


# Water Resources Data New Jersey Water Year 1983

Volume 2. Delaware River Basin and Tributaries to Delaware Bay



U.S. GEOLOGICAL SURVEY WATER-DATA REPORT NJ-83-2
Prepared in cooperation with the New Jersey
Department of Environmental Protection
and with other agencies

# CALENDAR FOR WATER YEAR 1983

|    |          |      |      |    |          |          |    |    | 19  | 82       |    |    |    |    |          |          |          |          |          |   |
|----|----------|------|------|----|----------|----------|----|----|-----|----------|----|----|----|----|----------|----------|----------|----------|----------|---|
|    | (        | CT   | BEI  | 2  |          |          |    | 1  | NOV | EMBI     | ER |    |    |    | ]        | DEC      | EMBI     | ER       |          |   |
| 3  | M        | T    | W    | T  | F        | S        | S  | M  | T   | W        | T  | F  | S  | S  | M        | T        | W        | T        | F        | S |
|    | -        |      |      |    | 1        | 2        |    | 1  | 2   | 3        | 4  | _  | 6  |    |          |          | 1        | 2        |          |   |
| 3  |          | 5    | 6    | 7  | - 1      |          | 7  |    | 9   |          |    | 12 |    | 5  |          | 7        | 8        | 9        | 10       | 1 |
|    | 11<br>18 |      |      |    | 15<br>22 | 23       |    |    |     | 17<br>24 |    |    |    | 19 | 13<br>20 | 14<br>21 | 15<br>22 | 16<br>23 | 17<br>24 | 1 |
|    | 25       |      |      |    |          |          |    | 29 |     | 24       | 25 | 20 | 21 |    |          |          | 29       |          |          | - |
| 31 |          |      |      |    |          |          |    |    |     |          |    |    |    |    |          |          |          |          |          |   |
|    |          |      |      |    |          |          |    |    | 19  | 83       |    |    |    |    |          |          |          |          |          |   |
|    |          | JANI | JARY | ľ  |          |          |    | 1  | FEB | RUAI     | RY |    |    |    |          | MA       | RCH      |          |          |   |
| S  | M        | T    | W    | T  | F        | S        | s  | M  | T   | W        | T  | F  | S  | S  | M        | T        | W        | T        | F        | S |
|    |          |      |      |    |          | 1        |    |    | 1   | 2        | 3  | 4  | 5  |    |          | 1        | 2        | 3        | 4        |   |
| 2  | 3        | 4    | 5    | 6  | 7        | 8        | 6  | 7  | 8   | 9        | 10 | 11 |    | 6  | 7        | 8        | 9        | 10       | 11       | 1 |
| -  | 10       |      |      | 13 |          | 15       |    |    |     | 16       |    |    |    | 13 |          | 15       | 16       | 17       | 18       |   |
|    | 17       |      |      |    |          | 22       |    |    | 22  | 23       | 24 | 25 | 26 | 20 |          |          | 23       |          | 25       | 2 |
|    | 24<br>31 | 25   | 26   | 21 | 28       | 29       | 21 | 28 |     |          |    |    |    | 21 | 28       | 29       | 30       | 31       |          |   |
|    |          | AJ   | PRI  | Ĺ  |          |          |    |    | 1   | MAY      |    |    |    |    |          | J        | UNE      |          |          |   |
| S  | M        | T    | W    | T  | F        | S        | S  | M  | T   | W        | T  | F  | S  | S  | M        | T        | W        | T        | F        | S |
|    |          |      |      |    | 1        | 2        | 1  | 2  | 3   | 4        | 5  | 6  | 7  |    |          |          | 1        | 2        | 3        |   |
| 3  |          | _    |      | 7  |          | 9        | 8  |    |     | 11       |    |    |    | 5  |          |          |          |          | 10       |   |
|    |          |      |      |    |          | 16       |    |    |     |          |    |    |    |    |          |          | 15       |          |          |   |
|    |          |      |      |    |          | 23<br>30 |    | 30 |     |          | 26 | 21 | 28 |    |          |          | 22<br>29 |          | 24       | 2 |
|    |          | JI   | JLY  |    |          |          |    |    | AU  | GUS'     | r  |    |    |    | S        | EPT      | EMBI     | ER       |          |   |
| 3  | M        | T    | W    | T  | F        | s        | S  | M  | T   | W        | T  | F  | S  | S  | M        | T        | W        | T        | F        | S |
|    |          |      |      |    | 1        | 2        |    |    |     |          |    |    | 6  |    |          |          |          |          | 2        |   |
| 3  | 4        | 5    | 6    | 7  | 8        | 9        | 7  | 8  | 9   | 10       | 11 | 12 | 13 | 4  |          |          |          |          |          |   |
| 10 | 11       | 12   | 13   | 14 | 15       | 16       | 14 | 15 | 16  | 17       | 18 | 19 | 20 | 11 |          |          | 14       |          |          |   |
|    |          |      |      |    |          | 23<br>30 |    |    |     |          |    | 26 | 2/ |    |          |          | 21<br>28 |          |          | 2 |
| 31 |          | 20   | 21   | 20 | 29       | 30       | 28 | 29 | 30  | 31       |    |    |    | 25 | 20       | 21       | 20       | 27       | JU       |   |



# United States Department of the Interior

GEOLOGICAL SURVEY

WATER RESOURCES DIVISION ROOM 418, FEDERAL BUILDING 402 EAST STATE STREET TRENTON, NEW JERSEY 08608

I am pleased to announce the release of our annual report, "Water Resources Data for New Jersey, Water Year 1983". This report was prepared by the U.S. Geological Survey, in cooperation with the State of New Jersey and several local and federal government agencies.

Once again this year, the report is issued in two volumes: Volume 1.--Atlantic Slope Basins, Hudson River to Cape May; Volume 2.--Delaware River Basin and Tributaries to Delaware Bay.

THE REPORT CONTAINS RECORDS OF STREAM DISCHARGE AND WATER-QUALITY MEASUREMENTS, ELEVATIONS OF LAKES AND RESERVOIRS, MAJOR WATER-SUPPLY DIVERSIONS, AND TIDAL ELEVATIONS. ALSO INCLUDED ARE RECORDS OF SEDIMENT CONCENTRATIONS AND RECORDS OF GROUND-WATER QUALITY AND GROUND-WATER LEVELS. SPECIAL SECTIONS ARE DEVOTED TO LOW-FLOW AND CREST-STAGE DATA AND SUMMARIES OF TIDAL CREST ELEVATIONS IN THE NEW JERSEY ESTUARIES AND INTRACOASTAL WATERWAYS.

Copies of this report \*are for sale through the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22161. When ordering, refer to U.S. Geological Survey Water-Data Report NJ-83-1 (for Volume 1) and NJ-83-2 (for Volume 2). For further information on this report, or if the address on the mailing label has changed, or if you no longer desire to receive this report, please contact me at the above address or telephone (609) 989-2162.

SINCERELY,

William R. Bauersfeld, CHIEF Hydrologic Studies Section



# Water Resources Data New Jersey Water Year 1983

Volume 2. Delaware River Basin and Tributaries to Delaware Bay

by W.R. Bauersfeld, E.W. Moshinsky, E.A. Pustay, and F.L. Schaefer



U.S. GEOLOGICAL SURVEY WATER-DATA REPORT NJ-83-2 Prepared in cooperation with the New Jersey Department of Environmental Protection and with other agencies

# UNITED STATES DEPARTMENT OF THE INTERIOR

WILLIAM P. CLARK, Secretary

GEOLOGICAL SURVEY

Dallas L. Peck, Director

For additional information write to

District Chief, Water Resources Division
U.S. Geological Survey
Room 418, Federal Building
402 East State Street

Trenton, New Jersey 08608

## PREFACE

This volume of the annual hydrologic data report of New Jersey is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by State, local, and Federal agencies, and the private sector for developing and managing our Nation's land and water resources. Hydrologic data for New Jersey are contained in 2 volumes'

Volume 1. Atlantic Slope Basins, Hudson River to Cape May Volume 2. Delaware River Basin and Tributaries to Delaware Bay

This report is the culmination of a concerted effort by dedicated personnel of the U.S. Geological Survey who collected, compiled, analyzed, verified, and organized the data, and who typed, edited, and assembled the report. In addition to the authors, who had primary responsibility for assuring that the information contained herein is accurate, complete, and adheres to Geological Survey policy and established guidelines, the following individuals contributed significantly to the collection, processing, and tabulation of the data:

E. Dorr R.D. Schopp
R.L. Ulery W.D. Jones
G.R. Kish G.M. Farlekas

S.J. Perry and I.C. Heerwagen word processed the text of the report. Illustrations and maps drafted by G.L. Simpson.

This report was prepared under the general supervision of D.E. Vaupel, District Chief, New Jersey District, and S.P. Sauer, Regional Hydrologist, Northeastern Region, and in cooperation with the State of New Jersey and with other agencies.

| 50272 - 101<br>REPORT | DOCUMENTATION                      | 1. REPORT NO.                                           | 2.                 | 3. Recipient's | Accession No.          |
|-----------------------|------------------------------------|---------------------------------------------------------|--------------------|----------------|------------------------|
|                       | PAGE                               | USGS/WRD/HD-84/054                                      |                    |                |                        |
| 4. Title and          | Subtitle                           |                                                         |                    | 5. Report Date |                        |
|                       |                                    | a for New Jersey, Water Y                               |                    | July 19        | 84                     |
| Volum                 | ne 2. Delaware                     | e River Basin and Tributar                              | ies to Delaware    | Bay 6.         |                        |
| 7. Author(s           | )                                  |                                                         |                    | 8. Performing  | Organization Rept. No. |
| W.R.                  | Bauersfeld, E.                     | .W. Moshinsky, E.A. Pustay                              | , F.L. Schaefer    | USGS-WD        | R-NJ-83-2              |
|                       | ing Organization Name a            |                                                         |                    |                | ask/Work Unit No.      |
|                       |                                    | rvey, Water Resources Divi                              | sion               |                |                        |
|                       | 418 Federal Bu                     |                                                         |                    | 11. Contract(C | c) or Grant(G) No.     |
|                       | E. State Street<br>con, New Jersey |                                                         |                    | (C)            |                        |
| Henr                  | on, New Jersey                     | 08008                                                   |                    | (G)            | 11.7                   |
| 12. Sponso            | ring Organization Name             | and Address                                             |                    | 13. Type of R  | eport & Period Covered |
| U.S.                  | Geological Sur                     | evey, Water Resources Divi                              | sion               | Annual -       | Oct. 1, 1982           |
| Room                  | 418 Federal Bu                     | iilding                                                 |                    | to Sept        | . 30, 1983             |
|                       | E. State Street                    |                                                         |                    | 14.            |                        |
|                       | on, New Jersey                     | 08608                                                   |                    |                |                        |
|                       | mentary Notes                      | ation with the New Jorges                               | Donartment of En   | wirenmental    | Protection             |
|                       | with other ager                    | ation with the New Jersey                               | Department of En   | VIIOIMental    | riotection             |
| unu v                 | vien other ager                    |                                                         |                    |                |                        |
| 16. Abstrac           | t (Limit: 200 words)               |                                                         |                    |                |                        |
| Water                 | Resources dat                      | a for the 1983 water year                               | for New Jersey     | consist of r   | ecords of stage,       |
|                       |                                    | er quality of streams; sta                              |                    |                |                        |
|                       |                                    | l water levels and water o                              |                    |                |                        |
|                       |                                    | discharge records for 23                                |                    |                |                        |
|                       |                                    | contents for 16 lakes a                                 |                    |                |                        |
|                       |                                    | wells; and water levels fest-stage partial-record s     |                    |                |                        |
|                       |                                    | -record stations. Additi                                |                    |                |                        |
|                       |                                    | the systematic data colle                               |                    |                |                        |
|                       |                                    | rements. These data repr                                |                    |                |                        |
|                       |                                    | U.S. Geological Survey ar                               |                    |                |                        |
| in Ne                 | ew Jersey.                         |                                                         |                    |                |                        |
|                       |                                    |                                                         |                    |                |                        |
|                       |                                    |                                                         | * *                |                |                        |
|                       |                                    |                                                         | *                  |                |                        |
|                       |                                    |                                                         |                    |                |                        |
|                       |                                    |                                                         |                    |                |                        |
|                       |                                    |                                                         |                    |                |                        |
| 7.00                  | ent Analysis a. Descript           |                                                         |                    |                | 11. 71                 |
|                       |                                    | ologic data, *Surface wate                              |                    |                |                        |
|                       | 0 0                                | ons, Lakes, Reservoirs, Ch<br>Ling sites, Water Levels, |                    | searments,     | water                  |
| cempe                 | eracures, sampi                    | ing sites, water Levers,                                | water Analyses     |                |                        |
| h Idami               | NEam (Ones Ended Town              |                                                         |                    |                |                        |
| D. Ideni              | tifiers/Open-Ended Terms           |                                                         |                    |                |                        |
|                       |                                    |                                                         |                    |                |                        |
|                       |                                    |                                                         |                    |                |                        |
|                       |                                    |                                                         |                    |                |                        |
| c. COSA               | ATI Field/Group                    |                                                         |                    |                |                        |
| 18. Availabi          | lity Statemen: No res              | striction on distribution.                              | 19. Security Class | (This Report)  | 21. No. of Pages       |
|                       |                                    | purchased from: National                                |                    | .ed            | 203                    |

20. Security Class (This Page)

Unclassified

22. Price

CONTENTS

|         |         |                    |                                         |                   |                          |                    | Page |
|---------|---------|--------------------|-----------------------------------------|-------------------|--------------------------|--------------------|------|
| Preface |         |                    |                                         |                   |                          |                    | III  |
| List of | surfac  | e-water stations   | , in downstream ord                     | der, for which re | ecords are published.    |                    | VI   |
|         |         |                    |                                         |                   | published                |                    | VII  |
| Coopera | tion    |                    |                                         |                   |                          |                    | -    |
| Acknowl | edgment | s                  |                                         |                   |                          |                    | 1    |
| Summary | of hyd  | rologic condition  | 18                                      |                   |                          |                    | 2    |
|         |         |                    |                                         |                   |                          |                    | 2    |
|         |         |                    |                                         |                   |                          |                    |      |
|         |         |                    |                                         |                   |                          |                    | Š    |
| Explana | tion of | stage and water.   | -discharge records                      |                   |                          |                    | 9    |
| Colle   | ction a | ind computation of | f data                                  |                   |                          |                    | 9    |
|         |         |                    |                                         |                   |                          |                    | 11   |
|         |         |                    |                                         |                   |                          |                    | 12   |
|         |         |                    |                                         |                   | the Geological Surve     |                    | 12   |
| Explana | tion of | water-quality re   | ecords                                  |                   |                          |                    | 12   |
|         |         |                    |                                         |                   |                          |                    | 12   |
|         |         |                    |                                         |                   |                          |                    | 13   |
|         |         |                    |                                         |                   |                          |                    | 12   |
| Publi   | cations |                    |                                         |                   |                          |                    | 14   |
| Explana | tion of | ground-water le    | vel records                             |                   |                          |                    | 14   |
|         |         |                    |                                         |                   |                          |                    | 14   |
|         |         |                    |                                         |                   |                          |                    | 15   |
|         |         |                    |                                         |                   |                          |                    | 16   |
| Publica | tions o | n techniques of    | water-resources in                      | vestigations      |                          |                    | 19   |
| Surface | -water  | records            | • • • • • • • • • • • • • • • • • • • • |                   |                          |                    | 30   |
|         |         |                    |                                         |                   |                          |                    | 150  |
|         |         |                    |                                         |                   |                          |                    | 150  |
|         |         |                    |                                         |                   |                          |                    | 157  |
| Tidal c | rest-st | age stations       |                                         |                   |                          |                    | 158  |
|         |         |                    |                                         |                   |                          |                    | 159  |
|         |         |                    |                                         |                   |                          |                    | 159  |
|         |         |                    |                                         |                   |                          |                    | 193  |
|         |         |                    |                                         |                   |                          |                    |      |
|         |         |                    |                                         |                   |                          |                    |      |
|         |         |                    |                                         |                   |                          |                    |      |
|         |         |                    |                                         | ILLUSTRATIONS     |                          | *                  |      |
|         |         |                    |                                         |                   |                          |                    |      |
|         |         |                    |                                         |                   |                          |                    |      |
| Figure  | 1.      | Well locations     | system                                  |                   |                          |                    | 9    |
|         | 2.      | Monthly streamf    | low at key gaging :                     | stations          |                          |                    | 20   |
|         | 3.      | Annual mean dis    | charge at key gagin                     | ng stations       |                          |                    | 2:   |
|         | 5.      | Man showing loc    | water levels at key                     | y observation we. | llsace-water quality sta | tions              | 25   |
|         | 6.      | Map showing loc    | ation of low-flow                       | and crest-stage   | partial-record statio    | ns                 | 2    |
|         | 7.      |                    |                                         |                   | ions and observation     |                    |      |
|         |         |                    |                                         |                   |                          |                    |      |
|         |         | •                  |                                         |                   |                          |                    |      |
|         |         |                    |                                         | TABLES            |                          |                    |      |
|         |         |                    |                                         |                   |                          |                    |      |
|         |         |                    |                                         |                   |                          |                    |      |
| Table   | 1. De   | grees Celsins (0   | C) to degrees Fahr                      | enheit (°F)       |                          |                    | 13   |
|         | 2. Wa   | ter-supply paper   | numbers, surface-                       | water quality re  | cords, water years 19    | 45-70              | 14   |
|         | 3. Wa   | ter-supply paper   | numbers, ground-wa                      | ater level record | ds, water year 1935-7    | 4                  | 15   |
|         | Fa      | ctors for conver   | ting Inch-pound un:                     | its to Metric un  | its                      | .inside back cover |      |

[Letter after station name designates type of data: (d) discharge, (c) chemical, (m) microbiological, (e) elevation, gage height or contents, (t) water temperature, (s) sediment]

|                                                                   | Page       |
|-------------------------------------------------------------------|------------|
| MAURICE RIVER BASIN Maurice River at Norma (dcmts)                | 20         |
| Menantico Creek near Millville (d)                                | 30<br>36   |
| COHANSEY RIVER BASIN                                              | 30         |
| Cohansey River at Seeley (dem)                                    | 37         |
| Cohansey River at Bridgeton (cm)                                  | 39         |
| DELAWARE RIVER BASTN                                              |            |
| Delaware River at Port Jervis, NY (dt)                            | 41         |
| Neversink River at Godeffroy, NY (d)                              | 44         |
| Delaware River at Montague (d)                                    | 45         |
| Flat Brook at Flatbrookville (d)                                  | 46         |
| Delaware River near Delaware Water Gap, PA (d)                    | 47         |
| Delaware River at Portland, PA (cm)                               |            |
| Paulins Kill at Balesville (cm)                                   | 50<br>52   |
| Yards Creek near Blairstown (dcm)                                 | 54         |
| Paulins Kill at mouth, at Columbia (cm)                           | 55         |
| Pequest River at Pequest (d).                                     | 57         |
| Delaware River at Belvidere (d)                                   | 58         |
| Delaware River at Northampton Street, at Easton, PA (cm)          | 59         |
| Lehigh River at Bethlehem (d)                                     | 61         |
| Pohatcong Creek at New Village (cm)                               | 62         |
| Pohatcong Creek at Carpentersville (cm)                           | 64         |
| Musconetcong River at outlet of Lake Hopatcong (cm)               | 65<br>67   |
| Musconetcong River at Lockwood (cm)                               |            |
| Musconetcong River at Beattystown (cm)                            | 69         |
| Musconetcong River near Bloomsbury (d)                            | 71         |
| Musconetcong River at Riegelsville (cm)                           | 72<br>74   |
| Delaware River at Lumberville (cm)                                | 75         |
| Wickecheoke Creek at Stockton (cm)                                |            |
| Delaware River at Washington Crossing (cm)                        | 70         |
| Delaware River at Trenton (dtcsm)                                 | 79<br>81   |
| Assunpink Creek near Clarksville (cm)                             |            |
| Assunpink Creek at Trenton (d)                                    |            |
| Crosswicks Creek at Extonville (dcm)                              | 93         |
| Crosswicks Creek at Groveville (cm)                               | 95         |
| Doctors Creek at Allentown (cm)                                   | 96         |
| Doctors Creek at Rt. 130, near Yardville (cm)                     | 97         |
| Assiscunk Creek near Burlington (cm)                              | 101        |
| Delaware River at Burlington (e)                                  | 102        |
| South Branch Rancocas Creek at Vincentown (cm)                    | 104        |
| Greenwood Branch:                                                 |            |
| McDonalds Branch in Lebanon State Forest (dtcms)                  | 106        |
| North Branch Rancocas Creek at Pemberton (dcm)                    | 112        |
| Delaware River at Palmyra (e)                                     | 115        |
| Pennsauken Creek:                                                 |            |
| North Branch Pennsauken Creek near Moorestown (cm)                | 116        |
| South Branch Pennsauken Creek at Cherry Hill (dcm)                | 118        |
| Cooper River at Norcross Road, at Lindenwold (cm)                 | 121        |
| Cooper River at Lawnside (cm)                                     | 123<br>124 |
| Cooper River at Haddonfield (d)                                   | 125        |
| Big Timber Creek:                                                 | 125        |
| South Branch Big Timber Creek at Blackwood Terrace (cm)           | 127        |
| North Branch Big Timber Creek at Glendora (cm)                    | 128        |
| Schuylkill River at Philadelphia (d)                              | 130        |
| Mantua Creek at Mantua (cm)                                       | 131        |
| Raccoon Creek near Swedesboro (dcm)                               | 132        |
| Oldmans Creek at Porches Mill (cm)                                | 135        |
| Delaware River below Christina River at Wilmington                | 136        |
| Delaware River at Delaware Memorial Bridge, at Wilmington, DF (e) | 137        |
| Salem River at Woodstown (dcm)                                    | 138        |
| Reservoirs in Delaware River basin (e)                            | 141        |
| Diversions and withdrawals in Delaware River basin                | 147        |

| GROUND WATER STATIONS, BY COUNTY, FOR WHICH RECORDS ARE PUBLISHED | VII        |
|-------------------------------------------------------------------|------------|
|                                                                   | Page       |
| GROUND-WATER LEVEL RECORDS                                        |            |
| BURLINGTON COUNTY                                                 |            |
| Lebanon State Forest 23-D                                         | 159        |
| Medford 4                                                         | 160        |
| Medford 5                                                         | 161        |
| Medford 1                                                         | 162        |
| Medford 2                                                         | 163        |
| Willingboro 2                                                     | 164        |
| Willingboro 1                                                     | 165        |
| Rhodia Corp. 1                                                    | 166        |
| CAMDEN COUNTY                                                     |            |
| Elm Tree Farm 2                                                   | 167        |
| Elm Tree Farm 3                                                   | 168        |
| Hutton Hill 1                                                     | 169        |
| Egbert Station                                                    | 170        |
|                                                                   |            |
| CAPE MAY COUNTY                                                   | 4.74       |
| Traffic Circle                                                    | 171        |
| West Cape May 1                                                   | 172        |
| Higbee Beach 3                                                    | 173<br>174 |
| Oyster Lab 4                                                      | 1/4        |
| CUMBERLAND COUNTY                                                 |            |
| Jones Island 2                                                    | 175        |
| Orange Street                                                     | 176        |
| Sheppards 1                                                       | 177        |
| GLOUCESTER COUNTY                                                 |            |
| Shell Chemical 5                                                  | 178        |
| Eagle Point 3.                                                    | 179        |
| 2-6                                                               | .,,        |
| HUNTERDON COUNTY                                                  |            |
| Bird                                                              | 180        |
| SALEM COUNTY                                                      |            |
| Salem 1                                                           | 181        |
| Salem 3.                                                          | 182        |
| Salem 2.                                                          | 183        |
| Point Airy.                                                       | 184        |
|                                                                   |            |
| WARREN COUNTY Hoffman LaRoche 4                                   | 40-        |
| Hoffman Lakoche 4                                                 | 185        |
| QUALITY OF GROUND-WATER RECORDS                                   |            |
| Burlington County                                                 | 186        |
| Cumberland County                                                 | 187        |
| Gloucester County                                                 | 188        |
| Hunterdon County                                                  | 189        |
| Mercer County                                                     | 190        |
| Ocean County                                                      | 191        |
| Salem County                                                      | 192        |

#### TNTRODUCTION

Water resources data for the 1983 water year for New Jersey consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground water. This volume contains water discharge at 23 gaging stations; tide summaries for 3 stations; stage and contents for 16 lakes and reservoirs; water quality for 39 surface water sites, and 72 wells; and water levels for 27 observation wells. Also included are data for 27 crest-stage partial-record stations; 7 tidal crest-stage gage and 24 low-flow partial-record stations. Locations of these sites are shown in figures 5, 6, and 7. Additional water data were collected at various sites not part of the systematic data collection program and are published as miscellaneous measurements and analyses. These data together with the data in Volume 1 represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State, Local, and Federal agencies in New Jersey.

