cooperating Governments	water quality of evels and water of ing stations; sta- stations; 12 part d water levels for Also included a collected at vari are published as al Water Data Sys	streams and springs; quality in wells. This age only record for 2 cial-record stations; or 30 observation wells are 43 low-flow partial- rious sites, not part of miscellaneous measurements.			

18. Availability Statement No restriction on distribution.

This report may be purchased from:

National Technical Information Service
Springfield, VA 22161

19. Security Class (This Report)
UNCLASSIFIED

21. No. of Pages
UNCLASSIFIED

22. Price

CONTENTS

Page Preface..... III List of gaging stations, in downstream order, for which records are published...... VI List of ground-water stations for which water-level and water-quality records are published..... Summary of hydrologic conditions..... Definition of terms..... Downstream order and station number..... Numbering system for wells and miscellaneous sites..... Explanation of stage and water-discharge records...... Collection and computation of data..... Accuracy of field data and computed results..... Records of discharge collected by agencies other than the Geological Survey...... Other data available..... Publications.... Explanation of water-quality records..... Collection and examination of data..... Water analysis..... Water temperature..... Sediment. Publications..... Explanation of ground-water level records..... Collection of the data..... Access to WATSTORE data..... Publications on techniques of water-resources investigations..... Low-flow partial-record stations..... Measurements at miscellaneous sites..... Analyses of samples collected at water-quality partial-record stations..... Analyses of samples collected at miscellaneous sites..... Periodic determinations of water temperature at gaging stations................ Ground-water records..... Ground-water levels and quality of water listed by island..... Index..... 161 ILLUSTRATIONS Figure 1. Map showing locations of Pacific Islands..... Discharge during 1983 water year compared with median discharge for representative streams on Guam and Babelthuap..... Discharge during 1983 water year compared with median discharge for representative streams on Yap and Ponape..... Discharge during 1983 water year compared with median discharge for representative streams on Kosrae and Tutuila..... 6 Map of Saipan, Mariana Islands, showing locations of gaging stations, observation wells, and water-quality sites..... Map of Guam, Mariana Islands, showing locations of gaging and low-flow partialrecord stations..... 13 7. Map of Guam, Mariana Islands, showing locations of observation wells and waterquality sites...... 14 Map of Babelthuap, Palau Islands, showing locations of gaging and low-flow 15 stations, and observation wells..... 16 10. Map of Moen, Truk Islands, showing locations of gaging stations, wells, and water-quality sites..... 17 11. Map of Ponape, showing locations of gaging, low-flow partial-record stations and water-quality sites..... 18 12. Map of Kosrae, showing locations of gaging, low-flow partial-record stations and water-quality sites..... 19 Map of Tutuila, Samoa Islands, showing locations of gaging, low-flow partialrecord stations, observation wells, and water-quality sites..... 20 Sketch showing system for numbering wells and miscellaneous sites..... 21 Sketch showing local well numbering system..... 21

Letters after station name designate type of data: (d) discharge, (e) stage or gage height, (c) chemical, (t) temperature

	Page
MARIANA_ISLANDS	5-
ISLAND OF SAIPAN	
Denni Spring (head of Denni Stream) (dct)	28
South Fork Talofofo Stream (dct)	30
Lake Susupe (ect)	32
ISLAND OF GUAM	
Finile Creek at Agat (dt)	34
La Sa Fua River near Umatac (dt)	35
Inarajan River near Inarajan (dt)	36
Tinaga River near Inarajan (dt)	37
Tolaeyuus River (head of Talofofo River):	
Imong River (head of Fena River) near Agat (dt)	38
Almagosa River near Agat (dt)	39
Maulap River near Agat (dt)	40
Fena Dam spillway near Agat (e)	41
Ugum River above Talofofo Falls, near Talofofo (dt)	42
Ylig River near Yona (dt)	43
Pago River near Ordot (dt)	44
CAROLINE ISLANDS	
PALAU ISLANDS	
Diongradid River, Babelthuap (dt)	45
Tabecheding River, Babelthuap (dt)	46
Edeng River (head of Geriiki River), Babelthuap (dt)	47
Kmekumel River, Babelthuap (dt)	48
Ngerdorch River:	
South Fork Ngerdorch River, Babelthuap (dt)	49
VAP ISLANDS	
Qatliw Stream, Yap (dt)	50
Qaringeel Stream, Yap (dt)	51
Burong Stream, Yap (dt)	52
Mukong Stream, Gagil-Tamil (dt)	53
Eyeb Stream, Gagil-Tamil (dt)	54
TRUK ISLANDS	
Wichen River at altitude 18 m, Moen (d)	55
ISLAND OF PONAPE	
Kiepw River:	
Nanpil River (dct)	56
Lewi River (dt)	58
Lumpwor River (dct)	59
Lehn Mesi River (dct)	61
ISLAND OF KOSRAE	
Melo River (dct)	63
Malem River (dct)	65
Tofol River (dct)	67
SAMOA ISLANDS	0,
ISLAND OF TUTULLA	
Pago Stream at Afono (dt)	69
Aasu Stream at Aasu (dt)	70
Atauloma Stream at Afao (dt)	71
Asili Stream at altitude 330 ft near Asili (dt)	72
Leafu Stream at altitude 370 ft near Leone (dt)	73
Afuelo Stream at Matuu (dt)	74
Leafu Stream near Auasi (dt)	75
MONTH Delegin Heal Aught (Me)	13

Letters after well number designate type of data: (c) chemical, (t) water temperature, (w) water level

			Page
MARIANA ISLANDS			
ISLAND OF PAGAN (12-0745-05)	180800145470570	(ctw)	96
(12-0745-06)	180800145470670	(ctw)	97
(12-0746-04)	180800145470470	(ctw)	98
(12-0845-07)	180800145470770	(ctw)	99
(12-0745-11) (12-0745-18)	180800145471170 180800145471870	(ct)(ct)	100
(12-0745-18)	180800145471570	(ct)	102
(12-0946-16)	180800145471670	(ct)	103
(12-0946-17)	180800145471770	(ct)	104
ISLAND OF SAIPA		6.3	105
(14-1045-09) (14-1144-07)	151032145460370 151130145445970	(w)	105 106
(14-1144-07)	150723145431170	(ct)	113
(14-0742-07)	150737145431070	(ct)	113
(14-0742-08)	150744145430370	(ct)	113
(14-0742-09)	150732145431270 150731145430870	(ct)(ct)	113 113
(14-0742-11) (14-0743-09)	150732145432070	(ct)	113
(14-0743-10)	150728145431470	(ct)	113
(14-0743-11)	150730145431370	(ct)	107
(14-0743-13)	150736145430070	(ct)	113
(14-0743-17) (14-0743-18)	150730145435270 150737145440670	(ct)(c)	108 113
(14-0743-19)	150737145440670	(ct)	113
(14-0743-22)	150731145440370	(c)	113
(14-0743-23)	150738145435870	(c)	113
(14-0743-24)	150743145435470	(ct)	113
(14-0743-25) (14-0743-26)	150740145435570 150733145435970	(ct)(ct)	113
(14-0743-27)	150733145433570	(ct)	114
(14-0943-01)	150905145435670	(ct)	114
(14-1046-03)	151021145460870	(ct)	114
(14-1046-08)	151026145454970	(ct)	109
(14-1143-02) (14-1143-05)	151127145434270 151127145434070	(ct)(ct)	114 114
(14-1144-05)	151133145445770	(ct)	114
(14-1144-10)	151124145445670	(ct)	114
(14-1244-05)	151248145443470	(ct)	114
(14-1244-07) (14-1244-08)	151239145441870 151246145443770	(ct)(ct)	114 114
(14-1244-09)	151250145444170	(ct)	109
(14-1244-10)	151250145443370	(ct)	114
(14-1244-12)	151244145442270	(ct)	114
(14-1344-14) (14-1344-15)	151312145441570 151314145441570	(ct)(ct)	114
(14-1344-15)	151314145441670	(ct)	114
(14-1344-17)	151312145443970	(ct)	110
(14-1344-18)	151309145443870	(ct)	111
(14-1344-19)	151309145443370	(ct)	111
(14-1546-03) ISLAND OF GUAM	151508145465370	(c)	112
(18-2645-07)	132624144452771	(w)	115
(18-2648-02)	132644144480871	(w)	116
(18-2846-01)	132824144464271	(w)	117
(18-2847-12)	132813144472771	(w)	118 119
(18-3049-03) (18-3049-05)	133032144491871	(w)	120
(18-3148-02)	133115144484971	(w)	121
(18-3149-05)	133119144491771	(ctw)	122
(18-2647-01)	132615144470571 132626144471771	(w). (ctw).	124 124
(18-2647-12) (18-2745-03)	1326261444/1//1	(Ctw)(w)	124
(18-2745-07)	132742144452971	(w)	125
(18-2746-06)	132736144461671	(ctw)	126
(18-2848-03)	132806144481871	(ctw)	127
(18-3050-05) (18-3150-10)	133034144500871 133120144505471	(ctw)(ctw)	128 129
(18-3150-10)	133120144505471	(ctw)	131
(18-3651-05)	133628144513271	(ctw)	133
(18-3150-14)	133121144504871	(ct)	134

Letters after well number designate type of data: (c) chemical, (t) water temperature, (w) water level

			Page
CAROLINE ISLANI	D <u>S</u>		
YAP ISLANDS			222
(25-3209-01)	093204138095970	(w)	135
(25-2904-01)	092919138045670	(w)	136
(25-2904-02)	092918138045470	(w)	136
(25-2905-01)	092915138050270	(w)	137
(25-2905-02)	092920138050270	(w)	137
(25-2905-03)	092616138050670	(w)	138
(25-2905-06)	092926138050470	(w)	138
(25-3105-01)	093144138055170	(w)	139
(25-3109-01)	093159138095870	(w)	139
(25-3109-02)	093159138095870	(w)	140
(25-3109-03)	093157138095670	(w)	140
(25-3109-04)	093154138095370	(w)	141
(25-3210-01)	093217138101270	(w)	141
(25-3210-02)	093210138101270	(w)	142
TRUK ISLANDS	111111111111111		77.75
(30-2550-01)	072517151505770	(ct)	144
(30-2550-02)	072504151503370	(ct)	144
(30-2650-01)	072658151511970	(ct)	144
(30-2650-02)	072654151511870	(ct)	144
(30-2650-03)	072707151512070	(ct)	144
(30-2650-05)	072704151512070	(ct)	143
(30-2651-01)	072704151511070	(ct)	144
(30-2651-02)	072702151512370	(ct)	144
(30-2651-02)	072701131312770	(ct)	144
(30-2651-03)	072705151512470	(ct)	144
(30-2651-04)	072703131312670	(ct)	144
			144
(30-2751-01)	072710151512570	(ct)	144
SAMOA ISLANDS			
(90-1943-24)	141945170435401	(w)	2.45
			145
(90-1943-28)	141948170435701	(w)	146
(90-2046-02)	142057170461501	(w)	147
(90-2144-12)	142102170445601	(w)	148
(90-1943-06)	141945170435301	(c)	149
(90-1943-20)	141928170435201	(c)	150
(90-1944-11)	141952170440201	(c)	151
(90-1944-12)	141951170440101	(ct)	152
(90-1944-13)	141929170441401	(ct)	153
(90-1944-14)	141924170440401	(c)	155
(90-2044-02)	142100170441701	(ct)	156
(90-2046-03)	142042170463001	(c)	158
(90-2144-05)	142110170444601	(ct)	159
(90-2145-03)	142102170455801	(c)	160

Volume 2

INTRODUCTION

Water resources data for the 1983 water year for Hawaii and other Pacific areas consist of records of stage, discharge, and water quality of streams, springs, and reservoir; and water-levels and water quality of wells. This report contains discharge records for 37 gaging stations; stage only records for 2 gaging stations; water quality for 9 gaging stations, 12 partial-record stations, water temperature for 36 stations; and water levels for 30 observation wells and water quality for 78 ground-water sites. Also included are data for 30 low-flow partial-record stations. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State, Territorial, and Federal agencies in the Pacific areas.

Records of discharge and stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological Survey water-supply papers entitled, "Surface Water Supply of the United States." Through September 30, 1960 (June 30, 1960, for Hawaii and other Pacific Areas), these water-supply papers were in an annual series and then in a 5-year series for 1961-65 and 1966-70. The records for other Pacific areas were contained in one volume entitled "Surface Water Supply of Mariana, Caroline, and Samoa Islands." Records of chemical quality, water temperatures, and suspended sediment were published from 1941 to 1970 in an annual series of water-supply papers entitled "Quality of Surface Waters of the United States." Records of ground-water levels were published from 1935 to 1974 in a series of water-supply papers entitled "Ground Water Levels in the United States." Water-supply papers are available in the libraries of the principal cities in the United States or may be purchased from the Branch of Distribution, U.S. Geological Survey, 1200 South Eads Street, Arlington, Virginia, 22202.

For water years 1961 through 1970, streamflow data were released by the Geological Survey in annual reports on a State-boundary basis. Water-quality records for water years 1964 through 1970 were similarly released either in separate reports or in conjunction with streamflow records.

Beginning with the 1971 water year, water data for streamflow, water quality, and ground water are published in official Survey reports on a State-boundary basis. These official Survey reports carry an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report HI-83-2."

In this volume, the spelling of names, drainage areas, and locations for most stations in Palau, Yap, Truk, Ponape, and Kosrae differ from those used in "Water Resources Data for Hawaii and other Pacific Areas", 1968 to 1980. These had been based on 1954 U.S. Army Map Service series W 856 maps with a scale of 1:25,000 and 10-meter contours (International spheroid). The revised names and figures were based on the 1981 USGS maps with 1:10,000 scale and 5-meter contours (Clarke spheroid of 1866).

The water-data reports are for sale, in paper copy or in microfiche, by the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia, 22161. Additional information, including current prices, for ordering specific reports may be obtained from the District Chief at the address given on the back of the title page or by telephone (808) 546-8331.

COOPERATION

The U.S. Geological Survey has had cooperative agreements for the systematic collection of streamflow records with the Government of Guam since 1953, with the Government of American Samoa since 1957, and with the other Pacific Islands since 1968. Organizations that supplied data are acknowledged in station descriptions. Organizations that assisted in collecting data through cooperative agreement with the Survey are:

Government of Guam, R. J. Bordallo, governor.
Government of Northern Mariana Islands, P. P. Tenorio, governor.
Federated States of Micronesia, T. Nakayama, president.
State of Yap, J. A. Mangefel, governor.
State of Truk, Erhart Aten, governor.
State of Ponape, Resio Moses, governor.
State of Kosrae, Yosiwo George, governor.
Republic of Palau, H. I. Remeliik, president.
Government of American Samoa, P. T. Coleman, governor.

Assistance in the form of funds or services was given by the Public Works, U.S. Navy, and the Corps of Engineers, U.S. Army.

SUMMARY OF HYDROLOGIC CONDITIONS

Based on the records at six index streams in the area covered by this volume, as shown in figure 1; the annual mean runoff for 1983 water year was in the deficient range (flow in the lower 25 percent of record) at all six index stations. Streamflow was below average from January to May in the Western Pacific.

Streamflow at the Ylig River near Yona, Guam (fig. 2) was normal for October, November, December, and September; and deficient for January through August. Annual mean runoff was in the deficient range at 51 percent of the median.

At the Diongradid River (fig. 2) on the island of Babelthuap, Palau Islands, monthly mean was excessive (flow in the upper 25 percent of record) for August; normal for July and September; and deficient from October through June. Annual mean runoff was in the deficient range at 70 percent of the annual median.

On the island of Yap, Caroline Islands, streamflow at the Qaringeel Stream (fig. 3) was excessive for August; normal for February, March, April, and July; and deficient for October through January, May, June, and September. Annual mean runoff was in the deficient range at 60 percent of the annual median.

Streamflow at the Nanpil River in Ponape (fig. 3) was excessive for July; normal for December and September; and deficient for October, November, January through June, and August. Annual mean discharge was in the deficient range at 53 percent of the annual median.

On the island of Kosrae, streamflow at the Melo River (fig. 4) was excessive for September; normal for July and August; and deficient for October through June. Annual mean discharge was in the deficient range at 46 percent of the annual median.

At Tutuila, American Samoa, streamflow at Aasu (fig. 4) was normal for October, November, January, March, and April; and deficient for December, February, and May through September. Annual mean runoff was in the deficient range at 56 percent of the annual median.

DEFINITION OF TERMS

Definition of terms related to streamflow, water-quality, and other hydrologic data are defined as follows:

Acre-foot (AC-FT, acre-ft) is the quantity of water required to cover 1 acre to a depth of 1
foot and is equivalent to 43,560 cubic feet or 325,851 gallons or 1,233 cubic meters.

Algae are mostly aquatic single-celled, colonial, or multi-celled plants, containing chlorophyll and lacking roots, stems, and leaves.

Aquifer is a geologic formation, group of formations, or part of a formation that contains sufficient saturated permeable material to yield significant quantities of water to wells and springs.

Artesian means confined and is used to describe a well in which the water level stands above the top of the aquifer tapped by the well. A flowing artesian well is one in which the water level is above the land surface.

<u>Bacteria</u> are microscopic unicellular organisms, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants.

<u>Total coliform bacteria</u> are a particular group of bacteria that are used as indicators of possible sewage pollution. They are characterized as aerobic or facultative anaerobic, gram-negative, nonspore-forming, rod-shaped bacteria which ferment lactose with gas formation within 48 hours at 35°C. In the laboratory these bacteria are defined as all the organisms which produce colonies withing 24 hours when incubated at 35° C \pm 1.0°C on M-Endomedium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

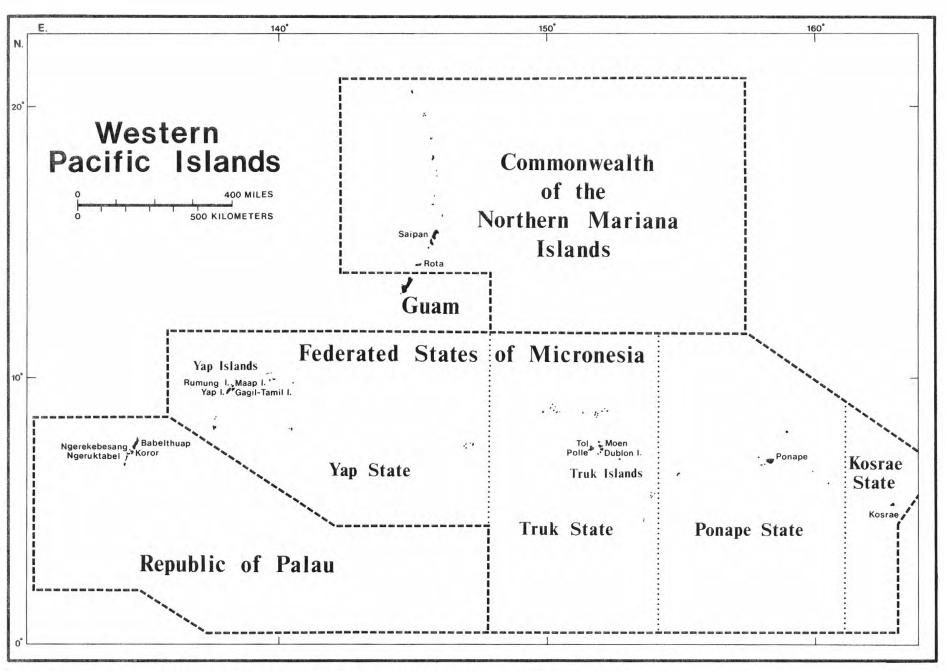
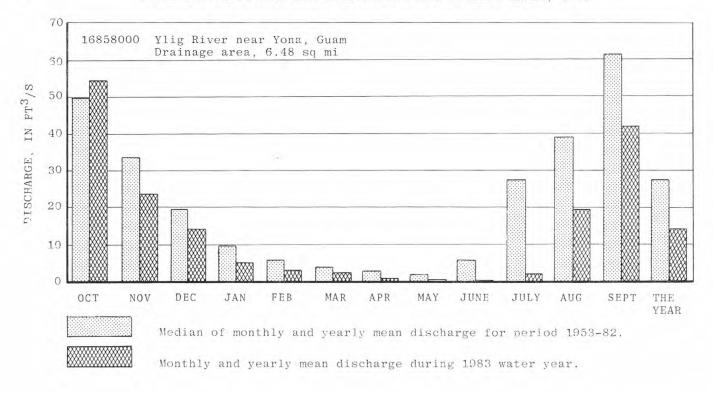



FIGURE 1.--LOCATIONS OF WESTERN PACIFIC ISLANDS.

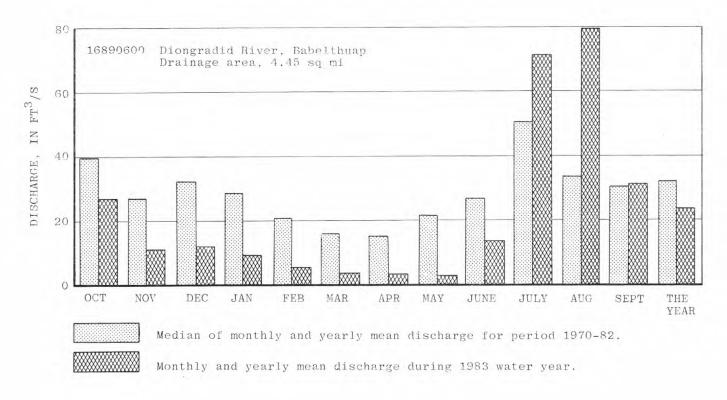
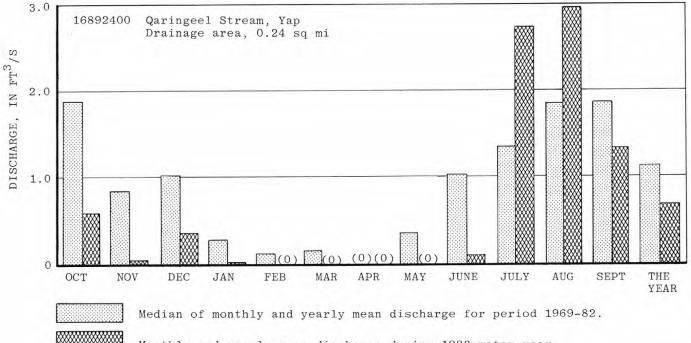



Figure 2.--Discharge during 1983 water year compared with median discharge for representative streams on Guam and Babelthuap.

Monthly and yearly mean discharge during 1983 water year.

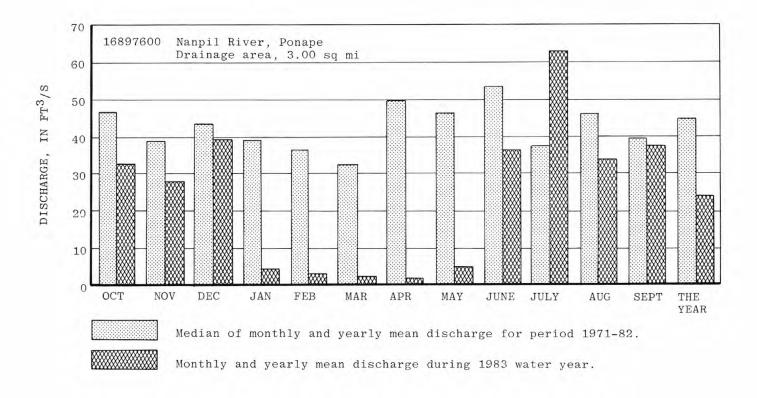
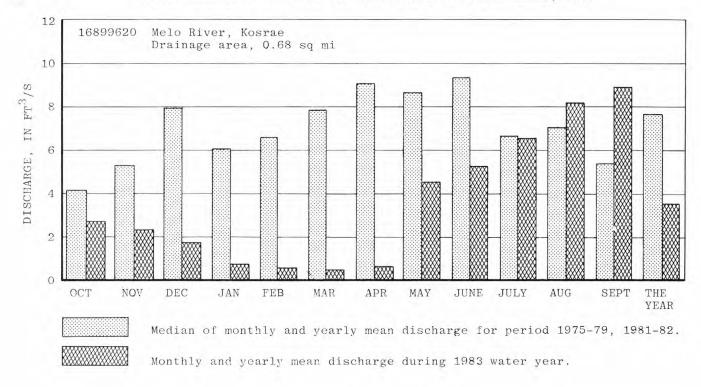



Figure 3.--Discharge during 1983 water year compared with median discharge for representative streams on Yap and Ponape.

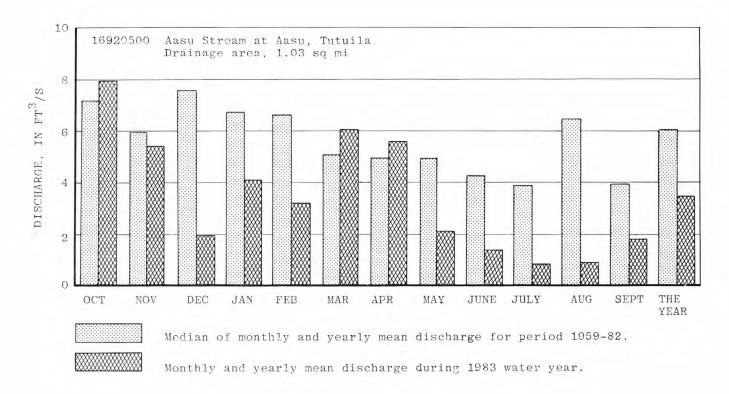


Figure 4.--Discharge during 1983 water year compared with median discharge for representative streams on Kosrae and Tutuila.

Fecal coliform bacteria are bacteria that are present in the intestine or feces of warm-blooded animals. They are often used as indicators of the sanitary quality of the water. In the laboratory they are defined as all organisms which produce blue colonies within 24 hours when incubated at 44.5°C \pm 0.2°C on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 milliliter of sample.

<u>Fecal streptococcal bacteria</u> are bacteria found also in the intestine of warm-blooded animals. Their presence in water is considered to verify fecal pollution. They are characterized as gram-positive, cocci bacteria which are capable of growth in brain-heart infusion broth. In the laboratory they are defined as all the organisms which produce red or pink colonies within 48 hours at $35^{\circ}\text{C} \pm 1.0^{\circ}\text{C}$ on M-enterrococcus medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

<u>Biochemical oxygen demand</u> (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, necessary for the decomposition of organic matter by microorganisms, such as bacteria.

 $\underline{\text{Biomass}}$ is the amount of living matter present at any time, expressed as the weight per unit area or volume of habitat.

<u>Ash mass</u> is the mass or amount of residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of 500° C for 1 hour. The ash mass values of zooplankton and phytoplankton are expressed in g/m³ (grams per cubic meter), and periphyton and benthic organisms in g/m² (grams per square meter).

 $\underline{\text{Dry mass}}$ refers to the mass of residue present after drying in an oven at 60°C for zoo-plankton and 105°C for periphyton, until the mass remains unchanged. This mass represents the total organic matter, ash, and sediment, in the sample. Dry mass values are expressed in the same units as ash mass.

Organic mass or volatile mass of the living substance is the difference between the dry mass and the ash mass, and represents the actual mass of the living matter. The organic mass is expressed in the same units as for ash and dry mass.

Wet mass is the mass of living matter plus contained water.

<u>Bottom material</u> is the unconsolidated material of which a streambed, lake, pond, reservoir, or estuary bottom is composed.

Recoverable from bottom material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of only readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Total in bottom material is the total amount of a given constituent in a representative sample of bottom material. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total in bottom material."

<u>Cells/volume</u> refers to the number of cells of any organism which is counted by using a microscope and grid or counting cell. Many planktonic organisms are multicelled and are counted according to the number of contained cells per sample, usually milliliters of liters (L).

<u>CFS-day</u> is the volume of water represented by a flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, 1.9835 acre-feet, or 646,317 gallons or 2,447 cubic meters.

<u>Chlorophyll</u> refers to the green pigments of plants. Chlorophyll \underline{a} and \underline{b} are the two most common pigments in plants.

<u>Coliform organisms</u> are a group of bacteria used as an indicator of the sanitary quality of the water. The number of coliform colonies per 100 milliliters is determined by the immediate or delayed incubation membrane filter method.

 $\underline{\text{Color unit}}$ is produced by one milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale.

<u>Contents</u> is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage.

<u>Continuing record station</u> is a specified site which meets one or all conditions listed:

- When chemical samples are collected daily or monthly for 10 or more months during the water year.
- 2. When water temperature records include observations taken one or more times daily.
- When sediment discharge records include those periods for which sediment loads are computed and are considered to be representative of the runoff for the water year.

<u>Control</u> designates a feature downstream from the gage that determines the stage-discharge relation at the gage. This feature may be a natural constriction of the channel, an artificial structure, or a uniform cross section over a long reach of the channel.

 $\underline{\text{Control structure}}$ as used in this report is a structure on a stream or canal that is used to regulate the flow or stage of the stream or to prevent the intrusion of salt water.

<u>Cubic foot per second</u> (FT³/s, ft³/s) is the rate of discharge representing a volume of 1 cubic foot passing a given point during 1 second and is equivalent to 7.48 gallons per second or 448.8 gallons per minute or 0.02832 cubic meters per second.

<u>Discharge</u> is the volume of water (or more broadly, volume of fluid plus suspended sediment), that passes a given point within a given period of time.

 ${\underline{{\tt Mean\ discharge}}}$ (MEAN) is the arithmetic average of individual daily mean discharges during a specified period.

<u>Instantaneous discharge</u> is the discharge at a particular instant of time. If this discharge is reported instead of the daily mean, the heading of the discharge column in the table is "DISCHARGE (CFS)."

<u>Dissolved</u> is that material in a representative water sample which passes through a 0.45 micrometer membrane filter. This is a convenient operational definition used by Federal agencies that collect water data. Determinations of "dissolved" constituents are made on subsamples of the filtrate.

<u>Drainage area</u> of a stream at a specific location is that area, measured in a horizontal plane, enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into the river above the specified point. Figures of drainage area given herein include all closed basins, or noncontributing areas, within the area unless otherwise noted.

<u>Drainage basin</u> is a part of the surface of the earth that is occupied by a drainage system, which consists of a surface stream or a body of impounded surface water together with all tributary surface streams and bodies of impounded water.

<u>Gage height</u> (G.H.) is the water-surface elevation referred to some arbitraly gage datum. Gage height is often used interchangeably with the more general term "stage," although gage height is more appropriate when used with a reading on a gage.

<u>Gaging station</u> is a particular site on a stream, canal, lake, or reservoir where systematic observations of hydrologic data are obtained.

 $\underline{\text{Hardness}}$ of water is a physical-chemical characteristic that is commonly recognized by the increased quantity of soap required to produce lather. It is attributable to the presence of alkaline earths (principally calcium and magnesium) and is expressed as equivalent calcium carbonate (CaCO).

<u>Hydrologic unit</u> is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as delineated by the Office of Water Data Coordination on the State Hydrologic Unit Maps; each hydrologic unit is identified by an 8-digit number.

 $\underline{\text{Microgram per gram }}(\mu g/g) \text{ is a unit expressing the concentration of a chemical element as the mass (micrograms) of the element sorbed per unit mass (gram) of sediment.}$

<u>Microgram per liter</u> (UG/L, μ g/L) is a unit expressing the concentration of chemical constituents in solution as mass (micrograms) of solute per unit volume (liter) of water. One thousand micrograms per liter is equivalent to one milligram per liter.

Milligram per liter (MG/L, mg/L) is a unit for expressing the concent ation of chemical constituents in solution. Milligrams per liter represent the mass of colute per unit volume (liter) of water. Concentration of suspended sediment also is expressed in mg/L, and is based on the mass of sediment per liter of water-sediment mixture.

<u>Partial-record station</u> is a particular site where limited streamflow and/or water-quality data are collected systematically over a period of years for use in hydrologic analyses.

<u>Particle size</u> is the diameter, in millimeters (mm), of suspended sediment or bed material determined by either sieve or sedimentation methods. Sedimentation methods (pipet, bottom-with-drawal tube, visual-accumulation tube) determine fall diameter of particles in either distilled water (chemically dispersed) or in native water (the river water at the time and point of sampling).

<u>Particle-size classification</u> used in this report agrees with recommendations made by the American Geophysical Union Subcommittee on Sediment Terminology. The classification is as follows:

Classification	Size	(mm)	Method of analysis
Clay	0.00024	- 0.004	Sedimentation.
Silt	.004	062	Sedimentation.
Sand	.062	- 2.0	Sedimentation or sieve.
Gravel	2.0	- 64.0	Sieve.

The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. Most of the organic material is removed and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native-water analysis.

<u>Percent composition</u> is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, mass, or volume.

<u>Pesticides</u> are chemical compounds used to control the growth of undesirable plants and animals. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides.

<u>Picocurie</u> (Pc,pCi) is one trillionth (1 x 10^{-12}) of the amount of radioactivity represented by a curie (Ci). A curie is the amount of radioactivity that yields 3.7 x 10^{10} radio active disintegrations per second. A picocurie yields 2.22 dpm (disintegrations per minute).

<u>Polychlorinated biphenyls</u> (PCBs) are industrial chemicals that are mixtures of chlorinated biphenyl compounds having various percentages of chlorine. They are similar in structure to organochlorine insecticides.

<u>Sediment</u> is solid material that originates mostly from disintegrated rocks and is transported by, suspended in, or deposited from water; it includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are influenced by environmental factors. Some major factors are degree of slope, length of slope, soil characteristics, land usage, and quantity and intensity of precipitation.

<u>Suspended sediment</u> is the sediment that at any given time is maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid.

<u>Suspended-sediment concentration</u> is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 ft above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L).

<u>Suspended-sediment discharge</u> (tons/day) is the rate at which dry weight of sediment passes a section of a stream or is the quantity of sediment, as measured by dry weight or volume, that passes a section in a given time. It is computed by multiplying discharge times milligrams per liter times 0.0027.

<u>Suspended-sediment load</u> is quantity of suspended sediment passing a section in a specified period.

 ${\it Total-sediment\ discharge}$ (tons/day) is the sum of the suspended-sediment discharge and the bedload discharge. It is the total quantity of sediment, as measured by dry weight or volume, that passes a section during a given time.

Mean concentration is the time-weight concentration of suspended sediment passing a stream section during a 24-hour day.

<u>Solute</u> is any substance derived from the atmosphere, vegetation, soil, or rocks that is dissolved in water.

Specific conductance is a measure of the ability of a water to conduct an electrical current. It is expressed in micromhos per centimeter at 25°C. Specific conductance is related to the type and concentration of ions in solution and can be used for approximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is about 65 percent of the specific conductance (in micromhos). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water.

<u>Stage-discharge relation</u> is the relation between gage height (stage) and volume of water per unit of time, flowing in a channel.

<u>Streamflow</u> is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

<u>Suspended</u> (as used in tables of chemical analyses) refers to the amount (concentration) of the total concentration in a water-sediment mixture. The water-sediment mixture is associated with (or sorbed on) that material retained on a 0.45 micrometer filter.

<u>Suspended recoverable</u> is the amount of a given constituent that is in solution after the part of a respresentative water-suspended sediment sample that is retained on a 0.45 micrometer membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Determinations of "suspended, recoverable" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total recoverable concentrations of the constituent.

<u>Suspended, total</u> is the total amount of a given constituent in the part of a representative water-suspended sediment sample that is retained on a 0.45 micrometer membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total."

Determinations of "suspended, total" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total concentrations of the constituents.

Total, recoverable is the amount of a given constituent that is in solution after a representative water-suspended sediment sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Total is the total amount of a given constituent in a representative water-suspended sediment sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total." (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determines all of the constituent in the sample.)

<u>Time-weighted average</u> is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water that would be contained in a vessel or reservoir that had received equal quantities of water from the stream each day for the year.

Tons per acre-foot indicates the dry mass of dissolved solids in 1 acre-foot of water. It is computed by multiplying the concentration in milligrams per liter by 0.00136.

 $\underline{\text{Tons per day}}$ is the quantity of substance in solution or suspension that passes a stream section during a 24-hour day.

Total load (tons) is the total quantity of any individual constituent, as measured by dry mass or volume, that is dissolved in a specific amount of water (discharge) during a given time. It is computed by multiplying the total discharge, times the mg/L of the constituent, times the factor 0.0027, times the number of days.

Turbidity of a sample is the reduction of transparency due to the presence of particulate matter. In this report it is expressed Nephelometric turbidity units (NTU).

 \underline{WDR} is used as an abbreviation for "Water-Data Reports" in the summary REVISIONS paragraph to refer to previously published State annual basic-data reports.

Weighted average is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir.

 $\underline{\mathtt{WRD}}$ is used as an abbreviation for "Water-Resources Data" in the REVISED RECORDS paragraph to refer to State annual basic-data reports published before 1975.

 $\underline{\text{WSP}}$ is used as an abbreviation for "Water-Supply Paper" in references to previously published reports.

DOWNSTREAM ORDER AND STATION NUMBER

Records are listed in a downstream direction along the main stream, and stations on tributaries are listed between stations on the main stream in the order in which those tributaries enter the main stream. Stations on tributaries entering above all main-stream stations are listed before the first main-stream station. Stations on tributaries to tributaries are listed in a similar manner. In the lists of gaging stations and water-quality stations in the front of this report the rank of tributaries is indicated by indention, each indention representing one rank.

As an added means of identification, each gaging station, partial-record station, and water-quality station has been assigned a station number. These are in the same downstream order used in this report. In assigning station numbers, no distinction is made between partial-record stations and continuous-record gaging stations; therefore, the station number for a partial-record station indicates downstream order position in a list made up of both types of stations. Water-quality stations located at or near gaging stations or partial-record stations have the same number as the gaging or partial-record station. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The complete 8-digit number for each station, such as 16858000 which appears just to the left of the station name includes the 2-digit number "16" plus the 6-digit downstream order number "858000." In this report, the records are listed in downstream order by islands. Locations of the stations are shown in figures 5-13.

NUMBERING SYSTEM FOR WELLS AND MISCELLANEOUS SITES

The 8-digit downstream order station numbers are not assigned to wells and miscellaneous sites where only random water-quality samples or discharge measurements are taken.

The well and miscellaneous site numbering system of the U.S. Geological Survey is based on the grid system of latitude and longitude. The system provides the geographic location of the well or miscellaneous site and a unique number for each site. The number consists of 15 digits. The first 6 digits denote the degrees, minutes, and seconds of latitude, the next 7 digits denote degrees, minutes, and seconds of longitude, and the last 2 digits (assigned sequentially) identify the wells or other sites within a 1-second grid. See figure 14.

The local well-numbering system for Pacific Areas was restructured to contain eight digits based on a non-arbitrary, unique one-minute grid system. One-minute parallel lines for both latitude and longitude are drawn on the map resulting in one-minute grids. Each grid is designated by a four-digit number. The first two digits represent minutes of latitude for the grid and the second two digits represent minutes of longitude for that grid.

To distinguish wells within a minute grid, two digits are added following the 4-digit minute-grid numbers with a dash separator. These two-digit numbers are assigned with the oldest well dug within the grid as 01 and increase chronologically, with few exceptions, to the latest dug.

Since it is possible to have a same 6-digit number for wells on different islands, a 2-digit number distinguishing each of the islands or geographic areas is added in front of the 6-digit number with a dash separator. For example, in the number 18-2647-01, the first two digits designate an island of geographic area, then the 4-digit minute-grid numbers followed by a 2-digit sequential number. See figure 15.

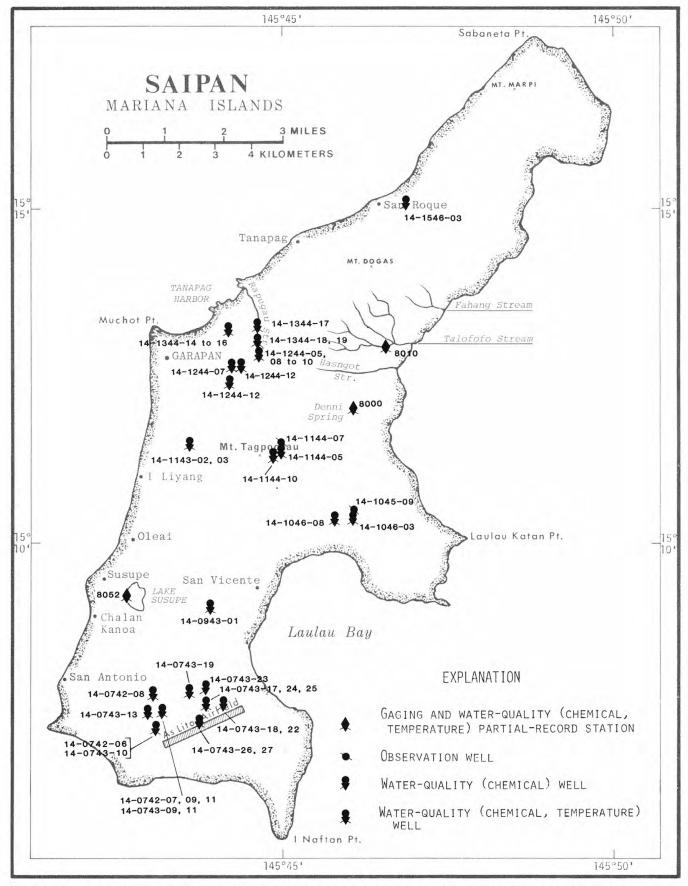


Figure 5. Locations of gaging stations, observation wells, and water-quality sites on Saipan, Mariana Islands.

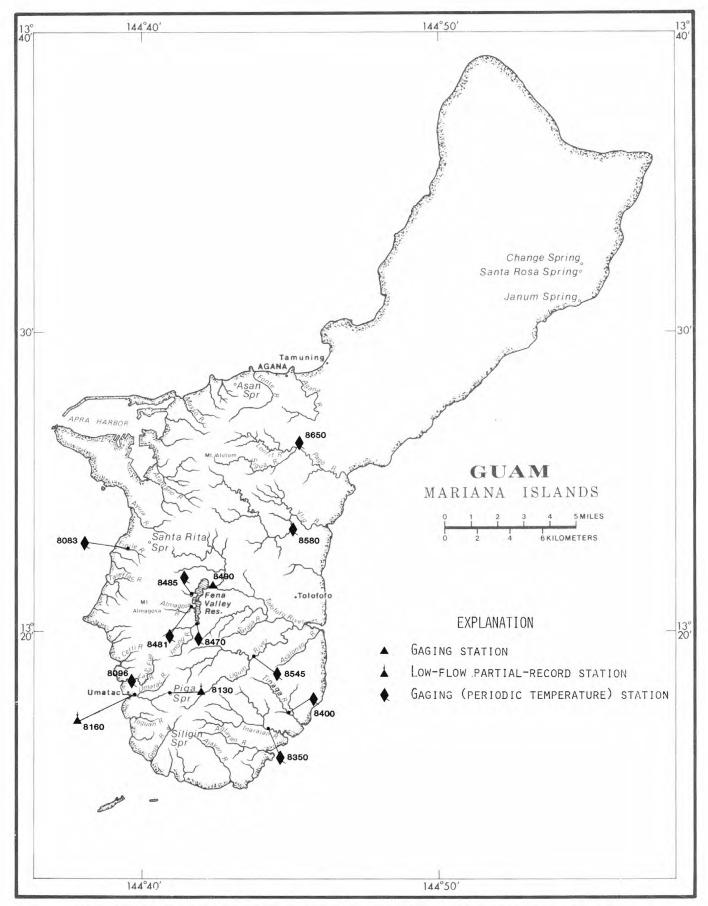


FIGURE 6.--LOCATIONS OF GAGING AND LOW-FLOW PARTIAL-RECORD STATIONS ON GUAM.

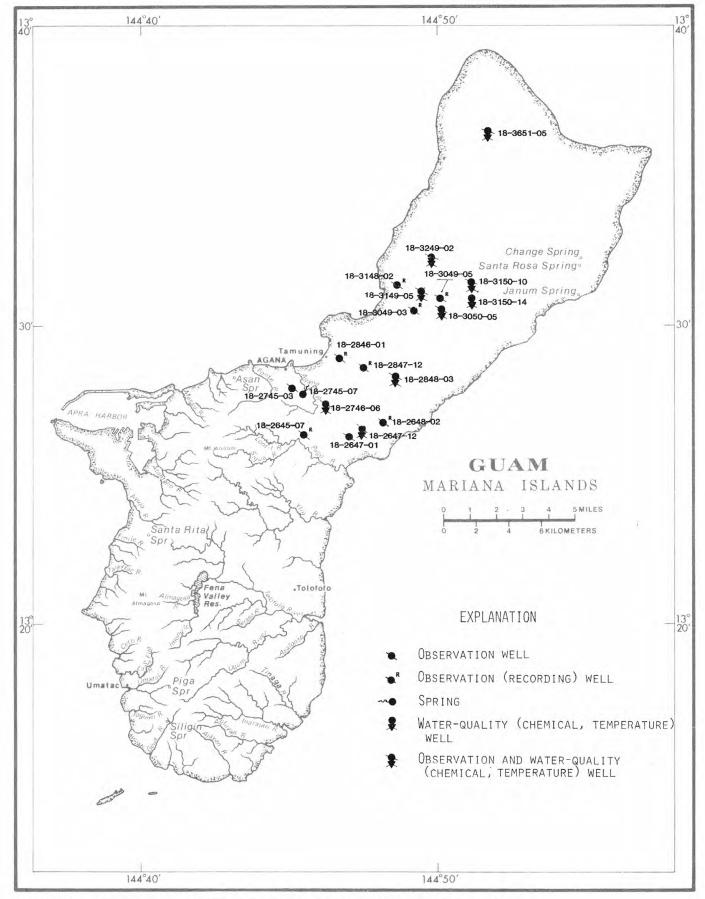


FIGURE 7.--LOCATIONS OF OBSERVATION WELLS AND WATER-QUALITY SITES ON GUAM.

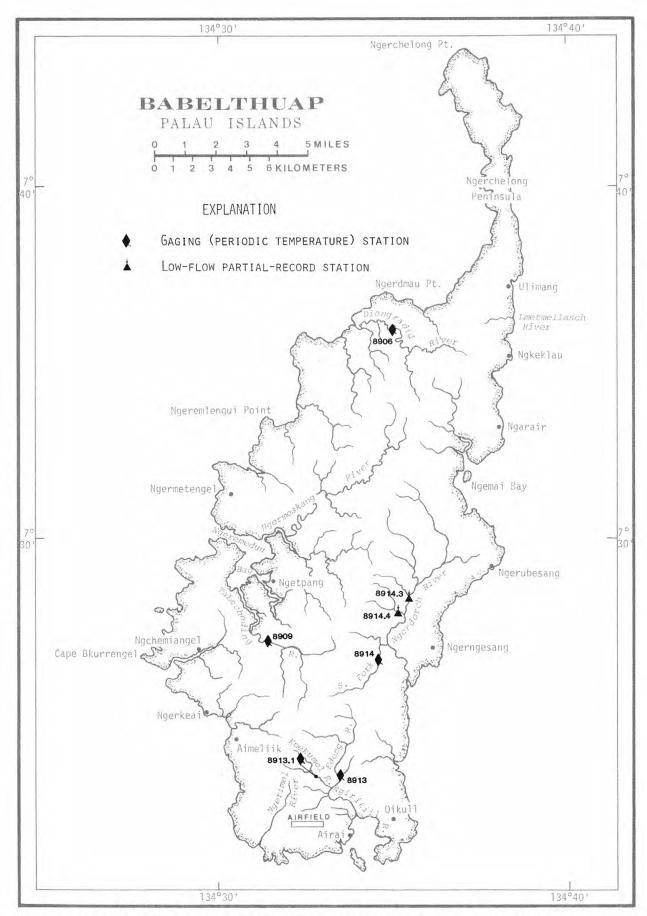


FIGURE 8.--LOCATIONS OF GAGING AND LOW-FLOW PARTIAL-RECORD STATIONS ON BABELTHUAP.

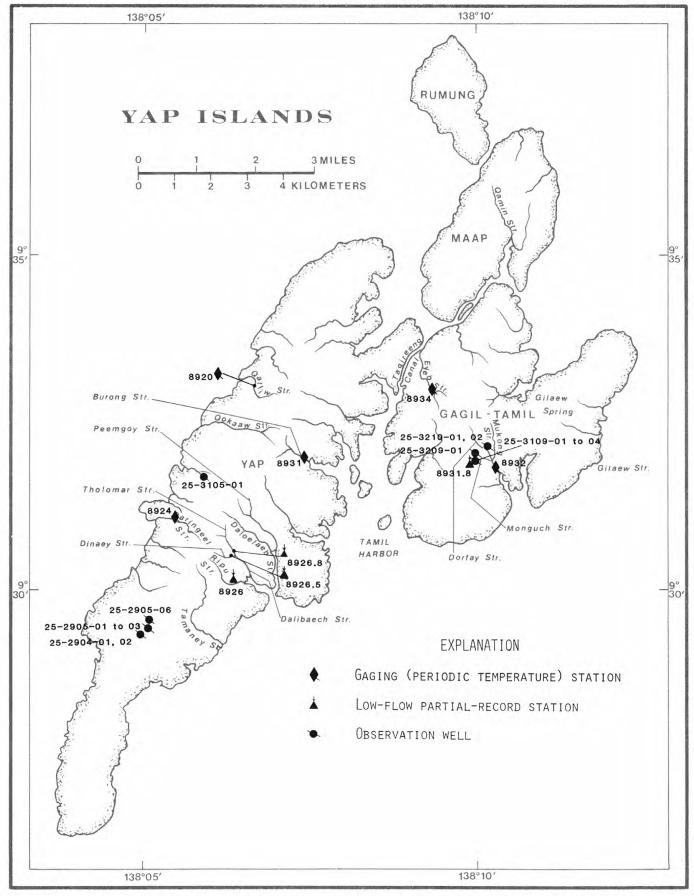


Figure 9.--Locations of gaging, Low-flow partial-record stations, and observation wells on Yap Islands.

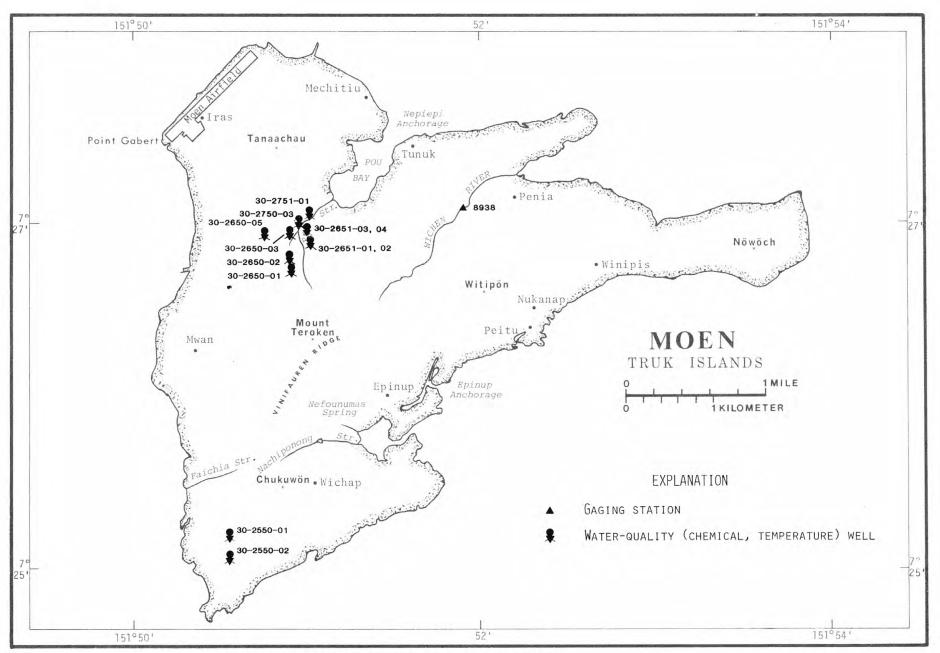


FIGURE 10.--LOCATIONS OF GAGING STATION, WELLS, AND WATER-QUALITY SITES ON MOEN.

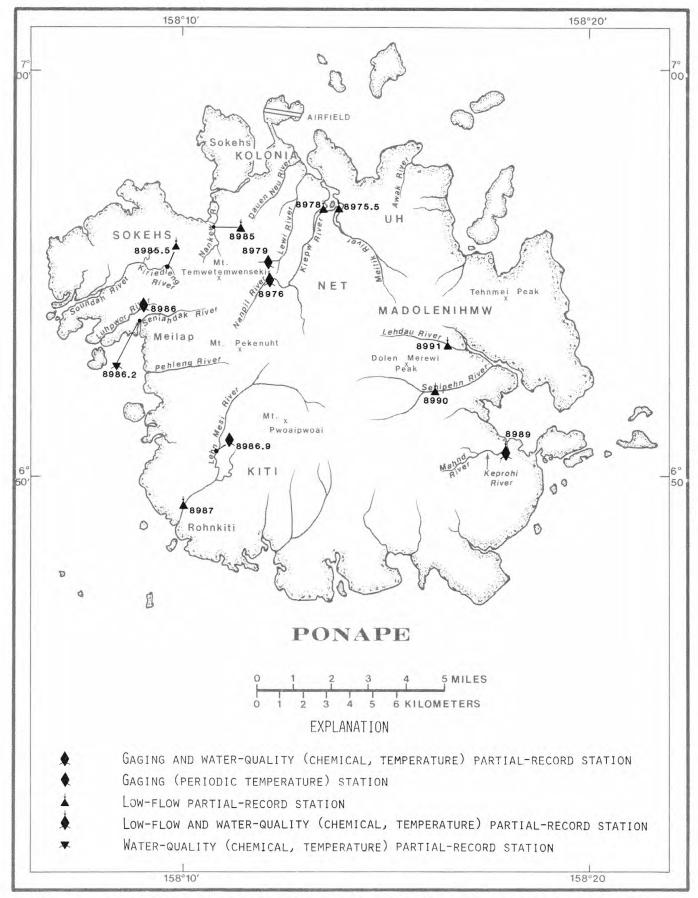


Figure 11. -- Locations of gaging, Low-flow partial-record stations, and water-quality sites on Ponape.

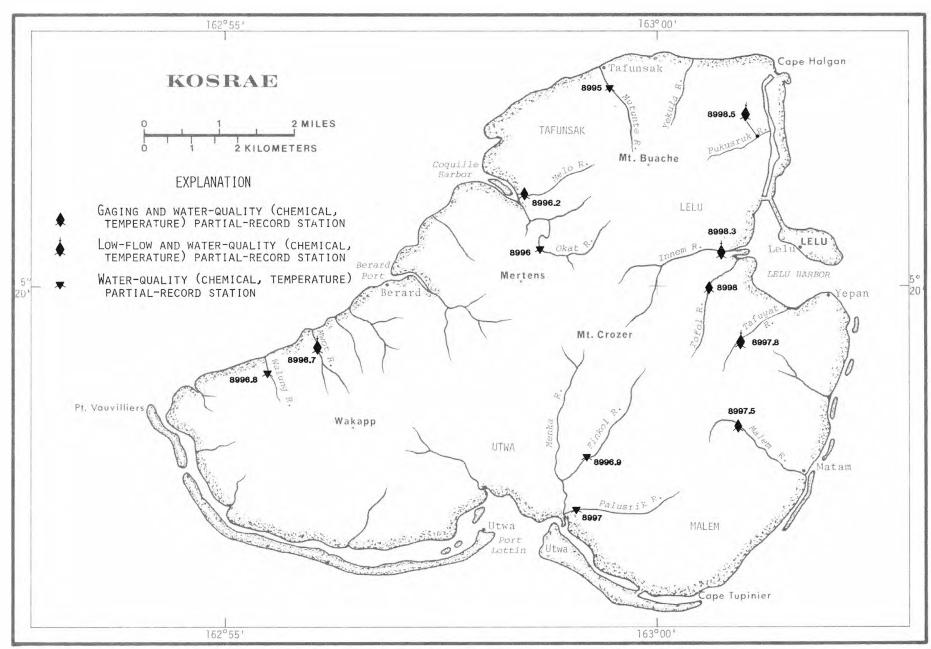


FIGURE 12.--LOCATIONS OF GAGING, LOW-FLOW PARTIAL-RECORD STATIONS, AND WATER-QUALITY SITES ON KOSRAE.

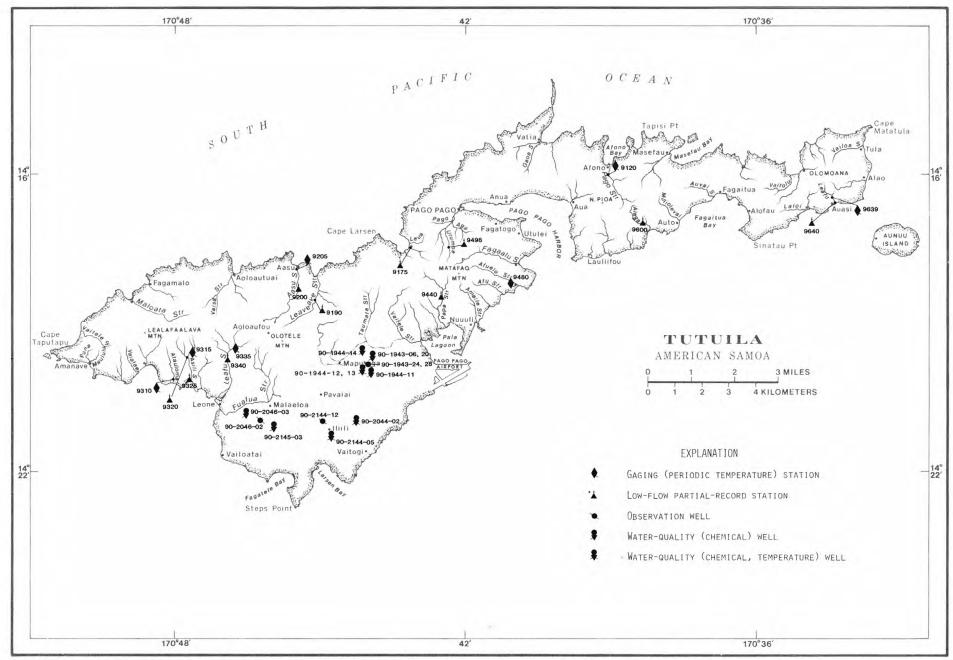


FIGURE 13.--LOCATIONS OF GAGING, LOW-FLOW PARTIAL-RECORD STATIONS, OBSERVATION WELLS, AND WATER-QUALITY SITES ON TUTUILA, SAMOA ISLANDS.

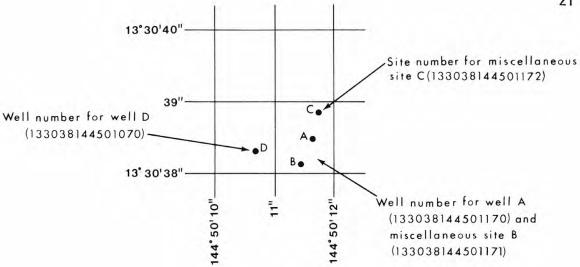


Figure 14. Sketch showing system for numbering wells and miscellaneous sites.

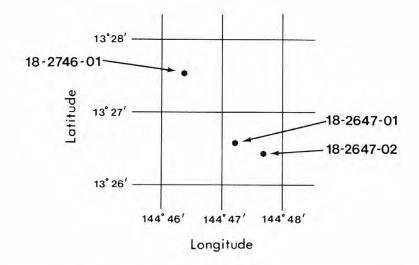


Figure 15. Sketch showing local well numbering system.

EXPLANATION OF STAGE AND WATER-DISCHARGE RECORDS

Collection and computation of data

The base data collected at gaging stations consist of records of stage and measurements of discharge of streams or canals, and stage, surface area, and contents of lakes or reservoirs. In addition, observations of factors affecting the stage-discharge relation or the stage-capacity relation, weather records and other information are used to supplement base data in determining the daily flow or volume of water in storage. Records of stage are obtained from either direct readings on a nonrecording gage or from a water-stage recorder that gives either a continuous graph of the fluctuations or a tape punched at selected time intervals. Measurements of discharge are made with a current meter, using the general methods adopted by the Geological Survey. These methods are described in standard text books, in Water-Supply Paper 888, and in U.S. Geological Survey Techniques of Water Resources Investigations, book 3, chapter A6.

For stream-gaging stations, rating tables giving the discharge for any stage are prepared from stage-discharge relation curves. If extensions to the rating curves are necessary to express discharge greater than measured, they are made on the basis of indirect measurements of peak discharge (such as slope-area or contracted-opening measurements, computation of flow over dams or weirs), step-backwater techniques, velocity-area studies, and logarithmic plotting. The daily mean discharge is computed from gage heights and rating tables, then the monthly and yearly mean discharges are computed from the daily figures. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the daily mean discharge is computed by the shifting-control method, in which correction factors based on individual discharge measurements and notes by engineers and observers are used in applying the gage heights to the rating tables. If the stage-discharge relation for a station is temporarily changed by the presence of aquatic growth or debris on the control, the daily mean discharge is computed by what is basically the shifting-control method.

At some stream-gaging stations, the stage-discharge relation is affected by the backwater from reservoirs, tributary streams, or other sources. This necessitates the use of the slope method in which the slope or fall in a reach of the stream is a factor in computing discharge. The slope or fall is obtained by means of an auxiliary gage set at some distance from the base gage. At some stations the stage-discharge relation is affected by changing stage; at these stations the rate of change in stage is used as a factor in computing discharge.

For some gaging stations there are periods when no gage-height record is obtained or the recorded gage height is so faulty that it cannot be used to computed daily discharge or contents. This happens when the recorder stops or otherwise fails to operate properly, intakes are plugged, the float is frozen in the well, or for various other reasons. For such periods the daily discharges are estimated on the basis of recorded range in stage, prior and subsequent records, discharge measurements, weather records, and comparison with records for other stations, in the same or nearby basins. Likewise daily contents may be estimated on the basis of operator's log, prior and subsequent records, inflow-outflow studies, and other information.

The data in this report generally comprise a description of the station and tabulations of daily and monthly figures. For gaging stations on streams or canals, a table showing the daily discharge and monthly and yearly discharge is given. For gaging station on lakes and reservoirs, a monthly summary table of stage and contents or a table showing the daily contents is given. Tables of daily mean gage heights are included for some streamflow stations and for some reservoir stations. Records are published for the water year, which begins on October 1 and ends on September 30.

The description of the gaging station gives the location, drainage area, period of record, notations of revisions of previously published records, type and history of gages, general remarks, average discharge, and extremes of discharge or contents. The location of the gaging station and the drainage area are obtained from the most accurate maps available. River mileage, given under "LOCATION" for some stations, is that determined and used by the Corps of Engineers or other agencies. Periods for which there are published records for the present station or for stations generally equivalent to the present one are given under "PERIOD OF RECORD."

Previously published streamflow records of some stations have been found to be in error on the basis of data or information later obtained. Revisions of such records are usually published along with the current records in one of the annual or compilation reports. In order to make it easier to find such revised records, a paragraph headed "REVISED RECORDS" has been added to the description of all stations for which revised records have been published. Listed therein are all the reports in which revisions have been published, each followed by the water years for which figures are revised in that report. In listing the water years only one number is given; for instance, 1965 stands for the water year October 1, 1964, to September 30, 1965. If no daily, monthly, or annual figures of discharge are affected by the revision, the fact is brought out by notations after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; "(m)" that only the instantaneous minimum was revised; and "(P)" that only peak discharge were revised. If the drainage area has been revised, the report in which the revised figures was first published is given.

The type of gage currently in use, the datum of the present gage above mean sea level, and a condensed history of the types, locations, and datums of previous gages used during the period of record are given under "GAGE." In references to datum of gage, the phrase "mean sea level" denotes "Sea Level Datum of 1929" as used by the Topographic Division of the Geological Survey unless otherwise qualified.

Information pertaining to the accuracy of the discharge records and to conditions which affect the natural flow of the gaging station is given under "REMARKS." For reservoir stations information on the dam forming the reservoir, the capacity, outlet works and spillway, and purpose and use of the reservoir is given under "REMARKS."

The average discharge for the number of years indicated is given under "AVERAGE DISCHARGE", it is not given for stations having fewer than 5 complete years of record or for stations where changes in water development during the period of record cause the figure to have little significance. In addition, the median of yearly mean discharges is given for stream-gaging stations having 10 or more complete years of record if the median differs from the average by more than 10 percent. Under "EXTREMES" are given first, the extremes for the period of record, second, information available outside the period of record, and last, those for the current year. Unless otherwise qualified, the maximum discharge (or contents) is the instantaneous maximum corresponding to the crest stage obtained by use of a water-stage recorder (graphic or digital), a crest-stage gage, or a nonrecording gage read at the time of the crest. If the maximum gage height did not occur on the same day as the maximum discharge (or contents), it is given separately. Similarly, the minimum is the instantaneous minimum unless otherwise qualified. For some stations, peak discharges are listed with EXTREMES FOR THE CURRENT YEAR; if they are, all independent peaks, including the maximum for the year, above the selected base with time of occurrence and corresponding gage heights are published in tabular format. The base discharge, which is given in the table heading, is selected so that an average of about three peaks a year will be presented. Peak discharges are not published for any canals, ditches, drains, or for any stream for which the peaks are subject to substantial control by man. Time of day is expressed in 24-hour local standard time; for example, 12:30 a.m. is 0030, 1:30 p.m. is 1330. The minimums for these stations are published in a separate paragraph following the table of peaks.

The daily table for stream-gaging stations gives the mean discharge for each day and is followed by monthly and yearly summaries. In the monthly summary below the daily table, the line headed "TOTAL" gives the sum of the daily figures. The line headed "MEAN" gives the average flow in cubic feet per second during the month. The lines headed "MAX" and "MIN" give the maximum and minimum daily discharges, respectively, for the month. Discharge for the month also may be expressed in cubic feet per second per square mile (line headed "CFSM"), or in inches (line headed "IN"), or in acre-feet (line headed "AC-FT"). Figures for cubic feet per second per square mile and runoff in inches are omitted if there is extensive regulation or diversion, if the drainage area includes large noncontributing areas, or if the average annual rainfall over the drainage basin is usually less than 20 inches. In the yearly summary below the monthly summary, the figures shown are the appropriate daily discharges for the calendar and water years.

Footnotes to the table of daily discharge are introduced by the word "NOTE." Footnotes are used to indicate periods for which the discharge is computed or estimated by special methods because of no gage-height record, backwater from various sources, or other unusual conditions. Periods of no gage-height record are indicated if the period is continuous for a month or more or includes the maximum discharge for the year. Periods of backwater from an unusual source, of indefinite stage relation, or of any other unusual condition at the gage site are indicated only if they are a month or more in length and the accuracy of the records is affected.

For most gaging station on lakes and reservoirs, the data presented comprise a description of the station and a monthly summary table of stage and contents. For some reservoirs a table showing daily contents or stage is given. A skeleton table of capacity at given stages is published for all reservoirs for which records are published on a daily basis, but is not published for reservoirs for which only monthly data are given.

Data collected at partial-record stations follow the information for continuous-record sites. Data for partial-record discharge stations are presented in two tables. The first is a table of discharge measurements at low-flow partial-record stations, and the second is a table of annual maximum stage and discharge at crest-stage stations. The tables of partial-record stations are followed by a listing of discharge measurements made at sites other than continuous-record or partial-record stations. Occasionally, a series of discharge measurements are made within a short time period to investigate the seepage gains or losses along a reach of a stream or to determine the low-flow characteristics of an area. Such measurements are also given in special tables following the tables of partial-record stations.

Accuracy of field data and computed results

The accuracy of streamflow data depends primarily on (1) the stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements and (2) the accuracy of observations of stage, measurements of discharge, and interpretations of records.

The station description under "REMARKS" states the degree of accuracy of the records. "Excellent" means that about 95 percent of the daily discharges are within 5 percent; "good", within 10 percent; and "fair" within 15 percent. "Poor" means that daily discharges have less than "fair" accuracy.

Figures of daily mean discharge in this report are shown to the nearest hundredth of a cubic foot per second for discharges of less than 1 cfs; to tenths between 1.0 and 10 cfs; to whole numbers between 10 and 1,000 cfs; and to 3 significant figures above 1,000 cfs. The number of significant figures used is based solely on the magnitude of the figure.

Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. For such stations, figures of cubic feet per second per square mile and of runoff in inches are not published unless satisfactory adjustments can be made for diversions, for changes in contents of reservoirs, or for other changes incident to use and control. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents, unless it is so stated. Even at those stations where adjustments are made, large errors in computed runoff may occur if adjustments or losses are large in comparison with the observed discharge.

Records of discharge collected by agencies other than the Geological Survey

The National Water Data Exchange, Water Resources Division, U.S. Geological Survey, National Center, Reston, VA 22092, maintains an index of water-data sites not published by the Geological Survey. Information on records available at specific sites can be obtained upon request.

Other data available

Information of a more detailed nature than that published for most of the gaging stations such as observations of water temperatures, discharge measurements, gage-height records, and rating tables is on file in the district office. Also most gaging-station records are available in computer-usable form and many statistical analyses have been made.

Information on the availability of unpublished data or statistical analyses may be obtained from the district office.

Publications

In each water-supply paper entitled, "Surface Water Supply of the United States" there is a list of numbers of preceding water-supply papers containing streamflow information for the area covered by that report. In addition, there is a list of numbers of water-supply papers containing detailed information on major floods in the area. Records for stations in Hawaii and other Pacific areas for the period October 1959 to September 1965, are in Water-Supply Paper 1937.

Two series of summary reports entitled, "Compilation of Records of Surface Waters of the United States" have been published; the first series covers the entire period of record through September 1950 (June 1950, for Hawaii), and the second series covers the period October 1950 to September 1960 (July 1950 to June 1960, for Hawaii and other Pacific areas). These reports contain summaries of monthly and annual discharge and monthend storage for all previously published records, as well as some records not contained in the annual series of water-supply papers. All records were reexamined and revised where warranted. Estimates of discharge were made to fill short gaps whenever practical. The yearly summary table for each gaging station lists the numbers of the water-supply papers in which daily records were published for that station. Records for stations in Hawaii and other Pacific areas are compiled in Water-Supply Paper 1319 through June 1950, in 1739 and 1751 for July 1950 to June 1960, in 1937 for October 1959 to September 1965, and 2137 for October 1966 to September 1970.

Special reports on major floods or droughts or of other hydrologic studies for the area have been issued in publications other than water-supply papers. Information relative to these reports may be obtained from the district office.

EXPLANATION OF WATER-QUALITY RECORDS

Collection and examination of data

Surface water samples for analyses usually are collected at or near gaging stations. The water-quality records are given immediately following the discharge records at these stations.

The descriptive heading for water-quality records gives periods of record for the various types of water-quality data (chemical, specific conductance, biological determination, water temperatures, sediment discharge), period of record, and extremes of pertinent data, and general remarks.

For ground-water records, no descriptive statements are given; however, the well number, depth of well, date of sampling and/or other pertinent data are given in the table containing the chemical analyses of the ground water.

Water_analysis

Most methods for collecting and analyzing water samples are described in the U.S. Geological Survey Techniques of Water-Resources Investigations listed on a following page.

One sample can define adequately the water-quality at a given time if the mixture of solutes throughout the stream cross section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled through several vertical sections to obtain a representative sample needed for an accurate mean concentration and for use in calculating load.

Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis.

For chemical-quality stations equipped with digital monitors, the records consist of daily maximum, minimum, and mean values for each constituent measured and are based upon hourly punches beginning at 0100 hours and ending at 2400 hours for the day of record. More detailed records (hourly values) may be obtained from the district office.

Water temperature

Water temperatures are measured at most of the water-quality stations. In addition, water temperatures are taken at time of discharge measurements for water-discharge stations. Large streams have a small diel temperature change; shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams may be affected by waste-heat discharges.

At stations where recording instruments are used, either mean temperatures or maximum and minimum temperatures for each day are published.

Sediment

Suspended-sediment concentrations are determined from samples collected by using depth-integrating samplers. Samples usually are obtained at several verticals in the cross section, or a single or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross sections.

During periods of rapidly changing flow or rapidly changing concentration, samples may have been collected more frequently (twice daily or, in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided day method (time-discharge weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration time 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided day method. For periods when no samples were collected, daily loads of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspended-sediment loads for other periods of similar discharge.

At other stations, suspended-sediment samples were collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observations, such data are useful in establishing seasonal relations between quality and streamflow in predicting long-term sediment-discharge characteristics of the stream.

In addition to the records of the quantities of suspended sediment, records of the periodic measurements of the particle-size distribution of the suspended sediment and bed material are included.

Publications

The annual series of water-supply papers that contain information on quality of surface waters in Hawaii and other Pacific areas are listed below.

Water year	WSP No.	Water <u>year</u>	WSP No.	Water <u>year</u>	WSP No.
1964	1966	1967	2016	1970	2160
1965	1966	1968	2016		
1966	1996	1969	2150		

EXPLANATION OF GROUND-WATER LEVEL RECORDS

Collection of the data

Only ground-water level data from a basic network of observation wells are published herein. This basic network contains observation wells so located that the most significant data are obtained from the fewest wells in the most important aquifers.

Each well is identified by means of (1) a 15-digit number that is based on latitude and longitude and (2) a local number that is provided for local needs. See figures 14 and 15.

Measurements are made in many types of wells, under varying conditions of access and at different temperatures, hence, neither the method of measurement nor the equipment can be standardized. At each observation well, however, the equipment and techniques used are those that will ensure that measurements at each well are consistent.

Water-level measurements in this report are given in feet with reference to either mean sea level (msl) or land-surface datum (lsd). Mean sea level is the datum plane on which the national network of precise levels is based; land-surface datum is a datum plane that is approximately at land surface at each well. If known, the altitude of the land-surface datum above mean sea level is given in the well description. The height of the measuring point (MP) above or below land-surface datum is given in each well description. Water levels in wells equipped with recording gages are reported for every fifth day and the end of each month (eom). To show the intraday variation in the ground-water levels caused by local pumping and tidal fluctuations, instantaneous maximum and minimum water levels are given with the mean water levels for the day.

Water levels are reported to as many significant figures as can be justified by the local conditions. For example, in a measurement of a depth to water of several hundred feet, the error in determining the absolute value of the total depth to water may be a few tenths of a foot, whereas the error in determining the net change of water level between successive measurements may be only a hundredth or a few hundredths of a foot. For lesser depths to water, the accuracy is greater. Accordingly, most measurements are reported to a hundredth of a foot, but some are given only to a tenth of a foot or a larger unit.

ACCESS TO WATSTORE DATA

The National WATer Data STOrage and REtrieval System (WATSTORE) was established for handling water data collected through the activities of the U.S. Geological Survey and to provide for more effective and efficient means of releasing the data to the public. The system is operated and maintained on the central computer facilities of the Survey at its National Center in Reston, Virginia.

WATSTORE can provide a variety of useful products ranging from simple data tables to complex statistical analyses. A minimal fee, plus the actual computer cost incurred in producing a desired product, is charged to the requester. Information about the availability of specific types of data, the acquisition of data or products, and user charges can be obtained locally from each of the Water Resources Division's district offices (see address given on the back of the title page).

General inquiries about WATSTORE may be directed to:

Chief Hydrologist U.S. Geological Survey 437 National Center Reston, Virginia 22092 Thirty-seven manuals by the U.S. Geological Survey have been published to date in the series on techniques describing procedures for planning and executing specialized work in water-resources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, Section A of Book 3 (Applications of Hydraulics) is on surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises. The reports listed below are for sale by the U.S. Geological Survey, Branch of Distribution, 604 South Pickett St., Alexandria, VA 22304 (authorized agent of the Superintendent of Documents, Government Printing Office).

- NOTE: When ordering any of these publications, please give the title, book number, chapter number, and "U.S. Geological Survey Techniques of Water-Resources Investigations".
- Water temperature—influential factors, field measurement, and data presentation, by H. H. Stevens, Jr., J. F. Ficke, and G. F. Smoot: USGS--TWRI Book 1, Chapter D1. 1975. 65 pages.

 Guidelines for collection and field analysis of ground-water samples for selected unstable constituents, by W. W. Wood: USGS--TWRI Book 1, Chapter D2. 1976. 24 pages. 1-D1.
- 1-D2.
- 2-D1. Application of surface geophysics to ground-water investigations, by A. A. R. Zohdy, G. P. Eaton, and D. R. Mabey: USGS--TWRI Book 2, Chapter D1. 1974. 116 pages.
- 2-E1. Application of borehole geophysics to water-resources investigations, by W. S. Keys and L. M. MacCary: USGS--TWRI Book 2, Chapter El. 1971. 126 pages.
- 3-A1. General field and office procedures for indirect discharge measurements, by M. A. Benson and Tate Dalrymple: USGS--TWRI Book 3, Chapter Al. 1967. 30 pages.
- Measurement of peak discharge by the slope-area method, by Tate Dalrymple and M. A. Benson: USGS--TWRI Book 3, Chapter A2. 1967. 12 pages. 3-A2.
- 3-A3. Measurement of peak discharge at culverts by indirect methods, by G. L. Bodhaine: USGS--TWRI Book 3, Chapter A3. 1968. 60 pages.
- Measurement of peak discharge at width contractions by indirect methods, by H. F. Matthai: USGS--TWRI Book 3, Chapter A4. 1967. 44 pages. 3-A4.
- 3-A5. Measurement of peak discharge at dams by indirect methods, by Harry Hulsing: USGS--TWRI Book 3, Chapter A5, 1967. 29 pages.
- 3-A6. General procedure for gaging streams, by R. W. Carter and Jacob Davidian: USGS--TWRI Book 3, Chapter A6. 1968. 13 pages.
- 3-A7. Stage measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3, Chapter A7. 1968. 28 pages.
- 3-A8. Discharge measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3, Chapter A8. 1969. 65 pages.
- Measurement of time of travel and dispersion in streams by dye tracing, by E. F. Hubbard, F. A. Kilpatrick, L. A. Martens, and J. F. Wilson, Jr.: USGS--TWRI Book 3, Chapter A9. 1982. 44 pages.

 Measurement of discharge by moving-boat method, by G. F. Smoot and C. E. Novak: USGS--TWRI Book 3, Chapter 3-A9.
- 3-A11. All. 1969. 22 pages.
- 3-B1. Aquifer-test design, observation, and data analysis, by R. W. Stallman: USGS--TWRI Book 3, Chapter Bl. 1971. 26 pages.
- 3-B2. Introduction to ground-water hydraulics, a programmed text for self-instruction, by G. D. Bennett: USGS--TWRI Book 3, Chapter B2. 1976. 172 pages.
- 3-B3. Type curves for selected problems of flow to wells in confined aquifers, by J. E. Reed: USGS--TWRI Book 3, Chapter B3. 1980. 106 pages.
- 3-C1. Fluvial sediment concepts, by H. P. Guy: USGS--TWRI Book 3, Chapter C1. 1970. 55 pages.
- 3-C2. Field methods for measurement of fluvial sediment, by H. P. Guy and V. W. Norman: USGS--TWRI Book 3, Chapter C2. 1970. 59 pages.
- 3-C3. Computation of fluvial-sediment discharge, by George Porterfield: USGS--TWRI Book 3, Chapter C3. 1972. 66
- Some statistical tools in hydrology, by H. C. Riggs: USGS--TWRI Book 4, Chapter A1. 1968. 39 pages. Frequency curves, by H. C. Riggs: USGS--TWRI Book 4, Chapter A2. 1968. 15 pages. 4-A1.
- 4-A2.
- 4-B1. Low-flow investigations, by H. C. Riggs: USGS--TWRI Book 4, Chapter B1. 1972. 18 pages.
- 4-B2. Storage analyses for water supply, by H. C. Riggs and C. H. Hardison: USGS--TWRI Book 4, Chapter B2. 1973.
- 4-B3. Regional analyses of streamflow characteristics, by H. C. Riggs: USGS--TWRI Book 4, Chapter B3. 1973. 15
- 4-D1. Computation of rate and volume of stream depletion by wells, by C. T. Jenkins: USGS--TWRI Book 4, Chapter D1. 1970. 17 pages.
- 5-A1. Methods for determination of inorganic substances in water and fluvial sediments, by M. W. Skougstad and others, editors: USGS--TWRI Book 5, Chapter Al. 1979. 626 pages.
- 5-A2. Determination of minor elements in water by emission spectroscopy, by P. R. Barnett and E. C. Mallory, Jr.: USGS--TWRI Book 5, Chapter A2. 1971. 31 pages.
- 5-A3. Methods for analysis of organic substances in water, by D. F. Goerlitz and Eugene Brown: USGS--TWRI Book 5, Chapter A3. 1972. 40 pages.
- Methods for delection and analysis of aquatic biological and microbiological samples, edited by P. E. Greeson, T. A. Ehlke, G. A. Irwin, B. W. Lium, and K. V. Slack: USGS--TWRI Book 5, Chapter A4. 1977. 332 pages. Methods for determination of radioactive substances in water and fluvial sediments, by L. L. Thatcher, V. J. 5-A4.
- 5-A5. Janzer, and K. W. Edwards: USGS--TWRI Book 5, Chapter A5. 1977. 95 pages.
- 5-C1. Laboratory theory and methods for sediment analysis, by H. P. Guy: USGS--TWRI Book 5, Chapter C1. 1969. 58
- 7-C1. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by P. C. Trescott, G. F. Pinder, and S. P. Larson: USGS--TWRI Book 7, Chapter C1. 1976. 116 pages. 7-C2. Computer model of two-dimensional solute transport and dispersion in ground water, by L. F. Konikow and J.
- D. Bredehoeft: USGS--TWRI Book 7, Chapter C2, 1978, 90 pages. A model for simulation of flow in singular and interconnected channels, by R. W. Schaffranek, R. A. Baltzer, and D. E. Goldberg: USGS--TWRI Book 7, Chapter C3. 1981. 110 pages. 7-C3.
- 8-A1. Methods of measuring water levels in deep wells, by M. S. Garber and F. C. Koopman: USGS--TWRI Book 8, Chapter Al. 1968. 23 pages.
- 8-B2. Calibration and maintenance of vertical-axis type current meters, by G. F. Smoot and C. E. Novak: USGS--TWRI Book 8, Chapter B2. 1968. 15 pages.

GAGING-STATION RECORDS

MARIANA ISLANDS, ISLAND OF SAIPAN

16800000 DENNI SPRING

LOCATION.--Lat 15°11'48" N., long 145°45'52" E., Hydrologic Unit 20100006, 2.8 mi southeast of Tanapag, 3.1 mi east of Garapan, and 5.6 mi northeast of Chalan Kanoa.

PERIOD OF RECORD. -- August 1952 to June 1954 (published as Donni Spring near Garapan), March 1968, January 1969 to current year.

GAGE.--Water-stage recorder and sharp-crested weir. Altitude of gage is 261 ft (from U.S. Navy).

REMARKS . -- Records poor .

AVERAGE DISCHARGE.--15 years (water years 1953, 1970-83), 0.643 ft3/s (466 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 8.5 ft³/s Aug. 13, 1978; minimum daily, 0.02 ft³/s Sept. 16, 17, 1969.

EXTREMES FOR CURRENT YEAR.--Maximum daily discharge, 7.0 ft³/s Oct. 19-22; minimum daily, 0.08 ft³/s July 26-Aug. 6.

DISCHARGE (CUBIC FEET/SECOND) WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983 MEAN VALUES OCT DAY NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 1.5 .53 .65 .53 .23 .12 .12 .08 .23 .33 .26 .26 2 .65 .53 .33 .29 .23 .23 .12 .12 .08 .23 3 .81 1.3 .61 .49 .29 .29 .23 .23 .12 .10 .08 .20 1.1 .49 .29 .12 .20 .61 .29 . 23 . 20 .10 -08 5 1.2 1.1 .57 .49 .29 .29 .23 .20 .12 .10 .08 .20 6 1.2 1.1 .57 .49 .29 .29 .23 .20 .12 .10 .08 .20 .96 .57 1.3 .12 . 45 .29 .29 .23 .20 .10 .10 .20 8 .57 . 45 .29 .26 .20 .12 .20 .26 .10 .12 .12 1.4 .57 .45 .26 .20 .20 .10 .14 .26 10 1.4 .90 .53 . 45 .29 .26 .20 .20 .12 .10 .17 .26 11 1.5 . 85 .53 .45 .29 .26 .20 .17 .12 .10 .20 .29 12 1.4 . 81 .53 .41 .29 .26 .20 .17 .12 .23 .29 .10 13 1.5 .81 .53 .41 .29 .23 .20 .17 .12 .10 .23 .29 . 29 14 1.5 - 81 .53 .41 .23 .20 .17 .12 .10 .20 .26 .53 .81 .45 .29 .20 .14 .10 .26 .57 1.5 . 81 16 . 49 .23 -20 .29 -14 .12 .10 .23 .26 .23 .12 .26 17 1.8 .57 .29 .77 .49 .20 .14 .10 -26 18 4.5 .77 .57 . 45 .23 .20 .14 .12 .10 .23 .26 . 45 .29 .20 7.0 .10 19 .77 .57 .23 .12 .12 .23 .23 .77 . 57 . 45 .29 .23 .20 .12 .12 .10 .29 .23 21 22 7.0 7.0 .57 .45 .29 .23 .20 .12 .10 .29 .23 .73 .57 . 45 .29 .23 .20 .12 .12 .10 .29 .33 5.5 23 .73 .53 -41 .29 .23 .20 .12 .12 .10 .33 .37 24 .23 .73 .53 .41 .26 .23 .12 .12 .10 .33 .37 25 4.5 .73 .53 .37 .26 .23 .26 .12 .12 .10 .33 .37 .53 .23 .12 .26 .33 26 4.5 .69 .37 .26 .26 .12 .08 .12 .08 3.5 27 .69 .37 .26 .26 28 2.0 .65 .53 .37 .26 .23 .26 .12 .12 .26 .23 .12 29 1.8 .65 .53 .37 .26 .12 .08 .26 .29 ---.53 30 1.8 .65 -37 .26 .12 .08 .23 .26 .23 .23 31 1.6 .53 .33 .12 .08 84.81 8.05 TOTAL 26.32 13.55 7.67 6.60 4.92 3.02 17.31 3.60 6.38 8.04 .25 .097 .56 .29 7.0 .44 .16 .21 .27 MEAN .88 .22 .12 1.5 .65 .33 .26 .26 .12 .12 .33 .37 MAX .08 .20 .53 .65 .53 .33 .26 .23 .20 .12 .12 .08 7.1 AC-FT 168 52 34 27 16 15 13 9.8 6.0 13 16 MEAN .90 .35 AC-FT 648 **CAL YR 1982** TOTAL 326.93 MAX MIN WTR YR 1983 TOTAL 190.27 MEAN .52 MAX 7.0 MIN .08 AC-FT 377

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO
NOV 19	1415		630	6.7		290	6	110	4.3	21	13	.6
JUL	1110		050	0.7		250	O	110	4.5	21	1.5	.0
02 SEP	1100	.12	735	122	27.5	320		120	4.3	23	14	.6
07	1050	.16		C==	27.5	22			24	40	11	

DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
NOV	00	207	7.0	26	÷ 10	7.0	358	.49	2.3	10	<1
JUL	. 80	287	7.0	36	<.10	7.2	358	.49	2.3	10	(1
02	.70			44	<.10	7.3			2.4	4	<1
SEP											
09				35							

< Actual value is known to be less than the value shown.

16801000 SOUTH FORK TALOFOFO STREAM

LOCATION.--Lat 15°12'48" N., long 145°46'17" E., Hydrologic Unit 200100006, on left bank 0.4 mi upstream from confluence with Middle and North Forks, 1.4 mi south of Ogso Dogas, and 2.2 mi southeast of Tanapag.

DRAINAGE AREA.--0.64 mi2. Area at site used prior to Mar. 31, 1971, 0.73 mi2.

PERIOD OF RECORD. -- October 1968 to current year. Low-flow records not equivalent prior to Mar. 31, 1971, due to undetermined amount of underflow between sites.

REVISED RECORDS. -- WDR HI-78-2: 1976-77 (M), WDR HI-82-2: Drainage area.

GAGE.--Water-stage recorder. Concrete control since Mar. 31, 1971. Altitude of gage is 60 ft, from topographic map. Prior to Mar. 31, 1971, at site 0.2 mi downstream at different datum.

REMARKS. -- Records fair. No diversion above station.

AVERAGE DISCHARGE.--12 years (water years 1972-83), 1.40 ft3/s (1,010 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.—-Maximum discharge, 4,100 ft³/s, Aug. 4, 1976, gage height, 8.15 ft, from rating curve extended above 59 ft³/s on basis of slope-area measurements at gage heights 7.30 and 8.15 ft; no flow at times prior to Mar. 31, 1971, at site then in use, and at present site, July 16, 17, 19, 20, 1977.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 620 ft³/s Oct. 17, gage height 5.00 ft, no other peak above base of 400 ft³/s; minimum, 0.01 ft³/s for many days.

		DISC	CHARGE (CUB	IC FEET/SE		TER YEAR	OCTOBER	1982 TO S	EPTEMBER	1983		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.30	1.3	.42	.20	.11	.07	.04	.04	.03	.01	.01	.06
2	5.4	1.2	.42	.20	.10	.06	.04	.04	.02	.01	.02	.07
3	8.8	1.2	.38	.18	.10	.06	.04	.04	.02	.01	.01	.06
4	2.1	1.2	.34	.18	.10	.07	.04	.03	.03	.01	.01	.05
5	2.3	1.2		.18	.10	.07		.03	.04	.02		.06
5	2.5	1.2	.34	.10	.10	.07	.03	.03	.04	.02	.02	.00
6	4.9	1.0	.34	.18	.10	.07	.03	.04	.04	.02	.02	.07
7	2.0	.94	.34	.18	.08	.12	.03	.04	.04	.01	.11	1.1
8	3.2	.88	.38	.16	.10	.11	.04	.03	.04	.01	.14	.50
9	1.7	. 82	.30	.16	.10	.10	.04	.03	.03	.01	1.1	.22
10	12	.76	.27	.16	.10	.08	.05	.02	.03	.01	.18	.12
11	4.8	.76	.27	.16	.10	.10	.04	.02	.04	.01	1.3	.08
12	3.9	.76	.27									
13				.18	.08	.10	-04	.02	.04	.01	.12	.07
	3.7	.70	.27	.16	.07	.07	.04		.02			
14	3.2	.66	.30	.16	.10	.06	.10	.04	.02	.01	.08	.07
15	2.2	.66	.49	.14	.08	.06	.05	.02	.02	.01	.07	.12
16	1.8	.62	.34	.14	.08	.06	.04	.02	.02	.01	.27	.10
17	91	.62	.34	.12	.08	.06	.04	.02	.02	.01	. 27	.10
18	60	.58	.42	.12	.08	.06	.05	.02	.01	.01	.12	.08
19	13	.58	.27	.12	.11	.06	.04	.02	.02	.01	.11	.11
20	11	.58	.34	.11	.08	.05	.04	.02	.01	.01	.08	.12
											7.0	0.0
21	6.5	.62	.27	.12	.07	.04	.04	.02	.01	.04	.18	.96
22	4.5	.70	. 27	.12	.06	.04	.04	.02	.01	.03	.20	.54
23	3.3	.58	.24	.14	.06	.05	.07	.02	.02	.05	.12	.30
24	2.8	.58	.22	.12	.06	.05	.04	.02	.01	.04	.10	.22
25	2.3	.54	.20	.11	.06	.06	.03	.02	.01	.02	.08	.16
26	2.1	.50	.20	.11	.08	.05	.06	.02	.01	.01	.08	.16
27	1.9	.50	.20	.11	.06	.05	.04	.02	.01	.01	.08	.22
28	1.8	.50	.20	.11	.06	.05	.04	.03	.01	.01	.07	.14
29	1.7	. 46	.20	.11		.05	.04	.03	.01	.02	.07	.16
30	1.6	.46	.20	.11		.04	.04	.02	.01	.02	.06	.12
31	1.4		.20	.10		.04		.02		.02	.05	
31	1.4		. 20	•10		.04		.02		.02	.03	
TOTAL	267.20	22.46	9.24	4.45	2.36	2.01	1.30	. 80	.65	.49	5.40	6.21
MEAN	8.62	.75	.30	.14	.084	.065	.043	.026	.022	.016	.17	.21
MAX	91	1.3	.49	.20	.11	.12	.10	.04	.04	.05	1.3	1.1
MIN	.30	.46	.20	.10	.06	.04	.03	.02	.01	.01	.01	.05
AC-FT	530	45	18	8.8	4.7	4.0	2.6	1.6	1.3	.0	11	12
CAL YR	1982	TOTAL	516.06	MEAN	1.414	MAX	91	MIN	.05	AC-FT	1020	
WTR YR		TOTAL	322.57	MEAN	.880	MAX	91	MIN	.01	AC-FT	640	

MARIANA ISLANDS, ISLAND OF SAIPAN

16801000 SOUTH FORK TALOFOFO STREAM--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

		I	DATE	TIME		OW, CAN-	TEMPER- ATURE (DEG C)		DA	ATE	TI	INS ME TAI	REAM- LOW, STAN- NEOUS CFS)	TEMPER ATURE (DEG C			
		1	OV , 1:	982 1300		.56	26.0			R , 1	1983 14	50	.03	27.	0		
		DE 1	EC 15	1015		.27	25.0		JUI 0:	L 2	09	45	.01	27.	5		
	TIME	STRE FLO INST TANE	OW, CAN- COUS	SPE- CIFIC CON- DUCT- ANCE	PH (STA	AND-	TEMPER-	HARD- NESS (MG/L AS		SS, CAR- ATE G/L	CALC DIS- SOL' (MG.	IUM : - I VED SO /L (1	AGNE- SIUM, DIS- DLVED MG/L	SODIUM DIS- SOLVED (MG/L	PER	CENT	SODIUM AD- SORP- TION RATIO
DATE		(CF	rs)	(UMHOS) UNIT	(S)	(DEG C)	CACO3	CAC	203)	AS	CA) A	S MG)	AS NA) SOI	MUIC	
NOV 19	1300	.5	56	38	0	8.2	26.0	130	i,	0	41		6.4	32		35	1
		POTAS-	ALK			CHL			ICA,	SOLI	OF :	SOLIDS,	GE	RO-		MANO	
DA	TE	SIUM, DIS- SOLVED (MG/L AS K)	LINI LA (MG. AS CAC	B D /L S	LFATE IS- OLVED MG/L SO4)	RID DIS SOL (MG AS	- DI VED SOL /L (MG	S- SC VED (N /L A	S- OLVED MG/L AS (O2)	SOI		DIS- SOLVED (TONS PER AC-FT)		S- I VED S	RON, DIS- DLVED UG/L S FE)	NESI DIS SOLV (UG/ AS N	S- VED /L
NOV 19		1.1	140		9.0	39		.10	40		250	.34	<.	100	17		1

 $[\]mbox{$<$}$ Actual value is known to be less than the value shown.

16805200 LAKE SUSUPE

LOCATION.--Lat 15°09'15" N., long 145°42'42" E., Hydrologic Unit 20100006, on west shore, at the end of Sugar Mill Road, 0.5 mi southeast from the Administration building, Northern Marianas Government.

PERIOD OF RECORD. -- February 1981 to current year.

GAGE. -- Water-stage recorder. Datum of gage is at mean sea level.

REMARKS. -- Water-level records good.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 4.61 ft Oct. 19, 1982; lowest, 0.70 ft, June 13, 1983.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Aug. 12, 1978, reached a stage of 7.6 ft, from floodmarks.

EXTREMES FOR CURRENT YEAR. -- Highest water level, 4.61 ft, Oct. 19; lowest, 0.70 ft June 13.

		WATER LEVEI	, IN FEE	T ABOVE		LEVEL, WAT AN VALUES	ER YEAR O	CTOBER 19	82 TO SEP	TEMBER 19	83	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2.18	2.75	2.09	1.73	1.32	1.04	.90	.87	.74	.80	1.10	2.16
2	2.22	2.70	2.11	1.71		1.05	.90	. 86	.74	.81	1.09	2.16
3	2.48	2.68	2.10	1.69		1.04	.89	. 87	.73	.82	1.08	2.16
4 5	2.51	2.66	2.09	1.68		1.03	.89	. 85	.72	.82	1.08	2.14
5	2.50	2.67	2.08	1.65	1.26	1.02	.88	. 85	.72	*83	1.07	2.13
6	2.58	2.62	2.07	1.63	1.25	1.01	.88	.85	.72	.84	1.07	2.12
7	2.60	2.60	2.05	1.60	1.24	1.07	.88	.84	.73	.85	1.09	2.12
8	2.72	2.57	2.04	1.59		1.15	.88	.84	.73	.85	1.27	2.13
9	2.72	2.55	2.02	1.57		1.14	. 89	. 83	.73	. 86	1.59	2.13
10	2.77	2.52	2.00	1.55	1.20	1.12	.89	. 82	.72	. 87	1.80	2.13
11	2.95	2.48	1.97	1.54	1.18	1.10	.88	.81	.72	.89	1.93	2.12
12	3.00	2.46	1.95	1.54		1.09	.88	. 80	.72	.91	2.07	2.13
13	2.98	2.42	1.94	1.52		1.08	.89	.79	.71	.92	2.21	2.13
14	2.91	2.40	1.93	1.51	1.14	1.08	.89	. 80	.72	.95	2.25	2.12
15	2.84	2.37	1.93	1.49	1.12	1.06	.88	.80	.72	.99	2.25	2.15
16	2.78	2.35	1.92	1.48	1.11	1.06	. 86	.79	.72	.99	2.31	2.18
17	3.11	2.32	1.90	1.46	1.09	1.04	. 86	.78	.72	.99	2.35	2.18
18	4.32	2.30	1.90	1.44	1.08	1.02	.91	.78	.72	.99	2.35	2.18
19	4.55	2.28	1.89	1.42		1.00	.94	.78	.72	1.00	2.33	2.18
20	4.46	2.26	1.88	1.39	1.07	.99	.94	.78	.73	1.02	2.31	2.17
21	4.30	2.24	1.87	1.40	1.06	.98	.93	.78	.75	1.06	2.29	2.22
22	4.12	2.25	1.85	1.39		.96	.93	.77	.76	1.07	2.26	2.23
23	3.93	2.24	1.84	1.41	1.04	.95	.92	.77	.77	1.08	2.24	2.23
24	3.75	2.22	1.83	1.44	1.03	.95	.91	.76	.77	1.10	2.21	2.27
25	3.59	2.19	1.81	1.42	1.02	.96	.90	.75	.78	1.11	2.20	2.25
26	3.42	2.17	1.80	1.41	1.03	.95	.90	.75	.78	1.10	2.20	2.24
27	3.28	2.14	1.79	1.40	1.04	.94	.89	.75	.78	1.09	2.19	2.28
28	3.14	2.13	1.78	1.38	1.04	.93	. 89	.75	.79	1.09	2.18	2.27
29	3.01	2.11	1.77	1.36		.92	.88	.75	.79	1.10	2.18	2.27
30	2.92	2.08	1.76	1.34		.91	. 87	.75	.79	1.12	2.18	2.25
31	2.83		1.74	1.33		.90		.75		1.11	2.17	
MEAN	3.14	2.39	1.93	1.50	1.14	1.02	.89	.80	.74	.97	1.90	2.18
MAX	4.55	2.75	2.11	1.73	1.32	1.15	.94	. 87	.79	1.12	2.35	2.28
MIN	2.18	2.08	1.74	1.33	1.02	.90	. 86	.75	.71	. 80	1.07	2.12
CAL YR WTR YR				MAX MAX		MIN 1.	50 71					

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO
NOV	1000	2600	7.8	20.0	350	230	55	51	410	71	10
19 JUL	1000	2600	7.8	28.0	350	230	22	21	410	11	10
01 SEP	1545	14000	44	32.0			++				
09	1250			31.0				77	77	55	99
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
NOV 19	14	116	85	760	<.10	4.7	1400	2.0	<.100	20	<10
JUL 01	-2	- 22		4600							
SEP 09				4800		la _P	44				

< Actual value is known to be less than the value shown.

16808300 FINILE CREEK AT AGAT

LOCATION.--Lat 13°22'39" N., long 144°39'26" E., Hydrologic Unit 20100003, on right bank 0.4 mi upstream from estuary and 0.4 mi south of Agat School.

DRAINAGE AREA .-- 0.28 mi2.

PERIOD OF RECORD. -- April 1960 to December 1982 (discontinued).

REVISED RECORDS. -- WSP 2137: Drainage area.

GAGE. -- Water-stage recorder and concrete control. Altitude of gage is 20 ft, from topographic map.

REMARKS.--Records good. No diversion above station. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 22 years, 1.41 ft 3/s (1,020 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 326 ft³/s May 21, 1976, gage height, 3.88 ft, from rating curve extended above 68 ft³/s on basis of slope-area measurement at gage height 3.66 ft; minimum, 0.04 ft³/s July 2-4, 6, 8, 9, 1973.

EXTREMES FOR CURRENT YEAR.--Maximum discharge during period October to December, 153 ft³/s Oct. 3, gage height, 2.27 ft, no peak above base of 170 ft³/s; minimum, 0.60 ft³/s Dec. 30, 31.

DISCHARGE (CUBIC FEET/SECOND) OCTOBER TO DECEMBER 1982 MEAN VALUES

					111	JAN VALOL						
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
	1.6	1.4	1.0									
1		1.4										
2	3.2	1.5	2.2									
3	12	1.4	2.6									
4	6.0	1.4	1.3									
1 2 3 4 5	3.0	2.4	1.1									
6 7 8 9	3.9	1.6	1.1									
7	3.0	1.4	1.0									
8	2.4	2.6	1.0									
o o	2 4	3.5	.92									
10	2.4	1.6	1 2									
10	2.2	1.6	1.3									
11	2.0	1.5	.92									
12	1.9	1.4	.92									
13	2.6	1.3	.92									
14	3.2	1.1	.92									
15	2.0	1.1	1.0									
16	2.8	1.1	.92									
17	1.8	1.3	.81									
18	8.1	1.1	. 81									
19	2.6	1.0	.92									
20		1.0										
20	2.6	1.4	.92									
21	2.2	1.3	.81									
22	1.9	1.4	. 81									
23	2.0	1.1	1.6									
24	1.8	2.0	1.0									
25	1.8	1.3	.81									
25	1.0	1.3	. 01									
26	1.6	1.0	. 81									
27	1.6	1.0	.70									
28	1.6	1.6	.65									
29	1.5	1.0	.65									
30	1.5	1.0	.60									
31	1.4		.60									
TOTAL	88.2	43.8	31.62									
MEAN	2.85	1.46	1.02									
MAX	12	3.5	2.6									
MIN	1.4	1.0	.60									
AC-FT	175	87	63									
CAL YR	1982	TOTAL	472.29	MEAN	1.29	MAX	14	MIN	.21	AC-FT	937	

16809600 LA SA FUA RIVER NEAR UMATAC

LOCATION.--Lat 13°18'23" N., long 144°39'45" E., Hydrologic Unit 20100003, on left bank 0.6 mi north of Sanchez School in Umatac and 0.8 mi upstream from mouth.

DRAINAGE AREA .-- 1.06 mi2.

PERIOD OF RECORD.--April 1953 to July 1960, October 1976 to current year. Prior to October 1976, published as Fouha River near Umatac.

GAGE.--Water-stage recorder. Altitude of gage is 120 ft, from topographic map.

REMARKS.--Records fair to poor. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE.--13 years (water years 1954-59, 1977-83), 4.38 ft3/s (3,170 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 1,440 ft³/s Sept. 27, 1978, gage height, 6.05 ft, from rating curve extended above 109 ft³/s by test on model of station site; minimum, 0.12 ft³/s June 13, 1979, during short regulation of flow at diversion upstream.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 650 ft³/s Oct. 3, gage height, 4.70 ft, no other peak above base of 650 ft³/s; minimum, 0.16 ft³/s July 1.

		DIS	CHARGE (CUE	BIC FEET/S		ATER YEAR N VALUES	CTOBER	1982 TO S	EPTEMBER	1983		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	3.6	2.1	2.1	1.5	.82	.61	.61	.43	.35	. 47	.64	2.6
2	16	7.9		1.4	.79	1.4	.61	.45	.33	.33	.49	2.2
3	72	2.6		1.4	.85	1.1	.70	.70	.33	.29	.61	1.8
4	26	13	3.0	1.4	.79	.73	.64	. 47	.33	. 27	5.4	1.5
5	7.4	20	2.4	1.3	.76	.89	.61	.45	.33	.27	2.0	1.5
6	13	7.4		1.5	.73	.76	.58	.43	.33	.25	1.4	1.3
7	5.6	4.0		1.2	.70	.73	.58	. 43	.33	. 25	1.0	1.7
8	4.1	14		1.2	.67	.67	.58	.45	.41	.61	5.2	1.9
9	3.6	10	1.8	1.1	.64	1.8	.58	. 43	.35	.33	22	1.5
10	4.9	3.7	2.4	1.1	.64	2.4	.58	.89	.31	.33	3.0	1.1
11	3.5	3.0		1.1	.64	1.4	.55	.45	.41	2.8	2.1	1.0
12	3.1	2.6	1.6	1.0	. 82	1.0	.55	. 43	.39	.52	1.5	.91
13	3.6	2.3		1.0	.67	. 85	.52	.41	.37	.41	1.2	.90
14	17	2.2		1.0	.73	.79	.58	.55	.39	.31	1.1	. 97
15	3.6	2.2	3.6	1.0	.67	. 89	.55	.55	.33	.29	1.9	.93
16	16	2.1		1.1	.64	. 85	.58	.41	.31	. 27	12	1.8
17	3.6	2.1		1.1	.61	.79	.55	.45	.31	.35	6.6	6.9
18	40	2.8		.93	.61	.73	.52	. 43	.31	.35	5.4	3.0
19	6.2	2.0		.89	.64	.73	.55	.39	.29	.37	3.8	3.4
20	4.3	3.2	4.3	. 89	.58	.70	.52	.37	.27	.41	5.0	5.8
21	3.3	8.8		1.0	.73	.67	.52	.37	.27	16	2.8	42
22	7.1	4.4		.97	.67	.67	. 49	.37	.29	1.2	2.1	19
23	3.1	3.2		. 89	.58	.70	. 47	.45	.29	1.2	8.1	6.8
24	2.8	32		. 85	.58	.70	. 45	.39	.33	.70	15	12
25	2.6	3.6	2.4	. 82	.61	.67	. 47	.39	.29	.49	6.9	9.8
26	2.5	2.7	2.1	. 82	.61	.70	. 45	.37	.27	. 47	3.4	7.0
27	2.5	2.2	2.0	.82	.55	.67	. 45	.39	.25	.37	2.7	6.6
28	2.4	5.1	1.8	.79	.55	.64	. 43	.39	.25	.33	2.2	5.1
29	2.3	2.4		. 82		.64	. 45	.37	.23	.45	8.2	4.4
30	2.2	2.1		. 82		.61	. 43	.35	.23	1.6	6.2	3.4
31	2.2		1.6	.79		.61		.35		. 85	3.0	
TOTAL	290.1	175.7		32.50	18.88	27.10	16.15	13.76	9.48	33.14	142.94	158.81
MEAN	9.36	5.86		1.05	.67	. 87	.54	.44	.32	1.07	4.61	5.29
MAX	72	32		1.5	. 85	2.4	.70	.89	.41	16	22	42
MIN	2.2	2.0		.79	.55	.61	.43	.35	.23	.25	.49	.90
AC-FT	575	349	161	64	37	54	32	27	19	66	284	315
CAL YR		TOTAL	1831.49	MEAN	5.02	MAX	72	MIN	.39	AC-FT	3630	
WTR YR	1983	TOTAL	999.86	MEAN	2.74	MAX	72	MIN	.23	AC-FT	1980	

16835000 INARAJAN RIVER NEAR INARAJAN

LOCATION.--Lat 13°16'41" N., long 144°44'15" E., Hydrologic Unit 20100003, on right bank 0.6 mi northwest of Inarajan and 4.9 mi east of Merizo.

DRAINAGE AREA .-- 4.42 mi2.

PERIOD OF RECORD. -- September 1952 to December 1982 (discontinued).

REVISED RECORDS. -- WSP 2137: Drainage area.

GAGE. -- Water-stage recorder and concrete control. Altitude of gage is 15 ft, from topographic map.

REMARKS.--Records fair. Stage-discharge relation not determined above gage height 11.0 ft owing to ungaged overbank flow. During dry periods water is diverted upstream for irrigation. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 30 years, 17.4 ft 3/s (12,610 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum gage height, 12.90 ft Oct. 11, 1963 (discharge not determined); minimum discharge, 0.42 ft³/s June 21, 22, 1975.

EXTREMES FOR CURRENT YEAR.--Maximum discharge during period October to December, 1,490 ft³/s Oct. 3, gage height, 9.43 ft; no peak above base of 1,700 ft³/s; minimum, 5.9 ft³/s Dec. 31.

			DISCH	ARGE (CUBI	C FEET/S	ECOND) O EAN VALUE	CTOBER TO S	DECEMBER	R 1982			
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	15	12	15									
2	35	15	14									
3	170	14	23									
4	150	14	13									
1 2 3 4 5	37	64	11	≠5.7								
6 7 8 9	36	34	11									
7	29	18	9.9									
8	26	67	9.9									
9	26	62	9.6									
10	22	18	10									
11	20	16	8.9									
12	18	14	8.6									
13	27	12	8.3									
14	45	12	8.0									
15	21	11	9.6									
16	18	18	8.9									
17	18	20	8.9									
18	66	14	9.6									
19	29	12	8.9									
20	29	17	9.9									
21	23	13	9.2									
22	20	14	8.3									
23	19	15	9.9									
23 24	17	90	9.2									
25	16	16	8.0									
26	14	13	7.3									
27	14	12	7.0									
28	14	17	6.7									
29	13	12	6.5									
30	12	11	6.5	AND								
31	12		6.5									
TOTAL	1011	677	301.1									
MEAN	32.6	22.6	9.71									
MAX	170	90	23									
MIN	12	11	6.5									
AC-FT	2010	1340	597									
CAL YR 1	982	TOTAL	6310.0	MEAN	17.3	MAX	297	MIN	2.1	AC-FT	12520	

[→] Result of discharge measurement.

16840000 TINAGA RIVER NEAR INARAJAN

LOCATION.--Lat 13°17'10" N., long 144°45'04" E., Hydrologic Unit 20100003, on right bank 0.3 mi upstream from mouth, 0.9 mi northeast of Inarajan, and 4.5 mi south of Talofofo.

DRAINAGE AREA .-- 1.89 mi2.

PERIOD OF RECORD. -- October 1952 to current year. Prior to October 1969, published as Pauliluc River near Inarajan. REVISED RECORDS. -- WSP 2137: Drainage area.

GAGE.--Water-stage recorder and concrete control. Altitude of gage is 15 ft, from topographic map.

REMARKS.--Records fair to poor. No diversion above station. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 31 years, 5.64 ft 3/s (4,090 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,980 ft³/s Oct. 15, 1953, gage height, 13.11 ft, from rating curve extended above 210 ft³/s; minimum, 0.15 ft³/s May 16, 21-23, 29, 1966, June 13, 29, 30, 1973.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 409 ft³/s Oct. 14, gage height, 4.18 ft, no other peak above base of 400 ft³/s; minimum, 0.36 ft³/s June 26-30.

		DIS	CHARGE (CUB	IC FEET/S		ATER YEAR N VALUES	OCTOBER	1982 TO S	EPTEMBER	1983		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	4.3	3.8	4.3	2.2	1.2	.66	.62	.50	.41	.44	.76	2.7
2	14	4.2	5.0	2.1	1.1	1.1	.62	. 47	.41	.50	. 87	2.4
3	68	4.7	4.7	2.1	1.1	1.6	.62	.62	.41	. 47	. 87	2.2
3 4 5	61	4.7	4.3	2.0	1.1	1.6	.62	.50	.41	. 44	1.8	1.9
5	20	24	4.2	2.0	1.1	1.2	.62	. 47	.38	.41	2.9	1.7
6	14	10	3.8	2.0	1.0	1.1	.58	. 47	.38	.41	2.2	1.4
7	11	6.2	3.4	1.8	1.0	1.5	.62	.44	.38	.38	1.6	1.3
8	8.6	15	3.4	1.8	.93	1.4	.62	. 44	. 47	.50	2.3	1.2
9	7.5	15	3.3	1.8	. 87	1.6	.58	.44	.44	.44	2.0	1.2
10	6.6	6.2	3.4	1.8	. 87	2.3	.58	.62	.38	.38	2.0	1.2
11	6.2	5.6	3.3	1.6	. 87	1.8	.62	.47	.44	.87	1.8	1.2
12	5.6	5.0		1.6	.93	1.2	.62	. 44	.50	.50	1.6	1.2
13	7.8	4.5		1.6	. 87	1.2	.62	.44	.41	.81	1.4	1.2
14	64	4.2		1.6	. 87	1.0	.66	.50	. 44	.58	1.2	1.2
15	10	4.2	2.9	1.6	. 81	1.0	.66	.54	.41	.54	1.2	1.4
16	6.6	4.7		1.5	.71	1.0	.62	.44	.38	.47	1.2	2.3
17	6.2	5.0		1.6	.71	1.0	.62	.44	.38	. 44	1.3	2.1
18	24	4.7		1.5	.71	. 87	.58	. 47	.38	. 44	2.2	2.0
19	15	4.3		1.5	.76	.81	.58	.44	.38	.41	3.5	2.2
20	9.9	4.5	3.1	1.4	.76	.81	.54	. 44	.38	.41	4.5	3.6
21	8.2	5.6		1.4	.81	.81	.54	.44	.38	1.6	2.8	22
22	6.9	7.2		1.5	.81	.76	.54	.41	.41	1.6	1.9	15
23	6.6	5.1	3.1	1.4	.76	.76	.54	.54	.38	1.5	2.4	5.8
24	6.2	19	3.1	1.4	.71	.76	.54	. 44	.38	1.2	2.4	8.0
25	5.3	5.3	2.9	1.3	.71	.71	.54	. 44	.38	1.0	2.9	13
26	5.0	4.3		1.3	.71	.81	.54	.41	.36	.93	7.0	20
27	4.7	4.0		1.3	.66	.71	.50	.44	.36	. 81	3.5	10
28	4.5	4.2		1.3	.66	.66	.50	.41	.36	.71	2.7	6.1
29	4.3	4.2		1.3		.66	.50	.41	.36	.58	3.9	5.4
30	4.2	4.0	2.3	1.3		.62	.50	. 41	.36	1.1	5.0	4.8
31	4.2		2.2	1.2		.62		.41		.81	3.5	
TOTAL	430.4	203.4		49.8	24.10	32.63	17.44	14.35	11.90	21.68	75.20	145.7
MEAN	13.9	6.78		1.61	. 86	1.05	.58	.46	.40	.70	2.43	4.86
MAX	68	24		2.2	1.2	2.3	.66	.62	.50	1.6	7.0	22
MIN	4.2	3.8		1.2	.66	.62	.50	.41	.36	.38	.76	1.2
AC-FT	854	403	199	99	48	65	35	28	24	43	149	289
CAL YR		TOTAL	1977.85	MEAN	5.42	MAX	101	MIN	.33	AC-FT	3920	
WTR YR	1983	TOTAL	1127.10	MEAN	3.09	MAX	68	MIN	.36	AC-FT	2240	

16847000 IMONG RIVER NEAR AGAT

LOCATION.--Lat 13°20'17" N., long 144°41'55" E., Hydrologic Unit 20100003, on left bank 500 ft upstream from Fena Valley Reservoir, 1.4 mi south of Fena Dam spillway, and 4.1 mi southeast of Agat School.

DRAINAGE AREA .-- 1.95 mi2.

PERIOD OF RECORD. -- March 1960 to March 1971. October 1971 to current year.

REVISED RECORDS. -- WSP 2137: Drainage area.

GAGE.--Water-stage recorder and concrete control. Altitude of gage is 120 ft, from topographic map.

REMARKS.--Records fair. No diversion above station. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE.--22 years (water years 1961-70, 1972-83), 10.1 ft3/s (7,320 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 6,100 ft³/s Sept. 27, 1978, gage height, 11.3 ft, from outside floodmarks, and from rating curve extended above 58 ft³/s on basis of slope-area measurement of peak flow; minimum, 0.37 ft³/s May 21, 22, 26, 1966.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,200 ft³/s Oct. 3, gage height, 4.99 ft, no peak above base of 1,400 ft³/s; minimum, 1.2 ft³/s July 16, 17.

		DISC	CHARGE (CUI	BIC FEET/SI		ATER YEAR N VALUES	OCTOBER	1982 TO S	EPTEMBER	1983		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	9.2	5.7	5.7	4.1	3.2	3.0	2.4	2.0	1.8	2.2	1.8	4.3
2	20	14	9.7	3.8	3.2	5.1	2.4	2.0	1.8	1.8	1.6	3.9
3	82	7.8	8.8	3.8	3.0	4.1	2.6	2.6	1.6	1.6	2.0	3.4
2 3 4	37	18	6.3	3.8	3.0	3.5	2.4	2.2	1.6	1.8	4.4	3.1
5	19	38	5.7	3.8	3.0	3.2	2.4	2.0	1.6	1.6	3.8	3.1
6	22	13	5.4	4.1	2.8	3.2	2.2	1.8	1.6	1.4	3.8	3.0
7	14	9.7	5.1	3.8	2.8	3.0	2.2	1.8	1.8	1.4	2.6	21
8	11	13	6.0	3.8	2.8	3.0	2.2	1.8	2.0	2.6	8.3	11
9	10	17	5.1	3.5	3.0	4.4	2.4	1.8	1.8	1.8	17	6.8
10	9.7	9.2	5.7	3.5	3.0	4.4	2.4	2.6	1.6	2.0	5.4	5.1
11	9.2		4.8	3.5	3.0	3.5	2.2	2.0	2.0	6.5	5.1	4.4
12	8.8	7.3	4.8	3.5	3.2	3.2	2.2	1.8	1.8	1.8	3.5	3.8
13	9.2	6.8	4.4	3.5	3.0	3.0	2.2	1.8	1.8	1.8	2.8	3.8
14	9.2	6.3	4.4	3.8	3.2	2.8	2.4	2.2	1.6	1.4	3.8	3.5
15	8.3	6.3	7.8	3.5	3.2	2.6	2.2	2.2	1.6	1.4	5.4	3.5
16	13	6.8	6.0	4.1	3.2	2.8	2.2	1.8	1.6	1.2	33	5.1
17	9.7	6.3	5.4	4.1	3.0	2.6	2.2	1.8	1.4	1.4	13	4.4
18	52	6.8	8.3	3.5	3.0	2.4	2.0	1.8	1.6	1.4	8.9	4.8
19	15	6.0	6.3	3.5	3.2	2.4	2.2	1.8	1.6	1.4	5.6	5.7
20	11	6.8	9.2	3.5	3.0	2.4	2.0	1.8	1.6	1.4	4.4	8.8
21	9.2	14	8.3	3.8	3.2	2.4	2.2	1.8	1.6	17	3.5	36
22	8.8	10	5.7	3.8	3.2	2.4	2.2	1.8	1.4	3.2	3.0	22
23	7.8	11	6.8	3.5	3.0	2.6	2.2	2.0	1.4	2.8	6.9	11
24	7.3	19	6.0	3.2	2.8	2.4	2.0	1.8	1.4	2.4	21	13
25	6.8	7.8	5.1	3.2	2.8	2.4	2.0	1.8	1.4	2.0	12	15
26	6.3	6.3	4.8	3.2	2.8	2.4	2.0	1.8	1.4	2.0	6.0	12
27	6.3	6.0	4.4	3.2	2.8	2.4	2.0	1.8	1.4	1.8	4.8	12
28	6.3	8.8	4.4	3.2	2.8	2.4	2.0	1.8	1.4	1.6	4.2	9.7
29	6.0	6.0	4.4	3.2		2.4	2.0	1.8	1.4	2.0	6.2	8.2
30	6.0	5.7	4.1	3.5		2.2	2.0	1.8	1.4	2.2	7.5	6.9
31	6.0		4.1	3.2		2.2		2.0		2.0	4.9	
TOTAL	456.1	307.7	183.0	111.5	84.2	90.8	66.0	59.8	48.0	76.9	216.2	258.3
MEAN	14.7	10.3	5.90	3.60	3.01	2.93	2.20	1.93	1.60	2.48	6.97	8.61
MAX	82	38	9.7	4.1	3.2	5.1	2.6	2.6	2.0	17	33	36
MIN	6.0	5.7	4.1	3.2	2.8	2.2	2.0	1.8	1.4	1.2	1.6	3.0
AC-FT	905	610	363	221	167	180	131	119	95	153	429	512
CAL YR		TOTAL	3214.4	MEAN	8.81	MAX	106	MIN	1.6	AC-FT	6380	
WTR YR	1983	TOTAL	1958.5	MEAN	5.37	MAX	82	MIN	1.2	AC-FT	3880	

16848100 ALMAGOSA RIVER NEAR AGAT

LOCATION.--Lat 13°20'43" N., long 144°41'36" E., Hydrologic Unit 20100003, on right bank 400 ft upstream from Fena Valley Reservoir and 3.5 mi southeast of Agat.

DRAINAGE AREA. -- 1.32 mi2.

PERIOD OF RECORD. -- April 1972 to current year.

REVISED RECORD.--WDR HI-75-1: Drainage area. WDR HI-76-1: 1972(P), 1973(M), 1974-75(P).

GAGE.--Water-stage recorder and concrete control. Altitude of gage is 155 ft, from topographic map.

REMARKS.--Records fair. Up to 3.9 ft³/s diverted upstream for domestic use. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE.--11 years, 6.05 ft3/s (4,380 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,650 ft³/s Sept. 27, 1978, gage height, 7.78 ft, from rating curve extended above 46 ft³/s on basis of slope-area measurement at gage height 7.32 ft; minimum, 0.13 ft³/s June 27, July 11, 12, 14, 16, 17, 1979.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, $454 \text{ ft}^3/\text{s}$ Oct. 18, gage height, 4.41 ft, no peak above base of 700 ft $^3/\text{s}$; minimum, $0.15 \text{ ft}^3/\text{s}$ on several days.

DISCHARGE (CUBIC FEET/SECOND) WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

		DIS	CHARGE (CUE	SIC FEEI/S		N VALUES	OCTOBER	1902 10 8	EPIEMBER	1903		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	8.1	2.9	3.2	1.0	.58	. 43	.35	.21	.21	. 43	.31	1.5
2	14	7.0		. 89	.58	.89	.31	.21	.21	.24	.27	1.2
3	61	5.1		.84	.63	.74	.35	.39	.18	.21	.31	.90
3 4	43	11	4.7	.79	.63	.52	.39	.27	.18	.24	.84	.91
5	25	32	4.1	.79	.58	.47	.35	.24	.18	.21	1.4	1.1
6	21	11	3.6	. 89	.52	. 47	.31	.24	.18	.21	1.0	1.7
7	13	7.3	3.1	.89	.52	. 47	.31	.21	.18	.18	.63	15
8	10	7.3		1.0	.52	. 47	.31	.21	.31	. 47	2.9	6.0
9	8.6	10	2.6	1.0	.52	1.0	.39	.21	.21	. 27	5.6	3.7
10	7.5	6.6		1.0	.47	1.2	.35	.58	.18	.27	2.8	1.9
11	6.5	5.6	2.2	1.0	.58	.74	.31	.31	.24	1.6	2.7	1.2
12	5.5	5.0	2.0	1.0	.58	.58	.31	. 27	.21	.39	1.4	1.1
13	6.0	4.2	1.8	1.0	.52	.52	.31	.24	.24	.68	.79	1.2
14	7.0	3.8		.95	.52	. 47	.35	.31	.21	.27	1.3	1.1
15	5.1	3.7		.95	.58	. 47	.35	.39	.18	.24	2.0	1.0
16	12	3.6		.95	.52	.52	.31	.27	.21	.24	15	1.2
17	6.7	3.0	2.1	1.0	. 47	. 47	.35	.24	.21	.24	10	.99
18	39	4.1	3.1	1.1	. 43	. 43	.31	.31	.24	. 27	8.8	1.1
19	23	2.8		.79	.58	.39	. 43	.27	.21	.27	4.7	1.2
20	13	3.8	4.0	.79	. 47	.39	.31	.24	.21	.31	2.9	1.3
21	9.8	7.7	3.8	1.0	.52	.39	.27	.24	.21	4.8	1.9	17
22	7.7	6.3	2.9	. 89	.52	.39	.27	.24	.21	. 89	1.1	21
23	6.3	5.6		.79	. 47	. 43	.24	.31	.21	.79	1.7	10
24	5.5	9.2		.68	. 43	.39	.24	.24	.21	. 43	14	7.5
25	4.9	5.1		.63	. 43	.39	.24	.24	.21	.35	12	8.2
26	4.4	4.2	2.2	.63	. 43	.39	.24	.24	.18	.43	5.3	5.8
27	4.0	3.5	1.9	.63	. 43	.39	.24	.24	.18	.27	3.3	6.0
28	3.7	6.1	1.7	.58	.39	.39	.24	.24	.18	.24	2.2	5.2
29	3.4	3.6	1.6	.58		.35	.24	.21	.18	.58	2.1	4.1
30	3.3	3.0	1.4	.58		.35	.24	.21	.18	.35	2.6	3.2
31	3.1		1.2	.58		.35		.24		. 43	1.8	
TOTAL	391.1	194.1		26.19	14.42	15.85	9.22	8.27	6.13	16.80	113.65	133.30
MEAN	12.6	6.47	3.04	.84	.51	.51	.31	.27	.20	.54	3.67	4.44
MAX	61	32	7.2	1.1	.63	1.2	. 43	.58	.31	4.8	15	21
MIN	3.1	2.8		.58	.39	.35	.24	.21	.18	.18	.27	.90
AC-FT	776	385		52	29	31	18	16	12	33	225	264
CAL YR	1982	TOTAL	2054.21	MEAN	5.63	MAX	80	MIN	.39	AC-FT	4070	
WTR YR	1983	TOTAL	1023.23	MEAN	2.80	MAX	61	MIN	.18	AC-FT	2030	

16848500 MAULAP RIVER NEAR AGAT

LOCATION.--Lat 13°21'14" N., long 144°41'44" E., Hydrologic Unit 20100003, on right bank 100 ft from Fena Valley Reservoir and 3.2 mi southeast of Agat.

DRAINAGE AREA .-- 1.15 mi2.

PERIOD OF RECORD .-- January 1972 to current year.

REVISED RECORDS. -- WRD Hawaii 1973: 1972. WRD HI-75-1: Drainage area.

GAGE. -- Water-stage recorder and concrete control. Altitude of gage is 130 ft, from topographic map.

REMARKS.--Records good except those for period of no gage-height record, which are poor. No diversion above station. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE.--11 years, 5.13 ft3/s (3,720 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,420 ft³/s Sept. 27, 1978, gage height, 9.2 ft, from rating curve extended above 23 ft³/s, on basis of slope-area measurements at gage heights 8.21 ft and 9.2 ft; minimum, 0.31 ft³/s June 28 to July 1, 1983.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 702 ft³/s Oct. 18, gage height, 5.64 ft, no other peak above base of 600 ft³/s; minimum, 0.31 ft³/s June 28 to July 10.

DISCHARGE (CHRIC PERT/SECOND) WATER YEAR OCTORER 1982 TO SEPTEMBER 1983

		DIS	CHARGE (CUB	SIC FEET/S		VATER YEAR AN VALUES	COCTOBER	1982 TO :	SEPTEMBER	1983		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	21	3.3	3.3	2.1	1.5	.95	.82	.47	.54	.61	.89	2.8
2	22	8.3	7.6	2.1	1.6	1.8	. 82	. 47	. 47	. 40	.75	2.4
3	69	4.9	12	1.9	1.6	1.6	.89	.75	.40	.37	.82	2.1
3 4	29	6.3	4.6	1.9	1.6	1.2	. 89	.61	.40	.40	2.2	1.8
5	11	27	3.9	1.9	1.3	1.1	.82	.54	.40	.37	6.0	1.6
6	15	6.0		2.1	1.2	1.0	.82	.54	. 47	.34	3.7	3.7
7	8.0	4.3		1.7	1.2	1.0	.89	.54	.40	.34	1.7	19
8	6.6	6.3		1.7	1.2	.95	. 82	.47	.61	.61	6.3	6.5
9	6.3	11	2.9	1.6	1.2	2.0	.82	. 47	. 47	.37	4.9	3.9
10	6.0	4.3	3.5	1.6	1.1	2.2	.82	.89	.40	.40	2.9	2.9
11	5.5	4.1		1.6	1.3	1.5	.75	.61	.61	1.9	4.3	2.7
12	4.9	3.9		1.6	1.3	1.3	.75	.54	. 47	.54	2.3	2.3
13	5.8	3.5		1.6	1.2	1.1	.75	.54	. 47	1.3	1.7	2.1
14	8.0	3.3		1.7	1.2	1.0	.82	.61	. 47	.54	2.3	2.2
15	4.6	3.3	3.5	1.6	1.3	.95	.75	.68	. 47	.40	3.7	2.1
16	12	3.3		1.7	1.2	1.2	.68	.54	.37	.40	14	3.4
17	4.9	3.1		1.7	1.1	1.0	.68	.47	.37	.40	8.9	4.9
18	50	4.1		1.6	1.0	.95	.61	.61	.37	. 40	6.1	3.4
19	8.0	3.1		1.6	1.3	.89	.82	.54	.37	.40	4.0	4.8
20	9.5	5.5	4.3	1.6	1.0	.96	.61	. 47	.34	.61	4.2	4.1
21	6.6	9.9		1.6	1.2	.89	.61	. 47	.37	6.0	2.8	24
22	6.6	6.3		1.6	1.2	.96	.61	. 47	.34	1.2	2.3	14
23	4.9	3.9		1.5	1.0	.96	.54	.61	.34	1.6	5.1	8.0
24	4.6	7.6		1.5	1.0	.89	.54	. 47	.37	. 89	14	6.3
25	4.1	3.9	2.9	1.5	.95	.89	.54	. 47	.34	.68	6.3	5.5
26	3.9	3.5		1.3	.95	.89	.54	. 47	.34	.89	4.4	7.0
27	3.9	3.3		1.3	.95	.89	.54	. 47	.37	.68	4.0	6.7
28	3.7	11	2.3	1.5	.90	. 89	.54	. 47	.34	.61	3.2	5.0
29	3.5	3.7		1.5		. 82	.54	. 47	.34	1.6	4.1	4.4
30	3.5	3.1		1.3		.82	.54	. 47	.31	. 89	3.7	3.6
31	3.5		2.2	1.5		. 82		.54		.96	2.7	
TOTAL	355.9	175.1		51.0	33.55	34.37	21.17	16.74	12.33	27.10	134.26	163.2
MEAN	11.5	5.84		1.65	1.20	1.11	.71	.54	.41	. 87	4.33	5.44
MAX	69	27		2.1	1.6	2.2	.89	. 89	.61	6.0	14	24
MIN	3.5	3.1		1.3	.90	.82	.54	. 47	.31	.34	.75	1.6
AC-FT	706	347	221	101	67	68	42	33	24	54	266	324
CAL YR		TOTAL	1954.83	MEAN	5.36	MAX	77	MIN	. 83	AC-FT	3880	
WTR YR	1983	TOTAL	1136.22	MEAN	3.11	MAX	69	MIN	.31	AC-FT	2250	

NOTE. -- No gage-height record Feb. 7 to Mar. 18.

16849000 FENA DAM SPILLWAY NEAR AGAT

LOCATION.--Lat 13°21'28" N., long 144°42'12" E., Hydrologic Unit 20100003, on left bank 3.5 mi southeast of Agat and 5.8 mi southwest of Yona.

DRAINAGE AREA . -- 5.88 mi2.

CAL YR 1982

WTR YR 1983

MEAN

MEAN

-1.43

-8.85

MAX

MAX

.78

.78

MIN

MIN

-7.93

-21.83

PERIOD OF RECORD. -- September 1951 to July 1952, November 1952 to current year. Daily mean gage heights published since October 1973.

REVISED RECORDS.--WSP 2137: Drainage area. WDR HI-78-2: 1977(M, m).

GAGE.--Water-stage recorder and concrete-dam control. Datum of gage is 111.35 ft above mean sea level (from U.S. Navy construction plans).

REMARKS.--Gage-height records fair. About 10 ft³/s is diverted from Fena Valley Reservoir and tributary springs for military and civilian use. Discharge records represent flow over spillway only.

AVERAGE DISCHARGE. -- 20 years (1953-73), 17.9 ft3/s (12,970 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, not determined, occurred Oct. 15, 1953 (gage height, at least 4.5 ft); no flow for many days each year. Minimum recorded gage height, -21.86 ft, Aug. 4, 1983.

EXTREMES FOR CURRENT YEAR.--Maximum gage height, 1.18 ft, Oct. 18; minimum, -21.86 ft Aug. 4.

		GAGE	HEIGHT (F	EET AT DA	ATUM), WA	TER YEAR N VALUES	OCTOBER	1982 TO S	EPTEMBER	1983		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.25	.14	.17	-0.05	-2.18	-4.79	-7.82	-11.33	-15.01	-18.93	-21.56	-17.94
2	.30	.22	. 27	-0.09	-2.27	-4.80	-7.93	-11.46	-15.15	-19.04	-21.69	-17.95
3	.78	.30	.30	-0.12	-2.36	-4.83	-8.04	-11.57	-15.26	-19.18	-21.82	-17.98
4	.55	.35	.27	-0.17	-2.45	-4.91	-8.15	-11.68	-15.40	-19.31	-21.83	-18.07
5	.37	.56	.21	-0.23	-2.56	-5.03	-8.27	-11.79	-15.53	-19.44	-21.79	-18.16
6	.35	.35	.18	-0.27	-2.65	-5.14	-8.37	-11.92	-15.67	-19.59	-21.66	-18.12
7	. 29	.28	.15	-0.34	-2.74	-5.24	-8.49	-12.04	-15.80	-19.71	-21.70	-17.77
8	. 25	.29	.16	-0.41	-2.85	-5.33	-8.60	-12.18	-15.92	-19.80	-21.58	-17.05
9	.23	.35	.15	-0.48	-2.93	-5.38	-8.71	-12.30	-16.04	-19.90	-21.35	-16.86
10	.22	.26	.16	-0.53	-3.02	-5.40	-8.78	-12.37	-16.18	-20.03	-21.22	-16.83
11	.20	.23	.14	-0.58	-3.10	-5.44	-8.92	-12.49	-16.30	-19.97	-21.13	-16.83
12	.19	.21	.13	-0.63	-3.18	-5.55	-9.03	-12.62	-16.42	-20.00	-21.13	-16.86
13	.20	.18	.10	-0.69	-3.28	-5.65	-9.15	-12.73	-16.53	-20.07	-21.17	-16.89
14	. 25	.17	.08	-0.76	-3.34	-5.77	-9.26	-12.85	-16.66	-20.20	-21.21	-16.94
15	.25	.16	.13	-0.83	-3.42	-5.87	-9.36	-12.94	-16.80	-20.35	-21.21	-16.98
16	.28	.16	.17	-0.88	-3.52	-5.96	-9.45	-13.06	-16.92	-20.51	-20.62	-16.96
17	. 29	.15	.16	-0.92	-3.62	-6.11	-9.58	-13.18	-17.05	-20.65	-19.98	-16.94
18	.55	.18	.15	-0.98	-3.75	-6.18	-9.72	-13.28	-17.17	-20.79	-19.62	-16.87
19	. 45	.16	.17	-1.07	-3.85	-6.29	-9.80	-13.39	-17.30	-20.91	-19.46	-16.82
20	.34	.19	.18	-1.13	-3.95	-6.42	-9.93	-13.52	-17.44	-21.05	-19.42	-16.73
21	.31	.23	.21	-1.20	-4.03	-6.59	-10.06	-13.64	-17.59	-20.78	-19.42	-16.26
22	. 27	.33	.18	-1.25	-4.11	-6.71	-10.17	-13.78	-17.73	-20.57	-19.45	-15.08
23	.24	.26	.21	-1.31	-4.21	-6.78	-10.30	-13.88	-17.85	-20.60	-19.47	-14.63
24	.21	.37	. 23	-1.38	-4.32	-6.88	-10.43	-14.00	-17.98	-20.69	-19.10	-14.38
25	.20	. 27	.17	-1.48	-4.41	-6.99	-10.57	-14.13	-18.15	-20.80	-18.43	-14.05
26	.18	.21	.13	-1.56	-4.51	-7.10	-10.68	-14.28	-18.29	-20.90	-18.27	-13.80
27	.17	.19	.10	-1.63	-4.61	-7.22	-10.82	-14.37	-18.42	-21.03	-18.19	-13.52
28	.15	.24	.07	-1.72	-4.70	-7.33	-10.95	-14.50	-18.56	-21.17	-18.17	-13.33
29	.15	. 26	.05	-1.81		-7.47	-11.08	-14.63	-18.70	-21.25	-18.13	-13.20
30	.15	.19	.03	-1.90		-7.58	-11.20	-14.76	-18.85	-21.34	-17.99	-13.12
31	.15		-0.02	-2.08		-7.71		-14.89		-21.44	-17.95	
MEAN	.28	.25	.15	-0.92	-3.43	-6.08	-9.45	-13.08	-16.89	-20.32	-20.18	-16.23
MAX	.78	.56	.30	05	-2.18	-4.79	-7.82	-11.33	-15.01	-18.93	-17.95	-13.12
MIN	.15	.14	-0.02	-2.08	-4.70	-7.71	-11.20	-14.89	-18.85	-21.44	-21.83	-18.16

16854500 UGUM RIVER ABOVE TALOFOFO FALLS, NEAR TALOFOFO

LOCATION.--Lat 13°19'16" N., long 144°44'01" E., Hydrologic Unit 20100003, about 300 ft upstream from Talofofo Falls, 0.9 mi north of NASA Tracking Station, and 3.5 mi southwest of main intersection in Talofofo village.