Records of discharge or stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological Survey water-supply papers entitled, "Surface Water Supply of the United States." Through September 30, 1960, these water-supply papers were in an annual series and then in a 5-year series for 1961-65 and 1966-70. Records of chemical quality, water temperature, and suspended sediment were published from 1941 to 1970 in an annual series of water-supply papers entitled, "Quality of Surface Waters of the United States." Records of ground-water levels were published from 1935 to 1974 in a series of water-supply papers entitled "Ground-Water Levels in the United States." Water-supply papers may be consulted in the libraries of the principal cities in the United States or may be purchased from Branch of Distribution, U.S. Geological Survey, 604 South Pickett Street, Alexandria, Virginia 22304.

For water years 1961 through 1970, streamflow data were released by the Geological Survey in annual reports on a State-boundary basis. Water-quality records for water years 1964 through 1970 were similarly released either in separate reports or in conjunction with streamflow records.

Beginning with the 1971 water year, water data for streamflow, water quality, and ground water are published in offical Survey reports on a State-boundary basis. These offical Survey reports carry an identification number consisting of the two letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume of the report is identified as "U.S. Geological Survey Water-Data Report NJ-83-2." These water-data reports are for sale, in paper copy or in microfiche, by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

Additional information, including current prices, for ordering specific reports may be obtained from the District Chief at the address given on the back of the title page or by telephone (609) 989-2162.

#### COOPERATION

This report was prepared by the U.S. Geological Survey under cooperative agreement with the following organizations:

New Jersey Department of Environmental Protection, Robert E. Hughey, Commissioner.
Division of Water Resources, John W. Gaston, Jr., Director.
North Jersey District Water Supply Commission, Dean C. Noll, Chief Engineer.
Passaic Valley Water Commission, W.I. Inhoffer, General Superintendent and Chief Engineer.
County of Bergen. E.R. Ranuska, Director of Public Works and County Engineer.
County of Camden, Joseph T. Patermo, Director of Camden County Planning Board.
County of Morris, James Plante, Chairman of Morris County Municipal Utilities Authority.
County of Somerset, Thomas E. Decker, County Engineer, and Thomas Harris, Administrative Engineer.
Township of West Windsor, Larry Ellery, Chairman of Environmental Commission.
Township of Bridgewater, Cynthia Jacobson, Chairman of Environmental Commission.

Assistance in the form of funds was given by the Corps of Engineers. U.S. Army. in collecting records for 50 surface water stations, and for the collection of sediment records at one stream-sampling station, and by the U.S. Environmental Protection Agency for the collection of chemical analyses at four stream-sampling stations. In addition, several stations were operated fully or partially from funds appropriated directly to the Geological Survey. Assistance was also furnished by the National Weather Service and the National Ocean Survey.

The following organizations aided in collecting records:

Municipalities of Atlantic City, Jersey City, Newark, New Brunswick and Spotswood; American Cyanamid Co.; Commonwealth Water Co.; Elizabethtown Water Co.; Ewing-Lawrence Sewerage Authority; Hackensack Water Co.; Johns-Manville Products Corp.; and Monmouth Consolidated Water Co.; Jersey Central Power and Light Co.

Organizations that supplied data are acknowledged in station descriptions.

# ACKNOWLEDGMENTS

The water resources data for New Jersey were processed and prepared for publication under the supervision of W.R. Bauersfeld, Chief, Hydrologic Studies Section. The data were collected, computed and processed by other personnel as follows:

H. Bivens T.A. Chepiga J. F. Dudek J. T. Fisher G. J. Pheasant J. B. Campbell R. S. Cole B. D. Gillespie A. J. Kalik M. O. Philips G. L. Centinaro M. J. DeLuca C. E. Gurney C. E. Nahn E. Rodgers

#### SUMMARY OF HYDROLOGIC CONDITIONS

Streamflow in the 1983 Water Year was slightly above normal in the southern and coastal areas but was excessive in the north (upper 25 percent of record). Precipitation ranged from about 120 percent of normal in the coastal and southern part of the State to 150 percent of normal in the north. Reservoirs began spilling in March, but by the end of the water year, they were only 62 percent of capacity, compared to 88 percent at the end of the previous year.

Water year 1983 began with streamflow below normal at all index stations. River flow steadily declined until the end of February when runoff was deficient by 2.5 inches and streamflow only about 75 percent of normal. River flow recovered in March when precipitation fell on 20 days of the month. A major storm on March 18 and 19 resulted in from 2 to 4 inches of rainfall throughout the State and produced a monthly total more than 200 percent above normal. Heavy precipitation continued in April, with the total again exceeding 200 percent of normal. Flooding was reported in many northeastern communities. The Delaware River at Trenton recorded its highest stage since August, 1955, on April 17. A new high monthly mean discharge for April was noted at South Branch Raritan River at High Bridge that exceeded the previous record discharge set in 1952, and at Great Egg Harbor River at Folsom set in 1970. Excessive streamflow continued through July, even though precipitation returned to about normal in June. For the remainder of the year, streamflow was about normal in the north and about 80 percent of normal in the south and coastal areas.

Streamflow at the index station for northern New Jersey (South Branch Raritan River near High Bridge) averaged 165 ft $^3$ /s, which was 136 percent of the 65-year average. Streamflow at the index station for southern New Jersey (Great Egg Harbor River at Folsom) averaged 92.3 ft $^3$ /s, which was 107 percent of the 58-year average. The observed annual mean discharge of the Delaware River at Trenton was 12,650 ft $^3$ /s, which was 108 percent of normal. However, the Delaware is highly regulated by reservoirs and diversions. The natural flow at Trenton (adjusted for diversion and storage upstream) was 110 percent of normal for the year.

Figures 2 and 3 compare the monthly and annual discharges with past records at these index gaging stations.

Storage in the 13 major water-supply reservoirs in New Jersey decreased from 66.3 billion gallons (88 percent of capacity) on October 1, 1982 to 46.8 billion gallons (62 percent of capacity) on September 30, 1983. Storage in Wanaque Reservoir decreased from 24.4 billion gallons (87 percent of capacity) on October 1, 1982 to 18.9 billion gallons (67 percent of capacity) on September 30, 1983. Pumped storage in Round Valley Reservoir increased from 39.8 billion gallons (72 percent of capacity) on October 1, 1982, to 40.6 billion gallons (74 percent of capacity) on September 30, 1983.

Greater-than-normal precipitiation during the last 7 months of the year contributed to general improvement in water quality as reflected by specific conductance. Mean monthly specific conductance for the Delaware River at Trenton during the later months was lower than or equal to values for the preceding year. Heavy rainfall during March resulted in the lowest recorded values of specific conductance on the Passaic River at Little Falls since continuous record began October 1, 1980.

Ground-water levels rose during 1983 in most water-table wells throughout the State, reflecting increases in recharge. Water-table levels in 1983 were generally higher than in either 1981 or 1982 and were in the normal range from about March through September. Artesian water levels in wells tapping the heavily stressed confined aquifers of the Coastal Plain, however, continued to show long-term net declines because of increasing withdrawals of ground water. As in past years, the declines were greatest in the Potomac-Raritan-Magothy aquifer system throughout the Coastal Plain and in the Wenonah-Mount Laurel, Englishtown, and Farrington aquifers in the northern part of the Coastal Plain.

Monthly water levels are compared with long-term averages at two observation wells in figure 4. The wells shown are the Bird well in Hunterdon County and the Crammer well in Ocean County. For further comparison, multi-year hydrographs are provided for all the wells given in these reports. The hydrographs are shown with the 1983 water-level data.

# DEFINITION OF TERMS

Terms related to streamflow, water-quality and other hydrologic data, as used in this report, are defined below. See also the table for converting Inch-pound Units to Metric Units on the inside of the back cover.

Acre-foot (AC-FT, acre-ft) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to  $\frac{4}{3}$ ,560 cubic feet or about 326,000 gallons or 1,233 cubic meters.

Adenosine triphosphate (ATP) is the primary energy donor in cellular life processes. Its central role in living cells makes it an excellent indicator of the presence of living material in water. A measure of ATP therefore provides a sensitive and rapid estimate of biomass. ATP is reported in micrograms per liter of the original water sample.

Algae are mostly aquatic single-celled, colonial, or multi-celled plants, containing chlorophyll and lacking roots, stems, and leaves.

Algal growth potential (AGP) is the maximum algal dry weight biomass that can be produced in a natural water sample under standardized laboratory conditions. The growth potential is the algal biomass present at stationary phase and is expressed as milligrams dry weight of algae produced per liter of sample.

Aquifer is a geologic formation, group of formations, or part of a formation that contains sufficient saturated permeable material to yield significant quantities of water to wells and springs.

#### Aquifer codes and geologic names:

The following list shows the aquifer codes and geologic names of the formations in which the sampled wells are finished. The aquifer codes also appear in the column "Geologic Unit" in the ground-water quality tables:

112SFDF STRATIFIED DRIFT

112CPMY

CAPE MAY FORMATION, UNDIFFERENTIATED CAPE MAY FORMATION, ESTUARINE SAND FACIES 112ESRNS

COHANSEY SAND 121CNSY

KIRKWOOD-COHANSEY AQUIFER SYSTEM 121CKKD

RIO GRANDE WATER-BEARING ZONE OF THE KIRKWOOD FORMATION 122KRKDU ATLANTIC CITY 800-FOOT SAND OF THE KIRKWOOD FORMATION 122KRKDL

PINEY POINT AQUIFER 124PNPN 124MNSO MANASQUAN FORMATION 125 VNCN

VINCENTOWN FORMATION WENONAH-MOUNT LAUREL AQUIFER 211MLRW

211EGLS ENGLISHTOWN AQUIFER

211MRPA

POTOMAC-RARITAN-MAGOTHY AQUIFER SYSTEM, UNDIFFERENTIATED UPPER AQUIFER, POTOMAC-RARITAN-MAGOTHY AQUIFER SYSTEM, (BURLINGTON, CAMDEN, GLOUCESTER, SALEM COUNTIES) 211MRPAU .

211MRPAM , MIDDLE AQUIFER, POTOMAC-RARITAN-MAGOTHY AQUIFER SYSTEM (BURLINGTON, CAMDEN, GLOUCESTER, SALEM COUNTIES)

211MRPAL , LOWER AQUIFER, POTOMAC-RARITAN-MAGOTHY AQUIFER SYSTEM (BURLINGTON, CAMDEN, GLOUCESTER, SALEM COUNTIES)

2110DBG . OLD BRIDGE AQUIFER, POTOMAC-RARITAN-MAGOTHY AQUIFER SYSTEM (MERCER, MIDDLESEX, MONMOUTH

COUNTIES)

211FRNG , FARRINGTON AQUIFER, POTOMAC-RARITAN-MAGOTHY AQUIFER SYSTEM (MERCER, MIDDLESEX, MONMOUTH COUNTIES)

BRUNSWICK SHALE OR FORMATION STOCKTON FORMATION 231SCKN

231BRCK

Artesian means confined and is used to describe a well in which the water level stands above the top of the aquifer, tapped by the well. A flowing artesian well is one in which the water level is above land

 $\underline{\text{Bacteria}} \text{ are microscopic unicellular organisms, typically spherical, rod-like, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for$ reuse by plants.

Total coliform bacteria are a particular group of bacteria that are used as indicators of possible sewage pollution. They are characterized as aerobic or facultative anaerobic, gram-negative, nonspore-forming, rod-shaped bacteria which ferment lactose with gas formation within 48 hours at 35°C. In the laboratory these bacteria are defined as all the organisms which produce colonies with a golden-green metallic sheen within 24 hours when incubated at  $35^{\circ}\text{C} \pm 0.5^{\circ}\text{C}$  on M-Endo medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 ml of sample.

Fecal coliform bacteria are bacteria that are present in the intestines or feces of warmblooded animals. They are often used as indicators of the sanitary quality of the water. In the laboratory they are defined as all organisms which produce blue colonies within 24 hours when incubated at 44.5°C  $\pm$  0.2°C on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 ml of sample.

Fecal streptococcal bacteria are bacteria found also in the intestine of warm-blooded animals. Their presence in water is considered to verify fecal pollution. They are characterized as grampositive, cocci bacteria which are capable of growth in brain-heart infusion broth. In the laboratory they are defined as all the organisms which produce red or pink colonies within 48 hours at  $35\,^{\circ}\text{C} \pm 0.5\,^{\circ}\text{C}$  on KF streptococcus medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 ml of sample.

 $\underline{\text{Bedload}}$  is the sediment which moves along in essentially continuous contact with the streambed by rolling, sliding, and making brief excursions into the flow a few diameters above the bed.

Bed material is the unconsolidated material of which a streambed, lake, pond, reservoir, or estuary bottom is composed.

 $\frac{\text{Biochemical oxygen demand (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, } \text{used for the decomposition of organic matter by microorganisms, such as bacteria.}$ 

Biomass is the amount of living matter present at any given time, expressed as the weight per unit area or volume of habitat.

Ash mass is the mass or amount of residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of  $500\,^{\circ}\text{C}$  for 1 hour. The ash mass values of zooplankton and phytoplankton are expressed in grams per cubic meter (g/m³) and periphyton and benthic organisms in grams per square meter (g/m2).

 $\underline{\text{Dry mass}}$  refers to the mass of residue present after drying in an oven at 60 °C for zooplankton and 105 °C for periphyton, until the mass remains unchanged. This mass represents the total organic matter, ash and sediment, in the sample. Dry mass values are expressed in the same units as ash mass.

Organic mass or volatile mass of the living substance is the difference between the dry mass and the ash mass, and represents the actual mass of the living matter. The organic mass is expressed in the same units as for ash mass and dry mass.

Wet mass is the mass of living matter plus contained water.

Bottom material: See Bed material.

Cells/volume refers to the number of cells of any organism which is counted by using a microscope and grid or counting cell. Many planktonic organisms are multicelled and are counted according to the number of contained cells per sample, usually milliliters (mL) or liters (L).

Cfs-day is the volume of water represented by flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, approximately 1.9835 acre-feet, about 646,000 gallons or 2,447 cubic meters.

Chemical oxygen demand (COD) is a measure of the quantity of organic matter which can be chemically oxidized in the presence of a strong oxidant.

Chlorophyll refers to the green pigments of plants. Chlorophyll  $\underline{a}$  and  $\underline{b}$  are the two most common pigments in plants.

Contents is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage.

Continuing record station is a specified site which meets one or all conditions listed:

- 1. When chemical samples are collected daily or monthly for 10 or more months during the water year.
- 2. When water temperature records include observations taken one or more times daily.
- When sediment discharge records include periods for which sediment loads are computed and are considered to be representative of the runoff for the water year.

Control structure as used in this report is a structure on a stream or canal that is used to regulate the flow or stage of the stream or to prevent the intrusion of salt water.

Cubic feet per second per square mile ( $ft^3/s/mi^2$ , CFSM) is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming that the runoff is distributed uniformly in time and area.

 $\frac{\text{Cubic foot per second}}{\text{passing a given point during 1 second and is equivalent to 7.48 gallons per second or 448.8 gallons per minute} or 0.02832 cubic meters per second.}$ 

Discharge is the volume of water (or more broadly, volume of fluid plus suspended sediment), that passes a given point within a given period of time.

Instantaneous discharge is the discharge at a particular instant of time.

Mean discharge (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period.

 $\underline{\text{Dissolved}}$  refers to that material in a representative water sample which passes through a 0.45  $\mu m$  membrane filter. This is a convenient operational definition used by Federal agencies that collect water data. Determinations of "dissolved" constituents are made on subsamples of the filtrate.

Diversity index is a numerical expression of the evenness of distribution of aquatic organisms. The formula for diversity index is:

$$\overline{d} = -\sum_{i=1}^{8} \frac{n_i}{n} \log_2 \frac{n_i}{n}$$

Where n, is the number of individuals per taxon, n is the total number of individuals, and s is the total number of taxa in the sample of the community. Diversity index values range from zero, when all the organisms in the sample are the same, to some positive number, when some or all of the organisms in the sample are different.

Drainage area of a stream at a specified location is that area, measured in a horizontal plane, enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into the stream above the specified point. Figures of drainage area given herein include all closed basins, or noncontributing areas, within the area unless otherwise noted.

Gage height (G.H.) is the water-surface elevation referred to some arbitrary gage datum. Gage height is often used interchangeably with the more general term "stage," although gage height is more appropriate when used with a reading on a gage.

Gaging station is a particular site on a stream, canal, lake, or reservoir where systematic observations of gage height or discharge are obtained. When used in connection with a discharge record, the term is applied only to those gaging stations where a continuous record of discharge is obtained.

Hardness of water is a physical-chemical characteristic that is commonly recognized by the increased quantity of soap required to produce lather. It is attributable to the presence of alkaline earths (principally calcium and magnesium) and is expressed as equivalent calcium carbonate ( $CaCO_3$ ).

High tide is the maximum height reached by each rising tide.

Hydrologic unit is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as delineated by the Office of Water Data Coordination on the State Hydrologic Unit Maps; each hydrologic unit is identified by an 8-digit number.

Land-surface datum is a datum plane that is approximately at the land surface at the well.

Low tide is the minimum height reached by each falling tide.

Mean high or low tide is the average of all high or low tides, respectively, over a specified period.

Metamorphic stage refers to the stage of development that an organism exhibits during its transformation from an immature form to an adult form. This developmental process exists for most insects, and the degree of difference from the immature stage to the adult form varies from relatively slight to pronounced, with many intermediates. Examples of metamorphic stages of insects are egg-larva-adult or egg-nymph-adult.

Methylene blue active substance (MBAS) is a measure of apparent detergents. This determination depends on the formation of a blue color when methylene blue dye reacts with synthetic detergent compounds.

Micrograms per liter (UG/L,  $\mu$ g/L) is a unit expressing the concentration of chemical constituents in solution as weight (micrograms) of solute per unit volume (liter) of water. One thousand micrograms per liter is equivalent to one milligram per liter.

 $\frac{\text{Milligrams per liter (MG/L, mg/L)}}{\text{solution.}} \text{ is a unit for expressing the concentration of chemical constituents in solution.}} \text{ Milligrams per liter represents the weight of solute per unit volume of water.} \text{ Milligrams or micrograms per liter may be converted to milliequivalents (one thousandth of a gram-equivalent weight of a constituent) per liter by multiplying by the factors in Hem (1970).}$ 

National Geodetic Vertical Datum of 1929 (NGVD of 1929). A geodetic datum derived from a general adjustment of the first order level nets of both the United States and Canada, formerly called "Mean Sea Level."

NJ-WRD well number is a hyphenated, 6-digit identification number which the U.S. Geological Survey assigned to all New Jersey wells in the Ground Water Site Inventory (GWSI) data base. This numbering system was developed in 1978 to simplify identification of wells. The first two digits are a code for the county in which the well is located, and the last four digits are a sequence number. Each well added to GWSI is assigned the next higher sequence number for the county in which the well is located. These NJ-WRD well numbers are being used now in the ground-water level descriptions, wells sampled for water-quality analyses, and on the corresponding location maps in these reports.

Organism is any living entity, such as an insect, phytoplankter, or zooplankter.

Organism count/area refers to the number of organisms collected and enumerated in a sample and adjusted to the number per area habitat, usually square meters  $(m^2)$ , acres, or hectares. Periphyton, benthic organisms, and macrophytes are expressed in these terms.

Organism count/volume refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliliters (mL) or liters (L). Numbers of planktonic organisms can be expressed in these terms.

 ${{{\overline{\text{Total organism count}}}}}$  is the total number of organisms collected and enumerated in any particular sample.

Partial-record station is a particular site where limited streamflow data are collected systematically over a period of years for use in hydrologic analyses.

Particle size is the diameter, in millimeters (mm), of suspended sediment or bed material determined either by sieve or sedimentation methods. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube) determine fall diameter of particles in either distilled water (chemically dispersed) or in active water (the river water at the time and point of sampling).

Particle-size classification used in this report agrees with recommendations made by the American Geophysical Union Subcommittee on Sediment Terminology. The classification is as follows:

| Classification                 | Si ze | (mm)                              | Method of analysis                                           |
|--------------------------------|-------|-----------------------------------|--------------------------------------------------------------|
| Clay<br>Silt<br>Sand<br>Gravel | .004  | - 0.004<br>062<br>- 2.0<br>- 64.0 | Sedimentation. Sedimentation. Sedimentation or sieve. Sieve. |

The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. Most of the organic material is removed and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native-water analysis.

Percent composition is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, mass or volume.

Periphyton is the assemblage of microorganisms attached to and growing upon solid surfaces. While primarily consisting of algae, they also include bacteria, fungi, protozoa, rotifers, and other small organisms. Periphyton is a useful indicator of water quality.

Pesticides are chemical compounds used to control the growth of undesirable plants and animals. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides.

Picocurie (PCI, pCi) is one trillionth (1 x  $10^{-12}$ ) of the amount of radioactivity represented by a curie (Ci). A curie is the amount of radioactivity that yields 3.7 x  $10^{10}$  radioactive disintegrations per second. A picocurie yields 2.22 dpm (disintegrations per minute).

 $\frac{Plankton}{of \ lakes}$  is the community of suspended, floating, or weakly swimming organisms that live in the open water  $\frac{Plankton}{of \ lakes}$  and rivers.

<u>Phytoplankton</u> is the plant part of the plankton. They are usually microscopic and their movement is subject to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substances. Because they are able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment, and are commonly known as algae.

Blue-green algae are a group of phytoplankton organisms having a blue pigment, in addition to the green pigment called chlorophyll. Blue-green algae often cause nuisance conditions in water.

 $\underline{\text{Diatoms}}$  are the unicellular or colonial algae having a siliceous shell. Their concentrations are expressed as number of cells per milliliter of sample.

Green algae have chlorophyll pigments similar in color to those of higher green plants. Some forms produce algal mats or floating "moss" in lakes. Their concentrations are expressed as number of cells per milliliter of sample.

Zooplankton is the animal part of the plankton. Zooplankton are capable of extensive movements within the water column, and are often large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, the zooplankton are a vital part of the aquatic food web. The zooplankton community is dominated by small crustaceans and rotifers.

Polychlorinated biphenyls (PCBs) are industrial chemicals that are mixtures of chlorinated biphenyl compounds having various percentages of chlorine. They are similar in structure to organochlorine insecticides.

Primary productivity is a measure of the rate at which new organic matter is formed and accumulated through photosynthetic and chemosynthetic activity of producer organisms (chiefly green plants). The rate of primary production is estimated by measuring the amount of oxygen released (oxygen method) or the amount of carbon assimilated by the plants (carbon method).

Milligrams of carbon per area or volume per unit time [mg  $C/(m^2/time)$  for periphyton and macrophytes and mg  $C/(m^3/time)$  for phytoplankton] are units for expressing primary productivity. They define the amount of carbon dioxide consumed as measured by radioactive carbon (carbon 14). The carbon 14 method is of greater sensitivity than the oxygen light and dark bottle method, and is preferred for use in unenriched waters. Unit time may be either the hour or day, depending on the incubation period.

Milligrams of oxygen per area or volume per unit time [mg  $0_2/(m^2/time)$  for periphyton and macrophytes and mg  $0_2/(m^3/time)$  for phytoplankton] are the units for expressing primary productivity. They define production and respiration rates as estimated from changes in the measured dissolved oxygen concentration. The oxygen light and dark bottle method is preferred if the rate of primary production is sufficient for accurate measurements to be made within 24 hours. Unit time may be either the hour or day, depending on the incubation period.

Radioisotopes are isotope forms of an element that exhibit radioactivity. Isotopes are varieties of a chemical element that differ in atomic weight, but are very nearly alike in chemical properties. The difference arises because the atoms of the isotopic forms of an element differ in the number of neutrons in the nucleus. For example: ordinary chlorine is a mixture of isotopes having atomic weights 35 and 37, with the natural mixture having an atomic weight of 35.453.

Radioisotopes that are determined in this report are natural uranium in  $\mu g/L$  (micrograms per liter), radium as radium-226 in PCI/L, (pCi/L, picocuries per liter), gross beta in PCI/L, and gross alpha radiation as micrograms of uranium equivalent per liter ( $\mu g/L$ ). Gross alpha and beta radioactivity associated with the fine grained (silt and clay sized) sediments in the samples are also determined.

Recoverable from bottom material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of only readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

River mile as used herein, is the distance above the mouth of Delaware Bay, measured along the center line of the navigation channel or the main stem of the Delaware River. River mile data were furnished by the Delaware River Basin Commission.

Runoff in inches (IN, in) shows the depth to which the drainage area would be covered if all the runoff for a  $\overline{\text{given time period}}$  were uniformly distributed on it.

Screened interval (FT) is the length of well screen through which water enters a well, in feet below land surface.

Sediment is solid material that originates mostly from disintegrated rocks and is transported by, suspended in, or deposited from water; it includes chemical and biochemical precipitates and decomposed organic material such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are influenced by environmental factors. Some major factors are degree of slope, length of slope, soil characteristics, land usage, and quantity and intensity of precipitation.

Suspended sediment is the sediment that at any given time is maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid.

Suspended-sediment concentration is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 ft above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L).

Suspended-sediment discharge (tons) is the rate at which dry weight of sediment passes a section of a stream or is the quantity of sediment, as measured by dry weight, or by volume, that is discharged in a given time. It is computed by multiplying discharge times mg/L times 0.0027.

Suspended-sediment load is quantity of suspended sediment passing a section in a specified period.

Total sediment discharge (tons/day) is the sum of the suspended-sediment discharge and the bed-load discharge. It is the total quantity of sediment, as measured by dry weight or volume, that passes a section during a given time.

Solute is any substance derived from the atmosphere, vegetation, soil, or rocks that is dissolved in water.

Specific conductance is a measure of the ability of a water to conduct an electrical current and is expressed in micromhos per centimeter at 25°C. Because the specific conductance is related to the number and specific chemical types of ions in solution, it can be used for approximating the dissolved-solids content of the water. Commonly, the amount of dissolved solids (in milligrams per liter) is about 65 percent of the specific conductance (in micromhos per cm at 25°C). This relation is not constant from stream to stream or from well to well, and it may even vary in the same source with changes in the composition of the water.

Stage-discharge relation is the relation between gage height and the amount of water flowing in a channel, expressed as volume per unit of time.

Streamflow is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff." Streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

Substrate is the physcial surface upon which an organism lived.

Artificial substrate is a device which is purposely placed in a stream or lake for colonization by organisms. The artificial substrate simplifies the community structure by standardizing the substrate from which each sample is taken. Examples of artificial substrates are basket samplers (made of wire cages filled with clean streamside rocks) and multi-plate samplers (made of hardboard) for benthic organism collection, and plexiglass strips for periphyton collection.

 $\frac{\text{Natural substrate refers to any naturally occurring emersed or submersed solid surface, such as a rock or tree, upon which an organism lived.}$ 

Surface area of a lake is that area outlined on the latest U.S.G.S. topographic map as the boundary of the lake and measured by a planimeter in acres. In localities not covered by topographic maps, the areas are computed from the best maps available at the time planimetered. All areas shown are those for the stage when the planimetered map was made.

Surficial bed material is that part (0.1 to 0.2 ft) of the bed material that is sampled using U.S. Series Bed-Material Samplers.

Suspended, recoverable is the amount of a given constituent that is in solution after the part of a representative water-suspended sediment sample that is retained on a 0.45  $\mu m$  membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Determinations of "suspended, recoverable" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1)  $\underline{\text{dissolved}}$  and (2)  $\underline{\text{total}}$  recoverable concentrations of the constituent.

Suspended, total is the total amount of a given constituent in the part of a representative water-suspended sediment sample that is retained on a 0.45 µm membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total."

Determinations of "suspended, total" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1)  $\underline{\text{dissolved}}$  and (2)  $\underline{\text{total}}$  concentrations of the constituent.

Taxonomy is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchical scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common. For example, the taxonomy of a particular mayfly, <a href="Hexagenia limbata">Hexagenia limbata</a> is the following:

 Kingdom
 ...Animal

 Phylum
 ...Arthropoda

 Class
 ...Insecta

 Order
 ...Ephemeroptera

 Family
 ...Ephemeridae

 Genus
 ...Hexageria

 Species
 ...Hexageria

Thermograph is a thermometer that continuously and automatically records, on a chart, the water temperatures of a stream. "Temperature recorder" is the term used to indicate the location of the thermograph or a digital mechanism that automatically records water temperature on paper tape.

Time-weighted average is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water that would be contained in a vessel or reservoir that had received equal quantities of water from the stream each day for the year.

Tons per acre-foot indicates the dry mass of dissolved solids in 1 acre-foot of water. It is computed by multiplying the concentration in milligrams per liter by 0.00136.

 $\underline{\text{Tons per day}}$  is the quantity of a substance in solution or suspension that passes a stream section during a 24-hour day.

Total is the total amount of a given constituent in a representative water-suspended sediment sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total" (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determines all of the constituent in the sample).

Total in bottom material the total amount of a given constituent in a representative sample of bottom material. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total in bottom material."

Total load (tons) is the total quantity of any individual constituent, as measured by dry mass or volume, that is being transported in a specific amount of water (discharge) during a given time. It is computed by multiplying the total discharge, times the mg/L of the constituent, times the factor 0.0027, times the number of days.

Total, recoverable is the amount of a given constituent that is in solution after a representative water-suspended sediment sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

 $\underline{\text{WDR}}$  is used as an abbreviation for "Water-Data Report" in the summary REVISIONS paragraph to refer to previously published State annual basic-data reports. Prior to 1975, WRD was used, which was the abbreviation for "Water-Resources Data."

Weighted average is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir.

WSP is used as an abbreviation for "Water-Supply Paper" in reference to previously published reports.

# DOWNSTREAM ORDER AND STATION NUMBER

Since October 1, 1950, the order of listing hydrologic-station records in Survey reports is in a downstream direction along the main stream. All stations on a tributary entering upstream from a main-stream

station are listed before that station. A station on a tributary that enters between two main-stream stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary on which a station is situated with respect to the stream to which it is immediately tributary is indicated by an indention in a list of stations in front of the report. Each indention represents one rank. This downstream order and system of indention show which stations are on tributaries between any two stations and the rank of the tributary on which each station is situated.

As an added means of identification, each hydrologic station and partial-record station has been assigned a station number. These are in the same downstream order used in this report. In assigning station numbers, no distinction is made between partial-record stations and other stations; therefore, the station number for a partial-record station indicates downstream-order position in a list made up of both types of stations. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The complete 8-digit number for each station such as 01463500, which appears just to the left of the station name, includes the 2-digit part number "01" plus the 6-digit downstream order number "463500."

#### NUMBERING SYSTEM FOR WELLS AND MISGELLANEOUS SITES

The 8-digit downstream order station numbers are not assigned to wells and miscellaneous sites where only random water-quality samples or discharge measurements are taken.

The wells and miscellaneous site numbering system of the U.S. Geological Survey is based on the grid system of latitude and longitude. The system provides the geographic location of the well or miscellaneous site and a unique number for each site. The number consists of 15 digits. The first 6 digits denote the degrees, minutes, and seconds of latitude, the next 7 digits denote degrees, minutes, and seconds of longitude, and the last 2 digits are a sequential number for wells within a 1-second grid. In the event that the latitude-longitude coordinates for a well and a miscellaneous site are the same, they are assigned sequential numbers "01", "02", etc. as one would for wells. See figure 1 below.

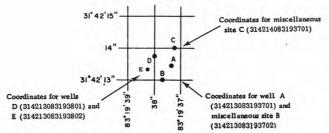



Figure 1. System for numbering wells and miscellaneous sites (latitude and longitude)

# SPECIAL NETWORKS AND PROGRAMS

Some of the stations for which data are published in this report are included in special networks and programs. These stations are identified by their title, set in parentheses, under the station name.

Hydrologic bench-mark station is one that provides hydrologic data for a basin in which the hydrologic regimen will likely be governed solely by natural conditions. Data collected at a bench-mark station may be used to separate effects of natural from manmade changes in other basins which have been developed and in which the physiography, climate, and geology are similar to those in the undeveloped bench-mark basin.

National stream-quality accounting network (NASQAN) is a data collection network designed by the U.S. Geological Survey to meet many of the information demands of agencies or groups involved in national or regional water-quality planning and management. Both accounting and broad-scale monitoring objectives have been incorporated into the network design. Areal configuration of the network is based on river-basin accounting units (identified by 8-digit hydrologic-unit numbers) designated by the Office of Water Data Coordination in consultation with the Water Resources Council. Primary objectives of the network are (1) to depict areal variability of streamflow and water-quality conditions nationwide on a year-by-year basis and (2) to detect and assess long-term changes in streamflow and stream quality.

<u>Pesticide program</u> is a network of regularly sampled water-quality stations where samples are collected to determine the concentration and distribution of pesticides in stream where potential contamination could result from the application of the commonly used insecticides and herbicides. Operation of the network is a Federal interagency activity.

 $\frac{\text{Radiochemical program}}{\text{Radiochemical program}} \text{ is a network of regularly sampled water-quality stations where samples are collected to be analyzed for radioisotopes.} \text{ The streams that are sampled represent major drainage basins in the conterminous United States.}$ 

### EXPLANATION OF STAGE AND WATER-DISCHARGE RECORDS

# Collection and computation of data

The base data collected at gaging stations consist of records of stage and measurements of discharge of

streams or canals, and stage, surface area, and contents of lakes or reservoirs. In addition, observations of factors affecting the stage-discharge relation or the stage-capacity relation, weather records, and other information are used to supplement base data in determining the daily flow or volume of water in storage. Records of stage are obtained from either direct readings on a nonrecording gage or from a water-stage recorder that gives either a continuous graph of the fluctuations or a tape punched at selected time intervals. Measurements of discharge are made with a current meter, using the general methods adopted by the Geological Survey. These methods are decribed in standard text-books, in Water-Supply Paper 888, and in U.S. Geological Survey Techniques of Water Resources Investigations, book 3, chapter A6.

For stream-gaging stations, rating tables giving the discharge for any stage are prepared from stage-discharge relation curves. If extensions to the rating curves are necessary to express discharge greater than measured, they are made on the basis of indirect measurements of peak discharge (such as slope-area or contracted-opening measurements, computation of flow over dams or weirs), step-backwater techniques, velocity-area studies, and logarithmic plotting. The daily mean discharge is computed from gage heights and rating tables, then the monthly and yearly mean discharge are computed from the daily figures. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the daily mean discharge is computed by the shifting-control method, in which correction factors based on individual discharge measurements and notes by engineers and observers are used in applying the gage heights to the rating tables. If the stage-discharge relation for a station is temporarily changed by the presence of aquatic growth or debris on the control, the daily mean discharge is computed by what is basically the shifting-control method.

At some stream-gaging stations the stage-discharge relation is affected by backwater from reservoirs, tributary streams, or other sources. This necessitates the use of the slope method in which the slope or fall in a reach of the stream is a factor in determining discharge. The slope or fall is obtained by means of an auxiliary gage set at some distance from the base gage. At some stations the stage-discharge relation is affected by changing stage; at these stations the rate of change in stage is used as a factor in determining discharge.

At some northern stream-gaging stations the stage-discharge relation is affected by ice in the winter, and it becomes impossible to compute the discharge in the usual manner. Discharge for periods of ice effect is computed on the basis of the gage-height record and occasional winter discharge measurements, consideration being given to the available information on temperature and precipitation, notes by gage observers and hydrologists, and comparable records of discharge for other stations in the same or nearby basins.

For a lake or reservoir station, capacity tables giving the contents for any stage are prepared from stage-area relation curves defined by surveys. The application of the stage to the capacity table gives the contents, from which the daily, monthly, or yearly change in contents is computed. Discharge over spillways is computed from a stage-discharge relation curve defined by discharge measurements.

If the stage-capacity curve is subject to changes because of deposition of sediment in the reservoir, periodic resurveys of the reservoir are necessary to define new stage-capacity curves. During the period between reservoir surveys the computed contents may be increasingly in error due to the gradual accumulation of sediment.

For some gaging stations there are periods when no gage-height record is obtained or the recorded gage height is so faulty that it cannot be used to compute daily discharge or contents. This happens when the recorder stops or otherwise fails to operate properly, intakes are plugged, the float is frozen in the well, or for various other reasons. For such periods the daily discharge are estimated on the basis of recorded range in stage, adjoining good record, discharge measurements, weather records, and comparison with other station records from the same or nearby basins. Likewise daily contents may be estimated on the basis of operator's log, prior and subsequent records, inflow-outflow studies, and other information.

The data in this report generally comprise a description of the station and tabulations of daily and monthly figures. For gaging stations on streams or canals a table showing the daily discharge and monthly and yearly discharge is given. For gaging stations on lakes and reservoirs a monthly summary table of stage and contents or a table showing the daily contents is given. Tables of daily mean gage height are included for some streamflow stations and for some reservoir stations. Records are published for the water year, which begins on October 1 and ends on September 30.

The description of the gaging station gives the location, drainage area, period of record, notations of revisions of previously published records, type and history of gages, general remarks, average discharge, and extremes of discharge or contents. The location for the gaging station and the drainage area are obtained from the most accurate maps available. River mileage, given under "LOCATION" for some stations, is that determined and used by the Corps of Engineers or other agencies. Periods for which there are published records for the present stations or for stations generally equivalent to the present one are given under "PERIOD OF RECORD."

Previously published streamflow records of some stations have been found to be in error on the basis of data or information later obtained. Revisions of such records are usually published along with the current records in one of the annual or compilation reports. In order to make it easier to find such revised records, a paragraph headed "REVISED RECORDS" has been added to the description of all stations for which revised records have been published. Listed therein are all the reports in which revisions have been published, each followed by the water years for which figures are revised in that report. In listing the water years only one number is given; for instance, 1965 stands for the water year October 1, 1964, to September 30, 1965. If no daily, monthly, or annual figures of discharge are affected by the revision, the fact is brought out by notations after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; "(m)" that only the instantaneous minimum was revised; and "(P)" that only peak discharges were revised. If the drainage area has been revised, the report in which the revised figure was first published is given. It should be noted that for all stations for which cubic feet per square mile and runoff in inches are published, a revision of the drainage area necessitates corresponding revision of all figures based on the drainage area. Revised figures of cubic feet per second per square mile and runoff in inches resulting from a revision of the drainage area only are usually not published in the annual series of reports.

The type of gage currently in use; the datum of the present gage referred to National Geodetic Vertical Datum; and a condensed history of the types, locations, and datums of previous gages used during the period of record are given under "GAGE." National Geodetic Vertical Datum is explained in "DEFINITION OF TERMS."

Information pertaining to the accuracy of the discharge records and to conditions which affect the natural flow of the gaging station is given under "REMARKS."

The average discharge for the number of years indicated is given under "AVERAGE DISCHARGE"; it is not given for stations having fewer than 5 complete years of record or for stations where changes in water development during the period of record cause the figure to have little significance. In addition, the median of yearly mean discharges is given for stream-gaging stations having 10 or more complete years of record if the median differs from the average by more than 10 percent. Under "EXTREMES" are given first the extremes for current year, second, the extremes for the period of record, and last information available outside the period of record. Unless otherwise qualified, the maximum discharge (or contents) is the instantaneous maximum corresponding to the crest-stage obtained by use of a water-stage recorder (graphic or digital), a crest-stage gage, or a nonrecording gage read at the time of the crest. If the maximum gage height did not occur on the same day as the maximum discharge (or contents), it is given separately. Similarly, the minimum is the instantaneous minimum unless otherwise qualified. For some stations peak discharges are listed with EXTREMES FOR THE CURRENT YEAR; if they are, all independent peaks, including the maximum for the year, above the selected base with the time of occurrence and corresponding gage heights are published in tabular format. The base discharge, which is given in the table heading, is selected so that an average of about three peaks a year will be presented. Peak discharges are not published for any canals, ditches, drains, or for any stream for which the peaks are subject to substantial control by man. Time of day is expressed in 24-hour local standard time; for example, 12:30 a.m. is 0030, 1:30 p.m. is 1330. The minimums for these stations are published in a separate paragraph following the table of peaks.

Skeleton rating tables are published, immediately following EXTREMES, for stream-gaging stations where they serve a useful purpose and the dates of applicability can be easily identified.

The daily table for stream-gaging stations gives the mean discharge for each day and is followed by monthly and yearly summaries. In the monthly summary below the daily table, the line headed "TOTAL" gives the sum of the daily figures. The lines headed "MAX" and "MIN" give the maximum and minimum daily discharges, respectively, for the month. Discharge for the month also may be expressed in cubic feet per second per square mile (line headed "CFSM"), or in inches (line headed "IN"). Figures for cubic feet per second per square mile and runoff in inches are omitted if there is extensive regulation or diversion, if the drainage area includes large noncontributing areas, or if the average annual rainfall over the drainage basin is usually less than 20 inches. In the yearly summary below the monthly summary, the figures shown are the appropriate daily discharges for the calendar and water years.

Footnotes to the table of daily discharge are introduced by word "NOTE." Footnotes are used to indicate periods for which the discharge is computed or estimated by special methods because of no gage-height record, backwater from various sources, or other unusual conditions. Periods of no gage-height record are indicated if the period is continuous for a month or more or includes the maximum discharge for the year. Periods of backwater from an unusual source, of indefinite stage-relation, or of any other unusual condition at the gage site are indicated only if they are a month or more in length and the accuracy of the records is affected. Days on which the stage-discharge relation is affected by ice are not indicated. The methods used in computing discharge for various unusual conditions have been explained in preceding paragraphs.

For most gaging stations on lakes and reservoirs the data presented comprise a description of the station and a monthly summary table of stage and contents. For some reservoirs a table showing daily contents or stage is given. A skeleton table of capacity at given stages is published for all reservoirs for which records are published on a daily basis, but is not published for reservoirs for which only monthly data are given.

Data collected at partial-record stations follow the information for continuous record sites. Data for partial-record discharge stations are presented in two tables. The first is a table of discharge measurements at low-flow partial-record stations, and the second is a table of annual maximum stage and discharge at crest-stage stations. The tables of partial-record stations are followed by a listing of discharge measurements made at sites other than continuous-record or partial-record stations. Occasionally, a series of discharge measurements are made within a short time period to investigate the seepage gains or losses along a reach of a stream or to determine the low-flow characteristics of an area. Such measurements are also given in special tables following the tables of partial-record stations.

#### Accuracy of field data and computed results

The accuracy of streamflow data depends primarily on (1) the stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements, and (2) the accuracy of observations of stage, measurements of discharge, and interpretation of records.

The station description under "REMARKS" states the degree of accuracy of the records. "Excellent" means that about 95 percent of the daily discharges are within 5 percent; "good" within 10 percent; and "fair" within 15 percent. "Poor" means that daily discharges have less than "fair" accuracy.

Figures of daily mean discharge in this report are shown to the nearest hundredth of a cubic foot per second for discharges of less than 1 cfs; to tenths between 1.0 and 10 cfs; to whole numbers between 10 and 1,000 cfs; and to 3 significant figures above 1,000 cfs. The number of significant figures used is based solely on the magnitude of the figure. The same rounding rules apply to discharge figures listed for partial-record stations and miscellaneous sites.

Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. For such stations, figures of cubic feet per second per square mile and of runoff in inches are not published unless satisfactory adjustments can be made for diversions, for changes in contents of reservoirs, or for other changes incident to use and control. Evaporation from a

reservoir is not included in the adjustments for changes in reservoir contents, unless it is so stated. Even at those stations where adjustments are made, large errors in computed runoff may occur if adjustments or losses are large in comparison with the observed discharge.

#### Publications

Each volume of the 1960 series of U.S. Geological Survey water-supply papers entitled "Surface Water Supply of the United States" contains a listing of the numbers of all water-supply papers in which records of surface-water data were published for the area covered by the individual volumes. Each volume also contains a list of water-supply papers that give detailed information on major floods for the area. A new series of water-supply papers containing surface-water record for the 5-year period October 1, 1965 to September 30, 1970, also will include lists of annual and special reports published as water-supply papers.

Records through September 1950 for the area covered by this report have been compiled and published in Water-Supply Paper 1302; records for October 1950 to September 1960 have been compiled and published in Water-Supply Paper 1722; records for October 1960 to September 1965 have been compiled and published in Water-Supply Paper 1902; records for October 1965 to September 1970 have been compiled and published in Water-Supply Paper 2102. These reports contain summaries of monthly and annual discharge and month-end storage for all previously published records, as well as some records not contained in the annual series of water-supply papers. All records were reexamined and revised where warranted. Estimates of discharge were made to fill short gaps whenever practical. The yearly summary table for each gaging station lists the numbers of the water-supply papers in which daily records were published for that station.

Special reports on major floods or droughts or of other hydrologic studies for the area have been issued in publications other than water-supply papers. Information relative to these reports may be obtained from the district office.

#### Other data available

Information of a more detailed nature than that published for most of the gaging stations such as observations of water temperatures, discharge measurements, gage-height records, and rating tables is on file in the district office. Also most gaging-station records are available in computer-usable form and many statistical analyses have been made.

Information on the availability of unpublished data or statistical analyses may be obtained from the district office.

# Records of stage or discharge collected by agencies other than the Geological Survey

Records of stage or discharge not published by the Geological Survey were collected in New Jersey at 30 sites during the water years October 1960 to current year by the following agencies: records at 4 sites were collected by the North Jersey District Water Supply Commission; at 14 sites by Passaic County; at 1 site by the National Weather Service; at 3 sites by the National Ocean Survey; at 3 sites by the Corps of Engineers; and 5 sites by Delaware River Joint Toll Bridge Commission. The National Water Data Exchange, Water Resources Division, U.S. Geological Survey, National Center, Reston, VA 22092, maintain an index of such sites. Information on records available at specific sites can be obtained upon request.

#### EXPLANATION OF WATER-QUALITY RECORDS

#### Collection and examination of data

Water samples for analyses usually are collected at or near gaging stations. The discharge records at these stations are used in conjunction with the computations of the chemical constituents and sediment loads.

The data in this report include a description of the sampling station and tabulations of the samples analyzed. The description of the sampling station gives the location, drainage area, periods of record for the water-quality data, extremes of the pertinent data, and general remarks. For ground-water sampling stations, no descriptive statements are presented. However, the well number, date of sampling, and other pertinent data are given in the table containing the chemical analyses of ground water.

Water-quality information is presented for chemical, biological, and microbiological quality, water temperature, and fluvial sediment. Chemical quality includes the concentrations of individual constituents and certain properties such as hardness, specific conductance, and pH. The biological information may include qualitative and quantitative analyses of plankton, bottom organisms, and particulate inorganic and amorphous matter present. Microbiological information includes quantitative identifications of certain bacteriological indicator organisms. Water-temperature data represent once-daily observations except for stations where a water-quality noncontinuous-digital monitor furnishes hourly temperature readings that provide daily maximum, minimum, and mean temperature data summaries. Fluvial-sediment information is given for suspended-sediment discharges and concentrations and for particle-size distribution of suspended sediment.

Prior to the 1968 water year, data for chemical constituents and concentrations of suspended sediment were reported in parts per million (ppm) and water temperatures were reported in degrees Fahrenheit (°F). In October 1967, the U.S. Geological Survey began reporting data for chemical constituents and concentrations of suspended sediment in milligrams per liter (mg/L) and water temperatures in degrees Celsius (°C). In waters with a density of 1.000 g/ml (grams per milliliter), parts per million and milligrams per liter can be considered equal. In waters with a density greater than 1.000 g/ml, values in parts per million should be multiplied by the density to convert to milligrams per liter. Temperatures reported in degrees Celsius may be converted to degrees Fahrenheit by using Table 1 below.

Table 1.--Degrees Celsius (°C) to degrees Fahrenheit (°F)\* (Temperature reported to nearest 0.5°C)

| c   | °F | °C   | °F | °C   | °F | °C   | °F  | °C   | °F  |
|-----|----|------|----|------|----|------|-----|------|-----|
| 0.0 | 32 | 10.0 | 50 | 20.0 | 68 | 30.0 | 86  | 40.0 | 104 |
| 0.5 | 33 | 10.5 | 51 | 20.5 | 69 | 30.5 | 87  | 40.5 | 105 |
| 1.0 | 34 | 11.0 | 52 | 21.0 | 70 | 31.0 | 88  | 41.0 | 106 |
| 1.5 | 35 | 11.5 | 53 | 21.5 | 71 | 31.5 | 89  | 41.5 | 107 |
| 2.0 | 36 | 12.0 | 54 | 22.0 | 72 | 32.0 | 90  | 42.0 | 108 |
| 2.5 | 36 | 12.5 | 54 | 22.5 | 72 | 32.5 | 90  | 42.5 | 108 |
| 3.0 | 37 | 13.0 | 55 | 23.0 | 73 | 33.0 | 91  | 43.0 | 109 |
| 3.5 | 38 | 13.5 | 56 | 23.5 | 74 | 33.5 | 92  | 43.5 | 110 |
| 4.0 | 39 | 14.0 | 57 | 24.0 | 75 | 34.0 | 93  | 44.0 | 111 |
| 4.5 | 40 | 14.5 | 58 | 24.5 | 76 | 34.5 | 94  | 44.5 | 112 |
| 5.0 | 41 | 15.0 | 59 | 25.0 | 77 | 35.0 | 95  | 45.0 | 113 |
| 5.5 | 42 | 15.5 | 60 | 25.5 | 78 | 35.5 | 96  | 45.5 | 114 |
| 6.0 | 43 | 16.0 | 61 | 26.0 | 79 | 36.0 | 97  | 46.0 | 115 |
| 6.5 | 44 | 16.5 | 62 | 26.5 | 80 | 36.5 | 98  | 46.5 | 116 |
| 7.0 | 45 | 17.0 | 63 | 27.0 | 81 | 37.0 | 99  | 47.0 | 117 |
| 7.5 | 45 | 17.5 | 63 | 27.5 | 81 | 37.5 | 99  | 47.5 | 117 |
| 8.0 | 46 | 18.0 | 64 | 28.0 | 82 | 38.0 | 100 | 48.0 | 118 |
| 8.5 | 47 | 18.5 | 65 | 28.5 | 83 | 38.5 | 101 | 48.5 | 119 |
| 9.0 | 48 | 19.0 | 66 | 29.0 | 84 | 39.0 | 102 | 49.0 | 120 |
| 9.5 | 49 | 19.5 | 67 | 29.5 | 85 | 39.5 | 103 | 49.5 | 121 |

\*C = 5/9 (°F - 32) or °F = 9/5 (°C) + 32.

In October 1968, the Geological Survey began reporting many of the chemical constituents as well as the minor elements in micrograms per liter instead of milligrams per liter. (See "Definitions of Terms," and table for converting Inch-pound Units to International System Units, inside back cover).