DRAINAGE AREA. -- 5.76 mi2.

PERIOD OF RECORD. -- June 1977 to current year.

GAGE. -- Water-stage recorder. Altitude of gage is 130 ft, from topographic map.

REMARKS.--Records fair except those for period of no gage-height record, which are poor. No diversion above station. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 6 years, 24.1 ft 3/s (17,460 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 5,890 ft³/s Feb. 26, 1980, gage height, 14.2 ft, from flood-marks, from rating curve extended above 350 ft³/s on basis of slope-area measurement at gage height 14.2 ft; minimum, 3.4 ft³/s June 27, 1978, July 14, 18, 19, 1979.

DISCHARGE (CUBIC FEET/SECOND) WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 869 ft³/s Oct. 3, gage height, 6.03 ft, no peak above base of 1,300 ft³/s; minimum, 3.5 ft³/s for several days in June.

		DIS	CHARGE (CU)	SIC FEET/S		N VALUES	V OCTOBER	1902 10 8	SEP LEMBER	1903		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	28	20	22	13	9.0	7.5	6.1	4.9	4.5	4.7	5.2	12
2	47		25	12	9.0	12	6.1	4.9	4.5	4.7	4.2	11
3	238	30	32	12	9.2	11	6.6	6.1	4.0	3.8	4.5	9.4
4	113	32	22	12	9.0	8.8	6.1	5.2	4.0	3.8	17	8.6
5	59		19	12	8.8	8.2	6.1	5.0	4.0	4.0	10	8.2
6	56	42	18	13	8.8	8.5	5.9	4.9	4.0	3.8	8.0	8.3
6 7	43	30	17	12	8.5	8.5	5.7	4.9	4.5	3.7	6.1	43
8	38	66	18	11	8.5	8.2	5.7	4.7	5.0	5.7	17	32
9	43	53	16	11	8.2	12	5.7	4.9	4.5	4.7	36	21
10	34	30	18	11	8.2	13	5.9	6.6	4.0	4.4	13	13
			2.0									
11	31	26	16	11	8.2	11	6.6	5.4	5.0	10	9.8	11
12	29	23	16	11	9.2	8.5	6.1	5.0	4.5	5.4	7.8	9.8
13	32	22	15	11	8.5	7.8	6.6	4.9	4.5	5.9	7.0	10
14	58	21	15	11	9.2	7.3	6.6	5.0	4.0	4.4	7.0	9.4
15	30	22	20	10	8.8	7.5	5.9	5.7	4.0	3.8	6.6	9.2
16	30	22	17	11	8.2	7.5	5.9	4.7	4.0	3.7	49	13
17	28	22	16	11	8.0	7.0	5.7	4.7	3.5	3.7	20	14
18	125	24	17	10	8.0	6.8	5.7	4.7	4.0	3.8	20	14
19	50	20	17	10	8.5	6.6	5.7	4.7	4.0	4.0	20	15
20	39	25	23	10	8.2	6.6	5.4	4.7	4.0	4.0	14	21
21	34	38	19	11	9.0	6.6	5.7	4.7	4.0	36	9.5	91
22	41	32	17	11	8.8	6.6	5.9	4.7	3.5	9.8	8.0	62
23	30	30	19	10	8.2	6.4	5.7	5.0	3.5	7.3	12	31
24	28	97	18	9.8	8.0	6.6	5.7	4.5	3.5	5.4	50	40
25	26	28	16	9.8	8.0	6.6	5.4	4.5	3.5	4.7	29	45
25	26	28	10	9.8	8.0	0.0	5.4	4.5	3.3	4.7	29	45
26	26	22	14	9.5	8.0	6.4	5.2	4.5	3.5	4.5	15	49
27	25	20	14	9.5	7.8	6.4	5.2	4.5	3.5	4.2	12	38
28	24	28	14	9.2	7.5	6.1	5.0	4.5	3.5	4.0	11	28
29	22	21	14	9.0		5.9	5.0	4.5	3.5	4.2	18	25
30	22	19	13	9.2		6.1	4.9	4.5	3.5	6.8	28	20
31	21		13	9.2		6.1		5.0		6.1	14	
TOTAL	1450	992	550	332.2	237.3	244.1	173.8	152.5	120.0	185.0	488.7	721.9
MEAN	46.8	33.1	17.7	10.7	8.47	7.87	5.79	4.92	4.00	5.97	15.8	24.1
MAX	238	98	32	13	9.2	13	6.6	6.6	5.0	36	50	91
MIN	21	19	13	9.0	7.5	5.9	4.9	4.5	3.5	3.7	4.2	8.2
AC-FT	2880	1970	1090	659	471	484	345	302	238	367	969	1430
CAL YR	1002	TOTAL	9337.2	MEAN	25.6	MAX	243	MIN	4.9	AC-FT	18520	
WTR YR	1983	TOTAL	5647.5	MEAN	15.5	MAX	238	MIN	3.5	AC-FT	11200	
MIN IN	1703	TOTAL	3047.3	HUMIN	13.3	PINA	230	LILIA	3.3	AC II	11200	

NOTE. -- No gage-height record May 20 to June 29.

16858000 YLIG RIVER NEAR YONA

LOCATION.--Lat 13°23'28" N., long 144°45'06" E., Hydrologic Unit 20100003, on right bank 2.2 mi upstream from mouth, 1.9 mi southwest of Yona, and 5.6 mi south of Agana.

DRAINAGE AREA. -- 6.48 mi2.

PERIOD OF RECORD .-- June 1952 to current year.

REVISED RECORDS. -- WSP 1937: 1957-58. WSP 2137: Drainage area.

GAGE. -- Water-stage recorder and concrete control. Altitude of gage is 20 ft, from topographic map.

REMARKS.--Records fair. No diversion above station. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE.--31 years, 28.2 ft 3/s (20,430 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,900 ft³/s Sept. 9, 1963, gage height, 19.77 ft, from flood-marks, from rating curve extended above 830 ft³/s on basis of slope-area measurements at gage heights 11.24 ft and 15.87 ft, maximum gage height, 22.80 ft Feb. 26, 1980; minimum, 0.07 ft³/s May 20, 1973, but may have been less during period of diversion from gage pool May 15 to June 20, 1966.

DISCHARGE (CURIC FEET/SECOND) WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,690 ft 3 /s Oct. 14, gage height, 12.05 ft, from rating curve extended above 155 ft 3 /s, no peak above base of 2,000 ft 3 /s; minimum, 0.10 ft 3 /s June 29 to July 1.

		DIS	SCHARGE (CU	BIC FEET/S		ATER YEAR N VALUES	R OCTOBER	1982 TO S	EPTEMBER	1983		
DAY	OCT	NOV	DEC DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	22	12	12	7.9	3.1	1.9	1.0	.46	.30	.22	1.6	15
2	80	19	49	7.5	3.1	4.7	1.0	.46	.30	.46	1.1	13
3	406			7.3	3.3	5.5	1.2	.46	.30	. 40	1.0	11
4	148			7.0	3.3	3.8	1.2	.46	.30	.30	13	10
5	47	97		7.0	3.1	2.8	1.1	.46	.26	.35	7.0	16
-	72	25	12	7.0	2.0	2 5	1.0	4.5	20	26	6.3	2.2
6				7.0	2.9	2.5	1.0	. 46	.30	.26	6.3	33
/	35	16		6.6	2.8	2.4	1.1	.40	.26	.22	8.3	52
8	31	30		6.1	2.6	2.4	1.0	.40	.26	.35	41	42
9	29	58		5.9	2.5	2.8	.94	. 40	.26	.52	35	28
10	27	18	12	5.7	2.5	3.3	1.0	. 40	.26	.64	14	20
11	24	17	10	5.7	2.5	2.9	1.0	.40	.26	1.0	42	18
12	22	15	10	5.7	2.8	2.4	1.0	.40	.30	1.2	17	15
13	22	14		5.3	2.8	1.9	1.0	.35	.35	1.1	12	14
14	185	13		5.5	2.9	1.6	1.0	.40	.40	.64	10	13
15	25	14		5.1	3.1	1.6	1.0	.78	.35	.46	10	12
	23	17	13	3.1	3.1	1.0	1.0	. / 0	• 3 3	.40	10	12
16	24	15	14	4.9	2.6	1.6	. 86	.86	.30	.30	19	60
17	20	16	9.4	4.9	2.5	1.6	. 86	.64	.26	.26	14	156
18	194	17	13	4.5	2.4	1.6	.78	.64	.22	.22	13	42
19	35	12		4.1	2.5	1.5	.78	.64	.19	.26	13	32
20	45	42		4.0	2.5	1.5	.64	.52	.16	.40	11	34
20	4.5	44	12	4.0	2.5	1.5	.04	.52	*10	. 40	11	34
21	30	18		4.9	2.6	1.4	.64	.40	.13	14	8.8	296
22	25	27	9.4	5.3	2.8	1.4	.71	.40	.13	4.7	7.3	74
23	22	17	23	4.7	2.2	1.4	.64	. 40	.16	13	16	46
24	20	79	19	4.1	2.1	1.3	.58	.71	.13	4.3	104	38
25	18	17		4.0	2.1	1.3	.52	.58	.13	2.1	31	31
				-								
26	17	14		3.6	2.0	1.3	. 46	. 46	.13	1.4	20	32
27	16	13		3.6	1.9	1.3	. 46	. 40	.13	1.3	34	30
28	15	19		3.4	1.9	1.2	.46	.40	.13	.94	23	26
29	14	14		3.3		1.1	.46	.35	.10	. 86	30	24
30	14	12		3.3		1.1	. 46	.35	.10	3.8	23	21
31	13		8.2	3.3		1.0		.35		3.1	16	
TOTAL	1697	706	424.3	161.2	73.4	64.1	24.85	14.79	6.86	59.06	602.4	1254
MEAN	54.7	23.5	13.7	5.20	2.62	2.07	.83	.48	.23	1.91	19.4	41.8
MAX	406	97		7.9	3.3	5.5	1.2	.86	.40	1.91	104	296
MIN	13	12		3.3	1.9	1.0						
							. 46	.35	.10	.22	1.0	10
AC-FT	3370	1400	842	320	146	127	49	29	14	117	1190	2490
CAL YR	1982	TOTAL	9409.1	MEAN	25.8	MAX	406	MIN	1.9	AC-FT	18660	
WTR YR	1983	TOTAL	5087.96	MEAN	13.9	MAX	406	MIN	.10	AC-FT	10090	
						101723			830-	200 17.3	- 24 17/2	

16865000 PAGO RIVER NEAR ORDOT

LOCATION.--Lat 13°26'08" N., long 144°45'14" E., Hydrologic Unit 20100003, on left bank 0.8 mi south of Ordot, 2.6 mi south of Agana, and 3.6 mi southeast of Asan.

DRAINAGE AREA .-- 5.67 mi2.

PERIOD OF RECORD. -- September 1951 to December 1982 (discontinued).

REVISED RECORDS. -- WSP 1937: 1954(M), 1958(M). WSP 2137: Drainage area.

GAGE.--Water-stage recorder and concrete control. Altitude of gage is 25 ft, from topographic map. Prior to Apr. 10, 1972, at datum 1.00 ft higher.

REMARKS. -- Records fair. No diversion above station. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 31 years, 26.3 ft 3/s (19,050 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 10,090 ft³/s May 21, 1976, gage height, 20.15 ft, from floodmarks, from rating curve extended above 320 ft³/s on basis of slope-area measurements at gage heights 13.22 ft, 15.07 ft, and 18.87 ft; no flow for many days in 1959 and 1966.

EXTREMES FOR CURRENT YEAR.--Maximum discharge during period October to December, 2,220 ft³/s Oct. 3, gage height, 10.07 ft, no peak above base of 2,700 ft³/s; minimum, 6.0 ft³/s Dec. 31.

			DISCHA	RGE (CUBI		COND) OC EAN VALUE		DECEMBER	1982			
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
							232.50			2.7.3		
1	19	9.4	9.4									
2	62	9.4	40									
3	495	8.8	14									
4	197	8.3	12									
1 2 3 4 5	49	143	9.9									
6 7 8	67	23	8.8									
7	36	14	8.3									
8	103	22	8.8									
9	29	19	7.8									
9 10	35	12	8.8	74.2								
11	24	12	7.4									
12	21	12	7.4									
13	24	9.9	6.8									
14	107	9.4	6.8									
15	23	9.4	12									
16	55	9.9	16									
17	22	8.3	7.8									
18	173	8.8	39									
19	50	7.4	14									
20	66	32	9.4									
21	33	13	10									
22	25	36	7.8									
23	21	21	25									
24	19	106	18									
25	16	19	10									
26	15	14	8.3	122								
27	14	12	7.4									
27 28	12	12	7.1									
29	11	11	6.8									
30	10	9.4	6.4									
31	9.9		6.0									
TOTAL	1842.9	641.4	367.2	2.00								
MEAN	59.4	21.4	11.8									
MAX	495	143	40									
MIN	9.9	7.4										
		7.4 1270	6.0	1635								
AC-FT	3660	12/0	728									

MAX

495

MIN

1.9

AC-FT 18590

9371.5

MEAN

25.7

CAL YR 1982

TOTAL → Result of discharge measurement.

CAROLINE ISLANDS, PALAU ISLANDS

16890600 DIONGRADID RIVER, BABELTHUAP

LOCATION.--Lat 07°36'04" N., long 134°35'02" E., Hydrologic Unit 20100006, on right bank 0.3 mi upstream from left-bank tributary, 0.9 mi southeast of Ngetbong village school, and 2.4 mi upstream from confluence with Ngerchetang River.

DRAINAGE AREA .-- 4.45 mi2.

PERIOD OF RECORD. -- October 1969 to current year. Prior to October 1980, published as Adeiddo River.

REVISED RECORDS.--WDR HI-75-1: 1970(M), 1972-73(P). WDR HI-81-2: Drainage area.

GAGE.--Water-stage recorder. Altitude of gage is 15 ft, from topographic map.

REMARKS.--Records fair except those for periods of no gage-height record, which are poor. No diversion above station. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE.--14 years, 32.3 ft3/s (23,400 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,310 ft³/s Jan. 22, 1975, gage height, 15.44 ft, from rating curve extended above 410 ft³/s on basis of field estimate at gage height 15.44 ft; minimum, 2.1 ft³/s Apr. 14-17, 1983.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 600 ft 3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)
July 13	1500	736	7.96
Aug. 16	2230	*1150	10.03

Minimum discharge, 2.1 ft3/s Apr. 14-17.

		DIS	SCHARGE (CI	JBIC FEET/		WATER YEA	AR OCTOBER	1982 TO	SEPTEMBER	R 1983		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	42	12	8.6	11	6.8	4.0	2.7	5.9	3.0	110	47	33
2	34	13	8.1	13	7.4	4.0	2.7	3.4	3.0	56	48	29
3	61	13	7.7	11	7.2	4.0	2.7	2.7	2.4	62	52	27
4	65	13	8.9	9.9	6.6	4.0	2.5	2.4	2.4	62	42	24
5	65	12	7.9	9.4	6.3	3.7	2.5	2.4	3.0	50	75	22
6	52	11	16	13	6.0	3.7	2.5	2.4	3.2	56	71	23
7	37	11	24	14	6.0	3.7	2.5	2.3	6.6	76	88	23
8	32	11	11	10	5.7	3.5	2.5	2.4	4.2	75	94	22
9	29	10	9.4	9.7	5.7	3.5	2.3	2.5	2.6	59	142	24
10	28	10	10	9.1	5.5	4.0	2.3	2.5	2.4	50	109	21
11	29	11	9.9	9.1	5.5	3.4	2.3	2.5	2.4	46	127	23
12	31	11	11	10	5.5	3.2	2.3	2.4	2.9	48	106	20
13	24	9.9	20	9.9	5.0	3.2	2.3	3.5	4.6	182	87	18
14	22	9.1	16	10	5.0	3.4	2.1	3.0	4.6	95	83	18
15	20	8.9	12	9.4	5.0	3.2	2.1	2.4	28	70	75	29
16	19	8.6	11	8.9	4.7	3.5	2.1	2.4	8.9	59	213	31
17	19	8.9	10	9.4	4.7	3.7	2.1	10	27	50	208	28
18	18	10	10	9.9	5.0	3.7	2.4	5.0	15	45	128	30
19	17	8.4	9.4	8.6	4.7	3.4	3.4	3.0	9.7	50	99	39
20	16	7.9	9.1	8.1	4.5	3.2	3.5	2.7	46	75	81	44
21	16	7.9	9.1	7.7	4.5	3.7	2.9	2.5	25	172	69	40
22	17	8.1	8.9	7.9	4.5	3.4	2.6	2.4	13	94	60	34
23	16	11	8.9	8.9	4.5	4.6	2.6	2.7	37	81	52	30
24	16	7.9	9.1	7.9	4.5	3.8	2.4	2.7	31	67	49	27
25	21	8.1	15	7.7	4.5	3.5	2.4	2.6	21	67	48	23
26	16	7.7	14	7.7	4.3	3.3	2.3	2.4	16	58	42	50
27	16	36	28	7.7	4.3	3.3	2.3	2.3	13	50	38	70
28	14	23	16	7.4	4.3	3.0	3.8	2.3	12	50	34	50
29	14	11	13	7.2		3.0	7.8	3.0	16	68	31	47
30	13	9.1	12	7.0		2.7	22	4.0	23	66	29	43
31	12		11	6.8		2.7		3.5		51	31	
TOTAL	831	339.5	375.0	287.3	148.2	109.0	100.9	96.2	388.9	2200	2458	942
MEAN	26.8	11.3	12.1	9.27	5.29	3.52	3.36	3.10	13.0	71.0	79.3	31.4
MAX	65	36	28	14	7.4	4.6	22	10	46	182	213	70
MIN	12	7.7	7.7	6.8	4.3	2.7	2.1	2.3	2.4	45	29	18
AC-FT	1650	673	744	570	294	216	200	191	771	4360	4880	1870
CAL YR		TOTAL	8604.6	MEAN	23.6	MAX	161	MIN	6.0	AC-FT	17070	
WTR YR	1983	TOTAL	8276.0	MEAN	22.7	MAX	213	MIN	2.1	AC-FT	16420	

NOTE. -- No gage-height record Feb. 6 to Mar. 10, May 6 to June 5.

16890900 TABECHEDING RIVER, BABELTHUAP

LOCATION.--Lat 07°27'03" N., long 134°31'29" E., Hydrologic Unit 20100006, on left bank 0.2 mi downstream from waterfall, 1.5 mi upstream from boat landing, and 1.6 mi east of forestry station.

DRAINAGE AREA. -- 6.07 mi2.

PERIOD OF RECORD. -- October 1970 to current year. Prior to October 1980, published as Tabagaten River.

REVISED RECORDS.--WDR HI-81-2: Drainage area.

GAGE.--Water-stage recorder. Altitude of gage is 20 ft, from topographic map.

REMARKS.--Records fair except those above 500 ft³/s, which are poor. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 13 years, 48.2 ft 3/s (34,920 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,580 ft³/s Dec. 23, 1973, gage height, 8.79 ft, from rating curve extended above 290 ft³/s; minimum, 0.57 ft³/s Apr. 19, 1983.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 900 ft 3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date		Time	Discharge (ft³/s)	Gage height (ft)
Dec. 27	0800	1080	6.27	Aug.	16	1800	1050	6.19
July 29	1730	*1410	6.92	Sept.	20	0230	1240	6.61

Minimum discharge, 0.57 ft3/s Apr. 19.

		D	ISCHARGE (C	UBIC FEET/		WATER YES		R 1982 TO	SEPTEMBE	R 1983		
DAY	OCT	NO	V DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	80	9.	5 17	30	7.6	3.5	1.8	8.8	4.1	205	74	67
2	113	12	16	34	7.6	3.5	1.6	5.2	3.9	82	101	46
3	144	44	15	28	8.4	3.3	1.5	4.3	3.2	54	90	36
4	100	20	14	24	7.1	3.1	1.5	3.7	3.2	82	80	30
5	47	35	14	21	6.6	3.0	1.4	3.5	6.2	67	108	25
6	34	21	16	25	6.4	3.5	1.4	3.5	6.1	177	95	26
7	27	21	23	39	6.1	4.0	1.2	3.2	7.6	178	202	23
8	24	17	15	23	5.7	3.5	1.2	3.4	7.6	134	232	20 30
9	22	14	14	20	5.4	3.0	1.1	3.4	5.0	90	378	30
10	29	14	16	18	5.4	2.9	1.1	3.7	4.1	63	181	23
11	41	13	15	17	5.2	2.7	1.0	3.5	7.1	54	125	44
12	34	15	28	17	5.2	2.5	1.0	3.2	6.4	48	91	26
13	27	13	140	16	5.0	2.5	1.0	5.2	8.2	40	73	22
14	22	12	48	17	4.8	2.3	.90	4.3	7.9	33	71	26
15	20	12	42	15	4.8	2.3	.90	3.0	21	29	68	39
16	18	11	30	14	4.5	2.1	.79	3.0	12	28	293	46
17	17	12	24	14	4.8	2.3	.79	20	124	24	219	37
18	16	15	22	15	5.0	2.5	.68	6.6	27	38	142	44
19	16	11	19	13	4.5	2.5	.68	4.1	18	35	94	56
20	14	10	18	12	4.3	2.0	3.5	3.4	55	96	70	381
21	14	10	17	11	4.1	4.5	1.9	3.0	26	107	56	118
22	13	12	16	11	4.1	3.0	1.8	2.8	18	52	46	74
23	13	18	15	11	4.1	5.0	1.5	3.4	102	44	40	57
24	12	12	16	10	4.3	3.4	3.9	3.5	42	37	38	47
25	23	10	16	10	4.3	1.9	2.0	3.2	28	52	45	41
26	15	10	23	9.9	4.1	1.8	1.2	3.0	20	37	33	101
27	13	112	341	9.5	3.9	1.8	1.4	3.0	19	37	31	137
28	12	81	94	9.2	3.7	1.6	1.6	2.8	17	54	27	76
29	12	30	54	8.7		1.6	19	3.5	28	315	26	60
30	11	20	39	8.2		1.6	60	5.4	27	174	29	59
31	10		33	7.9		1.6		4.8		87	30	
TOTAL	993	646.5	5 1210	518.4	147.0	84.8	119.34	137.4	664.6	2553	3188	1817
MEAN	32.0	21.6	39.0	16.7	5.25	2.74	3.98	4.43	22.2	82.4	103	60.6
MAX	144	11:		39	8.4	5.0	60	20	124	315	378	381
MIN	10	9.		7.9	3.7	1.6	.68	2.8	3.2	24	26	20
AC-FT	1970	1280		1030	292	168	237	273	1320	5060	6320	3600
CAL YR	1982	TOTAL	15121.0	MEAN	41.4	MAX	495	MIN	7.1	AC-FT	29990	
WTR YR	1983		12079.04	MEAN	33.1	MAX	381	MIN	.68	AC-FT	23960	

CAROLINE ISLANDS, PALAU ISLANDS

16891300 EDENG RIVER, BABELTHUAP

LOCATION.--Lat 07°23'00" N., long 134°33'07" E., Hydrologic Unit 20100006, on left bank 1,000 ft upstream from confluence with Kmekumel River, 0.7 mi north of Palau Mission Academy, and 2.1 mi northeast of airport terminal.

DRAINAGE AREA .-- 4.26 mi2.

PERIOD OF RECORD. --October 1969 to current year (discontinued). Prior to October 1980, published as Gaden River.

REVISED RECORDS.--WDR HI-79-2: 1970-78(P). WDR HI-81-2: Drainage area.

GAGE.--Water-stage recorder. Altitude of zero of gage is 2 ft, from stadia survey. Prior to Dec. 9, 1974, at site 300 ft downstream at datum 0.30 ft lower.

REMARKS.--Records fair except those for periods of no gage-height record, which are poor. Small amount of water is pumped from site 300 ft upstream from station for irrigation. Continuous record of rainfall is obtained near station. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE.--14 years, 31.7 ft3/s (22,970 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,850 ft³/s Apr. 13, 1979, gage height, 18.2 ft, from rating curve extended above 118 ft³/s on basis of measurement at gage height 13.0 ft; minimum, 1.1 ft³/s Apr. 15-17, 1983.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 800 ft 3/s and maximum (*):

Date		Time	Discharge (ft³/s)	Gage height (ft)
Dec.	27	0630	917	11.88
Aug.	16	a1800	a1500	unknown
Sept.	20	a0300	*a1700	unknown

Minimum discharge, 1.1 ft 3/s Apr. 15-17.

a About.

		DI	SCHARGE (C	UBIC FEET/		WATER YEA AN VALUES		1982 ТО	SEPTEMBER	1983		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	53	7.6	9.9	21	5.6	2.2	1.6	4.0	3.0	57	27	20
2	73	8.1		25	5.6	2.2	1.8	2.5	2.7	23	23	17
3	111	21	8.3	20	6.1	2.2	1.6	2.3	2.5	17	21	15
4	101	9.9		16	5.6	2.2	1.6	2.1	2.5	34	18	13
5	46	12	7.8	15	5.1	2.2	1.4	2.1	3.5	23	30	11
6	32	10	9.9	19	4.9	3.0	1.4	2.1	3.5	109	25	15
7	26	11	11	22	4.6	3.8	1.4	2.5	4.0	98	60	11
8	24	9.1		15	4.4	3.0	1.4	2.5	5.5	60	65	10
9	22	7.8		13	4.4	2.8	1.4	2.5	3.0	34	150	15
10	25	8.9		13	4.4	2.8	1.2	2.1	2.7	26	60	13
11	26	8.1	9.6	12	4.4	2.5	1.2	2.1	6.5	23	50	20
12	26	12	15	13	4.4	2.2	1.2	2.1	4.5	22	40	13
13	20	9.1		13	4.2	2.2	1.2	2.7	5.5	19	30	10
14	17	7.8		12	4.2	2.5	1.2	2.3	4.0	15	30	11
15	16	7.3		12	4.2	2.2	1.1	2.1	15	14	40	17
16	15	6.8	13	11	4.2	2.5	1.1	2.1	6.0	13	300	25
17	14	6.8	11	11	4.9	2.8	1.1	10	40	12	100	21
18	13	7.3	10	10	4.9	3.0	1.3	4.5	10	20	65	25
19	13	6.6	9.6	8.9	4.4	2.5	2.0	3.5	8.0	15	45	30
20	12	6.1		8.3	4.0	2.5	3.0	2.5	30	19	35	300
21	12	6.1	13	8.1	3.8	4.6	2.0	2.0	9.0	20	30	60
22	11	8.6	8.6	7.8	3.5	3.8	1.6	1.7	7.0	15	26	40
23	11	9.5	7.8	7.8	3.5	6.1	1.6	2.5	35	14	23	30
24	10	9.5	8.3	7.6	3.5	3.8	2.0	2.0	15	13	20	25
25	13	7.1	8.6	7.1	3.2	2.8	1.6	2.0	11	14	25	20
26	10	6.3	12	6.8	3.0	2.2	1.4	5.0	8.0	12	20	60
27	9.6	36	243	7.1	2.8	2.0	1.6	3.5	7.0	13	17	70
28	8.9	41	60	6.6	2.5	2.0	1.6	2.7	6.0	23	15	40
29	11	18	35	6.3		2.0	3.5	2.5	7.0	84	15	30
30	8.3	12	26	6.1		1.8	13	5.0	12	54	15	27
31	8.1		22	5.9		1.8		4.0		30	13	
TOTAL	797.9	337.4	713.9	367.4	120.3	84.2	59.1	91.5	279.4	945	1433	1014
MEAN	25.7	11.2		11.9	4.30	2.72	1.97	2.95	9.31	30.5	46.2	33.8
MAX	111	41		25	6.1	6.1	13	10	40	109	300	300
MIN	8.1	6.1		5.9	2.5	1.8	1.1	1.7	2.5	12	13	10
AC-FT	1580	669	1420	729	239	167	117	181	554	1870	2840	2010
CAL YR WTR YR		TOTAL TOTAL	11096.9 6243.1	MEAN MEAN	30.4 17.1	MAX MAX	323 300	MIN MIN	6.1 1.1	AC-FT AC-FT	22010 12380	

NOTE. -- No gage-height record Apr. 12 to June 29, Aug. 3 to Sept. 30.

16891310 KMEKUMEL RIVER, BABELTHUAP

LOCATION. -- Lat 07°23'14" N., long 134°32'42" E., Hydrologic Unit 20100006, 0.5 mi upstream from confluence with Edeng River and 1.1 mi north of Palau Mission Academy.

DRAINAGE AREA .-- 1.44 mi2.

PERIOD OF RECORD.--September 1978 to current year. Low-flow partial-record station operated "at mouth" 1970-78. Prior to October 1980, published as Kumekumeyel River.

REVISED RECORDS. -- WDR HI-81-2: Drainage area.

GAGE. -- Water-stage recorder. Altitude of gage is 96.44 ft, from stadia survey.

REMARKS.--Records good. No diversion above gage. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 5 years, 8.96 ft 3/s (6,490 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,560 ft³/s Apr. 13, 1979, gage height, 10.53 ft, from rating curve extended above 106 ft³/s on basis of slope-area measurement at gage height 10.53 ft; minimum, 0.18 ft³/s Apr. 14-17, 1983.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 450 ft 3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)
Aug. 16	1800	*772	7.86
Sept. 2	0300	579	6.97

Minimum discharge, 0.18 ft 3/s Apr. 14-17.

		DI	SCHARGE (C	UBIC FEET/		WATER YEA EAN VALUES		R 1982 TO	SEPTEMBE	R 1983		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	13	1.8		6.0	1.5	.56	.35	.62	.50	15	8.6	4.3
2	23	2.0	2.4	7.0	1.4	.56	.35	. 45	. 45	7.0	7.0	5.6
3	30	4.1	2.1	5.8	1.4	.56	.30	.40	.40	5.8	6.2	5.4
4	28	2.4		4.8	1.3	.56	.30	.35	. 45	7.6	5.8	4.6
5	12	2.4		4.3	1.2	.56	.30	.35	.50	6.6	9.8	4.1
6 7 8	8.2	2.7		5.4	1.2	.62	.26	.35	.45	31	8.4	5.0 4.3
7	6.6	3.6		6.2	1.1	.68	.26	.30	.50	27	13	4.3
	5.8	2.6		4.3	1.0	.56	.26	.30	.62	18	21	3.7
9	5.4	2.2		3.9	.94	.56	.26	.30	. 45	11	51	5.4
10	5.4	2.5	2.1	3.5	.94	.50	.22	.30	. 40	7.7	25	4.3
11	5.6	2.6		3.5	.94	.50	.22	.26	.50	7.3	17	9.0
12	6.2	2.6		3.5	.84	. 45	.22	.26	.50	7.3	13	5.0
13	4.8	2.2		3.9	.84	.40	.22	.35	.94	5.6	11	4.3
14	4.1	2.1		3.4	.75	. 45	.22	.30	.62	4.6	9.6	4.4 7.1
15	3.9	2.0	6.8	3.0	.75	.45	.18	.26	2.0	4.3	30	7.1
16	3.5	1.8		2.7	.75	.45	.18	.22	1.2	3.7	101	11
17	3.5	2.0		3.0	.94	. 45	.18	2.7	8.0	3.4	45	8.9
18	3.4	2.1		2.9	.94	. 45	.22	.62	2.1	3.9	26	8.3
19	3.0	1.8		2.6	.75	. 40	.30	.45	1.7	3.5	18	8.4
20	2.9	1.7	3.0	2.5	.68	. 40	.56	. 40	3.4	5.3	14	78
21	2.9	1.6	3.8	2.4	.68	.68	.35	.40	2.6	5.9	11	31
22	2.7	2.6		2.2	.62	.50	.30	.35	2.4	4.1	9.6	18
23	2.7	2.0		2.2	.62	.84	.30	.35	9.0	4.3	8.2	13
24	2.6	2.0		2.1	.60	.56	.56	.40	4.3	3.5	8.8	10
25	2.5	1.7		2.1	.56	.45	.30	.40	2.4	4.3	8.4	8.4
26	2.4	1.5	3.5	2.0	.56	.40	.26	.40	2.4	3.5	6.6	16
27	2.4	7.9	70	2.0	.62	.40	.26	.45	2.4	3.4	6.2	26
28	2.2	10	20	1.8	.62	.40	.30	.40	1.7	8.4	5.4	14
29	2.8	4.4	10	1.7		.35	.45	.35	1.6	31	5.9	11
30	2.1	3.0		1.6		.35	2.9	.62	3.2	17	5.0	11
31	2.0		6.2	1.6		.35	711	.62		10	4.6	
TOTAL	205.6	83.9	211.1	103.9	25.04	15.40	11.34	14.28	57.68	281.0	520.1	349.5
MEAN	6.63	2.80	6.81	3.35	.89	.50	.38	.46	1.92	9.06	16.8	11.6
MAX	30	10	70	7.0	1.5	.84	2.9	2.7	9.0	31	101	78
MIN	2.0	1.5	2.0	1.6	.56	.35	.18	.22	.40	3.4	4.6	3.7
AC-FT	408	166		206	50	31	22	28	114	557	1030	693
CAL YR		TOTAL	3082.0	MEAN	8.44	MAX	98	MIN	1.5	AC-FT	6110	
WTR YR		TOTAL	1878.84	MEAN	5.15	MAX	101	MIN	.18	AC-FT	3730	

16891400 SOUTH FORK NGERDORCH RIVER, BABELTHUAP

LOCATION.--Lat 07°26'19" N., long 134°34'28" E., Hydrologic Unit 20100006, on right bank 0.3 mi from left-bank tributary, 1.3 mi west of Rrai village, and 1.5 mi upstream from confluence with North Fork Ngerdorch River.

DRAINAGE AREA .-- 2.44 mi 2.

PERIOD OF RECORD. -- March 1971 to current year. Prior to October 1980, published as South Fork Ngardok River.

REVISED RECORDS.--WDR HI-75-1: 1971(M), 1972, 1973(P), 1974. WDR HI-81-2: Drainage area.

GAGE.--Water-stage recorder. Altitude of gage is 25 ft, revised, from topographic map.

REMARKS.--Records fair except those for period of no gage-height record, which are poor. No diversion above station. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 12 years, 19.1 ft 3/s (13,840 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,750 ft³/s Dec. 13, 1974, gage height, 9.19 ft, from rating curve extended above 65 ft³/s on basis of field estimate at gage height 7.57 ft; minimum, 0.48 ft³/s Apr. 16-17, 1983.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 750 ft3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date		Time	Discharge (ft ³ /s)	Gage height (ft)
Dec. 27	0700	912	4.37	Aug.	16	1900	1000	4.52
July 29	1800	755	4.07	Sept.	20	0400	*1320	5.00

Minimum discharge, 0.48 ft3/s Apr. 16, 17.

		DI	SCHARGE (C	JBIC FEET/S		WATER YEA		1982 ТО	SEPTEMBER	1983		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	29	3.8	5.7	10	2.6	1.6	.90	2.7	1.8	64	18	11
2	56	4.1		12	2.6	1.4	.90	1.6	1.6	20	18	10
3	72	19	4.7	10	3.0	1.4	.90	1.4	1.4	16	15	9.0
4	47	6.6		9.0	2.5	1.4	.90	1.2	1.4	23	13	7.6
5	23	6.1		8.0	2.3	1.6	.90	1.2	2.1	18	18	6.6
6	15	4.7	5.7	9.0	2.2	2.1	.75	1.2	2.1	65	16	8.1
7	13	4.1	6.1	13	2.1	2.4	.75	1.4	2.4	60	35	6.6
8	11	4.1	4.4	8.0	2.0	2.1	.75	1.4	3.2	37	37	6.1
9	10	3.8	4.1	7.5	1.9	1.8	.75	1.4	1.8	24	120	9.2
10	12	3.8	6.9	7.0	1.9	1.8	.75	1.2	1.6	18	37	7.1
11	19	3.8		6.5	1.8	1.6	.75	1.2	3.8	16	29	13
12	13	6.0	9.0	6.0	1.8	1.6	.75	1.2	2.7	17	23	8.1
13	11	4.1	56	6.0	1.7	1.4	.75	1.6	3.0	15	19	6.6
14	8.5	3.5	16	6.5	1.6	1.4	.60	1.4	2.4	13	18	7.6
15	8.1	3.5	13	5.5	1.6	1.2	.60	1.2	13	11	25	11
16	7.6	3.2		5.0	1.8	1.2	.60	1.2	4.4	9.0	168	15
17	6.6	3.2	8.5	5.0	2.4	1.4	.60	7.8	48	8.5	70	13
18	6.1	3.8	8.5	5.5	2.4	1.6	.75	2.7	13	20	37	15
19	6.1	3.2	8.1	5.0	2.1	1.6	.90	2.1	8.6	14	27	18
20	5.7	3.0	7.6	4.5	2.1	1.4	1.2	1.4	22	17	22	177
21	5.7	3.0	7.6	4.0	1.8	2.7	1.0	1.2	10	19	18	39
22	5.2	3.8	7.6	3.7	1.6	1.8	.90	1.0	7.6	13	16	25
23	5.2	4.7	7.1	3.5	1.8	3.5	.90	1.4	24	13	14	20
24	5.7	4.4	7.1	3.5	1.8	1.6	1.2	1.2	15	11	13	18
25	9.1	3.2	8.1	3.5	1.6	1.2	1.0	1.2	9.5	13	15	15
26	5.7	3.0	8.5	3.3	1.6	1.2	.75	2.9	7.1	10	12	36
27	4.7	56	155	3.3	1.8	1.2	.90	2.1	6.1	11	11	43
28	4.4	25	30	3.1	1.8	1.2	1.0	1.6	5.2	14	9.0	24
29	4.1	10	18	3.0		1.0	3.0	1.4	5.7	95	9.0	19
30	4.1	7.1	13	2.8		1.0	13	3.0	8.5	36	9.0	18
31	3.8		11	2.7		1.0		2.4		21	8.1	
TOTAL	437.4	217.6	466.0	185.4	56.2	49.4	39.40	55.9	239.0	741.5	899.1	622.6
MEAN	14.1	7.25	15.0	5.98	2.01	1.59	1.31	1.80	7.97	23.9	29.0	20.8
MAX	72	56	155	13	3.0	3.5	13	7.8	48	95	168	177
MIN	3.8	3.0	4.1	2.7	1.6	1.0	.60	1.0	1.4	8.5	8.1	6.1
AC-FT	868	432		368	111	98	78	111	474	1470	1780	1230
CAL YR WTR YR		TOTAL TOTAL	6001.9 4009.50	MEAN MEAN	16.4 11.0	MAX MAX	232 177	MIN MIN	3.0	AC-FT AC-FT	11900 7950	

NOTE .-- No gage-height record Dec. 28 to Feb. 14.

16892000 QATLIW STREAM, YAP

LOCATION.--Lat 09°32'58" N., long 138°06'41" E., Hydrologic Unit 20100006, on right bank 90 ft below confluence with major tributary, 0.5 mi upstream from mouth, and 2.6 mi northwest of Colonia.

DRAINAGE AREA. -- 0.31 mi2.

PERIOD OF RECORD. -- January 1982 to current year.

GAGE.--Water-stage recorder and concrete control. Altitude of gage is 40 ft, from topographic map.

REMARKS.--Records good except those for period of no gage-height record, which are poor. No diversion above station. Periodic determinations of water temperature for the current year are published elsewhere in this report.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 874 ft³/s June 21, 1982, gage height, 5.96 ft, from rating curve extended above 10 ft³/s; no flow at times each year.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 200 ft 3/s and maximum (*):

Date		Time	Discharge (ft³/s)	Gage height (ft)
July	21	a0800	*a300	Unknown
Sept.		a1000	280	3.80

No flow for many days.

a About.

		DISC	CHARGE (CUBI	C FEET/SE	ECOND)	WATER YEAR EAN VALUES	OCTOBER	1982 TO	SEPTEMBER	1983		
DAY	OCT	NOV	DEC	JAN	FEB		APR	MAY	JUN	JUL	AUG	SEP
1	.10	.06	.11	.01	.00	.00	.00	.00	.00	.58	2.5	.10
2	.08	.10	.08	.02	.00		.00	.00	.00	.65	.50	.07
3	.06	.05	.08	.01	.00		.00	.00	.00	.54	.10	10
4	.05	.04	.05	.01	.00		.00	.00		7.1	4.0	1.0
5	.06	.03	1.2	.01	.00		.00	.00	.00	.98	6.0	.45
5	.06	.03	1.2	.01	.00	.00	.00	.00	.00	.90	0.0	.45
6	.11	.03	1.9	.01	.00	.00	.00	.00	.00	.27	15	. 45
7	1.7	.03	1.9	.01	.00	.00	.00	.00	.00	.13	13	.20
8	4.5	.05	6.3	.01	.00	.00	.00	.00	.00	.30	10	.10
9	5.1	.10	.94	.01	.00	.00	.00	.00	.00	.11	6.0	1.5
10	1.4	.04	3.2	.01	.00	.00	.00	.00	.00	.06	1.5	1.0
11	.45	.02	2.8	.01	.00	.00	.00	.00	.00	.25	1.5	.30
12	.11	.02	2.8	.00	.00		.00	.00		5.0	1.0	.15
13	.06	.02	5.9	.00	.00		.00	.00		.60	.50	.15
14	.06	.03	.88	.00	.00		.00	.00		.15	.25	.20
15	.04	.02	.19	.00	.00		.00	.00		.05	1.0	.20
13	.04	.02	.19	.00	.00	.00	.00	•00	•00	.05	1.0	.20
16	.04	.02	.10	.00	.00		.00	.00	.00	.04	1.5	.65
17	.04	.01	.08	.00	.00		.00	.00	.00	.03	5.0	.30
18	. 45	.01	.08	.00	.00		.00	.00	.00	.02	5.0	2.0
19	.30	.01	.06	.00	.00		.00	.00	.00	.02	1.0	.50
20	. 45	.01	.05	.00	.00	.00	.00	.00	.06	3.0	.50	.30
21	3.4	.01	.04	.00	.00	.00	.00	.00	.06	30	.25	2.5
22	.70	1.0	.03	.00	.00		.00	.00	.63	2.5	.10	5.0
23	. 23	.34	.02	.00	.00		.00	.00		1.5	.07	1.0
24	.11	.06	.08	.00	.00		.00	.00	.51	7.0	.05	.30
25	.13	.03	.05	.00	.00		.00	.00	.13	1.5	6.0	1.0
0.5		0.2	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.5		
26	.11	.03	.02	.00	.00		.00	.00	.10	2.5	.50	6.0
27	.08	.02	.01	.00	.00		.00	.00	.06	.65	.20	1.5
28	.05	.02	.01	.00	.00		.00	.00		.20	.10	3.0
29	.04	.01	.01	.00		.00	.00	.00	.02	.10	.07	1.0
30	.03	1.1	.01	.00		.00	.00	.00		.05	.40	. 40
31	.06		.01	.00		.00		.00		.50	.20	
TOTAL	20.10	3.32	28.99	.12	.00	.00	.00	.00	5.82	66.38	83.79	41.32
MEAN	.65	.11	.94	.004	.00	9.575	.00	.00		2.14	2.70	1.38
MAX	5.1	1.1	6.3	.02	.00		.00	.00	4.1	30	15	10
MIN	.03	.01	.01	.00	.00		.00	.00		.02	.05	.07
AC-FT	40	6.6	58	.2	.00		.00	.00	12	132	166	82
110-11	40	0.0	20		.00	.00	.00	.00	12	132	100	02
CAL YR		TOTAL	557.72	MEAN	1.53		106	MIN	.00	AC-FT	1110	
WTR YR	1983	TOTAL	249.84	MEAN	.68	MAX	30	MIN	.00	AC-FT	496	

NOTE. -- No gage-height record July 11 to Sept. 30.

CAROLINE ISLANDS, YAP ISLANDS

16892400 QARINGEEL STREAM, YAP

LOCATION.--Lat 09°31'02" N., long 138°05'31" E., Hydrologic Unit 20100006, on right bank at Qaringeel and 0.3 mi southwest of Dalipeebinaew School.

DRAINAGE AREA .-- 0.24 mi2.

PERIOD OF RECORD.--April 1968 to current year. Prior to October 1980, published as Aringel Stream.

GAGE. -- Water-stage recorder and concrete control. Altitude of gage is 15 ft, from topographic map.

REMARKS.--Records fair. No diversion above station. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE.--15 years, 1.09 ft3/s (790 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 674 ft³/s July 13, 1981, gage height, 7.82 ft, from rating curve extended above 20 ft³/s; no flow at times.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 200 ft 3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)
July 21	0900	*444	6.59
Aug. 25	0230	227	5.14
Sept. 3	1000	250	5.30

No flow for many days.

		DISC	CHARGE (CUE	BIC FEET/SI		ATER YEAR	OCTOBER	1982 TO S	SEPTEMBER	1983		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.90	.01	.03	.01	.00	.00	.00	.00	.00	.04	1.3	.11
2	.44	.01	.02	.01	.00	.00	.00	.00	.00	.03	.35	.16
3	.21	.01	.01	.01	.00	.00	.00	.00	.00	2.2	3.6	9.6
4	.17	.01	.01	.01	.00	.00	.00	.00	.00	5.0	4.6	.65
5	.14	.01	.02	.01	.00	.00	.00	.00	.00	1.0	5.6	.33
6	.17	.01	.22	.01	.00	.00	.00	.00	.00	.30	17	.23
7	8.7	.01	.16	.01	.00	.00	.00	.00	.00	.15	13	.16
8	2.7	.01	1.6	.01	.00	.00	.00	.00	.00	.50	2.8	.08
9	3.1	. 29	.61	.00	.00	.00	.00	.00	.00	.30	5.6	.10
10	.65	.08	1.1	.00	.00	.00	.00	.00	.00	.10	1.9	.11
11	.23	.03	1.1	.00	.00	.00	.00	.00	.00	2.4	.73	.10
12	.11	.03	2.6	.00	.00	.00	.00	.00	.00	5.0	3.9	.08
13	.05	.02	1.9	.00	.00	.00	.00	.00	.00	.70	1.0	.05
14	.03	.01	. 41	.00	.00	.00	.00	.00	.00	. 27	1.5	.04
15	.03	.01	.19	.00	.00	.00	.00	.00	.00	.13	3.3	.16
16	.02	.01	.11	.00	.00	.00	.00	.00	.00	.07	4.8	.31
17	.01	.01	.05	.00	.00	.00	.00	.00	.00	.04	5.7	.13
18	.03	.01	.04	.00	.00	.00	.00	.00	.00	.04	2.0	3.2
19	.04	.01	.03	.00	.00	.00	.00	.00	.00	.05	1.4	.50
20	.04	.01	.02	.00	.00	.00	.00	.00	.02	3.7	.53	.16
21	.11	.00	.02	.00	.00	.00	.00	.00	.00	41	.19	6.0
22	.07	.00	.01	.00	.00	.00	.00	.00	.04	1.8	.13	3.5
23	.05	.01	.01	.00	.00	.00	.00	.00	2.0	1.3	.05	.86
24	.03	.01	.03	.00	.00	.00	.00	.00	.37	7.5	.03	.35
25	.03	.01	.03	.00	.00	.00	.00	.00	.16	2.7	10	5.5
26	.02	.01	.03	.00	.00	.00	.00	.00	.07	5.9	.44	3.3
27	.01	.01	.02	.00	.00	.00	.00	.00	.03	.71	. 27	.65
28	.01	.01	.01	.00	.00	.00	.00	.00	.02	.65	.16	1.8
29	.01	.01	.02	.00		.00	.00	.00	.02	1.2	.08	.73
30	.01	.04	.02	.00		.00	.00	.00	.05	.39	.10	.33
31	.01	1	.01	.00		.00		.00		.33	.10	
TOTAL	18.13	.71	10.44	.08	.00	.00	.00	.00	2.78	85.50	92.16	39.28
MEAN	.58	.024	.34	.003	.00	.00	.00	.00	.093	2.76	2.97	1.31
MAX	8.7	.29	2.6	.01	.00	.00	.00	.00	2.0	41	17	9.6
MIN	.01	.00	.01	.00	.00	.00	.00	.00	.00	.03	.03	.04
AC-FT	36	1.4	21	. 2	.00	.00	.00	.00	5.5	170	183	78
CAL YR		TOTAL	444.33	MEAN	1.22	MAX	92	MIN	.00	AC-FT	881	
WTR YR	1983	TOTAL	249.08	MEAN	.68	MAX	41	MIN	.00	AC-FT	494	

16893100 BURONG STREAM, YAP

LOCATION.--Lat 09°32'05" N., long 138°07'19" E., Hydrologic Unit 20100006, on left bank at Dugor, 0.25 mi upstream from mouth, and 0.5 mi northeast of Mount Gamuw.

DRAINAGE AREA .-- 0.23 mi2.

PERIOD OF RECORD. -- April 1968 to current year.

REVISED RECORDS. -- WDR HI-79-2: Drainage area, 1968-78(P).

GAGE.--Water-stage recorder and concrete control. Altitude of gage is 15 ft, from topographic map.

REMARKS.--Records good. No diversion above station. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE.--15 years, 0.942 ft3/s (682 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 550 ft³/s June 21, 1982, gage height, 5.45 ft, from rating curve extended above 15 ft³/s; no flow at times.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 100 ft3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)
July 21	0800	*125	3.60
Sept. 3	1000	105	3.44

No flow for many days.

		DISC	CHARGE (CUB)	C FEET/SI		ATER YEAR N VALUES	OCTOBER	1982 TO S	EPTEMBER	1983		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.55	.02	.08	.01	.00	.00	.00	.00	.00	.07	2.2	.08
2	.30	.02	.04	.01	.00	.00	.00	.00	.00	.09	.37	.06
3	.11	.02	.02	.01	.00	.00	.00	.00	.00	.38	.14	8.9
4	.09	.01	.02	.00	.00	.00	.00	.00	.00	5.2	3.6	.95
5	.09	.01	. 87	.00	.00	.00	.00	.00	.00	.98	5.8	.40
6	.09	.01	.96	.00	.00	.00	.00	.00	.00	.40	12	.37
7	2.3	.01	.63	.00	.00	.00	.00	.00	.00	.30	9.8	.14
8	3.2	.02	4.6	.00	.00	.00	.00	.00	.00	. 80	3.8	.08
9	4.1	.14	.65	.00	.00	.00	.00	.00	.00	.18	2.1	1.4
10	1.0	.04	1.7	.00	.00	.00	.00	.00	.00	.03	. 85	. 80
11	.37	.02	1.8	.00	.00	.00	.00	.00	.00	.14	.90	.24
12	.18	.01	1.6	.00	.00	.00	.00	.00	.00	3.9	. 57	.13
13	.11	.02	2.8	.00	.00	.00	.00	.00	.00	.60	.24	.13
14	.10	.01	.53	.00	.00	.00	.00	.00	.00	.11	.13	.18
15	.06	.01	.14	.00	.00	.00	.00	.00	.00	.03	1.0	.18
16	.05	.01	.09	.00	.00	.00	.00	.00	.00	.00	1.5	.60
17	.05	.01	.06	.00	.00	.00	.00	.00	.00	.00	4.1	.30
18	.08	.00	.04	.00	.00	.00	.00	.00	.00	.00	3.1	1.8
19	.16	.00	.03	.00	.00	.00	.00	.00	.00	.00	.85	.60
20	.22	.00	.02	.00	.00	.00	.00	.00	.00	2.5	.50	.22
21	1.0	.00	.01	.00	.00	.00	.00	.00	.00	22	.18	2.1
22	.22	.01	.01	.00	.00	.00	.00	.00	.00	2.2	.08	4.4
23	.11	.11	.01	.00	.00	.00	.00	.00	1.1	1.3	.04	.60
24	.08	.04	.02	.00	.00	.00	.00	.00	.05	6.4	.01	.24
25	.06	.02	.02	.00	.00	.00	.00	.00	.00	1.5	5.4	.88
26	.05	.02	.01	.00	.00	.00	.00	.00	.00	2.6	.53	5.2
27	.03	.01	.01	.00	.00	.00	.00	.00	.00	.70	.20	1.0
28	.02	.01	.01	.00	.00	.00	.00	.00	.00	.22	.09	2.6
29	.02	.01	.02	.00		.00	.00	.00	.22	.14	.06	.90
30	.01	. 47	.01	.00		.00	.00	.00	.68	.09	.28	.34
31	.02		.01	.00		.00		.00		.51	.16	
TOTAL	14.83	1.09	16.82	.03	.00	.00	.00	.00	2.05	53.37	60.58	35.82
MEAN	.48	.036	.54	.001	.00	.00	.00	.00	.068	1.72	1.95	1.19
MAX	4.1	- 47	4.6	.01	.00	.00	.00	.00	1.1	22	12	8.9
MIN	.01	.00	.01	.00	.00	.00	.00	.00	.00	.00	.01	.06
AC-FT	29	2.2	33	.06	.00	.00	.00	.00	4.1	106	120	71
CAL YR WTR YR		TOTAL	457.50 184.59	MEAN MEAN	1.25	MAX MAX	115 22	MIN MIN	.00	AC-FT AC-FT	907 366	

16893200 MUKONG STREAM, GAGIL-TAMIL

LOCATION.--Lat 09°32'05" N., long 138°10'18" E., Hydrologic Unit 20100006, on right bank 0.2 mi upstream from mouth and 0.9 mi south of U.S. Coast Guard LORAN station.

DRAINAGE AREA .-- 0.50 mi2.

PERIOD OF RECORD. -- Occasional low-flow measurements, water years 1972-75, December 1974 to June 1978, July to September 1978, stage-discharge relation indefinite due to blocked control. October 1978 to current year.

REVISED RECORDS. -- WDR HI-79-2: Drainage area.

GAGE.--Water-stage recorder. Altitude of gage is 5 ft, from topographic map.

REMARKS.--Records fair. At times some water is pumped from above station for village use. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE.--7 years (water years 1976-77, 1979-83), 1.97 ft3/s (1,430 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 153 ft³/s June 21, 1982, gage height, 4.10 ft, from rating curve extended above 18 ft³/s; minimum, 0.02 ft³/s May 17-23, 1983.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 47 ft 3 /s July 21, gage height, 2.98 ft, no peak above base of 50 ft 3 /s; minimum, 0.02 ft 3 /s May 17-23.

		DIS	CHARGE (CUI	BIC FEET/S		ATER YEAR N VALUES	OCTOBER	1982 TO S	EPTEMBER	1983		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	9.3	1.5	1.3	.66	.22	.13	.32	.04	.07	.29	2.0	1.1
2	6.2	1.6	1.1	.62	.20	.13	.29	.04	.05	.32	2.3	1.3
3	3.0	1.0	.95	.59	.20	.13	.19			.45	2.3	5.7
4	2.1	.95						-04	.11			
5				.56	.20	.13	.13	.04	.11	1.7	2.4	3.1
5	2.1	1.0	1.6	.56	.19	.13	.11	.04	.09	2.0	4.5	3.1
6	2.1	.95	2.6	.52	.19	.13	.11	.04	.07	1.3	8.0	2.4
7	7.1	.95		.48	.19	.11	.09	.04	.07	1.1	9.0	1.7
8	6.5	1.8	4.4	.48	.19	.11	.09	.04	.05	.90	5.9	1.6
9	6.4	4.2	3.3	. 45	.19	.11	.09	.03	.05	.72	3.8	2.0
10	3.8	2.0	5.3	. 42	.19	.11	.09	.03	.09	.63	2.8	2.9
11	2.4	1.8	4.2	.38	.19	.11	.07	.03	.13	.68	2.4	2.1
12	1.9	1.4	4.1	.38	.19	.11	.07	.03	.11	1.4	2.2	1.7
13	2.1	2.3	4.0	.36	.19	:11	.07	.03	.11	1.7	1.9	1.4
14	2.3	1.9	2.5	.34	.16	.11	.07	.03	.13	1.3	1.6	1.4
15	1.6	1.8	1.5	.31	.19	.11	.07	.03	.16	.90	2.0	1.8
13	1.0	1.0	1.5	•31	.19	.11	.07	.03	.10	.90	2.0	1.0
16	1.4	2.0	1.1	.34	.16	.11	.07	.03	.13	.68	2.3	2.2
17	1.8	1.7	1.0	.31	.16	.11	.07	.02	.11	.58	5.2	1.4
18	2.7	1.6	1.0	.31	.16	.11	.07	.02	.09	.54	9.1	1.9
19	2.6	1.5	.95	.31	.16	.11	.07	.02	.14	.54	3.7	1.6
20	2.2	1.4	.90	.29	.16	.09	.07	.02	.30	. 86	2.7	1.4
21	2.1	1.1	90	21	16	0.0	0.7	0.2	.50	1.5	2.2	3.3
	2.1	1.1	. 80	.31	.16	.09	.07	.02		15		
22	1.7	1.0	.76	.30	.16	.09	.05	.02	.50	4.9	1.6	7.4
23	2.1	1.2	.76	.29	.16	-09	.05	.02	1.0	2.7	1.3	3.4
24	2.2	.62		. 27	.13	.09	.05	.02	.90	3.5	1.2	2.6
25	1.5	.59	1.0	. 27	.13	.09	.05	.10	.60	3.5	4.8	3.3
26	1.3	.71		.29	.13	.09	.05	.09	.50	4.0	2.7	5.2
27	1.0	.62	. 80	. 27	.13	.09	.05	.07	.40	3.1	2.0	2.5
28	1.0	. 80	.76	.24	.13	.09	.05	.05	.30	2.4	1.9	3.1
29	.90	. 85	. 80	.24		.23	.05	.05	.29	2.0	2.0	2.3
30	.90	3.0	.76	.24		. 42	.05	.07	.32	1.7	2.0	1.8
31	1.2		.71	.22		.35		.07		1.6	1.6	222
TOTAL	85.50	43.84	54.40	11.61	4.81	4.02	2.73	1.22	7.48	62.99	100.0	76.7
MEAN	2.76	1.46		.37	.17	.13	.091	.039	.25	2.03	3.23	2.56
MAX	9.3	4.2		.66	.22	.42	.32	.10	1.0	15	9.1	7.4
MIN	.90	.59		.22	.13	.09	.05	.02	.05	.29		1.1
AC-FT	170	87		23							1.2	
NC-FI	170	87	108	23	9.5	8.0	5.4	2.4	15	125	198	152
CAL YR	1982	TOTAL	1072.17	MEAN	2.94	MAX	79	MIN	.24	AC-FT	2130	
WTR YR	1983	TOTAL	455.30	MEAN	1.25	MAX	15	MIN	.02	AC-FT	903	

16893400 EYEB STREAM, GAGIL-TAMIL

LOCATION.--Lat 09°33'02" N., long 138°09'03" E., Hydrologic Unit 20100006, on left bank 0.6 mi southeast of the Tagireeng Canal bridge and 1.2 mi northwest of the Coast Guard LORAN Station.

DRAINAGE AREA .-- 0.22 mi2.

PERIOD OF RECORD. -- January 1982 to current year.

GAGE.--Water-stage recorder and concrete control. Altitude of gage is 15 ft, from topographic map.

REMARKS.--Records fair. No diversion above station. Periodic determinations of water temperature for the current year are published elsewhere in this report.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 490 ft³/s June 21, 1982, gage height, 6.22 ft, from rating curve extended above 14 ft³/s; minimum, 0.01 ft³/s for many days in May 1983.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 93 ft³/s July 21, gage height, 3.43 ft, no peak above base of 150 ft³/s; minimum, 0.01 ft³/s for many days in May.

		DIS	CHARGE (CUB	IC FEET/SI		WATER YEAR AN VALUES	OCTOBER	1982 TO	SEPTEMBER	1983		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	3.5	. 80	. 83	.39	.07	.04	.13	.02	.09	.29	2.6	1.1
2	2.1	. 80	.64	.39	.07	.03	.11	.02	.05	.24	2.2	1.1
3	1.3	.50	.59	.34	.07	.03	.05	.02	.11	.24	2.2	5.6
4	1.1	. 45	.54	.34	.07	.03	.03	.02	.19	2.1	2.5	2.4
5	1.2	.55	1.3	.29	.07	.03	.03	.02	.16	2.0	3.7	2.0
6	1.3	. 45	1.5	.24	.07	.03	.02	.01	.11	1.2	8.1	1.9
7	3.5	. 45	1.1	.24	.07	.03	.02	.01	.09	1.1	8.0	1.4
8	3.5	.90	2.2	.29	.07	.03	.02	.01	.07	.97	5.7	1.3
9	3.4	2.0	1.5	.24	.07	.03	.02	.01	.04	.80	3.9	2.6
10	2.0	. 80	4.0	.24	.05	.03	.02	.01	.07	.76	3.0	2.9
11	1.4	.76	2.8	.19	.05	.03	.02	.01	.29	.64	2.7	1.7
12	1.3	.59	2.6	.19	.04	.03	.02	.02	.24	2.0	2.1	1.4
13	1.3	. 83	6.1	.19	.04	.03	.02	.01	.16	2.1	1.7	1.4
14	1.3	. 83	2.2	.16	.04	.03	.02	.01	.16	1.1	1.5	1.3
15	.97	.75	1.5	.16	.04	.03	.02	.01	.39	.76	1.9	1.6
16	.90	.90	1.3	.19	.03	.03	.02	.01	.29	.64	2.2	2.1
17	.97	.80	1.1	.16	.03	.02	.02	.01	.19	.59	7.1	1.3
18	1.7	.75	.97	.13	.03	.02	.02	.01	.13	.59	5.8	1.3
19	1.3	.75	.90	.13	.03	.02	.02	.01	.29	.59	3.0	1.3
20	1.3	.70	.83	.11	.03	.02	.02	.01	.54	1.0	2.2	1.2
21	1.3	.60	.76	.11	.03	.02	.02	.01	.52	26	1.6	3.0
22	.97	.50	.69	.11	.03	.02	.02	.01	.54	6.2	1.3	7.0
23	. 83	.70	.64	.09	.03	.02	.02	.01	1.3	3.0	1.2	3.0
24	.83	.65	.90	.09	.03	.02	.02	.01	1.1	6.1	.97	2.5
25	.76	.59	.76	.09	.03	.02	.02	.03	.67	3.2	5.7	3.0
26	.69	.59	.59	.09	.03	.02	.02	.02	.49	3.4	2.2	4.5
27	.60	.54	.49	.09	.04	.02	.02	.02	.44	2.3	1.6	2.3
28	.50	. 49	.49	.07	.03	.02	.02	.05	.24	2.6	1.3	2.9
29	.47	.59	.44	.07		.09	.02	.05	.24	2.1	1.3	2.1
30	.47	1.7	.44	.07	0.44	.39	.02	.07	.34	1.6	1.3	1.7
31	.60		.39	.07		.24		.09		1.4	1.3	
TOTAL	43.36	22.31	41.09	5.56	1.29	1.45	. 85	.63	9.54	77.61	91.87	68.9
MEAN	1.40	.74	1.33	.18	.046	.047	.028	.020	.32	2.50	2.96	2.30
MAX	3.5	2.0	6.1	.39	.07	.39	.13	.09	1.3	26	8.1	7.0
MIN	.47	.45	.39	.07	.03	.02	.02	.01	.04	.24	.97	1.1
AC-FT	86	44	82	11	2.6	2.9	1.7	1.2	19	154	182	137
CAL YR	1982	TOTAL	896.72	MEAN	2.46	MAX	130	MIN	.15	AC-FT	1780	
WTR YR		TOTAL	364.46	MEAN	1.00	MAX	26	MIN	.01	AC-FT	723	

16893800 WICHEN RIVER AT ALTITUDE 18 M, MOEN

LOCATION.--Lat 07°27'01" N., long 151°51'56" E., Hydrologic Unit 20100006, on left bank at Peniesence, 0.3 mi upstream from mouth, and 1.4 mi west of Saint Xaviers Academy.

DRAINAGE AREA. -- 0.57 mi2.

PERIOD OF RECORD.--April 1955 to March 1956 (published as "at Peniesence"), June 1968 to January 1980, May 1980 to May 1983. All figures of discharge above 3 ft³/s prior to April 1956, published in WSP 1751, are unreliable and should not be used.

REVISED RECORDS. -- WSP 2137, WDR HI-79-2: Drainage area.

GAGE.--Water-stage recorder and concrete control since Mar. 29, 1973. Altitude of gage is 60 ft, from topographic map. Prior to Apr. 1, 1956, nonrecording gage at site 100 ft downstream at different datum.

REMARKS .-- Records fair. No diversion above station.

AVERAGE DISCHARGE.--13 years, 3.05 ft3/s (2,210 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 910 ft³/s June 4, 1972, gage height, 6.80 ft, from rating curve extended above 28 ft³/s; minimum, 0.01 ft³/s Apr. 16-19, 1977, Apr. 8, 1983.

EXTREMES FOR CURRENT YEAR.—-Maximum discharge during period October to May, 120 ft³/s Oct. 8, gage height, 2.70 ft, no peak above base of 200 ft³/s; minimum, 0.01 ft³/s Apr. 8.

			DISCH	ARGE (CUB)		ECOND) C EAN VALUE		82 TO MAY	1983			
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1.3	.76	.55	.11	.11	.03	.02	.05				
2	1.6	2.1	.37	.15	.08	.03	.02	.05				
3	1.2	1.6	.24	.11	.08	.03	.02	.03				
3	1.6	1.2	2.0	.11	.08	.03	.02	.03				
5	1.0	.76	1.8	.05	.08	.03	.02	.03				
6	1.2	.65	1.8	.05	.05	.03	.02	.03				
7	1.0	.65	1.2	.15	.05	.08	.02	.02				
8	6.2	.76	.65	1.2	.05	.05	.01	.02				
9	5.3	.76	.45	.37	.05	.05	.02	.02				
10	2.8	.55	. 45	2.0	.05	.05	.05	.03				
11	2.0	. 45	1.0	.76	.08	.05	12	.19				
12	1.5	.37	.55	.37	.05	.05	.88	.05				
13	1.3	.37	. 45	.24	.05	.05	.30	.03				
14	1.0	.30	.30	.24	.08	.05	.15	.03				
15	1.5	.30	.24	.19	.11	.03	.11	.11				
16	6.8	.24	.24	.15	.08	.08	.11	.05				
17	3.8	.24	.24	.11	.08	.05	.08	.03				
18	2.3	.19	.19	.05	.08	.30	.08	.03				
19	1.6	.19	.19	.08	.08	.19	.05	.45				
20	1.2	.55	.19	.24	.08	.11	.05	.11				
21	1.3	.30	.19	.88	.08	.05	.03	.05				
22	.88	.24	.19	.65	.05	.05	.05	.05				
23	.76	.24	.19	.37	.05	.03	.03	.03				
24	.65	.19	.15	.24	.05	.03	.03	.03				
25	.65	.19	.11	.19	.05	.03	.15	.03				
26	1.5	.37	.11	.15	.05	.02	.05	.03				
27	.88	.24	.08	.15	.05	.03	.15	.03				
28	.55	.19	.11	.15	.05	.05	.11	.03				
29	. 45	.19	.15	.11		.03	.08	.03				
30	.45	.19	.15	.11		.03	.05	.03				
31	.76		.15	.11		.02		.02				
TOTAL	55.03	15.33	14.68	9.84	1.88	1.74	14.76	1.75				
MEAN	1.78	.51	. 47	.32	.067	.056	.49	.056				
MAX	6.8	2.1	2.0	2.0	.11	.30	12	.45				
MIN	. 45	.19	.08	.05	.05	.02	.01	.02				
AC-FT	109	30	29	20	3.7	3.5	29	3.5				
CAL YR	1982	TOTAL	848.82	MEAN	2.33	MAX	30	MIN	.08	AC-FT	1680	

16897600 NANPIL RIVER

LOCATION.--Lat 06°55'09" N., long 158°11'59" E., Hydrologic Unit 20100006, on left bank 0.1 mi upstream from diversion dam and 1.3 mi upstream from Kiepw River.

DRAINAGE AREA. -- 3.00 mi2.

PERIOD OF RECORD. -- March 1970 to current year. Prior to October 1980, published as Nanepil River.

REVISED RECORDS.--WDR HI-76-1: 1970(M), 1971-72(P), 1973(M), 1974(P), 1975(M). WDR HI-81-2: Drainage area.

GAGE.--Water-stage recorder. Altitude of gage is 370 ft, from topographic map.

REMARKS. -- Records fair. No diversion above station.

AVERAGE DISCHARGE.--13 years, 45.3 ft3/s (32,820 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 8,820 ft³/s Aug. 4, 1976, gage height, 9.68 ft, from rating curve extended above 168 ft³/s on basis of slope-area measurement at gage height 9.68 ft; minimum, 0.54 ft³/s Apr. 19, 1983.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, about 2,460 ft 3 /s Nov. 13, gage height 6.88 ft, no peak above base of 3,200 ft 3 /s; minimum, 0.54 ft 3 /s Apr. 19.

		DIS	CHARGE (CUI	BIC FEET/S		VATER YEAR	R OCTOBER	1982 TO	SEPTEMBER	1983		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	62	38	13	5.1	3.5	3.0	.97	.90	8.1	61	30	48
2	85	42	31	4.5	2.5	8.9	1.7	.90	22	212	87	29
3	41	20	35	4.3	1.9	3.7	1.3	.97	20	77	37	45
4	28	9.5	145	8.0	2.1	1.9	.97	.97	15	31	40	20
5	53	6.7	95	6.4	2.6	1.4	. 83	.90	10	53	50	41
6	40	16	89	3.7	2.2	2.0	.76	1.2	6.7	82	64	83
7	20	9.9		3.0	1.9	2.0	.70	1.0	5.1	45	28	34
8	14	7.2		2.7	2.0	1.5	.70	.97	3.8	52	41	18
9	22	58	225	3.0	2.2	5.7	.68	1.3	4.9	41	36	11
10	14	38	134	2.9	1.7	4.7	.65	12	9.2	21	74	9.2
11	24	36	30	2.7	1.5	9.9	.65	7.4	9.5	17	42	14
12	13	43	18	2.3	1.3	8.1	.65	2.6	62	52	24	9.9
13	19	298	22	2.3	1.6	3.5	.70	1.9	32	37	38	17
14	146	37	12	5.8	11	2.5	.76	9.1	42	22	62	22
15	48	20	15	3.3	9.2	2.2	. 83	5.1	72	64	74	50
16	36	12		5.8	4.3	1.7	.65	3.8	99	34	27	34
17	20	9.5		5.6	2.1	2.5	.65	2.3	48	39	18	41
18	13	7.2		4.0	8.6	1.6	.65	1.9	44	114	28	70
19	73	6.0		3.2	9.2	1.3	.59	2.2	31	36	22	44
20	60	41	7.5	4.0	3.2	1.1	. 83	1.6	22	40	24	25
21	54	17	8.9	3.0	2.1	1.1	1.1	7.9	39	24	18	33
22	29	8.4		2.5	1.5	1.1	4.0	29	77	25	12	30
23	16	5.8		2.3	1.3	1.0	11	12	46	28	9.9	45
24	11	5.8		5.0	1.0	.97	5.8	5.4	69	271	8.6	107
25	10	11	9.2	6.0	. 83	.97	2.3	3.2	55	60	8.1	63
26	9.5	4.7		4.0	. 83	1.0	1.6	2.2	34	27	5.6	45
27	6.7	3.8		3.0	.76	.97	1.3	1.5	32	28	7.0	26
28	5.6	4.0		2.5	.90	.90	1.1	2.6	30	82	9.9	44
29	4.7	3.7		2.2		1.0	1.0	4.7	22	37	21	32
30	5.4	3.0		2.0		1.5	.97	2.7	120	144	12	33
31	21		5.8	2.7		1.6		6.1		95	76	
TOTAL	1003.9	822.2		117.8	83.82	81.31	46.39	136.31	1090.3	1951	1034.1	1123.1
MEAN	32.4	27.4		3.80	2.99	2.62	1.55	4.40	36.3	62.9	33.4	37.4
MAX	146	298		8.0	11	9.9	11	29	120	271	87	107
MIN	4.7	3.0		2.0	.76	.90	.59	.90	3.8	17	5.6	9.2
AC-FT	1990	1630	2410	234	166	161	92	270	2160	3870	2050	2230
CAL YR		TOTAL	15417.1	MEAN	42.2	MAX	330	MIN	2.6	AC-FT	30580	
WTR YR	1983	TOTAL	8704.13	MEAN	23.8	MAX	298	MIN	.59	AC-FT	17260	

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)
OCT , 19	82				APR , 1	983			
30 DEC	1650	4.7	29.0	25.5	26 MAY	1145	1.6	32.0	26.0
01	1240	2.9	30.0	25.0	24	1315	5.4	31.0	25.0
15	1430	12	28.0	25.0	JUN				
JAN , 19	83				07	1125	5.1	30.0	25.0
05	1135	6.4	29.0	24.0	21	1305	78	28.0	24.0
20	0935	4.3	28.0	24.0	JUL				
FEB					06	1305	131	29.0	24.0
03	1130	1.9	28.0	24.0	AUG				
15	1135	5.9	27.0	23.0	17	1345	17	31.0	25.0
MAR					30	1335	13	30.0	25.0
01	1230	1.8	28.0	23.0	SEP				
APR					14	1250	14	29.0	24.0
12	1230	.65	31.0	25.0	26	1400	47	29.0	24.0

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM
OCT 30	1650	4.7	26	6.5	25.5	6	Ō	1.1	.91	2.3	43

								NITRO-		
	SODIUM	POTAS-	ALKA-		CHLO-	FLUO-	SILICA,	GEN,		MANGA-
	AD-	SIUM,	LINITY	SULFATE	RIDE,	RIDE,	DIS-	NO2+NO3	IRON,	NESE,
	SORP-	DIS-	LAB	DIS-	DIS-	DIS-	SOLVED	DIS-	DIS-	DIS-
	TION	SOLVED	(MG/L	SOLVED	SOLVED	SOLVED	(MG/L	SOLVED	SOLVED	SOLVED
	RATIO	(MG/L	AS	(MG/L	(MG/L	(MG/L	AS	(MG/L	(UG/L	(UG/L
DATE		AS K)	CACO3)	AS SO4)	AS CL)	AS F)	SIO2)	AS N)	AS FE)	AS MN)
OCT										
30	. 4	.10	11	<5.0	3.0	<.10	6.8	<.100	56	1

< Actual value is known to be less than the value shown.

16897900 LEWI RIVER

LOCATION.--Lat 06°55'32" N., long 158°12'18" E., Hydrologic Unit 20100006, on right bank at road and pipeline crossing, 300 ft upstream from right-bank tributary, and 2.4 mi upstream from mouth.

DRAINAGE AREA. -- 0.46 mi2.

PERIOD OF RECORD. -- March 1970 to current year. Prior to October 1980, published as Lui River.

REVISED RECORDS. -- WDR HI-81-2: Drainage area.

GAGE.--Water-stage recorder. Altitude of gage is 290 ft, from topographic map.

REMARKS.--Records fair. No diversion above station. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE.--13 years, 5.40 ft3/s (3,910 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,190 ft³/s Aug. 4, 1976, gage height, 5.92 ft, from rating curve extended above 37 ft³/s, on basis of slope-area measurement at gage height 5.92 ft; minimum, 0.02 ft³/s Apr. 18, 19, 1983.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 915 ft³/s Nov. 13, gage height, 5.50 ft, no other peak above base of 500 ft³/s; minimum, 0.02 ft³/s Apr. 18, 19.

DISCHARGE (CUBIC FEET/SECOND) WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	6.7	.72	.34	.61	.30	.21	.05	.03	.21	5.3	4.1	5.8
2	7.2	2.5	. 83	.50	.21	.21	. 27	.03	.11	17	5.8	3.0
3	4.0	1.3	2.7	.50	.18	.11	.18	.04	.18	8.4	4.0	2.0
4	3.0	.66	20	. 83	.24	.09	.09	.04	.27	4.1	4.9	1.4
5	5.9	.61		.61	.24	.11	.07	.04	.24	6.6	6.9	6.9
6	4.2	.44	14	.39	.24	.11	.05	.07	.27	8.4	5.7	8.2
7	2.2	.56	3.3	.34	.24	.09	.05	.03	.24	4.9	2.8	4.0
8	1.7	.44	3.4	.30	.27	.09	.04	.03	.13	8.0	3.2	2.1
9	2.5	1.3	32	.30	. 27	.13	.04	.05	.13	6.2	3.7	1.4
10	1.3	1.5	15	.34	.24	.09	.03	.24	.18	2.3	11	1.1
11	1.2	1.3	3.1	.34	.21	.11	.03	.15	.30	1.5	6.0	1.0
12	.94	7.0	1.7	.30	.21	.11	.04	.05	3.7	5.8	2.9	.82
13	2.3	55	1.6	.39	.39	.09	.03	.05	1.9	4.0	4.3	1.3
14	9.0	4.0	.88	.56	.66	.09	.04	.39	2.6	2.1	7.9	1.3
15	6.0	1.5	.72	.39	.39	.09	.03	.15	5.5	7.1	11	1.3
16	5.2	.94	.61	.56	.21	.11	.03	.11	8.9	3.8	4.4	3.1
17	7.8	.72	4.2	.50	.18	.13	.04	.07	2.4	2.9	2.6	3.0
18	3.0	.56	2.7	.39	.50	.07	.03	.09	2.3	14	2.8	7.1
19	9.1	. 44	.94	.34	.30	.07	.02	.11	1.6	4.8	3.3	4.3
20	7.2	. 83		.39	.27	.07	.03	.05	2.1	4.4	3.0	2.2
21	3.7	.56	.66	.30	.24	.05	.05	.07	3.3	2.6	2.6	6.2
22	1.9	. 44	1.4	. 27	.21	.05	.39	.61	6.0	4.1	1.7	4.3
23	1.3	.39	. 83	. 27	.18	.05	.30	.30	3.1	3.8	1.3	4.4
24	1.1	.39		.50	.18	.04	.21	.12	4.4	37	1.3	13
25	1.2	.72		.56	.15	.05	.18	.05	4.3	8.0	1.3	9.2
26	.94	.44	3.1	.34	.15	.05	.13	.04	2.7	3.4	.99	5.1
27	.78	.34	8.2	. 27	.13	.04	.11	.03	2.9	5.5	1.7	2.7
28	.66	.56	2.0	. 27	.11	.05	.09	.04	3.1	8.9	1.8	3.6
29	.58	.39	1.1	.24		.05	.07	.11	2.4	4.3	4.0	2.3
30	.66	.34	.78	.21		.13	.04	.05	7.5	17	2.7	2.2
31	.72		.66	.30		.09		.30		11	14	212
TOTAL	103.98	86.89	144.58	12.41	7.10	2.83	2.76	3.54	72.96	227.2	133.69	114.32
MEAN	3.35	2.90	4.66	.40	. 25	.091	.092	.11	2.43	7.33	4.31	3.81
MAX	9.1	55		. 83	.66	.21	.39	.61	8.9	37	14	13
MIN	.58	.34		.21	.11	.04	.02	.03	.11	1.5	.99	.82
AC-FT	206	172		25	14	5.6	5.5	7.0	145	451	265	227
CAL YR	1982	TOTAL	2689.33	MEAN	7.37	MAX	124	MIN	.34	AC-FT	5330	
WTR YR		TOTAL	912.26	MEAN	2.50	MAX	55	MIN	.02	AC-FT	1810	

16898600 LUHPWOR RIVER

LOCATION.--Lat 06°54'09" N., long 158°09'07" E., Hydrologic Unit 20100006, on left bank about 300 ft upstream from 50-ft waterfall, 0.2 mi downstream from highway bridge, and 0.2 mi west of Pwakorokot Hill.

DRAINAGE AREA .-- 0.72 mi2.

PERIOD OF RECORD. -- September 1972 to current year. Prior to October 1980, published as Lupwor River.

REVISED RECORDS. -- WDR HI-81-2: Drainage area.

GAGE.--Water-stage recorder. Altitude of gage is 145 ft, from topographic map.

REMARKS .-- Records fair .

AVERAGE DISCHARGE.--11 years, 8.78 ft 3/s (6,360 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,090 ft³/s Aug. 4, 1976, gage height, 8.26 ft, from rating curve extended above 47 ft³/s, on basis of estimate of peak flow; minimum, 0.13 ft³/s May 4, 5, 1983.

DISCHARGE (CUBIC FEET/SECOND) WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 750 ft3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)
Oct. 14	0600	894	5.89
Nov. 13	0500	*1100	6.24
July 2	1500	882	5.87

Minimum discharge, 0.13 ft 3 /s May 4, 5.

		DIS	CHARGE (CUE	BIC FEET/S		N VALUES	OCTOBER	1982 TO	SEPTEMBER	1983		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	10	1.9		1.4	. 80	.56	.35	.16	.24	14	11	5.0
2	10	2.6	2.6	1.2	.71	.77	. 40	.19	1.3	84	38	7.1
3	6.6	2.0	4.5	1.2	.68	.56	.33	.16	.84	21	13	4.6
3	6.0	1.6	14	1.4	.77	.46	.27	.16	.59	9.0	11	3.8
5	8.6	1.4		1.2	.74	.44	.26	.18	.37	11	21	3.9
6	6.2	1.2		1.1	.71	.46	.24	.21	.26	15	20	8.3
7	4.2	1.4		1.0	.68	.48	.26	.21	.21	9.8	10	6.0
8	3.6	1.6	4.6	1.0	.77	. 44	.24	.24	.19	8.3	10	4.7
9	4.6	3.2	40	1.1	. 80	.56	.23	.27	.26	8.0	8.8	3.7
10	3.3	5.3	27	.96	.74	.53	.23	.40	.31	5.5	14	3.9
11	3.0	12	8.3	.96	.71	.65	.21	.46	.21	4.5	9.8	3.5
12	2.5	6.2		.92	.68	.68	.21	.29	2.9	7.9	6.9	3.0
13	3.4	75	6.6	.88	. 80	.48	.21	.27	1.6	6.2	6.9	3.7
14	39	6.0		1.1	1.2	.46	.31	.50	2.0	5.0	10	4.3
15	6.9	3.9	3.7	1.0	1.2	.46	.21	.46	4.3	8.4	12	8.9
16	5.5	2.9		1.2	.77	.40	.19	.40	8.3	6.4	6.0	5.1
17	4.0	2.4	4.6	1.1	.65	.40	.24	.31	4.5	15	6.0	4.8
18	3.2	2.0	4.6	.96	.88	.37	.19	.29	4.0	22	5.7	8.5
19	7.8	1.8	3.0	.92	.96	.35	.21	.24	3.9	9.8	6.6	11
20	7.1	9.0	2.6	.96	.68	.35	.26	.19	3.3	9.0	7.1	6.2
21	5.3	5.3		.84	.59	.33	.26	.21	5.5	6.9	6.0	7.1
22	3.7	2.9	2.3	.77	.56	.35	.29	.59	11	6.8	5.0	6.8
23	3.0	2.3	2.0	.77	.53	.33	.59	.62	6.2	6.6	4.3	7.1
24	2.6	1.9	1.8	.96	.53	.35	.59	.31	7.3	38	4.0	12
25	2.3	2.1		.92	.50	.33	.42	.24	5.7	14	3.6	14
26	2.1	1.6	2.8	. 80	.50	.37	.33	.23	4.3	8.0	7.6	12
27	1.8	1.4		.74	.48	.37	.31	.21	3.4	7.8	9.3	7.6
28	1.7	1.4		.71	. 44	.42	.21	.21	3.0	14	6.0	16
29	1.6	1.2		.71		.62	.19	.21	2.6	13	8.6	12
30	1.6	1.2		.71		.59	.16	.19	12	56	6.0	8.6
31	1.5		1.5	.71		.46		.26		25	4.6	
TOTAL	172.7	164.7		30.20	20.06	14.38	8.40	8.87	100.58	475.9	298.8	213.2
MEAN	5.57	5.49		.97	.72	.46	.28	.29	3.35	15.4	9.64	7.11
MAX	39	75		1.4	1.2	.77	.59	.62	12	84	3.8	16
MIN	1.5	1.2		.71	. 44	.33	.16	.16	.19	4.5	3.6	3.0
AC-FT	343	327	400	60	40	29	17	18	200	944	593	423
CAL YR		TOTAL	3716.6	MEAN	10.2	MAX	100	MIN	1.2	AC-FT	7370	
WTR YR	1983	TOTAL	1709.39	MEAN	4.68	MAX	84	MIN	.16	AC-FT	3390	

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)
OCT , 19	82				APR , 1	983			
13	1040	2.0	28.0	26.0	13	1340	.32	32.0	27.0
DEC					JUN				
02	1005	2.6	28.0	24.0	08	1055	.18	77	26.0
14	1450	4.1	29.0	25.0	23	1300	5.6		26.0
JAN , 19	983				JUL				
04	1215	1.5	30.0	25.0	11	1200	4.7		27.0
FEB					AUG				
02	1055	.54	27.0	23.0	16	1045	6.8	29.0	25.0
16	1340	.70	31.0	27.0	31	1200	4.4	31.0	25.0
28	1420	.34	29.5	25.5	SEP				
MAR					15	1245	13	29.0	25.0
22	1350	.37	27.0	25.0	27	1220	7.2	29.0	25.0

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM
OCT 13	1040	1.9	54	7.2	26.0	20	0	3.9	2.4	2.8	24

	SODIUM AD- SORP- TION	POTAS- SIUM, DIS- SOLVED	ALKA- LINITY LAB (MG/L	SULFATE DIS- SOLVED	CHLO- RIDE, DIS- SOLVED	FLUO- RIDE, DIS- SOLVED	SILICA, DIS- SOLVED (MG/L	NITRO- GEN, NO2+NO3 DIS- SOLVED	IRON, DIS- SOLVED	MANGA- NESE, DIS- SOLVED
DATE	RATIO	(MG/L AS K)	AS CACO3)	(MG/L AS SO4)	(MG/L AS CL)	(MG/L AS F)	AS SIO2)	(MG/L AS N)	(UG/L AS FE)	(UG/L AS MN)
OCT		AD KI	CACOST	A5 5047	AS CE	AD II	31027	AS N	AS FE/	AS MN/
13	.3	.10	23	<5.0	3.2	<.10	15	.170	210	6

< Actual value is known to be less than the value shown.

CAROLINE ISLANDS, ISLAND OF PONAPE

16898690 LEHN MESI RIVER

LOCATION.--Lat 06°50'41" N., long 158°11'02" E., Hydrologic Unit 20100006, on left bank 3.2 mi upstream from mouth, 1.7 mi southwest of Mount Tolenpwoaipwoai, and 4.5 mi south of Mount Temwetemwensekir.

DRAINAGE AREA .-- 2.31 mi2.

PERIOD OF RECORD. -- November 1981 to current year.

GAGE.--Water-stage recorder. Altitude of gage is 260 ft, from topographic map.

REMARKS .-- Records fair.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 7,740 ft³/s, May 8, 1982, gage height, 10.14 ft, from rating curve extended above 126 ft³/s; minimum, 4.5 ft³/s for several days in April and May, 1983.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,500 ft 3 /s, Nov. 9, gage height, 6.78 ft, no peak above base of 3,000 ft 3 /s; minimum, 4.5 ft 3 /s for several days in April and May.

DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG 1 109 97 13 15 15 9.3 6.9 4.5 33 125 45 2 203 102 18 14 9.4 20 16.9 4.5 33 125 45 2 203 102 18 14 14 9.4 20 16.9 4.8 25 264 65 3 74 50 38 13 8.6 11 16 9.0 70 70 5 67 24 140 20 9.0 6.9 6.9 4.8 42 100 40 5 6 78 168 137 13 8.3 17 6.2 5.0 17 180 70 7 42 47 44 12 7.5 13 5.9 4.8 13 95 30 8 36 37 31 11 8.6 9.7 5.6 4.8 11 135 35 9 36 267 373 13 9.4 45 5.3 14 36 90 40 10 31 85 237 11 7.5 19 5.0 53 48 60 125 11 27 71 58 10 6.8 44 5.0 24 41 50 40 12 24 77 37 9.8 6.5 32 4.8 10 27 95 25 13 36 231 40 9.8 9.4 14 4.8 8.5 87 60 50 14 234 73 30 26 47 11 7.5 12 4.8 8.5 87 60 50 14 234 73 30 26 47 11 7.5 12 5.3 14 153 68 50 16 61 34 234 73 30 26 47 11 7.5 24 100 45 35 15 86 46 28 14 20 10 5.3 14 153 68 50 16 61 34 234 23 20 15 5.3 14 153 68 50 16 61 34 234 23 20 15 5.3 14 153 68 50 16 61 34 234 23 20 15 5.3 14 153 68 50 16 61 37 28 55 23 10 12 2 4.5 14 153 68 50 16 61 34 234 23 20 20 15 8.1 49 3.3 4.5 9.7 67 68 30 20 64 40 22 20 15 8.1 49 3 4.5 15 7.5 93 104 22 20 56 27 27 11 10 7.5 5.0 93 104 22 20 56 27 27 11 10 7.5 5.0 93 104 22 20 56 27 27 11 10 7.5 5.0 93 104 22 21 56 27 27 11 10 7.5 5.0 93 104 22 22 56 27 27 11 10 7.5 5.0 93 104 22 22 56 27 27 11 10 7.5 5.0 93 104 22 22 56 27 27 11 10 7.5 5.0 93 104 22 22 56 27 27 11 10 7.5 5.0 93 104 22 22 56 27 27 11 10 7.5 5.0 93 104 22 22 56 27 27 11 10 7.5 5.0 93 104 22 22 56 27 27 11 10 7.5 5.0 93 104 22 22 56 27 27 11 10 7.5 5.0 93 104 22 22 56 27 27 11 10 7.5 5.0 93 104 22 22 56 27 27 11 10 7.5 5.0 93 104 22 22 56 27 27 11 10 7.5 5.0 93 116 93 20 26 31 16 71 16 7.8 7.5 5.0 93 116 93 20 26 31 16 71 16 7.8 7.5 5.0 93 116 93 20 27 24 15 141 12 7.2 6.2 5.6 6.6 7.2 65 53 25 27 24 15 141 12 7.2 6.2 5.6 6.6 7.2 65 53 25 27 24 15 141 12 7.2 6.2 5.6 6.6 7.2 65 53 25 27 24 15 141 12 7.8 7.5 5.0 93 116 93 20 28 7.8 5.9 9.3 6.9 9.3 116 93 20 29 18 14 25 10 6.9 5.0 18 45 45 107 44.2 30 20 13 19 9.4 9.3 4.8 5.9 9.7 245 270 41 31 66 16 11 8.9 12 2 115 93 310 13 9.4 6.5 5.9 4.5 4.5 11 44 16 31 10 41 12 12 12 12 12 12 12 12 12			1983	EPTEMBER	1982 TO S	OCTOBER	ATER YEAR N VALUES		SIC FEET/S	CHARGE (CUB	DIS		
2 203 102 18 14 9.4 20 12 12 4.8 25 264 65 3 74 50 38 13 8.6 11 10 5.0 72 130 40 44 57 31 207 19 10 7.5 8.9 4.8 42 70 60 5 67 24 140 20 9.0 6.9 6.9 4.8 32 110 45 66 6 78 168 137 13 8.3 17 6.2 5.0 17 180 70 77 42 47 44 12 7.5 13 5.9 4.8 13 95 30 8 36 267 373 11 11 8.6 9.7 5.6 4.8 11 135 35 9 36 267 373 13 3 9.4 45 5.3 14 36 90 40 125 11 27 75 19 5.0 53 48 60 125 11 27 71 58 10 6.8 44 5.0 24 41 50 27 95 25 11 27 48 8 60 125 11 27 75 19 5.0 53 48 60 125 11 27 75 19 5.0 53 48 60 125 11 27 75 19 5.0 53 48 60 125 11 27 71 58 10 6.8 44 5.0 24 41 50 27 95 25 11 27 24 10 45 15 15 16 86 46 28 14 20 10 5.3 14 153 68 50 14 23 47 3 30 26 47 11 7.2 24 100 45 35 15 86 46 28 14 20 10 5.3 14 153 68 50 16 68 50 16 61 34 23 20 14 9.3 4.8 11 200 54 35 17 37 28 55 23 10 12 4.5 8.5 121 45 22 19 92 21 28 14 31 8.5 23 10 12 4.5 8.5 121 45 22 19 92 21 28 14 31 8.5 4.5 9.7 67 68 30 20 64 40 40 22 20 15 8.1 4.8 7.8 43 83 23 20 14 9.3 4.8 11 200 54 35 17 37 28 52 12 28 14 31 8.5 4.5 9.7 67 68 30 20 64 40 22 20 15 8.1 4.8 7.8 43 83 23 20 14 9.3 4.8 11 200 54 35 17 37 28 52 12 28 14 31 8.5 4.5 9.7 67 68 30 20 64 40 22 20 15 8.1 4.8 7.8 43 83 23 20 14 9.3 4.8 11 200 54 35 17 37 28 52 12 28 14 31 11 7.5 5.5 6 99 127 44 18 22 19 92 21 28 14 31 11 7.5 5.5 6 99 127 44 18 22 19 92 21 28 14 31 17 7.5 5.6 99 127 44 18 23 20 64 40 22 20 15 8.1 4.8 7.8 43 83 23 20 14 25 10 4.5 5.5 6 99 127 44 18 23 20 20 24 9.8 9.8 9.3 6.9 25 32 88 97 16 24 26 18 20 32 8.5 6.6 6 16 13 155 337 23 25 25 27 27 11 10 7.5 5.6 6.6 7.2 65 53 22 88 97 16 24 26 18 20 32 8.5 6.6 6 16 13 155 337 23 25 25 27 24 15 141 12 7.2 6.2 5.5 6.5 6.2 46 45 45 49 29 18 14 25 10 9.3 4.8 9.7 245 270 41 31 66 16 11 8.9 9 22 115 93 31 16 93 20 32 34 55.6 6.6 6.0 6.0 15.1 13.1 12.8 7.0 4 15.6 80.8 107 44.2 80.4 80.4 80.4 80.4 80.4 80.4 80.4 80.4	SEI	AUG	JUL	JUN	MAY	APR	MAR	FEB	JAN	DEC	NOV	OCT	DAY
2 203 102 18 14 9.4 20 12 4.8 25 264 65 3 74 50 38 13 8.6 11 10 5.0 72 130 40 4 57 31 207 19 10 7.5 8.9 4.8 32 110 45 6 78 168 137 13 8.3 17 6.2 5.0 17 180 70 7 42 47 44 12 7.5 13 5.9 4.8 13 95 30 8 36 37 31 11 8.6 9.7 5.6 4.8 11 135 35 9 36 267 373 13 9.4 45 5.3 14 36 90 40 10 31 85 237 11 7.5 19 5.0 53 48 60 125 11 27 71 58 10 6.8 44 5.0 24 41 50 27 95 25 11 27 71 58 10 6.8 44 5.0 24 41 50 27 95 25 11 27 71 58 10 6.8 44 5.0 24 41 50 27 95 25 11 27 71 58 10 6.8 44 5.0 24 41 50 27 95 25 11 27 71 58 10 6.8 44 5.0 24 41 50 27 95 25 11 27 71 58 10 6.8 44 5.0 24 41 50 40 12 24 77 37 9.8 6.5 32 4.8 10 227 95 25 14 234 73 30 26 47 11 7.2 24 100 45 35 15 86 46 28 14 20 10 5.3 14 153 68 50 16 61 34 23 20 14 9.3 4.8 11 200 54 35 17 37 28 55 23 10 12 4.5 8.5 121 45 27 18 30 24 52 16 47 9.3 4.8 11 200 54 35 17 37 28 55 23 10 12 4.5 8.5 121 45 27 18 30 24 52 10 47 9.3 4.8 11 200 54 35 17 37 28 55 23 10 12 4.5 8.5 121 45 27 18 30 24 52 10 52 15 8.1 4.8 7.8 43 83 23 21 76 48 24 13 11 7.5 5.6 99 127 44 18 22 26 6 18 20 32 8.5 6.6 16 13 135 337 23 21 76 48 24 13 11 7.5 5.6 99 127 44 18 23 32 20 24 9.8 9.3 6.9 25 32 88 97 16 24 26 18 20 32 8.5 6.6 16 13 135 337 23 25 7 24 15 141 12 7.2 6.2 5.6 6.2 46 45 49 29 18 14 25 10 6.9 5.0 18 45 10 99 29 18 14 25 10 6.9 5.0 18 45 10 99 29 18 14 25 10 6.9 5.0 18 45 10 99 29 18 14 25 10 6.9 5.0 18 45 10 99 29 18 14 25 10 6.9 5.0 18 45 10 99 29 18 14 25 10 6.9 5.0 18 45 10 99 29 18 14 25 10 6.9 5.0 18 45 10 99 29 18 14 25 10 6.9 5.0 18 45 10 99 29 18 14 25 10 6.9 5.0 18 45 10 99 29 18 14 25 10 8.9 9 22 115 93 TOTAL 1824 1759 2046 466.8 368.2 396.0 211.1 482.1 2423 3329 1370 TOTAL 1824 1759 2046 466.8 368.2 396.0 211.1 482.1 2423 3329 1370 TOTAL 1824 1759 2046 466.8 368.2 396.0 211.1 482.1 2423 337 125 MAX 234 267 373 32 47 45 25 99 245 337 125 MAN 234 267 373 39 46.6 5.5 99 4.5 4.5 11 44 14 AC-FT 3620 3490 4060 926 730 785 419 956 4810 6600 2720	93	45	125	33	4.5	6.9	9.3	15	15	13	97	109	1
3 74 50 38 13 8.6 11 10 5.0 72 130 40 5 6 6 7 24 140 20 9.0 6.9 6.9 4.8 32 110 45 6 7 6 7 24 140 20 9.0 6.9 6.9 4.8 32 110 45 6 7 24 140 20 9.0 6.9 6.9 4.8 32 110 45 6 7 24 140 20 9.0 6.9 6.9 4.8 32 110 45 6 7 42 47 44 12 7.5 13 5.9 4.8 13 95 30 8 36 37 31 11 8.6 9.7 5.6 4.8 11 135 35 9 36 267 373 13 9.4 45 5.3 14 36 90 40 10 31 85 237 11 7.5 19 5.0 53 48 60 125 11 27 71 58 10 6.8 44 5.0 24 41 50 40 125 11 27 71 58 10 6.8 44 5.0 24 41 50 40 125 11 27 71 58 10 6.5 32 4.8 10 227 95 25 13 36 231 40 9.8 9.4 14 4.8 8.5 87 60 50 14 234 73 30 26 47 11 7.2 24 100 45 35 15 86 46 28 14 20 10 5.3 14 150 68 50 16 61 34 23 20 14 9.3 4.8 11 200 54 35 16 61 34 22 10 5.3 14 150 68 50 16 61 34 22 10 5.3 14 150 68 50 16 61 34 22 12 20 15 8.1 4.8 11 200 54 35 17 37 28 55 23 10 12 4.5 8.5 121 45 27 19 92 21 28 14 31 8.5 4.5 9.7 67 68 30 20 64 40 40 22 20 15 8.1 4.5 9.7 67 68 30 20 64 40 40 22 20 15 8.1 4.5 9.7 67 68 30 20 64 40 40 22 20 15 8.1 4.5 9.7 67 68 30 20 20 64 40 22 20 15 8.1 4.5 9.7 67 68 30 20 20 64 40 22 20 15 8.1 4.5 9.7 67 68 30 20 20 64 40 22 20 15 8.1 4.5 9.7 67 68 30 20 22 56 27 27 11 10 7.5 5.0 28 50 49 20 22 56 27 27 11 10 7.5 5.0 28 50 49 20 22 56 27 27 11 10 7.5 5.0 28 50 49 20 22 56 27 27 11 10 7.5 5.0 28 50 49 20 22 56 27 27 11 10 7.5 5.0 28 50 49 20 22 56 27 27 11 10 7.5 5.0 28 50 49 20 22 56 27 27 11 10 7.5 5.0 28 50 49 20 22 56 27 27 11 10 7.5 5.0 28 50 49 20 20 22 56 27 27 11 10 7.5 5.0 28 50 49 20 20 22 56 27 27 11 10 7.5 5.0 28 50 49 20 20 22 56 27 27 11 10 7.5 5.0 28 50 49 20 20 20 64 40 32 20 32 8.5 6.6 16 13 135 337 23 25 31 21 30 28 7.8 5.9 9.3 9.3 116 93 20 20 24 9.8 9.3 6.9 25 52 22 88 97 16 24 26 18 20 32 8.5 6.6 16 13 135 337 23 25 31 21 30 28 7.8 5.9 9.3 9.3 116 93 20 20 20 13 19 9.4 9.3 4.8 9.7 22 115 93 20 20 20 14 38 11 6.6 6.2 5.6 6.2 46 45 49 29 18 14 25 10 6.9 5.0 18 45 105 74 31 10 66 16 11 8.9 22 115 93 20 20 20 20 20 20 20 20 20 20 20 20 20											102	203	2
5 67 24 140 20 9.0 6.9 6.9 4.8 32 110 45 6 78 168 137 13 8.3 17 6.2 5.0 17 180 70 7 42 47 44 12 7.5 13 5.9 4.8 11 95 30 8 36 37 31 11 8.6 9.7 5.6 4.8 11 135 35 9 36 267 373 13 9.4 45 5.3 14 36 90 40 10 31 85 237 11 7.5 19 5.0 53 48 60 125 11 27 71 58 10 6.8 44 5.0 24 41 50 40 12 24 77 37 9.8 6.5 32 4.8 10 227 95 25 13 36 231 40 9.8 9.4 14 4.8 8.5 87 60 50 14 234 73 30 26 47 11 7.2 24 100 45 35 15 86 46 28 14 20 10 5.3 14 153 68 50 16 61 34 23 20 14 9.3 14 153 68 50 16 61 34 23 20 14 9.3 4.8 11 200 54 35 17 37 28 55 23 10 12 4.5 8.5 121 45 27 18 30 24 52 16 47 9.3 4.5 7.5 93 104 22 19 92 21 28 14 31 18 7.5 5.0 28 50 76 68 30 20 64 40 22 20 15 8.1 4.8 7.8 43 83 23 21 76 48 24 13 11 7.5 5.0 28 50 49 20 22 56 27 27 11 10 7.5 5.6 99 127 44 18 23 32 20 24 9.8 9.3 6.9 25 32 88 97 16 24 26 31 26 32 32 8.5 5.6 99 127 44 18 23 32 20 24 9.8 9.3 6.9 25 32 88 97 16 24 26 31 26 32 32 8.5 5.6 6.6 16 13 13 135 337 23 25 31 21 30 28 7.8 5.9 9.3 9.3 116 93 20 26 31 16 71 16 7.8 7.5 5.6 99 127 44 18 23 32 20 24 9.8 9.3 6.9 25 32 88 97 16 24 26 31 26 32 8.5 6.6 16 16 13 135 337 23 25 31 21 30 28 7.8 5.9 9.3 9.3 116 93 20 26 31 16 71 16 7.8 7.5 5.6 99 127 44 18 23 32 20 24 9.8 9.3 6.9 25 32 88 97 16 24 26 31 26 32 8.5 6.6 16 13 13 135 337 23 25 31 21 30 28 7.8 5.9 9.3 9.3 116 93 20 26 31 16 71 16 7.8 7.5 5.0 28 50 49 20 27 24 15 141 12 7.2 6.5 5.6 6.2 46 45 49 28 20 14 38 11 6.6 6.2 5.6 6.2 46 45 49 28 20 14 38 11 6.6 6.2 5.6 6.2 46 45 49 28 20 14 38 11 6.6 6.2 5.6 6.2 46 45 49 28 20 14 38 11 6.6 6.2 5.6 6.2 46 45 49 28 20 14 38 11 6.6 6.2 5.6 6.2 46 45 49 28 20 14 38 11 6.6 6.2 5.6 6.2 46 45 49 28 20 14 38 11 6.6 6.8 2 5.0 18 49 70 245 270 413 16 66 16 11 8.9 22 115 93 48 30 20 4060 926 730 785 419 956 4810 6600 2720	100											74	3
6 78 168 137 13 8.3 17 6.2 5.0 17 180 70 7 42 47 44 12 7.5 13 5.9 4.8 13 95 30 8 36 36 267 373 11 8.6 9.7 5.6 4.8 11 135 35 9 36 267 373 13 7.5 19 5.0 53 48 60 125 11 27 71 58 10 6.8 44 5.0 24 41 50 227 95 25 13 36 231 40 9.8 9.4 14 4.8 8.5 87 60 50 14 234 73 30 26 47 11 7.2 24 100 45 35 15 86 46 28 14 20 10 5.3 14 153 68 50 16 61 34 23 20 14 9.3 4.8 11 200 54 55 17 37 28 55 23 10 12 4.5 8.5 121 45 27 18 30 24 52 16 47 9.3 4.5 7.5 93 104 22 19 92 21 28 14 31 8.5 4.5 9.7 67 68 30 20 64 40 22 20 15 8.1 4.8 7.8 43 83 23 21 76 48 24 13 11 7.5 5.0 28 50 49 20 22 56 27 27 11 10 7.5 5.6 99 127 44 18 23 32 20 24 9.8 9.3 6.9 25 32 88 97 16 24 26 31 21 30 28 7.8 5.9 9.3 16 93 25 32 88 97 16 24 26 31 21 30 28 7.8 5.9 9.3 9.3 116 93 20 26 31 16 71 16 7.5 5.6 99 127 44 18 23 32 20 24 9.8 9.3 6.9 25 32 88 97 16 24 26 31 21 30 28 7.8 5.9 9.3 9.3 116 93 20 26 31 16 71 16 7.5 5.6 99 127 44 18 23 32 20 24 9.8 9.3 6.9 25 32 88 97 16 24 26 31 21 30 28 7.8 5.9 9.3 9.3 116 93 20 26 31 16 71 16 7.8 7.5 5.6 99 127 44 18 23 32 20 24 9.8 9.3 6.9 25 32 88 97 16 24 26 31 16 71 16 7.8 7.5 5.6 99 127 44 18 23 32 20 24 9.8 9.3 6.9 25 32 88 97 16 24 26 31 16 71 16 7.8 7.5 5.6 99 127 44 18 23 32 20 24 9.8 9.3 6.9 25 32 88 97 16 24 26 31 14 25 10 6.9 5.0 18 45 105 99 29 18 14 25 10 6.9 5.0 18 45 105 99 29 18 14 25 10 6.9 5.0 18 45 105 99 29 18 14 25 10 6.9 5.0 18 45 105 99 29 18 14 25 10 6.9 5.0 18 45 105 99 29 18 14 25 10 6.9 5.0 18 45 105 99 29 18 14 25 10 6.9 5.0 18 45 105 99 29 18 14 25 10 6.9 5.0 18 45 105 99 29 18 14 25 10 6.9 5.0 18 45 105 99 29 18 14 25 10 6.9 5.0 18 45 105 99 29 18 14 25 10 6.9 5.0 18 45 105 99 29 18 14 25 10 6.9 5.0 18 45 105 99 29 18 14 25 10 6.9 5.0 18 45 105 99 29 18 14 25 10 16.9 5.0 18 45 105 99 29 18 14 25 10 16.9 5.0 18 45 105 99 29 18 14 14 25 10 16.9 5.0 18 45 105 99 29 18 14 14 25 10 16.9 5.0 18 45 105 99 29 18 14 24 759 2046 466.8 368.2 396.0 211.1 482.1 2423 3329 1370 30 20 21 3 19 9.4 6.5 5.9 4.5 4.5 511 44 16 30 20 3490 4060 926 73	60	60	70	42	4.8	8.9		10	19		31	57	
7	110	45	110	32	4.8	6.9	6.9	9.0	20	140	24	67	5
8 36 37 31 11 8.6 9.7 5.6 4.8 11 135 35 15 9 36 267 373 13 9.4 45 5.3 14 36 90 40 10 31 85 237 11 7.5 19 5.0 53 48 60 125 11 27 71 58 10 6.8 44 5.0 24 41 50 40 125 11 27 37 37 9.8 6.5 32 4.8 10 227 95 25 13 36 231 40 9.8 9.4 14 4.8 8.5 87 60 50 14 234 73 30 26 47 11 7.2 24 100 45 35 15 86 46 28 14 20 10 5.3 14 153 68 50 16 61 34 23 20 14 9.3 4.8 11 200 54 35 15 86 46 28 14 20 10 5.3 14 153 68 50 16 61 34 23 20 14 9.3 4.8 11 200 54 35 17 18 30 24 52 16 47 9.3 4.5 7.5 93 104 22 19 92 21 28 14 31 8.5 4.5 9.7 67 68 30 20 64 40 22 20 15 8.1 4.8 7.8 43 83 23 11 76 48 24 13 11 7.5 5.0 28 50 49 20 22 56 27 27 11 10 7.5 5.6 99 127 44 18 23 20 24 9.8 9.3 6.9 25 32 88 97 16 24 26 18 20 32 8.5 6.6 16 13 32 8.5 6.6 16 13 33 135 337 23 20 26 31 16 7.2 6.5 5.9 9.3 9.3 116 93 20 26 31 16 7.1 16 7.5 5.0 28 8.9 7 16 24 26 18 20 32 8.5 6.6 16 13 135 337 23 20 26 31 16 71 30 28 7.8 5.9 9.3 9.3 116 93 20 26 31 16 71 30 28 7.8 5.9 9.3 9.3 116 93 20 26 31 16 71 18 20 32 8.5 6.6 16 13 135 337 23 20 20 14 38 11 6.6 6.2 5.3 7.2 45 190 99 29 18 14 38 11 6.6 6.2 5.3 7.2 45 190 99 29 18 14 38 11 6.6 6.2 5.3 7.2 45 190 99 29 18 14 25 10 6.9 5.0 18 45 105 74 30 20 13 19 9.4 9.3 4.8 9.7 245 270 41 31 16 66 16 11 8.9 22 115 93 10 10 10 10 10 10 10 10 10 10 10 10 10	130												
9 36 267 373 13 9.4 45 5.3 14 36 90 40 10 31 85 237 11 7.5 19 5.0 53 48 60 125 11 27 71 58 10 6.8 44 5.0 24 41 50 40 12 24 77 37 9.8 6.5 32 4.8 10 227 95 25 13 36 231 40 9.8 9.4 14 4.8 8.5 87 60 50 14 234 73 30 26 47 11 7.2 24 100 45 35 15 86 46 28 14 20 10 5.3 14 153 68 50 16 61 34 23 20 14 9.3 4.8 11 20 54 35 17 37 28 55 23 10 12 4.5 8.5 121 45 27 18 30 24 52 16 47 9.3 4.5 7.5 93 104 22 19 92 21 28 14 31 8.5 4.5 9.7 67 68 30 20 64 40 22 20 15 8.1 4.8 7.8 43 83 23 21 76 48 24 13 11 7.5 5.0 28 50 49 20 22 56 27 27 11 10 7.5 5.6 99 127 44 18 23 32 20 24 9.8 9.3 6.9 25 32 88 97 16 24 26 18 20 32 8.5 6.6 16 13 135 337 23 25 31 21 30 28 7.8 5.9 9.3 9.3 116 93 20 26 31 16 71 16 7.8 7.5 5.6 99 127 44 18 23 32 20 24 9.8 9.3 6.9 25 32 88 97 16 24 26 18 20 32 8.5 6.6 16 13 135 337 23 25 31 21 30 28 7.8 5.9 9.3 9.3 116 93 20 26 31 16 71 16 7.8 7.5 6.6 7.2 65 53 25 27 24 15 141 12 7.2 6.2 5.6 6.2 46 45 49 28 20 14 38 11 6.6 6.2 5.3 7.2 45 190 99 29 18 14 4 25 10 9.3 4.8 9.7 245 270 41 30 20 13 19 9.4 9.3 4.8 9.7 245 270 41 31 66 16 11 8.9 22 115 93 TOTAL 1824 1759 2046 466.8 368.2 396.0 211.1 482.1 2423 3329 1370 MEAN 58.8 58.6 66.0 15.1 13.1 12.8 7.04 15.6 80.8 107 44.2 MAX 234 267 373 32 47 45 25 99 245 337 125 MAN 58.8 58.6 66.0 15.1 13.1 12.8 7.04 15.6 80.8 107 44.2 MAX 234 267 373 32 47 45 25 99 245 337 125 MEAN 58.8 58.6 66.0 15.1 13.1 12.8 7.04 15.6 80.8 107 44.2 MAX 234 267 373 32 47 45 25 99 245 337 125 MEAN 58.8 58.6 66.0 15.1 13.1 12.8 7.04 15.6 80.8 107 44.2 MAX 234 267 373 32 47 45 25 99 245 337 125 MEAN 58.8 58.6 66.0 15.1 13.1 12.8 7.04 15.6 80.8 107 44.2 MAX 234 267 373 32 47 45 25 99 245 337 125 MEAN 58.8 58.6 66.0 15.1 13.1 13.1 12.8 7.04 15.6 80.8 107 44.2 MAX 234 267 373 32 47 45 25 99 245 337 125 MEAN 58.8 58.6 66.0 15.1 13.1 14.8 7.5 5.9 5.5 48.1 14.4 16 AC-FT 3620 3490 4060 926 730 785 419 956 4810 6600 2720	80												
10 31 85 237 11 7.5 19 5.0 53 48 60 125 11 27 71 58 10 6.8 44 5.0 24 41 50 40 12 24 77 37 9.8 6.5 32 4.8 10 227 95 25 13 36 231 40 9.8 9.4 14 4.8 8.5 87 60 50 14 234 73 30 26 47 11 7.2 24 100 45 35 15 86 46 28 14 20 10 5.3 14 153 68 50 16 61 34 23 20 14 9.3 4.8 11 200 54 35 17 37 28 55 23 10 12 4.5 8.5 121 45 27 18 30 24 52 16 47 9.3 4.5 7.5 93 104 22 18 30 24 52 16 47 9.3 4.5 7.5 93 104 22 19 92 21 28 14 31 8.5 4.5 9.7 67 68 30 20 64 40 22 20 15 8.1 4.8 7.8 43 83 23 21 76 48 24 13 11 7.5 5.0 28 50 49 20 22 56 27 27 11 10 7.5 5.6 99 127 44 18 23 32 20 24 9.8 9.3 6.9 25 32 88 97 16 24 26 18 20 32 8.5 6.6 16 13 135 337 23 25 31 16 71 16 7.8 7.5 6.6 7.2 65 53 25 26 31 16 71 16 7.8 7.5 6.6 7.2 65 53 25 27 24 15 141 12 7.2 6.2 5.6 6.2 46 45 49 28 20 14 38 11 6 71 16 7.8 7.5 6.6 7.2 65 53 25 27 24 15 141 12 7.2 6.2 5.6 6.2 46 45 49 28 20 14 38 11 60 6.8 5.9 5.0 49 29 18 14 25 10 9.3 4.8 9.7 245 190 99 29 18 14 25 10 9.3 4.8 9.7 245 270 41 31 66 16 11 8.9 22 115 93 TOTAL 1824 1759 2046 466.8 368.2 396.0 211.1 482.1 2423 3329 1370 MEAN 58.8 58.6 66.0 15.1 13.1 12.8 7.04 15.6 80.8 107 44.2 MAX 234 267 373 32 47 45 25 99 245 337 125 MIN 18 13 13 13 9.4 6.5 5.9 45 45 19 956 4810 6600 2720													
11 27 71 58 10 6.8 44 5.0 24 41 50 40 12 24 77 37 9.8 6.5 32 4.8 10 227 95 25 13 36 231 40 9.8 9.4 14 4.8 8.5 87 60 50 14 234 73 30 26 47 11 7.2 24 100 45 35 15 86 46 28 14 20 10 5.3 14 153 68 50 16 61 34 23 20 14 9.3 4.8 11 200 54 35 17 37 28 55 23 10 12 4.5 8.5 121 45 27 18 30 24 52 16 47 9.3 4.5 7.5 93 104 22 19 92 21 28 14 31 8.5 4.5 9.7 67 68 30 20 64 40 22 20 15 8.1 4.8 7.8 43 83 23 21 76 48 24 13 11 7.5 5.0 28 50 49 20 22 56 27 27 11 10 7.5 5.6 89 127 44 18 23 32 20 24 9.8 9.3 6.9 25 32 88 97 16 24 9.8 9.3 6.9 25 32 88 97 16 24 26 18 20 32 8.5 6.6 16 13 135 337 23 25 31 16 71 16 7.8 7.5 5.0 28 89 97 16 24 26 18 20 32 8.5 6.9 9.3 9.3 116 93 20 26 31 16 71 16 7.8 7.5 5.9 9.3 9.3 116 93 20 26 31 16 71 16 7.8 7.5 5.9 9.3 9.3 116 93 20 26 31 16 71 16 7.8 7.5 5.9 9.3 9.3 116 93 20 26 31 16 71 16 7.8 7.5 5.9 9.3 9.3 116 93 20 27 24 15 141 12 7.2 6.2 5.6 6.2 46 45 49 20 28 20 14 38 11 6.6 6.2 5.3 7.2 45 190 99 29 18 14 25 10 6.9 5.0 18 45 190 99 29 18 14 25 10 6.9 5.0 18 45 190 99 29 18 14 25 10 6.9 5.0 18 45 190 99 29 18 14 25 10 6.9 5.0 18 45 190 99 29 18 14 25 10 6.9 5.0 18 45 190 99 29 18 14 25 10 6.9 5.0 18 45 190 99 29 18 14 25 10 6.9 5.0 18 45 190 99 29 18 14 25 10 6.9 5.0 18 45 190 99 29 18 14 25 10 6.9 5.0 18 45 105 74 30 20 13 19 9.4 9.3 4.8 9.7 245 270 41 31 66 16 11 8.9 22 115 93 TOTAL 1824 1759 2046 466.8 368.2 396.0 211.1 482.1 2423 3329 1370 MEAN 58.8 58.6 66.0 15.1 13.1 12.8 7.04 15.6 80.8 107 44.2 MAX 234 267 373 33 29 246 65.5 5.9 4.5 4.5 11 44 16 AC-FT 3620 3490 4060 926 730 785 419 956 4810 6600 2720	40												
12	35	125	60	48	53	5.0	19	7.5	11	237	85	31	10
13 36 231 40 9.8 9.4 14 4.8 8.5 87 60 50 14 234 73 30 26 47 11 7.2 24 100 45 35 15 86 46 28 14 20 10 5.3 14 153 68 50 16 61 34 23 20 14 9.3 4.8 11 200 54 35 17 37 28 55 23 10 12 4.5 8.5 121 45 27 18 30 24 52 16 47 9.3 4.5 8.5 121 45 27 18 30 24 52 16 47 9.3 4.5 9.7 67 68 30 20 64 40 22 20 15 8.1 4.8 7.8 43 83 23 21 76 48 24 13 11 7	86												
14 234 73 30 26 47 11 7.2 24 100 45 35 15 86 46 28 14 20 10 5.3 14 100 45 35 16 61 34 23 20 14 9.3 4.8 11 200 54 35 17 37 28 55 23 10 12 4.5 8.5 121 45 27 18 30 24 52 16 47 9.3 4.5 7.5 93 104 22 19 92 21 28 14 31 8.5 4.5 9.7 67 68 30 20 64 40 22 20 15 8.1 4.8 7.8 43 83 23 21 76 48 24 13 11 7.5 5.6 99 127 44 18 23 32 20 24 9.8 9.3 6	48												
15 86 46 28 14 20 10 5.3 14 153 68 50 16 61 34 23 20 14 9.3 4.8 11 200 54 35 17 37 28 55 23 10 12 4.5 8.5 121 45 27 18 30 24 52 16 47 9.3 4.5 7.5 93 104 22 19 92 21 28 14 31 8.5 4.5 9.7 67 68 30 20 64 40 22 20 15 8.1 4.8 7.8 43 83 23 21 76 48 24 13 11 7.5 5.0 28 50 49 20 22 56 27 27 11 10 7.5 5.6 99 127 44 18 23 32 20 24 9.8 9.3 6.9 25 32 88 97 16 24 26 18 20 32 8.5 6.6 16 13 135 337 23 25 31 21 30 28 7.8 5.9 9.3 9.3 116 93 20 26 31 16 71 16 7.8 7.5 6.6 7.2 65 53 25 27 24 15 141 12 7.2 6.2 5.6 6.2 46 45 49 28 20 14 38 11 6.6 6.2 5.3 7.2 45 190 99 29 18 14 25 10 6.9 5.0 18 45 105 74 31 66 16 11 8.9 22 115 93 TOTAL 1824 1759 2046 466.8 368.2 396.0 211.1 482.1 2423 3329 1370 MEAN 58.8 58.6 66.0 15.1 13.1 12.8 7.04 15.6 80.8 107 44.2 MIN 18 13 13 9.4 6.5 5.9 4.5 4.5 11 44 16 AC-FT 3620 3490 4060 926 730 785 419 956 4810 6600 2720	42												
16 61 34 23 20 14 9.3 4.8 11 200 54 35 17 37 28 55 23 10 12 4.5 8.5 121 45 27 18 30 24 52 16 47 9.3 4.5 7.5 93 104 22 19 92 21 28 14 31 8.5 4.5 9.7 67 68 30 20 64 40 22 20 15 8.1 4.8 7.8 43 83 23 20 21 76 48 24 13 11 7.5 5.0 28 50 49 20 22 56 27 27 11 10 7.5 5.6 99 127 44 18 23 32 20 24 9.8 9.3 6.9 25 32 88 97 16 23 32 20 24 9.8 9.3 6.9 25 32 88 97 16 25 31 21 30 28 7.8 5.9 9.3 9.3 116 93 20 20 26 31 16 71 16 7.8 7.5 6.6 7.2 65 53 25 27 24 15 141 12 7.2 6.2 5.6 6.2 46 45 49 20 20 26 31 16 71 16 7.8 7.5 6.6 7.2 65 53 25 27 24 15 141 12 7.2 6.2 5.6 6.2 46 45 49 28 20 14 38 11 6.6 6.2 5.3 7.2 45 190 99 18 18 14 25 10 6.9 5.0 18 45 105 74 30 20 13 19 9.4 9.3 4.8 9.7 245 270 41 31 66 16 11 8.9 22 115 93 170 18 18 18 13 13 13 13 13 13 13 13 13 13 13 13 13	52												
17	98	50	68	153	14	5.3	10	20	14	28	46	86	15
18	99												
19 92 21 28 14 31 8.5 4.5 9.7 67 68 30 20 64 40 22 20 15 8.1 4.8 7.8 43 83 23 23 21 76 48 24 13 11 7.5 5.0 28 50 49 20 22 56 27 27 11 10 7.5 5.6 99 127 44 18 23 32 20 24 9.8 9.3 6.9 25 32 88 97 16 12 25 10 28 25 31 21 30 28 7.8 5.9 9.3 9.3 116 93 20 25 31 21 30 28 7.8 5.9 9.3 9.3 116 93 20 26 31 16 71 16 7.8 7.5 6.6 7.2 65 53 25 27 24 15 141 12 7.2 6.2 5.6 6.2 46 45 49 28 20 14 38 11 6.6 6.2 5.3 7.2 45 190 99 29 18 14 25 10 6.9 5.0 18 45 105 74 31 66 16 11 8.9 22 115 93 20 20 24 18 24 31 16 7.1 16 11 8.9 22 115 93 20 20 20 20 20 20 20 20 20 20 20 20 20	76												
20 64 40 22 20 15 8.1 4.8 7.8 43 83 23 21 76 48 24 13 11 7.5 5.0 28 50 49 20 22 56 27 27 11 10 7.5 5.6 99 127 44 18 23 32 20 24 9.8 9.3 6.9 25 32 88 97 16 24 26 18 20 32 8.5 6.6 16 13 135 337 23 25 31 21 30 28 7.8 5.9 9.3 9.3 116 93 20 26 31 16 71 16 7.8 7.5 6.6 7.2 65 53 25 27 24 15 141 12 7.2 6.2 5.6 6.2 46 45 49 28 20 14 38 11 6.6 6.2 5.3 7.2 45 190 99 29 18 14 25 10 6.9 5.0 18 45 105 74 30 20 13 19 9.4 9.3 4.8 9.7 245 270 41 31 66 16 11 8.9 22 115 93 TOTAL 1824 1759 2046 466.8 368.2 396.0 211.1 482.1 2423 3329 1370 MEAN 58.8 58.6 66.0 15.1 13.1 12.8 7.04 15.6 80.8 107 44.2 MAX 234 267 373 32 47 45 25 99 245 337 125 MIN 18 13 13 9.4 6.5 5.9 4.5 4.5 11 44 16 AC-FT 3620 3490 4060 926 730 785 419 956 4810 6600 2720													
21	106												
22 56 27 27 11 10 7.5 5.6 99 127 44 18 23 32 20 24 9.8 9.3 6.9 25 32 88 97 16 24 26 18 20 32 8.5 6.6 16 13 135 337 23 25 31 21 30 28 7.8 5.9 9.3 9.3 116 93 20 26 31 16 71 16 7.8 7.5 6.6 7.2 65 53 25 27 24 15 141 12 7.2 6.2 5.6 6.2 46 45 49 28 20 14 38 11 6.6 6.2 5.3 7.2 45 190 99 29 18 14 25 10 6.9 5.0 18 45 105 74 30 20 13 19 9.4 9.3 4.8 9.7 245 270 41 31 66 16 11 8.9 22 115 93 TOTAL 1824 1759 2046 466.8 368.2 396.0 211.1 482.1 2423 3329 1370 MEAN 58.8 58.6 66.0 65.0 15.1 13.1 12.8 7.04 15.6 80.8 107 44.2 MAX 234 267 373 32 47 45 25 99 245 337 125 MIN 18 13 13 9.4 6.5 5.9 4.5 4.5 11 44 16 AC-FT 3620 3490 4060 926 730 785 419 956 4810 6600 2720	62	23	83	43	7.8	4.8	8.1	15	20	22	40	64	20
23 32 20 24 9.8 9.3 6.9 25 32 88 97 16 24 26 18 20 32 8.5 6.6 16 13 135 337 23 25 31 21 30 28 7.8 5.9 9.3 9.3 116 93 20 26 31 16 71 16 7.8 7.5 6.6 7.2 65 53 25 27 24 15 141 12 7.2 6.2 5.6 6.2 46 45 49 28 20 14 38 11 6.6 6.2 5.3 7.2 45 190 99 29 18 14 25 10 6.9 5.0 18 45 105 74 30 20 13 19 9.4 9.3 4.8 9.7 245 270 41 31 66 16 11 8.9 22 115 93 TOTAL 1824 1759 2046 466.8 368.2 396.0 211.1 482.1 2423 3329 1370 MEAN 58.8 58.6 66.0 15.1 13.1 12.8 7.04 15.6 80.8 107 44.2 MAX 234 267 373 32 47 45 25 99 245 337 125 MIN 18 13 13 9.4 6.5 5.9 4.5 4.5 11 44 16 AC-FT 3620 3490 4060 926 730 785 419 956 4810 6600 2720	122												
24	87												
25 31 21 30 28 7.8 5.9 9.3 9.3 116 93 20 26 31 16 71 16 7.8 7.5 6.6 7.2 65 53 25 27 24 15 141 12 7.2 6.2 5.6 6.2 46 45 49 28 20 14 38 11 6.6 6.2 5.3 7.2 45 190 99 29 18 14 25 10 6.9 5.0 18 45 105 74 30 20 13 19 9.4 9.3 4.8 9.7 245 270 41 31 66 16 11 8.9 22 115 93 TOTAL 1824 1759 2046 466.8 368.2 396.0 211.1 482.1 2423 3329 1370 MEAN 58.8 58.6 66.0 15.1 13.1 12.8 7.04 15.6 80.8 107 44.2 MAX 234 267 373 32 47 45 25 99 245 337 125 MIN 18 13 13 9.4 6.5 5.9 4.5 4.5 11 44 16 AC-FT 3620 3490 4060 926 730 785 419 956 4810 6600 2720	161												
26 31 16 71 16 7.8 7.5 6.6 7.2 65 53 25 27 24 15 141 12 7.2 6.2 5.6 6.2 46 45 49 28 20 14 38 11 6.6 6.2 5.3 7.2 45 190 99 29 18 14 25 10 6.9 5.0 18 45 105 74 30 20 13 19 9.4 9.3 4.8 9.7 245 270 41 31 66 16 11 8.9 22 115 93 TOTAL 1824 1759 2046 466.8 368.2 396.0 211.1 482.1 2423 3329 1370 MEAN 58.8 58.6 66.0 15.1 13.1 12.8 7.04 15.6 80.8 107 44.2 MAX 234 267 373 32 47 45 25 99 245 337 125 MIN 18 13 13 9.4 6.5 5.9 4.5 4.5 11 44 16 AC-FT 3620 3490 4060 926 730 785 419 956 4810 6600 2720	177												
27	110	20	93	116	9.3	9.3	5.9	7.8	28	30	21	31	25
28	162												
29 18 14 25 10 6.9 5.0 18 45 105 74 30 20 13 19 9.4 9.3 4.8 9.7 245 270 41 31 66 16 11 8.9 22 115 93 TOTAL 1824 1759 2046 466.8 368.2 396.0 211.1 482.1 2423 3329 1370 MEAN 58.8 58.6 66.0 15.1 13.1 12.8 7.04 15.6 80.8 107 44.2 MAX 234 267 373 32 47 45 25 99 245 337 125 MIN 18 13 13 9.4 6.5 5.9 4.5 4.5 11 44 16 AC-FT 3620 3490 4060 926 730 785 419 956 4810 6600 2720	69												
30 20 13 19 9.4 9.3 4.8 9.7 245 270 41 31 66 16 11 8.9 22 115 93 TOTAL 1824 1759 2046 466.8 368.2 396.0 211.1 482.1 2423 3329 1370 MEAN 58.8 58.6 66.0 15.1 13.1 12.8 7.04 15.6 80.8 107 44.2 MAX 234 267 373 32 47 45 25 99 245 337 125 MIN 18 13 13 9.4 6.5 5.9 4.5 4.5 11 44 16 AC-FT 3620 3490 4060 926 730 785 419 956 4810 6600 2720	64							6.6					
31 66 16 11 8.9 22 115 93 TOTAL 1824 1759 2046 466.8 368.2 396.0 211.1 482.1 2423 3329 1370 MEAN 58.8 58.6 66.0 15.1 13.1 12.8 7.04 15.6 80.8 107 44.2 MAX 234 267 373 32 47 45 25 99 245 337 125 MIN 18 13 13 9.4 6.5 5.9 4.5 4.5 11 44 16 AC-FT 3620 3490 4060 926 730 785 419 956 4810 6600 2720	54												
TOTAL 1824 1759 2046 466.8 368.2 396.0 211.1 482.1 2423 3329 1370 MEAN 58.8 58.6 66.0 15.1 13.1 12.8 7.04 15.6 80.8 107 44.2 MAX 234 267 373 32 47 45 25 99 245 337 125 MIN 18 13 13 9.4 6.5 5.9 4.5 4.5 11 44 16 AC-FT 3620 3490 4060 926 730 785 419 956 4810 6600 2720	62												
MEAN 58.8 58.6 66.0 15.1 13.1 12.8 7.04 15.6 80.8 107 44.2 MAX 234 267 373 32 47 45 25 99 245 337 125 MIN 18 13 13 9.4 6.5 5.9 4.5 4.5 11 44 16 AC-FT 3620 3490 4060 926 730 785 419 956 4810 6600 2720		93	115		22		8.9		11	16	777	66	31
MAX 234 267 373 32 47 45 25 99 245 337 125 MIN 18 13 13 9.4 6.5 5.9 4.5 4.5 11 44 16 AC-FT 3620 3490 4060 926 730 785 419 956 4810 6600 2720	2669												
MIN 18 13 13 9.4 6.5 5.9 4.5 4.5 11 44 16 AC-FT 3620 3490 4060 926 730 785 419 956 4810 6600 2720	89.0												
AC-FT 3620 3490 4060 926 730 785 419 956 4810 6600 2720	177												
	35												
CAL YR 1982 TOTAL 34157 MEAN 93-6 MAX 793 MIN 13 AC-PT 67750	5290	2720	6600	4810	956	419	785	730	926	4060	3490	3620	AC-FT
WTR YR 1983 TOTAL 17344.2 MEAN 47.5 MAX 373 MIN 4.5 AC-FT 34400		67750	AC-FT	13	MIN	793	MAX	93.6	MEAN	34157	TOTAL		

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)
OCT , 19	82				APR , 19	83			
25	1220	29	29.5	26.0	07	1520	5.7	31.0	27.0
NOV					21	1315	5.1	32.0	28.0
22	1400	25	29.0	25.0	MAY				
DEC					31	1205	10	30.0	26.0
06	1235	126	29.0	25.0	JUN				
23	1130	24	29.0	24.0	17	1415	78	29.0	25.0
JAN , 19	83				JUL				
11	1230	10	29.0	24.0	01	1205	120	28.0	24.0
25	1215	24	28.0	24.0	14	1305	43	29.0	26.0
FEB					AUG				
10	1530	7.4	31.0	27.0	26	1150	24	29.0	24.0
27	0930	6.9	29.0	27.0	SEP				
MAR					10	1255	31	31.0	25.0
17	1550	11	30.0	26.0					

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM
ОСТ 25	1220	27	42	7.1	26.0	15	0	2.2	2.4	2.4	25

	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L	ALKA- LINITY LAB (MG/L AS	SULFATE DIS- SOLVED (MG/L	CHLO- RIDE, DIS- SOLVED (MG/L	FLUO- RIDE, DIS- SOLVED (MG/L	SILICA, DIS- SOLVED (MG/L AS	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L	IRON, DIS- SOLVED (UG/L	MANGA- NESE, DIS- SOLVED (UG/L
DATE		AS K)	CACO3)	AS SO4)	AS CL)	AS F)	SIO2)	AS N)	AS FE)	AS MN)
OCT 25	.3	.20	20	<5.0	2.8	<.10	11	<.100	26	1

< Actual value is known to be less than the value shown.

16899620 MELO RIVER

LOCATION.--Lat 05°20'30" N., long 162°58'33" E., Hydrologic Unit 20100006, on left bank 0.5 mi upstream from mouth and 1.3 mi southwest of Mount Mutunte.

DRAINAGE AREA .-- 0.68 mi2.

PERIOD OF RECORD. -- October 1974 to September 1979, June 1980 to current year.

REVISED RECORDS.--WRD HI-81-2: Drainage area.

GAGE.--Water-stage recorder and concrete control. Altitude of gage is 20 ft, from topographic map.

REMARKS. -- Records poor.

AVERAGE DISCHARGE.--8 years (water years 1975-79, 1981-83), 6.68 $\rm ft^3/s$ (4,840 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 784 ft 3/s Mar. 22, 1976, gage height, 5.78 ft, from rating curve extended above 17 ft 3/s; minimum, 0.11 ft 3/s for several days in April 1983.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 455 ft³/s Oct. 14, gage height, 4.25 ft, no other peak above base of 300 ft³/s; minimum, 0.11 ft³/s for several days in April.