Most methods for collecting and analyzing water samples to determine the kinds and concentrations of solutes are described in the U.S. Geological Survey Techniques of Water-Resources Investigations listed at the end of this section. Analysis of pesticides, herbicides, and organic substances in water are described by Goerlitz and Brown. The collection and analysis of aquatic, biological and microbiological samples are described by Greeson and others.

One sample can define adequately the water quality at a given time if the mixture of solutes throughout the stream cross section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled through many vertical sections to obtain a representative sample needed for an accurate mean concentration and for use in calculating load.

Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis.

For chemical-quality stations equipped with noncontinuous-digital monitors, the records consist of daily maximum, minimum, and mean values for each constituent measured and are based upon hourly punches beginning at 0100 hours and ending at 2400 hours for the day of record. More detailed records (hourly values) may be obtained from the U.S. Geological Survey district office (for address see Page IV).

The quality of ground water normally does not change significantly during short periods of time; infrequent sampling and analysis of ground water adequately defines ground-water quality at a given site. Water samples from wells are collected after prepumping the well and are analyzed individually.

# Water temperature

Water temperatures are measured at most of the water-quality stations. In addition, water temperatures are taken at time of discharge measurements for surface-water stations. For daily stations, the water temperatures are taken at about the same time each day. Large streams have a small diurnal temperature change; shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams may be affected by waste-heat discharges. Influential factors, field measurement, and data representation of temperature are described by Stevens, Ficke and Smoot (1975).

#### Sediment

Suspended-sediment concentrations are determined from samples collected by using depth-integrating samplers. Samples usually are obtained at several verticals in the cross-section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross section.

During periods of rapidly changing flow or rapidly changing concentration, samples may have been collected more frequently (twice daily or, in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided-day method (time-discharge weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided-day method. For periods when no samples were concentration, samples may have been collected more frequently (twice daily or, in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided-day method (time-discharge weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided-day method. For periods when no samples were collected, daily loads of suspended sediment were estimated on

the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspended-sediment loads for other periods of similar discharge.

At other stations, suspended-sediment samples were collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observations, such data are useful in establishing seasonal relations between quality and streamflow in predicting long-term sediment-discharge characteristics of the stream.

In addition to the records of the quantities of suspended sediment, records of the periodic measurements of the particle-size distribution of the suspended sediment are included.

#### Remark codes for water-quality data

| PRINTE! | D<br>R EMAR K                                                                       | PRINTED OUTPUT | REMARK                                                      |
|---------|-------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------|
| E       | ESTIMATED VALUE                                                                     | <              | ACTUAL VALUE IS KNOWN TO<br>BE LESS THAN THE VALUE<br>SHOWN |
| >       | ACTUAL VALUE IS KNOWN TO BE GREATER THAN THE VALUE SHOWN                            | ND             | MATERIAL SPECIFICALLY<br>ANALYZED FOR BUT NOT<br>DETECTED   |
| K       | RESULTS BASED ON COLONY COUNT OUTSIDE THE ACCEPTABLE RANGE (NON-IDEAL COLONY COUNT) |                |                                                             |

#### Publications

Table 2 below, shows the annual series of water-supply papers that give information on quality of surface waters in New Jersey.

Table 2.--Water-supply paper (WSP) numbers, water years, 1945-70

| Year | WSP  | Year | WSP  | Year  | WSP  |
|------|------|------|------|-------|------|
| 1945 | 1030 | 1954 | 1350 | 1963  | 1947 |
| 1946 | 1050 | 1955 | 1400 | 1964  | 1954 |
| 1947 | 1102 | 1956 | 1450 | 1965  | 1961 |
| 1948 | 1132 | 1957 | 1520 | 1966  | 1991 |
| 1949 | 1162 | 1958 | 1571 | 1967  | 2011 |
| 1950 | 1186 | 1959 | 1641 | 1968  | 2091 |
| 1951 | 1197 | 1960 | 1741 | 1969. | 2141 |
| 1952 | 1250 | 1961 | 1881 | 1970  | 2151 |
| 1953 | 1290 | 1962 | 1941 |       |      |

#### EXPLANATION OF GROUND-WATER LEVEL RECORDS

# Collection of the data

Only ground-water level data from a basic network of observation wells are published herein. This basic network contains observation wells so located that the most significant data are obtained from the fewest wells in the most important aquifers.

Each well is identified by means of (1) a 15-digit number that is based on latitude and longitude (see figure 1) and (2) a local name and a NJ-WRD well number that are provided for local needs.

Water-level measurements in this report are given in feet with reference to land-surface datum (LSD, lsd). Land-surface datum is a datum plane that is approximately at land surface at each well. The altitude of the land-surface datum above NGVD 1929, and the height of the measuring point (MP) above or below land-surface datum is given in each well description.

Measurements are made in many types of wells, under varying conditions of access and at different temperatures, hence, neither the method of measurement nor the equipment can be standardized. At each observation well, however, the equipment and techniques used are those that will ensure that measurements at each well are consistent.

Water-level data in these reports were obtained from water-level recorders, water-level extremes recorders, and from periodic manual measurements. The equipment used at each well is described in the well description under the listing "Instrumentation." Water levels in wells equipped with water-level recorders are reported for every fifth day and the end of each month (eom). Beginning in the 1977 water year, water-level recorders were removed from some wells and replaced by water-level extremes recorders. The extremes are read from these recorders at about three month intervals, but the actual dates of occurrence of the extremes (highest and lowest water levels) are unknown. In these reports the water-level extremes are given with the interim dates together with the manually measured water levels.

Water levels are reported to as many significant figures as can be justified by the local conditions. For example, in a measurement of a depth to water of several hundred feet, the error in determining the absolute value of the total depth to water may be a few tenths of a foot, wheareas the error in determining

the net change of water level between successive measurements may be only a hundredth or a few hundredths of a foot. For lesser depths to water the accuracy is greater. All measurements published herein are reported to a hundredth of a foot.

#### Publications

Table 3 below, shows the series of water-supply papers that give ground-water level data for New Jersey, 1935 to 1974. No water-level data were published in 1975. Beginning in 1976, ground-water level data for New Jersey have been published in these annual water data reports.

Table 3.--Water-supply paper (WSP) numbers, water years, 1935-74

| Year | WSP | Year | WSP  | Year    | WSP  |
|------|-----|------|------|---------|------|
| 1935 | 777 | 1944 | 1016 | 1953    | 1265 |
| 1936 | 817 | 1945 | 1023 | 1954    | 1321 |
| 1937 | 840 | 1946 | 1071 | 1955    | 1404 |
| 1938 | 845 | 1947 | 1096 | 1956-57 | 1537 |
| 1939 | 886 | 1948 | 1126 | 1958-62 | 1782 |
| 1940 | 906 | 1949 | 1156 | 1963-67 | 1977 |
| 1941 | 936 | 1950 | 1165 | 1968-72 | 2140 |
| 1942 | 944 | 1951 | 1191 | 1973-74 | 2164 |
| 1943 | 986 | 1952 | 1221 |         |      |

#### ACCESS TO WATSTORE DATA

The National WATer Data STOrage and REtrieval System (WATSTORE) was established for handling water data collected through the activities of the U.S. Geological Survey and to provide for more effective and efficient means of releasing the data to the public. The system is operated and maintained on the central computer facilities of the Survey at its National Center in Reston, Virginia.

WATSTORE can provide a variety a variety of useful products ranging from simple data tables to complex statistical analyses. A minimal fee, plus the actual computer cost incurred in producting a desired product, is charged to the requester. Information about the availability of specific types of data, the acquisition of data or products, and user charges can be obtained locally from each of the Water Resources Division's district offices (see address given on the back of the title page).

General inquiries about WATSTORE may be directed to:

Chief Hydrologist U.S. Geological Survey 437 National Center Reston, Virginia 22092

## SELECTED REFERENCES

Anderson, P. W., 1970, Occurrence and distribution of trace elements in New Jersey streams; New Jersey Division of Water Policy and Supply, Water Resources Circular 24, 24 p.

Anderson, P.W., and Faust, S. D., 1973 Characteristics of water quality and streamflow, Passaic River basin above Little Falls, New Jersey: U.S. Geological Survey Water-Supply Paper 2026, 80 p.

 $\underline{1974}$  , Water-quality and streamflow characteristics, Raritan River basin, New Jersey: U.S. Geological Survey Water Resources Investigations 14-74, 82 p.

Anderson, P. W., and George, J. R., 1966, Water-quality characteristics of New Jersey streams: U.S. Geological Survey Water-Supply Paper 1819-G, 48 p.

Barnett, P. R., and Mallory, Jr., E. C., 1971, Determination of minor elements in water by emission spectroscopy: U.S. Geological Survey Techniques of Water-Resources Investigations, book 5, Chapter A2, 31 p.

Carter, R. W., and Davidian, Jacob, 1968, General procedure for gaging streams: U.S. Geological Survey Techniques Water-Resources Investigations, Book 3, Chapter A6, 13 p.

Corbett, D. M., and others, 1943, Stream-gaging procedure, a manual describing methods and practices of the Geological Survey: U.S. Geological Survey Water-Supply Paper 888, 245 p.

Fusillo, T. V., 1982, Impact of suburban suburban residential development on water resources in the area of Winslow Township, Camden County, New Jersey: U.S. Geological Survey Water-Resources Investigations 81-27, 38 p.

Fusillo, T. V., and Voronin, L. M., 1982, Water-quality data for the Potomac-Raritan-Magothy aquifer system, Trenton to Pennsville, New Jersey, 1980: U.S. Geological Survey Open-File Report 81-814, 38 p. 2 pls.

Fusillo, T. V., Schornick, J. C., Jr., Koester, H. E., and Harriman, D. A., 1980, Investigation of acidity and other water-quality characteristics of Upper Oyster Creek Ocean County, New Jersey: U.S. Geological Survey Water-Resources Investigations 80-10, 30 p.

Gillespie, B. D., and Schopp, R. D., 1982, Low-flow characteristics and flow duration of New Jersey streams: U.S. Geological Survey Open-File Report 81-1110, 164 p.

Goerlitz, D. F., and Brown, Eugene, 1972, Methods for analysis of organic substances in water: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Chapter A3, 40 p.

Greeson, P. E., Ehlke, T. A., Irwin, G. A., Lium, B. W., and Slack, K. V., 1977, Methods for collection and analysis of aquatic biological and microbiological samples: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Chapter A4, 332 p.

Guy, H. P., 1969, Laboratory theory and methods for sediment analysis: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Chapter C1, 58 p.

1970, Fluvial sediment concepts: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter C1, 55 p.

Guy, H. P., and Norman, V. W., 1970, Field methods for measurement of fluvial sediment: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter C2, 59 p.

Harriman, D. A., and Velnich, A. J., 1982, Flood data in West Windsor Township, Mercer County, New Jersey through 1982 Water Year: U.S. Geological Survey Open-File Report.

Hem, J. D., 1970, Study and interpretation of the chemical characteristics of natural water, 2d ed.: U.S. Geological Survey Water-Supply Paper 1473, 363 p.

Hochreiter, J. J., Jr., 1982, Chemical-quality reconnaissance of the water and surficial bed material in the Delaware River estuary and adjacent New Jersey tributaries, 1980-81: U.S. Geological Survey Water-Resources Investigations 82-36, 41 p.

Langbein, W. B., and Iseri, K. T., 1960, General introduction of hydrologic definitions: U.S. Geological Survey Water-Supply Paper 1541-A, 29 p.

Laskowski, S. L., 1970, Statistical summaries of New Jersey streamflow records: New Jersey Division of Water Policy and Supply, Water Resources Circular 23, 264 p.

Lohman, S. W., and other, 1972, Definitions of selected ground-water terms-revisions and conceptual refinements: U.S. Geological Survey Water-Supply Paper 1988, 21 p.

Luzier, J. E., 1980, Digital-simulation and projection of head changes in the Potomac-Raritan-Magothy aquifer system, Coastal Plain, New Jersey: U.S. Geological Survey Water-Resources Investigations 80-11, 72 p.

Mansue, L. J., and Anderson, P. W., 1974, Effect of landuse and retention practices on sediment yields in the Stony Brook basin, New Jersey: U.S. Geological Survey Water-Supply Paper 1798-L.

McCall, J. E., and Lendo, A. C., 1970, A modified streamflow data program for New Jersey: U.S. Geological Survey Open-File Report, 46 p.

Porterfield, George, 1972, Computations of fluvial-sediment discharge: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter C3, 66 p.

Rantz, S. E., and others, 1982, Measurement and Computation of Streamflow; Volume 1. Measurement of Stage and Discharge, Volume 2. Computation of Discharge: U.S. Geological Survey Water-Supply Paper 2175, 631 p.

Schaefer, F. L., and Walker, R. L., 1982, Saltwater intrusion into the Old Bridge aquifer in the Keyport-Union Beach area of Monmouth County, New Jersey: U.S. Geological Survey Water-Supply Paper 2184, 21 p.

Schaefer, F. L., 1983, Distribution of Chloride Concentrations in the Principal Aquifers of the New Jersey Coastal Plain, 1977-81: U.S. Geological Survey Water-Resources Investigations Report 83-4061, 56 p.

Schornick, J. C., and Ram, N. M., 1978, Nitrification in four acidic streams in southern New Jersey: U.S. Geological Survey Water-Resources Investigations, 77-121, 51 p.

Schornick, J. C., and Fishel, D. K., 1980, Effects of storm runoff on water quality in the Mill Creek drainage basin, Willingboro, New Jersey: U.S. Geological Survey Water-Resources Investigations 80-98, 111 p.

Schopp, R. D., and Gillespie, B. D., 1979, Selected streamflow data for the Delaware River basin: U.S. Geological Survey Open-File Report 79-347, 16 p.

Schopp, R. D., and Velnich, A. J., 1979, Flood of November 8-10, 1977 in Northeastern and Central New Jersey: U.S. Geological Survey Open-File Report 79-559, 32 p.

Seaber, P. R., 1963, Chloride concentrations of water from wells in the Atlantic Coastal Plain of New Jersey, 1923-61: New Jersey Division of Water Policy and Supply, Special Report 22, 250 p.

Skougstad, N. W., Fishman, M. J., Friedman, L. C., Erdmann, D. E., and Duncan, S. S., 1978, Methods for determination of inorganic substances in water and fluvial sediments: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Chapter A1, 626 p.

Stankowski, S. J., 1972, Floods of August and September 1971 in New Jersey: New Jersey Division of Water Resources, Special Report 37, 329 p.

Stankowski, S. J., and Velnich, A. J., 1974, A summary of peak stages and discharges for the flood of August 1973 in New Jersey: U.S. Geological Survey Open-File Report, 12 p.

Stankowski, S. J., 1974, Magnitude and frequency of floods in New Jersey with effects of urbanization: New Jersey Department of Environmental Protection, Division of Water Resources, Special Report 38, 46 p.

Stankowski, S. J., Schopp, R. D., and Velnich, A. J., 1975, Flood of July 21, 1975 in Mercer County, New Jersey: U.S. Geological Survey Water-Resources Investigations 51-75, 52 p.

Stevens, Jr., Herbert H., Ficke, John F., and Smoot, George F., 1975, Water temperature-influential factors, field measurement, and data representation: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 1, Chapter D1, 65 p.

U.S. Environmental Protection Agency, 1976, National Interim Primary Drinking Water Regulations: U.S. Environmental Protection Agency report EPA 570/9-76-003, 159 p.

U.S. Geological Survey, 1976, Surface water supply of the United States, 1966-70, Part 1. North Atlantic Slope basins, Volume 2. Basins from New York to Delaware: U.S. Geological Survey Water-Supply Paper 2102, 985 p., (most recent volume).

 $\underline{1977}$ , Ground-water levels in the United States, 1973-74, Northeastern States: U.S. Geological Survey Water-Supply Paper 2164, 126 p., (most recent volume).

Vecchioli, John, and Miller, E. G., 1973, Water Resources of the New Jersey part of the Ramapo River basin: U.S. Geological Survey Water-Supply Paper 1974, 77 p.

Velnich, A. J., and Laskowski, S. L., 1979, Technique for estimating depth of 100-year flood in New Jersey: U.S. Geological Survey Open-File Report 79-419, 17 p.

Velnich, A. J., 1982, Drainage Areas in New Jersey: Delaware River Basin and Streams Tributary to Delaware Bay: U.S. Geological Survey Open-File Report 82-572, 48 p.

Velnich, A. J., 1984, Drainage Areas in New Jersey: Atlantic Coastal Basins, South Amboy to Cape May: U.S. Geological Survey Open-File Report 84-150, 33 p.

Vickers, A. A., and McCall, J. E., 1968, Surface water supply of New Jersey, Streamflow records 1961-65: New Jersey Division of Water Policy and Supply, Special Report 31, 351 p., (most recent volume).

Vickers, A. A., 1982, Flood of August 31 - September 1, 1978, in Crosswicks Creek Basin and vicinity, Central New Jersey: U.S. Geological Survey Water-Resources Investigations 80-115, 20 p.

Vickers, A. A., Farsett, H. A., and Green, J. W., 1982, Flood peaks and discharge summaries in the Delaware River basin: U.S. Geological Survey Open-File Report 81-912, 292 p.

Walker, R. L., 1983, Evaluation of water levels in major aquifers of the New Jersey Coastal Plain, 1978: U.S. Geological Survey Water-Resources Investigations 82-4077, 56 p.

Thirty-seven manuals by the U.S. Geological Survey have been published to date in the series on techniques describing procedures for planning and executing specialized work in water-resources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, Section A of Book 3 (Applications of Hydraulics) is on surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises. The reports listed below are for sale by the U.S. Geological Survey, Branch of Distribution, 604 South Pickett St., Alexandria, VA 22304 (authorized agent of the Superintendent of Documents, Government Printing Office).

- When ordering any of these publications, please give the title, book number, chapter number, and "U.S. Geological Survey Techniques of Water-Resources Investigations".
- Water temperature--influential factors, field measurement, and data presentation, by H. H. Stevens, Jr., J. F. Ficke, and G. F. Smoot: USGS--TWRI Book 1, Chapter D1. 1975. 65 page Guidelines for collection and field analysis of ground-water samples for selected unstable constituents, by W. W. Wood: USGS--TWRI Book 1, Chapter D2. 1976. 24 pages. 1-D1.
- 1-02.
- 2-D1.
- 2-E1.
- Constituents, by W. W. WOOd: USGS--IMMI BOOK 1, Chapter U2. 1976. 24 pages.
  Application of surface geophysics to ground-water investigations, by A. A. R. Zohdy, G. P. Eaton, and D. R. Mabey: USGS--TWRI Book 2, Chapter D1. 1974. 116 pages.
  Application of borehole geophysics to water-resources investigations, by W. S. Keys and L. M. MacCary: USGS--TWRI Book 2, Chapter E1. 1971. 126 pages.

  General field and office procedures for indirect discharge measurements, by M. A. Benson and Tate Dalrymple: USGS--TWRI Book 3, Chapter A1. 1967. 30 pages.
- 3-A2. Measurement of peak discharge by the slope-area method, by Tate Dalrymple and M. A. Benson: USGS--TWRI Book 3, Chapter A2. 1967. 12 pages.
- Measurement of peak discharge at oulverts by indirect methods, by G. L. Bodhaine: USGS--TWRI Book 3, Chapter A3. 1968. 60 pages. 3-A3.
- Measurement of peak discharge at width contractions by indirect methods, by H. F. Matthai: USGS--TWRI Book 3, Chapter A4. 1967. 44 pages. 3-A4.
- Measurement of peak discharge at dams by indirect methods, by Harry Hulsing: USGS-TWRI Book 3, Chapter A5. 1967. 29 pages. 3-A5
- General procedure for gaging streams, by R. W. Carter and Jacob Davidian: USGS--TWRI Book 3, Chapter A6. 1968. 13 pages. 3-A6.
- Stage measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3, Chapter A7. 1968. 28 pages. 3-A7.
- 3-A8.
- Discharge measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3, Chapter A8. 1969. 65 pages.

  Measurement of time of travel and dispersion in streams by dys tracing, by E. F. Hubbard, F. A. Kilpatrick, L. A. Martens, and J. F. Wilson, Jr.: USGS--TWRI Book 3, Chapter A9. 1982. 44 3-A9. pages.
- Measurement of discharge by moving-boat method, by G. F. Smoot and C. E. Novak: USGS--TWRI Book 3, Chapter All. 1969. 22 pages. 3-A11.
- Aquifer-test design, observation, and data analysis, by R. W. Stallman: USGS--TWRI Book 3, 3-R1. Chapter B1. 1971. 26 pages.
- Introduction to ground-water hydraulies, a programed text for self-instruction, by G. D. Bennett: USGS--TWRI Book 3, Chapter B2. 1976. 172 pages. 3-B2.
- 3-B3.
- Bennett: USGS--IWRI BOOK 3, Chapter B2. 1970. 172 pages.

  Type curves for selected problems of flow to wells in confined aquifers, by J. E. Reed:
  USGS--TWRI Book 3, Chapter B3. 1980. 106 pages.

  Fluvial sediment concepts, by H. P. Guy: USGS--TWRI Book 3, Chapter C1. 1970. 55 pages.

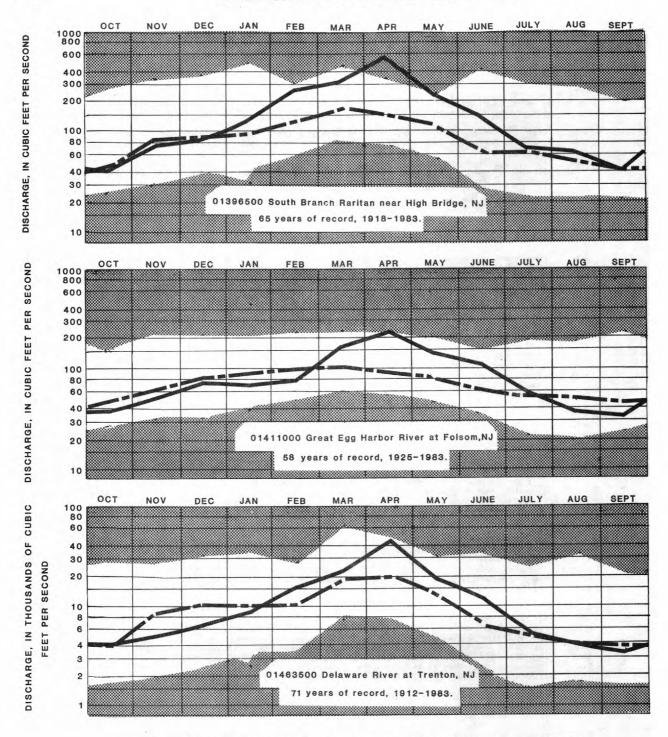
  Field methods for measurement of fluvial sediment, by H. P. Guy and V. W. Norman: USGS--TWRI 3-C1. 3-C2.
- Book 3, Chapter C2. 1970. 59 pages.

  Computation of fluvial-sediment discharge, by George Porterfield: USGS-TWRI Book 3, Chapter 3-C3.
- C3. 1972. 66 pages. 4-A1. Some statistical tools in hydrology, by H. C. Riggs: USGS--TWRI Book 4, Chapter Al. 1968. 39 pages.
- 4-A2.
- Frequency ourses, by H. C. Riggs: USGS--TWRI Book 4, Chapter A2. 1968. 15 pages.

  Low-flow investigations, by H. C. Riggs: USGS--TWRI Book 4, Chapter B1. 1972. 18 pages.

  Storage analyses for water supply, by H. C. Riggs and C. H. Hardison: USGS--TWRI Book 4, 4-B1. 4-B2.
- Chapter B2. 1973. 20 pages. 4-B3. Regional analyses of streamflow characteristics, by H. C. Riggs: USGS--TWRI Book 4, Chapter B3. 1973. 15 pages.
- 4-D1
- 5-A1.
- Computation of rate and volume of stream depletion by wells, by C. T. Jenkins: USGS-TWRI Book 4, Chapter Dl. 1970. 17 pages.

  Methods for determination of inorganic substances in water and fluvial sediments, by M. W. Skougstad and others, editors: USGS-TWRI Book 5, Chapter Al. 1979. 626 pages.

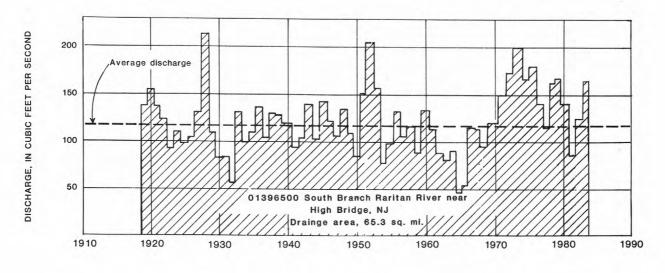

  Determination of minor elements in water by emission spectroscopy, by P. R. Barnett and E. C. Mallory, Jr.: USGS-TWRI Book 5, Chapter A2. 1971. 31 pages.