		DIS	CHARGE (CUE	BIC FEET/S		ATER YEAR N VALUES	COTOBER	1982 TO 5	SEPTEMBER	1983		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2.1	1.0	.75	.90	.50	.70	.22	.36	2.2	5.5	5.3	8.2
2	1.8	.90		.80	.45	.35	.22	.30	14	22	5.9	5.3
3	1.4	. 85		.70	. 45	.30	.19	.25	4.8	8.5	6.3	4.6
4	6.3	.80		2.0	.45	.35	.16	.16	3.1	5.8	4.8	3.8
5	2.2	1.0	.75	.90	1.0	.30	.16	.64	2.6	5.0	14	3.4
6	2.1	1.0	.75	.80	.50	.30	.16	5.9	2.1	4.6	9.8	2.9
7	1.9	2.0	.70	.70	.45	. 25	.16	6.7	1.8	6.9	10	2.8
8	2.8	4.6	.70	.65	. 45	.36	.16	3.2	1.6	8.6	7.2	2.8
9	1.8	1.2	. 80	.60	. 45	. 80	.13	7.6	3.3	5.5	6.9	2.9
10	1.4	3.0	.90	.60	. 45	.91	.13	4.3	2.8	4.3	6.3	2.8
11	1.2	5.3	.70	.60	.40	.69	.13	12	2.1	4.6	6.3	2.2
12	1.0	1.9	1.0	.60	.40	.64	.13	10	2.6	3.4	4.8	1.9
13	2.9	17	4.0	.60	. 45	.58	.16	6.9	12	7.8	4.1	1.8
14	22	8.7	4.0	.60	.50	.69	.30	32	8.9	12	33	3.1
15	6.3	3.6	2.0	.75	•50	.52	.64	5.8	4.6	11	11	2.2
16	4.8	2.8	10	.60	.40	.42	.22	3.3	3.8	6.9	9.2	17
17	3.1	2.1	3.0	.60	.40	.30	.19	2.6	3.1	5.0	6.6	23
18	2.2	1.8	2.0	.55	.50	.30	.16	3.4	18	4.3	5.3	28
19	1.9	1.5	1.5	.55	.50	.30	.13	5.3	9.9	6.7	4.6	8.5
20	1.7	1.5	1.5	.55	.40	.30	.16	2.6	6.6	5.0	4.8	6.6
21	2.1	1.5	1.2	.55	.35	.36	.19	1.9	5.5	3.8	3.8	11
22	1.1	1.3	1.0	.55	.35	.30	1.9	4.8	5.0	3.8	19	10
23	1.0	1.2	1.0	.60	.35	.30	6.6	3.4	4.1	2.9	8.6	8.5
24	1.1	1.1	. 85	.75	. 40	.30	1.6	2.4	4.8	2.8	5.8	23
25	1.1	1.0	.70	.60	. 40	.25	. 80	1.9	5.3	2.4	4.6	26
26	1.0	1.0	3.0	.55	.35	.30	.69	1.8	4.8	2.1	4.1	19
27	1.0	1.0	2.5	.55	.30	.30	.52	1.7	4.1	4.4	6.7	12
28 29	.95	.90		.55	.35	. 25	. 47	1.5	4.8	7.7	15	7.9
	.90	. 85		.50		.30	. 47	1.4	4.3	13	6.9	6.6
30 31	.90	. 80		.50		.25	.42	1.2	3.3	7.5	5.0	7.0
31	1.2		1.0	.50		.25		1.1		5.8	9.0	
TOTAL MEAN	83.25	73.20		20.85	12.45	12.52	17.57	136.41	155.9	199.6	254.7	264.8
					. 44	. 40	.59	4.40	5.20	6.44	8.22	8.83
MAX	.90	17 .80		2.0 .50	1.0	.91	6.6	32	18	22	33	28
					.30	.25	.13	.16	1.6	2.1	3.8	1.8
AC-FT	165	145		41	25	25	35	271	309	396	505	525
CAL YR		TOTAL	2477.30	MEAN	6.79	MAX	59	MIN	.70	AC-FT	4910	
WTR YR	1983	TOTAL	1283.50	MEAN	3.52	MAX	33	MIN	.13	AC-FT	2550	

CAROLINE ISLANDS, ISLAND OF KOSRAE 16899620 MELO RIVER--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1979, 1982 to current year.

OCT 19		.60 5	7	1	5.0 3	. 7	.10	21		86	.12	<.	100	200	7
DATE	DI SOL (MG	UM, LI S- VED (/L	LKA- NITY LAB MG/L AS ACO3)	SULFA DIS- SOLV (MG.	- DIS VED SOL /L (MG	E, RID - DI VED SOL /L (MG	E, DI S- SO VED (M	ICA, S- LVED G/L	SUM CONST TUENT DIS SOLV	OF SO TI- TS, S G- (VED	LIDS, DIS- OLVED TONS PER C-FT)	GE NO2+	N, NO3 IRO S- D: VED SO: /L (U	ON, NE IS- D LVED SC G/L (U	NGA- SE, IS- LVED G/L MN)
19	1200	1.	7	130	7.2	26.5	53		0 SOLII	11		6.1	4.1 RO-	14	.3
DATE	TIME	STREAM FLOW, INSTAN TANEOU (CFS)	- CI CO - DU S AN	FIC ON- OCT- OCE OHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HAR NES NONC BONA (MG CAC	S, CAR- TE C/L	CALCIU DIS- SOLVE (MG/L AS CA	M S D S (N	AGNE- SIUM, DIS- DLVED MG/L S MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	
	OCT , 1 06 19 NOV 19	982 1020 1200 0945		2.2 1.7 1.6	27.0 29.5 29.0	25.5 26.5 25.5			3 , 19	982 1230		.30	29.0	26.5	
	DATE	TIME	FI INS TAN	REAM- LOW, STAN- HEOUS (FS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)		DA	TE	TIME	FI INS TAN	REAM- LOW, STAN- NEOUS CFS)	TEMPER- ATURE, AIR (DEG C)		

 $^{\ &}lt;\ \mbox{\ensuremath{\mbox{\textbf{Actual}}}$ value is known to be less than the value shown.

16899750 MALEM RIVER

LOCATION.--Lat 05°17'35" N., long 163°00'54" E., Hydrologic Unit 20100006, on left bank 0.9 mi upstream from mouth and 2.0 mi southeast of Mount Finkol.

DRAINAGE AREA. -- 0.76 mi2.

PERIOD OF RECORD.--July 1971 to March 1981, March 1982 to current year.

REVISED RECORDS. -- WDR HI-81-2: Drainage area.

GAGE.--Water-stage recorder and concrete control. Altitude of gage is 95 ft, from stadia survey.

REMARKS.--Records poor. Water is diverted upstream for domestic use in village of Malem.

AVERAGE DISHCARGE.--10 years (1972-80, 1983), 6.77 ft 3/s (4,900 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,550 ft³/s Mar. 22, 1976, gage height, 6.20 ft, from rating curve extended above 110 ft³/s; minimum, 0.07 ft³/s Apr. 30, May 1, 1983.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 280 ft³/s Oct. 14, gage height, 4.40 ft, no peak above base of 350 ft³/s; minimum, 0.07 ft³/s Apr. 30, May 1.

		DIS	CHARGE (CUI	BIC FEET/SI		ATER YEAR N VALUES	R OCTOBER	1982 TO	SEPTEMBER	1983		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2.9	1.6	.65	.67	.15	.24	.25	.07	.77	3.8	7.0	3.3
2	3.2	1.3	2.2	.67	.15	.48	.41	.09	17	25	5.5	2.6
3	2.9	1.3	.72	.57	.15	.11	.29	.10	4.0	8.5	4.3	2.2
4	10	1.4	1.2	1.4	.31	.11	.21	.26	1.3	5.5	3.3	2.1
5	3.0	1.4	1.2	.65	.58	.21	.26	.37	.91	4.3	15	1.9
3	3.0	1.4	1.2	.03	.50	.21	.20	.57	. 51	4.5	13	1.5
6	2.4	1.2	1.5	.52	.24	.24	.21	5.7	.64	4.5	10	1.8
7	4.4	1.5	.74	.48	.15	.48	.35	2.5	.59	5.5	11	1.9
8	7.3	5.0	. 89	. 47	.24	.35	.18	1.5	.37	17	7.3	1.8
9	2.6	2.0	1.0	.45	.26	.17	.22	4.3	.66	6.8	5.5	1.7
10	2.0	2.4	1.3	.42	1.0	.14	.17	1.2	.51	3.6	4.5	1.5
11	1.9	9.2	.55	.49	.21	.24	.16	1.7	. 47	3.8	3.6	1.4
12	1.8	5.4	1.1	.38	.28	.18	.25	3.0	2.5	3.8	3.1	1.3
13	6.7	28	7.1	.36	.23	.31	.20	5.9	12	7.1	2.5	1.2
14	25	14	4.0	.37	.15	.39	.31					
								42	7.4	9.3	27	1.8
15	9.0	5.3	1.8	.38	. 27	.31	.25	4.0	3.9	35	10	1.1
16	7.1	3.0	15	.39	.13	.27	.23	1.4	1.9	12	6.2	12
17	3.5	2.1	8.8	.39	.20	.27	.15	1.3	1.1	8.8	4.9	8.2
18	2.8	1.6	4.4	.40	.18	.29	.21	1.5	4.2	6.6	4.0	29
19	2.1	1.4	2.0	.40	.17	.30	.19	3.6	7.0	5.3	3.4	5.9
20	1.8	1.8	1.5	.35	.18	.29	.23	1.4	4.3	4.5	3.3	4.1
0.7	2.7			2.5	1.0	0.0	20	7.1	2.0		2.0	7.0
21	3.1	1.7	1.2	.35	.18	.26	.20	.71	3.8	4.3	3.0	7.2
22	2.1	1.3	1.1	.39	.24	. 25	.45	1.0	3.2	5.5	5.3	8.9
23	1.9	1.1	1.1	.31	. 27	.24	3.7	.76	2.6	3.9	4.3	11
24	2.0	.99		. 27	.39	.31	.33	.54	2.2	3.5	2.8	14
25	1.7	.90	. 85	.24	.31	.29	.29	.39	4.5	3.0	2.3	21
26	1.6	. 82	1.5	.21	.24	.30	.27	.32	3.8	2.7	2.1	22
27	1.4	.81	1.3	.21	.24	.30	.12	.23	2.9	2.7	2.7	13
28	1.4	. 87	.77	.21	. 23	.28	.09	.18	2.7	4.5	24	7.7
29	1.4	.71		.18		.30	.08	.21	2.3	8.8	8.2	5.8
30	1.3	.67	.76	.18		.28	.07	.14	2.0	20	4.1	4.9
31	1.8		.75	.18		.22	4	.12		9.0	4.3	
TOTAL	122.1	100.77	68.56	12.94	7.33	8.41	10.33	86.49	101.52	248.6	204.5	202.3
MEAN	3.94	3.36		.42	.26	.27	.34	2.79	3.38	8.02	6.60	6.74
	25	28										
MAX				1.4	1.0	.48	3.7	42	17	35	27	29
MIN	1.3	.67		.18	.13	.11	.07	.07	.37	2.7	2.1	1.1
AC-FT	242	200	136	26	15	17	20	172	201	493	406	401
WTR YR	1983	TOTAL	1173.85	MEAN	3.22	MAX	42	MIN	.07	AC-FT	2330	

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1979, 1982 to current year.

TIME DATE	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)	TIME DATE	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)
OCT , 1982				NOV , 1982			
18 1610	2.7	30.0	26.5	30 1355	.55	32.0	28.0
NOV				JAN , 1983			
15 1045	5.2	29.0	26.0	13 0950	.34	30.0	25.0

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM
OCT 18	1610	2.7	110	7.4	26.5	41	0	7.7	5.3	4.2	18

DATE	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
OCT 18	.3	.70	48	<5.0	4.6	.10	23	<.100	22	<1

< Actual value is known to be less than the value shown.

16899800 TOFOL RIVER

LOCATION.--Lat 05°19'10" N., long 163°00'24" E., Hydrologic Unit 20100006, on left bank 25 ft downstream from right-bank tributary, 0.9 mi upstream from mouth, and 1.3 mi northeast of Mount Finkol.

DRAINAGE AREA .-- 0.53 mi2.

PERIOD OF RECORD. -- June 1971 to September 1979, March 1980 to current year.

GAGE .-- Water-stage recorder and concrete control. Altitude of gage is 98 ft, from stadia survey.

REMARKS.--Records good. Water is diverted through 8-in pipe from dam above station for domestic use.

AVERAGE DISCHARGE.--11 years (1971-79, 1981-83), 5.72 ft3/s (4,140 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,560 ft³/s Nov. 10, 1981, gage height, 5.97 ft, from rating curve extended above 79 ft³/s; minimum, 0.01 ft³/s Apr. 1, 1983.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 576 ft³/s Oct. 14, gage height, 4.39 ft, no other peak above base of 450 ft³/s; minimum, 0.01 ft³/s Apr. 1.

		DIS	CHARGE (CU	BIC FEET/SE		WATER YEAR EAN VALUES	OCTOBER	1982 TO	SEPTEMBER	1983		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2.9	1.7	. 87	.75	.22	.26	.02	.04	.34	2.3	6.0	3.1
2	2.8	1.3	1.2	.72	.20	.20	.02	.04	6.0	16	5.1	2.5
3	2.4	1.1	.94	.67	.20	.10	.04	.03	1.8	5.0	3.7	2.1
4	8.4	1.1	1.2	1.8	.18	.14	.04	.03	.88	3.1	3.1	1.9
5	2.8	1.0	.97	.76	.58	.10	.02	.05	.76	2.8	13	1.8
6	2.3	1.1	1.0	.62	.26	.09	.03	1.3	.58	3.1	9.3	1.6
7	4.4	2.4	. 83	.54	.20	.10	.02	1.1	.54	4.7	9.9	1.5
8	5.0	5.9	. 93	.50	.20	.08	.03	.62	.42	9.3	6.6	1.4
9	2.7	3.3	.91	. 46	.12	.12	.04	1.9	.62	4.7	6.1	1.6
10	2.2	3.3	1.1	.46	.16	.12	.02	1.1	.58	3.2	6.0	1.4
11	2.0	7.3	.74	.46	.10	.09	.02	2.1	.50	3.8	5.8	1.2
12	2.0	3.2	. 89	. 47	.12	.06	.03	3.0	.76	2.9	4.9	1.2
13	6.4	22	3.2	. 46	.16	.07	.04	1.9	8.8	4.9	3.9	1.1
14	21	9.1	3.7	. 47	.18	.08	.04	19	4.4	6.6	22	1.5
15	7.6	4.0	1.6	.54	.18	.07	.08	2.6	1.9	11	10	1.1
16	5.8	2.8	8.2	.46	.14	.05	.04	1.3	1.4	5.9	6.8	6.2
17	3.3	2.3	2.5	.42	.14	.04	.04	1.1	1.0	4.0	5.4	7.7
18	2.8	2.0	1.7	.38	.20	.02	.04	1.1	3.2	3.2	4.5	20
19	2.5	1.8	1.2	.38	.20	.05	.03	1.5	5.5	2.7	3.9	4.8
20	2.4	1.8	1.2	.30	.18	.02	.03	.81	3.2	2.6	3.6	3.9
21	3.6	1.9	.98	.30	.12	.03	.03	.70	2.9	2.5	3.1	7.7
22	2.2	1.6	.90	.30	.09	.04	.12	1.4	2.2	3.7	4.7	8.0
23	2.1	1.4	.96	.34	.09	.04	2.6	1.0	1.6	2.3	3.7	7.3
24	2.1	1.3	.78	. 46	.12	.06	.24	.70	1.9	1.9	2.8	9.2
25	1.8	1.2	.79	.34	.12	.04	.08	.54	3.8	1.7	2.4	21
26	1.6	1.2	2.4	.30	.10	.04	.04	.42	2.8	1.6	2.1	20
27	1.5	1.2	1.9	.28	.10	.02	.04	.38	2.0	1.6	2.2	13
28	1.4	1.1	1.0	.28	.14	.02	.04	.28	1.9	3.1	10	8.4
29	1.3	1.0	. 81	. 24		.04	.04	.26	1.7	6.6	4.6	6.5
30	1.3	.94		.24		.02	.04	.24	1.4	15	3.0	6.3
31	1.8		.75	.24		.04		.24		7.6	3.6	
TOTAL	112.4	91.34	46.98	14.94	4.80	2.25	3.94	46.78	65.38	149.4	181.8	175.0
MEAN	3.63	3.04		. 48	.17	.073	.13	1.51	2.18	4.82	5.86	5.83
MAX	21	22		1.8	.58	.26	2.6	19	8.8	16	22	21
MIN	1.3	.94		.24	.09	.02	.02	.03	.34	1.6	2.1	1.1
AC-FT	223	181	93	30	9.5	4.5	7.8	93	130	296	361	347
CAL YR		TOTAL	2249.72	MEAN	6.16	MAX	46	MIN	.74	AC-FT	4460	
WTR YR	1983	TOTAL	895.01	MEAN	2.45	MAX	22	MIN	.02	AC-FT	1780	

CAROLINE ISLANDS, ISLAND OF KOSRAE 16899800 TOFOL RIVER--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1979, 1982 to current year.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)	TIME DATE	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)
OCT , 19	82				DEC , 1982			
16 NOV	1000	5.3	30.0	25.0	15 1005 JAN , 1983	1.3	27.5	25.5
18 DEC	1130	2.0	29.0	26.0	11 0955	.43	31.0	25.0
01	1010	. 89	29.0	25.5				

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM
OCT 16	1225	5.3	110	7.1	26.0	43	0	9.6	4.7	4.1	17

DATE	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
OCT 16	.3	.90	45	<5.0	3.9	.10	23	<.100	51	3

< Actual value is known to be less than the value shown.

16912000 PAGO STREAM AT AFONO

LOCATION.--Lat 14°16'03" S., long 170°39'02" W., Hydrologic Unit 20100001, on left bank 0.2 mi south of Afono and 0.3 mi upstream from mouth.

DRAINAGE AREA .-- 0.60 mi2.

PERIOD OF RECORD. -- October 1958 to current year. Prior to July 1960, published as Afono Stream at Afono.

REVISED RECORDS. -- WSP 1937: Drainage area.

GAGE.--Water-stage recorder and concrete control. Altitude of gage is 30 ft, from topographic map.

REMARKS.--Records good. About 0.06 ft³/s is diverted above station for domestic use in Afono. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE.--24 years (water years 1960-83), 3.44 ft3/s (2,490 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,350 ft³/s July 5, 1969, gage height, 5.49 ft, from rating curve extended above 52 ft³/s; minimum, 0.11 ft³/s Sept. 15, 16, 1983.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 212 ft³/s Apr. 6, gage height, 3.29 ft, no other peak above base of 210 ft³/s; minimum, 0.11 ft³/s Sept. 15, 16.

		DIS	CHARGE (CUE	BIC FEET/S		ATER YEAR N VALUES	OCTOBER	1982 TO	SEPTEMBER	1983		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.60	.78	1.1	.22	.43	2.1	.28	8.8	.32	.20	.16	.15
2	.70	. 49	.62	.22	. 43	1.3	. 25	1.9	.32	.20	.15	.14
3	.49	.32	10	.20	.37	1.7	.28	1.1	1.1	.22	.15	.17
4	.43	.28	1.7	.32	1.2	1.3	.25	. 87	.70	.20	.14	.15
5	.37	.37	. 87	7.9	.78	1.1	.60	.78	.55	.19	.15	.14
6	.43	2.8	.62	3.0	.49	.96	45	.70	.37	.40	.15	.13
7	.37	1.1	. 49	2.4	. 43	. 87	3.8	.62	.28	.28	.17	.16
8	2.7	. 49		8.5	1.4	.70	1.9	.62	.32	.22	.16	.13
9	7.4	.32		7.3	.78	.70	1.9	.49	.32	.20	.14	.14
10	2.8	.28	.28	16	.49	.78	4.9	.49	.25	.22	.14	.15
11	1.9	.25		15	. 43	.62	3.6	.43	.23	.19	.14	.13
12	1.1	. 25		3.2	.37	.55	2.1	.37	.25	.19	.13	.12
13	.78	.25		2.1	.37	. 43	1.4	. 43	.23	.19	.13	.12
14	.62	.23		1.6	.32	. 43	1.1	. 43	.23	.20	.15	.12
15	.55	.23	.25	1.2	.37	. 43	.96	.32	.22	.23	.14	.14
16	.49	.23		1.3	2.0	.43	. 87	.32	.23	.22	.14	1.2
17	.78	. 23		1.2	3.8	.37	.78	.32	.28	.20	.19	.22
18	.70	.28		2.9	1.8	.37	. 87	. 43	.25	.19	.15	.16
19	.49	1.1	.22	1.8	. 87	.37	.96	.32	.22	.17	.15	.15
20	. 43	. 87	. 25	1.7	.62	1.1	.78	.28	.55	.20	.16	.17
21	.37	.70	.25	1.2	. 43	.78	.70	.25	.37	.19	1.5	.15
22	.32	. 43		.96	1.5	.96	.70	.25	. 87	.17	.70	.15
23	.32	.37		.78	1.0	1.7	.55	.25	. 43	.17	.25	.19
24	.37	.32		.78	.70	1.0	. 87	. 25	.28	.19	.19	.15
25	.37	1.8	. 25	.70	1.3	.70	.78	. 80	.25	.20	.16	1.2
26	.28	1.8	.23	.55	30	.49	.55	. 43	.23	.19	.15	.78
27	.25	.70		.49	9.8	. 43	.49	.49	.28	.17	.15	.28
28	. 25	.70		. 49	3.4	. 43	. 43	. 43	.20	.16	.16	.60
29	.37	.78	.28	.49		.32	.55	.49	.22	.17	.16	1.7
30	.70	1.9	. 25	. 49		.32	6.2	. 87	.20	.17	.15	1.6
31	1.9		.25	. 49		.28		.49		.16	.14	
TOTAL	29.63	20.65		85.48	65.88	24.02	84.40	25.02	10.55	6.25	6.70	10.79
MEAN	.96	.69		2.76	2.35	.77	2.81	.81	.35	.20	.22	.36
MAX	7.4	2.8		16	30	2.1	45	8.8	1.1	.40	1.5	1.7
MIN	. 25	. 23		.20	.32	.28	. 25	.25	.20	.16	.13	.12
AC-FT	59	41	43	170	131	48	167	50	21	12	13	21
CAL YR WTR YR		TOTAL	1112.41 391.04	MEAN MEAN	3.05 1.07	MAX MAX	109 45	MIN MIN	.20	AC-FT AC-FT	2210 776	
	C. C. C. C.	ANT STATE	Philadella,			12252				20-1-7	4.4	

TOTAL

MEAN

AC-FT

CAL YR 1982 WTR YR 1983

MAX

MIN

246.7

7.96

1.9

489

162.0

5.40

23

2.4

321

TOTAL

TOTAL

61.0

1.97

4.6

1.1

121

2381.15

1242.44

128.20

4.14

11

.95

254

MEAN

MEAN

86.2

3.08

11

1.5

171

6.52

3.40

16920500 AASU STREAM AT AASU

LOCATION.--Lat 14°17'51" S., long 170°45'30" W., Hydrologic Unit 20100001, on right bank at Aasu and 200 ft upstream from mouth.

DRAINAGE AREA .-- 1.03 mi2.

PERIOD OF RECORD. -- October 1958 to current year.

REVISED RECORDS.--WSP 1937: Drainage area. WSP 2137: 1959-60(P), 1961(M), 1962-65(P).

GAGE. -- Water-stage recorder and concrete control. Altitude of gage is 5 ft by hand levels from high-tide mark.

REMARKS.--Records fair. Small diversion above station for domestic use. Recording rain gage located at station. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE.--24 years (water years 1960-83), 6.09 ft³/s (4,410 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 498 ft³/s Sept. 7, 1972, gage height, 5.16 ft, from rating curve extended above 20 ft²/s on basis of slope-area measurement at gage height 4.57 ft; minimum, 0.12 ft³/s Oct. 21, 23, 24, 27, 1974.

DISCHARGE (CUBIC FEET/SECOND) WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983 MEAN VALUES

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 362 ft³/s Oct. 9, gage height, 4.57 ft, no other peak above base of 180 ft³/s; minimum, 0.34 ft³/s Aug. 15, 16, 19.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3	4.3	5.5	2.7	1.0	2.2	4.9	3.0	6.2	1.5	. 87	.57	.63
2	2.8	4.0	2.5	.95	2.1	4.3	2.8	3.4	1.6	.81	.52	.57
3	2.2	3.6	4.6	.95	1.9	4.0	2.7	2.8	3.0	. 81	.52	.81
4	2.1	3.6	2.8	1.4	2.1	4.6	2.5	2.7	2.1	. 81	. 47	.57
5	1.9	4.3	2.7	7.4	2.2	17	3.3	2.5	1.8	. 81	- 47	.52
6 7	2.2	23	2.5	4.9	6.6	13	11	2.5	1.6	1.1	. 47	.57
7	2.1	14	2.4	7.6	2.8	9.2	9.8	2.4	1.5	.95	.47	.68
8	5.8	9.2	2.5	11	2.5	7.8	7.0	2.4	1.4	.81	.42	.52
9	73	7.8	2.4	5.5	2.2	8.3	8.1	2.4	1.3	.74	.38	.52
10	20	7.0	2.1	5.8	2.1	11	13	2.2	1.2	. 81	.38	.81
11	16	6.7	2.1	7.0	1.9	7.0	13	2.4	1.2	.74	.42	.66
12	12	6.1	1.9	6.4	1.8	6.1	9.5	2.1	1.1	.74	.38	.58
13	10	5.5	1.9	5.5	1.8	5.2	8.1	2.1	1.1	.74	.38	.50
14	8.8	4.6	1.8	4.0	1.7	4.3	7.0	2.1	1.0	.74	.38	.49
15	7.4	4.0	1.7	3.6	2.0	4.0	6.1	1.9	1.0	. 87	.42	.62
16	6.7	3.6	1.6	3.6	3.0	3.8	5.5	2.1	1.0	.95	. 47	.88
17	7.0	3.6	1.5	3.7	3.0	3.2	5.5	1.8	1.0	.74	.42	.56
18	6.1	3.6	1.4	6.0	2.5	3.2	4.6	1.7	1.0	.74	.38	.52
19	4.9	3.8	1.4	4.9	2.2	3.0	4.3	1.7	. 87	.68	.38	.50
20	4.3	3.2	1.4	4.0	1.8	6.2	3.8	1.6	1.4	.68	1.0	.49
21	3.8	2.8	1.6	3.2	1.7	3.8	3.6	1.5	1.1	.68	4.5	.48
22	3.2	2.5	1.4	4.3	2.1	3.8	3.4	1.5	1.3	.68	2.8	.46
23	3.0	2.7	3.5	3.2	1.8	14	3.2	1.4	1.3	.63	1.9	.44
24	3.2	2.4	1.8	3.4	1.5	7.0	3.4	1.3	1.0	.63	1.1	.42
25	2.7	7.6	1.5	3.2	1.7	5.2	3.0	1.4	.95	.63	. 87	2.5
26	2.5	5.5	1.4	2.8	11	4.9	5.6	1.3	.95	.57	.74	5.0
27	2.2	3.2	1.3	2.7	11	4.9	3.6	1.3	1.3	. 57	.68	3.2
28	2.2	2.8	1.2	2.8	7.0	4.0	2.8	1.4	.95	.57	.63	2.1
29	2.5	3.0	1.2	2.8		3.8	2.7	1.5	1.1	. 81	.63	7.7
30	7.8	2.8	1.1	2.4		3.6	3.7	1.6	.95	1.0	.57	19
31	14		1.1	2.2		3.2		1.6		.57	.57	

188.3

6.07

3.0

373

MAX

MAX

165.6

5.52

13

2.5

328

73

73

64.8

2.09

6.2

129

MIN

MIN

38.57

1.29

3.0

. 87

.95

.38

77

23.48

.76 1.1

. 57

AC-FT

AC-FT

47

24.29 .78 4.5

.38

4720

2460

48

53.30

1.78

.42

106

LOCATION.--Lat 14°20'10" S., long 170°48'02" W., Hydrologic Unit 20100001, on left bank at Afao, 100 ft upstream from highway bridge, and 300 ft upstream from mouth.

DRAINAGE AREA. -- 0.24 mi2.

PERIOD OF RECORD. -- October 1958 to current year.

REVISED RECORDS. -- WSP 1937: Drainage area.

GAGE.--Water-stage recorder. Altitude of gage is 20 ft by hand levels from high-tide mark.

REMARKS.--Records fair. No diversion above station. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 24 years (water years 1960-83), 1.45 ft3/s (1,050 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 815 ft³/s Oct. 28, 1979, gage height, 4.47 ft, from rating curve extended above 30 ft³/s; minimum, 0.04 ft³/s Oct. 24-26, 28-31, Nov. 1, 1974.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 191 ft 3 /s Oct. 9, gage height, 2.68 ft, no other peak above base of 180 ft 3 /s; minimum, 0.13 ft 3 /s Sept. 3.

		DISC	CHARGE (CUE	BIC FEET/S		ATER YEAR N VALUES	COTOBER	1982 TO S	EPTEMBER	1983		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	. 80	. 87	.54	.24	.24	. 80	.44	2.0	.33	.19	.21	.17
2	.69	.69	.49	.24	.21	.59	.36	.64	.36	.19	.19	.15
3	.59	.64	.86	.24	.19	.40	.36	.49	.92	.19	.19	.21
4	.59	.59	.54	.30	.21	. 40	.36	.36	.44	.21	.19	.15
5	.54	.69	.49	3.2	1.4	4.9	.60	.33	.36	.19	.19	.15
6	.74	6.9	. 44	.68	3.4	1.3	11	.30	.27	.24	.21	.17
7	.54	2.5	. 44	.64	.54	.69	2.0	.30	.24	.24	.19	.33
8	2.3	1.3	. 49	. 80	.36	.59	1.2	.30	.24	.21	.19	.17
9	32	1.0	. 44	.36	.33	.64	1.1	. 27	.21	.21	.19	.17
10	4.1	. 87	.44	.36	.30	2.1	2.8	.27	.21	.21	.17	.19
11	2.6	.74	.44	.36	.36	.74	2.8	.30	.21	.24	.17	.19
12	1.8	.74	. 40	.30	.36	.54	1.6	.30	.21	.21	.17	.17
13	1.3	.69	.40	.44	.33	.44	1.1	. 27	.19	.21	.17	.17
14	1.0	.64	. 40	.33	.30	.36	. 87	. 27	.21	.21	.17	.17
15	.94	.59	. 40	. 27	.40	.33	.74	. 27	.21	.21	.17	.19
16	. 87	.59	. 40	.27	.44	.44	.59	.33	.21	.27	.21	.21
17	1.1	.59	.40	.30	.54	.33	.59	.30	.21	.21	.19	.19
18	1.0	.69	.36	. 40	.30	.30	.59	. 27	.24	.21	.19	.17
19	. 87	.59	.36	.30	.24	.30	.49	. 27	.21	.21	.17	.17
20	. 87	.54	.36	.36	.24	1.8	.59	.24	.33	.21	. 40	.17
21	.80	.54	.44	.27	.21	. 87	.59	.24	.27	.24	3.8	.17
22	. 80	.54	. 44	.36	.21	. 80	.59	.24	.30	.27	1.5	.19
23	.74	.54	.71	. 49	.21	5.9	.54	.24	.30	.24	. 80	.19
24	.74	.54	. 49	.64	.21	1.9	.64	.24	.24	.21	.30	.17
25	.69	2.7	.40	.36	.21	1.0	.59	.33	.21	.24	.24	1.6
26	.69	1.3	.33	.27	7.4	.74	.77	.30	.21	.21	.21	2.6
27	.69	.74	.30	. 27	5.5	1.6	.59	.27	.24	.21	.19	1.6
28	.64	.64	. 27	.24	1.0	. 87	.54	. 27	.24	.24	.17	.69
29	.64	.59	. 27	.24		.69	. 44	.27	.24	.30	.17	6.3
30	1.5	.64	. 27	.24		.59	1.8	.36	.19	.33	.15	17
31	2.3		.24	.24		.54		. 40		. 27	.15	
TOTAL	65.47	31.22	13.25	14.01	25.64	33.49	37.27	11.24	8.25	7.03	11.61	34.17
MEAN	2.11	1.04	. 43	. 45	.92	1.08	1.24	.36	. 27	.23	.37	1.14
MAX	32	6.9	. 86	3.2	7.4	5.9	11	2.0	.92	.33	3.8	17
MIN	.54	.54	.24	.24	.19	.30	.36	.24	.19	.19	.15	.15
AC-FT	130	62	26	28	51	66	74	22	16	14	23	68
CAL YR WTR YR		TOTAL TOTAL	586.15 292.65	MEAN MEAN	1.61	MAX MAX	32 32	MIN MIN	.15	AC-FT AC-FT	1160 580	

WTR YR 1983

16931500 ASILI STREAM AT ALTITUDE 330 FT NEAR ASILI

LOCATION.--Lat 14°19'34" S., long 170°47'38" W., Hydrologic Unit 20100001, on right bank 1.3 mi northwest of Leone, 1.5 mi southwest of Aoloaufou, and 0.8 mi upstream from mouth.

DRAINAGE AREA .-- 0.32 mi2.

PERIOD OF RECORD .-- October 1977 to current year.

GAGE.--Water-stage recorder. Altitude of gage is 330 ft, from topographic map.

REMARKS.--Records good. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 6 years, 2.52 ft 3/s (1,830 acre-ft/yr).

475.16

TOTAL

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 635 ft³/s Oct. 28, 1980, gage height, 4.73 ft, from rating curve extended above 14 ft³/s; minimum, 0.20 ft³/s Aug. 16, 1983.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 142 ft³/s Oct. 9, gage height, 3.20 ft, no other peak above base of 205 ft³/s; minimum, 0.20 ft³/s Aug. 16.

DISCHARGE (CUBIC FEET/SECOND) WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983 MEAN VALUES DAY OCT NOV DEC FEB JUL AUG SEP JAN MAR APR MAY JUN .92 2.7 .95 .52 -67 2.3 .52 .40 .28 .40 1 1.1 3.0 .71 2.0 .95 . 49 1.8 1.0 .64 1.6 .63 .40 .28 .34 34 2.1 . 46 .61 .99 2.0 .37 .25 .75 .61 1.7 1.1 .58 .64 1.6 .91 1.2 .37 .25 .34 5 3.9 1.2 .25 .58 1.7 .99 1.4 6.4 1.2 .67 .34 .31 6 .79 6.7 .95 1.3 3.0 3.2 9.2 .58 .52 .61 5.4 .91 1.4 .95 2.3 3.7 1.1 .60 .40 .25 .54 8 4.6 3.6 . 87 1.8 2.2 .79 2.6 1.1 .61 .34 .22 .31 1.1 2.1 2.5 .55 .22 .31 27 2.7 . 87 .75 1.0 .34 10 7.9 2.3 .79 1.4 .71 3.0 4.4 1.1 .52 .31 .22 . 43 11 12 5.6 2.0 .75 .75 1.3 . 67 1.6 4.8 .99 .49 .31 .25 .34 3.8 1.7 1.2 .64 1.4 3.4 .91 . 49 .22 .31 .31 .71 1.5 .22 .31 13 2.9 1.4 .64 . 87 .49 .31 14 .71 1.1 .61 .46 .31 . 43 15 1.8 1.2 .75 .99 .78 1.0 1.9 .75 .46 .22 .37 16 1.5 1.1 .75 .99 1.1 1.6 . 83 .53 .49 1.1 . 46 .28 .96 .94 .91 17 18 .75 2.0 1.0 1.1 1.3 1.6 .75 . 46 .34 .25 .34 1.4 .99 1.3 .75 1.4 .67 .46 .34 .25 .31 19 1.2 .75 .91 1.4 .64 .31 1.1 20 1.1 .99 .75 .95 2.6 1.3 .61 .64 .61 .64 .31 21 1.0 .91 .79 . 87 .49 3.8 .31 .58 1.3 .61 .34 1.1 22 .99 .75 .75 1.5 .83 1.2 1.1 .58 .73 .31 1.7 .34 23 .91 .92 1.8 1.4 .58 5.4 1.1 .58 .71 .28 1.1 .34 24 . 83 .79 .31 .96 1.2 .67 2.9 1.2 .55 . 49 .31 .61 1.9 2.2 25 . 83 3.9 .58 1.0 .64 .99 .58 . 46 .31 .52 26 .79 .58 . 87 2.0 2.4 1.7 1.4 27 28 .75 1.2 .55 .79 5.6 1.2 .52 .49 .28 . 43 1.8 1.0 . 83 .52 . 43 .40 5.2 3.1 1.0 .31 . 87 .58 . 46 4.1 .52 ---.40 17 30 1.2 .71 1.4 2.7 .64 . 45 . 81 31 1.2 .66 -28 .34 85.57 TOTAL 57.28 25.88 34.41 36.59 62.61 63.54 27.88 17.39 10.97 37.70 15.34 MEAN 2.76 1.91 .83 1.11 1.31 2.02 2.12 .90 .58 .35 .49 1.26 6.7 6.4 3.0 3.8 MAX 3.9 9.2 .53 17 . 83 .28 .31 MIN .58 .52 . 46 .58 .91 .22 .40 .52 114 AC-FT 170 51 73 126 34 30 75 CAL YR 1982 812.27 MEAN 2.23 27 AC-FT 1610 TOTAL. MAX MTN .44

1.30

MAX

MEAN

27

MIN

.22

AC-FT

942

16933500 LEAFU STREAM AT ALTITUDE 370 FT NEAR LEONE

LOCATION.--Lat 14°19'31" S., long 170°46'50" W., Hydrologic Unit 20100001, on left bank 900 ft upstream from village stream intake, 1.1 mi north of Leone, and 1.0 mi southwest of Aoloaufou.

DRAINAGE AREA. -- 0.31 mi2.

PERIOD OF RECORD. -- October 1977 to current year.

REVISED RECORDS. -- WDR HI-79-2: 1978(P).

GAGE.--Water-stage recorder. Altitude of gage is 370 ft, from topographic map.

REMARKS.--Records good. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE.--6 years, 4.59 ft3/s (3,330 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, about 370 ft³/s Mar. 17, 1981, gage height, about 6.4 ft, from rating curve extended above 48 ft³/s; minimum, 0.66 ft³/s July 6, 1982.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 160 ft 3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)
Oct. 8	2400	*283	5.53
Mar. 5	1545	200	4.70

Minimum discharge, 0.32 ft3/s Aug. 9.

		DIS	CHARGE (CUI	BIC FEET/SI		ATER YEAR N VALUES	ROCTOBER	1982 TO	SEPTEMBER	1983		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2.3	4.5	1.8	. 82	1.4	5.0	1.8	4.4	.94	.66	.45	.66
2	1.7	3.7		.78	1.3	4.1	1.7	2.3	1.1	.66	.42	.59
3	1.4	3.2		.78	1.2	3.7	1.6	2.0	2.1	.62	.42	.73
4	1.2	3.1		1.0	1.2	3.5	1.5	1.9	1.6	.62	.42	.59
5	1.2	3.0		9.8	2.1	15	1.8	1.9	1.4	.59	.39	.56
6	1.5	16	1.9	3.0	5.9	8.3	24	1.8	1.2	.92	.39	.59
7	1.2	9.4	1.8	4.1	1.8	5.2	6.8	1.7	1.2	.70	.39	.98
8	15	6.5	1.8	5.0	1.6	4.8	5.1	1.8	1.2	.59	.39	.56
9	59	5.4		2.9	1.4	4.6	4.8	1.5	.94	.59	.36	.52
10	20	4.5		3.6	1.4	6.9	7.7	1.5	.86	.59	.39	.70
11	12	3.8		3.3	1.4	3.7	7.1	1.4	.82	.56	.42	.59
12	8.1	3.2		2.9	1.4	3.2	5.4	1.4	.82	.56	.39	.52
13	5.8	2.8		3.2	1.3	2.7	4.5	1.3	.82	.56	.39	.48
14	4.7	2.5		2.4	1.4	2.4	3.9	1.2	.78	.59	.36	.48
15	3.8	2.2	1.2	2.4	1.9	2.2	3.4	1.2	.78	.70	.39	.59
16	3.2	2.0		2.2	2.2	2.4	3.0	1.3	.78	.74	.45	.84
17	3.8	2.0	1.2	2.2	3.0	1.9	2.8	1.2	.78	.56	.42	.59
18	2.8	2.1		2.2	1.7	1.8	2.3	1.1	.74	.51	.39	.48
19	2.4	2.2		1.9	1.4	1.7	2.4	1.0	.74	.52	.36	.48
20	2.0	1.8	1.1	2.0	1.4	6.0	2.2	1.0	2.0	.52	1.0	.48
21	1.9	1.8		1.8	1.3	2.2	2.0	.98	.94	.56	6.6	.48
22	1.8	1.5		2.4	1.6	3.0	1.8	.94	1.2	.52	2.7	.52
23	1.7	1.8		2.1	1.3	10	1.8	.94	1.1	.48	1.7	.48
24	1.7	1.6		2.0	1.7	4.3	2.1	.90	. 86	. 48	.98	. 45
25	1.5	7.4	1.2	1.9	1.7	3.4	1.8	.94	.82	.52	.82	2.5
26	1.4	3.5		1.6	14	3.3	2.6	. 86	.78	.48	.74	6.1
27	1.3	2.6		1.5	11	3.8	1.8	. 86	.90	.48	.70	4.1
28	1.3	2.2		1.4	6.1	2.8	1.6	.90	.70	.52	.66	1.9
29	1.7	2.1		1.5		2.4	1.4	.94	.74	.74	.66	19
30	9.1	2.3		1.4		2.2	3.5	1.0	.70	.59	.62	43
31	9.7		. 86	1.4		2.0		1.2		.45	.62	
TOTAL	186.2	110.7		75.48	75.1	128.5	114.2	43.36	30.34	18.18	25.39	90.54
MEAN	6.01	3.69		2.43	2.68	4.15	3.81	1.40	1.01	.59	. 82	3.02
MAX	59	16		9.8	14	15	24	4.4	2.1	.92	6.6	43
MIN	1.2	1.5		.78	1.2	1.7	1.4	. 86	.70	. 45	.36	.45
AC-FT	369	220	92	150	149	255	227	86	60	36	50	180
CAL YR		TOTAL	1755.80	MEAN	4.81	MAX	59	MIN	.70	AC-FT	3480	
WTR YR	1983	TOTAL	944.39	MEAN	2.59	MAX	59	MIN	.36	AC-FT	1870	

SAMOA ISLANDS, ISLAND OF TUTUILA

16948000 AFUELO STREAM AT MATUU

LOCATION.--Lat 14°18'07" S., long 170°41'07" W., Hydrologic Unit 20100001, on left bank 0.2 mi northwest of Matuu and 0.3 mi upstream from mouth.

DRAINAGE AREA. -- 0.25 mi2.

PERIOD OF RECORD.--March 1958 to current year. Prior to July 1960, published as Matuu Stream at Matuu.

REVISED RECORDS.--WSP 1937: Drainage area. WSP 2137: 1958-65.

GAGE .-- Water-stage recorder. Altitude of gage is 80 ft, from topographic map.

REMARKS.--Records good. Small diversion above station for domestic use since September 1972. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 25 years, 1.46 ft 3/s (1,060 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 502 ft³/s Apr. 29, 1975, gage height, 4.59 ft, from rating curve extended above 26 ft³/s on basis of slope-area measurement of peak flow; minimum, 0.01 ft³/s Sept. 16, 17, 20-26, 28, 29, 1975, Apr. 5-7, 1976.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 150 ft³/s Apr. 6, gage height, 2.83 ft, no peak above base of 160 ft³/s; minimum, 0.02 ft³/s July 13.

		DISC	CHARGE (CUI	BIC FEET/S		WATER YEAR AN VALUES	OCTOBER	1982 TO S	EPTEMBER	1983		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.19	.13	.50	.05	.08	.67	.08	3.0	.11	.04	.03	.06
2	. 43	.08	.19	.05	.06	.50	.07	.39	.13	.04	.03	.03
3	.16	.07	4.2	.05	.06	.36	.10	.21	1.2	.04	.03	.05
4	.13	.08	.55	.59	.35	1.8	.08	.14	.30	.04	.03	.04
5	.09	.14	. 27	8.6	.17	.91	1.0	.11	.19	.04	.04	.03
6	.10	5.5	.16	2.7	.13	.42	26	.11	.09	.05	.04	.04
7 8	.11		.14	2.9	.08	.28	1.4	.10	.08	.05	.04	.06
8	2.1	.19	.13	3.2	.30	.19	.60	.08	.08	.03	.05	.04
9	5.5	.11	.09	1.3	.05	.18	. 46	.08	.06	.02	.05	.04
10	.91	.09	.08	5.0	.04	.36	1.7	.08	.05	.02	.04	.06
11	.42	.10	.10	3.4	.05	.14	1.1	.09	.05	.02	.05	.06
12	.23	.13	.08	.70	.05	.14	.75	.08	.04	.02	.05	.04
13	.16	.09	.07	.39	.06	.11	. 46	.10	.04	.02	.04	.04
14	.13	.05	.07	.21	.04	.10	.28	.11	.04	.04	.04	.04
15	.13	.07	.05	.17	.05	.10	.19	.07	.03	.05	.04	.03
16	.11	.06	.05	.42	.37	.11	.16	.08	.03	.06	.05	. 47
17	.35	.13	.05	. 46	.74	.09	.16	.07	.05	.05	.05	.05
18	.23	.18	.05	1.4	.16	.09	.16	.09	.07	.04	.04	.03
19	.13	.24	.05	.36	.08	.08	.14	.08	.05	.04	.04	.03
20	.10	.15	.08	.33	.05	.24	.13	.08	.15	.05	.05	.03
21	.07	.27	.14	.17	.05	.09	.11	.08	.09	.04	.78	.03
22	.06	.19	.07	.17	4.2	.62	.10	.07	.06	.05	.25	.03
23	.07	.13	.08	.10	.50	1.5	.09	.06	.05	.05	.13	.04
24	.08	.09	.07	.09	.19	.30	.22	.05	.05	.05	.06	.03
25	.09	1.5	.06	.10	.25	.17	.16	. 27	.04	.05	.05	3.2
26	.07	.90	.06	.08	17	.13	.33	.06	.04	.06	.06	1.9
27	.06	.21	.05	.09	4.3	.12	.15	.28	.05	.05	.06	.60
28	.07	.13	.05	. 49	1.1	.11	.10	.10	.05	.06	.05	.28
29	.08	.23	.08	.10		.11	.11	.09	.05	.07	.05	3.4
30	.24	1.5	.05	.06		.10	2.4	. 46	.05	.07	.05	13
31	.64		.04	.12		.09		.10		.03	.05	
TOTAL	13.24	13.44	7.71	33.85	30.56	10.21	38.79	6.77	3.37	1.34	2.42	23.78
MEAN	. 43	. 45	.25	1.09	1.09	.33	1.29	.22	.11	.043	.078	.79
MAX	5.5	5.5	4.2	8.6	17	1.8	26	3.0	1.2	.07	.78	13
MIN	.06	.05	.04	.05	.04	.08	.07	.05	.03	.02	.03	.03
AC-FT	26	27	15	67	61	20	77	13	6.7	2.7	4.8	47.
CAL YR		TOTAL	392.66	MEAN	1.08	XAM	32	MIN	.04	AC-FT	779	
WTR YR	1983	TOTAL	185.48	MEAN	.51	MAX	26	MIN	.02	AC-FT	368	

16963900 LEAFU STREAM NEAR AUASI

LOCATION.--Lat 14°16'27" S., long 170°34'26" W., Hydrologic Unit 20100001, on right bank 35 ft upstream from upper village intake, 0.1 mi north of Auasi, and 0.2 mi upstream from mouth.

DRAINAGE AREA .-- 0.11 mi2.

PERIOD OF RECORD. -- February 1972 to current year.

REVISED RECORDS. -- WDR HI-75-1: 1972(P), 1973-74.

GAGE. -- Water-stage recorder. Altitude of gage is 120 ft, from topographic map.

REMARKS.--Records poor. No diversion above station. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE.--11 years, 0.35 ft3/s (254 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 234 ft 3/s Dec. 5, 1980, gage height, 4.43 ft, from recorded range in stage, from rating curve extended above 19 ft 3/s; minimum, 0.02 ft 3/s several days in 1976 and many days in 1983.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, about 40 ft³/s Apr. 6, gage height, about 2.43 ft, no other peak above base of 30 ft³/s; minimum, 0.02 ft³/s many days in July, August, September.

		DISC	CHARGE (CUB	IC FEET/SE		ATER YEAR N VALUES	OCTOBER	1982 TO S	EPTEMBER	1983		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.07	.05	.07	.07	.08	.08	.05	.16	.05	.02	.02	.02
2	.10	.04	.05	.07	.07	.07	.05	.07	.07	.02	.02	.02
3	.08	.04	.10	.08	.07	.08	.05	.07	.14	.03	.02	.02
4	.08	.04	.05	. 27	.08	.07	.05	.05	.07	.03	.02	.02
5	.08	.05	.05	.24	.07	.07	.07	.05	.05	.04	.02	.02
6	.16	.07	.05	.21	.05	.07	2.7	.05	.05	.05	.02	.02
7 8	.21	.05	.04	.19	.05	.05	.14	.04	.05	.04	.02	.02
8	.27	.05	.04	.27	.08	.05	.10	.04	.08	.02	.02	.02
9	.21	.05	.04	.24	.05	.05	.08	.04	.05	.03	.02	.02
10	.12	.05	.04	.50	.05	.07	.12	.04	.04	.03	.02	.02
11	.10	.04	.04	.14	.05	.08	.10	.04	.04	.04	.02	.02
12	.10	.04	.04	.10	.05	.05	.08	.04	.04	.04	.02	.02
13	.08	.04	.04	.08	.04	.05	.07	.04	.04	.03	.02	.02
14	.08	.03	.04	.07	.04	.05	.07	.04	.04	.03	.02	.02
15	.10	.03	.03	.07	.05	.05	.05	.04	.04	.03	.02	.02
16	.12	.03	.03	.07	.14	.05	.04	.04	.04	.03	.02	.02
17	.14	.03	.03	.07	.10	.05	.04	.04	.04	.02	.02	.02
18	.08	.04	.03	.10	.07	.05	.04	.07	.04	.02	.02	.02
19	.07	.07	.03	.08	.07	.07	.05	.07	.04	.02	.02	.02
20	.05	.07	.03	.07	.05	.08	.04	.04	.05	.02	.02	.02
21	.05	.05	.04	.07	.04	.08	.04	.04	.04	.02	.02	.02
22	.05	.04	.05	.07	.08	.14	.05	.04	.05	.02	.02	.02
23	.07	.04	.07	.05	.05	.34	.04	.04	.03	.02	.02	.02
24	.08	.04	.07	.04	.05	.16	.07	.04	.03	.02	.02	.02
25	.10	.07	.05	.03	.08	.14	.05	.04	.03	.02	.02	.02
26	.08	.07	.05	.03	.76	.12	.05	.08	.03	.02	.02	.02
27	.07	.05	.05	.04	. 27	.08	.05	.05	.04	.02	.02	.02
28	.07	.05	.05	.07	.14	.07	.04	.05	.03	.02	.02	.02
29	.07	.07	.05	.12		.07	.05	.05	.03	.02	.02	.02
30	.07	.16	.05	.08		.05	.12	.09	.02	.02	.02	.02
31	.08		.05	.12		.05		.05		.02	.02	
TOTAL	3.09	1.55	1.45	3.71	2.78	2.54	4.55	1.64	1.39	.81	.62	.60
MEAN	.10	.052	.047	.12	.099	.082	.15	.053	.046	.026	.020	.020
MAX	. 27	.16	.10	.50	.76	.34	2.7	.16	.14	.05	.02	.02
MIN	.05	.03	.03	.03	.04	.05	.04	.04	.02	.02	.02	.02
AC-FT	6.1	3.1	2.9	7.4	5.5	5.0	9.0	3.3	2.8	1.6	1.2	1.2
CAL YR		TOTAL	116.17	MEAN	.32	MAX	5.8	MIN	.03	AC-FT	230	
WTR YR	1983	TOTAL	24.73	MEAN	.068	MAX	2.7	MIN	.02	AC-FT	49	

As the number of streams on which streamflow information is likely to be desired far exceeds the number of stream-gaging stations feasible to operate at one time, the Geological Survey collects limited streamflow data at sites other than stream-gaging stations. When limited streamflow data are collected on a systematic basis over a period of years for use in hydrologic analyses, the site at which the data are collected is called a partial-record station. Data collected at these partial-record stations are usable in low-flow or flood-flow analyses, depending on the type of data collected. In addition, discharge measurements are made at other sites not included in the partial-record program. These measurements are generally made in times of base flow or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Records collected at partial-record stations are presented in two tables. The first is a table of discharge measurements at low-flow partial-record stations and the second is a table of low-flow measurements made at miscellaneous sites.

Low-flow partial-record stations

Measurements of streamflow in the area covered by this report made at low-flow partial-record stations are given in the following table. Most of these measurements were made during periods of base flow when streamflow is primarily from ground-water storage. These measurements, when correlated with the simultaneous discharge of a nearby stream where continuous records are available, will give a picture of the low-flow potentiality of the stream. The column headed "Period of record" shows the water years in which measurements were made at the same, or practically the same, site.

Discharge measurements made at low-flow partial-record stations during water year 1983

			Drainage	Period	meas	urements
Station No.	Station name	Location	area mi²	of record	Date	Discharge (ft3/s)
		Mariana Islands, Island of (Guam			
16813000	Piga Spring near Umatac	Lat 13°17'56" N., long 144°40'49" E., on left bank of Astaban River right-bank tributary, 0.3 mi west of Mount Bolanos, and 1.3 mi east of Sanchez School in Umatac.	-	1955, 1961-65, 1967-79, 1982-83	4- 8-83	0.15
16816000	Umatac River at Umatac	Lat 13°17'48" N., long 144°39'46" E., on left bank 0.2 mi upstream from mouth, 0.3 mi southeast of Umatac, and 5.8 mi northwest of Inarajan.	2.11	1952-76≠, 1977-79, 1983	7 -5 83	.29
		Caroline Islands, Palau Isla	inds			
16891430	North Fork Ngerdorch River, Babelthuap	Lat 07°27'51" N., long 134°35'12" E., 500 ft upstream from right-bank tributary, 1.4 mi upstream from confluence with South Fork Ngerdorch River, and 1.5 mi west of Ngchesar Village.		1975-83	7- 5-83	78.7
16891440	North Fork Ngerdorch River tributary, Babelthuap	Lat 07°27'51" N., long 134°35'10" E., 50 ft upstream from North Fork Ngerdorch River and 1.5 mi west of Ngchesar Village.	1.78	1975-83	7- 5-83	12.2
		Caroline Islands, Yap Isla	inds			
16892600	Ripu Stream, Yap	Lat 09°30'10" N., long 138°06'24" E., 300 ft upstream from mouth and 0.3 mi southwest of Gitaem water- treatment plant.	.29	1968-83	8-30-83	.09
16892650	Pinaey Stream, Yap	Lat 09°30'32" N., long 138°06'15" E., at upper Gitaem Reservoir, 0.4 mi northwest of water-treatment plant.	.04	1980-83	8-30-83	.07
16892680	Tholomar Stream above reservoir, Yap	Lat 09°30'37" N., long 138°06'18" E., about 500 ft upstream from upper Gitaem Reservoir and 1.4 mi south- west of Colonia.	.10	1965/, 1968-74/, 1980-83	8-30-83	.09
16893180	Monguch Stream, Gagil-Tamil	Lat 09°31'59" N., long 138°09'57" E., 0.7 mi northeast of Tamel Elementary School and 1.0 mi south of Coast Guard LORAN station.	.18	1980-83	5-25-83 6-28-83 7- 9-83 7-25-83 8-26-83	No flow No flow a.01 1.50 .99
		Caroline Islands, Island of	Ponape			
16897550	Meitik River	Lat 06°56'12" N., long 158°13'26" E., at bridge near mouth.	5.04	1971, 1973, 1977, 1980-81, 1983	1- 7-83	8.07

[≠] Operated as a continuous-record gaging station.

⁺ At station 16892700, 800 ft downstream.

a Estimated.

Discharge measurements made at low-flow partial-record stations during water year 1983--Continued

			Drainage	Period	Meas	urements
			area	of		Discharge
Station No.	Station name	Location	mi²	record	Date	(ft 3/s)
		Mariana Islands, Island of Ponape	eContinu	ied		
16897800	Kiepw (formerly Tawenjokola) River, at mouth	Lat 06°56'36" N., long 158°13'14" E., at road crossing 0.1 mi upstream from mouth.	11.2	1970-71, 1973-74, 1977, 1981, 1983	1- 7-83	15.6
16898500	Nankewi River	Lat 06°56'03" N., long 158°10'46" E., at highway bridge 350 ft west of Sekere School.	1.48	1971-73, 1975-77, 1981-83	1- 4-83 2-16-83 4-27-83 5-25-83 6-23-83	3.89 1.88 .53 .51 15.6
16898550	Kiriedleng River	Lat 06°55'17" N., long 158°09'48" E., at small right-bank tributary, 300 f downstream from road bridge, and 1.4 northwest of Mount Temwetemwensekir.	mi	1972-73, 1975-77, 1981-83	1- 4-83 2-16-83 4-27-83 5-25-83 6-23-83	1.65 .98 .42 .42 .42
16898700	Lehn Mesi River at hanging bridge	Lat 06°49'24" N., long 158°10'11" E., at foot bridge, 0.6 mi upstream from mouth.	8.32	1971, 1973, 1976-77, 1981-83	2-11-83 6-13-83	12.2 17.2
**16898900	Keprohi River	Lat 06°50'40" N., long 158°17'57" E., 150 ft upstream from road bridge and 0.46 mi northeast of Ponape Agriculture Trade School.	2.05	1981-83	11- 2-82 1- 6-83 2-17-83 3-24-83 4-28-83 5-26-83	4.01 4.04 2.32 1.88 1.21 1.01
16899000	Senipehn (formerly Senpen) River	Lat 06°52'28" N., long 158°16'17" E., 0.1 mi downstream from confluence of two branches, 0.5 mi southeast of Merewi Hill, and 1.5 mi upstream from mouth.	6.04	1971, 1973, 1976-77, 1980-81, 1983	1- 6-83 2-17-83 3-24-83 4-28-83 5-26-83	14.0 7.97 3.41 4.62 7.97
16899100	Lehdau (formerly Lataw) River	Lat 06°52'59" N., long 158°16'15" E., 0.1 mi upstream from left-bank tributary, 0.4 mi northeast of Merewi Hill, and 1.4 mi upstream from mouth.	2.44	1971, 1973, 1976-77, 1980-81, 1983	1- 6-83 2-17-83 3-24-83 4-28-83 5-26-83	4.33 3.51 1.48 1.60 1.62
		Caroline Islands, Island of	Kosrae			
**16899670	Mwot River	Lat 05°18'26" N., long 162°55'25" E., 300 ft upstream from dam, 0.55 mi upstream from mouth, and 1.3 mi northwest of Mount Wakapp.	.79	1980-81, 1983	10-20-82	1.27
**16899780	Tafuyat River	Lat 05°18'38" N., long 163°00'47" E., at old Japanese dam, 0.75 mi upstrea from mouth, and 1.5 mi east of Mount Finkol.	. 27 m	1974-75, 1977-83	10-15-82 3-31-83 8-30-83	1.70 .15 1.48
**16899830	Innem River	Lat 05°19'49" N., long 163°00'27" E., at concrete road bridge, 0.5 mi upstream from mouth, and 1.4 mi southeast of Mount Mutunte.	1.82	1971-74, 1978-83	10-17-82 3- 8-83 3-31-83	11.2 2.69 .21
**16899850	Pukusruk River	Lat 05°21'01" N., long 163°00'37" E., 20 ft upstream from diversion dam, 0.7 mi upstream from mouth, and 1.2 mi east of Mount Mutunte.	.27	1974-75, 1980-83	10-21-82 3- 8-83 3-31-83	.92 .07 .14

^{**} Also a water-quality partial-record station.

Discharge measurements made at low-flow partial-record stations during water year 1983--Continued

			0.01.4.17.4	e - 1.112	Meas	urements
Station No.	Station name	Location	Drainage area mi²	Period of record	Date	Discharge (ft³/s)
		Samoa Islands, Island of Tutu	ıila			
16917500	Leele Stream at mouth, at Fagasa	Lat 14°17'28" S., long 170°43'09" W., on left bank at Fagasa and 200 ft upstream from mouth.	0.23	1966-76≠, 1977, 1981-83	10-20-82 8- 3-83 9-14-83	0.31 .07 .06
16919000	Leaveave Stream near Aasu	Lat 14°18'28" S., long 170°45'06" W., 0.6 mi upstream from mouth and 0.9 mi southeast of Aasu.	.60	1959-60, 1962-63, 1968, 1974-77, 1979, 1981, 1983	12-28-82 8-16-83	.66
16920000	Aasu Stream near Aasu	Lat 24°18'16" S., long 170°45'29" W., 300 ft downstream from 100 ft waterfall, 0.5 mi south of Aasu, and 0.5 mi upstream from mouth.	.82	1959-63, 1968, 1974-76, 1978-79, 1981, 1983	12-28-82 7-26-83 8-16-83	1.27 .48 .30
16932000	Asili Stream near Asili	Lat 14°19'46" S., long 170°47'42" W., 0.4 mi north of Asili and 0.5 mi upstream from mouth.	.55	1959-61, 1963-65, 1968, 1970, 1974-77, 1981-83	10-28-82 7-12-83 8- 9-83	.80 .24 .18
16932500	Asili Stream at Asili	Lat 14°20'04" S., long 170°47'40" W., 100 ft upstream from highway bridge at Asili and 0.1 mi upstream from mouth.	.66	1958-59≠, 1960-61, 1963-65, 1967-69, 1974-77, 1981-83	7-12-83 8- 9-83	.34
16934000	Leafu Stream near Leone	Lat 14°19'47" S., long 170°46'55" W., 30 ft upstream from reservoir, 0.9 mi upstream from mouth, and 1.0 mi north of Leone.	.69	1959-64, 1968-69, 1971-74, 1976-77, 1981-83	7-14-83 8- 9-83	.69 .46
16944000	Papa Stream near Nuuuli	Lat 14°18'31" S., long 170°42'29" W., 0.3 mi upstream from Tauese Stream and 0.9 mi northwest of Nuuuli.	•57	1959-61, 1963-64, 1967-68, 1974-78, 1981-83	10-26-82 7-19-83 9-14-83	.38 .07 .20
16949800	Utumoa Stream near Pago Pago	Lat 14°17'35" S., long 170°42'20" W., 0.6 mi upstream from mouth and 1.1 mi south of Pago Pago above the Vaipito diversion intake system.	.07	1960-61, 1963-65, 1967-71, 1974, 1983	5- 4-83	.33
16960000	Alega Stream at Alega	Lat 14°16'58" S., long 170°38'19" W., on left bank 300 ft upstream from left-bank tributary, 0.2 mi northwest of Alega, and 0.3 mi upstream from mouth.	.19	1958-76≠, 1977-78, 1981-83	10-20-82 8- 2-83 9-15-83	.46 .26 .30
16964000	Leafu Stream at Auasi	Lat 14°16'28" S., long 170°34'26" W., 0.1 mi north of Auasi and 0.2 mi upstream from mouth.	.12	1959-61, 1963-65, 1968-71, 1976, 1981, 1983	10-20-82	.04

[≠] Operated as a continuous-record gaging station.

DISCHARGE MEASUREMENTS MADE AT MISCELLANEOUS SITES DURING WATER YEAR 1983

			Drainage area	Measured previousl (water		urements Discharge
Stream	Tributary to	Location	mi ²	years)	Date	(ft ³ /s)
		Mariana Islands, Island of S	aipan			
Middle Fork Talofofo Stream (**16801500)	Talofofo River	Lat 15°12'59" N., long 145°46'17" E., 1,000 ft upstream from confluence with South and North Forks, and 2.2 mi southeast of Tanapag.	0.28	1968-82≠,	11-19-82	0.56
		Mariana Islands, Island of G	uam			
Alasi Spring	Madog River	Lat 13°17'19" N., long 144°40'29" E., 400 ft south of confluence of Madog and Asdulili Rivers, and 1.3 mi north of Merizo Martyrs Memorial School. Altitude 200 ft, from topographic map.	-	1979	4- 9-83	.02
Sadog Gago River	Imong River	Lat 13°19'45" N., long 144°40'32" E., at altitude 640 ft, 0.4 mi east of M Jumullong Manglo, and 1.6 mi up-stream from gaging station 16847000.	t -	9	4-19-83	.04
Left branch tributary	Sadog Gago River	Lat 13°19'51" N., long 144°40'40" E., at altitude 440 ft, 0.5 mi east of Mt Jumullong Manglo, and 1.5 mi upstream from gaging station 16847000.	-	-	4-19-83	.04
Sadog Gago River	Imong River	Lat 13°19'51" N., long 144°40'41" E., at altitude 420 ft, 0.6 mi east of Mt Jumullong Manglo, and 1.5 mi upstream from gaging station 16847000.	-	•	4-19-83	.09
Sadog Gago River	Imong River	Lat 13°19'53" N., long 144°,40'47" E., at altitude 330 ft, 0.7 mi east of Mt Jumullong Manglo, and 1.3 mi upstream from gaging station 16847000.	-	7	4-19-83	.53
Sadog Gago River	Imong River	Lat 13°20'04" N., long 144°41'24" E., at altitude 190 ft, 0.6 mi upstream from gaging station 16847000, and 1.4 mi east of Mt Jumullong Manglo.		-	4- 6-83	.53
Sadog Gago River	Imong River	Lat 13°20'05" N., long 144°41'37" E., at altitude 160 ft, 50 ft above confluence to Imong River, 0.4 mi above gaging station 16847000, and 1.6 mi east of Mt Jumullong Manglo.	+	-	4- 6-83	1.0
Imong River	Fena Valley Reservoir	Lat 13°20'05" N., long 144°41'38" E., at altitude 160 ft, 10 ft above confluence to Sadog Gago River, 0.4 mi upstream from gaging station 16847000, and 1.7 mi east of Mt Jumullong Manglo.	- 6	31	4- 6-83	.57
16847000 Imong River	Fena Valley Reservoir	Lat 13°20'17" N., long 144°41'55" E., at altitude 120 ft, 0.1 mi up- from Fena Valley Reservoir, and 2.0 mi east of Mt Jumullong Manglo.	1.95	1960-82≠	4- 6-83	2.2
Almagosa Springs	Almagosa River	Lat 13°20'42" N., long 144°40'29" E., at altitude 720 ft, 0.3 mi east of Mt Almagosa, and 1.2 mi upstream from gaging station 16848100. Called West Impoundment.	3	~	4- 8-83	.27
Almagosa Springs	Almagosa River	Lat 13°20'42" N., long 144°40'30" E., at altitude 690 ft, 0.4 mi east of Mt Almagosa, and 1.2 mi up- stream from gaging station 16848100. Called East Impoundment.	- 1	9	4- 5-83	.30

^{**} Also a water-quality partial-record station. # Operated as a continuous-record gaging station.

DISCHARGE MEASUREMENTS MADE AT MISCELLANEOUS SITES DURING WATER YEAR 1983--Continued

			Drainage area	Measured previously (water	Meas	urements Discharge
Stream	Tributary to	Location	mi²	years)	Date	(ft³/s)
		Mariana Islands, Island of Guam	Continued			
Almagosa Springs	Almagosa River	Lat 13°20'43" N., long 144°40'35" E., at altitude 680 ft, 0.4 mi east of Mt Almagosa, and 1.1 mi upstream fro gaging station 16848100.	- m		4- 5-83	0.15
16848000 Almagosa Springs	Almagosa River	Lat 13°20'43' N., long 144°40'45" E., at altitude 620 ft and 0.7 mi east Mt Almagosa.	•	1951-67, 1971-75≠	4- 5-83	.01
Almagosa River	Fena Valley Reservoir	Lat 13°20'43" N., long 144°40'51" E., at altitude 550 ft, 0.7 mi east of Mt Almagosa, and 0.8 mi upstream from gaging station 16848100.		-	4- 5-83	.04
Right branch tributary	Almagosa River	Lat 13°20'34" N., long 144°41'25" E., at altitude 190 ft, 70 ft above confluence to Almagosa River, 0.3 mi upstream from gaging station 1684810 and 1.4 mi east of Mt Almagosa.		-	4-20-83	.19
Almagosa River	Fena Valley Reservoir	Lat 13°20'37" N., long 144°41'27" E., at altitude 190 ft, 20 ft below confluence with right tributary, 0.2 mi upstream from gaging station 16848100, and 1.4 mi east of Mt Almagosa.	-21	-	4-20-83	.31
16848100 Almagosa River	Fena Valley Reservoir	Lat 13°20'43" N., long 144°41'36" E., at altitude 155 ft, 0.1 mi upstream from Fena Valley Reservoir, and 1.6 mi east of Mt Almagosa.	1.32	1972-82≠	4- 5-83 4-20-83	.39 .35
Left branch tributary	Maulap River	Lat 13°21'25" N., long 144°40'30" E., at altitude 610 ft, 90 ft above confluence to Maulap River, 0.9 mi north of Mt Almagosa, and 1.4 mi upstream from gaging station 16848500.	-		4- 5-83	.01
Maulap River	Fena Valley Reservoir	Lat 13°21'23" N., long 144°40'34" E., at altitude 580 ft, 0.9 mi north of Mt Almagosa, and 1.3 mi upstream from gaging station 16848500.	-		4- 5-83	.06
Maulap River	Fena Valley Reservoir	Lat 13°21'27" N., long 144°40'47" E., at altitude 480 ft, 1.1 mi upstream from gaging station 16848500, and 1.1 mi northeast of Mt Almagosa.	-	7	4- 5-83	.10
Maulap River	Fena Valley Reservoir	Lat 13°21'27" N., long 144°40'52" E., at altitude 420 ft, 1.0 mi upstream from gaging station 16848500, and 1.2 mi northeast of Mt Almagosa.	1 (7)		4- 5-83	.13
16848500 Maulap River	Fena Valley Reservoir	Lat 13°21'14" N., long 144°41'44" E., at altiutde 130 ft, 0.1 mi upstream from Fena Valley Reservoir and 1.8 mi northeast of Mt Almagosa.	1.15	1972-82≠	4- 5-83	.75
Bonya River	Tolaeyuus River	Lat 13°21'58" N., long 144°41'12" E., at altitude 220 ft, 1.4 mi south of Fena Water Treatment Plant, and 1.8 mi northeast of Mt Almagosa.	- ÷	Ť	4-20-83	.36

[≠] Operated as a continuous-record gaging station.

DISCHARGE MEASUREMENTS MADE AT MISCELLANEOUS SITES DURING WATER YEAR 1983--Continued

			Drainage	Measured previousl (water		Discharge
Stream	Tributary to	Location	area mi²	years)	Date	Discharge (ft³/s)
		Mariana Islands, Island of Guam-	-Continued	i		
Talisay River	Maemony River	Lat 13°22'29" N., long 144°40'53" E., at altitude 270 ft, 0.8 mi south of Fena Water Treatment Plant, and 2.2 mi north of Mt Almagosa.	-	-	4-20-83	No flow
Talofofo River (16850000)	Pacific Ocean	Lat 13°21'05" N., long 144°43'50" E., 200 ft downstream from Mahlac River and 1.5 mi southwest of Talofofo.		1951-62≠	4-21-83 7-15-83	1.96 .76
		Caroline Islands, Yap Islan	ds			
Dorfay Stream (16893190)	Mukong Stream	Lat 09°32'08" N., long 138°10'13" E., 0.2 mi upstream from mouth and 0.9 mi northeast of Tamilang Elementary School.	.20	1981-82	5-25-83 6-28-83 7-25-83 8-26-83	No flow No flow .95 1.13
		Caroline Islands, Truk Isla	nds			
Nachiponong Stream, Moen, (16894200)	Pacific Ocean	Lat 07°25'45" N., long 151°51'31" E., 300 ft downstream from dam site and 0.2 mi upstream from mouth.	0.16	1968-76≠	3-12-83	No flow
		Caroline Islands, Island of	Ponape			
Lewi River at mouth (16898200)	Pacific Ocean	Lat 06°57'04" N., long 158°12'39" E., 0.3 mi upstream from bridge at mout and 0.4 mi west southwest of Ponape State Hospital.	2.08	1970-81≠	10-29-82 3- 2-83	5.99 2.42
Luhpwor River	Pacific Ocean	Lat 06°54'15" N., long 158°09'59" E., at old Japanese dam, 1.1 mi south- west of Mount Temwetemwensekir, and 1.2 mi upstream from gaging station		1973, 1982	10-13-82	.51
Seniahdak River (**16898620)	Pacific Ocean	Lat 06°53'41" N., long 158°09'47" E., at road bridge, 0.45 mi south of Pwakorokot Hill.	•56	1982	1- 4-83 2- 6-83 3-22-83 4-27-83 5-25-83 6-23-83	2.54 1.03 .93 .31 .91 7.90
Pehleng River (16898650)	Pacific Ocean	Lat 06°52'27" N., long 158°09'26" E., at road crossing near mouth, 0.25 mi north of Doletikitik Hill.	2.01	1981-82	1- 4-83 2-16-83 3-22-83 4-27-83 5-25-83 6-23-83	2.92 2.52 1.18 .56 1.36 23.7
		Caroline Islands, Island of	Kosrae			
Mutunte River (**16899500)	Pacfic Ocean	Lat 05°21'45" N., long 162°59'20" E., at dam, 0.6 mi upstream from mouth, and 1.2 mi north of Mount Mutunte.	.52	1971-82≠	6-20-83	2.13
Walung River above diversion (**16899680)	Pacific Ocean	Lat 05°18'25" N., long 162°55'01" E., above diversion dam, 0.2 mi upstrear from mouth, and 1.7 mi west of Mount Wakapp. Altitude 65 ft, from topo- graphic map.		1981	10-20-82	.10
Walung River below diversion	Pacific Ocean	Lat 05°18'26" N., long 162°55'01" E., 200 ft below diversion dam, 0.1 mi upstream from mouth, and 1.7 mi west Mount Wakapp.	i i i	-	10-20-82	a.03

^{**} Also a water-quality partial-record station. # Operated as a continuous-record gaging station. a Estimated.

DISCHARGE MEASUREMENTS MADE AT MISCELLANEOUS SITES DURING WATER YEAR 1983--Continued

		r	rainage	Measured previousl	,,,,,,,,,	urements
Stream	Tributary to	Location	area mi²	(water years)	Date	Discharge (ft³/s)
		Caroline Islands, Island of Kosrae	Contin	ued		
Finkol River (**16899690)	Pacific Ocean	Lat 05°17'10" N., long 162°59'04" E., 0.2 mi upstream from Menka River and 1.7 mi south of Mount Finkol. Altitude 25 ft, from topographic map.	1.70	1981	10-15-82	15.0
Palusrik River (**16899700)	Finkol River	Lat 05°16'32" N., long 162°59'13" E., 50 ft below diversion, 0.9 mi north- east of Utwe Village.	.45	1971-72≠, 1980-81	10-15-82	5.82
Malem River above diversion	Pacific Ocean	Lat 05°17'43" N., long 163°00'46" E., 70 ft above diversion, 1,300 ft up- stream from gaging station, and 1.8 m southeast of Mount Finkol.	- ni	-	3- 3-83 5-24-83	1.42
Tafuyat River below diversion	Pacific Ocean	Lat 05°18'39" N., long 163°00'48" E., 70 ft below old Japanese dam, 1.5 mi east of Mount Finkol.	152	-	3-31-83 8-30-83	.03 1.19
Tofol River	Pacific Ocean	Lat 05°19'04" N., long 163°00'18" E., 100 ft above diversion dam and 1,000 ft upstream from gaging station.	-	1981	10-16-82 3- 4-83 3-29-83 4-26-83 5-24-83 6-21-83 7-21-83	4.10 .29 .15 .28 .94 3.00 2.17
Tofol River	Pacific Ocean	Lat 05°19'05" N., long 163°00'19" E., 60 ft below diversion dam, 840 ft upstream from gaging station.		1981	3- 4-83 7-21-83	.05 1.83
Pakusruk River below diversion	Pacific Ocean	Lat 05°21'01" N., long 163°00'38" E., 20 ft downstream from diversion dam, 1.2 mi east of Mount Mutunte.	-	+	10-21-82 3- 8-83	.05 No flow
		Samoa Islands, Island of Tutu	ila			
Leafu Stream No. 3	Pacific Ocean	Lat 14°19'34" S., long 170°46'54" W., 1,100 ft above village catchment and 1.3 mi northeast of Leone.	7	1977, 1981-82	7-14-83 8- 9-83	.63 .44
Unnamed Stream No. 4	Leafu Stream	Lat 14°19'35" S., long 170°46'57" W., 300 ft above confluence with Leafu Stream and 1.3 mi northeast of Leone.	-	1977	8- 9-83	.07
Unnamed Tributary	Asili Stream	Lat 14°19'42" S., long 170°47'46" W., 200 ft above confluence with Asili Stream and 0.5 mi northwest of Asili	-	1977	10-28-82 7-12-83 8- 9-83	.24 .09 .08
Afuelo Stream	Pacific Ocean	Lat 14°18'07" S., long 170°41'07" W., 20 ft above the village intake system 0.2 mi northwest of Matuu, and 0.3 m upstream from mouth.		-	10-26-82 7-13-83 8-18-83	.08 .09 .07

^{**} Also a water-quality partial-record station.

Operated as a continuous-record gaging station.

Water-quality partial-record stations are particular sites where chemical-quality, biological and or sediment data are collected systematically over a period of years for use in hydrologic analyses. The data are collected usually less than quarterly.

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

CAROLINE ISLANDS, ISLAND OF PONAPE

16898900 KEPROHI RIVER, PONAPE

LOCATION.--Lat 06°50'40" N., long 158°17'57" E., Hydrologic Unit 20100006, 150 ft upstream from road bridge and 0.46 mi northeast of Ponape Agriculture Trade School.

DRAINAGE AREA .-- 2.05 mi2.

PERIOD OF RECORD. -- Water years 1981 to current year.

DATE	TIME	STREA FLOW INSTA TANEO (CFS	AN- DUC DUS ANC	TC PICT- (ST.	AND- TEME	JRE AS	S NONC	S, CALC AR- DIS TE SOL L/L (MG	- DIS VED SOLV	M, SODIUM - DIS- ED SOLVED L (MG/L	PERCENT
NOV 02	1200	4	1.0	62	7.0	27.5	23	0 3	.1 3.	6 3.2	
DAT		SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
NOV 02.		.3	.20	28	<5.0	3.9	<.10	16	.120	61	2

CAROLINE ISLANDS, ISLAND OF KOSRAE

16899670 MWOT RIVER, KOSRAE

LOCATION.--Lat 05°18'26" N., long 162°55'25" E., Hydrologic Unit 20100006, 300 ft upstream from dam, 0.55 mi upstream from mouth, and 1.3 mi northwest of Mount Wakapp.

DRAINAGE AREA. -- 0.79 mi2.

PERIOD OF RECORD. -- Water years 1980-81, current year.

DATE	TIM	STREA FLOW INSTA E TANEO (CFS	N, CON AN- DUC DUS ANC	PIC I- P CT- (SI CE A	RD	EMPER- ATURE DEG C)	HARD- NESS (MG/L AS CACO3)	HAR NES NONC BONA (MG CAC	S, CALCAR- DISTE SON	CIUM S: S- D: LVED SOI G/L (MG	GNE- IUM, SODI IS- DIS LVED SOLV G/L (MG MG) AS	ED
OCT 20	155	5 1	1.3	60	7.3	27.0	20		0	3.0	3.1 2	.4 20
DA:	TE	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFA DIS- SOLV (MG/ AS SO	TE RII DIS ED SOI L (MC	DE, R S- LVED S G/L (LUO- IDE, DIS- OLVED MG/L S F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
OCT 20		. 2	.30	25	<5	.0 3	3.6	.10	11	<.100	130	10

< Actual value is known to be less than the value shown.

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

CAROLINE ISLANDS, ISLAND OF KOSRAE--Continued

16899780 TAFUYAT RIVER, KOSRAE

LOCATION.--Lat 05°18'38" N., long 163°00'47" E., Hydrologic Unit 20100006, at old Japanese dam, 0.75 mi upstream from mouth, and 1.5 mi east of Mount Finkol.

DRAINAGE AREA. -- 0.27 mi2.

PERIOD OF RECORD. -- Water years 1974-75, 1977 to current year.

DATE	TIME	FL INS TAN	EAM- OW, TAN- EOUS	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STA ARI UNIT	ND- 1 D	PEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	DI SO (M	CIUM S- LVED S G/L (AGNE- SIUM, DIS- SOLVED MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCE!	
OCT															
15	1535		1.7	180		7.4	26.0	82	0	1	9	8.4	5.3	(I	.3
	SO:	TAS- IUM, IS- LVED G/L	ALKA LINIT LAB (MG/	Y SULF DIS L SOL (MG	VED	CHLO- RIDE, DIS- SOLVE	RIDE DIS- ED SOLVI	DIS SOI ED (MG	CA, SUM - CON VED TUE /L D	STI- NTS, IS- LVED	SOLIDS, DIS- SOLVED (TONS PER	NO2+	N, NO3 IRO S- DI VED SOI	ON, N IS- LVED S	MANGA- NESE, DIS- SOLVED (UG/L
DATE	AS	K)	CACO	3) AS S	(04)	AS CI) AS F	SIC	2) (M	G/L)	AC-FT)	AS	N) AS	FE) F	AS MN)
OCT															
15		1.1	89		6.0	4.2		20 2	7	120	.17	<.	100	10	<1

16899830 INNEM RIVER, KOSRAE

LOCATION.--Lat 05°19'49" N., long 163°00'27" E., Hydrologic Unit 20100006, at concrete road bridge, 0.5 mi upstream from mouth, and 1.4 mi southeast of Mount Mutunte.

DRAINAGE AREA. -- 1.82 mi2.

PERIOD OF RECORD. -- Water years 1971-74, 1978 to current year.

DATE	TIME	FI INS TAN	REAM- LOW, STAN- NEOUS	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAN ARD UNITS	A	MPER-	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	DI SO (M	CIUM S- LVED G/L	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCEN SODIU	
ОСТ 17	1025		11	120	7	.1	26.5	46	0		9.4	5.5	4.2	1	6 .3
	DI SOI	TAS- TUM, TS- LVED	ALKA- LINITY LAB (MG/L	SULF DIS SOL	ATE - VED	CHLO- RIDE, DIS- SOLVED		DIS SOL D (MG	CA, SUM - CON VED TUE /L D	STI- NTS, IS-	SOLIDS DIS- SOLVEI (TONS	, GE NO2+ D DI SOL	NO3 IRO S- DI VED SOI	ON, N IS- LVED S	ANGA- ESE, DIS- DLVED
DATE		K)	AS CACO3	(MG		(MG/L AS CL)	(MG/L AS F)	AS SIO		LVED G/L)	PER AC-FT	(MG) AS			UG/L 5 MN)
OCT 17		.70	49		6.0	4.5	.1	0 2	0	80	.1	1 <.	100	230	28

 $[\]mbox{$<$}$ Actual value is known to be less than the value shown.

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

CAROLINE ISLANDS, ISLAND OF KOSRAE--Continued

16899850 PUKUSRUK RIVER, KOSRAE

LOCATION.--Lat 05°21'01" N., long 163°00'37" E., Hydrologic Unit 20100006, 20 ft upstream from diversion dam, 0.7 mi upstream from mouth, and 1.2 mi east of Mount Mutunte.

DRAINAGE AREA. -- 0.27 mi2.

PERIOD OF RECORD. -- Water years 1974-75, 1980 to current year.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM
OCT 21	1100	.92	130	7.4	26.5	50	0	8.6	7.0	5.3	18

DATE	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
OCT 21	.3	.60	57	<5.0	5.8	.10	23	<.100	16	(1

< Actual value is known to be less than the value shown.

Samples are collected at sites other than gaging stations and partial-record stations to give better areal coverage in a river basin. Such sites are referred to as miscellaneous sites.

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

MARIANA ISLANDS, ISLAND OF SAIPAN

16801500 MF TALOFOFO STREAM (LAT 15°13'05" LONG 145°46'36")

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO
NOV 19	1145	370	8.0	26.0	120	0	37	6.6	31	36	1
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
NOV 19	1.3	136	6.0	37	.10	44	240	.33	<.100	31	2

CAROLINE ISLANDS, ISLAND OF PONAPE

16898620 SENIAHDAK RIVER (LAT 06°53'41" LONG 158°09'47")

DATE	TIME	STREA FLOW INSTA TANEO (CFS	AN- DUC	TIC N- CT- (S'	PH FAND- ARD (TS)	TEMPE ATUR (DEG	R- (M	RD- SS N G/L B	HARD- NESS, ONCAR- ONATE (MG/L CACO3)	SOI (MC	CIUM S S- I GVED SC G/L (M	GNE- IUM, DIS- DLVED G/L MG)	SODIU DIS- SOLVE (MG/ AS N	D L PERG	CENT DIUM
NOV 02	1425	5 9	9.7	38	6.8	26	.0	13	0	2	2.2	1.8	2.	3	28
DA!		SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3	DI SO (M	FATE S- LVED G/L SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO RIDE DIS SOLV (MG/ AS F	- SO ED (1)	LICA, IS- OLVED MG/L AS IO2)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IR D SO (U	ON, IS- LVED G/L FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	
NOV 02		.3	.20	16		<5.0	3.3	<.	10	9.6	.110		62	<1	

< Actual value is known to be less than the value shown.

ANALYSES OF SAMPLES COLLECTED AT MISCELLANEOUS SITES WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

CAROLINE ISLANDS, ISLAND OF KOSRAE 16899500 MUTUNTE RIVER (LAT 05°21'45" LONG 162°59'20")

DAT	E	TIME	STREA FLOW INSTA TANEO (CFS	M- CI , CC N- DU US AN	CE	PH STAND- ARD NITS)	TEMP ATU (DEG	RE	HARD- NESS (MG/L AS CACO3	NONC BONA (MG	S, (AR- TE	CALC DIS SOL (MG AS	IUM SI - DI VED SOI /L (MG	S- VED S	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT	
OCT	20		1020	1.1	85		7.1	25	5.5	30		0	4.7	4.	1	3.5	20
	DATI		SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	LINITY LAB	SUI DI SO	LFATE IS- DLVED MG/L SO4)	(MC	DE, S- LVED G/L	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILIC DIS- SOL' (MG, AS	VED /L	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON DIS SOLV (UG,	N, N S- /ED S /L (ANGA- ESE, DIS- OLVED UG/L S MN)	
	OCT 20.		.3	. 40	35		<5.0	4	1.9	.10	2	1	<.100		9	<1	

16899600 OKAT RIVER (LAT 05°19'11" LONG 162°58'19")

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM
OCT 19	1615	8.8	95	7.0	26.5	34	0	7.1	4.0	3.6	18

								NITRO-		
	SODIUM	POTAS-	ALKA-		CHLO-	FLUO-	SILICA,	GEN,		MANGA-
	AD-	SIUM,	LINITY	SULFATE	RIDE,	RIDE,	DIS-	NO2+NO3	IRON,	NESE,
	SORP-	DIS-	LAB	DIS-	DIS-	DIS-	SOLVED	DIS-	DIS-	DIS-
	TION	SOLVED	(MG/L	SOLVED	SOLVED	SOLVED	(MG/L	SOLVED	SOLVED	SOLVED
	RATIO	(MG/L	AS	(MG/L	(MG/L	(MG/L	AS	(MG/L	(UG/L	(UG/L
DATE		AS K)	CACO3)	AS SO4)	AS CL)	AS F)	SI02)	AS N)	AS FE)	AS MN)
OCT										
19	.3	.70	39	<5.0	3.9	.10	19	<.100	430	31

< Actual value is known to be less than the value shown.

ANALYSES OF SAMPLES COLLECTED AT MISCELLANEOUS SITES WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

CAROLINE ISLANDS, ISLAND OF KOSRAE--Continued 16899680 WALUNG RIVER (LAT 05°18'25" LONG 162°55'01")

DATE	TIME	STREA FLOW INSTANCE (CF:	AN- DUC DUS ANC	CIC I- P CT- (ST CE A	AND- TEM	MPER- TURE EG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS NONCAL BONATI (MG/I CACO	CALC R- DIS E SOL L (MG	VED SOL	UM, SODIU S- DIS- VED SOLVE /L (MG/	D PERCENT
OCT 20	1650	1	.10	70	7.2	26.0	26		0 4	.1 3	.8 2.	9 20
DAT	F	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	DIS SOL' (MG	E, RI - D VED SC /L (M	UO- S DE, IS- LVED G/L F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
OCT 20.		.3	.10	29	<5.0	3	. 8	<.10	11	<.100	12	<1

16899690 FINKOL RIVER (LAT 05°17'10" LONG 162°59'04")

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM
OCT 15	1030	15	82	6.0	26.5	32	0	5.5	4.4	3.0	17

DATE	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
OCT 15	.2	.40	37	<5.0	3.4	.10	19	<.100	160	10

< Actual value is known to be less than the value shown.

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

CAROLINE ISLANDS, ISLAND OF KOSRAE--Continued 16899700 PALUSRIK RIVER (LAT 05°16'32" LONG 162°59'13")

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM
ОСТ 15	1300	5.8	58	5.8	26.0	19	0	3.3	2.6	2.8	24

DATE	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
ОСТ 15	.3	.30	24	<5.0	4.2	<.10	15	<.100	100	5

PERIODIC DETERMINATIONS OF TEMPERATURES

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	ATURE	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)
			MA	RIANA ISLANDS,	ISLAND OF GUA	М			
	1680	08300	- FINIL	E CREEK AT AGA	T, GUAM (LAT 1	3 22 39	LONG 144	39 26)	
NOV , 19		1.1	30.0	25.0	DEC , 19 27	82 1450	.58	29.0	26.5
	1680960	00 -	LA SA FU	A RIVER NEAR U	MATAC, GUAM (L	AT 13 1	8 23 LONG	144 39 45	5)
OCT , 19	82				APR , 19	83			
04 DEC	1205	11	29.0	27.5	26 MAY	1015	.52	27.5	26.0
08 JAN , 19	1225	1.8	30.0	27.0	26 JUN	1550	.38	28.5	27.0
07 FEB	1120	1.3	28.5	26.0	28 JUL	1400	.23	28.0	26.5
08 MAR	1240	.74	29.5	25.5	22 AUG	1200	1.0	30.0	27.5
12 17	1305 1400	.97 .81	27.5 28.0	25.5 26.0	25	1130	5.0	22	27.5
	1683500	00 -	INARAJAN	RIVER NR INAR	AJAN, GUAM (LA	T 13 16	41 LONG 1	44 44 15)	
OCT , 19		27	20 5	20 5	JAN , 19		5 7	28.0	24.5
05	1200	37	30.5	28.5	05	1040	5.7	28.0	24.5
	168400	000 -	TINAGA	RIVER NR INARA	JAN, GUAM (LAT	13 17	10 LONG 14	4 45 04)	
DEC , 19					JUN , 19				2
09 FEB , 19	1305 83	3.3	29.5	26.5	24 JUL	1550	. 43	28.0	26.0
10 APR	1200	.88	29.0	25.5	25 AUG	1010	.98		28.0
15 MAY	1540	.60	28.0	26.0	11	1220	1.8	28.5	27.5
	1525	.49	28.5	27.0					
	168	347000	- IMON	G RIVER NR AGA	T, GUAM (LAT 1	3 20 17	LONG 144	41 55)	
NOV , 19		12.5	25.24	20.7	MAY , 19		2.0	22.0	125/20
12 JAN , 19		7.3	29.0	28.0	24 JUL	1145	1.9	28.0	27.5
13 FEB	1320	3.2	29.5	26.5	20 AUG	1115	1.4	30.0	28.5
07 MAR	1305	2.5	28.5	25.5	17	1130	7.8		27.5
18	1350	1.8	28.0	26.0					
	168481	- 00	ALMAGOS	A RIVER NEAR A	GAT, GUAM (LAT	13 20 4	13 LONG 14	4 41 36)	
NOV , 19	82 1155	4.9	30.5	26.5	FEB , 19 07	83 1500	.53	27.0	26.0
DEC 07	1430	3.0	29.0	26.0	MAY 24	1420	.26	28.0	27.0
JAN , 19 13	83 1445	.86	27.5	26.0					
	16848	3500	- MAULAP	RIVER NEAR AG	AT, GUAM (LAT	13 21 14	LONG 144	41 44)	
NOV , 19		2 0	29.0	25.0	MAY , 19		40	20.0	27.0
12 DEC	1020	3.8		25.0	24 JUN	1615	.48	28.0	
07 JAN , 19		2.9	29.5	25.5	16 JUL	1500	.44	28.0	26.5
13 FEB	1010	1.6	27.5	24.5	20 AUG	1505	.39	30.0	28.5
07 MAR	1040	1.2		25.5	17	1500	9.4	-	27.5
18	1035	.99	28.0	25.0					

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)
			MARIANA	ISLANDS, ISL	AND OF GUAMCo	ontinued			
168545	00	- UGUM RI	VER AB TA	LOFOFO FALLS	,NR TALOFOFO, (GUAM (LAT	13 19 16	LONG 144	44 01)
OCT , 19 07 DEC	82 1115	41		26.5	MAY , 19 19 JUN	983 1150	4.7	28.5	26.5
08	1530	17	29.0	27.0	29	1530	3.6	28.5	27.0
JAN , 19 06	1420	14	31.0	26.0	AUG 23	1415	7.7	29.0	27.0
FEB 10	1425	8.3	31.5	26.5	25	1130	27	29.0	27.5
APR 25	1320	5.6	27.5	26.5					
	168	858000	- YLIG	RIVER NR YON	A, GUAM (LAT 13	3 23 28 L	ONG 144 4	5 06)	
DEC 10									
DEC , 19	1430	11	30.0	26.5	MAY , 19	1155	.67	28.0	26.5
APR , 19	1210	.98	28.0	26.5	AUG 23	1120	6.2	29.0	27.5
	168	865000	- PAGO	RIVER NR ORDO	OT, GUAM (LAT)	3 26 08	LONG 144	45 14)	
JAN , 19		4.2	29.5	25.5					
1689	0600	- DIONG			AP, PALAU ISLAND		07 36 04 1	LONG 134	35 02)
OCT , 19: 20 DEC	82 1255	16	29.0	25.0	APR , 19 18 JUL	1325	2.4	28.5	26.0
06 FEB , 19	1240	7.8	27.0	25.0	02	1125 1310	51 45	27.5 27.5	26.0 26.0
03	1300	7.0	27.0	25.0	AUG				
MAR 10	1330	4.2	27.5	25.0	23	1320	52	28.5	26.0
16890	900	- TABECHI	EDING RIV	ER, BABELTHU	AP, PALAU ISLAN	DS (LAT	07 27 03 1	LONG 134	31 29)
OCT , 19	32 1140	14	27.5	25.0	APR , 19	1020	.57	122	27.0
DEC 10	1310	19	28.0	26.0	JUL 26	1110	37	28.5	25.5
JAN , 19:	1225	14	27.5	25.0	SEP 07	1045	22	28.0	25.5
MAR 24	1155	3.4	29.0	25.0					
16	391300	- EDEI	NG RIVER,	BABELTHUAP,	PALAU ISLANDS	(LAT 07	23 00 LONG	3 134 33	07)
NOV , 198	32 1240	21	25.5	25.0	APR , 19	1245	1.6	30.0	26.0
DEC 02	1105	9.1	28.0	25.0	08 JUN	1025	1.3	29.0	26.0
JAN , 198	33 1140	12	28.0	25.0	29 JUL	1210	4.7	25.5	25.0
FEB 24	1205	3.5	28.5	25.5	04	1200 1150	16 26	26.0 29.0	25.5
MAR					11	1130	20		25.5

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)
			CAROLIN	NE ISLANDS,	PALAU ISLANDSCo	ntinued			
168	391310	- KME	KUMEL RIV	ER, BABELTHU	JAP, PALAU ISLAND	S (LAT	07 23 14 L	ONG 134 3	2 42)
NOV , 19		2.4	27.0	25.0	APR , 19		22	20.0	25.5
08 DEC	1140	2.4	27.0	25.0	JUL	1110	.22	29.0	25.5
02 JAN , 19	1315	2.3	28.0	26.0	03 AUG	1410	6.3	28.0	26.0
12 FEB	1130	3.7	27.0	25.0	01 SEP	1155	8.4	27.5	26.0
24	1510	.57	28.0	25.0	01	1235	4.1	29.0	26.0
MAR 29	1430	.35	30.0	26.0					
16891	400	- SF NG	ERDORCH R	IVER, BABELT	HUAP, PALAU ISLA	NDS (LA	т 07 26 19	LONG 134	34 28)
OCT , 19	82				MAY , 19				
22 DEC	1140	5.7	29.5	25.0	05 JUL	1235	1.3	29.5	27.0
16 FEB , 19	1200	9.3	28.0	26.0	05 27	1305 1225	17 14	28.5 27.5	26.5 26.5
14	1145	1.6	30.0	26.0	SEP				
MAR 25	1240	1.2	30.0	28.0	08	1105	6.6	27.5	25.5
				CAROLINE ISI	ANDS, YAP ISLAND	s			
	1689200	00	- QATLIW	STREAM, YAP,	YAP ISLANDS (LA	т 09 32	58 LONG 1	38 06 41)	
OCT , 19	1005	.38	27.5	26.0	JUL , 19 11	83 1250	.29		26.0
NOV					27	1220	.66	27.5	26.0
25	1145 0940	.03	27.5 27.5	26.0 25.0	AUG 09	1455	7.7	27.5	26.5
DEC 10	1425	4.4	27.5	26.0	30 SEP	1010	.19	27.0	26.0
JUN , 19	83				19	1430	.48	28.0	26.0
29	1030	.03		26.5					
	16892400	5	QARINGEEL	STREAM, YAP	, YAP ISLANDS (L	AT 09 3	1 02 LONG	138 05 31)
OCT , 19	1130	.05	27.5	26.5	JUL , 19 27	83 1410	.70	27.5	27.0
NOV					AUG				
DEC	1020	.04	26.5	25.5	10	1415 1100	1.9	28.0 27.5	27.5 26.5
10 JUN , 19	1310	1.6	27.0	26.0	SEP 14	1025	.04	27.0	26.0
29	0915	.02	27.0	26.0	.,,,,	1025	.04	27.0	20.0
	1689310	0	- BURONG	STREAM, YAP,	YAP ISLANDS (LA	T 09 32	05 LONG 1	38 07 19)	
OCT , 19			-		JUL , 19			Jul 1	200
18 NOV	1205	.02	27.0	26.5	27 AUG	0955	. 80	27.0	26.0
10	1440 1305	.06	28.0 27.5	27.0 26.0	09	1300 0930	2.9	27.0 27.0	26.0 26.0
DEC	1000	.04	21.3	20.0	SEP	0000	.00	27.0	20.0
09	1400	.70	27.5	26.5	14	1215	.18	27.0	26.0

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	AIR A	MPER- TURE EG C)	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)
			CAROLINE	ISLANDS, YAP	ISLANDS Con	tinued			
2	16893200	- MU	KONG STREAM,	GAGIL-TAMIL,	YAP ISLANDS	S (LAT 09	9 32 05 LO	NG 138 10	18)
OCT ,	1002				APR , 19	003			
18 NOV	0920	1.8	27.0	26.5	19 MAY	1025	.06	27.5	27.0
09	0930	3.2	28.0	26.5	06	1115	.04	28.5	27.0
24 DEC	0930	.67	27.5	26.5	25 JUN	1040	.11	28.0	27.5
09	1115	5.4	27.0	26.0	28	1015	.31	28.0	27.5
28 JAN ,	1150 1983	.76	28.0	26.0	JUL 09	0950	.78	28.0	27.0
14	1010	.34	27.0	25.5	25	1050	3.3	26.5	26.0
FEB 03	0950	.19	26.5	25.0	AUG 10	1005	3.2	27.5	27.0
21	1010	.15	26.5	25.5	26	0955	2.6	27.5	26.5
MAR	0955	.11	27.0	26.0	SEP 19	0945	1.5	31.0	26.0
29	1035	.08	27.0	26.0	19	0943	1.3	31.0	20.0
	16893400	- E	YEB STREAM,	GAGIL-TAMIL,	YAP ISLANDS	(LAT 09	33 11 LON	G 138 09	14)
oom '	1000			40111					
OCT , :	1100	.97	27.0	26.0	MAR , 19 31 APR	1040	.26	27.5	26.0
10	1010	.77	27.5	26.0	19	1205	.02	28.0	27.0
24 DEC	1120	.58	27.0	26.0	MAY 25	1320	.03	28.0	27.5
09	1250	2.4	27.5	26.5	JUL	1510		2010	
JAN , :		.30	27.5	25.5	09 25	1330 1525	.75 2.7	27.0	27.0 26.0
FEB	1150	.30	27.5	23.3	AUG	1323	2.,	27.0	
03	1110	.06	26.5	25.0	10	1235	3.0	28.0	27.5
21 MAR	1215	.03	27.0	25.0	26 SEP	1420	2.1	27.5	27.0
11	1135	.03	26.0	25.5	19	1200	1.3	28.0	27.0
			CAROLI	NE ISLANDS, I	SLAND OF PON	NAPE			
		16897900	- LEWI	RIVER, PONAP	E (LAT 06 55	32 LONG	3 158 12 1	8)	
OCT ,			21.0	07.0	MAY , 19				44.4
29 DEC	1355	.59	31.0	27.0	24 JUN	1040	.13	31.0	26.0
01	1030	.39	28.0	25.0	07	0955	.30	29.0	25.0
15 JAN ,]	1015	.74	28.0	25.0	21 JUL	1045	2.2	29.0	25.0
05	0940	.66	27.5	24.0	06	1045	11	29.0	25.0
20	1100	.44	28.0	24.0	AUG				
FEB 03	0930	.19	27.0	24.0	17 30	1045 1100	2.6 3.0	30.0	25.0 24.0
15	0950	.23	26.0	24.0	SEP				
MAR 02	1015	.20	28.0	24.5	14 26	1030 1045	1.2 5.3	29.0 29.0	24.0
APR							7.5	22.0	2
12 26	0950 1340	.03	32.0	26.0 27.0					
29	2340	• 12	52.0	-/					

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)
			SI	AMOA ISLANDS,	ISLAND OF TUTUI	LA			
	16912	2000	- PAGO S	STREAM AT AFON	O, TUTUILA (LAT	14 16	03 LONG 17	0 39 02)	
OCT , 19	82				MAY , 19	83			
01	1200	.60	27.0	26.0	04	1015	.90	25.5	25.0
26 DEC	1455	.28	27.0	25.0	10	1450 1230	.43	26.0	24.0 24.0
02	0755	.71	25.0	24.0	JUN	1230	.20	20.0	24.0
JAN , 19	83				10	1255	.25	26.0	24.0
06 FEB	0945	3.3	25.5	24.0	AUG	0935	.25	25.0	24.0
01	1155	.48	26.0	25.0	23 30	1345	.14	30.0	24.0 27.0
MAR					SEP				
03	1045	2.1	24.0	24.0	09	1150	.16	25.5	24.0
APR 08	0850	1.9	25.0	24.0					
	16920	0500	- AASU S	STREAM AT AASU	, TUTUILA (LAT	14 17 5	1 LONG 170	45 30)	
OCT , 19					MAY , 19				
22	0915	3.2	25.5	24.0	26	0855	1.3	26.0	25.0
DEC 28	0915	1.3	25.0	24.0	JUL 26	0830	.56	27.0	25.0
FEB , 19	0805	1.9	24.5	24.0	AUG 16	0855	.34	25.0	24.0
11	0850	2.1	26.0	25.0	SEP	0033	.54	23.0	24.0
APR 05	0820	2.4	26.0	24.0	27	0800	2.7	24.0	24.0
	1693100	00 -	ATAULOMA	A STREAM AT AF	AO, TUTUILA (LA	т 14 20	10 LONG 1	70 48 02)	
OCT , 19					MAR , 19				
05 NOV	1140	.55	26.0	25.0	31	0930	.53	27.0	25.0
02	1305	.66	27.0	26.0	APR 20	0945	.68	26.0	24.0
DEC 07	1035	. 45	25.0	25.0	MAY 24	1000	.21	27.0	26.0
JAN , 19	83				AUG				
12	1000	.33	25.0	24.0	09	0810	.19	24.0	24.0
FEB 17	0830	.55	25.0	24.0	31 SEP	1250	.11	24.0	22.0
MAR	0050	. 33	23.0	24.0	01	1135	.18	27.0	25.0
17	0920	.33	26.5	25.0					
169315	00	- ASILI	STR AT AL	T 330 FT (100	M) NR ASILI, TUT	UILA (L	AT 14 19 3	4 LONG 17	0 47 38)
OCT , 19	82				APR , 19	83			
05	1005	.62	24.0		12	1000	3.3	25.0	23.0
28 NOV	0955	.71	24.5	24.0	MAY 03	1000	1.4	25.0	24.0
	1005	1.8	24.0	23.0	12	0940	.81	26.0	24.0
03			25.0	24.0	JUN 07	1020	.63	26.0	24.0
DEC	1015	Q A		24.0		1020	.03	20.0	24.0
DEC 08	1015 83	.84	20.0		AUG				
DEC 08 JAN , 19 11		.84 1.3	25.0	24.0	09	1005	.22	24.0	23.0
DEC 08 JAN , 19 11 FEB	83 0950	1.3	25.0	24.0	09 SEP				
DEC 08 JAN , 19 11	83				09	1005 0935	.22	24.0	23.0 22.0

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)
			SAMOA ISL	ANDS, ISL	AND OF TUTUILA	Continued			
1693350	00	- LEAFU S	TR AT ALT	370 FT (113M) NR LEONE,	TUTUILA (LA	AT 14 19 3	1 LONG 17	70 46 50)
OCT , 19	982				APR ,	1983			
06	0855	1.4	25.0	24.0	19		3.6	24.0	24.0
27	1020	1.3	24.0	23.0	MAY	0000	1.5	24.0	24.0
NOV 03	1200	3.5	24.0	24.0	10 JUN	. 0920	1.5	24.0	24.0
DEC	1200	3.3	24.0	24.0	08	. 1025	1.1	26.0	24.0
09	0920	1.7	25.0	24.0	JUL				
JAN , 19		0.0	25.0	04.0	14	. 1055	.53	24.0	22.0
17 FEB	0925	2.0	25.0	24.0	AUG 09	. 1255	.34	24.0	23.0
22	0920	1.7	25.0	24.0	SEP	. 1255	.54	24.0	23.0
MAR			22,70		06	. 0850	.56	24.0	23.5
01	1020	5.0	26.0	25.0	20	. 0855	.48	24.0	22.0
09	0900	4.0	24.0	23.5					
29	0930	2.5	24.0	23.0					
	16948	000	- AFUELO	STREAM AT	MATUU, TUTUILA	(LAT 14 18	07 LONG 1	70 41 07)	
OCT , 19	982				APR .	1983			
08	0910	.07	26.0	25.0	27		.14	26.0	24.0
26	0900	.07	25.0	24.0	JUN				
NOV					09	. 1230	.05	25.0	24.0
02	1445	.08	25.0	24.0	JUL 13	. 1120	.02	25.0	24.0
JAN , 19	0940	.64	25.0	22.0	AUG	. 1120	.02	25.0	24.0
14	0800	.22	25.0	24.0	18	. 1010	.01	26.0	24.0
FEB			2.0	2.00	SEP			44.44	
16	1305	. 22	25.0	22.0	07		.05	24.0	22.0
MAR	0005				23		.04	24.0	22.0
23	0825 1505	1.4	24.0	24.0	29	. 0905	.36	24.0	22.0
20	1303	•12	23.0	22.0					
	1696390	00 -	LEAFU ST	REAM NEAR	AUASI, TUTUILA	(LAT 14 16	27 LONG 1	70 34 26)	
OCT , 19	182				MAY ,	1983			
01	0920	.08	27.0	26.0	05		.04	28.0	25.0
20	0830	.05	26.0	25.0	13		.04	24.0	22.0
NOV			20.0		25		.04	25.0	24.0
04	0920	.05	26.0	25.0	JUN				
18	1035	.04	26.0	25.0	23	. 0955	.04	26.0	24.0
DEC 21	1210	.04	21.0	20.0	JUL 08	. 1110	.02	28.0	26.0
MAR , 19		.04	21.0	20.0	AUG	. 1110	•02	28.0	20.0
17	1250	.06	22.0	22.0	10	. 1355	.02	26.0	24.0
APR					SEP				
21	1330	.04	24.0	22.0	15	. 1030	.03	24.0	22.0
26	1150	.06	26.0	24.0					

MARIANA ISLANDS, ISLAND OF PAGAN

180800145470570. Local number, 12-0745-05 Well 5.

LOCATION.--Lat 18°07'25" N., long 145°45'53" E., Hydrologic Unit 20100006, at southwest corner of airfield and 2.2 mi southwest of Mt. Pagan.

AQUIFER. -- Alluvium or marine tuff.

WELL CHARACTERISTICS.--Hand-dug, diameter 3.0 ft, lined with concrete about 3-in thick, in 2 to 3 ft sections. Depth 15.6 ft.

DATUM.--Land-surface datum is 14 ft. Measuring point: Top of concrete casing, 15.55 ft, above mean sea level, established by the U.S. Army in 1950.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, MARCH 1983

DATE	MAXIMUM	MEAN	MINIMUM
MAR 7	1.31	1.08	.91
8	1.37	1.17	.91
9	1.23	1.07	.89
10	1.30	1.12	.82
11	1.33	1.14	.90

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	HARD- NESS (MG/L AS CACO3)	HARD- NESS NONCAR- BONATE (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
MAR 07	0920	3950	6.8	26.0	3.8	.9	5500	840	190	180	96
DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
MAR 07	500	55	8	32	656	21	960	.20	66	2200	2.00
DATE	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, SUS- PENDED RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)
MAR 07	170	1	<100	<10	<1	10	1	13	690	480	210
DATE	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LITHIUM TOTAL RECOV- ERABLE (UG/L AS LI)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, SUS- PENDED RECOV. (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MOLYB- DENUM, TOTAL RECOV- ERABLE (UG/L AS MO)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)
MAR 07	4	10	1200	0	1200	<.1	<1	7	<1	<1	110

< Actual value is known to be less than the value shown.

MARIANA ISLANDS, ISLAND OF PAGAN

18080014547070. Local number, 12-0745-06 Well 6.

LOCATION.--18°07'40" N., long 145°45'44" E., Hydrologic Unit 20100006, at southern corner of Shomushon Harbor, and 2.1 mi southwest of Mt. Pagan.

AQUIFER .-- Marine Tuff.

WELL CHARACTERISTICS.--Hand-dug, diameter 3.0 ft, line with concrete about 3-in thick, in 2 to 3 ft sections. Depth 11.3 ft.

DATUM.--Land-surface datum is 9 ft. Measuring point: Top of concrete casing, 9.80 ft, above mean sea level, established by the U.S. Army in 1950.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, MARCH 1983

DATE		MAXIMUM	MEAN	MINIMUM		
MAR	10	1.11	.70	.21		
	11	1.00	.62	.13		
	12	.97	.57	0.0		
	13	.97	.55	08		
	14	1.20	.77	.18		

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	HARD- NESS (MG/L AS CACO3)	HARD- NESS NONCAR- BONATE (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
MAR 07	1015	15900	6.4	26.5	1.4	1.0	>10000	2100	1840	230	360
DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
MAR 07	2700	73	26	92	221	760	4900	.30	55	9200	<.100
DATE	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, SUS- PENDED RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)
MAR 07	90	2	<100	<10	1	20	1	17	280	220	60
DATE	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LITHIUM TOTAL RECOV- ERABLE (UG/L AS LI)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, SUS- PENDED RECOV. (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MOLYB- DENUM, TOTAL RECOV- ERABLE (UG/L AS MO)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)
MAR 07	2	40	170	20	150	<.1	4	7	<1	<1	70

 $^{\!&}lt;\!$ Actual value is known to be less than the value shown. $\!>\!$ Actual value is known to be greater than the value shown.

MARIANA ISLANDS, ISLAND OF PAGAN

180800145470470. Local number, 12-0746-04 Well 4.

LOCATION.--Lat 18°07'38" N., long 145°46'01" E., Hydrologic Unit 20100006, in Shomushon, 1.0 mi south of Lagona Lake, and 1.9 mi southwest of Mt. Pagan.

AQUIFER. -- Marine Tuff.

WELL CHARACTERISTICS.--Hand-dug, 4.0 ft sq, lined with concrete about 4-in thick. Depth 32.8 ft.

DATUM.--Land-surface datum is 32 ft. Measuring point: Top of concrete casing, 34.15 ft, above mean sea level, established by the U.S. Army in 1950.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, MARCH 1983

DATE		MAXIMUM	MEAN	MINIMUM	
MAR	5	2.24	2.07	1.82	
	6	2.32	2.11	1.85	
	7	2.36	2.15	1.86	
	8	2.38	2.18	1.85	
	9	2.31	2.17	1.85	
	10	2.37	2.14	1.83	

DATE	TIM	E I	SPE- CIFIC CON- DUCT- ANCE UMHOS)	PH (STAND- ARD UNITS)	TEMPEF ATURE (DEG C	R- BI		OXYGEN DIS- SOLVE (MG/L	FOI TO' , IMI (COI	ER	HARD- NESS (MG/L AS CACO3)	HARD- NESS NONCAR- BONATE (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
MAR 07	083	0	1840	7.1	28.	0	.60	4.	5 15	0	280	92	48	40
DATE	SODIUM DIS- SOLVEM (MG/M	D L P	ERCENT SODIUM	SODIUM AD- SORP- TION RATIO	POTAS SIUM DIS- SOLVE (MG/I AS K)	LINI D (MC	ITY AB G/L	SULFAT DIS- SOLVE (MG/L AS SO4	E RII	LO- DE, S- LVED G/L CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
MAR 07	260		65	7	14	193		74	43	0	.40	44	1000	1.40
DATE	ALUMINUM TOTAL RECOVERABL (UG/1 AS A)	L V- Al LE '	RSENIC TOTAL (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	TOTAL	CADM TOTAL REC	MIUM FAL COV- ABLE G/L CD)	CHRO- MIUM, TOTAL RECOVERABL (UG/L AS CR	TO' REC	ALT, TAL COV- ABLE G/L CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, SUS- PENDED RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)
MAR 07	1:	10	4	100	<1	.0	<1	1	0	1	9	20	20	4
D	ATE	LEAD TOTA RECOVERABI (UG/1) AS PI	L TO V- RE LE ER L (U	HIUM N TAL T COV- R ABLE E G/L (ANGA- ESE, OTAL ECOV- RABLE UG/L S MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	TO' REG	CURY I TAL ' COV- I ABLE I G/L	MOLYB- DENUM, FOTAL RECOV- ERABLE (UG/L AS MO)	TO RE ER (U	COV- NI ABLE TO G/L (U	ELE- TO IUM, RE DTAL EF JG/L (U	OTAL TO ECOV- RI RABLE EI JG/L (I	INC, DTAL ECOV- RABLE JG/L 5 ZN)
MA 0	R 7	4	<1	20	<10	2		<.1	3		9	1	<1	20

< Actual value is known to be less than the value shown.

HADD-

99

MARIANA ISLANDS, ISLAND OF PAGAN

180800145470770. Local number, 12-0845-07 Well 7.

LOCATION.--Lat 18°08'08" N., long 145°45'57" E., Hydrologic Unit 20100006, 0.5 mi north of Shomushon, Bay and 1.7 mi southwest of Mt. Pagan.

AQUIFER .-- Alluvium over lava.

WELL CHARACTERISTICS.--Hand-dug, diameter 3.0 ft, lined with concrete about 3-in thick, in 2 to 3 ft sections. Depth 35.7 ft.

DATUM.--Land-surface datum is 33 ft. Measuring point: Top of concrete casing, 33.94 ft, above mean sea level, established by the U.S. Army in 1950.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, MARCH 1983

E	MAXIMUM	MEAN	MINIMUM
12	1.82	1.32	.50
13	1.84	1.30	.45
		12 1.82	12 1.82 1.32

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

COLT-

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	HARD- NESS (MG/L AS CACO3)	HARD- NESS NONCAR- BONATE (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
MAR 07	1315	7460	6.8	34.5	.70	5.1	70	1000	684	150	160
DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
MAR 07	1300	72	18	61	350	360	2200	1.3	55	4500	.670
DATE	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, SUS- PENDED RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)
MAR 07	120	6	<100	<10	1	10	1	11	70	40	30
DATE	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LITHIUM TOTAL RECOV- ERABLE (UG/L AS LI)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, SUS- PENDED RECOV. (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MOLYB- DENUM, TOTAL RECOV- ERABLE (UG/L AS MO)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)
MAR 07	<1	70	10	0	10	.1	7	11	2	<1	60

< Actual value is known to be less than the value shown.

MARIANA ISLANDS, ISLAND OF PAGAN

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

180800145471170 - 12-0745-11 KAIPUT'S CISTERN, PAGAN

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	HARD- NESS (MG/L AS CACO3)	HARD- NESS NONCAR- BONATE (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
MAR 07	0815	235	7.2	24.0	.40	8.7	200	78	51	29	1.4
DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
MAR 07	10	21	.5	2.0	27	24	34	2.2	4.9	120	1.00
DATE	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, SUS- PENDED RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)
MAR 07	180	<1	100	<10	1	10	1	5	110	70	39
DATE MAR	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LITHIUM TOTAL RECOV- ERABLE (UG/L AS LI)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, SUS- PENDED RECOV. (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MOLYB- DENUM, TOTAL RECOV- ERABLE (UG/L AS MO)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)
MAR 07	<1	<10	20	7	13	<.1	<1	7	1	<1	900
(-406-40)	-				-				-		

< Actual value is known to be less than the value shown.

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

180800145471870 - 12-0745-18 OCEAN WATER AT SHOMUSHON BAY, PAGAN

DATE	TII	ME	SPE- CIFI CON- DUCT ANCE (UMHO	c - (PH STAND- ARD NITS)	TEMPER- ATURE (DEG C)	TU BI IT (NT	D- Y	OXYGEN DIS- SOLVE (MG/L	, NI	ARD- ESS MG/L AS ACO3)	HARD- NESS NONCAR- BONATE (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
MAR 12	203	30	501	00	7.5	26.0		.30	8.	5	5900	5820	400	1200	9300
DATE	PERCI SOD		SODI AD SORP TIO RATI	- N O	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULF. DIS SOL (MG AS S	- VED /L	CHLO- RIDE, DIS- SOLVE (MG/L AS CL	D SC	LUO- IDE, DIS- DLVED MG/L S F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)
MAR 12		76	53		330	128	270	0	16000		.70	3.5	30000	.120	30
DATE	ARSEN TOTA (UG, AS A	AL /L	BARIU TOTA RECO ERAB (UG/ AS B	M, L V- LE L	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHR MIU TOT REC ERA (UG AS	M, AL OV- BLE /L	COBALT TOTAL RECOV ERABL (UG/L AS CO	TO RI	PPER, OTAL ECOV- RABLE UG/L S CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, SUS- PENDED RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)
MAR 12		1	1	00	<10	<1		40		1	2	160	40	120	<1
	DATE	TO RE ER (U	HIUM TAL COV- ABLE G/L LI)	MANG NESE TOTA RECO ERAB (UG/ AS M	, NE L S V- PE LE RE L (U	NGA- SE, M US- N NDED COV. S G/L (ANGA- ESE, DIS- OLVED UG/L S MN)	TO RE ER (U	CURY TAL COV- ABLE G/L	MOLYB- DENUM, TOTAL RECOV- ERABLI (UG/L AS MO)	NIC TO RE E ER (U	COV- NI ABLE TO G/L (U	CLE- TO CUM, RE DTAL EF	OTAL TO COV- REABLE E	INC, OTAL ECOV- RABLE UG/L S ZN)
	AR 12		140		30	0	30		<.1	9	9	10	<1	<1	20

< Actual value is known to be less than the value shown.

MARIANA ISLANDS, ISLAND OF PAGAN

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

180800145471570 - 12-0846-15 LAGONA LAKE, PAGAN

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	HARD- NESS (MG/L AS CACO3)	HARD- NESS NONCAR- BONATE (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
MAR 12	1610	21400	7.9	27.0	1.1	9.0	150	2700	2620	440	390
DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
MAR 12	3500	73	30	120	87	940	7000	1.9	4.1	12000	<.100
DATE	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, SUS- PENDED RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)
MAR 12	160	2	100	<10	1	20	1	5	130	90	40
DATE	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LITHIUM TOTAL RECOV- ERABLE (UG/L AS LI)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, SUS- PENDED RECOV. (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MOLYB- DENUM, TOTAL RECOV- ERABLE (UG/L AS MO)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)
MAR 12	<1	50	20	0	20	<.1	9	9	2	<1	20

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

180800145471670 - 12-0946-16 INNER LAKE, PAGAN

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	HARD- NESS (MG/L AS CACO3)	HARD- NESS NONCAR- BONATE (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
MAR 12	1545	11600	6.8	28.0	.40	7.0	15	1300	1150	260	160
DAME	SODIUM, DIS- SOLVED (MG/L	PERCENT	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L	ALKA- LINITY LAB (MG/L AS	SULFATE DIS- SOLVED (MG/L	CHLO- RIDE, DIS- SOLVED (MG/L)	FLUO- RIDE, DIS- SOLVED (MG/L	SILICA, DIS- SOLVED (MG/L AS	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L
MAR 12	AS NA)	SODIUM	22	AS K)	CACO3)	AS SO4)	AS CL)	AS F)	SIO2) 80	(MG/L) 6400	AS N)
DATE	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, SUS- PENDED RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)
MAR 12	40	7	<100	<10	<1	20	1	3	40	0	50
DATE	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LITHIUM TOTAL RECOV- ERABLE (UG/L AS LI)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, SUS- PENDED RECOV. (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MOLYB- DENUM, TOTAL RECOV- ERABLE (UG/L AS MO)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)
MAR 12	11	110	20	0	20	.1	7	11	2	<1	20

< Actual value is known to be less than the value shown.

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

180800145471770 - 12-0946-17 WARM SPRINGS, PAGAN

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	HARD- NESS (MG/L AS CACO3)	HARD- NESS NONCAR- BONATE (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	AAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
MAR 12	1530	10300	6.9	41.0	.30	5.0	.00	1400	1270	280	180
DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
MAR 12	1900	73	22	100	174	440	3600	1.1	92	6700	1.90
DATE	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, SUS- PENDED RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)
MAR 12	40	15	<100	<10	<1	20	1	2	60	0	60
DATE	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LITHIUM TOTAL RECOV- ERABLE (UG/L AS LI)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, SUS- PENDED RECOV. (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MOLYB- DENUM, TOTAL RECOV- ERABLE (UG/L AS MO)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)
MAR 12	<1	120	10	0	10	<.1	8	8	2	<1	10

< Actual value is known to be less than the value shown.

105

MARIANA ISLANDS, ISLAND OF SAIPAN

151032145460370. Local number, 14-1045-09 (formerly 1046300) Hakmang Well 78.

LOCATION.--Lat 15°10'22" N., long 145°45'51" E., Hydrologic Unit 20100006, 0.8 mi west-southwest of the Hakmang Communication station and 2.3 mi northeast of San Vicente Village. Owner: Government of the Northern Mariana Islands.

AQUIFER. -- Tagpochau Limestone.

WELL CHARACTERISTICS.--Drilled artesian basal water-table well, diameter 12 in, depth 369 ft.

DATUM.--Altitude of land-surface datum is 229 ft. Measuring point: Top of casing, about 230 ft above mean sea level.

PERIOD OF RECORD. -- March 1973 to May 1976, June 1977, January to August 1978, December 1980 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 20.58 ft above mean sea level, Sept. 17, 1975; lowest, 18.40 ft above mean sea level, Aug. 24, 1982.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983 MEAN VALUES

					0							
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	18.87	18.76	18.83	18.81	18.60	18.88	18.92	18.92	18.92	19.01	18.96	19.06
2	18.91	18.76	18.82	18.81	18.62	18.87	18.92	18.91	18.93	19.01	18.95	19.06
3	19.03	18.75	18.78	18.81	18.63	18.87	18.92	18.90	18.94	19.05	18.96	19.06
4	18.95	18.74	18.78	18.80	18.63	18.84	18.93	18.89	18.94	19.04	18.96	19.07
5	19.02	18.75	18.79	18.81	18.61	18.84	18.93	18.89	18.92	19.03	18.95	19.10
6	19.02	18.76	18.77	18.79	18.64	18.84	18.93	18.88	18.93	19.04	18.94	19.09
7	19.02	18.76	18.77	18.80	18.64	18.84	18.94	18.87	18.94	19.05	18.96	19.10
8	19.04	18.75	18.76	18.79	18.64	18.82	18.94	18.87	18.95	19.04	18.98	19.10
9	19.02	18.72	18.76	18.75	18.65	18.82	18.95	18.86	18.95	19.06	19.01	19.12
10	19.10	18.72	18.76	18.77	18.65	18.81	18.95	18.85	18.95	19.06	19.01	19.12
11	18.96	18.75	18.76	18.77	18.68	18.83	18.97	18.86	18.95	19.07	19.02	19.12
12	19.01	18.75	18.78	18.76	18.69	18.84	18.97	18.87	18.95	19.07	19.03	19.10
13	19.02	18.75	18.79	18.74	18.73	18.83	18.96	18.89	18.95	19.08	19.03	19.10
14	19.06	18.74	18.80	18.72	18.75	18.83	18.94	18.89	18.96	19.08	19.04	19.08
15	19.06	18.73	18.82	18.70	18.77	18.83	18.94	18.90	18.98	19.07	19.04	19.07
16	19.06	18.72	18.81	18.69	18.77	18.86	18.96	18.90	18.99	19.07	19.05	19.06
17		18.75	18.84	18.68	18.79	18.87	18.96	18.89	18.99	19.06	19.04	19.05
18		18.76	18.83	18.69	18.81	18.89	18.96	18.91	18.99	19.05	19.04	19.05
19		18.78	18.83	18.70	18.81	18.88	18.96	18.91	18.99	19.04	19.03	19.06
20		18.78	18.84	18.70	18.80	18.89	18.96	18.92	18.99	19.03	19.02	19.05
21		18.79	18.83	18.68	18.81	18.89	18.98	18.93	18.99	19.02	19.02	19.06
22		18.79	18.85	18.67	18.84	18.92	18.98	18.94	19.00	19.01	19.02	19.05
23		18.80	18.85	18.64	18.83	18.94	18.97	18.94	19.00	18.99	19.05	19.06
24		18.78	18.83	18.64	18.84	18.94	18.95	18.94	18.99	18.98	19.05	19.07
25		18.79	18.82	18.71	18.86	18.93	18.94	18.95	18.99	18.98	19.06	19.08
26		18.82	18.82	18.75	18.86	18.91	18.94	18.94	18.99	18.97	19.06	19.08
27		18.81	18.81	18.66	18.87	18.92	18.94	18.93	18.99	18.95	19.05	19.07
28		18.82	18.80	18.65	18.88	18.92	18.94	18.92	18.99	18.94	19.06	19.09
29		18.81	18.80	18.64		18.92	18.96	18.91	18.99	18.96	19.06	19.08
30		18.82	18.81	18.64		18.92	18.94	18.91	19.00	18.95	19.06	19.08
31	18.75		18.82	18.62		18.92		18.92		18.96	19.06	
MEAN		18.77	18.81	18.72	18.74	18.87	18.95	18.90	18.97	19.02	19.02	19.08
MAX		18.82	18.85	18.81	18.88	18.94	18.98	18.95	19.00	19.08	19.06	19.12
MIN		18.72	18.76	18.62	18.60	18.81	18.92	18.85	18.92	18.94	18.94	19.05

MARIANA ISLANDS, ISLAND OF SAIPAN

151130145445970. Local number, 14-1144-07 (formerly 1144330) Akgak Well 31.

LOCATION.--Lat 15°11'30" N., long 145°44'59" E., Hydrologic Unit 20100006, 1.2 mi south of Capitol Hill and 2.5 mi north of San Vicente Village. Owner: Government of the Northern Mariana Islands.

AQUIFER. -- Tagpochan Limestone.

WELL CHARACTERISTICS. -- Drilled perched water-table well, diameter 12 in, depth 290 ft.

DATUM.--Altitude of land-surface datum is 615 ft. Measuring point: Top of casing, 615.37 ft above mean sea level. PERIOD OF RECORD.--July 1982 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 407.97 ft above mean sea level, Dec. 24, 1982; lowest, 377.20 ft above mean sea level, Sept. 23, 1983.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, JUNE TO SEPTEMBER 1982 MEAN VALUES

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
JUN 29	385.14	JUL 12	383.69	JUL 25	382.48	AUG 7	381.90	AUG 20	381.76	SEP 1	381.75
30	385.02	13	383.59	26	382.41	8	381.88	21	381.69	2	381.70
JUL 1	384.90	14	383.50	27	382.35	9	381.86	22	381.64	3	381.65
2	384.80	15	383.41	28	382.28	10	381.84	23	381.60	4	381.64
3	384.69	16	383.31	29	382.22	11	381.82	24	381.59	23	382.67
4	384.59	17	383.23	30	382.13	12	381.79	25	381.59	24	382.63
5	384.48	18	383.13	31	382.10	13	381.78	26	381.63	25	382.60
6	384.38	19	383.03	AUG 1	382.09	14	381.80	27	381.67	26	382.59
7	384.27	20	383.91	2	382.08	15	381.81	28	381.70	27	382.50
8	384.28	21	382.80	3	382.06	16	381.81	29	381.71	28	382.47
9	384.10	22	382.73	4	382.02	17	381.81	30	381.73	29	382.43
10	383.97	23	382.64	5	381.97	18	381.80	31	381.72	30	382.33
11	383.79	24	382.56	6	381.93	19	381.78				

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	382.27		222	405.55	398.20	388.30	382.00	380.65	378.85	378.16	377.88	377.57
2	382.24			405.15	398.00	388.00	381.90	382.28	378.80	378.15	377.87	377.56
3	382.38			405.00	397.70	387.70	381.80	381.65	378.76	378.12	377.84	377.51
4	382.44			404.42	397.50	387.40	381.70	381.38	378.87	378.10	377.79	377.45
5	382.44			404.95	397.30	387.20	381.70	380.90	378.80	378.12	377.75	377.43
6	382.47		222	405.35	397.00	387.10	381.60	380.65	378.70	378.10	377.71	377.41
7	382.56			405.12	396.60	387.10	381.60	380.44	378.68	378.10	377.68	377.40
8				404.90	396.20	387.20	381.52	380.33	378.65	378.08	377.65	377.40
9				404.40	395.80	387.30	381.48	380.24	378.61	378.06	377.64	377.35
10				404.40	395.30	387.00	381.43	380.16	378.57	378.04	377.63	377.33
11			222	404.23	394.80	386.60	381.40	380.80	378.53	378.02	377.61	377.77
12	1===			403.70	394.40	386.30	381.35	381.50	378.50	378.00	377.58	377.83
13				403.50	394.00	386.00	381.32	380.70	378.48	377.99	377.58	377.75
14			h407.38	403.48	393.70	385.70	381.28	380.30	378.44	377.98	377.57	377.71
15							381.25	380.05	378.41	377.98	377.58	377.95
15			406.85	403.15	393.40	385.40	361.25	380.05	3/0.41	3//.90	3//.50	377.95
16			406.78	402.45	393.20	385.20	381.25	379.93	378.40	377.99	377.59	377.70
17			406.59	402.20	393.00	384.90	381.18	379.82	378.37	378.04	377.60	377.56
18		h406.82	406.43	401.85	392.50	384.70	381.09	379.75	378.34	378.01	377.60	377.46
19			406.13	401.60	392.10	384.50	381.02	379.65	378.31	377.99	377.59	377.35
20			406.17	400.95	391.60	384.30	380.97	379.60	378.30	377.98	377.58	377.31
21			406.16	401.00	391.00	384.00	380.90	379.50	378.28	377.98	377.57	377.27
22			406.60	400.76	390.60	383.80	380.82	379.43	378.35	377.97	377.55	377.22
23			406.80	400.13	390.20	383.50	380.79	379.36	378.40	377.95	377.55	377.24
24			407.70	400.00	389.80	383.20	380.74	379.30	378.27	377.90	377.54	377.27
25	h393.67		406.85	399.56	389.50	383.00	380.70	379.25	378.24	377.89	377.52	377.27
26			406.28	399.52	389.20	382.80	380.65	379.18	378.21	377.88	377.50	377.38
27			406.20	399.28	388.90	382.60	380.56	379.11	378.20	377.87	377.50	377.31
28			405.90	399.30	388.60	382.40	380.54	379.09	378.19	377.87	377.50	377.26
29			406.07	399.55		382.30	380.58	379.02	378.18	377.88	377.50	377.26
30			405.75	398.60		382.20	380.52	378.95	378.17	377.88	377.50	377.26
31			405.50	398.40		382.10	300.32	378.90		377.88	377.48	
21			403.30	390.40		302.10		3/0.30		3/1.00	311.48	
MEAN				402.34	393.57	385.15	381.19	380.06	378.46	378.00	377.61	377.45
MAX				405.55	398.20	388.30	382.00	382.28	378.87	378.16	377.88	377.95
MIN				398.40	388.60	382.10	380.52	378.90	378.17	377.87	377.48	377.22

h Tape measurement.

MARIANA ISLANDS, ISLAND OF SAIPAN

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

150730145431370 - 14-0743-11 KOBLER FIELD 111

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	TEMPER- ATURE (DEG C)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	TEMPER- ATURE (DEG C)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
NOV	1000	1200	00.5		JUN	0200	4,00,191	alan a	1.00.1.1
18 MAR	1200	1320	28.5	270	30 SEP	1738	4040	28.0	1200
02	1430	3760	26.5	1000	08	0945		28.5	1200

DATE	TIME	PH (STAND- ARD UNITS)	HARD- NESS (MG/L AS CACO3)	HARD- NESS NONCAR- BONATE (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO
NOV 18	1200	7.1	350	126	110	18	120	42	3
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
NOV 18	4.7	223	30	<.10	8.8	700	3.60	28	3

< Actual value is known to be less than the value shown.

MARIANA ISLANDS, ISLAND OF SAIPAN

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

150730145435270 - 14-0743-17 ISLEY FIELD 103

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	TEMPER- ATURE (DEG C)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	TEMPER- ATURE (DEG C)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
NOV					JUN				
18	1110	874	28.5	110	30	1645	970	28.5	120
MAR					SEP				
02	1345	940	27.5	120	08	0910		28.5	130
NOV 18	3333	874	28.5	110	JUN 30 SEP		970	28.5	1

DATE	TIME	PH (STAND- ARD UNITS)	HARD- NESS (MG/L AS CACO3)	HARD- NESS NONCAR- BONATE (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO
NOV	25.54	12-11	584			13.5	-1	133	150
18	1110	7.0	330	67	120	6.9	52	26	1
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
NOV	2.0	262		. 10		470	4 00	37	2
18	2.0	262	11	<.10	6.5	470	4.00	3/	3

< Actual value is known to be less than the value shown.

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

151026145454970 - 14-1046-08 HAKMANG WELL 76

		SPE-				MAGNE-		
		CIFIC CON-		HARD-	CALCIUM	SIUM,	SODIUM,	
		DUCT-	TEMPER-	NESS (MG/L	DIS- SOLVED	DIS- SOLVED	DIS- SOLVED	
	TIME	ANCE	ATURE	AS	(MG/L	(MG/L	(MG/L	PERCENT
DATE		(UMHOS)	(DEG C)	CACO3)	AS CA)	AS MG)	AS NA)	SODIUM
JUL								
02	1355	883	28.5	360	130	7.6	42	20
SEP								
08	1450		28.0					
	SODIUM	POTAS-	CHLO-	FLUO-	SILICA,	NITRO- GEN,		MANGA-
	AD-	SIUM,	RIDE,	RIDE,	DIS-	NO2+NO3	IRON,	NESE,
	SORP-	DIS-	DIS-	DIS-	SOLVED	DIS-	DIS-	DIS-
	TION	SOLVED	SOLVED	SOLVED	(MG/L	SOLVED	SOLVED	SOLVED
	RATIO	(MG/L	(MG/L	(MG/L	AS	(MG/L	(UG/L	(UG/L
DATE		AS K)	AS CL)	AS F)	SIO2)	AS N)	AS FE)	AS MN)
JUL								
02	1	1.5		<.10	26	1.50	4	<1
SEP								
08			75					

151250145444170 - 14-1244-09 MAUI IV 144

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS NONCAR- BONATE (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO
NOV 18 JUL	1350	2110	28.0	-					4	-22
01 SEP	1250	2520	28.0	560	384	140	52	470	64	9
08	1345		27.5				144			200
	POTAS- SIUM,	ALKA- LINITY	SULFATE	CHLO-	FLUO-	SILICA,	SOLIDS, SUM OF CONSTI-	NITRO- GEN, NO2+NO3	IRON,	MANGA- NESE,
	DIS-	LAB	DIS-	DIS-	DIS-	SOLVED	TUENTS,	DIS-	DIS-	DIS-
	SOLVED (MG/L	(MG/L AS	SOLVED (MG/L	SOLVED (MG/L	SOLVED (MG/L	(MG/L AS	DIS- SOLVED	SOLVED (MG/L	SOLVED (UG/L	SOLVED (UG/L
DATE	AS K)	CACO3)	AS SO4)	AS CL)	AS F)	SIO2)	(MG/L)	AS N)	AS FE)	AS MN)
NOV 18		- 22		460		22		-2-2	44	
JUL										
01 SEP	15	180	330	860	<.10	7.6	2000	2.50	40	10
08				1100			175		55	75

< Actual value is known to be less than the value shown.