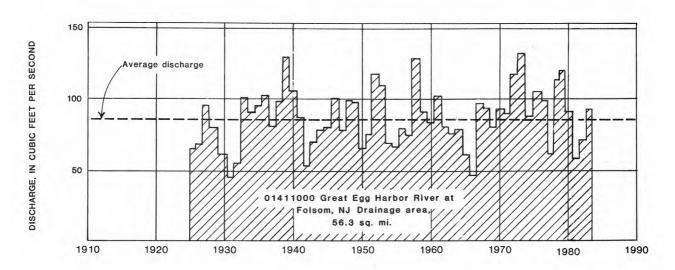
  Methods for graphing of compute substances in water by D. E. Goerlitz and Eugene Brown: 5-A2.
- 5-A3. Methods for analysis of organic substances in water, by D. F. Goerlitz and Eugene Brown:
- WSGS-TWRI Book 5, Chapter A3. 1972. 40 pages.

  Methods for collection and analysis of aquatic biological and microbiological samples, edited by P. E. Greeson, T. A. Ehlke, G. A. Irwin, B. W. Lium, and K. V. Slack: USGS-TWRI Book 5, 5-A4. Chapter A4. 1977. 332 pages.
- Methods for determination of radioactive substances in water and fluvial sediments, by L. L. Thatcher, V. J. Janzer, and K. W. Edwards: USGS--TWRI Book 5, Chapter A5. 1977. 95 pages. Laboratory theory and methods for sediment analysis, by H. P. Guy: USGS--TWRI Book 5, Chapter C1. 1969. 58 pages. 5-A5.
- 5-C1.
- 7-C1. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by P. C. Trescott, G. F. Pinder, and S. P. Larson: USGS--TWRI Book 7, Chapter C1. 1976. 116 pages.
- 7-C2. Computer model of two-dimensional solute transport and dispersion in ground water, by L. F. Konikow and J. D. Bredehoeft: USGS--TWRI Book 7, Chapter C2. 1978. 90 pages.

  A model for simulation of flow in singular and interconnected channels, by R. W. Schaffranek,
- 7-C3.
- R. A. Baltzer, and D. E. Goldberg: USGS--TWRI Book 7, Chapter C3. 1981. 110 pages.

  Methods of measuring water levels in deep wells, by M. S. Garber and F. C. Koopman: USGS-TWRI Book 8, Chapter A1. 1968. 23 pages 8-A1.
- Calibration and maintenance of vertical-axis type current meters, by G. F. Smoot and C. E. Novak: USGS--TWRI Book 8, Chapter B2. 1968. 15 pages. 8-B2.





Unshaded area. -- Indicates range between highest and lowest mean recorded for the month, prior to 1983 water year.

Dashed line.--Indicates normal (median of the monthly means) for the standard reference period, 1951-1980.

Solid line .-- Indicates observed monthly mean flow for the 1983 water year.

FIGURE 2.--MONTHLY STREAMFLOW AT KEY GAGING STATIONS.





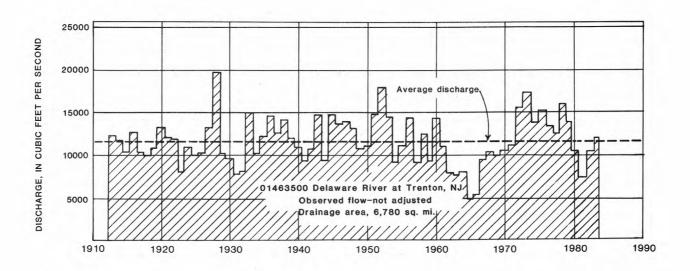
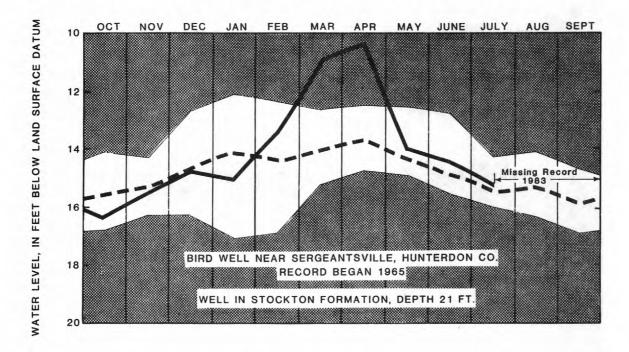
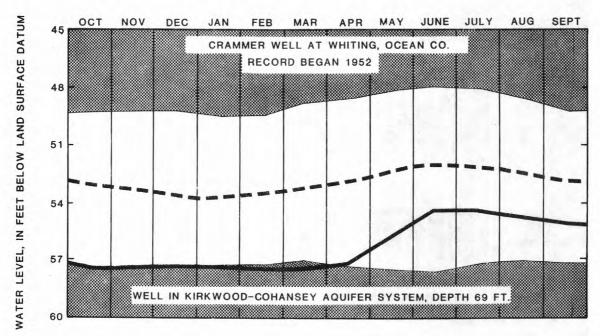
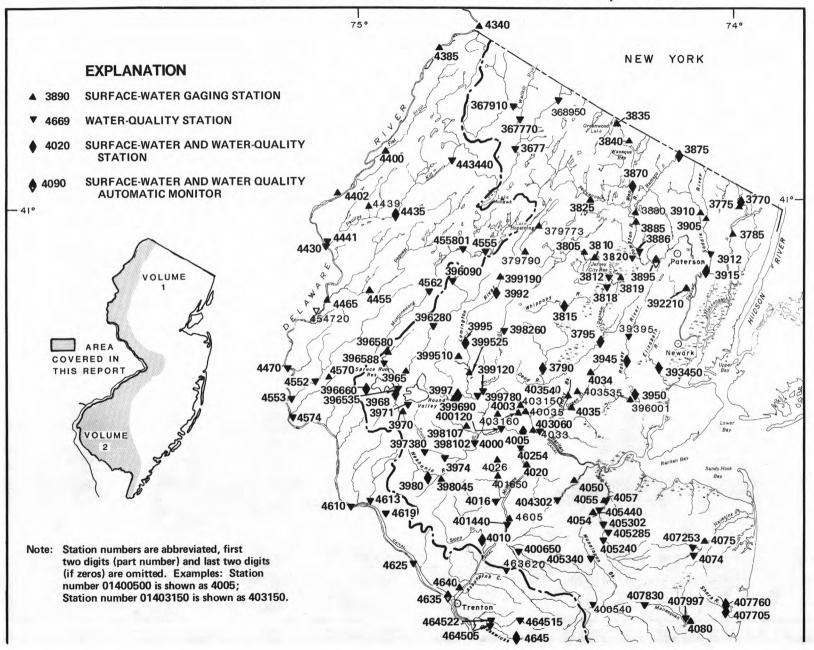





FIGURE 3.--ANNUAL MEAN DISCHARGE AT KEY GAGING STATIONS






Unshaded area.—Indicates range between highest and lowest recorded monthly minimum water levels, prior to the current year.

Dashed line.--Indicates average of the monthly minimum water levels, prior to current year.

Solid line.--Indicates monthly minimum water level for the current year.

FIGURE 4.--MONTHLY GROUND-WATER LEVELS AT KEY OBSERVATION WELLS.

# WATER RESOURCES DATA FOR NEW JERSEY, 1983



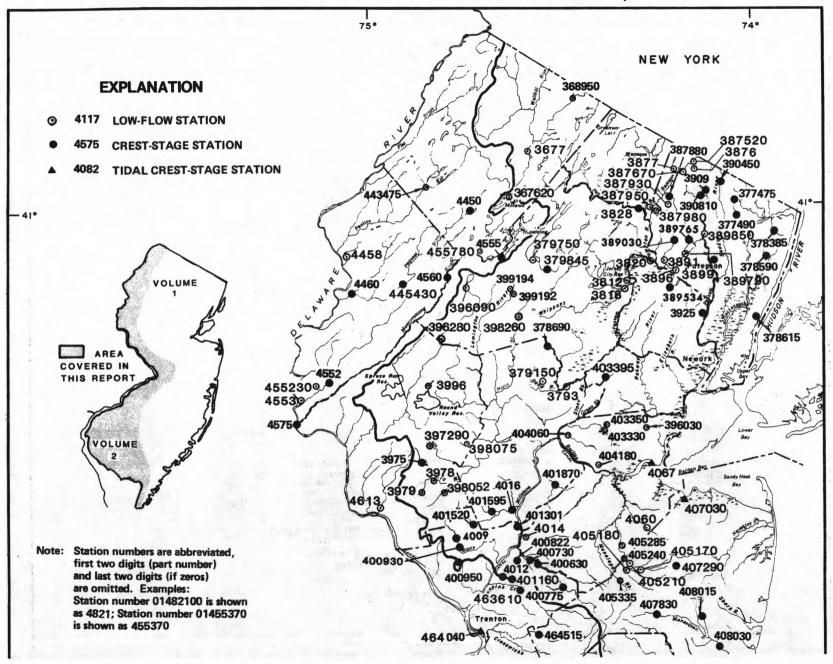




Figure 5.--Location of surface-water gaging stations and water-quality stations.

## WATER RESOURCES DATA FOR NEW JERSEY, 1983



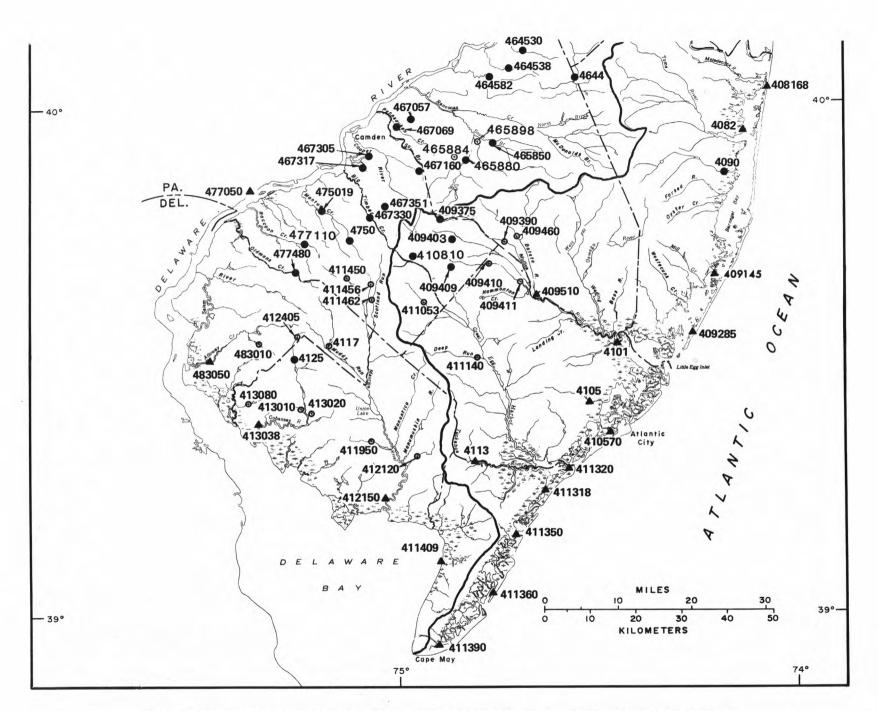
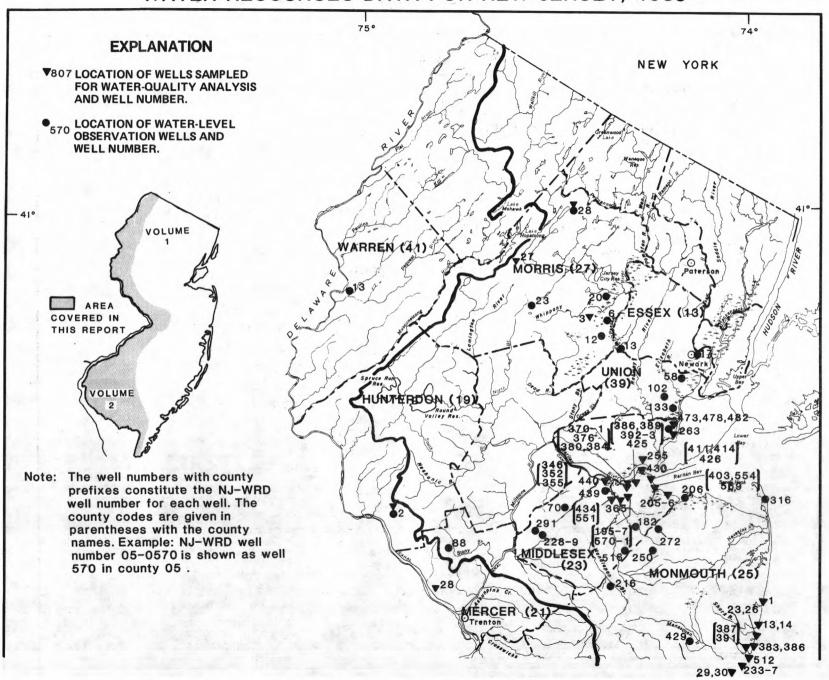




Figure 6.--Location of low-flow and crest-stage partial record stations.

## WATER RESOURCES DATA FOR NEW JERSEY, 1983



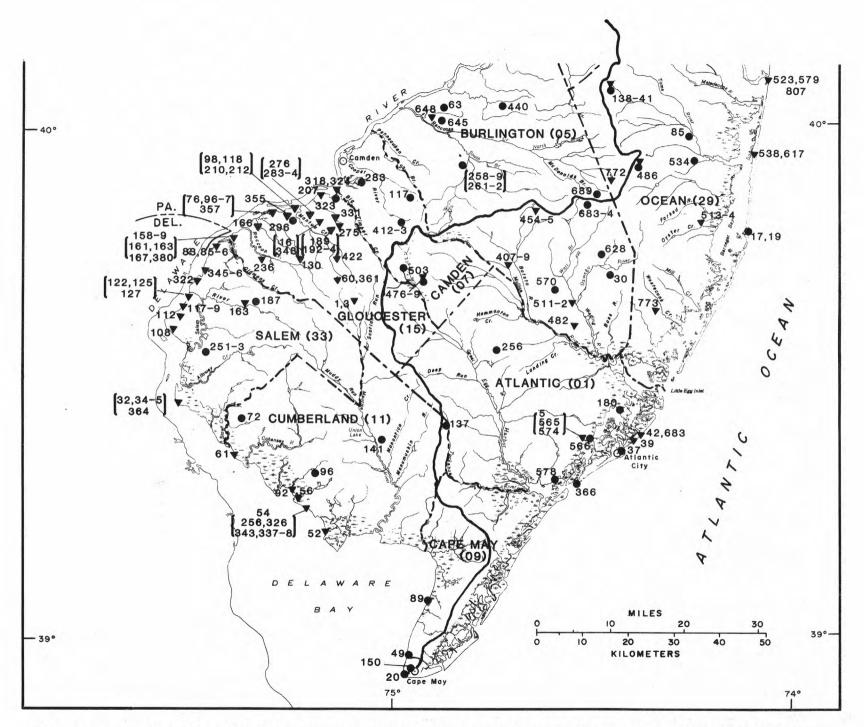



Figure 7. -- Map showing location of ground-water quality stations and observation wells.

#### MAURICE RIVER BASIN

## 01411500 MAURICE RIVER AT NORMA, NJ (National stream quality accounting network station)

LOCATION.--Lat 39°29'42", long 75°04'38", Salem County, Hydrologic Unit 02040206, on right bank just upstream from Almond Road Bridge at Norma, and 0.8 mi downstream from Blackwater Branch.

DRAINAGE AREA . -- 112 mi2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- July 1932 to current year. Monthly discharge only for December 1933, published in WSP 1302.

REVISED RECORDS.--WSP 1382: 1933. WDR NJ-79-1: 1967(P). WDR NJ-82-2: Drainage area.

GAGE.--Water-stage recorder. Concrete control since Dec. 27, 1937. Datum of gage is 46.94 ft National Geodetic Vertical Datum of 1929.

REMARKS. -- Water-discharge records good. Occasional regulation by ponds above station.

AVERAGE DISCHARGE. -- 51 years, 167 ft3/s, 20.07 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 7,360 ft<sup>3</sup>/s Sept. 2, 1940, gage height, 8.72 ft, from rating curve extended above 3,000 ft<sup>3</sup>/s; minimum daily, 23 ft<sup>3</sup>/s Sept. 8, 1964, July 2, Sept. 7, 11-13, 1966.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 380 ft3/s and maximum(#):

| Date    | Time | Discharge<br>(ft³/s) | Gage height (ft) | Date    | Time | Discharge<br>(ft³/s) | Gage height<br>(ft) |
|---------|------|----------------------|------------------|---------|------|----------------------|---------------------|
| Mar. 23 | 1200 | 391                  | 3.53             | May 17  | 1100 | 612                  | 3.86                |
| Apr. 12 | 2200 | 428                  | 3.61             | May 25  | 0700 | 468                  | 3.60                |
| Apr. 18 | 0500 | 742                  | 4.07             | May 30  | 0600 | 423                  | 3.51                |
| Apr. 24 | 2300 | 537                  | 3.73             | June 21 | 2300 | *801                 | 4.16                |

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

Minimum discharge, 47 ft3/s Oct. 11-12, and 13.

|                                            |                                        |                                         |                                          |                                         |                                          | MEAN VA                                   | LUES                                       |                                           |                                           |                                          |                                        |                                  |
|--------------------------------------------|----------------------------------------|-----------------------------------------|------------------------------------------|-----------------------------------------|------------------------------------------|-------------------------------------------|--------------------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------|----------------------------------------|----------------------------------|
| DA Y                                       | OCT                                    | NOV                                     | DEC                                      | JAN                                     | FEB                                      | MAR                                       | APR                                        | MAY                                       | JUN                                       | JUL                                      | AUG                                    | SEP                              |
| 1<br>2<br>3<br>4<br>5                      | 61<br>59<br>55<br>54<br>53             | 68<br>65<br>65<br>65<br>73              | 136<br>141<br>132<br>125<br>119          | 95<br>94<br>93<br>90                    | 100<br>99<br>106<br>109                  | 134<br>149<br>152<br>152                  | 293<br>269<br>296<br>311<br>309            | 293<br>300<br>293<br>308<br>320           | 304<br>272<br>271<br>270<br>260           | 200<br>197<br>189<br>179<br>168          | 83<br>83<br>80<br>78<br>78             | 74<br>71<br>70<br>72<br>75       |
| 6<br>7<br>8<br>9                           | 55<br>53<br>51<br>53<br>51             | 75<br>77<br>80<br>78<br>76              | 133<br>142<br>127<br>116<br>107          | 95<br>95<br>95<br>93                    | 104<br>128<br>132<br>126<br>118          | 147<br>168<br>182<br>198<br>218           | 306<br>296<br>278<br>268<br>311            | 304<br>282<br>263<br>254<br>246           | 234<br>228<br>229<br>223<br>214           | 150<br>152<br>148<br>140<br>137          | 77<br>76<br>75<br>73<br>70             | 69<br>62<br>64<br>58<br>55       |
| 11<br>12<br>13<br>14<br>15                 | 48<br>49<br>53                         | 72<br>70<br>104<br>126<br>122           | 104<br>108<br>104<br>98<br>94            | 149<br>146<br>144<br>136<br>137         | 112<br>108<br>108<br>109                 | 242<br>256<br>252<br>240<br>226           | 405<br>417<br>418<br>379<br>335            | 235<br>225<br>216<br>191<br>185           | 177<br>180<br>194<br>175<br>157           | 130<br>125<br>122<br>118<br>106          | 71<br>90<br>92<br>88<br>86             | 55<br>55<br>64<br>72<br>75       |
| 16<br>17<br>18<br>19<br>20                 | 63<br>66<br>59<br>55<br>51             | 115<br>108<br>101<br>94<br>89           | 124<br>153<br>152<br>149<br>140          | 132<br>118<br>107<br>101<br>100         | 110<br>118<br>127<br>134<br>138          | 214<br>198<br>203<br>218<br>262           | 423<br>648<br>738<br>683<br>580            | 257<br>479<br>349<br>369<br>363           | 150<br>151<br>164<br>155<br>172           | 104<br>105<br>103<br>103<br>107          | 82<br>79<br>78<br>77<br>75             | 73<br>70<br>69<br>66<br>69       |
| 21<br>22<br>23<br>24<br>25                 | 55<br>55<br>53<br>51<br>58             | 85<br>82<br>80<br>79<br>77              | 129<br>116<br>107<br>104<br>101          | 95<br>95<br>102<br>109<br>108           | 141<br>146<br>146<br>146<br>152          | 214<br>238<br>332<br>370<br>336           | 478<br>455<br>401<br>425<br>461            | 344<br>321<br>398<br>451<br>461           | 414<br>643<br>600<br>534<br>391           | 119<br>118<br>96<br>86<br>85             | 72<br>70<br>69<br>68<br>65             | 73<br>117<br>129<br>113<br>97    |
| 26<br>27<br>28<br>29<br>30<br>31           | 74<br>76<br>78<br>77<br>74<br>71       | 75<br>74<br>74<br>126<br>134            | 100<br>99<br>97<br>98<br>100<br>98       | 106<br>104<br>102<br>100<br>98<br>100   | 149<br>147<br>136                        | 292<br>235<br>319<br>327<br>326<br>314    | 472<br>503<br>474<br>405<br>338            | 423<br>382<br>353<br>353<br>408<br>360    | 273<br>244<br>200<br>220<br>207           | 90<br>92<br>90<br>87<br>86<br>84         | 64<br>60<br>60<br>77<br>76<br>76       | 89<br>81<br>77<br>73<br>73       |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 1812<br>58.5<br>78<br>48<br>.52<br>.60 | 2609<br>87.0<br>134<br>65<br>.78<br>.87 | 3653<br>118<br>153<br>94<br>1.05<br>1.21 | 3328<br>107<br>149<br>90<br>.96<br>1.11 | 3465<br>124<br>152<br>99<br>1.11<br>1.15 | 7266<br>234<br>370<br>134<br>2.09<br>2.41 | 12375<br>413<br>738<br>268<br>3.69<br>4.11 | 9986<br>322<br>479<br>185<br>2.88<br>3.32 | 7906<br>264<br>643<br>150<br>2.36<br>2.63 | 3816<br>123<br>200<br>84<br>1.10<br>1.27 | 2348<br>75.7<br>92<br>60<br>.68<br>.78 | 2260<br>75.3<br>129<br>55<br>.67 |

CAL YR 1982 TOTAL 44301 MEAN 121 MAX 361 MIN 43 CFSM 1.08 IN. 14.71 WTR YR 1983 TOTAL 60824 MEAN 167 MAX 738 MIN 48 CFSM 1.49 IN. 20.20

## WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1923, 1953, 1960-62, 1965 to current year.

PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: January 1980 to current year.
WATER TEMPERATURES: October 1966 to January 1968 (once daily), January 1980 to current year.
SUSPENDED-SEDIMENT DISCHARGE: February 1965 to January 1968.

INSTRUMENTATION .-- Water-quality monitor since January 1980.

REMARKS .-- Missing continuous water-quality records are the result of malfunction of the instrument.

EXTREMES FOR PERIOD OF RECORD. --

SPECIFIC CONDUCTANCE: Maximum, 119 micromhos Jan. 24, 1982; minimum, 52 micromhos June 16, 1982. WATER TEMPERATURE: Maximum, 28°C July 21, 1980; minimum 0.0°C on several days during winter months.

EXTREMES FOR CURRENT YEAR .--

SPECIFIC CONDUCTANCE: Maximum, 101 micromhos Dec. 16; minimum, 56 micromhos June 22. WATER TEMPERATURES: Maximum, 27.0°C July 18; minimum, 0.5°C on January 19, 20.

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

| DATE      | TI                             | ME              | STREAM<br>FLOW,<br>INSTAI<br>TANEOU<br>(CFS) | CON<br>I- DUC<br>IS AND                                        | IC<br>I-<br>CT-                           | PH<br>(STAND-<br>ARD<br>UNITS)               | TEMPE<br>ATUR<br>(DEG                     | RE                     | TUR-<br>BID-<br>ITY<br>(NTU)                   | SO SO                                                               | GEN,<br>DIS-<br>DLVED<br>IG/L) | OXYG<br>DI<br>SOL<br>(PE<br>CE<br>SAT<br>ATI | S- DI<br>VED B<br>R- C<br>NT I        | XYGEN<br>EMAND,<br>BIO-<br>CHEM-<br>ICAL,<br>5 DAY<br>(MG/L) | COLI<br>FORM<br>FECA<br>0.7<br>UM-M<br>(COLS<br>100 M | ,<br>L,<br>F | STRI<br>TOCOO<br>FECA<br>KF AC<br>(COLS<br>PEI<br>100 N | CCI<br>AL,<br>GAR<br>S.<br>R  |
|-----------|--------------------------------|-----------------|----------------------------------------------|----------------------------------------------------------------|-------------------------------------------|----------------------------------------------|-------------------------------------------|------------------------|------------------------------------------------|---------------------------------------------------------------------|--------------------------------|----------------------------------------------|---------------------------------------|--------------------------------------------------------------|-------------------------------------------------------|--------------|---------------------------------------------------------|-------------------------------|
| NOV<br>22 | . 09                           | 15              | 8                                            | 33                                                             | 74                                        | 6.5                                          | 5 10                                      | 0.5                    | 1.                                             | 1                                                                   | 10.0                           |                                              | 89                                    | 1.1                                                          | K                                                     | 19           | 1                                                       | 400                           |
| JAN<br>11 | . 11                           | 05              | 15                                           | 52                                                             | 76                                        | 6.1                                          | 1 8                                       | 3.5                    | 5.0                                            | )                                                                   | 9.8                            |                                              | 84                                    | .9                                                           | 2                                                     | 00           | >20                                                     | 000                           |
| MAR<br>29 | . 11                           | 15              | 32                                           | 27                                                             | 62                                        | 5.3                                          | 3 8                                       | 8.0                    | 1.4                                            | 4                                                                   | 10.2                           |                                              | 85                                    | .9                                                           | 1                                                     | 00           |                                                         | 300                           |
| MAY<br>03 | . 11                           | 10              | 29                                           | 95                                                             | 73                                        | 5.8                                          | 3 20                                      | 0.0                    | 1.                                             | 1                                                                   | 6.8                            |                                              | 75                                    | 1.1                                                          |                                                       | 45           | 12                                                      | 200                           |
| JUL<br>27 | . 12                           | 00              |                                              | 93                                                             | 76                                        | 6.7                                          | 22                                        | 2.5                    | 1.9                                            | 9                                                                   | 8.1                            |                                              | 93                                    | 3.6                                                          |                                                       | 47           | 2                                                       | 700                           |
| SEP<br>27 | . 12                           | 30              |                                              | 31                                                             | 74                                        | 6.5                                          | 5 1                                       | 5.5                    | 1.3                                            | 3                                                                   | 9.0                            |                                              | 89                                    | . 6                                                          | K                                                     | 22           | K                                                       | 800                           |
| DATE      | HAR<br>NES<br>(MG<br>AS<br>CAC | S<br>/L         | CALCII<br>DIS-<br>SOLVI<br>(MG/I             | JM S<br>D<br>ED SO<br>. (MC                                    | GNE-<br>IUM,<br>IS-<br>LVED<br>G/L<br>MG) | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA) | SOL'SOL'S                                 | UM,<br>S-<br>VED<br>/L | ALKA-<br>LINIT:<br>LAB<br>(MG/I<br>AS<br>CACO: | Y SUL<br>DI<br>L SO                                                 | FATE IS- DLVED IG/L SO4)       | CHL<br>RID<br>DIS<br>SOL<br>(MG<br>AS        | E, I<br>-<br>VED :                    | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)           | SILIC<br>DIS-<br>SOLV<br>(MG/<br>AS<br>SIO2           | ED<br>L      | SOLII<br>RESII<br>AT 1<br>DEG<br>DIS<br>SOLI<br>(MG     | DUÉ<br>80<br>. C<br>S-<br>VED |
| NOV<br>22 | •                              | 19              | 3.                                           | 7 :                                                            | 2.4                                       | 5.7                                          | 1                                         | . 4                    | 6.0                                            |                                                                     | 12                             | 9                                            | . 1                                   | <.10                                                         | 6                                                     | . 7          |                                                         | 57                            |
| 11<br>MAR |                                | 18              | 3.1                                          | 3 ;                                                            | 2.1                                       | 5.6                                          | 1.                                        | . 3                    | 4.0                                            |                                                                     | 11                             | 8                                            | . 0                                   | <.10                                                         | 6                                                     | . 5          |                                                         | 60                            |
| 29<br>MAY |                                | 18              | 3.                                           | 3 ;                                                            | 2.0                                       | 4.0                                          | 1                                         | . 4                    | 2.0                                            |                                                                     | 17                             | 7                                            | . 0                                   | <.10                                                         | 4                                                     | . 1          |                                                         | 65                            |
| 03<br>JUL |                                | 17              | 3.                                           | 3                                                              | 1.9                                       | 4.6                                          | 2                                         | . 0                    | 4.0                                            |                                                                     | 17                             | 8                                            | . 0                                   | <.10                                                         |                                                       | . 6          |                                                         | 73                            |
| 27<br>SEP |                                | 19              | 4.                                           | ) ;                                                            | 2.3                                       | 6.4                                          | 1                                         | . 8                    | 9.0                                            |                                                                     | 2.0                            | 9                                            | . 1                                   | . 10                                                         | 5                                                     | . 4          |                                                         | 78                            |
| 27        | •                              | 20              | 4.                                           | 1 :                                                            | 2.4                                       | 5.6                                          | 2                                         | . 0                    | 9.0                                            |                                                                     | 9.8                            | 8                                            | . 7                                   | <.10                                                         | 5                                                     | . 1          | -                                                       | 55                            |
|           | DATE                           | ME<br>SU:<br>PE | S-<br>NDED                                   | SEDI-<br>MENT,<br>DIS-<br>CHARGE,<br>SUS-<br>PENDED<br>(T/DAY) | SI<br>SI<br>% F                           | USP.<br>EVE NO<br>IAM.<br>INER S             | GEN,<br>D2+NO3<br>DIS-<br>BOLVED<br>(MG/L | GE<br>AMMO<br>DI       | NIA !<br>S- (<br>VED<br>G/L                    | NITRO-<br>GEN, AM-<br>MONIA -<br>ORGANIO<br>TOTAL<br>(MG/L<br>AS N) | PI<br>PHO<br>TO                | HOS-<br>DRUS,<br>DTAL<br>MG/L<br>S P)        | PHOS<br>PHORU<br>DIS<br>SOLV<br>(MG/I | PHO<br>S, OF<br>DI<br>ED SOI<br>L (MO                        | IS-<br>LVED<br>G/L                                    | TO'          | BON,<br>ANIC<br>TAL<br>G/L<br>C)                        |                               |
|           | NO V<br>22<br>JAN              |                 | 8                                            | 1.8                                                            |                                           | 35                                           | 1.50                                      |                        | 060                                            | . 50                                                                | )                              | .020                                         | .0                                    | 10 <                                                         | .010                                                  |              | 5.6                                                     |                               |
|           | 11<br>MAR                      |                 | 9                                            | 3.7                                                            |                                           | 72                                           | 1.50                                      |                        | 050                                            | . 50                                                                | )                              | . 190                                        | <.0                                   | 10                                                           | .010                                                  |              | 5.6                                                     |                               |
|           | 29<br>MAY                      |                 | 6                                            | 5.3                                                            |                                           | 25                                           | 1.00                                      |                        | 030                                            | • 30                                                                |                                | .010                                         | <.0                                   | 10                                                           | .010                                                  | 1            | 1                                                       |                               |
|           | 03<br>JUL                      |                 | 3                                            | 2.4                                                            |                                           | 82                                           | .790                                      |                        | 020                                            | . 50                                                                | )                              | .020                                         | . 0                                   | 20                                                           | .020                                                  | 1            | 1                                                       |                               |
|           | 27<br>SEP                      |                 | 2                                            | .50                                                            |                                           | 100                                          | 1.50                                      |                        | 030                                            | . 50                                                                | )                              | .060                                         | . 0                                   | 30                                                           | .030                                                  |              | 7 - 4                                                   |                               |
|           | 27                             |                 | 1                                            | . 22                                                           |                                           | 50                                           | 1.60                                      |                        | 010                                            | . 90                                                                | )                              | .020                                         | .0                                    | 10                                                           | .010                                                  |              | 5.0                                                     |                               |

## MAURICE RIVER BASIN

## 01411500 MAURICE RIVER AT NORMA, NJ--Continued

## WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

| DATE      | TIM   | E                        | ALUM<br>INUM<br>DIS<br>SOLV<br>(UG/<br>AS A | AR:                                               | SENIC<br>DIS-<br>OLVED<br>UG/L<br>S AS) | BARI<br>DIS<br>SOLV<br>(UG            | UM I                                    | BERYL-<br>MIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS BE) | SOL<br>(UC                             | S-<br>VED  | CHRO<br>MIUN<br>DIS-<br>SOLV<br>(UG/<br>AS | M<br>-<br>VED<br>/L | COBA<br>DIS<br>SOLV<br>(UG | ED.           | COPPE<br>DIS-<br>SOLV<br>(UG/<br>AS (     | ED S                                              | RON,<br>DIS-<br>OLVED<br>UG/L<br>S FE) | (UG                              | S-<br>VED |
|-----------|-------|--------------------------|---------------------------------------------|---------------------------------------------------|-----------------------------------------|---------------------------------------|-----------------------------------------|------------------------------------------------------|----------------------------------------|------------|--------------------------------------------|---------------------|----------------------------|---------------|-------------------------------------------|---------------------------------------------------|----------------------------------------|----------------------------------|-----------|
| NOV       |       |                          |                                             |                                                   |                                         |                                       |                                         |                                                      |                                        |            |                                            |                     |                            | 1321          |                                           | oce no wie                                        |                                        |                                  | F-12      |
| 22<br>JAN | 091   | 5                        | 1                                           | 40                                                | 150                                     |                                       | 74                                      | <1                                                   |                                        | <1         |                                            |                     |                            | <3            |                                           | 1                                                 | 140                                    |                                  | 2         |
| 11<br>MAY | 110   | 15                       | 1                                           | 30                                                | 67                                      |                                       | 74                                      | <1                                                   |                                        | <1         | <1                                         |                     |                            | <3            |                                           | 4                                                 | 190                                    |                                  | 2         |
| 03<br>SEP | 111   | 0                        | 2                                           | 10                                                | 160                                     |                                       | 71                                      | <1                                                   |                                        | <1         | <1                                         |                     |                            | <3            |                                           | 3                                                 | 320                                    |                                  | 3         |
| 27        | 123   | 0                        |                                             | 40                                                | 160                                     |                                       | 87                                      | 0                                                    |                                        | 1          | <1                                         |                     |                            | 3             |                                           | 1                                                 | 73                                     |                                  | 4         |
| DA        | TE    | LIT<br>DIS<br>SOL<br>(UG | VE D                                        | MANGA<br>NESE,<br>DIS-<br>SOLVE<br>(UG/L<br>AS MN | MER<br>D SC                             | CURY<br>DIS-<br>DLVED<br>G/L<br>B HG) | MOLYI<br>DENUI<br>DIS<br>SOLVI<br>(UG/I | M, NIC<br>- DI<br>ED SC<br>L (U                      | CKEL,<br>IS-<br>DLVED<br>IG/L<br>B NI) | SOL<br>(UG | M,<br>S-<br>VED                            | SOL<br>(UG          | S-<br>VED                  | D<br>SO<br>(U | RON-<br>IUM,<br>IS-<br>LVED<br>G/L<br>SR) | VANA-<br>DIUM,<br>DIS-<br>SOLVE<br>(UG/L<br>AS V) | D SC                                   | NC,<br>IS-<br>LVED<br>G/L<br>ZN) |           |
| NOV       |       |                          |                                             |                                                   |                                         |                                       |                                         |                                                      |                                        |            |                                            |                     |                            |               |                                           |                                                   |                                        |                                  |           |
| JAN       | • • • |                          | 7                                           | 2                                                 | 0                                       | . 1                                   | <                                       | 10                                                   | 1                                      |            | <1                                         |                     | 1                          |               | 21                                        | <                                                 | 6                                      | 10                               |           |
| 11<br>MAY | • • • |                          | < 4                                         | 3                                                 | 0                                       | . 1                                   |                                         | 10                                                   | 1                                      |            |                                            |                     | <1                         |               | 27                                        | <                                                 | 6                                      | 12                               |           |
| 03<br>SEP |       |                          | < 4                                         | 3                                                 | 9                                       | . 4                                   | <                                       | 10                                                   | 7                                      |            | <1                                         |                     | <1                         |               | 24                                        | <                                                 | 6                                      | 22                               |           |
|           |       |                          | 4                                           | 1                                                 | 9 .                                     | <.1                                   |                                         | 10                                                   | <1                                     |            | <1                                         |                     | <1                         | 130           | 26                                        | 1                                                 | 7                                      | 7                                |           |

01411500 MAURICE RIVER AT NORMA, NJ--Continued

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DAY                                                                                             | MAX                                                                                                                                    | MIN                                                                     | MEAN                                                                                                                                                                                                                                                     | MAX                                                                                                                                  | MIN                                                                                                                  | MEAN                                                                                                                 | MAX                                                                  | MIN                                                              | MEAN                                                     | MAX                                                                                                                                                      | MIN                                                                                                | MEAN                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| 2 70 69 70 78 69 74 77 73 75 83 81 82 83 81 82 83 81 82 83 81 82 83 81 82 83 81 82 83 81 82 83 81 82 83 81 82 83 81 82 83 81 82 83 81 82 83 81 82 83 81 82 83 81 82 83 81 82 83 81 82 83 81 82 83 81 82 83 81 82 83 81 82 83 81 82 83 81 82 83 81 82 83 81 82 83 81 82 83 81 82 83 81 82 83 81 82 83 81 82 83 81 82 83 81 82 83 81 82 83 81 82 83 81 82 83 81 82 83 81 82 83 81 82 83 81 82 83 81 82 83 81 82 83 81 82 83 81 82 83 81 82 83 81 82 83 81 82 83 81 82 83 81 82 83 81 82 83 81 82 83 81 82 83 81 82 83 81 82 83 81 82 83 81 82 83 81 82 83 81 82 83 81 82 83 81 82 83 81 82 83 81 82 83 81 82 81 82 81 82 81 82 81 82 81 82 81 82 81 81 81 81 81 81 81 81 81 81 81 81 81                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                 |                                                                                                                                        | OCTOBER                                                                 |                                                                                                                                                                                                                                                          |                                                                                                                                      | NOVEMBE                                                                                                              | R                                                                                                                    |                                                                      | DECEMBE                                                          | R                                                        |                                                                                                                                                          | JANUARY                                                                                            |                                                                                                                                         |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2<br>3<br>4                                                                                     | 70<br>70<br>70                                                                                                                         | 69<br>69<br>69                                                          | 70<br>70<br>70                                                                                                                                                                                                                                           | 78<br>78<br>78                                                                                                                       | 69<br>77<br>76                                                                                                       | 74<br>77<br>77                                                                                                       | 77<br>77<br>78                                                       | 73<br>75<br>76                                                   | 75<br>76<br>77                                           | 83<br>82<br>82                                                                                                                                           | 81<br>81<br>80                                                                                     | 82<br>82<br>81<br>82                                                                                                                    |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7<br>8<br>9                                                                                     | 72<br>72<br>72                                                                                                                         | 71<br>70<br>70                                                          | 72<br>71<br>71                                                                                                                                                                                                                                           | 76<br>74                                                                                                                             | 74<br>72                                                                                                             | 75                                                                                                                   | 77<br>77                                                             | 74<br>75                                                         | 75<br>76                                                 | 85<br>85                                                                                                                                                 | 82<br>81                                                                                           | 83<br>83<br>83<br>82<br>82                                                                                                              |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12<br>13<br>14                                                                                  | 71<br>71<br>70                                                                                                                         | 70<br>69<br>68                                                          | 71<br>70<br>69                                                                                                                                                                                                                                           | 77<br>85                                                                                                                             | 75<br>72<br>76                                                                                                       | 76<br>78<br>78                                                                                                       | 79<br>79<br>80                                                       | 75<br>78<br>77                                                   | 77<br>79<br>78                                           | 83<br>83<br>84                                                                                                                                           | 81<br>81<br>80                                                                                     | 82<br>82                                                                                                                                |
| 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17<br>18<br>19                                                                                  | 72<br>72<br>71                                                                                                                         | 67<br>70<br>69                                                          | 70<br>71<br>70                                                                                                                                                                                                                                           | 77<br>74<br>74                                                                                                                       | 73                                                                                                                   | 75<br>75<br>73<br>71<br>74                                                                                           | 80<br>82<br>80                                                       | 76<br>80                                                         | 78<br>81                                                 | 86<br>86<br>86                                                                                                                                           | 80<br>80<br>80                                                                                     | 84                                                                                                                                      |
| 27 66 64 65 77 75 76 83 81 82 82 82 78 81 29 67 65 65 64 64 78 76 77 83 81 82 82 82 78 81 29 67 65 65 78 72 75 83 81 82 82 82 78 81 30 67 66 66 67 76 73 74 82 81 82 82 78 81 31 70 66 66 68 83 81 82 82 82 78 81 31 70 66 66 68 83 81 82 82 78 81 31 70 66 66 68 83 81 82 82 82 78 81 31 70 66 66 68 83 81 82 82 82 78 81 31 31 70 66 66 68 83 81 82 82 83 78 80 81 82 82 82 82 78 81 81 82 82 82 78 81 81 82 82 82 78 81 81 82 82 82 78 81 81 82 82 82 78 81 81 82 82 82 78 81 81 82 82 82 78 81 81 82 82 82 78 81 81 82 82 82 78 81 81 82 82 82 78 81 81 82 82 82 78 81 81 82 82 82 78 81 81 82 82 82 78 81 81 82 82 82 78 81 81 82 82 82 78 81 81 82 82 82 82 82 82 78 81 81 82 82 82 82 82 82 82 82 82 82 82 82 82                                                                                                                                                                                                                                                                                                                                                                                          | 22                                                                                              | 71<br>69<br>70                                                                                                                         | 68<br>68<br>68                                                          | 69<br>69                                                                                                                                                                                                                                                 | 76<br>76<br>77                                                                                                                       | 74<br>74<br>75                                                                                                       | 75<br>75<br>76                                                                                                       | 83<br>84<br>83                                                       | 81<br>82<br>81                                                   | 82<br>83<br>82                                           | 89<br>88<br>87                                                                                                                                           | 87<br>86<br>84                                                                                     | 87<br>85                                                                                                                                |
| DAY   MAX   MIN   MEAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 27<br>28<br>29                                                                                  | 66<br>65<br>67<br>67                                                                                                                   | 64<br>64<br>65<br>66                                                    | 65<br>64<br>65<br>67                                                                                                                                                                                                                                     | 77<br>78<br>78<br>76                                                                                                                 | 75<br>76<br>72                                                                                                       | 76<br>77<br>75<br>74                                                                                                 | 83<br>83<br>83<br>82                                                 | 82<br>81<br>81<br>81                                             | 82<br>82<br>82<br>82                                     | 82<br>82<br>82<br>82                                                                                                                                     | 78<br>80                                                                                           | 81<br>81<br>81                                                                                                                          |
| FEBRUARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MONTH                                                                                           | 73                                                                                                                                     | 64                                                                      | 69                                                                                                                                                                                                                                                       | 85                                                                                                                                   | 68                                                                                                                   | 75                                                                                                                   | 101                                                                  | . 73                                                             | 80                                                       | 89                                                                                                                                                       | 77                                                                                                 | 83                                                                                                                                      |
| 1         84         79         80         80         74         76         66         64         65         71         68         69           2         83         77         80         80         74         77         67         65         66         71         69         70           3         83         77         80         78         74         77         66         64         65         74         70         72           4         84         77         80         79         75         77         66         64         65         74         71         72           5         83         78         80         78         74         77         64         63         64         72         70         71           6         83         78         84         78         73         75         65         63         64         74         73         73         70         71           6         83         78         81         72         67         70         66         64         65         75         73         74         10         83         78                     |                                                                                                 |                                                                                                                                        |                                                                         |                                                                                                                                                                                                                                                          |                                                                                                                                      |                                                                                                                      |                                                                                                                      |                                                                      |                                                                  |                                                          |                                                                                                                                                          |                                                                                                    |                                                                                                                                         |
| 3         83         77         80         78         74         77         68         64         65         74         71         72           5         83         78         79         78         74         77         64         63         64         72         70         71           6         83         78         80         78         74         77         64         63         64         72         70         71           6         83         78         80         78         74         77         64         63         63         73         70         72           7         93         78         84         78         73         75         65         63         64         74         73         73         74         73         73         74         74         79         70         66         64         65         75         74         74         74         74         73         73         74         74         74         74         73         73         74         74         79         70         66         65         59         61         77         75 | DAY                                                                                             | MAX                                                                                                                                    | MIN                                                                     | MEAN                                                                                                                                                                                                                                                     | MAX                                                                                                                                  | MIN                                                                                                                  | MEAN                                                                                                                 | MAX                                                                  | MIN                                                              | MEAN                                                     | MAX                                                                                                                                                      | MIN                                                                                                | MEAN                                                                                                                                    |
| 8       87       78       82       75       68       71       66       64       65       75       74       74       74         10       83       78       81       72       67       70       66       64       65       75       73       74         10       83       76       79       70       69       69       65       59       61       77       75       76         11       83       76       79       70       69       69       63       61       62       77       75       76         12       83       76       79       70       69       69       63       61       62       77       75       76         13       82       76       78       72       69       70       62       61       61       77       76       76         14       84       78       82       72       70       71       62       61       61       77       76       76         15       88       83       85       73       70       72       64       62       63       79       77       78                                                                                                                          | DAY                                                                                             | MAX                                                                                                                                    |                                                                         |                                                                                                                                                                                                                                                          | MAX                                                                                                                                  |                                                                                                                      |                                                                                                                      | MAX                                                                  |                                                                  |                                                          | MAX                                                                                                                                                      |                                                                                                    | MEAN                                                                                                                                    |
| 14       84       78       82       72       70       71       62       61       61       80       76       78         15       88       83       85       73       70       72       64       62       63       79       77       78         16       100       88       93       74       71       73       64       58       60       78       67       73         17       90       85       87       73       72       72       60       59       59       66       62       64         18       87       83       85       73       66       71       60       58       59       67       65       66         19       83       76       81       68       64       66       60       58       59       67       65       66         20       81       76       77       69       66       68       62       59       61       69       67       68         21       81       76       79       67       63       65       66       63       64       70       67       69                                                                                                                                 | 1<br>2<br>3                                                                                     | 84<br>83<br>83<br>84                                                                                                                   | FEBRUAR<br>79<br>77<br>77                                               | 80<br>80<br>80<br>80                                                                                                                                                                                                                                     | 80<br>80<br>78                                                                                                                       | MARCH<br>74<br>74<br>74                                                                                              | 76<br>77                                                                                                             | 66<br>67<br>68<br>66                                                 | APRIL<br>64<br>65<br>64<br>64                                    | 65<br>66<br>65<br>65                                     | 71<br>71<br>74<br>74                                                                                                                                     | MAY<br>68<br>69<br>70                                                                              | 69<br>70<br>72                                                                                                                          |
| 18       87       83       85       73       66       71       60       58       59       67       65       66         19       83       76       81       68       64       66       60       58       59       67       65       66       66         20       81       76       77       69       66       68       62       59       61       69       67       68         21       81       76       79       67       63       65       66       63       64       70       67       69         22       80       74       77       64       63       64       68       63       66       70       67       69         23       82       76       80       65       64       65       67       66       66       67       65       65         24       82       76       81       66       64       65       67       64       65       65       63       64       63       64         25       81       75       78       68       65       66       65       63       64       63                                                                                                                         | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                                            | 84<br>83<br>83<br>84<br>83<br>83<br>83<br>87<br>83                                                                                     | 79<br>77<br>77<br>77<br>78<br>78<br>78<br>78                            | 80<br>80<br>80<br>80<br>79<br>80<br>84<br>82<br>81                                                                                                                                                                                                       | 80<br>80<br>78<br>79<br>78<br>78<br>78<br>75<br>72                                                                                   | 74<br>74<br>74<br>75<br>74<br>73<br>68                                                                               | 76<br>77<br>77<br>77<br>77<br>77<br>75<br>71<br>70                                                                   | 66<br>67<br>68<br>66<br>64<br>64<br>65<br>66                         | APRIL<br>64<br>65<br>64<br>63<br>63<br>63<br>64<br>64            | 65<br>66<br>65<br>64<br>64<br>665<br>655                 | 71<br>71<br>74<br>74<br>72<br>73<br>74<br>75                                                                                                             | MAY 68 69 70 71 70 73 74                                                                           | 69<br>70<br>72<br>72<br>71<br>72<br>73                                                                                                  |
| 23 82 76 80 65 64 65 67 66 66 67 65 65<br>24 82 76 81 66 64 65 67 64 65 65 63 64<br>25 81 75 78 68 65 66 65 63 64 63 61 62<br>26 83 76 80 71 66 69 65 64 65 63 61 62<br>27 82 76 79 70 64 68 65 63 64 64 64 62 63<br>28 81 74 78 66 62 64 66 64 65 65 63 64<br>29 66 63 64 66 67 65 63 64<br>30 66 63 64 70 67 68 66 62 64<br>31 64 63 64 70 67 68 66 62 64<br>31 66 66 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14                         | 84<br>83<br>83<br>83<br>83<br>83<br>83<br>83<br>83<br>83<br>83<br>83<br>83<br>84                                                       | 79<br>77<br>77<br>77<br>78<br>78<br>78<br>78<br>78<br>78<br>78<br>78    | 80<br>80<br>80<br>80<br>79<br>80<br>84<br>82<br>81<br>81<br>81                                                                                                                                                                                           | 80<br>80<br>78<br>79<br>78<br>78<br>75<br>72                                                                                         | 74<br>74<br>74<br>75<br>74<br>73<br>68<br>67<br>68<br>67<br>68                                                       | 76<br>77<br>77<br>77<br>77<br>77<br>75<br>71<br>70<br>69<br>70                                                       | 66<br>67<br>68<br>66<br>64<br>64<br>65<br>66<br>65<br>63<br>62<br>62 | APRIL 64 65 64 63 63 63 64 64 59 60 61 61                        | 65<br>66<br>65<br>64<br>65<br>65<br>61<br>61<br>61<br>61 | 71<br>71<br>74<br>72<br>73<br>74<br>75<br>75<br>77<br>76<br>77<br>77                                                                                     | MAY  68 69 70 71 70 70 73 74 73 75 74 75 76                                                        | 69<br>70<br>72<br>71<br>72<br>73<br>74<br>76<br>76<br>78                                                                                |
| 27     82     76     79     70     64     68     65     63     64     64     62     63       28     81     74     78     66     62     64     66     64     65     65     63     64       29        66     63     64     68     66     67     65     63     64       30        64     63     64     70     67     68     66     62     64       31        64     63     64       68     66     66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18 | 84<br>83<br>83<br>83<br>83<br>83<br>83<br>83<br>83<br>83<br>84<br>88<br>88<br>88<br>88<br>88<br>88<br>88<br>88<br>88<br>88             | 79 77 77 77 78 78 78 78 78 78 78 78 83 83 85 87                         | 80<br>80<br>80<br>80<br>80<br>79<br>884<br>82<br>81<br>81<br>79<br>78<br>82<br>85<br>93<br>87<br>85<br>81                                                                                                                                                | 80<br>80<br>78<br>79<br>78<br>78<br>75<br>72<br>71<br>70<br>70<br>72<br>72<br>73<br>74<br>73<br>68                                   | 74<br>74<br>74<br>75<br>74<br>73<br>68<br>67<br>68<br>69<br>69<br>70<br>71<br>72<br>66<br>64                         | 76<br>77<br>77<br>77<br>77<br>77<br>75<br>71<br>70<br>69<br>70<br>69<br>70<br>71<br>72<br>73<br>72<br>73             | 6678666 4 66666 6 6 6 6 6 6 6 6 6 6 6 6 6 6                          | APRIL 64 65 64 65 664 67 661 661 661 661 661 661 661 661 661     | 65665666666666666666666666666666666666                   | 71<br>71<br>74<br>72<br>73<br>75<br>75<br>77<br>76<br>77<br>77<br>77<br>80<br>79<br>78<br>66<br>67                                                       | 68<br>69<br>70<br>71<br>70<br>73<br>74<br>73<br>75<br>74<br>75<br>76<br>77<br>67<br>62<br>65<br>66 | 69<br>702<br>71<br>72<br>71<br>74<br>76<br>756<br>78<br>78<br>78<br>78                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23                                     | 84<br>83<br>83<br>83<br>83<br>83<br>83<br>83<br>83<br>83<br>84<br>88<br>88<br>88<br>88<br>88<br>88<br>88<br>88<br>88<br>88<br>88<br>88 | 79 77 77 78 78 78 78 78 78 78 76 76 76 76 76 76 76 76 76 76 76 76 76    | 80<br>80<br>80<br>80<br>80<br>79<br>84<br>82<br>81<br>81<br>79<br>78<br>82<br>85<br>87<br>87<br>87<br>87<br>87<br>87<br>87                                                                                                                               | 80<br>80<br>78<br>79<br>78<br>78<br>75<br>72<br>71<br>70<br>70<br>72<br>72<br>73<br>74<br>73<br>768<br>69<br>67<br>645<br>665<br>665 | 74<br>74<br>74<br>74<br>75<br>74<br>73<br>68<br>67<br>68<br>69<br>70<br>71<br>72<br>66<br>64<br>66<br>63<br>63<br>64 | 76<br>77<br>77<br>77<br>77<br>77<br>75<br>71<br>70<br>69<br>70<br>71<br>72<br>73<br>72<br>71<br>66<br>68<br>65<br>65 | 6678666 4566665 668766666 66877                                      | APRIL 645 654466 664466 665 66666 66666 66666 66666 66666 666666 | 566554 345551 12113 099991 46665                         | 71<br>71<br>74<br>72<br>73<br>75<br>75<br>77<br>76<br>77<br>77<br>80<br>79<br>78<br>66<br>67<br>69<br>70<br>70<br>67                                     | MAY 68 69 70 71 70 73 74 73 75 74 76 76 67 67 67 67 67 67 67 67 67 67 67                           | 69<br>702<br>71<br>72<br>71<br>74<br>74<br>75<br>76<br>76<br>77<br>78<br>78<br>78<br>78<br>78<br>78<br>78<br>78<br>78<br>78<br>78<br>78 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28                      | 84<br>83<br>83<br>83<br>83<br>83<br>83<br>83<br>83<br>83<br>84<br>88<br>88<br>88<br>88<br>88<br>88<br>88<br>88<br>88<br>88<br>88<br>88 | 79 77 77 78 78 78 78 78 78 78 78 76 76 76 76 76 76 76 76 76 76 76 77 77 | 80<br>80<br>80<br>80<br>80<br>79<br>82<br>81<br>81<br>77<br>78<br>82<br>85<br>93<br>87<br>85<br>87<br>87<br>87<br>88<br>81<br>77<br>77<br>80<br>81<br>77<br>81<br>81<br>77<br>81<br>81<br>81<br>81<br>81<br>81<br>81<br>81<br>81<br>81<br>81<br>81<br>81 | 80<br>80<br>78<br>77<br>78<br>78<br>75<br>71<br>70<br>72<br>72<br>73<br>74<br>73<br>76<br>66<br>66<br>66<br>66<br>66<br>66<br>66     | MARCH 744774 7744 7744 7744 7756 666 6677 7766 666 6672 6676 6676 6                                                  | 76<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>7                                      | 6678666 456665 656666 66666 66666 66666 66666 66666 66666            | APRIL 645 65443 665449 66665 66666 666666 6666666666666          | 566554 345551 12113 099991 466654 54578                  | 71<br>71<br>74<br>72<br>73<br>75<br>77<br>76<br>77<br>77<br>80<br>79<br>78<br>66<br>67<br>67<br>67<br>67<br>67<br>67<br>67<br>67<br>66<br>67<br>67<br>67 | MAY 68 69 70 71 70 73 74 75 76 77 67 67 67 66 67 67 66 61 61 62 63 62 63 62                        | 90221<br>7777<br>77777<br>77777<br>77777<br>77777<br>77777<br>7777                                                                      |