MARIANA ISLANDS, ISLAND OF SAIPAN

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

151315145441670 - 14-1344-16 WELL 164 PUERTO RICO

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS NONCAR- BONATE (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO
JUL 01	1055	9400	28.5	1300	1130	250	170	1500	70	18
08	1330		28.0				-		1	
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
JUL 01 SEP	41	196	360	2800	<.10	8.2	5200	1.80	40	10
08				4500						

151312145443970 - 14-1344-17 WELL 148 AS RAPUGAO

DA	TE	TIM	SPE CIF CON DUC E ANC	IC I- IT- E	TEMPE ATUR (DEG	E	HARI NESS (MG: AS CAC	S /L	CALC DIS SOL (MG AS	VED /L	MAG SI DI SOL (MG AS	UM, S- VED /L	SODIU DIS- SOLVE (MG/ AS N	D L	PERC SOD		SODI AD SORP TIO RATI	- N
JUL		100		-0-									0.0			2.0		0
SEP		102	1	596	21	. 5		270	100		4	. 7	28			18		. 8
	•••	101	5	==	28	3.0												
												NT	RO-					
			POTAS-			CHL	0-	FL	UO-	SILI	CA,		EN,			MAN	IGA-	
			SIUM,	SULF	ATE	RID		RI	DE,	DIS	5-	NO2-	NO3	IRC	ON,	NES	E,	
			DIS-	DIS		DIS	-	D	IS-		LVED		s-	D	IS-	DI	S-	
			SOLVED		VED	SOL			LVED		G/L		VED		VED		VED	
		_	(MG/L	(MC		(MG			G/L	AS			G/L		G/L		J/L	
	DAT	E	AS K)	AS S	(04)	AS	CL)	AS	F)	SIC)2)	AS	N)	AS	FE)	AS	MN)	
	JUL																	
	01. SEP	••	2.6		7.9		51		<.10		9.1	3.	10		6		<1	
	09.						60										22	

< Actual value is known to be less than the value shown.

111

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

MARIANA ISLANDS, ISLAND OF SAIPAN

151309145443870 - 14-1344-18 WELL 149 AS RAPUGAO

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS NONCAR- BONATE (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO
JUL 01	1104	596	27.0	250	5	94	4.6	18	13	.5
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
JUL 01	. 80	249	6.7	29	<.10	9.2	310	3.20	10	2

151309145443370 - 14-1344-19 WELL 150 AS RAPUGAO

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS NONCAR- BONATE (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO
APR		444					2.2		2.6	
23 JUL	1000	639		270	7	100	4.7	23	16	.6
01 SEP	1045	596	27.5	260		96	4.7	19	14	. 5
09	1025		28.0	\ 						
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
APR 23	2.9	263	8.8	42	<.10	8.6	350	- 29	9	2
JUL 01 SEP	1.1				<.10	10		2.60	<3	3
09		199		34					1550	

< Actual value is known to be less than the value shown.</p>

MARIANA ISLANDS, ISLAND OF SAIPAN

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

151508145465370 - 14-1546-03 WELL 171 MATANSA

DATE	TIME	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	HARD- NESS (MG/L AS CACO3)	HARD- NESS NONCAR- BONATE (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO
JUN										
30	0645	188	26300	3200	2670	330	570	5200	77	41
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
JUN 30	130	500	550	9300	.10	10	16000	<.100	160	5000

< Actual value is known to be less than the value shown.

113 MARIANA ISLANDS, ISLAND OF SAIPAN

STATION NUMBER	LOCAL IDENT- I- FIER	LAT- I- TUDE	LONG- I- TUDE	DATE OF SAMPLE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	TEMPER- ATURE (DEG C)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
150723145431170	14-0742-06	15 07 23	145 43 11	82-11-18 83-09-08	1145 0925	5150	28.0 28.0	1400 1400
150737145431070	14-0742-07	15 07 37	145 43 10	82-11-18 83-03-02 83-06-30 83-09-08	1210 1455 1755 0955	1520 1350 2510	28.0 27.0 28.0 28.5	320 260 620 680
150744145430370	14-0742-08	15 07 44	145 43 03	82-11-18 83-09-08	1215 1000	3170	28.0 28.0	800 1000
150732145431270	14-0742-09	15 07 32	145 43 12	82-11-18 83-06-30 83-09-08	1205 1305 0950	1870 5150	28.0 28.0 28.5	430 1300 1400
150731145430870	14-0742-11	15 07 31	145 43 08	82-11-18 83-03-02 83-06-30 83-09-08	1205 1435 0952	1220 3600 4470	28.0 27.0 28.0 28.0	200 980 1200 1300
150732145432070	14-0743-09	15 07 32	145 43 20	82-11-18 83-03-02 83-09-08	1155 1425 0930	3510 4060	28.0 26.5 28.0	920 1100 1600
150728145431470	14-0743-10	15 07 28	145 43 14	82-11-18 83-06-30 83-09-08	1150 1246 0935	1360 3670	28.0 28.0 28.0	270 1000 1200
150736145430070	14-0743-13	15 07 36	145 43 00	83-03-02 83-06-30	1500 1805	1090 1450	26.5 27.0	180 300
150737145440670	14-0743-18	15 07 37	145 44 06	82-11-18 83-03-02 83-06-30 83-09-08	1125 1410 1712 0825	1580 1760 1800	28.0 27.5 28.5 28.5	310 360 380 330
150749145434170	14-0743-19	15 07 49	145 43 41	82-11-18 83-03-02 83-06-30 83-09-08	1140 1415 1130 0820	1620 1730 1790	28.0 28.0 29.0 29.0	320 360 370 400
150731145440370	14-0743-22	15 07 31	145 44 03	82-11-18 83-03-02 83-06-30 83-09-08	1105 1400 1655 0900	1160 1490 1790	28.0 28.5 28.5 28.5	190 300 370 430
150738145435870	14-0743-23	15 07 38	145 43 58	82-11-18 83-03-02 83-06-30 83-09-08	1055 1335 1608 0850	1120 1420 1640	27.5 28.5 28.5	180 260 320 300
150743145435470	14-0743-24	15 07 43	145 43 54	82-11-18 83-03-02 83-06-30 83-09-08	1135 1320 1550 0830	1680 1750 1880	28.0 28.5 28.0 28.5	340 360 400 430
150740145435570	14-0743-25	15 07 40	145 43 55	82-11-18 83-03-02 83-06-30 83-09-08	1130 1330 1601 0835	1180 1370 1450	28.0 26.5 28.5 28.5	190 240 260 260
150733145435970	14-0743-26	15 07 27	145 43 44	82-11-18 83-03-02 83-06-30 83-09-08	1100 1340 1635 0855	1160 1420 1600	28.0 27.5 28.5 28.5	190 260 320 340

MARIANA ISLANDS, ISLAND OF SAIPAN--Continued

STATION NUMBER	LOCAL IDENT- I- FIER	LAT- I- TUDE	LONG- I- TUDE	DATE OF SAMPLE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	TEMPER- ATURE (DEG C)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
150722145434570	14-0743-27	15 07 22	145 43 45	83-03-02 83-06-30 83-09-08	1350 1705 0905	1890 1870	28.0 28.5 28.5	410 400 400
150905145435670	14-0943-01	15 09 05	145 43 56	82-11-18 83-09-08	1635 0810	3420	28.5 29.0	850 610
151021145460870	14-1046-03	15 10 21	145 46 08	83-09-08	1500		28.0	340
151127145434270	14-1143-02	15 11 27	145 43 42	83-03-02 83-07-01 83-09-08	1610 1015 1315	1400 1470	28.0 29.0 29.0	270 300 270
151127145434070	14-1143-05	15 11 27	145 43 40	82-11-18 83-03-02 83-06-30 83-09-08	1330 1600 1020 1305	2780 2910 3140	28.0 29.0 30.5 30.5	700 780 820 1000
151133145445770	14-1144-05	15 11 33	145 44 57	83-09-08	1440		30.0	21
151124145445670	14-1144-10	15 11 24	145 44 56	83-09-08	1435	44	28.0	25
151248145443470	14-1244-05	15 12 48	145 44 34	82-11-18 83-07-01 83-09-08	1400 1400	3980 5500	28.0 32.5 27.5	1000 1500 2000
151239145441870	14-1244-07	15 12 39	145 44 18	83-09-08	1405	22	27.5	1200
151246145443770	14-1244-08	15 12 46	145 44 37	82-11-18 83-03-02 83-07-01 83-09-08	1425 1545 1230 1410	4340 4360 5670	28.0 27.5 28.0 27.0	1200 1200 1600 2000
151250145443370	14-1244-10	15 12 50	145 44 33	82-11-18 83-03-02 83-07-01 83-09-08	1355 1535 1200 1350	4690 7350 9450	28.0 28.5 29.0 28.5	1300 2200 2900 3400
151244145442270	14-1244-12	15 12 44	145 44 22	83-03-02 83-07-01 83-09-08	1550 1205 1355	12400 27500 	27.0 29.0 28.5	4100 9500 5400
151312145441570	14-1344-14	15 13 12	145 44 15	83-07-01 83-09-08	1105 1325	6420	28.0 28.0	1600 1600
151314145441570	14-1344-15	15 13 14	145 44 15	83-07-01	1045	7540	28.0	2300

132624144452771. Local number, 18-2645-07 (formerly 2645220) Ordot Well A-20.

LOCATION.--Lat 13°26'24" N., long 144°45'27" E., Hydrologic Unit 20100003, at Ordot School, 1.4 mi west of junction of Routes 4 and 10, Ordot. Owner: Government of Guam.

AQUIFER. -- Mariana Limestone and Alutom formation.

WELL CHARACTERISTICS. -- Drilled parabasal water-table well, diameter 6 in, depth reported 120 ft.

DATUM.--Altitude of land-surface datum is 137 ft. Measuring point: Top of casing, 141.74 ft above mean sea level.

PERIOD OF RECORD .-- January 1974 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 54.03 ft above mean sea level, Oct. 21, 1980; lowest, 32.92 ft above mean sea level, Aug. 11, 12, 1983.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	45.70	49.85	48.45	46.05	42.48	39.58	37.04	35.23	34.05	33.42	33.04	34.46
2	45.90	49.82	48.38	45.96	42.38	39.48	36.96	35.17	34.03	33.41	33.03	34.60
3	46.10	49.78	48.29	45.85	42.27	39.40	36.88	35.14	34.00	33.39	33.02	34.70
4	46.25	49.76	48.24	45.75	42.16	39.33	36.82	35.10	33.96	33.37	33.00	34.81
5	46.40	49.70	48.19	45.64	42.05	39.27	36.75	35.03	33.94	33.36	32.99	34.86
6	46.60	49.64	48.16	45.56	41.92	39.19	36.69	34.99	33.91	33.34	32.98	34.89
7	46.75	49.61	48.10	45.42	41.81	39.12	36.63	34.94	33.88	33.32	32.96	34.91
8	46.95	49.59		45.29	41.70	39.07	36.58	34.90	33.86	33.31	32.95	34.91
9	47.10	49.58		45.18	41.59	38.98	36.52	34.86	33.84	33.29	32.94	34.92
10	47.30	49.56		45.08	41.49	38.92	36.45	34.81	33.83	33.27	32.93	34.96
11	47.45	49.54	47.81	44.96	41.38	38.85	36.39	34.76	33.79	33.26	32.92	35.01
12	47.60	49.52	47.73	44.83	41.27	38.76	36.33	34.73	33.78	33.25	32.92	35.06
13	47.80	49.50	47.63	44.73	41.16	38.67	36.27	34.70	33.76	33.24	32.93	35.10
14	48.00	49.46	47.56	44.59	41.06	38.59	36.19	34.67	33.74	33.24	32.98	35.12
15	48.12	49.40	47.46	44.48	40.93	38.50	36.14	34.62	33.72	33.23	33.04	35.13
16	48.28	49.32	47.36	44.35	40.82	38.39	36.09	34.58	33.69	33.22	33.09	35.13
17	48.45	49.25	47.28	44.25	40.72	38.31	36.01	34.52	33.68	33.20	33.11	35.11
18	48.60	49.18	47.18	44.14	40.62	38.21	35.94	34.50	33.65	33.19	33.14	35.15
19	48.73	49.12	47.08	44.03	40.51	38.11	35.88	34.45	33.64	33.18	33.18	35.22
20	48.90	49.05	47.00	43.90	40.41	38.04	35.82	34.41	33.63	33.17	33.22	35.31
21	49.10	48.96	46.92	43.76	40.32	37.93	35.77	34.38	33.62	33.15	33.25	35.41
22	49.27	48.88	46.85	43.65	40.22	37.85	35.71	34.35	33.61	33.14	33.30	35.63
23	49.46	48.79	46.76	43.55	40.12	37.74	35.66	34.31	33.59	33.13	33.37	35.86
24	49.61	48.72	46.68	43.42	40.03	37.66	35.61	34.26	33.57	33.12	33.45	36.11
25	49.72	48.68	46.60	43.28	39.92	37.58	35.56	34.24	33.56	33.12	33.55	36.32
26	49.78	48.64	46.53	43.17	39.82	37.48	35.50	34.20	33.53	33.10	33.65	36.50
27	49.83	48.60	46.45	43.05	39.72	37.41	35.46	34.18	33.51	33.09	33.77	36.63
28	49.85	48.56	46.37	42.92	39.65	37.33	35.39	34.15	33.49	33.08	33.89	36.72
29	49.87	48.52	46.30	42.82		37.25	35.34	34.13	33.46	33.08	34.03	36.79
30	49.89	48.48	46.23	42.71		37.17	35.29	34.11	33.44	33.06	34.17	36.86
31	49.88		46.13	42.61		37.10		34.09		33.05	34.32	
MEAN	48.17	49.24	47.34	44.35	41.02	38.36	36.12	34.60	33.73	33.22	33.26	35.41
MAX	49.89	49.85	48.45	46.05	42.48	39.58	37.04	35.23	34.05	33.42	34.32	36.86
MIN	45.70	48.48	46.13	42.61	39.65	37.10	35.29	34.09	33.44	33.05	32.92	34.46
WTR YR	1983	MEAN	39.57	MAX 49	.89 M	IIN 32.	92					

132644144480871. Local number, 18-2648-02 (formerly 2648400) BPM Well 1.

LOCATION.--Lat 13°26'44" N., long 144°48'08" E., Hydrologic Unit 20100003, on lot number 2287, 0.2 mi southeast of junction of Routes 15 and 10, Mangilao. Owner: Ana P. Diaz.

AQUIFER. -- Coralline Limestone, probably Miocene age.

WELL CHARACTERISTICS. -- Drilled basal water-table well, diameter 12 in, depth reported 235 ft.

DATUM.--Altitude of land-surface datum is 210 ft. Measuring point: Top of casing, 209.90 ft above mean sea level.

PERIOD OF RECORD. -- February 1972 to current year.

MIN

WTR YR 1983

2.48

2.19

MEAN

2.03

2.38

2.10

MAX

1.93

MIN

2.92

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 4.45 ft above mean sea level, May 22, 1976; lowest, 1.89 ft above mean sea level, Feb. 11, 12, 1983.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983 MEAN VALUES DAY OCT NOV FEB DEC JAN MAR APR MAY JUN JUL. AUG SEP 2.56 2.49 2.31 2.27 2.09 2.19 2.45 2.36 2.31 2.56 2.46 2.47 2.38 2.21 2.43 2.29 2.58 2.46 2.48 2 2.58 2.49 2.28 2.07 2.33 3 2.49 2.28 2.06 2.66 2.30 2.80 2.46 2.28 2.41 2.29 2.48 2.05 2.27 2.63 5 2.86 2.47 2.23 2.26 2.02 2.20 2.39 2.24 2.27 2.62 2.50 2.55 6 2.91 2.49 1.99 2.20 2.26 2.21 2.35 2.22 2.25 2.63 2.52 2.60 2.16 2.25 2.31 2.25 2.56 2.63 2.90 2.52 1.97 2.22 2.19 2.64 8 2.90 2.52 2.13 2.24 1.95 2.20 2.28 2.18 2.27 2.64 2.57 2.63 9 2.92 2.49 2.11 2.24 1.95 2.18 2.27 2.19 2.28 2.67 2.58 2.62 10 2.89 2.46 2.09 2.23 2.25 2.57 1.94 2.18 2.21 2.29 2.71 2.60 11 2.85 2.45 2.05 2.22 1.93 2.20 2.25 2.23 2.30 2.75 2.58 2.57 2.74 2.55 12 2.82 2.44 2.03 2.20 1.93 2.22 2.28 2.26 2.31 2.61 2.79 2.40 2.04 2.19 2.24 2.31 2.33 13 1.96 2.29 2.63 2.74 14 2.39 2.05 2.00 2.25 2.32 2.34 2.34 2.64 2.51 15 2.78 2.37 2.05 2.19 2.03 2.26 2.32 2.35 2.36 2.74 2.63 2.49 16 2.78 2.35 2.07 2.18 2.04 2.29 2.35 2.34 2.39 2.74 2.61 2.49 2.77 2.16 2.05 2.31 2.38 2.32 2.40 2.71 2.58 2.48 17 2.34 2.08 18 2.74 2.31 2.12 2.15 2.06 2.33 2.39 2.34 2.42 2.70 2.52 2.49 2.71 2.69 19 2.29 2.13 2.15 2.07 2.33 2.38 2.35 2.43 2.43 2.49 20 2.27 2.13 2.18 2.34 2.38 2.68 2.05 2.36 2.44 2.41 2.50 2.70 21 2.73 2.73 2.14 2.39 2-59 2.27 2.17 2.03 2.35 2.37 2.38 2.47 2.24 2.48 2.66 2.37 2.14 2.03 2.36 2.37 2.39 2.61 2.37 2.64 2.63 2.71 2.11 2.36 2.40 2.49 23 2.22 2.19 2.03 2.69 2.37 2.10 2.02 2.36 2.51 2.62 2.40 2.66 25 2.67 2.19 2.20 2.10 2.06 2.35 2.35 2.40 2.52 2.59 2.43 2.66 26 2.67 2.20 2.22 2.11 2.09 2.34 2.34 2.39 2.57 2.46 2.66 2.53 27 2.61 2.24 2.24 2.12 2.12 2.34 2.35 2.38 2.53 2.59 2.46 2.66 2.37 2.41 2.43 28 2.56 2.27 2.26 2.27 2.11 2.16 2.35 2.36 2.53 2.58 2.46 2.66 29 2.52 2.50 2.28 2.10 2.37 2.34 2.54 2.46 2.66 30 2.29 2.26 2.37 2.48 2.54 2.65 31 2.48 2.27 2.10 ---2.45 2.32 2.47 2.47 MEAN 2.73 2.03 2.29 2.36 2.17 2.18 2.35 2.32 2.39 2.64 2.50 2.57 2.92 2.52 2.38 2.28 2.16 2.45 2.45 2.41 2.54 2.75 2.64 2.66 MAX

2.18

1.93

2.25

2.18

2.25

2.47

2.37

2.47

117

132824144464271. Local number, 18-2846-01 (formerly 2846541) ACEORP Tunnel.

LOCATION.--Lat 13°28'24" N., long 144°46'42" E., Hydrologic Unit 20100003, behind Navy Telephone Exchange, 0.35 mi southwest of junction of Routes 1 and 14, Tamuning. Owner: U.S. Navy, Public Works Department.

AQUIFER. -- Mariana Limestone.

WELL CHARACTERISTICS.--Dug basal water-table well consisting of an inclined shaft, three skimming tunnels, and a large pump room. Tunnels 1 and 2 are 150 ft each and tunnel 3 is 700 ft in length.

DATUM.--Altitude of land-surface datum is 180 ft. Measuring point: Top of wooden recorder shelf, 9.28 ft above mean sea level.

PERIOD OF RECORD. -- October 1954 to December 1959, September 1960 to May 1965, March 1973 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 4.95 ft above mean sea level, May 22, 1976; lowest, 1.70 ft above mean sea level, Feb. 12, 1983.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983 MEAN VALUES

NOV DEC JAN FEB MAR APR MAY JUN JUL

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2.30	2.19	2.11	2.06	1.88	2.00	2.27	2.16	2.11	2.36	2.23	2.37
2	2.34	2.20	2.12	2.07	1.84	2.09	2.24	2.13	2.09	2.39	2.23	2.38
2	2.53	2.21	2.07	2.06	1.83	2.08	2.22	2.09	2.10	2.41	2.24	2.40
4	2.60	2.19	2.00	2.05	1.82	2.05	2.20	2.07	2.10	2.42	2.27	2.42
5	2.74	2.20	1.95	2.07	1.80	2.04	2.21	2.04	2.07	2.39	2.29	2.43
3	2.74	2.20	1.95	2.07	1.00	2.04	2.21	2.04	2.07	2.39	2.23	2.43
6	2.76	2.24	1.89	2.12	1.77	2.03	2.15	2.02	2.04	2.40	2.30	2.46
7	2.74	2.23	1.86	2.12	1.76	2.01	2.09	1.99	2.07	2.41	2.31	2.47
7 8	2.74	2.19	1.84	2.03	1.76	2.02	2.06	1.98	2.08	2.43	2.36	2.48
9	2.77	2.15	1.86	1.98	1.75	2.03	2.04	1.98	2.09	2.46	2.38	2.47
10	2.70	2.13	1.84	1.95	1.74	2.04	2.02	2.02	2.10	2.50	2.40	2.43
11	2.66	2.13	1.77	1.94	1.72	2.09	2.05	2.05	2.11	2.52	2.41	2.40
12	2.60	2.11	1.74	1.92	1.70	2.10	2.12	2.09	2.13	2.52	2.45	2.37
13	2.55	2.08	1.73	1.96	1.74	2.08	2.16	2.13	2.14	2.53	2.48	2.35
14	2.48	2.08	1.72	1.98	1.78	2.07	2.14	2.16	2.15	2.53	2.50	2.33
15	2.46	2.08	1.76	1.95	1.81	2.10	2.12	2.17	2.18	2.52	2.47	2.32
16	2.42	2.07	1.79	1.92	1.84	2.13	2.14	2.16	2.20	2.50	2.41	2.34
17	2.42	2.07	1.82	1.95	1.86	2.22	2.18	2.15	2.21	2.48	2.36	2.35
18	2.47	2.07	1.85	1.96	1.84	2.24	2.17	2.15	2.22	2.46	2.33	2.38
19	2.57	2.05	1.85	1.94	1.85	2.18	2.17	2.15	2.23	2.44	2.26	2.42
20	2.56	2.02	1.87	1.93	1.83	2.20	2.16	2.17	2.24	2.44	2.21	2.46
20	2.30	2.02	1.07	1.93	1.03	2.20	2.10	2.17	2.24	2.44	2.21	2.40
21	2.50	1.99	1.91	1.91	1.88	2.23	2.15	2.19	2.26	2.47	2.20	2.55
22	2.47	1.98	1.96	1.87	1.94	2.23	2.16	2.18	2.28	2.44	2.20	2.64
23	2.45	1.95	1.95	1.85	1.89	2.20	2.15	2.21	2.32	2.37	2.22	2.65
24	2.42	1.95	1.93	1.87	1.87	2.17	2.13	2.19	2.33	2.33	2.27	2.64
25	2.40	1.91	1.93	1.89	1.91	2.15	2.12	2.19	2.35	2.33	2.33	2.62
26	2.35	1.92	1.95	1.92	1.93	2.12	2.12	2.19	2.35	2.32	2.32	2.60
27	2.30	1.91	2.01	1.94	1.95	2.13	2.13	2.17	2.34	2.32	2.30	2.62
28	2.24	2.06	2.01	1.92	1.98	2.13	2.15	2.14	2.34	2.28	2.32	2.59
	2.20			1.92								
29		2.06	2.01			2.23	2.17	2.16	2.34	2.27	2.33	2.59
30	2.18	2.07	2.04	1.92		2.25	2.17	2.18	2.34	2.24	2.37	2.56
31	2.19		2.04	1.89		2.28		2.15		2.23	2.37	
MEAN	2.49	2.08	1.91	1.96	1.83	2.13	2.15	2.12	2.20	2.41	2.33	2.47
MAX	2.77	2.24	2.12	2.12	1.98	2.28	2.27	2.21	2.35	2.53	2.50	2.65
MIN	2.18	1.91	1.72	1.85	1.70	2.00	2.02	1.98	2.04	2.23	2.20	2.32
1204						2.00	2.02	1.50	2.0.	2.25		

WTR YR 1983 MEAN 2.18 MAX 2.77 MIN 1.70

132813144472771. Local number 18-2847-12 (formerly 2847120) Barrigada Well 2 (A-16).

LOCATION.--Lat 13°28'13" N., long 144°47'27" E., Hydrologic Unit 20100003, at Carbullido School, 0.6 mi west of junction of Routes 8 and 10, Barrigada. Owner: Public Utility Agency of Guam.

AQUIFER .-- Mariana Limestone, probably Pliocene age.

WELL CHARACTERISTICS. -- Drilled basal water-table well, diameter 12 in, depth reported 215 ft.

DATUM.--Altitude of land-surface datum is 207 ft. Measuring point: Top of casing, 208.00 ft above mean sea level.

PERIOD OF RECORD. -- June 1974 to current year.

WTR YR 1983

MEAN

3.29

MAX

4.15

MIN

2.86

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 6.71 ft May 22, 1976; lowest, 2.83 ft above mean sea level, Feb. 11, 12, 1983.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983 MEAN VALUES DAY OCT NOV DEC JUL AUG SEP JAN FEB MAR APR MAY JUN 3.70 3.47 3.31 3.26 3.03 3.09 3.31 3.31 3.29 3.38 3.28 3.36 1 2 3.21 3.15 3.72 3.33 3.25 3.00 3.13 3.18 3.13 3.41 3.28 3.37 3 3.80 3.48 3.32 3.26 2.99 3.15 3.13 3.43 3.29 3.38 5 3.96 3.47 3.27 3.25 2.98 3.15 3.27 3.12 3.13 3.44 3.30 3.39 4.10 3.48 3.22 3.26 2.94 3.15 3.27 3.09 3.12 3.41 3.32 3.41 6 4.13 3.50 3.17 3.29 2.91 3.12 3.23 3.07 3.10 3.33 3.42 3.44 3.52 7 4.12 3.13 3.31 2.91 3.10 3.18 3.03 3.11 3.43 3.34 3.45 3.10 3.14 3.44 8 4.12 3.25 2.91 3.10 3.02 3.12 3.38 3.45 4.15 3.47 3.21 2.89 3.14 3.41 3.11 3.03 3.46 10 4.08 3.44 3.19 2.87 3.10 3.04 3.46 3.42 3.46 4.05 3.43 3.12 3.11 11 3.04 3.16 2.86 3.06 3.17 3.51 3.43 3.41 12 3.99 3.42 3.01 3.14 2.86 3.17 3.14 3.16 3.10 3.53 3.45 3.37 3.47 3.94 3.39 2.99 3.15 2.89 3.14 3.20 3.54 3.14 3.17 3.35 2.93 3.48 14 3.86 3.39 2.98 3.20 3.20 3.18 3.55 15 3.82 3.37 2.98 3.15 2.95 3.16 3.19 3.19 3.18 3.54 3.48 3.35 16 3.80 3.35 3.00 2.96 3.18 3.20 3.22 3.51 3.35 3.74 3.73 3.81 17 18 3.34 3.03 3.13 2.97 3.23 3.22 3.17 3.23 3.50 3.41 3.36 3.13 3.23 3.48 3.38 3.32 3.06 2.96 3.27 3.18 3.25 3.37 3.31 3.09 2.97 3.26 3.18 3.26 3.40 19 20 3.86 3.28 3.09 3.13 2.95 3.27 3.21 3.19 3.27 3.46 3.28 3.43 21 3.83 3.27 3.10 2.98 3.28 3.21 3.21 3.29 3.51 3.25 3.48 3.11 22 3.83 3.08 3.25 3.15 3.02 3.29 3.21 3.21 3.30 3.50 3.24 3.56 23 3.78 3.22 3.15 3.06 3.00 3.27 3.21 3.23 3.34 3.45 3.24 3.58 3.74 3.15 24 3.20 3.05 2.96 3.25 3.20 3.23 3.36 3.41 3.26 3.60 25 3.19 3.06 3.00 3.23 3.19 3.22 3.38 3.40 3.30 3.60 26 3.58 3.67 3.19 3.17 3.09 3.03 3.21 3.18 3.22 3.38 3.38 3.31 3.62 3.56 3.20 3.10 3.21 3.19 3.36 27 3.21 3.04 3.21 3.36 3.29 3.58 28 3.26 3.57 3.06 3.18 3.33 3.32 3.51 3.07 3.28 3.21 3.18 3.32 3.31 3.23 3.36 30 3.49 3.29 3.24 3.07 ---3.30 3.21 3.19 3.36 3.30 3.55 ---31 3.48 3.25 3.05 3.31 3.18 3.28 3.35 MEAN 3.83 3.36 3.14 2.96 3.19 MAX 4.15 3.52 3.33 3.31 3.06 3.31 3.31 3.23 3.38 3.55 3.48 3.60 3.48 3.19 2.98 3.05 MIN 2.86 3.09 3.10 3.02 3.10 3.28 3.24 3.35

133032144491871. Local number, 18-3049-03 (formerly 3049311) Harmon Loop School Well M-10A.

LOCATION.--Lat 13°30'32" N., long 144°49'18" E., Hydrologic Unit 20100003, at Harmon Loop School, Dededo. Owner: Public Utility Agency of Guam.

AQUIFER .-- Barrigada Limestone.

WTR YR 1983

MEAN

2.42

MAX

2.99

MIN

1.94

WELL CHARACTERISTICS. -- Drilled basal water-table well, diameter 8 in, depth reported 288 ft.

DATUM.--Altitude of land-surface datum is 227 ft. Measuring point: Top edge of shelter floor, 228.70 ft above mean sea level.

REMARKS. -- Well was abandoned in 1973 because of oil taste and high iron content.

PERIOD OF RECORD .-- January 1974 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 4.61 ft above mean sea level, May 23, 1976; lowest, 1.94 ft above mean sea level, Feb. 10-12, 1983.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983 MEAN VALUES DAY OCT NOV FEB AUG SEP DEC JAN MAR APR MAY JUN JUL 2.53 2.41 2.32 2.27 2.12 2.24 2.51 2.42 2.39 2.63 2.51 2.55 2.32 2.30 2.50 2.37 2.65 2.52 2.56 2 2.55 2.42 2.28 2.08 2.39 2.64 3 2.43 2.36 2.29 2.07 2.21 2.48 2.54 2.60 2.28 2.07 2.31 2.38 2.69 2.41 2.35 2.94 2.42 2.16 2.30 2.04 2.27 2.31 2.37 2.56 2.63 6 2.97 2.01 2.46 2.13 2.34 2.29 2.44 2.29 2.34 2.68 2.56 2.67 2.69 2.58 2.68 2.96 2.45 2.08 2.36 2.00 2.26 2.40 2.26 2.35 8 2.96 2.43 2.06 2.30 2.00 2.28 2.36 2.26 2.37 2.71 2.61 2.69 9 2.99 2.41 2.08 2.26 1.99 2.29 2.35 2.26 2.36 2.73 2.65 2.69 10 2.93 2.39 2.06 2.23 1.98 2.28 2.33 2.27 2.37 2.75 2.68 2.67 2.89 2.38 2.00 2.21 1.96 2.29 2.34 2.29 2.37 2.78 2.72 2.64 2.79 12 2.84 2.36 1.98 2.20 1.94 2.33 2.40 2.32 2.39 2.78 2.61 2.60 2.42 2.82 2.78 2.71 1.98 2.36 2.40 13 2.33 1.96 2.20 2.32 2.23 14 2.33 1.96 2.32 2.41 2.80 2.83 2.58 2.02 2.41 2.80 2.81 2.55 15 2.66 2.33 2.00 2.20 2.05 2.34 2.41 2.43 16 2.08 2.79 2.63 2.32 2.19 2.41 2.77 2.54 2.03 2.37 2.42 2.45 2.19 2.78 2.72 2.54 17 2.05 2.46 2.46 2.62 2.32 2.10 2.45 2.41 2.68 18 2.64 2.32 2.06 2.20 2.08 2.49 2.46 2.41 2.48 2.76 2.55 19 2.69 2.30 2.08 2.19 2.09 2.46 2.46 2.41 2.49 2.74 2.60 2.59 20 2.69 2.28 2.07 2.19 2.07 2.46 2.43 2.42 2.50 2.75 2.54 2.63 21 2.24 2.17 2.12 2.41 2.44 2.51 2.74 2.51 2.67 2.66 2.10 2.50 22 2.63 2.22 2.13 2.15 2.18 2.49 2.41 2.40 2.44 2.52 2.71 2.50 2.74 2.61 2.16 2.14 2.45 23 2.19 2.13 2.46 2.51 24 2.40 2.57 2.64 2.81 2.18 2.16 2.14 2.42 2.45 2.50 2.11 25 2.56 2.15 2.16 2.14 2.15 2.39 2.39 2.46 2.59 2.62 2.50 2.80 2.79 26 2.52 2.15 2.18 2.18 2.17 2.38 2.39 2.46 2.61 2.62 2-50 27 28 2.48 2.45 2.19 2.39 2.60 2.60 2.49 2.13 2.22 2.18 2.39 2.44 2.23 2.42 2.42 2.24 2.20 2.60 2.58 2.50 2.78 2.24 29 2.42 2.24 2.16 2.47 2.42 2.42 2.61 2.56 2.50 2.78 ---2.52 30 2.40 2.26 2.25 2.16 2.49 2.42 2.43 2.61 2.53 2.75 2.14 2.52 2.27 31 2.41 2.51 2.41 MEAN 2.68 2.32 2.13 2.21 2.07 2.37 2.42 2.38 2.46 2.69 2.60 2.66 MAX 2.99 2.46 2.36 2.46 2.32 2.20 2.51 2.51 2.61 2.80 2.83 2.81 1.94 2.33 1.96 2.24 2.34 2.52 2.49 2.54 MIN

WTR YR 1983

MEAN

3.03

MAX

4.34

MIN

2.49

MARIANA ISLANDS, ISLAND OF GUAM

133047144500171. Local number, 18-3049-05 (formerly 3050400) Well M-11.

LOCATION.--Lat 13°30'49" N., long 144°49'58" E., Hydrologic Unit 20100003, at intersection of Harmon Loop School Road and Route 1 at Dededo. Owner: Public Utility Agency of Guam.

AQUIFER .-- Barrigada Limestone.

WELL CHARACTERISTICS .-- Drilled basal water-table well, diameter 8 in, depth reported 325 ft.

DATUM.--Altitude of land-surface datum is 294 ft. Measuring point: Top of casing, 295.82 ft above mean sea level.

PERIOD OF RECORD .-- July 1977 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 4.76 ft above mean sea level, Oct. 2, 1980; lowest, 2.46 ft above mean sea level, Feb. 12, 1983.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983 MEAN VALUES DAY OCT NOV DEC JAN FEB APR MAY JUN JUL AUG SEP 3.11 3.28 2.67 2.79 3.05 2.95 2.95 3.15 1 3.31 3.11 2.88 2.88 3.32 3.11 2.90 2.89 2.64 2.84 3.04 2.94 2.91 3.17 3.09 3.28 3 3.35 3.10 2.89 2.90 2.62 2.86 3.03 2.91 2.92 3.19 3.09 3.27 2.93 4 3.48 3.09 2.87 2.90 2.60 2.84 3.02 2.88 3.21 3.11 3.28 5 3.20 3.12 3.29 2.81 2.83 3.91 2.90 2.57 3.07 3.02 2.87 6 4.30 3.07 2.78 2.95 2.56 2.82 2.98 2.85 2.91 3.20 3.13 3.31 2.74 2.96 2.93 2.91 3.32 4.34 3.07 2.55 2.82 2.83 3.21 3.14 8 4.24 3.07 2.54 2.82 2.92 3.22 2.81 3.17 3.32 3.09 2.85 2.53 2.86 2.92 3.24 3.20 3.32 10 4.01 3.10 2.70 2.81 2.52 2.84 2.85 2.83 2.92 3.26 3.23 3.31 3.29 11 3.89 3.10 2.66 2.79 2.50 2.86 2.84 2.85 2.92 3.29 3.26 12 3.80 3.09 2.61 2.78 2.49 2.88 2.88 2.88 2.93 3.30 3.33 3.71 3.06 2.58 2.78 2.53 2.87 2.92 2.90 2.94 3.31 3.38 3.27 13 14 3.62 3.04 2.57 2.80 2.58 2.87 2.93 2.93 2.95 3.32 3.41 2.57 2.95 2.96 3.32 15 3.54 3.04 2.80 2.60 2.91 2.92 3.24 16 3.47 2.99 2.58 2.77 2.63 2.93 2.92 2.96 2.99 3.31 3.33 3.22 17 18 3.41 2.97 2.60 2.77 2.78 2.64 2.97 2.93 2.97 3.00 3.29 3.28 3.20 2.63 3.01 3.23 3.49 2.92 2.64 2.77 2.94 3.02 2.65 3.01 20 3.52 2.91 2.64 2.77 2.62 3.01 2.93 2.96 3.03 3.27 3.21 3.34 21 2.89 2.76 2.93 2.98 3.04 3.26 3.15 3.37 3.54 2.66 2.65 3.04 2.70 2.74 2.74 22 3.53 2.86 2.72 2.72 3.03 2.93 2.98 3.05 3.25 3.13 3.43 23 24 3.50 2.83 2.69 2.68 3.02 2.94 2.99 3.07 3.23 3.11 3.61 3.47 2.94 3.20 3.11 2.81 2.69 2.66 2.98 3.00 3.08 3.67 2.78 2.73 2.95 3.00 3.11 25 3.40 2.69 2.70 2.93 3.11 3.21 3.65 26 2.75 2.79 3.37 2.76 2.73 2.70 2.94 2.93 3.00 3.12 3.23 3.11 3.60 3.58 2.93 2.99 3.31 2.74 2.94 3.08 27 2.76 2.71 3.12 3.22 28 2.80 2.82 2.96 2.94 2.98 3.12 3.20 3.09 3.53 2.73 3.18 2.84 2.71 3.01 2.96 2.97 3.18 3.18 3.52 30 3.16 2.86 2.86 2.72 ---3.03 2.96 2.97 3.14 3.15 3.25 3.48 31 3.13 2.87 2.70 3.05 MEAN 3.58 2.97 2.73 2.79 2.61 2.92 2.94 2.93 3.00 3.23 3.20 3.37 2.90 3.05 MAX 4.34 3.11 2.96 2.73 3.05 3.00 3.14 3.32 3.41 3.67 3.13 2.69 2.84 2.91 3.13 3.08 MIN 2.49 2.80 3.20

133115144484971. Local number, 18-3148-02 (formerly 3148140) Harmon Well 1 (107).

LOCATION.--Lat 13°31'15" N., long 144°48'49" E., Hydrologic Unit 20100003, 500 ft north of junction of Routes 1 and 16, Dededo. Owner: Government of Guam.

AQUIFER . -- Mariana Limestone.

WELL CHARACTERISTICS. -- Drilled basal water-table well, diameter 10 in, depth measured 289 ft.

DATUM.--Altitude of land-surface datum is 268 ft. Measuring point: Top of casing, 267.96 ft above mean sea level.

PERIOD OF RECORD .-- March 1973 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 4.34 ft above mean sea level, May 22, 1976; lowest, 1.84 ft above mean sea level, Feb. 12, 1983.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983 MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP h2.20 2.33 2.24 2.16 2.05 2 2.21 2.35 2.26 2.19 2.05 2.44 3 2.25 2.21 2.04 4 2.23 2.19 2.04 5 2.74 2.23 2.16 2.25 2.02 6 2.77 2.25 2.13 2.28 1.96 2.76 2.25 2.28 2.10 1.94 8 2.22 2.06 1.94 9 2.80 2.20 2.08 2.17 1.89 10 2.74 2.19 2.06 2.15 1.88 11 2.69 2.20 2.02 2.13 1.88 12 2.63 2.17 1.98 2.08 1.87 13 2.57 2.17 1.95 2.05 1.91 14 15 2.18 1.93 2.07 1.95 2.52 2.46 16 2.42 2.13 1.96 2.04 2.00 17 18 2.43 2.52 2.00 2.04 2.13 2.02 2.12 2.02 2.00 2.60 2.00 2.05 2.01 h2.43 20 2.59 2.09 1.98 2.05 1.99 h2.42 21 2.08 2.03 2.05 2.04 2.53 22 2.48 2.07 h2.58 h2.71 2.06 2.06 2.10 23 2.46 2.04 2.06 2.08 2.05 h2.48 24 2.43 2.04 2.06 2.08 2.03 h2.53 2.00 25 2.41 2.07 2.07 2.07 26 2.37 2.02 2.12 2.07 2.09 27 28 2.32 2.06 2.18 2.10 2.10 29 2.23 2.17 2.06 h2.64 ---30 2.23 2.17 2.15 2.06 ---31 2.24 2.11 2.06

2.00

1.87

2.51

2.80

2.23

2.26

2.00

2.08

2.21

1.93

2.11

2.28

2.04

MEAN

MAX

h Tape measurement.

133119144491771. Local number, 18-3149-05 (formerly 3149110) Exploratory Well Ex-7.

LOCATION.--Lat 13°31'19" N., long 144°49'17" E., Hydrologic Unit 20100003, 200 ft east of junction of Routes 1 and 3, Wettengel. Owner: Government of Guam.

AQUIFER .-- Barrigada Limestone.

WELL CHARACTERISTICS.--Drilled basal water-table well, borehole diameter 8 in, sounded depth 698 ft.

DATUM .-- Altitude of land-surface datum is 283 ft. Measuring point: Top of 6-in diameter surface casing, 283.31 ft above mean sea level.

REMARKS. -- Water-level recorder installed June 7, 1983.

PERIOD OF RECORD . --

WATER LEVEL: August 1981 to May 1983 (occasional measurements only), June 1983 to current year. WATER QUALITY: 1981 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 3.78 ft above mean sea level, Aug. 12, 1981; lowest, 2.78 ft above mean sea level, June 6, 7, 1983.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, AUGUST 1980 TO SEPTEMBER 1981

	WATER		WATER
DATE	LEVEL	DATE	LEVEL
AUG 12	3.78	SEP 25	3.75

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
JAN 22	3.50	FEB 10	3.49	APR 24	3.45	MAY 21	3.27	JUL 12	3.33	SEP 1	3.28
	V	WATER LEVEL,	IN FEET	ABOVE MEAN	SEA LEVEL, MEAN VALU		OCTOBER	1982 TO SEE	PTEMBER 19	83	
DAY	OCT	NOV	DEC	JAN	FEB MAF	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5								2.83 2.81 2.81 2.82 2.80	3.05 3.07 3.10 3.11 3.10	2.94 2.95 2.96 2.97 2.98	2.97 2.98 3.01 3.03 3.05
6 7 8 9					n3.51			2.78 2.79 2.82 2.82 2.82	3.11 3.11 3.13 3.15 3.17	2.99 3.00 3.03 3.06 3.08	3.08 3.09 3.10 3.10 3.08
11 12 13 14 15	h3.08							2.83 2.84 2.85 2.87 2.88	3.20 3.21 3.22 3.22 3.22	3.12 3.17 3.21 3.22 3.19	3.05 3.02 3.01 2.99 2.97
16 17 18 19 20								2.90 2.91 2.92 2.93 2.95	3.21 3.19 3.18 3.16 3.16	3.15 3.10 3.06 2.98 2.93	2.97 2.96 2.98 3.02 3.05
21 22 23 24 25					h2.8	h2.82	h2.9	2.96 2.97 2.99 3.01 3.02	3.16 3.13 3.08 3.05 3.04	2.89 2.89 2.90 2.92 2.93	3.10 3.15 3.20 3.20 3.19
26 27 28 29 30 31						h2.89		3.02 3.02 3.02 3.03 3.03	3.03 3.02 3.00 2.98 2.96 2.94	2.94 2.92 2.93 2.93 2.96	3.17 3.18 3.17 3.17 3.14
MEAN MAX MIN								2.90 3.03 2.78	3.11 3.22 2.94	3.01 3.22 2.89	3.07 3.20 2.96

h Tape measurement.

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

133119144491771 - 18-3149-05 WETTENGEL EXP WELL EX-7--Continued

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
FEB											
10	1100	290	3460	7.1	27.0	274	88	890	<.10	<1.1	2.70
10	1130	390	3230	7.0	26.0	280	44	850	<.10	<1.1	2.50
10	1215	415	11200	6.9	26.5	276	540	3200	.10	<1.1	.960
10	1300	450	42400	7.0	26.0	206	2200	14000	.20	6.4	<.100
MAY											
09	1100	290	2630	7.0	28.5	268	89	740	<.10	<1.1	2.70
09	1215	390	2440	7.0	27.0	275	71	620	<.10	<1.1	2.70
09	1300	420	33800	7.1	26.5	189	1800	13000	.20	5.4	<.100
09	1345	450	46600	7.0	26.5	197	2500	20000	.20	7.4	<.100

< Actual value is known to be less than the value shown.

132615144470571. Local number, 18-2647-01 (formerly 2647100) Father Duenas Well.

LOCATION.--Lat 13°26'15" N., long 144°47'05" E., Hydrologic Unit 20100003, at Father Duenas Memorial School, Chalan Pago-Ordot. Owner: Government of Guam.

AQUIFER. -- Mariana Limestone.

WELL CHARACTERISTICS. -- Drilled parabasal water-table well, diameter 8 in.

DATUM.--Altitude of land-surface datum is 179 ft. Measuring point: Top of casing, 179.86 ft above mean sea level.

PERIOD OF RECORD. -- March 1973 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 10.37 ft above mean sea level, Oct. 24, 1980; lowest measured, 6.08 ft above mean sea level, Aug. 5, 1980.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

DATE		WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
FEB	4	6.92	APR 21	6.90	JUN 22	6.85	AUG 23	6.48
MAR 2	13	6.99	MAY 17	6.84	JUL 22	6.99	SEP 29	6.93

132626144471771. Local number, 18-2647-12 (formerly 2647211) Exploratory Well Ex-4.

LOCATION.--Lat 13°26'26" N., long 144°47'17" E., Hydrologic Unit 20100003, in Tai Mangilao near Father Duenas Memorial High School. Owner: Government of Guam.

AQUIFER. -- Argillaceous member of the Marianas Limestone.

WELL CHARACTERISTICS.--Drilled basal water-table well, borehole diameter 8 in, sounded depth 400 ft. Casing diameter 6 in to 400 ft depth.

DATUM.--Altitude of land-surface datum is 152 ft. Measuring point: Top of casing, 153.71 ft above mean sea level.

PERIOD OF RECORD. --

WATER LEVEL: March 1981 to April 1982 (occasional measurements only), May 1982 to current year. WATER QUALITY: 1981, 1983.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 8.08 ft above mean sea level, Aug. 17, 1981; lowest, 5.17 ft above mean sea level, June 13-15, 1982.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 14 NOV 29	7.62 6.11	FEB 11 MAR 23	5.38 5.02	APR 21 MAY 4	4.97 4.84	MAY 17 JUN 22	4.86 4.89 5.12	AUG 2 5	4.90 4.88	AUG 23 SEP 29	4.82 5.27

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
FEB											
11	1245	170	760	7.0	27.0	280	20	140	.20	12	2.50
11	1315	340	1260	6.8	27.0	291	36	250	.10	9.7	1.50
11	1400	390	29300	6.6	27.5	230	1400	9200	<.10	10	1.30
MAY											
05	1245	170	770	6.9	28.0	208	5.6	40	.10	10	1.40
05	1315	340	2300	6.9	28.5	282	82	530	<.10	8.9	1.20
05	1415	387	33500	7.0	28.0	222	1700	13000	<.10	8.2	.750
AUG											
02	1330	170	1110		27.0	1144		45			
02	1400	370	7010		27.0			2000			4-
02	1430	389	32500		27.0			12000			

< Actual value is known to be less than the value shown.

MARIANA ISLANDS, ISLAND OF GUAM

132758144450571. Local number, 18-2745-03 (formerly 2745500) Agana Well 147.

LOCATION.--Lat 13°27'58" N., long 144°45'05" E., Hydrologic Unit 20100003, on Route 4, 0.65 mi south of junction of Routes 1 and 4 in Agana. Owner: Government of Guam.

AQUIFER . -- Mariana Limestone.

WELL CHARACTERISTICS.--Drilled basal water-table well, casing diameter 6 in, depth when drilled, 186 ft, when measured in May 1973, 29 ft.

DATUM.--Altitude of land-surface datum is 33 ft. Measuring point: Top of casing, 33.22 ft above mean sea level. PERIOD OF RECORD.--August 1955 to May 1960, January 1972 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 31.42 ft above mean sea level, Oct. 14, 1955; lowest measured, 6.83 ft above mean sea level, June 20, 1978.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

	WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
FEB 4	10.79	APR 21	9.67	JUN 22	8.84	AUG 23	8.57
MAR 23	9.96	MAY 17	9.16	JUL 22	8.70	SEP 29	8.57

132742144452971. Local number, 18-2745-07 (formerly 2745420) Agana Springs.

LOCATION.--Lat 13°27'42" N., long 144°45'29" E., Hydrologic Unit 20100003, near Sinajana on the edge of Agana Swamp.

AQUIFER. -- Mariana Limestone.

WELL CHARACTERISTICS.--Basal ground water issues from an opening in the Mariana Limestone. The water level is measured in a pool with a concrete spillway.

DATUM.--Altitude of land-surface datum is 10 ft. Measuring point: Edge of concrete spillway, 8.80 ft above mean sea level.

PERIOD OF RECORD. -- April 1974 to current year.

EXTREMES FOR PERIOD OF RECORD.--Lowest water level measured, 6.74 ft above mean sea level, Aug. 23, 1983.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
FEB 4	j	APR 21	8.07	JUN 22	6.99	AUG 23	6.74
MAR 23	8.58	MAY 17	7.62	JUL 22	7.04	SEP 29	7.93

j Water overflowing spillway.

MARIANA ISLANDS, ISLAND OF GUAM

132736144461671. Local number, 18-2746-06 (formerly 2746310) Chochogo Well Ex-1.

LOCATION.--Lat 13°27'36" N., long 144°46'16" E., Hydrologic Unit 20100003, near San Miguel School, Chochogo.

AQUIFER. -- Mariana Limestone: Agana argillaceous member.

WELL CHARACTERISTICS.--Drilled basal water-table well, diameter 6-in, sounded depth 597 ft, cased to 300 ft.

DATUM.--Altitude of land-surface datum is 94 ft. Measuring point: Top of PVC casing, 96.50 ft above mean sea

PERIOD OF RECORD. --

WATER LEVEL: November 1980 to current year. WATER QUALITY: 1981, 1983.

WAIER QUALITY: 1901, 1905.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 9.52 ft above mean sea level, Sept. 28, 1982; lowest measured, 6.14 ft above mean sea level, June 22, 1983.

		WATER	LEVEL, IN	FEET ABOVE	MEAN SEA	LEVEL, NOV	EMBER 1980	TO SEPTEME	ER 1981		
DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 26	8.24	JAN 27	8.04	MAR 31	7.09	APR 21	7.16	MAY 18	7.05	AUG 5	8.71
JAN 7	8.14	FEB 13	7.30	APR 7	7.02	27	7.01	JUN 8	6.83	12	9.32
13	7.72	19	7.58	8	7.02	MAY 5	6.89	22	6.88	SEP 8	9.03
14	7.75	MAR 18	7.23	14	7.00	11	7.22	JUL 1	6.92	15	8.67
21	7.56	24	7.18					200			
	V	WATER LEVEL	, IN FEET	ABOVE MEAN	SEA LEVE	L, WATER YE	AR OCTOBER	1981 TO SE	PTEMBER 1	982	

	WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
OCT 16	8.54	DEC 2	9.28	APR 23	7.06	SEP 28	9.52
NOV 2	9.07	FEB 24	7.91	SEP 1	7.85		

		WATER	LEVEL,	IN	FEET	ABOVE	MEAN	SEA	LEVEL,	WATER	YEAR	OCTOBER	1982	то	SEPTEMBER	1983			
DATE	WATER LEVEL		DATE		TER		DATE		ATER EVEL	DA!	re	WATER LEVEL	D	ATE	WATER LEVEL		DAT	E	WATER LEVEL
FEB 4 22 MAR 23	6.78 6.54 6.56		MAR 31 APR 15		5.55 5.40		PR 21 AY 12		6.37 6.21	MAY JUN	-	6.24 6.14	JU AU	L 2 G	2 6.44 2 6.23		AUG SEP		6.37 7.38

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
FEB											
22	0930	110	690	6.6	27.0	319	8.0	43	.10	6.3	.610
22	0945	200	1320	6.7	26.5	289	30	240	.10	5.9	.590
22	1015	340	18500	7.1	26.5	255	940	6700	.40	4.0	.100
22	1100	400	41500	7.0	26.5	161	2100	16000	.50	3.6	<.100
MAY											
12	1215	110	799	6.9	28.0	256	18	130	.10	6.0	.590
12	1245	200	1400	7.1	28.0	248	40	270	.10	5.5	.610
12	1300	340	19700	7.4	28.0	236	1000	6800	.40	3.9	<.100
12	1330	400	40400	7.4	28.0	146	2300	17000	.50	3.5	<.100
AUG											
02	1000	110	768		27.0			65			
02	1030	340	20200		26.5			7000			
02	1110	355	25900		26.5			9200			
02	1145	370	27300	77	26.5	725	100	9900		4-	

< Actual value is known to be less than the value shown.

132806144481871. Local number, 18-2848-03 (formerly 2848010) Barrigada Exploratory Well Ex-9.

LOCATION.--Lat 13°28'06" N., long 144°48'18" E., Hydrologic Unit 20100003, near P.C. Lujan Elementary School Radio Barrigada. Owner: Government of Guam.

AQUIFER .-- Barrigada Limestone.

WELL CHARACTERISTICS.--Drilled basal water-table well, borehole diameter 8 in, sounded depth 513 ft.

DATUM.--Altitude of land-surface datum is 238 ft. Measuring point: Top of steel surface casing, 239.41 ft above mean sea level.

PERIOD OF RECORD.-WATER LEVEL: September 1981 to current year.
WATER QUALITY: 1981 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 3.45 ft above mean sea level, Oct. 28, 1981; lowest, 2.29 ft above mean sea level, Feb. 18, 1983.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, SEPTEMBER 1981

DATE WATER LEVEL

SEP 24 3.17

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, OCTOBER 1981 TO SEPTEMBER 1982

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 28 DEC 28	3.45 3.03	JAN 29 FEB 10	3.30 3.33	FEB 26 APR 23	3.35 3.20	JUL 12 SEP 1	3.15 3.00	SEP 27	2.75

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
JAN 7 FEB 18	2.53	MAR 23 APR 1	2.76	APR 21 MAY 6	2.66	JUN 22 JUL 22	2.85	AUG 4	2.78	SEP 29	2.96

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	DIS-	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
FEB											
18	1015	260	3290	6.7	28.0	244	39	940	<.10	1.8	1.10
18	1045	320	2350	6.9	28.0	242	30	590	<.10	2.2	2.10
18	1115	400	43700	6.7	28.0	211	4600	17000	.10	2.9	<.100
18	1200	365	22700	6.7	28.0	244	1100	7400	.10	2.7	<.100
MAY											
06	0900	260	3400	7.2	28.0	214	160		<.10	2.3	1.20
06	0945	320	2500	7.1	28.0	207	37	630	<.10	2.5	2.00
06	1015	365	32500	7.2	28.0	212	1800	12000	.10	3.1	<.100
06	1100	400	42500	7.2	28.0	183	2500	17000	<.10	3.1	.120
AUG											
04	0940	260	3070		26.5			850			
04	1010	350	7390		27.0			2100			
04	1045	355	14400		27.0			4600	1==		
04	1125	370	33700		27.0			12000			

< Actual value is known to be less than the value shown.

MARIANA ISLANDS, ISLAND OF GUAM

133034144500871. Local number, 18-3050-05 (formerly 3050300) Macheche Rd. Well Ex-6 (formerly Well M-11A).

LOCATION.--Lat 13°30'34" N., long 144°50'08" E., Hydrologic Unit 20100003, in Macheche area, Dededo.

AQUIFER. -- Barrigada Limestone.

WELL CHARACTERISTICS.--Drilled basal water-table well, uncased hole diameter 12 in, sounded depth 407 ft. Well deepened to 462 ft on Aug. 7, 1981.

DATUM.--Altitude of land-surface datum is 309 ft. Measuring point: Top of metal surface casing, 309.41 ft above mean sea level.

PERIOD OF RECORD. --

WATER LEVEL: February 1978 to current year. WATER QUALITY: 1982 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 4.09 ft above mean sea level, Aug. 16, 1978; lowest measured, 2.61 ft above mean sea level, Feb. 2, 1983.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 8 FEB 2	3.43 2.61 2.75	MAR 14 23	3.15 3.06	APR 20 MAY 18	3.02 3.03	JUN 22 JUL 7	3.17 2.96	JUL 22 AUG 3	3.37 3.15	AUG 9 SEP 29	3.25 3.34

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	DENSITY (GM/ML AT 20 C)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
OCT												
07	1620	330	450		26.5	1.043	180	8.0	30	.40	<1.1	.920
07	1650	440			26.0	1.029	171	5.0	20	.40	<1.1	.850
07	1720	450	676		26.0	.994	183	11	62	.40	<1.1	.850
08	0900	458	41700		25.0	1.019	151	2500	19000	.60	6.8	<.100
FEB												
09	1215	330	390	7.2	26.0		187	<5.0	14	.50	<1.1	1.10
09	1300	440	400	7.5	26.0		186	<5.0	18	.40	<1.1	.990
09	1330	450		7.6	25.5		186	11	63	.40	<1.1	.960
09	1430	458	43500	7.5	27.0		147	2400	16000	.60	8.9	
AUG												
03	0945	330	427		26.5				20			
03	1015	440	392		26.0				29			
03	1100	457	45100		26.0				17000			

< Actual value is known to be less than the value shown.

MARIANA ISLANDS, ISLAND OF GUAM

133120144505471. Local number, 18-3150-10 (formerly 3150250) Ghura-Dededo Monitoring Well.

LOCATION.--Lat 13°31'20" N., long 144°50'54" E., Hydrologic Unit 20100003, in the Dededo Well Field, PUAG, Dededo. Owner: Government of Guam.

AQUIFER .-- Barrigada Limestone.

WELL CHARACTERISTICS .-- Drilled basal water-table well, uncased hole diameter 12 in, sounded depth 785 ft.

DATUM.--Altitude of land-surface datum is 393 ft. Measuring point: Top of metal surface casing, 393.90 ft above mean sea level.

PERIOD OF RECORD.-WATER LEVEL: March 1980 to current year.
WATER QUALITY: 1979 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 2.36 ft above mean sea level, May 11, 1981, June 12, 1981; lowest measured, 1.40 ft above mean sea level, Dec. 17, 1982.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, MARCH TO SEPTEMBER 1980

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
MAR 10 APR 2	1.98	APR 4	1.96	APR 11 MAY 8	2.04	JUN 20 AUG 6	2.08	AUG 21 SEP 29	1.99

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 25 NOV 25	2.24	DEC 30 FEB 2	2.12 2.04	MAR 10 APR 14	2.32	MAY 11 JUN 12	2.36

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DAT	E	WATER LEVEL	DATE	WATER LEVEL
DEC	3	2.45	AUG 31	2.05

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 30	1.57	JAN 24	1.50	MAR 23	1.87	APR 21	1.82	MAY 12	1.87	AUG 3	1.93
DEC 17 JAN 7	1.40	FEB 18 25	1.49	30 APR 13	1.85	MAY 4 10	1.80	JUN 22 JUL 22	1.98 2.17	SEP 29	2.11

MARIANA ISLANDS, ISLAND OF GUAM

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

133120144505471 - 18-3150-10 GHURA-DEDEDO MONITORING WELL--Continued

TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	DENSITY (GM/ML AT 20 C)
0930	550	42200		26.5	1.019
1050	600	48500		26.5	1.022
1120	775	48100		26.0	1.022
0845	400	864	7.1	27.0	
0930	475	710	7.3	27.0	
1030	540	39400	7.1	27.0	
1115	550	46100	7.1	26.5	
1330	400	827		28.0	
1410	520	2000		27.0	
1455	530	6820		27.0	
1530	540	30900		27.0	
	0930 1050 1120 0845 0930 1030 1115 1330 1410 1455	PLING DEPTH (FEET) 0930 550 1050 600 1120 775 0845 400 0930 475 1030 540 1115 550 1330 400 1410 520 1455 530	TIME	TIME DEPTH ANCE ARD (FEET) (UMHOS) UNITS) 0930 550 42200 1050 600 48500 1120 775 48100 0845 400 864 7.1 0930 475 710 7.3 1030 540 39400 7.1 1115 550 46100 7.1 1330 400 827 1410 520 2000 1455 530 6820	TIME DEPTH ANCE ARD ATURE (FEET) (UMHOS) UNITS) (DEG C) 0930 550 42200 26.5 1050 600 48500 26.5 1120 775 48100 26.0 0845 400 864 7.1 27.0 0930 475 710 7.3 27.0 1030 540 39400 7.1 27.0 1115 550 46100 7.1 26.5 1330 400 827 28.0 1410 520 2000 27.0 1455 530 6820 27.0

DATE	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
OCT						
01	259	2400	19000	.50	8.7	<.100
01	165	2700	20000	.60	8.3	.450
06	113	2700	21000	.40	4.4	<.100
MAY						
10	213	25	140	<.10	<1.1	1.10
10	199	15	85	<.10	<1.1	1.40
10	244	2200	16000	.50	6.9	<.100
10	194	2600	19000	.50	7.8	<.240
AUG						
03			120			
03			460			7.7
03			2000			
03			12000			

< Actual value is known to be less than the value shown.

MARIANA ISLANDS, ISLAND OF GUAM

133224144495271. Local number, 18-3249-02 (formerly 3249250) Finegayan Exploratory Well Ex-10.

LOCATION.--Lat 13°32'24" N., long 144°49'52" E., Hydrologic Unit 20100003, near NAVCAMS Housing area. Owner: Government of Guam.

AQUIFER. -- Barrigada Limestone.

WELL CHARACTERISTICS. -- Drilled basal water-table well, uncased hole diameter 8 in, sounded depth 704.5 ft.

DATUM.--Altitude of land-surface datum is 348 ft. Measuring point: Top of steel surface casing, 348.54 ft above mean sea level.

PERIOD OF RECORD. --

WATER LEVEL: September 1981 to current year. WATER QUALITY: 1982 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 3.09 ft above mean sea level, Apr. 24, 1982; lowest measured, 1.99 ft above mean sea level, Apr. 21, 1983.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, SEPTEMBER 1981

DATE LEVEL

SEP 24 3.02

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

7.2	WATER	170 Paris	WATER	2702	WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
OCT 28	3.01	FEB 16	2.97	JUL 15	2.88
DEC 3	2.93	APR 24	3.09	SEP 1	2.60

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

	WATER										
DATE	LEVEL										
OCT 11	2.54	FEB 24	2.07	APR 21	1.99	MAY 11	2.36	JUN 22	2.60	AUG 13	2.89
JAN 12	2.08	MAR 23	2.44	MAY 3	2.36	17	2.50	JUL 22	2.78	SEP 29	2.68

MARIANA ISLANDS, ISLAND OF GUAM

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

133224144495271 - 18-3249-02 FINEGAYAN EXP WELL EX-10--Continued

			SPE- CIFIC			
		SAM-	CON-	PH		DENSITY
		PLING	DUCT-	(STAND-	TEMPER-	(GM/ML
	TIME	DEPTH	ANCE	ARD	ATURE	AT
DATE		(FEET)	(UMHOS)	UNITS)	(DEG C)	20 C)
OCT						
11	1105	365	6730			.997
FEB						
24	0900	365	8540	7.0	26.5	
24	0945	400	4230	7.0	26.5	
24	1030	470	24500	7.2	26.5	
24	1115	490		7.2	27.0	
MAY						
11	1100	365	7520	7.3	28.0	
11	1145	400		7.3	28.0	
11	1230	470	27700	7.3	28.0	
11	1330	490	42800	7.4	28.5	
AUG						
13	1030	365	5340		26.5	
13	1110	400	3310		26.5	1,44
13	1150	470	23600		26.5	
13	1225	490	48400		26.5	

	ALKA-		CHLO-	FLUO-	SILICA,	NITRO- GEN,
	LINITY	SULFATE	RIDE,	RIDE,	DIS-	NO2+NO3
	LAB	DIS-	DIS-	DIS-	SOLVED	DIS-
	(MG/L	SOLVED	SOLVED	SOLVED	(MG/L	SOLVED
	AS	(MG/L	(MG/L	(MG/L	AS	(MG/L
DATE	CACO3)	AS SO4)	AS CL)	AS F)	SIO2)	AS N)
OCT						
11	247	170	2200	<.10	<1.1	.780
FEB						
24	242	290	2600	<.10	<1.1	1.20
24	232	120	1200	<.10	<1.1	1.30
24	164	1200	7700	<.10	4.6	.450
24	108	2500	18000	.20	8.0	.180
MAY						
11	235	260	2200	<.10	<1.1	1.40
11	229	120	1000	<.10	<1.1	1.40
11	151	1500	10000	<.10	5.8	.500
11	115	2500	18000	.10	7.9	.230
AUG						
13			1600			
13		U es	920			
13			9000			
13			18000			

< Actual value is known to be less than the value shown.

133628144513271. Local number, 18-3651-05 (formerly 3651230) Northwest Field Exploratory Well Ex-8.

LOCATION.--Lat 13°36'28" N., long 144°51'32" E., Hydrologic Unit 20100003, in old Air Force Housing area in Northwest Field.

AQUIFER. -- Barrigada Limestone.

WELL CHARACTERISTICS.--Drilled basal water-table well, uncased hole diameter 8 in, sounded depth 658 ft.

DATUM.--Altitude of land-surface datum is 461 ft. Measuring point: Top of steel surface casing 462.49 ft above mean sea level.

PERIOD OF RECORD . --

WATER LEVEL: September 1981 to current year. WATER QUALITY: 1982 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 2.76 ft above mean sea level, Oct. 28, 1981, Feb. 12, and Apr. 24, 1982; lowest measured, 1.88 ft above mean sea level, Feb. 28, 1983.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, SEPTEMBER 1981

	WATER		WATER
DATE	LEVEL	DATE	LEVEL
CED 17	2 72	SED 22	2 67

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

	WATER		WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
OCT 28	2.76	DEC 3	2.72	FEB 12	2.76	APR 24	2.76	JUL 9	2.68	SEP 1	2.37

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
JAN 12 FEB 23	1.91	MAR 23 APR 21	2.26 2.27	MAY 3	2.27 2.13	MAY 17 JUN 22	2.30	JUL 22 AUG 15	2.58	AUG 16 SEP 29	2.48 2.51

DA	TE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
FEB												
		1100	480	540	6.9	26.0	210	9.4	62	<.10	<1.1	2.00
		1130	550	480	6.9	26.0	215	7.5	49	<.10	<1.1	2.30
23		1230	610	29200	7.2	25.5	199	1600	9900	.20	5.0	<.100
23		1315	620	42500	7.1	25.5	131	2500	17000	.30	7.0	<.100
MAY												
10		1330	480	560	7.0	26.5	173	5.3	41	<.10	<1.1	1.90
10		1415	550	454	7.0	26.5	192	4.0	31	<.10	<1.1	2.10
10		1500	605	28900	7.4	26.0	196	1800	11000	.20	5.4	<.100
10		1600	620	42100	7.2	26.0	125	2700	19000	.30	7.9	<.100
AUG												
15		1635	480	578		26.0			44	77	-	
15		1705	550	470		26.0			28			
16		1255	605	19700	G-2-	26.0			6600			
16		1340	610	30400		26.0		122	11000			
16		1430	620	42400		26.0			16000			

< Actual value is known to be less than the value shown.