01411500 MAURICE RIVER AT NORMA, NJ--Continued

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

|                            | SFE                        | CIP IC C                   | ONDOCIANCE                       | (HICKONIO)                       | o, on al                         | Z) DEG. O                        | ,, water te                      | an oolob                         | 1,00                       | <br>                       | .,05                       |                            |
|----------------------------|----------------------------|----------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| DAY                        | MAX                        | MIN                        | MEAN                             | MAX                              | MIN                              | MEAN                             | MAX                              | MIN                              | MEAN                       | MAX                        | MIN                        | MEAN                       |
|                            |                            | JUNE                       |                                  |                                  | JULY                             |                                  |                                  | AUGUST                           |                            |                            | SEPTEMB                    | ER                         |
| 1<br>2<br>3<br>4<br>5      | 67<br>68<br>69<br>71<br>72 | 65<br>67<br>67<br>69<br>70 | 67<br>67<br>68<br>69<br>71       | 73<br>76<br>76<br>77<br>81       | 72<br>73<br>72<br>74<br>76       | 73<br>75<br>74<br>75<br>77       | 79<br>82<br>79<br>80<br>80       | 77<br>78<br>76<br>76<br>78       | 78<br>79<br>78<br>79<br>79 | 79<br>79<br>81<br>78<br>79 | 78<br>76<br>76<br>76<br>75 | 79<br>78<br>78<br>77<br>78 |
| 6<br>7<br>8<br>9           | 73<br>73<br>73<br>73<br>73 | 71<br>71<br>72<br>72<br>71 | 72<br>72<br>72<br>72<br>72<br>72 | 82<br>79<br>81<br>79<br>80       | 78<br>77<br>76<br>77<br>74       | 80<br>78<br>78<br>78<br>79       | 79<br>82<br>80<br>82<br>87       | 78<br>75<br>78<br>78<br>78       | 78<br>79<br>79<br>79<br>81 | 78<br>78<br>81<br>79<br>77 | 77<br>75<br>78<br>76<br>75 | 77<br>77<br>80<br>77<br>76 |
| 11<br>12<br>13<br>14<br>15 | 76<br>77<br>76<br>78<br>79 | 72<br>75<br>73<br>74<br>75 | 74<br>76<br>75<br>76<br>77       | 77<br>78<br>83<br>78<br>82       | 76<br>77<br>75<br>76<br>77       | 76<br>79<br>79<br>77<br>79       | 82<br>84<br>84<br>82<br>80       | 79<br>79<br>81<br>80<br>80       | 81<br>82<br>82<br>81<br>80 | 78<br>78<br>79<br>76<br>75 | 77<br>77<br>75<br>74<br>73 | 77<br>77<br>76<br>75<br>74 |
| 16<br>17<br>18<br>19<br>20 | 82<br>85<br>85<br>86<br>86 | 76<br>78<br>79<br>83<br>76 | 78<br>82<br>82<br>84<br>83       | 82<br>79<br>78<br>79<br>79       | 79<br>77<br>77<br>78<br>73       | 80<br>78<br>78<br>78<br>77       | 81<br>82<br>82<br>82<br>81       | 80<br>80<br>80<br>80             | 81<br>81<br>81<br>81<br>80 | 74<br>75<br>75<br>75<br>75 | 73<br>73<br>74<br>72<br>73 | 74<br>74<br>74<br>74<br>74 |
| 21<br>22<br>23<br>24<br>25 | 74<br>60<br>62<br>64<br>69 | 58<br>56<br>59<br>61<br>63 | 65<br>58<br>60<br>62<br>65       | 76<br>79<br>78<br>87<br>89       | 74<br>73<br>70<br>78<br>77       | 75<br>76<br>73<br>83<br>84       | 81<br>81<br>81<br>81             | 80<br>79<br>80<br>79<br>79       | 80<br>80<br>80<br>80<br>79 | 76<br>85<br>79<br>82<br>82 | 73<br>78<br>76<br>75<br>76 | 74<br>81<br>78<br>79<br>81 |
| 26<br>27<br>28<br>29<br>30 | 69<br>75<br>74<br>73<br>74 | 67<br>69<br>72<br>69<br>70 | 68<br>71<br>73<br>70<br>72       | 86<br>81<br>79<br>82<br>83<br>81 | 74<br>77<br>78<br>76<br>74<br>75 | 80<br>79<br>78<br>79<br>78<br>78 | 81<br>81<br>83<br>80<br>82<br>79 | 78<br>77<br>77<br>76<br>75<br>75 | 79<br>80<br>80<br>79<br>79 | 85<br>82<br>79<br>78<br>77 | 81<br>77<br>78<br>76<br>75 | 83<br>79<br>79<br>77<br>75 |
| MONTH                      | 86                         | 56                         | 72                               | 89                               | 70                               | 78                               | 87                               | 75                               | 80                         | 85                         | 72                         | . 77                       |
| YEAR                       | 101                        | 56                         | 75                               |                                  |                                  |                                  |                                  |                                  |                            |                            |                            |                            |
|                            |                            |                            |                                  |                                  |                                  |                                  |                                  |                                  |                            |                            |                            |                            |

| TEMPERATURE, W | WATER | (DEG. | C), | WATER | YEAR | OCTOBER | 1982 | TO | SEPTEMBER | 1983 |
|----------------|-------|-------|-----|-------|------|---------|------|----|-----------|------|
|----------------|-------|-------|-----|-------|------|---------|------|----|-----------|------|

| DAY                        | MAX                                          | MIN                                  | MEAN                                 | MAX                                  | MIN                                  | MEAN                                 |    | MAX                                       | MIN                               | MEAN                                    | MAX                                    | MIN                             | MEAN                                   |
|----------------------------|----------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----|-------------------------------------------|-----------------------------------|-----------------------------------------|----------------------------------------|---------------------------------|----------------------------------------|
|                            |                                              | OCTOBER                              |                                      |                                      | NOVEMBER                             |                                      |    |                                           | DECEMBER                          |                                         |                                        | JANUARY                         |                                        |
| 1<br>2<br>3<br>4<br>5      | 19.0<br>19.0<br>18.0<br>18.5<br>19.0         | 17.5<br>17.5<br>15.5<br>16.5<br>17.0 | 18.0<br>18.0<br>17.0<br>17.5<br>18.0 | 14.5<br>15.5<br>16.5<br>17.5<br>17.0 | 12.5<br>14.0<br>14.5<br>15.5<br>12.5 | 13.5<br>14.5<br>15.5<br>16.5<br>15.0 |    | 9.0<br>9.5<br>10.0<br>12.0<br>13.5        | 8.0<br>9.0<br>9.5<br>10.0<br>11.5 | 8.5<br>9.5<br>10.0<br>11.5<br>12.5      | 7.0<br>6.5<br>6.5<br>5.0<br>5.5        | 6.0<br>6.0<br>5.0<br>4.0<br>4.5 | 6.5<br>6.0<br>4.5<br>4.5               |
| 6<br>7<br>8<br>9           | 19.5<br>19.5<br>20.0<br>20.5<br>18.5         | 18.0<br>18.0<br>18.5<br>19.0<br>16.0 | 18.5<br>18.5<br>19.5<br>19.5         | 12.5<br>10.5<br>11.0<br>11.0         | 10.5<br>9.0<br>8.5<br>9.5<br>9.5     | 11.5<br>10.0<br>10.0<br>10.5<br>10.0 | Y. | 14.5<br>13.5<br>10.5<br>9.5<br>6.5        | 13.0<br>11.0<br>9.5<br>7.0<br>5.0 | 14.0<br>12.5<br>10.0<br>8.5<br>5.5      | 6.0<br>6.5<br>6.5<br>6.0<br>8.5        | 5.0<br>5.5<br>5.0<br>6.0        | 5.5<br>5.5<br>6.0<br>5.5<br>7.0        |
| 11<br>12<br>13<br>14<br>15 | 15.5<br>15.5<br>16.0<br>16.5<br>16.0         | 13.5<br>15.0<br>15.0<br>15.5<br>14.5 | 14.5<br>15.5<br>15.5<br>16.0<br>15.5 | 10.5<br>12.5<br>12.5<br>10.0<br>9.5  | 8.5<br>10.0<br>10.0<br>8.5<br>8.0    | 9.5<br>11.5<br>11.5<br>9.5<br>9.0    |    | 6.0<br>6.0<br>2.5<br>3.5<br>5.0           | 6.0<br>2.0<br>1.0<br>1.5<br>3.0   | 6.0<br>3.5<br>2.0<br>2.5<br>4.0         | 9.0<br>8.0<br>5.5<br>4.0<br>4.5        | 8.0<br>6.0<br>3.5<br>2.5<br>4.0 | 8.5<br>7.5<br>4.5<br>3.5<br>4.5        |
| 16<br>17<br>18<br>19<br>20 | 15.5<br>13.5<br>12.0<br>13.0<br>14.0         | 14.0<br>12.0<br>10.0<br>11.0<br>12.0 | 15.0<br>12.5<br>11.0<br>12.0<br>13.0 | 7.5<br>7.5<br>8.0<br>9.0             | 6.5<br>6.5<br>8.0<br>8.5             | 7.0<br>7.0<br>7.0<br>8.5<br>9.0      |    | 7.5<br>6.0<br>4.0<br>3.5<br>4.0           | 5.0<br>4.0<br>3.0<br>3.0          | 6.5<br>5.0<br>3.0<br>3.5<br>4.0         | 4.0<br>3.0<br>1.5<br>1.5               | 3.0<br>2.0<br><br>.5            | 4.0<br>2.5<br><br>1.0                  |
| 21<br>22<br>23<br>24<br>25 | 15.0<br>13.5<br>11.5<br>11.0                 | 13.5<br>12.0<br>10.5<br>9.5<br>10.5  | 14.5<br>12.5<br>11.0<br>10.5         | 11.5<br>12.0<br>12.5<br>12.0<br>9.5  | 9.5<br>10.5<br>11.5<br>10.0<br>8.0   | 10.5<br>11.0<br>12.0<br>11.5<br>8.5  |    | 4.5<br>5.0<br>6.5<br>8.5                  | 3.5<br>3.5<br>5.0<br>6.0          | 4.0<br>4.5<br>5.5<br>7.0                | 3.0<br>3.0<br>5.5<br>5.0<br>5.0        | 1.0<br>1.5<br>2.0<br>4.5<br>4.0 | 1.5<br>2.0<br>4.5<br>5.0<br>4.5        |
| 26<br>27<br>28<br>29<br>30 | 11.5<br>11.0<br>11.5<br>12.0<br>12.5<br>13.5 | 10.5<br>9.5<br>10.0<br>10.0<br>10.5  | 11.0<br>10.5<br>11.0<br>11.0<br>11.5 | 9.0<br>9.0<br>6.5<br>9.0<br>9.0      | 7.0<br>7.0<br>5.5<br>7.0<br>8.0      | 8.0<br>8.5<br>6.0<br>8.0<br>8.5      |    | 10.0<br>9.5<br>10.5<br>10.5<br>9.5<br>7.5 | 8.5<br>9.0<br>10.0<br>7.5<br>6.5  | 9.5<br>9.0<br>9.5<br>10.5<br>8.0<br>7.0 | 5.0<br>5.0<br>4.5<br>4.0<br>5.0<br>5.0 | 4.0<br>4.0<br>3.5<br>2.5<br>2.5 | 4.5<br>4.5<br>4.0<br>3.5<br>4.0<br>4.5 |
| MONTH                      | 20.5                                         | 9.5                                  | 14.5                                 | 17.5                                 | 5.5                                  | 10.5                                 |    | 14.5                                      |                                   | 7.0                                     | 9.0                                    | • 5                             | 4.5                                    |