MARIANA ISLANDS, ISLAND OF GUAM

133121144504871 - 18-3150-14 GURA DEDEDO WELL EX-5A

WATER QUALITY DATA, AUGUST 1983

		SPE-		CHLO-
		CIFIC		RIDE,
		CON-		DIS-
		DUCT-	TEMPER-	SOLVED
	TIME	ANCE	ATURE	(MG/L
DATE		(UMHOS)	(DEG C)	AS CL)
AUG 3. 1983	1300	545	27.0	37

CAROLINE ISLANDS, YAP ISLANDS

093204138095970. Local number, 25-3209-01 Dorfay 6-in Well, Gagil-Tamil.

LOCATION.--Lat 09°32'04" N., long 138°09'59" E., Hydrologic Unit 20100006, 0.75 mi north-northeast of the Tamilang Elementary School and 0.8 mi south of the Coast Guard LORAN Station.

AQUIFER . -- Tamil Volcanics .

WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 6 in, depth reported, 170 ft.

DATUM.--Altitude of land-surface datum is 29 ft. Measuring point: Top of casing, 30.92 ft above mean sea level.

PERIOD OF RECORD.--July 1982 to April 1983 (occasional measurements only), May 1983 to current.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 20.32 ft above mean sea level, Dec. 22, 1982; lowest, 15.67 ft above mean sea level, June 10, 1983.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, JULY TO SEPTEMBER 1982

	WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
ли. 26	19 43	SED 1	19 70	SEP 16	19.55	SEP 29	19.25

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1									15.89	17.26	19.15	19.19
2									15.87	17.28	19.15	19.14
1 2 3 4 5									15.85	17.43	19.16	19.34
4									15.84	17.95	19.13	19.43
5								16.27	15.81	18.30	19.27	19.40
								10.27	13.01	10.30	17.21	13.40
6 7 8 9 10								16.22	15.77	18.38	19.52	19.45
7								16.20	15.73	18.37	19.79	19.36
8								16.18	15.70	18.38	19.83	19.26
9								16.16	15.69	18.39	19.76	19.20
10								16.16	15.70	18.36	19.63	19.17
								10.10	13.70	10.50	13.03	13.11
11								16.13	15.73	18.35	19.53	19.12
12								16.11	15.71	18.52	19.47	19.11
13								16.08	15.68	18.70	19.38	19.06
14								16.04	15.71	18.68	19.29	19.04
15								15.98	15.77	18.61	19.26	19.04
13								13.30	13.77	10.01	13.20	19.04
16								15.95	15.79	18.56	19.29	19.13
17								15.93	15.82	18.50	19.39	19.13
18		h18.99						15.92	15.81	18.48	19.64	19.16
19								15.90	15.87	18.43	19.63	19.19
20								15.87	15.98	18.47	19.57	19.15
20								13.07	13.30	10.47	13.57	13.13
21					h17.63			15.86	16.09	19.01	19.44	19.20
22			h20.32					15.82	16.27	19.33	19.34	19.55
23								15.78	16.74	19.24	19.27	19.54
24								15.77	17.16	19.31	19.19	19.44
25								15.90	17.29	19.34	19.37	19.38
26								15.93	17.33	19.46	19.40	19.52
27				L10 22								
28	h19.06			h18.32				15.92	17.32	19.38	19.34	19.48
	1119.00							15.89	17.31	19.28	19.27	19.44
29						1.10 21		15.87	17.30	19.23	19.23	19.48
30						h16.53		15.89	17.28	19.21	19.25	19.39
31								15.90		19.13	19.24	
MEAN									16.19	18.62	19.39	19.28
MAX									17.33	19.46	19.83	19.55
MIN									15.68	17.26	19.13	19.04
									13.00	17.20	13.13	13.04

h Tape measurement.

CAROLINE ISLANDS, YAP ISLANDS

092919138045670. Local number, 25-2904-01 Yugamanman Well 1 (Faraq-Lamaer), Yap.

LOCATION.--Lat 09°29'19" N., long 138°04'57" E., Hydrologic Unit 20100006, 800 ft southwest of the Communication Station and 800 ft northwest of the U.S. Weather Bureau Station.

AQUIFER .-- Tamil Volcanics.

WELL CHARACTERISTICS. -- Drilled water-table well, diameter 6 in, depth reported 92 ft.

DATUM.--Altitude of land-surface datum is 42 ft. Measuring point: Top of casing, 42.68 ft above mean sea level.

PERIOD OF RECORD. -- July 1982 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 32.09 ft above mean sea level, Sept. 23, 1983; lowest measured, 12.24 ft above mean sea level, May 13, 1983.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, JULY TO SEPTEMBER 1982

	WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
JUL 29	29.38	SEP 1	30.44	SEP 30	29.63

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

DATE	WATER LEVEL										
OCT 28	28.15	FEB 22	19.30	APR 18	14.10	JUL 28	29.02	AUG 19	30.10	SEP 23	32.09
NOV 18	26.30	MAR 30	15.85	25	13.59	AUG 8	30.73	25	29.96	28	30.09
DEC 22	27.08	APR 4	15.46	MAY 13	12.24	11	30.36	29	29.26		
JAN 27	22.99	11	14.70	JUN 29	19.07	17	30.05	SEP 9	28.98		

092918138045470. Local number, 25-2904-02 Yugamanman Well 2 (Faraq-Lamaer), Yap.

LOCATION.--Lat 09°29'18" N., long 138°04'54" E., Hydrologic Unit 20100006, 1,000 ft southwest of the Communication Station and 1,000 ft northwest of the U.S. Weather Bureau Station.

AQUIFER. -- Tamil Volcanics.

WELL CHARACTERISTICS. -- Drilled water-table well, diameter 6 in, depth reported 84 ft.

DATUM.--Altitude of land-surface datum is 37 ft. Measuring point: Top of casing, 38.83 ft above mean sea level.

PERIOD OF RECORD. -- July 1982 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 28.75 ft above mean sea level, Aug. 8, 1983; lowest measured, 12.04 ft above mean sea level, May 13, 1983.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, JULY TO SEPTEMBER 1982

	WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
JUL 29	27.59	SEP 1	28.53	SEP 30	28.03

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 28 NOV 18 DEC 22	26.77 25.43 25.98	FEB 22 MAR 30 APR 4	19.23 15.75 15.28	APR 18 25 MAY 13	13.88 13.40 12.04	JUL 28 AUG 8 11	27.18 28.75 28.31	AUG 19 25 29	28.08 28.06 27.27	SEP 23 28	28.07 28.11
JAN 27	22.64	11	14.49	JUN 29	18.68	17	28.19	SEP 9	27.06		

CAROLINE ISLANDS, YAP ISLANDS

092915138050270. Local number, 25-2905-01 Timlang Well 1, Yap.

LOCATION.--Lat 09°29'15" N., long 138°05'02" E., Hydrologic Unit 20100006, 900 ft south of the Communication Station and 300 ft southwest of the U.S. Weather Bureau Station.

AQUIFER . -- Tamil Volcanics.

WELL CHARACTERISTICS. -- Drilled water-table well, diameter 6 in, depth reported 70 ft.

DATUM.--Altitude of land-surface datum is 41 ft. Measuring point: Top of casing, 42.65 ft above mean sea level.

PERIOD OF RECORD. -- July 1982 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 38.10 ft above mean sea level, Sept. 1, 1982; lowest measured, 13.60 ft above mean sea level, May 13, 1983.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, JULY TO SEPTEMBER 1982

	WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
JUL 29	34.30	SEP 1	38.10	SEP 30	35.22

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 28	33.14	JAN 27	25.39	APR 4	17.04	APR 25	15.02
NOV 18	29.79	FEB 22	21.22	11	15.78	MAY 13	13.60
DEC 22	31.07	MAR 30	17.05	18	15.52		

092920138050270. Local number, 25-2905-02 Timlang Well 2, Yap.

LOCATION.--Lat 09°29'18" N., long 138°05'01" E., Hydrologic Unit 20100006, 600 ft south of the Communication Station and 300 ft west of the U.S. Weather Bureau Station.

AQUIFER .-- Tamil Volcanics.

WELL CHARACTERISTICS. -- Drilled water-table well, diameter 6 in, depth reported 80 ft.

DATUM.--Altitude of land-surface datum is 39 ft. Measuring point: Top of casing, 40.43 ft above mean sea level.

PERIOD OF RECORD .-- September 1982 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 37.12 ft above mean sea level, Aug. 8, 1983; lowest measured, 32.41 ft above mean sea level, Sept. 30, 1982.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, SEPTEMBER 1982

	WATER		WATER
DATE	LEVEL	DATE	LEVEL
SEP 1	34 01	SED 30	32 41

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
AUG 8	37.12	AUG 19	35.53	SEP 9	33.06
11	36.05	25	35.16	23	35.33
17	35.28	29	33.23	28	35.39

CAROLINE ISLANDS, YAP ISLANDS

092616138050670. Local number 25-2905-03 Timlang Well 3, Yap

LOCATION.--Lat 09°29'16" N., long 138°05'05" E., Hydrologic Unit 20100006, 800 ft south-southeast of the Communication Station and 100 ft southeast of the U.S. Weather Bureau Station.

AQUIFER . -- Tamil Volcanics.

WELL CHARACTERISTICS. -- Drilled water-table well, diameter 6 in, depth reported 88 ft.

DATUM. -- Altitude of land-surface datum is 43 f. Measuring point: Top of casing, 44.22 ft above mean sea level.

PERIOD OF RECORD. -- September 1982 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 37.03 ft above mean sea level, July 29, 1982; lowest measured, 12.76 ft above mean sea level, May 13, 1983.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, JULY 1982

DATE LEVEL

JUL 29 37.03

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 28	35.61	JAN 27	29.40	APR 4	16.15	APR 25	14.35
NOV 18 DEC 22	33.17 34.42	FEB 22 MAR 30	23.62 17.12	18	15.30 14.91	MAY 13 JUN 29	12.76

092926138050470. Local number, 25-2905-06 Communication Well 2, Yap.

LOCATION.--Lat 09°29'25" N., long 138°05'03" E., Hydrologic Unit 20100006, 75 ft north of the Communication Station.

AQUIFER .-- Tamil Volcanics.

WELL CHARACTERISTICS. -- Drilled observation water-table well, diameter 2 in, depth reported 81 ft.

DATUM.--Altitude of land-surface datum is 39 ft. Measuring point: Top of casing, 39.40 ft above mean sea level.

PERIOD OF RECORD. - December 1981 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 33.40 ft above mean sea level, June 8, 1982; lowest measured, 9.90 ft above mean sea level, May 27, 1983.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, DECEMBER 1981 TO SEPTEMBER 1982

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
DEC 18	31.11	MAR 15	27.70	JUN 2	27.93	JUL 19	31.38	SEP 17	31.99
31	30.60	APR 5	27.40	17	33.40	AUG 3	29.20	18	31.71
JAN 21 FEB 12	28.10 30.55	MAY 3	25.22 25.67	JUL 6	30.00 31.00	25 SEP 14	30.90 32.30	30	31.00

DATE	WATER LEVEL	DATE	WATER LEVEL								
OCT 19	30.56	DEC 29	27.43	MAR 14	14.43	MAY 27	9.90	JUL 27	28.90	SEP 9	27.80
NOV 10	27.80	JAN 17	24.27	30	14.00	JUN 29	17.08	AUG 9	29.21	23	28.65
25	25.88	FEB 4	21.50	APR 20	11.98	JUL 8	21.84	25	27.72	28	28.79
DEC 13	28-91	22	18.43	MAY 10	10.72						

CAROLINE ISLANDS, YAP ISLANDS

093144138055170. Local number, 25-3105-01 Magaf-Dalipebinau 4-in Well, Yap.

LOCATION.--Lat 09°31'44" N., long 138°05'51" E., Hydrologic Unit 20100006, 0.6 mi north of Dalipebinau Elementary School and 2.5 mi northwest of Colonia.

AQUIFER. -- Metamorphic rocks of the Yap formation.

WELL CHARACTERISTICS .-- Drilled observation water-table well, diameter 4 in, depth reported 70 ft.

DATUM.--Altitude of land-surface datum is 10 ft. Measuring point: Top of casing, about 11 ft above mean sea level.

PERIOD OF RECORD. -- August 1982 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 3.05 ft above mean sea level, Sept. 1, 1982; lowest measured, 1.37 ft above mean sea level, Nov. 18, 1983.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, AUGUST TO SEPTEMBER 1982

	WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
AUG 3	2.10	SEP 1	3.05	SEP 30	2.27

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

	WATER		WATER
DATE	LEVEL	DATE	LEVEL
OCT 28	1.74	NOV 18	1.37

093159138095870. Local number 25-3109-01 Monguch Well 1, Gagil-Tamil.

LOCATION.--Lat 09°31'59" N., long 138°09'58" E., Hydrologic Unit 20100006, 0.65 mi north-northeast of the Tamilang Elementary School and 1.0 mi south of the Coast Guard LORAN Station.

AOUIFER . -- Tamil Volcanics .

WELL CHARACTERISTICS. -- Drilled observation well, diameter 6 in, depth reported 85 ft.

DATUM.--Altitude of land-surface datum is 19.5 ft. Measuring point: Top of casing, 21.38 ft above mean sea level.

PERIOD OF RECORD .-- July 1982 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level overflowing casing for many days each year; lowest measured, 18.19 ft above mean sea level, May 12, 1983.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, JULY TO SEPTEMBER 1982

	WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
JUL 26	1	SEP 1	i	SEP 16	1	SEP 29	21.21

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 28 NOV 18	20.98	JAN 27 FEB 21	20.15	MAY 12 JUN 28	18.19 19.01	AUG 10	21.38	SEP 9	21.08
DEC 22	20.98	MAR 30	19.69	JUL 25	21.00	26	21.23	28	5

j Water overflowing casing.

CAROLINE ISLANDS, YAP ISLANDS

093159138095870. Local number, 25-3109-02 Monguch Well 2, Gagil-Tamil.

LOCATION.--Lat 09°31'59" N., long 138°09'58" E., Hydrologic Unit 20100006, 0.6 mi north of the Tamilang Elementary School and 1.0 mi south of the Coast Guard LORAN Station.

AQUIFER . -- Tamil Volcanics.

WELL CHARACTERISTICS. -- Drilled water-table well, diameter 6 in, depth reported 95 ft.

DATUM.--Altitude of land-surface datum is 24 ft. Measuring point: Top of casing, 26.47 ft above mean sea level.

PERIOD OF RECORD. -- July 1982 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 24.72 ft above mean sea level, Sept. 1, 1982; lowest measured, 20.19 ft above mean sea level, May 12, 1983.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, JULY TO SEPTEMBER 1982

	WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
JUL 26	23.50	SEP 1	24.72	SEP 16	24.63	SEP 29	24.15

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 28	23.81	JAN 27	22.77	MAY 12	20.19	AUG 10	24.42	SEP 9	24.02
NOV 18	23.50	FEB 21	21.97	JUN 28	21.10	19	24.37	23	24.43
DEC 22	23.89	MAR 30	20.87	JUL 25	23.89	26	24.32	28	24.41

093157138095670. Local number, 25-3109-03 Thilung Well 1 (Monguch 3), Gagil-Tamil.

LOCATION.--Lat 09°31'57" N., long 138°09'56" E., Hydrologic Unit 20100006, 0.6 mi north of the Tamilang Elementary School and 1.1 mi south of the Coast Guard LORAN Station.

AQUIFER . -- Tamil Volcanics.

WELL CHARACTERISTICS. -- Drilled water-table well, diameter 6 in, depth reported 115 ft.

DATUM.--Altitude of land-surface datum is 26 ft. Measuring point: Top of casing, 28.16 ft above mean sea level.

PERIOD OF RECORD. -- July 1982 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 26.58 ft above mean sea level, Sept. 1, 1982; lowest measured, 23.29 ft above mean sea level, Feb. 21, 1983.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, JULY TO SEPTEMBER 1982

	WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
JUL 26	26.42	SEP 1	26.58	SEP 16	26.46	SEP 29	25.81

	WATER								
DATE	LEVEL								
ОСТ 28	25.39	NOV 18	25.03	DEC 22	25.53	JAN 27	24.19	FEB 21	23.29

CAROLINE ISLANDS, YAP ISLANDS

093154138095370. Local number, 25-3109-04 Thilung Well 2 (Monguch 4), Gagil-Tamil.

LOCATION.--Lat 09°31'54" N., long 138°09'53" E., Hydrologic Unit 20100006, 0.5 mi north of the Tamilang Elementary School and 1.1 mi south of the Coast Guard LORAN Station.

AQUIFER .-- Tamil Volcanics.

WELL CHARACTERISTICS. -- Drilled water-table well, diameter 6 in, depth reported 105 ft.

DATUM.--Altitude of land-surface datum is 33 ft. Measuring point: Top of casing, 34.82 ft above mean sea level.

PERIOD OF RECORD .-- July 1982 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 29.43 ft above mean sea level, Sept. 1, 1982; lowest measured, 22.95 ft above mean sea level, May 12, 1983.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, JULY TO SEPTEMBER 1982

	WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
JUL 26	29.19	SEP 1	29.43	SEP 16	29.25	SEP 29	28.39

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

	WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
OCT 28	27.93	JAN 27	26.44	MAY 12	22.95	AUG 10	28.94	SEP 9	28.49
NOV 18	27.41	FEB 21	25.40	JUN 28	23.72	19	28.83	23	28.90
DEC 22	28.07	MAR 30	24.04	JUL 25	28.00	26	28.79	28	28.93

093217138101270. Local number, 25-3210-01 Mukong Well, Gagil-Tamil.

LOCATION.--Lat 09°32'17" N., long 138°10'12" E., Hydrologic Unit 20100006, 0.6 mi south of the Coast Guard LORAN Station and 1.1 mi north-northeast of the Tamilang Elementary School.

AQUIFER. -- Coral formation in the Tamil Volcanics.

WELL CHARACTERISTICS .-- Drilled water-table well, diameter 6 in, depth reported 120 ft.

DATUM.--Altitude of land-surface datum is 24 ft. Measuring point: Top of casing, 25.83 ft above mean sea level.

PERIOD OF RECORD. -- July 1982 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 16.19 ft above mean sea level, Sept. 1, 1982; lowest measured, 12.68 ft above mean sea level, May 12, 1983.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, JULY TO SEPTEMBER 1982

	WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
JUL 26	16.05	SEP I	16.19	SEP 29	15.64

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 28	15.45	JAN 27	14.46	MAY 12	12.68	AUG 10	15.57	SEP 9	15.47
NOV 18	15.26	FEB 21	13.76	JUN 28	13.50	19	15.58	23	15.53
DEC 22	15.51	MAR 30	13.44	JUL 25	15.02	26	15.44	28	15.65

CAROLINE ISLANDS, YAP ISLANDS

093210138101270. Local number, 25-3210-02 Dorfay 4-in Well, Gagil-Tamil.

LOCATION.--Lat 09°32'10" N., long 138°10'12" E., Hydrologic Unit 20100006, 0.8 mi south of the Coast Guard LORAN Station, and 0.9 mi north-northeast of the Tamilang Elementary School.

AQUIFER . -- Tamil Volcanics.

WELL CHARACTERISTICS. -- Drilled water-table well, diameter 4 in, depth reported 120 ft.

DATUM.--Altitude of land-surface datum is 28 ft. Measuring point: Top of casing, 29.93 ft above mean sea level. PERIOD OF RECORD.--July 1982 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 22.70 ft above mean sea level, Sept. 1, 1982; lowest measured, 20.28 ft above mean sea level, Nov. 18, 1982.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, JULY TO SEPTEMBER 1982

	WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
JUL 26	22.12	SEP 1	22.70	SEP 16	21.93	SEP 29	20.80

	WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
OCT 28	20.37	NOV 18	20.28	DEC 22	20.33

CAROLINE ISLANDS, TRUK ISLANDS

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

072704151511070 - 30-2650-05 W10 MOEN

DA	TE	TIME	CI CO DU AN	CT- TE	MPER- TURE EG C)	HARD- NESS (MG/L AS CACO3)	NE NON BON (M	RD- SS CAR- IATE G/L S	DI SO (M	CIUM S- LVED IG/L CA)	MAGN SIU DIS SOLV (MG/ AS N	OM, SOD S- DI VED SOL /L (M	S- VED G/L NA)	PERC SOL	CENT DIUM
MAR 11		0925		231	28.0	1									(2.2)
APR 13		1100		275	27.5	100)	38	1	8	14	1	.2		20
DATE	SODIU AD- SORP- TION RATIO	5	POTAS- SIUM, DIS- SOLVED (MG/L	ALKA- LINITY LAB (MG/L AS CACO3)	SULFA DIS- SOLV (MG/ AS SO	TE RI DI ED SC L (M	HLO- EDE, ES- DLVED MG/L E CL)	FLUC RIDE DIS SOLV (MG/ AS F	E, S- ZED L	SILICA DIS- SOLVE (MG/I AS SIO2)	A, S	SOLIDS, SUM OF CONSTI- FUENTS, DIS- SOLVED (MG/L)	NITR GEN NO2+N DIS SOLV (MG/ AS N	03 ED L	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)
MAR 11	_	_				2	29				_				
APR 13		5	1.1	65	6		14	<.	10	26		160	. 4	10	40
DATE	ARSENI TOTAL (UG/L AS AS	C F	ARIUM, FOTAL RECOV- ERABLE (UG/L AS BA)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	CADMI TOTA RECO ERAB (UG/ AS C	UM MI L TC V- RE LE EF L (U	IRO- IUM, DTAL ECOV- RABLE IG/L E CR)	COBAL TOTA RECO ERAB (UG/ AS C	AL OV- BLE 'L	COPPER TOTAL RECOV ERABL (UG/I AS CU	7- E	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON SUS- PENDE RECOV ERABL (UG/ AS F	D - E L	IRON, DIS- SOLVED (UG/L AS FE)
MAR 11															
APR 13	Ī	1	<100	<10		<1	10		<1		.5	190		90	4
13		1	(100	(10		(1	10		11		.5	190	1	90	4
DATE	LEAD, TOTAL RECOV ERABL (UG/L AS PB	- F E F	THIUM FOTAL RECOV- ERABLE (UG/L AS LI)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANG NESE DIS SOLV (UG/ AS M	, TO - RE ED EF L (U	RCURY OTAL ECOV- RABLE UG/L G HG)	MOLY DENU TOTA RECO ERAB (UG/ AS M	M, AL OV- BLE 'L	NICKEI TOTAI RECOV ERABI (UG/I AS NI	7- LE	SELE- NIUM, TOTAL (UG/L AS SE)	SILVE TOTA RECO ERAB (UG/ AS A	L V- LE L	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)
MAR 11	-	-		3-2-							_				
APR 13		8	<10	<10		4	.1		<1	1	1	<1		<1	20

< Actual value is known to be less than the value shown.

CAROLINE ISLANDS, TRUK ISLANDS

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

STATION NUMBER	LOCAL IDENT- I- FIER	LAT- I- TUDE	LONG- I- TUDE	DATE OF SAMPLE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	TEMPER- ATURE (DEG C)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
072517151505770	30-2550-01	07 25 10	151 50 33	83-03-11	0840	183	27.5	10
072504151503370	30-2550-02	07 25 04	151 50 33	83-04-13	1100	4100	28.0	1400
072658151511970	30-2650-01	07 26 46	151 50 56	83-03-11	0945	185	28.0	11
072654151511870	30-2650-02	07 26 50	151 50 55	83-03-11	1005	152	29.5	8.5
072707151512070	30-2650-03	07 26 59	151 50 56	83-03-11	1040	273	29.0	27
072702151512570	30-2651-01	07 26 54	151 51 01	83-03-11	1225	400	28.5	34
072701151512770	30-2651-02	07 26 55	151 51 03	83-03-11 83-04-13	1200 1020	500 2450	28.5 28.0	60 730
072706151512470	30-2651-03	07 26 58	151 51 00	83-03-11	1100	2600	28.0	780
072705151512670	30-2651-04	07 26 58	151 51 02	83-03-11	1240	2350	28.5	710
072708151512170	30-2750-03	07 27 01	151 50 56	83-03-11	1030	236	28.5	15
072710151512570	30-2751-01	07 27 03	151 51 01	83-03-11 83-04-13	1300 1010	233 240	29.0 29.0	17 18

SAMOA ISLANDS, ISLAND OF TUTUILA

141945170435401. Local number, 90-1943-24 Tafunafou Observation Well 1.

LOCATION.--Lat 14°19'45" S., long 170°43'54" W., Hydrologic Unit 20100001, 120 ft northwest of Tafunafou village cross road intersection, and 0.7 mi southeast of High School in Mapusaga. Owner: Government of American Samoa.

AQUIFER. -- Basalt lava flows of the Leone Volcanics.

WELL CHARACTERISTICS. -- Drilled basal water-table well, casing diameter 4 in, well depth measured 78 ft.

DATUM.--Altitude of land-surface datum is 73 ft. Measuring point: Top of 4-inch casing, 75.18 ft above mean sea level.

REMARKS. -- Water level affected by pumping from wells in close proximity.

PERIOD OF RECORD. -- October 1976 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest apparent water level 20.38 ft above mean sea level, may be caused by cascading water in the well following heavy rain, May 13, 1977; lowest 7.37 ft below mean sea level, July 13, 1978.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 5	1.03	DEC 7	5.08	MAR 2	5.45	MAY 3	0.73	JUL 12	0.28	SEP 15	1.72
13	4.11	14	2.28	15	1.92	12	.28	19	. 43	20	1.06
19	1.11	21	1.98	22	1.31	18	. 83	26	1.03	27	.96
26	1.43	JAN 11	1.78	30	1.03	24	1.58	AUG 3	46		
NOV 4	6.43	25	1.43	APR 5	1.29	JUN 7	1.03	9	.38		
9	3.53	FEB 1	1.84	12	1.58	15	.99	16	.17		
16	1.98	8	5.13	19	0.91	28	.18	26	.53		
23	1.68	22	1.21	27	0.38	JUL 6	.31	SEP 8	4.02		

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 4	0.08	DEC 6	-0.55	FEB 7	-0.23	APR 11	1.47	JUN 20	-2.06	AUG 22	1.60
12	.81	13	.21	14	32	18	. 81	27	-2.97	29	1.58
18	2.87	20	.11	22	37	25	.10	JUL 5	-2.77	SEP 6	1.00
25	1.41	27	.18	28	1.00	MAY 9	-2.43	11	-2.85	12	1.21
NOV 1	.05	JAN 3	.10	MAR 7	.35	16	-2.28	18	-1.70	19	1.12
08	. 82	10	1.33	14	.32	23	-2.58	25	-2.64	26	1.06
15	10	17	.79	21	.08	31	-2.93	AUG 1	1.28		
22	35	24	.46	28	13	JUN 6	-2.97	08	1.20		
29	.73	31	.17	APR 4	21	13	-1.89	15	1.26		

SAMOA ISLANDS, ISLAND OF TUTUILA

141948170435701. Local number, 90-1943-28 Tafunafou Observation Well 5.

LOCATION.--Lat 14°19'48" S., long 170°43'57" W., Hydrologic Unit 20100001, 1,000 ft southeast of Tafunafou village, and 1.5 mi west-northwest of Pago Pago International Airport. Owner: Government of American Samoa.

AQUIFER. -- Basalt lava flows of the Leone Volcanics.

WELL CHARACTERISTICS.--Drilled basal water-table well, casing diameter 4 in, well depth measured

DATUM.--Altitude of land-surface datum is 83 ft. Measuring point: Top of 4-inch casing, 85.32 ft above mean sea level.

REMARKS.--Water level affected by pumping from wells in close proximity.

PERIOD OF RECORD. -- October 1976 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level, 11.32 ft above mean sea level, may be caused by cascading water in the well following heavy rain, July 28, 1981; lowest 4.23 ft below mean sea level, Aug. 15, 1977.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

	WATER		WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
OCT 5	2.84	DEC 7	3.20	MAR 2	2.79	MAY 3	1.07	JUL 12	1.07	SEP 15	2.86
13	2.47	14	2.44	15	1.55	12	1.82	19	.51	20	2.47
19	2.67	21	2.42	22	1.47	18	.42	26	.67	27	2.10
26	2.35	JAN 11	2.62	30	1.02	24	.84	AUG 3	53		
NOV 4	3.17	25	2.27	APR 5	0.93	JUN 7	1.35	9	.42		
9	3.12	FEB 1	1.97	12	1.35	15	.62	16	.77		
16	2.59	8	4.57	19	0.87	28	22	26	7.52		
23	2.97	22	2.77	27	1.02	JUL 6	.77	SEP 8	3.96		

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 4	2.13	DEC 6	2.24	FEB 7	-0.68	APR 11	-1.33	JUN 20	-2.06	AUG 22	1.14
12	3.12	13	1.60	14	73	18	-1.49	27	-2.27	29	1.10
18	3.26	20	1.40	22	-1.72	25	-1.54	JUL 5	-2.30	SEP 6	1.26
25	1.88	27	1.70	28	-1.08	MAY 9	-2.00	11	-2.13	12	1.32
NOV 1	2.02	JAN 3	2.32	MAR 7	72	16	-2.05	18	-2.28	19	1.27
8	1.86	10	80	14	-1.50	23	-2.15	25	.63	26	1.26
15	2.08	17	-1.33	21	-1.71	31	-2.39	AUG 1	.79		
22	1.62	24	-1.48	28	-1.64	JUN 6	-2.43	8	.98		
29	1.84	31	-1.38	APR 4	-1.80	13	-2.18	15	15		

SAMOA ISLANDS, ISLAND OF TUTUILA

142057170461501. Local number, 90-2046-02 Puapua Well 47.

LOCATION.--Lat 14°20'57" S., long 170°46'15" W., Hydrologic Unit 20100001, 0.8 mi east of Midkiff School and 1.1 mi west of Futiga village church.

AQUIFER. -- Basalt lava flows and sand of the Leone Volcanics underlain by calcareous coastal deposits.

WELL CHARACTERISTICS. -- Drilled basal water-table well, casing diameter 6 in, well depth 190 ft.

DATUM.--Altitude of land-surface datum is 144 ft. Measuring point: Top of 6-inch casing, 146.25 ft above mean sea level.

PERIOD OF RECORD. -- December 1979 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 6.25 ft above mean sea level, Aug. 13, 1980; lowest 0.12 ft below mean sea level, Dec. 1, 1980.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

	WATER		WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
OCT 5	3.78	NOV 23	4.47	FEB 8	4.88	APR 12	4.00	JUN 15	2.60	AUG 9	2.83
13	2.68	DEC 7	3.10	22	3.28	19	2.68	28	.55	16	2.55
19	4.65	14	5.46	MAR 2	3.04	27	2.11	JUL 6	.48	26	7.25
26	5.15	21	5.07	15	2.72	MAY 3	1.74	12	1.50	SEP 8	3.70
NOV 4	4.27	JAN 11	2.98	22	2.30	12	2.87	19	2.04	15	3.20
9	5.07	25	3.76	30	2.68	18	2.50	26	2.41	20	2.51
16	4.17	FEB 1	3.22	APR 5	2.58	24	2.46	AUG 3	1.38	27	1.91

	WATER		WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
OCT 4	1.25	DEC 6	2.93	FEB 7	2.05	APR 11	2.75	JUN 20	1.67	AUG 22	1.79
12	1.67	13	2.39	14	2.06	18	2.79	27	1.47	29	1.73
18	2.45	20	2.13	22	1.98	25	2.21	JUL 5	1.60	SEP 6	1.84
25	1.98	27	3.16	28	2.48	MAY 9	2.62	11	1.52	12	1.73
NOV 1	2.79	JAN 3	2.68	MAR 7	2.74	16	1.78	18	1.57	19	1.35
8	2.97	10	2.78	14	3.00	23	1.78	25	1.45	26	1.83
15	2.54	17	2.48	21	2.42	31	1.44	AUG 1	1.52		
22	2.73	24	2.30	28	2.71	JUN 6	1.49	8	1.00		
29	2.54	31	3.25	APR 4	2.15	13	1.50	15	.99		

SAMOA ISLANDS, ISLAND OF TUTUILA

142102170445601. Local number, 90-2144-12 Iliili test well 115.

LOCATION.--Lat 14°21'02" S., long 170°44'56" W., Hydrologic Unit 20100001, 800 ft northwest of Iliili village church, and 0.5 mi northeast of Futiga village school.

AQUIFER. -- Basalt lava flows of the Leone Volcanics underlain by calcareous coastal deposits.

WELL CHARACTERISTICS. -- Drilled basal water-table well, casing diameter 4 in, well depth 243 ft, drilled 1977.

DATUM.--Altitude of land-surface datum is 216 ft. Measuring point: Top of 4-inch casing, 216.94 ft above mean sea level.

PERIOD OF RECORD. -- February 1981 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 6.89 ft above mean sea level, June 15, 1982; lowest 2.56 ft above mean sea level, May 31, 1983.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 5	4.89	DEC 7	5.45	MAR 2	5.57	MAY 3	6.19	JUL 12	5.79	SEP 15	5.38
13	5.08	14	5.24	15	5.94	12	5.19	19	5.89	20	4.84
19	4.97	21	5.52	22	4.59	18	5.69	26	6.09	27	5.29
26	5.09	JAN 11	4.94	30	6.24	24	5.89	AUG 3	5.85		
NOV 4	4.73	25	4.59	APR 5	4.84	31	6.29	9	5.29		
9	5.59	FEB 1	4.79	12	4.89	JUN 15	6.89	16	5.42		
16	5.08	8	4.19	19	4.59	28	5.59	26	6.54		
23	5.21	22	4.59	27	6.34	JUL 6	5.64	SEP 8	5.69		

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 4	4.91	DEC 6	3.82	FEB 7	3.93	APR 11	3.93	JUN 20	3.70	AUG 22	3.22
12	5.52	13	4.03	14	4.32	18	3.89	27	3.61	29	3.43
18	4.54	20	3.79	22	4.22	25	3.86	JUL 5	3.22	SEP 6	4.06
25	4.76	27	4.89	28	4.83	MAY 9	3.12	11	3.28	12	4.00
NOV 1	4.46	JAN 3	4.80	MAR 7	4.04	16	3.11	18	3.15	19	4.21
8	4.47	10	4.20	14	4.05	23	3.54	25	3.63	26	4.49
15	3.90	17	4.94	21	4.50	31	2.56	AUG 1	3.52		
22	3.66	24	3.77	28	4.43	JUN 6	3.58	8	3.04		
29	3.93	31	4.14	APR 4	4.90	13	3.69	15	3.33		

SAMOA ISLANDS, ISLAND OF TUTUILA

141945170435301 - 90-1943-06 TAFUNAFOU W33

WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

		CHLO-			CHLO-			CHLO-
		RIDE,			RIDE,			RIDE,
		DIS-			DIS-			DIS-
		SOLVED			SOLVED			SOLVED
	TIME	(MG/L		TIME	(MG/L		TIME	(MG/L
DATE		AS CL)	DATE		AS CL)	DATE		AS CL)
OCT			MAR			JUL		
05	0830	106	02	1015	15	06	0820	106
13	1045	23	22	0810	61	12	0825	76
19	0740	38	30	0940	76	19	0830	76
26	0755	91	APR			26	0855	84
NOV			05	0850	61	AUG		
09	0825	23	12	1120	68	03	0800	98
16	0840	30	19	1015	76	09	0850	84
23	0740	38	27	0845	91	16	1105	91
DEC			MAY			26	0945	23
07	0855	30	12	0805	76	SEP		
14	0820	53	18	1015	84	08	1150	23
21	0815	84	24	0900	61	15	0810	38
JAN			JUN			20	1115	30
11	0820	30	07	0805	61	27	1050	68
FEB			15	0920	68			
01	0850	68	28	0830	61			
08	0915	15						
22	1015	38						

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

		CHLO- RIDE, DIS- SOLVED			CHLO- RIDE, DIS- SOLVED			CHLO- RIDE, DIS- SOLVED
	TIME	(MG/L		TIME	(MG/L		TIME	(MG/L
DATE	2.00	AS CL)	DATE		AS CL)	DATE		AS CL)
OCT			FEB		02.	JUN		110 011
04	0840	61	07	0850	45	06	1110	91
12	0825	38	14	1050	68	13	1000	98
18	0830	68	22	1225	68	20	1130	110
25	1000	38	28	1055	53	27	1045	130
NOV	7.7.7	7.0	MAR		12	JUL		19-5
01	0805	98	07	0835	45	05	0955	140
08	0830	98	14	1030	45	11	1105	450
15	1050	91	21	1015	61	18	0905	550
22	0845	98	28	1145	61	25	0805	610
29	0855	91	APR			SEP		
DEC	1,775	2.77	04	0855	76	06	0900	520
06	0905	91	11	1100	61	12	0740	520
13	0830	76	18	1045	61	19	0740	490
20	0835	84	25	1020	68	26	0745	520
27	0810	84	MAY					
JAN			09	0845	84			
03	0815	91	16	1015	98			
10	1035	84	23	1030	110			
17	1220	45	31	1230	110			
24	1055	61						

SAMOA ISLANDS, ISLAND OF TUTUILA

141928170435201 - 90-1943-20 TAFUNAFOU W81

WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT			MAR			JUL		
13	1025	15	02	1000	15	06	0930	30
19	0830	15	22	0920	15	12	0935	23
26	0905	15	30	0925	23	19	0930	15
NOV	0303		APR	0323		26	1005	23
04	0920	15	05	0945	15	AUG	4444	
09	0805	15	12	1105	15	03	0910	30
16	0945	15	19	0955	23	09	0955	38
23	0835	15	27	0945	30	16	1045	15
DEC			MAY			26	1045	15
07	0950	15	12	0915	30	SEP		
14	0920	15	18	1000	15	08	1130	15
JAN			24	1010	15	15	0855	15
11	0800	15	JUN			20	0825	15
25	0920	15	07	0930	15	27	1020	15
FEB			15	0905	15			
01	0830	23	28	0930	30			
08	0855	7.0						
22	1000	15						

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT			FEB			JUN		
04	0935	23	07	0950	15	06	1050	15
12	0920	15	14	1025	23	13	0940	23
18	0920	15	22	1320	23	20	1110	23
25	1045	15	28	1035	23 15	27	1025	38
NOV			MAR			JUL		
01	0905	30	07	0945	15	05	0935	30
08	0930	23	14	1010	15	11	1035	120
15	1140	23	21	0955	15	18	0845	130
22	0945	38	28	1020	23	25	0905	170
29	0950	23	APR			AUG		
DEC			04	0955	23	01	0845	160
06	1005	23	11	1040	15	08	0835	190
13	0920	23	18	1025	15	15	0900	390
20	0930	30	25	1000	15	22	0810	390
27	0905	38	MAY			29	0745	270
JAN			09	1005	15	SEP		
03	0910	38	16	0955	15	06	0915	300
10	1015	23	23	1005	23	12	0810	330
17	1200	15	31	1010	23	19	0820	300
24	1030	15				26	0740	270
31	1020	15						

151 SAMOA ISLANDS, ISLAND OF TUTUILA

141952170440201 - 90-1944-11 TAFUNAFOU W61

WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT			MAR			JUL		
05	0850	98	02	1035	53	06	0840	110
13	1105	61	15	0830	61	12	0945	91
19	0800	76	22	0840	61	19	0855	110
26	0815	91	APR			26	0920	110
NOV			05	0905	84	AUG		
04	0950	76	12	1140	76	03	0825	120
09	0845	61	19	1030	76	09	0905	110
16	0905	76	27	0905	91	16	1125	110
23	0800	91	MAY			26	1005	23
DEC			03	0905	. 91	SEP		
07	0915	61	12	0830	91	08	1205	38
14	0840	84	18	1040	68	15	0840	76
21	0835	84	24	0925	84	20	1130	98
JAN			JUN			27	1105	91
11	0840	53	07	0825	91			
25	0835	76	15	0940	98			
FEB			28	0850	91			
01	0910	76						
22	1030	53						

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT			FEB			JUN		
04	0855	91	07	0915	53	06	1145	120
12	0855	98	14	1120	61	13	1030	120
18	0850	110	22	1250	68	20	1200	120
25	1015	98	28	1125	68	27	1115	140
NOV			MAR			JUL		
01	0820	110	07	0900	61	05	1025	140
08	0840	98	14	1100	84	11	1150	140
15	1110	98	21	1040	84	18	0935	220
22	0905	120	28	1110	91	25	0830	420
29	0910	110	APR			AUG		
DEC			04	0920	98	01	1210	220
06	0920	110	11	1125	98	08	0815	520
13	0845	91	18	1110	98	SEP		
20	0850	98	25	1040	110	06	0905	450
27	0830	98	MAY			12	0745	490
JAN			09	0915	110	19	0755	420
03	0830	98	16	1045	130	26	0755	490
10	1100	110	23	1100	140			
17	1245	91	31	1100	140			
24	1120	76						
31	1125	61						

SAMOA ISLANDS, ISLAND OF TUTUILA

141951170440101 - 90-1944-12 TAFUNAFOU W60

WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT			MAR			JUL		
05	0845	91	02	1030	45	06	0835	110
13	1100	61	15	0825	53	12	0840	91
19	0755	76	22	0835	61	19	0850	110
26	0810	91	30	0955	68	26	0910	110
NOV			APR			AUG		
04	0945	76	05	0900	76	03	0820	110
09	0840	61	12	1135	68	09	0900	120
16	0900	61	19	1025	76	16	1120	110
23	0755	76	27	0900	91	26	1000	38
DEC			MAY			SEP		
07	0910	61	03	0900	84	08	1200	61
14	0835	76	12	0825	91	15	0825	61
21	0830	84	18	1035	76	20	1125	98
JAN			24	0920	91	27	1100	91
11	0835	53	JUN					
FEB			07	0820	61			
01	0905	84	15	0935	91			
08	0925	23	28	0845	98			
22	1025	53						

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT			FEB			JUN		
04	0850	98	14	1115	98	06	1130	140
12	0845	110	22	1245	91	20	1155	110
18	0845	110	28	1120	76	27	1110	130
25	1010	110	MAR			JUL		
NOV			07	0855	91	05	1020	130
01	0815	110	14	1050	110	18	0930	520
08	0845	140	21	1035	110	25	0825	580
15	1105	140	28	1105	120	AUG		
22	0900	140	APR			01	1200	450
29	0905	140	04	0915	140	15	0910	610
DEC			11	1120	130	SEP		
06	0915	130	18	1105	110	19	0750	610
13	0840	110	25	1035	110			
20	0845	110	MAY					
27	0825	120	09	0910	110			
JAN			16	1040	130			
03	0825	98	23	1055	140			
10	1055	110	31	1055	140			
17	1240	98						
24	1115	84						
31	1120	84						

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	TEMPER- ATURE (DEG C)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)
MAV 6. 1983	1555	1760	26.0	-600	.20	-060

153

SAMOA ISLANDS, ISLAND OF TUTUILA

141929170441401 - 90-1944-13 MALAEIMI W67

WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT			MAR			JUL		
05	0940	15	15	0925	15	06	0945	15
13	1010	15	22	0940	15	12	0950	15
19	0855	15	APR			19	0950	15
NOV			05	1005	15	26	1015	15
04	0855	7.0	12	1050	15	AUG		
09	1100	15	19	0930	15	03	0935	15
16	1000	15	27	1115	15	09	1010	15 15
23	0900	15	MAY			16	0945	15
DEC			03	1005	15	26	1055	7.0
07	1005	15	12	0935	15	SEP		
14	0940	15	18	0935	15	08	1105	15
JAN			24	1025	15	15	0945	15
11	1055	15	JUN			20	1020	15
25	0940	15	07	0950	15	27	1010	15
FEB			15	0855	15			
01	1105	15	28	0945	15			
22	0945	15						

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT			FEB			JUN		
04	0940	23	07	1000	15	06	1035	15
12	0955	15	14	1015	23	13	0935	15
18	0925	15	22	1325	23	20	1105	23
25	1105	15	28	1020	15	27	1020	15
NOV			MAR			JUL		
01	0910	30	07	0955	15	05	0930	23
08	0935	15	14	0950	15	11	1025	15
15	1145	23	21	0945	15	18	1120	23
16	0915	8.5	28	1005	23	25	0910	23
22	0950	15	APR			AUG		
29	0955	15	04	1010	30	01	1145	23
DEC			11	1030	15	08	0850	15
06	1015	15	18	1015	15	15	0940	23
13	0930	15	25	0950	15	22	0845	33
20	0940	30	MAY			29	0825	23
27	0920	38	09	1020	15	SEP		
JAN			16	0945	15	06	0940	30
03	0920	38	23	0955	23	12	0825	30
10	1005	23	31	0955	15	19	0830	23
17	1150	15				26	0830	15
24	1020	15						
31	1030	15						

SAMOA ISLANDS, ISLAND OF TUTUILA

141929170441401 - 90-1944-13 MALAEIMI W67--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	TEMPER- ATURE (DEG C)	(MG/L	DIS- SOLVED (MG/L	SODIUM, DIS-	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
NOV 16	0915	180	25.0	12	7.1	14	6.6	5.0	<5.0	8.5
06	1515	159	26.0			(-5		155	÷	
DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	BROMIDE DIS- SOLVED (MG/L AS BR)	SOLVEI (MG/L AS	GEN,	NO2+NO3	GEN,AM- MONIA + ORGANIC	PHOS- PHORUS, TOTAL (MG/L AS P)	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)
NOV										
16 MAY	<.10	.110	.37		9.20			124	240	
C6				.700		.30	.050	100		<1
DAT NOV	ERA (UG	UM, LI AL TO OV- RE BLE EF	TAL TO COV- RE ABLE EF	OMIUM MI OTAL TO CCOV- RE RABLE EF	OTAL TO CCOV- RECABLE ER	ABLE ERA	COV- RECO	AL IRON OV- DIS BLE SOL' /L (UG)	S- REC VED ERA /L (UG	AL OV- BLE /L
16. MAY			77	786		7.7		75	15	45
06.	<	100	<10	<1	<10	<1	5	50		4
DAT	(UG	IUM NE AL TC OV- RE BLE ER /L (U	TAL NECOV- III. ABLE SC	SSE, TO DIS- RE DLVED EF	CCURY DE DTAL TO CCOV- REC ABLE ER	ABLE ERA	COV- NIUM BLE TOTA	M, RECO AL ERAI /L (UG.	AL TOT OV- REC BLE ERA /L (UG	AL OV- BLE /L
NOV 16 MAY				3						
06.	••	<10	<10	1-2	. 4	<1	2	<1	<1	10

< Actual value is known to be less than the value shown.

GROUND-WATER RECORDS SAMOA ISLANDS, ISLAND OF TUTUILA

141924170440401 - 90-1944-14 MALAEIMI W69

WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
DATE		AS CLI	DATE		No CLI
OCT			NOV		
19	0850	270	09	1105	270

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
AUG			SEP		
01	1225	45	06	0935	210
08	0845	98	12	0815	230
15	0930	150	19	0825	330
22	0840	160	26	0820	360
29	0820	140			

GROUND-WATER RECORDS SAMOA ISLANDS, ISLAND OF TUTUILA

142100170441701 - 90-2044-02 ILIILI W84

WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT			MAR			JUL		
05	1110	390		0825	300	06	1110	300
13	0855	300	02					
			15	1055	270	12	1125	300
19	1025	270	22	1100	270	19	1055	270
26	1045	270	30	0855	270	26	1135	270
NOV	0750	200	APR	1000		AUG		
04	0750	300	05	1020	300	03	1100	300
09	0935	270	12	0915	300	16	0825	240
16	1120	270	MAY			26	1205	300
23	1020	300	03	1125	270	SEP		
DEC			12	1100	300	08	1015	270
07	1120	360	18	0810	270	15	1045	210
14	1115	300	24	1140	300	20	0955	300
JAN			JUN		7.77	27	0945	330
11	0930	270	07	1050	270			
25	1040	240	15	0755	270			
FEB	4.000	2.02	28	1105	270			
01	0950	300	20111			- 5		
22	0830	270						
7=0.7	V77.	T-1						

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

		CHLO-			CHLO-			CHLO-
		RIDE,			RIDE,			RIDE,
		DIS-			DIS-			DIS-
		SOLVED			SOLVED			SOLVED
	TIME	(MG/L		TIME	(MG/L		TIME	
DAME	TIME		DAME	TIME		DAME	TIME	(MG/L
DATE		AS CL)	DATE		AS CL)	DATE		AS CL)
OCT			FEB			JUN		
04	1015	270	07	1115	270	06	0925	300
12	1025	390	14	0835	240	13	0830	300
25	1145	390	22	1405	240	27	0905	330
NOV			28	0905	240	JUL		
01	0940	330	MAR			05	0820	300
08	1000	360	07	1030	210	11	0905	520
15	1200	420	14	0830	270	18	1005	520
15	1215	360	21	0820	240	25	1030	610
22	1015	390	28	0835	210	AUG		
29	1030	330	APR			01	0950	580
DEC			04	1020	240	08	1010	610
06	1100	300	11	0905	210	15	1120	760
13	0955	240	18	0855	210	SEP		
20	1015	370	25	0820	240	06	0850	610
27	1135	300	MAY			12	0950	610
JAN			16	0820	330			
03	1000	300	23	0835	360			
10	0925	330	31	0835	330			
17	1055	240						
24	0850	300						
31	0905	270						

GROUND-WATER RECORDS SAMOA ISLANDS, ISLAND OF TUTUILA

142100170441701 - 90-2044-02 ILIILI W84--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	TEMPER- ATURE (DEG C)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
NOV 15	1200	1450	26.0	39	39	230	13	65	60	420	.30
12	1030		27.0	(25					10-5		-
DATE	BROMIDE DIS- SOLVED (MG/L AS BR)	SILICA, DIS- SOLVED (MG/L AS SIO2)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
NOV											
15 MAY	.010	41		75	14.0		7.6	77	220	11	2
12			<.020	.500		<.060	<.10	.080		22	

< Actual value is known to be less than the value shown.

158

GROUND-WATER RECORDS SAMOA ISLANDS, ISLAND OF TUTUILA

142042170463001 - 90-2046-03 MALAELOA W70

WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT			MAR			JUL		
05	1015	15	02	0905	15	06	1025	15
13	0940	15	22	1020	15	12	1030	
19	0930	15	30	0810	15	19	1025	15 15
NOV			APR			26	1100	15
04	0825	15	05	1055	15	AUG		
09	1020	15	12	0950	15	03	1025	15
16	1035	15	19	0850	15	09	1055	15 15
23	0930	15	MAY			16	0905	15
DEC			03	1045	15	26	1030	15
07	1040	15	12	1020	15	SEP		
14	1025	15	18	0855	15	08	0950	15
JAN			24	1105	15	15	1010	15
11	1020	15	JUN			20	0925	15
25	1010	23	07	1020	15	27	0905	15
FEB			15	0825	15			
01	1015	15	28	1030	15			
22	0905	15		2027	200			

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DĂTE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT			FEB			JUN		
04	1040	30	07	1030	15	06	1005	15
12	1045	30	14	0925	23	13	0905	23
25	1205	45	22	1420	23	20	1030	
NOV			28	0955	15	27	0940	23 38
01	1005	53	MAR			JUL		
08	1020	61	07	1050	15	05	0855	45
15	1245	61	14	0915	15	11	0950	38
22	1100	61	21	0905	15	18	1040	30
29	1045	53	28	0915	15	25	0955	23
DEC			APR			AUG		
06	1120	61	04	1110	23	01	1055	30
13	1020	45	11	0950	15	08	0930	38
20	1030	61	18	0925	15	15	1035	45 45
27	1105	68	25	0910	15	22	0935	
JAN			MAY			29	0910	38
03	1025	68	09	1100	15	SEP		
10	0925	23	16	0900	15	06	0755	61
17	1035	23	23	0915	30	12	0910	61
24	0935	23	31	0915	23	19	0925	38
31	0950	15				26	0920	30

159 SAMOA ISLANDS, ISLAND OF TUTUILA

142110170444601 - 90-2144-05 ILIILI W62

WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

	45.40	CHLO- RIDE, DIS- SOLVED		2002	CHLO- RIDE, DIS- SOLVED
DATE	TIME	(MG/L AS CL)	DATE	TIME	(MG/L AS CL)
Diii		no ch	D		027
OCT			JUN		
05	1040	68	07	1035	61
13	0920	61	15	0805	61
19	0950	53	28	1045	76
NOV			JUL		
09	1000	38	06	1040	76
FEB			12	1050	61
22	0850	45	19	1050	61
MAR			AUG		
15	1025	38	03	1040	68
22	1045	38	09	1115	76
30	0830	38	16	0845	61
APR			26	1145	68
05	1105	53	SEP		
12	0935	45	08	1050	45
19	0830	61	15	1025	38
MAY			20	0940	30
03	1105	53	27	0925	45
18	0835	53			
24	1130	61			

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT			FEB			JUN		
04	0955	61	07	1045	38	06	0950	53
12	1010	53	14	0905	53	13	0850	68
18	0940	45	22	1340	53	20	1015	68
25	1130	53	28	0930	53	27	0925	76
NOV			MAR			JUL		
01	0925	45	07	1010	68	05	0840	76
08	0945	76	14	0855	45	11	0910	110
15	1200	84	21	0845	45	18	1020	98
22	1035	91	28	0900	53	25	1010	110
29	1010	76	APR			AUG		
DEC			04	1045	68	01	1015	110
06	1040	76	18	0910	61	08	0950	130
13	0940	68	25	0845	53	15	1050	180
20	0950	84	MAY			29	0925	140
27	1120	98	09	1110	53	SEP		
JAN			16	0845	53	06	0825	160
03	0935	98	23	0900	61	12	0920	150
10	0900	84	31	0900	61	19	0940	140
17	1120	68				26	0935	140
24	0910	53						
31	0930	38						

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	TEMPER- ATURE (DEG C)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)
MAY 6, 1983	1630	570	27.5	1.10	.60	.070

SAMOA ISLANDS, ISLAND OF TUTUILA

142102170455801 - 90-2145-03 PUAPUA W119

WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT			APR			AUG		
05	1005	53	05	1040	53	03	1010	76
13	0925	38	12	0945	45	09	1045	76
19	0915	15	19	0835	53	16	0855	61
NOV	0.700-30	1.329	MAY	100,000	10.00	26	1120	61
04	0815	38	03	1035	68	SEP		1.7
09	1010	15	12	1005	61	08	1005	30
DEC			18	0845	84	15	1000	30
07	1025	30	24	1120	61	20	1000	30
14	1015	30	JUN			27	0920	45
JAN			07	1010	45			
11	1005	23	15	0810	45			
FEB			28	1015	53			
22	0855	23	JUL					
MAR			06	1015	61			
02	0855	23	12	1020	61			
15	0955	45	19	1015	61			
22	1035	45	26	1040	76			
30	0820	53						

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT			FEB			JUN		
04	1055	68	07	1020	30	06	0955	30
12	1030	53	14	0910	45	13	0855	38
25	1155	45	22	1410	53	20	1020	38
NOV			28	0940	53	27	0930	53
01	0950	45	MAR			JUL		
08	1010	38	07	1040	45	05	0845	53
15	1230	38	14	0905	30	11	0935	130
22	1045	23	21	0855	30	18	1025	140
29	1035	23	28	0905	38	25	0940	210
DEC			APR			AUG		
06	1110	23	04	1100	45	01	1025	190
13	1010	23	11	0935	30	08	0915	210
20	1020	38	18	0915	30	15	1010	420
27	1115	45	25	0855	38	29	0845	390
JAN			MAY			SEP		
03	1010	3.8	09	1050	38	06	0815	420
10	0910	76	16	0850	38	19	0905	390
17	1050	45	23	0905	45	26	0900	420
24	0915	45	31	0905	45			
31	0940	30						

	Page		Page
Aasu Stream, at Aasu, Tutuila	70,94	Illustrations3-	6,12-21
near Aasu, Tutuila	78	Imong River near Agat, Guam	8,79,90
Access to WATSTORE data	26	Inarajan River near Inarajan, Guam	36,90
Accuracy of field data and computed		Innem River, Kosrae	77,84
results	23	Instantaneous discharge, definition of	8
Acre-foot, definition of	2	Introduction	1
Afuelo Stream at Matuu, Tutuila	74,95		
Alasi Spring, Guam	79	Keprohi River, Ponape	77,83
Alega Stream at Alega, Tutuila	78	Kiepw River, Ponape	77
Algae, definition of	2	Kiriedleng River, Ponape	77
Almagosa River near Agat, Guam	39,80,90	Kosrae, island of, gaging-station records in	63-68
Almagosa Springs, Guam	79	low-flow partial-record stations in	77
Aquifer, definition of	2	map of	19
Artesian, definition of	2	measurements at miscellaneous sites in	81-82
Ash mass, definition of	7	water-quality records at miscellaneous sites	
Asili Stream, at altitude 330 ft near Asili,	40.00	in	87-89
Tutuila	72,94	water-quality records at partial-record	42.44
at Asili, Tutuila	78	stations in	83-85
near Asili, Tutuila	78	Kmekumel River, Babelthuap, Palau Islands	48,92
Atauloma Stream at Afao, Tutuila	71,94		25 00
		La Sa Fua River near Umatac, Guam	35,90
Bacteria, definition of	2	Leafu Stream, at altitude 370 ft, near Leone,	72 05
Biochemical oxygen demand, definition of	7	Tutuila	73,95
Biomass, definition of	7	at Auasi, Tutuila	78
Bonya River, Guam	80	near Auasi, Tutuila	75,95
Bottom material, definition of	7	near Leone, Tutuila	78
Burong Stream, Yap, Yap Islands	52,92	no. 3, Tutuila	82
0-11-/1	7	Leaveave Stream near Aasu, Tutuila	78
Cells/volume, definition of	7	Leele Stream at mouth at Fagasa, Tutuila	78
Cfs-day, definition of	7	Lehdau River, Ponape	77 61-62
	7	Lehn Mesi River, Ponape	77
Collection and computation of data	22	at hanging bridge, Ponape	58,93
Collection and examination of data	24	at mouth, Ponape	81
Collection of the data	26	Luhpwor River, Ponape	59-60
Color unit, definition of	7	at old Japanese dam	81
Contents, definition of	7	ac old supunose daminiminiminimi	01
Continuing record station, definition of	8	Malem River, Kosrae	65-66
Control, definition of	8	above diversion, Kosrae	82
Control structure, definition of	8	Maulap River near Agat, Guam4	
Cooperation	1	Mean concentration, definition of	9
Cubic foot per second, definition of	8	Mean discharge, definition of	8
		Meitik River, Ponape	76
Definition of terms	2	Melo River, Kosrae	63-64
Denni Spring, Saipan	28-29	Microgram per gram, definition of	8
Diongradid River, Babelthuap, Palau		Microgram per liter, definition of	8
Islands	45,91	Milligram per liter, definition of	8
Discharge, definition of	8	Monguch Stream, Gagil-Tamil, Yap Islands	76
Dissolved, definition of	8	Mukong Stream, Gagil-Tamil, Yap Islands	53,93
Dorfay Stream, Gagil-Tamil, Yap Islands	81	Mutunte River, Kosrae	81,87
Downstream order and station number	11	Mwot River, Kosrae	77,83
Drainage area, definition of	8		
Drainage basin, definition of	8	Nachiponong Stream, Moen, Truk Islands	81
Dry mass, definition of	7	Nankewi River, Ponape	77
	122 - 22	Nanpil River, Ponape	56-57
Edeng River, Babelthuap, Palau Islands	47,91	Ngerdorch River, North Fork, Babelthuap,	
Explanation of ground-water level records	26	Palau, Islands	76
Explanation of stage and water-discharge	20	North Fork tributary, Babelthuap, Palau	
records	22	Islands	76
Explanation of water-quality records	24	South Fork Babelthuap, Palau Islands	49,92
Eyeb Stream, Gagil-Tamil, Yap Islands	54,93	Numbering system for wells and miscellaneous	
Fogal coliform bactoria definition of	7	sites	11,21
Fecal coliform bacteria, definition of	7	Okat Biwar Magrae	
Fecal streptococcal bacteria, definition of		Okat River, Kosrae	87
Fena Dam spillway near Agat, Guam Finile Creek at Agat, Guam	41 34,90	Organic mass, definition of	7
Finkol River, Kosrae	82,88	Other data available	24
FINAL MIVEL, MUSICE	02,00	Pacific Telande Wostern man of	-
Gage height, definition of	8	Pacific Islands, Western, map of Pagan, island of, ground-water records in	96-104
Gaging station, definition of	8	Pago River near Ordot, Guam	44,91
Ground-water records	96-160	Pago Stream at Afono, Tutuila	69,94
Guam, island of, gaging-station records in	34-44	Pakusruk River, Kosrae	82
ground-water records in		Palau Islands, gaging-station records in	45-49
low-flow partial record stations in	76	low-flow partial-record stations in	76
map of	13-14	map of	15
measurements at miscellaneous sites in	79-81	water temperature records in	91-92
water temperature records in	90-91	Palusrik River, Kosrae	82,89
		Papa Stream near Nuuuli, Tutuila	78
Hardness, definition of	8	Partial-record station, definition of	9
Hydrologic unit, definition of	8	Particle size, definition of	9

162 INDEX

	Page		Page
Particle-size classification, definition of	9	Tabecheding River, Babelthuap, Palau Islands	46,91
Pehleng River, Ponape	81	Tafuyat River, Kosrae	77,82,84
Percent composition, definition of	9	Talisay River, Guam	81
Pesticides, definition of	9	Talofofo River, Guam	81
Picocurie, definition of	9	Talofofo Stream, Middle Fork, Saipan	79,86
Piga Spring near Umatac, Guam	76	South Fork, Saipan	30-31
Pinaey Stream, Yap, Yap Islands	76	Temperatures, periodic determination of	90-95
Polychlorinated biphenyls, definition of	9	Tholomar Stream above reservoir, Yap, Yap	
Ponape, island of, gaging-station records		Islands	76
in	56-62	Time-weighted average, definition of	10
low-flow partial-record stations in	76-77	Tinaga River near Inarajan, Guam	37,90
map of	18	Tofol River, Kosrae	
measurements at miscellaneous sites in	81	Tons per acre-foot, definition of	10
water-quality records at miscellaneous	0.0	Tons per day, definition of	11
sites inwater-quality records at partial-record	86	Total coliform bacteria, definition of Total, definition of	10
그리고 이번 이번에 살아왔다. 이번에 가득하면 되어 하면서 그렇게 되는 것이 하는 것이 없는 것이 없는 것이 없는데 되었다.	83	Total in bottom material, definition of	10
stations inwater-temperature records in	93	Total load, definition of	11
Publications	24,25	Total, recoverable, definition of	10
Publications on techniques of water-resources	24/25	Total-sediment discharge, definition of	
investigations	27	Truk Islands, gaging-station records in	55
Pukusruk River, Kosrae	77,85	ground-water records in	
unublum Milery Mobiled Williams		map of	17
Qaringeel Stream, Yap, Yap Islands	51,92	measurements at miscellaneous sites in	81
Qatliw Stream, Yap, Yap Islands	50,92	Turbidity, definition of	11
	44.00	Tutuila, island of, gaging-station records in.	69-75
Records of discharge collected by agencies			145-160
other than the Geological Survey	24	low-flow partial-record stations in	78
Recoverable from bottom material, definition		map of	20
of	7	measurements at miscellaneous sites in	82
Ripu Stream, Yap, Yap Islands	76	water-temperature records in	94-95
Sadog Gago River, Guam	79	Ugum River above Talofofo Falls, near	
Saipan, island of, gaging-stations records		Talofofo, Guam	42,91
in	28-33	Umatac River at Umatac, Guam	76
ground-water records in	105-114	Unnamed Stream No. 4, Tutuila	82
map of	12	Unnamed Tributary, Tutuila	82
measurements at miscellaneous sites in	79	Utumoa Stream near Pago Pago, Tutuila	78
water-quality records at miscellaneous			
sites in	86	Walung River, above diversion, Kosrae	81,88
Sediment	25	below diversion	81
Sediment, definition of	9	Water analysis	25
Seniahdak River, Ponape	81,86	Water temperature	25
Senipehn River, Ponape	77	WDR, definition of	11
Solute, definition of	9	Weighted average, definition of	11
Specific conductance, definition of	10	Wet mass, definition of	7
Stage-discharge relation, definition of	10	Wichen River at altitude 18 m, Moen, Truk	
Streamflow, definition of	10	Islands	55
Summary of Hydrologic Conditions	2	WRD, definition of	11
Suspended, definition of	10	WSP, definition of	11
Suspended recoverable, definition of	10		
Suspended-sediment concentration, definition	- 2	Yap Islands, gaging-station records in	50-54
of	9		135-142
Suspended sediment, definition of	9	low-flow partial-record stations in	76
Suspended-sediment discharge, definition of	9	map of	16
Suspended-sediment load, definition of	9	measurements at miscellaneous sites in	81
Suspended, total, definition of	10	water temperature records in	92-93
Susupe, Lake	32-33	Ylig River near Yona, Guam	43,91

THIS PAGE
INTENTIONALLY
LEFT BLANK

THIS PAGE
INTENTIONALLY
LEFT BLANK

FACTORS FOR CONVERTING INCH-POUND UNITS TO INTERNATIONAL SYSTEM UNITS (SI)

The following factors may be used to convert the inch-pound units published herein to the International System of Units (SI). This report contains both the inch-pound and SI unit equivalents in the station manuscript descriptions.

Multiply inch-pound units	By	To obtain SI units
	Length	
inches (in)	2.54x10 ¹	millimeters (mm)
	2.54x10 ⁻²	meters (m)
feet (ft)	3.048x10 ⁻¹	meters (m)
miles (mi)	1.609x10°	kilometers (km)
	Area	
acres	4.047×10^{3}	square meters (m ²)
*****	4.047x10 ⁻¹	square hectometers (hm ²)
	4.047×10^{-3}	square kilometers (km²)
square miles (mi ²)	2.590x10°	square kilometers (km²)
	Volume	
gallons (gal)	3.785x10°	liters (L)
8	3.785x10°	cubic decimeters (dm³)
	3.785x10 ⁻³	cubic meters (m ³)
million gallons	3.785×10^3	cubic meters (m ³)
	3.785×10^{-3}	cubic hectometers (hm³)
cubic feet (ft ³)	2.832x10 ¹	cubic decimeters (dm ³)
	2.832x10 ⁻²	cubic meters (m ³)
cfs-days	2.447×10^3	cubic meters (m ³)
	2.447×10^{-3}	cubic hectometers (hm ³)
acre-feet (acre-ft)	1.233×10^3	cubic meters (m ³)
	1.233×10^{-3}	cubic hectometers (hm ³)
	1.233x10 ⁻⁶	cubic kilometers (km³)
	Flow	
cubic feet per second (ft ³ /s)	2.832x101	liters per second (L/s)
	2.832x10 ¹	cubic decimeters per second (dm ³ /s)
	2.832x10 ⁻²	cubic meters per second (m³/s)
gallons per minute (gal/min)	6.309x10 ⁻²	liters per second (L/s)
	6.309×10^{-2}	cubic decimeters per second (dm³/s)
	6.309x10 ⁻⁵	cubic meters per second (m³/s)
million gallons per day	4.381x10 ¹	cubic decimeters per second (dm³/s)
	4.381x10 ⁻²	cubic meters per second (m ³ /s)
	Mass	
tons (short)	9.072x10 ⁻¹	megagrams (Mg) or metric tons

U.S. DEPARTMENT OF THE INTERIOR INT 413

U.S. DEPARTMENT OF THE INTERIOR Geological Survey, Room 6110 300 Ala Moana Boulevard, P.O. Box 50166 Honolulu, HI 96850

OFFICIAL BUSINESS PENALTY FOR PRIVATE USE \$300 SPECIAL 4TH CLASS BOOK RATE