01411500 MAURICE RIVER AT NORMA, NJ--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

| DA Y                                                                               | MAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MIN                                                                                           | MEAN                                                                                                                                                                                                                         | MAX                                                                                                                                                                                                                                                                                                                                                                                | MIN                                                                                                                                         | MEAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MIN                                                                                                                                                                                                                            | MEAN                                                                                                                                                                                                                                                                                                                                         | MAX                                                                                                                                                                          | MIN                                                                                                                                                                                   | MEAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FEBRUAR                                                                                       | Y                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                    | MARCH                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | APRIL                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                              | MAY                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1<br>2<br>3<br>4<br>5                                                              | 5.5<br>7.0<br>8.5<br>7.5<br>5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.0<br>4.5<br>7.5<br>5.0<br>3.0                                                               | 4.5<br>5.5<br>8.0<br>6.5                                                                                                                                                                                                     | 6.5<br>9.0<br>9.5<br>10.5                                                                                                                                                                                                                                                                                                                                                          | 5.5<br>6.5<br>7.0<br>7.5<br>9.0                                                                                                             | 6.0<br>7.5<br>8.5<br>9.0<br>9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.0<br>9.5<br>13.0<br>13.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.5<br>7.5<br>9.0<br>11.0<br>10.5                                                                                                                                                                                              | 8.0<br>8.5<br>11.0<br>12.0<br>12.0                                                                                                                                                                                                                                                                                                           | 21.0<br>21.0<br>21.5<br>20.0<br>18.5                                                                                                                                         | 18.0<br>18.5<br>19.5<br>18.0<br>16.0                                                                                                                                                  | 19.5<br>19.5<br>20.0<br>19.0<br>17.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 6<br>7<br>8<br>9                                                                   | 3.5<br>3.5<br>3.5<br>3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.5<br>2.0<br>1.5                                                                             | 3.0<br>3.0                                                                                                                                                                                                                   | 10.5<br>11.0<br>9.5<br>8.0<br>8.0                                                                                                                                                                                                                                                                                                                                                  | 9.0<br>10.0<br>8.0<br>8.0<br>7.5                                                                                                            | 9.5<br>10.5<br>9.0<br>8.0<br>8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12.5<br>13.0<br>13.5<br>13.5<br>11.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11.0<br>11.5<br>12.5<br>11.5<br>10.5                                                                                                                                                                                           | 12.0<br>12.5<br>13.0<br>13.0                                                                                                                                                                                                                                                                                                                 | 18.0<br>18.5<br>17.5<br>16.0                                                                                                                                                 | 15.5<br>15.0<br>15.5<br>15.0<br>13.0                                                                                                                                                  | 16.5<br>16.5<br>17.0<br>16.0<br>14.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 11<br>12<br>13<br>14<br>15                                                         | 3.5<br>4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.5<br>2.5                                                                                    | 2.5<br>3.5                                                                                                                                                                                                                   | 8.0<br>7.5<br>8.0<br>9.0<br>11.0                                                                                                                                                                                                                                                                                                                                                   | 7.5<br>6.0<br>5.0<br>5.5<br>7.5                                                                                                             | 8.0<br>6.5<br>6.5<br>7.5<br>9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.5<br>12.0<br>13.0<br>12.5<br>14.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.5<br>9.5<br>10.0<br>10.5<br>11.5                                                                                                                                                                                            | 10.5<br>11.0<br>11.5<br>11.5<br>13.0                                                                                                                                                                                                                                                                                                         | 16.0<br>15.5<br>17.0<br>18.5<br>19.5                                                                                                                                         | 13.5<br>13.0<br>13.5<br>15.0<br>16.5                                                                                                                                                  | 15.0<br>14.5<br>15.0<br>17.0<br>18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 16<br>17<br>18<br>19<br>20                                                         | 5.0<br>5.0<br>6.0<br>6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.0<br>4.0<br>4.0<br>4.0<br>3.5                                                               | 4.0<br>4.5<br>5.0<br>5.0                                                                                                                                                                                                     | 11.0<br>9.5<br>9.5<br>11.0<br>12.5                                                                                                                                                                                                                                                                                                                                                 | 8.5<br>8.5<br>8.5<br>10.0<br>10.0                                                                                                           | 9.5<br>9.0<br>9.0<br>10.5<br>11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13.5<br>12.0<br>11.0<br>10.0<br>7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.0                                                                                                                                                                                                                            | 12.0<br>10.5<br>10.5<br>9.0<br>6.5                                                                                                                                                                                                                                                                                                           | 18.0<br>14.5<br>15.0<br>15.5<br>16.0                                                                                                                                         | 14.0<br>13.5<br>13.0<br>14.0<br>15.0                                                                                                                                                  | 16.5<br>14.0<br>14.0<br>14.5<br>15.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 21<br>22<br>23<br>24<br>25                                                         | 6.5<br>7.5<br>7.5<br>7.5<br>6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.0<br>5.0<br>6.0<br>5.5<br>5.5                                                               | 5.0<br>6.0<br>7.0<br>6.5<br>6.0                                                                                                                                                                                              | 12.5<br>11.5<br>8.5<br>7.0<br>6.5                                                                                                                                                                                                                                                                                                                                                  | 11.0<br>8.5<br>6.5<br>5.5<br>4.5                                                                                                            | 11.5<br>10.0<br>7.5<br>6.5<br>5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.0<br>11.5<br>13.5<br>13.0<br>12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.0<br>8.0<br>9.5<br>11.5<br>9.5                                                                                                                                                                                               | 8.0<br>10.0<br>11.5<br>12.5<br>11.0                                                                                                                                                                                                                                                                                                          | 17.0<br>17.0<br>18.5<br>19.0<br>18.5                                                                                                                                         | 16.0<br>16.5<br>16.5<br>18.0<br>17.0                                                                                                                                                  | 16.5<br>17.0<br>17.5<br>18.5<br>18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 26<br>27<br>28<br>29<br>30<br>31                                                   | 5.5<br>5.0<br>6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.0<br>2.5<br>3.0<br>                                                                         | 5.0<br>4.0<br>4.5<br>                                                                                                                                                                                                        | 7.5<br>7.5<br>9.0<br>9.5<br>8.5<br>8.0                                                                                                                                                                                                                                                                                                                                             | 4.0<br>6.0<br>7.5<br>7.5<br>6.0<br>6.5                                                                                                      | 6.0<br>6.5<br>8.5<br>8.5<br>7.5<br>7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13.0<br>14.0<br>17.5<br>19.0<br>20.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.0<br>11.0<br>13.0<br>16.0<br>17.5                                                                                                                                                                                            | 11.0<br>12.5<br>15.5<br>17.5<br>18.5                                                                                                                                                                                                                                                                                                         | 18.5<br>18.0<br>17.5<br>17.0<br>18.0                                                                                                                                         | 17.5<br>17.0<br>16.5<br>16.5<br>17.0                                                                                                                                                  | 18.0<br>17.5<br>17.0<br>17.0<br>17.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| MONTH                                                                              | 8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.5                                                                                           | 5.0                                                                                                                                                                                                                          | 12.5                                                                                                                                                                                                                                                                                                                                                                               | 4.0                                                                                                                                         | 8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.5                                                                                                                                                                                                                            | 11.5                                                                                                                                                                                                                                                                                                                                         | 21.5                                                                                                                                                                         | 13.0                                                                                                                                                                                  | 17.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                               |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                              |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| DAY                                                                                | MAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MIN                                                                                           | MEAN                                                                                                                                                                                                                         | MAX                                                                                                                                                                                                                                                                                                                                                                                | MIN                                                                                                                                         | MEAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MIN                                                                                                                                                                                                                            | MEAN                                                                                                                                                                                                                                                                                                                                         | MAX                                                                                                                                                                          | MIN                                                                                                                                                                                   | MEAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| DAY                                                                                | MAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | JUNE                                                                                          | MEAN                                                                                                                                                                                                                         | MAX                                                                                                                                                                                                                                                                                                                                                                                | MIN<br>JULY                                                                                                                                 | MEAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MIN                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                              | MAX                                                                                                                                                                          | MIN                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1 2 3 4 5                                                                          | 18.0<br>18.5<br>19.0<br>19.5<br>21.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                               | 17.5<br>17.5<br>18.0<br>18.5<br>19.5                                                                                                                                                                                         | 22.5<br>24.0<br>25.5<br>26.0<br>25.0                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                             | 21.0<br>22.5<br>24.0<br>25.0<br>24.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25.5<br>25.5<br>25.5<br>24.5<br>24.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                              | 23.5<br>23.0<br>22.5<br>23.0<br>24.0                                                                                                                                         |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1<br>2<br>3                                                                        | 18.0<br>18.5<br>19.0<br>19.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | JUNE<br>16.5<br>16.5<br>17.5<br>18.0                                                          | 17.5<br>17.5<br>18.0<br>18.5<br>19.5                                                                                                                                                                                         | 22.5<br>24.0<br>25.5<br>26.0                                                                                                                                                                                                                                                                                                                                                       | JULY<br>20.0<br>21.0<br>22.5<br>24.0                                                                                                        | 21.0<br>22.5<br>24.0<br>25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25.5<br>25.5<br>25.5<br>24.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AUGUST<br>23.5<br>24.0<br>23.0<br>23.0                                                                                                                                                                                         | 24.5<br>24.5<br>24.5<br>24.5<br>24.0                                                                                                                                                                                                                                                                                                         | 23.5<br>23.0<br>22.5<br>23.0                                                                                                                                                 | 21.5<br>21.5<br>20.5<br>21.0                                                                                                                                                          | 22.5<br>22.0<br>21.5<br>22.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                               | 18.0<br>18.5<br>19.0<br>19.5<br>21.0<br>22.0<br>22.0<br>21.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | JUNE 16.5 16.5 17.5 18.0 18.5 19.0 20.5 20.5 19.5                                             | 17.5<br>17.5<br>18.0<br>18.5<br>19.5                                                                                                                                                                                         | 22.5<br>24.0<br>25.5<br>26.0<br>25.0<br>24.5<br>24.5<br>24.5<br>24.5                                                                                                                                                                                                                                                                                                               | JULY 20.0 21.0 22.5 24.0 23.5 23.5 23.5 21.5 21.5                                                                                           | 21.0<br>22.5<br>24.0<br>25.0<br>24.0<br>24.0<br>23.0<br>22.5<br>23.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25.5<br>25.5<br>25.5<br>24.5<br>24.5<br>24.5<br>25.0<br>26.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AUGUST<br>23.5<br>24.0<br>23.0<br>23.0<br>23.0<br>23.0<br>22.5<br>23.0<br>24.0<br>24.0                                                                                                                                         | 24.5<br>24.5<br>24.5<br>24.0<br>24.0<br>23.5<br>24.5<br>25.0                                                                                                                                                                                                                                                                                 | 23.5<br>23.0<br>22.5<br>23.0<br>24.0<br>25.0<br>24.5<br>23.0<br>21.5                                                                                                         | 21.5<br>21.5<br>20.5<br>21.0<br>21.5<br>22.5<br>19.5<br>22.0<br>20.0                                                                                                                  | 22.5<br>22.0<br>21.5<br>22.0<br>22.5<br>23.5<br>23.5<br>23.5<br>22.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14            | 18.0<br>18.5<br>19.0<br>19.5<br>21.0<br>22.0<br>22.0<br>21.0<br>20.5<br>21.0<br>22.5<br>24.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | JUNE  16.5 16.5 17.5 18.0 18.5  19.0 20.5 20.5 19.5 18.0 18.0 19.0 21.0 22.0                  | 17.5<br>17.5<br>18.0<br>18.5<br>19.5<br>20.0<br>21.0<br>20.0<br>19.5<br>19.5<br>21.0<br>22.5<br>23.0                                                                                                                         | 22.5<br>24.0<br>25.0<br>25.0<br>24.5<br>23.5<br>24.0<br>23.5<br>23.5<br>23.5<br>23.5                                                                                                                                                                                                                                                                                               | JULY 20.0 21.0 22.5 24.0 23.5 23.5 22.0 21.5 21.5 21.5 21.5 21.5 21.5                                                                       | 21.0<br>22.5<br>24.0<br>25.0<br>24.0<br>24.0<br>23.0<br>22.5<br>23.0<br>22.5<br>23.5<br>23.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25.5<br>25.5<br>25.5<br>24.5<br>24.5<br>24.5<br>26.0<br>26.0<br>24.5<br>24.5<br>24.5<br>24.5<br>26.0<br>25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AUGUST<br>23.5<br>24.0<br>23.0<br>23.0<br>23.0<br>24.0<br>24.0<br>24.0<br>23.0<br>24.0<br>20.5<br>19.0                                                                                                                         | 24.5<br>24.5<br>24.5<br>24.0<br>24.0<br>23.5<br>25.0<br>25.0<br>24.0<br>23.5<br>23.5<br>23.5<br>23.0                                                                                                                                                                                                                                         | 23.5<br>23.0<br>22.5<br>23.0<br>24.0<br>25.0<br>24.5<br>23.0<br>21.5<br>23.0<br>24.0                                                                                         | 21.5<br>21.5<br>21.5<br>21.5<br>21.5<br>21.5<br>22.5<br>19.5<br>22.0<br>20.0<br>20.0<br>21.5<br>22.0<br>18.0<br>18.5                                                                  | 22.5<br>22.0<br>21.5<br>22.0<br>22.5<br>23.5<br>23.5<br>22.5<br>21.0<br>21.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19                                  | 18.0<br>18.5<br>19.5<br>21.0<br>22.0<br>21.0<br>22.0<br>21.5<br>21.5<br>24.0<br>24.0<br>24.5<br>24.0<br>24.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | JUNE  16.5 16.5 17.5 18.0 18.5 19.0 20.5 20.5 19.5 18.0 18.0 21.0 22.0 21.0 21.5 22.0 22.5    | 17.5<br>17.5<br>18.5<br>19.5<br>20.0<br>21.0<br>21.0<br>20.0<br>19.5<br>21.0<br>22.5<br>23.0<br>22.5<br>23.0<br>23.0<br>23.0                                                                                                 | 22.5<br>24.0<br>25.5<br>26.0<br>25.0<br>24.5<br>23.5<br>24.0<br>23.5<br>23.5<br>23.5<br>24.5<br>25.0<br>24.5<br>26.0<br>24.5                                                                                                                                                                                                                                                       | JULY 20.0 21.0 22.5 24.0 23.5 23.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21                                                                    | 21.0<br>22.5<br>24.0<br>25.0<br>24.0<br>23.0<br>22.5<br>23.0<br>22.5<br>23.5<br>23.5<br>24.0<br>25.0<br>25.5<br>26.0<br>25.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25.55<br>25.55<br>24.5<br>24.5<br>24.5<br>26.0<br>26.0<br>26.0<br>27.5<br>21.5<br>22.0<br>22.0<br>22.0<br>22.0<br>23.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AUGUST<br>23.5<br>24.0<br>23.0<br>23.0<br>23.0<br>24.0<br>24.0<br>24.0<br>24.0<br>22.5<br>22.5<br>22.5<br>19.0<br>19.5<br>19.5<br>20.5<br>21.5                                                                                 | 24.5<br>24.5<br>24.5<br>24.0<br>24.0<br>23.5<br>25.0<br>25.0<br>25.0<br>21.5<br>20.0<br>21.5<br>20.0<br>21.5<br>22.5                                                                                                                                                                                                                         | 23.5<br>23.0<br>22.5<br>23.0<br>24.0<br>25.0<br>24.5<br>23.0<br>21.5<br>23.0<br>24.0<br>23.5<br>23.0<br>20.0<br>19.0                                                         | 21.5<br>21.5<br>21.5<br>21.5<br>21.0<br>21.5<br>22.5<br>19.5<br>22.0<br>20.0<br>20.0<br>21.5<br>22.0<br>18.5<br>17.0<br>16.0<br>17.0<br>18.5                                          | 22.5<br>22.0<br>21.5<br>22.0<br>22.5<br>23.5<br>22.5<br>21.5<br>22.5<br>21.5<br>22.5<br>21.0<br>19.5<br>18.0<br>17.5<br>18.0<br>20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1 2 3 4 5 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 223 24 25 26 27 28 29 30 | 18.0<br>18.0<br>19.5<br>19.5<br>21.0<br>22.0<br>21.0<br>22.0<br>21.0<br>22.0<br>21.0<br>22.0<br>24.0<br>24.0<br>24.0<br>24.0<br>24.0<br>24.0<br>22.0<br>24.0<br>22.0<br>24.0<br>26.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0 | JUNE  16.5 16.5 17.5 18.0 18.5 19.0 20.5 20.5 19.0 21.0 21.0 21.0 22.0 21.0 21.0 21.0 21      | 17.5<br>17.5<br>18.0<br>18.5<br>19.5<br>20.0<br>21.0<br>21.0<br>21.0<br>22.5<br>23.0<br>22.5<br>23.0<br>22.5<br>23.0<br>22.5<br>23.0<br>22.5<br>23.0<br>22.5<br>23.0<br>23.0<br>23.0<br>23.0<br>23.0<br>23.0<br>23.0<br>23.0 | 22.5<br>24.0<br>25.0<br>25.0<br>25.0<br>24.5<br>23.5<br>23.5<br>23.5<br>23.5<br>24.5<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0<br>27.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28                                                                                                                                                                         | JULY 20.0 21.0 22.0 23.5 23.5 22.1 21.5 20.0 21.5 21.5 21.5 21.6 21.6 22.6 23.6 24.6 24.6 24.6 24.6 24.6 24.6 24.6 24                       | 21.0<br>22.5<br>24.0<br>23.0<br>23.0<br>22.5<br>23.0<br>22.5<br>23.5<br>23.5<br>23.5<br>24.0<br>25.5<br>24.0<br>25.5<br>24.0<br>25.5<br>24.0<br>25.5<br>23.5<br>23.5<br>24.0<br>25.5<br>24.0<br>25.5<br>26.0<br>27.5<br>27.5<br>28.0<br>27.5<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0 | 25.55.55.55.55.55.55.55.55.55.55.55.55.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AUGUST  23.5 24.0 23.0 23.0 23.0 24.0 24.0 24.0 24.0 24.0 25.5 19.0 19.5 21.5 21.5 21.5 20.6 21.5 20.6 21.5 20.6 21.5 20.6 21.5 20.6 20.6 21.5 20.6 21.5 20.6 21.5 20.6 21.5 20.6 21.5 20.6 21.5 20.6 21.5 20.6 21.5 20.6 21.5 | 24.5<br>24.5<br>24.5<br>24.0<br>24.0<br>23.5<br>25.0<br>24.0<br>23.5<br>25.0<br>21.5<br>20.5<br>21.5<br>22.5<br>23.0<br>21.5<br>22.5<br>23.0<br>21.5<br>22.5<br>23.0<br>23.5<br>22.5<br>23.0<br>23.5<br>23.5<br>23.0<br>23.5<br>23.0<br>23.5<br>23.0<br>23.5<br>23.0<br>23.5<br>23.0<br>23.0<br>23.0<br>23.0<br>23.0<br>23.0<br>23.0<br>23.0 | 23.5<br>23.0<br>24.0<br>25.0<br>24.5<br>23.0<br>21.5<br>23.0<br>24.0<br>23.5<br>23.0<br>20.0<br>19.0<br>18.0<br>21.0<br>22.0<br>21.5<br>20.0<br>21.0                         | 21.5<br>21.5<br>21.5<br>21.0<br>21.5<br>22.5<br>19.5<br>22.0<br>20.0<br>20.0<br>21.5<br>22.0<br>18.0<br>18.5<br>17.0<br>16.0<br>17.0<br>18.5<br>20.0<br>20.0                          | 22.5<br>22.0<br>21.5<br>22.0<br>22.5<br>23.5<br>22.5<br>21.0<br>21.5<br>22.5<br>21.0<br>21.5<br>21.0<br>21.5<br>22.0<br>21.0<br>21.5<br>21.0<br>21.5<br>22.0<br>21.0<br>21.5<br>21.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.0<br>21.0<br>21.0<br>21.0<br>21.0<br>21.0<br>21.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29      | 18.0<br>18.5<br>19.5<br>19.5<br>21.0<br>22.0<br>21.0<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>24.0<br>24.0<br>24.0<br>24.0<br>24.0<br>25.5<br>26.0<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5 | JUNE  16.5 16.5 17.5 18.0 18.5 19.0 20.5 20.5 19.5 18.0 21.0 22.0 21.0 22.0 21.0 22.0 21.0 21 | 17.5<br>17.5<br>18.0<br>18.5<br>19.5<br>20.0<br>21.0<br>20.0<br>19.5<br>21.0<br>22.5<br>22.5<br>23.0<br>22.5<br>23.0<br>23.0<br>23.0<br>23.0<br>23.0<br>23.0<br>23.0<br>23.0                                                 | 22.5<br>24.0<br>25.0<br>25.0<br>24.5<br>24.5<br>23.5<br>23.5<br>24.0<br>23.5<br>24.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0<br>27.0<br>26.0<br>26.0<br>26.0<br>27.0<br>26.0<br>26.0<br>27.0<br>26.0<br>27.0<br>26.0<br>27.0<br>26.0<br>27.0<br>26.0<br>27.0<br>26.0<br>27.0<br>26.0<br>27.0<br>26.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27 | JULY 20.0 21.0 21.0 22.5 23.5 23.5 21.5 21.5 20.1 22.5 23.5 24.5 22.5 24.5 24.5 22.6 24.5 22.6 24.5 22.6 22.7 22.6 22.7 22.7 22.7 22.7 22.7 | 21.0<br>22.5<br>24.0<br>25.0<br>24.0<br>22.5<br>23.0<br>22.5<br>23.5<br>24.0<br>25.5<br>26.0<br>25.5<br>26.0<br>25.5<br>26.0<br>25.5<br>26.0<br>25.5<br>26.0<br>27.5<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25.55.55<br>24.55<br>25.55.55<br>24.56.00<br>25.55.55<br>24.56.00<br>25.55<br>26.55<br>26.55<br>26.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27.55<br>27. | AUGUST<br>23.5<br>24.0<br>23.0<br>23.0<br>23.0<br>24.0<br>24.0<br>24.0<br>24.0<br>25.5<br>20.5<br>19.0<br>19.5<br>20.5<br>21.5<br>21.5<br>21.5<br>21.5<br>21.5<br>21.5<br>21.5<br>21                                           | 24.5<br>24.5<br>24.5<br>24.0<br>24.0<br>23.5<br>25.0<br>25.0<br>25.0<br>21.5<br>20.0<br>21.5<br>22.5<br>23.0<br>23.5<br>23.0<br>21.5<br>22.5<br>23.0<br>23.5<br>23.0<br>23.5<br>23.0<br>23.5<br>23.0<br>23.5<br>23.0<br>23.0<br>23.0<br>23.0<br>23.0<br>23.0<br>23.0<br>23.0                                                                 | 23.5<br>23.0<br>24.0<br>25.0<br>24.5<br>23.0<br>21.5<br>23.0<br>24.0<br>23.5<br>23.0<br>20.0<br>19.0<br>18.0<br>19.5<br>20.0<br>21.0<br>22.0<br>21.5<br>18.0<br>17.0<br>16.5 | SEPTEME  21.5 21.5 21.5 21.0 21.5 22.5 22.0 20.0 21.5 22.0 20.0 21.5 22.0 20.0 21.5 22.0 20.0 21.5 22.0 20.0 21.5 21.5 22.0 20.5 21.5 22.0 20.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21 | 22.50<br>21.50<br>22.55<br>22.55<br>22.50<br>21.50<br>22.50<br>21.50<br>22.50<br>21.50<br>21.50<br>22.50<br>21.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50<br>22.50 |

## 01412000 MENANTICO CREEK NEAR MILLVILLE, NJ

LOCATION.--Lat 39°25'12", long 74°58'00", Cumberland County, Hydrologic Unit 02040206, on right bank at upstream side of Mays Landing Road (State Route 552), 0.9 mi downstream of Menantico Lake, 4.0 mi northeast of Millville, and 7.0 mi upstream from mouth.

DRAINAGE AREA .-- 23.2 mi2.

## WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- June 1931 to September 1957, October 1977 to current year. Published as "Manantico Creek" prior to October 1978.

GAGE. -- Water-stage recorder and concrete control. Datum of gage is 36.63 ft National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good, except those for summer months, which are poor. Occasional regulation from unknown source.

AVERAGE DISCHARGE. -- 32 years (water years 1932-57, 1978-83), 37.2 ft3/s, 22.65 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,050 ft<sup>3</sup>/s Aug. 20, 1939, gage height, 6.21 ft, from rating curve extended above 300 ft<sup>3</sup>/s; minimum, 1.4 ft<sup>3</sup>/s Aug. 16-18, 1936.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 125 ft3/s and maximum (\*):

| Date    | Time | Discharge<br>(ft³/s) | Gage height (ft) | Date    | Time | Discharge<br>(ft³/s) | Gage height (ft) |
|---------|------|----------------------|------------------|---------|------|----------------------|------------------|
| Apr. 11 | 1300 | 159                  | 2.85             | Apr. 25 | 1130 | 137                  | 2.63             |
| Apr. 17 | 0845 | *200                 | 3.20             | May 24  | 0600 | 151                  | 2.78             |

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

Minimum daily discharge, 7.6 ft3/s July 19 and Sept. 15.

|                                            |                                   |                                |                                         |                                  |                                         | MEAN VAI                                  | LUES                                      |                                           | ,                                        |                                  |                                   |                                          |  |
|--------------------------------------------|-----------------------------------|--------------------------------|-----------------------------------------|----------------------------------|-----------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------|----------------------------------|-----------------------------------|------------------------------------------|--|
| DA Y                                       | OCT                               | NOV                            | DEC                                     | JAN                              | FEB                                     | MAR                                       | APR                                       | MAY                                       | JUN                                      | JUL                              | AUG                               | SEP                                      |  |
| 1<br>2<br>3<br>4<br>5                      | 9.4<br>9.1<br>9.2<br>9.3<br>9.3   | 11<br>14<br>13<br>13           | 40<br>34<br>43<br>29<br>14              | 21<br>20<br>20<br>19<br>18       | 18<br>17<br>19<br>20<br>19              | 24<br>29<br>30<br>26<br>24                | 53<br>48<br>68<br>94<br>73                | 69<br>68<br>67<br>75<br>81                | 74<br>65<br>56<br>55<br>53               | 37<br>34<br>31<br>28<br>27       | 13<br>13<br>14<br>16<br>18        | 12<br>12<br>12<br>12<br>11               |  |
| 6<br>7<br>8<br>9                           | 9.4<br>9.4<br>9.5<br>9.4<br>8.0   | 13<br>12<br>12<br>12<br>12     | 22<br>28<br>27<br>25<br>22              | 20<br>20<br>20<br>19<br>20       | 18<br>24<br>29<br>27<br>24              | 23<br>27<br>38<br>47<br>47                | 61<br>55<br>55<br>62<br>91                | 74<br>67<br>63<br>61<br>59                | 48<br>45<br>44<br>42<br>40               | 27<br>26<br>26<br>26<br>26<br>25 | 14<br>11<br>10<br>10<br>8.9       | 11<br>11<br>11<br>10<br>9.4              |  |
| 11<br>12<br>13<br>14<br>15                 | 8.1<br>8.3<br>8.9<br>9.4<br>9.4   | 11<br>11<br>29<br>45<br>37     | 23<br>22<br>22<br>20<br>20              | 41<br>40<br>32<br>27<br>26       | 22<br>23<br>21<br>21<br>21              | 52<br>50<br>47<br>40<br>35                | 149<br>115<br>81<br>68<br>63              | 55<br>52<br>51<br>50<br>52                | 39<br>37<br>35<br>34<br>32               | 23<br>23<br>23<br>21<br>20       | 9.8<br>12<br>10<br>11             | 9.5<br>10<br>9.5<br>8.8<br>8.6           |  |
| 16<br>17<br>18<br>19<br>20                 | 9.8<br>9.7<br>9.5<br>9.8<br>9.8   | 28<br>24<br>21<br>20<br>18     | 53<br>42<br>33<br>28                    | 27<br>25<br>24<br>21<br>19       | 22<br>24<br>29<br>33<br>33              | 33<br>31<br>41<br>95<br>101               | 111<br>187<br>130<br>94<br>91             | 78<br>118<br>102<br>75<br>67              | 30<br>28<br>28<br>29<br>34               | 19<br>18<br>18<br>15             | 12<br>13<br>12<br>11              | 9.8<br>12<br>12<br>11<br>11              |  |
| 21<br>22<br>23<br>24<br>25                 | 9.9<br>10<br>10<br>9.5            | 18<br>17<br>17<br>17<br>17     | 25<br>24<br>22<br>22<br>22              | 21<br>20<br>22<br>26<br>26       | 32<br>31<br>32<br>34<br>32              | 75<br>87<br>71<br>55<br>48                | 92<br>80<br>71<br>87<br>132               | 69<br>97<br>129<br>141<br>107             | 58<br>82<br>66<br>50<br>40               | 11<br>11<br>11<br>11<br>11       | 10<br>11<br>11<br>11<br>11        | 11<br>13<br>42<br>23<br>11               |  |
| 26<br>27<br>28<br>29<br>30<br>31           | 14<br>15<br>13<br>12<br>12        | 15<br>11<br>12<br>37<br>57     | 21<br>21<br>21<br>22<br>22<br>21        | 22<br>20<br>20<br>18<br>18<br>18 | 28<br>26<br>24                          | 43<br>44<br>89<br>106<br>74<br>57         | 118<br>92<br>80<br>74<br>71               | 76<br>72<br>71<br>64<br>63<br>70          | 36<br>34<br>32<br>39<br>41               | 11<br>12<br>12<br>13<br>13<br>13 | 11<br>11<br>11<br>11<br>11        | 7.9<br>8.1<br>8.6<br>9.0<br>9.7          |  |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 312.1<br>10.1<br>15<br>8.0<br>.44 | 587<br>19.6<br>57<br>11<br>.84 | 822<br>26.5<br>53<br>14<br>1.14<br>1.32 | 710<br>22.9<br>41<br>18<br>.99   | 703<br>25.1<br>34<br>17<br>1.08<br>1.13 | 1589<br>51.3<br>106<br>23<br>2.21<br>2.55 | 2646<br>88.2<br>187<br>48<br>3.80<br>4.24 | 2343<br>75.6<br>141<br>50<br>3.26<br>3.76 | 1326<br>44.2<br>82<br>28<br>1.91<br>2.13 | 609<br>19.6<br>37<br>11<br>.84   | 360.7<br>11.6<br>18<br>8.9<br>.50 | 356.9<br>11.9<br>42<br>7.9<br>.51<br>.57 |  |

CAL YR 1982 TOTAL 8845.7 MEAN 24.2 MAX 103 MIN 6.4 CFSM 1.04 IN. 14.18 WTR YR 1983 TOTAL 12364.7 MEAN 33.9 MAX 187 MIN 7.9 CFSM 1.46 IN. 19.83

37 COHANSEY RIVER BASIN

## 01412800 COHANSEY RIVER AT SEELEY, NJ

LOCATION.--Lat 39°28'21", long 75°15'21", Cumberland County, Hydrologic Unit 02040206, on right bank just downstream from bridge on Silver Lake Road, 0.6 mi south of Seeley, 2.6 mi east of Shiloh, 4.1 mi north of Bridgeton, and 22.5 mi upstream from mouth.

DRAINAGE AREA .-- 28.0 mi2.

## WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1977 to current year.

GAGE. -- Water-stage recorder. Datum of gage is 26.9 ft National Geodetic Vertical Datum of 1929.

REMARKS .-- Water-discharge records fair. Flow diverted above gage during summer months for irrigation.

AVERAGE DISCHARGE. -- 6 years, 38.3 ft3/s, 18.58 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 10,000 ft<sup>3</sup>/s June 21, 1983, includes discharge from dam break at Seeley Lake 1.3 mi upstream, gage height, 8.50 ft, from rating curve extended above 600 ft<sup>3</sup>/s on basis of step-backwater computation of peak flow; minimum, 13 ft<sup>3</sup>/s Sept. 13, 1981, gage height, 2.71 ft.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 250 ft 3/s and maximum (\*):

| Date               | Time         | Discharge<br>(ft³/s) | Gage height (ft) | Date    | Time | Discharge<br>(ft³/s) | Gage height (ft) |
|--------------------|--------------|----------------------|------------------|---------|------|----------------------|------------------|
| Apr. 10<br>Apr. 16 | 1900<br>1700 | 263<br>411           | 4.99<br>5.38     | June 21 | 0130 | *10000               | 8.50             |

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

Minimum daily discharge, 16 ft3/s June 18.

|                                            |                                       | DIDU                                  | HANGE, IN                              | CODIC PE                         | EI FER SEC                     | MEAN VAI                                  | LUES                                      | CIODER 19                                 | JZ 10 SEF.                                | LIIDEN 190                              | , 3                                    |                                         |
|--------------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|----------------------------------|--------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-----------------------------------------|----------------------------------------|-----------------------------------------|
| DA Y                                       | OCT                                   | NOV                                   | DEC                                    | JAN                              | FEB                            | MAR                                       | APR                                       | MAY                                       | JUN                                       | JUL                                     | AUG                                    | SEP                                     |
| 1<br>2<br>3<br>4<br>5                      | 21<br>21<br>21<br>21<br>21            | 18<br>18<br>18<br>19<br>23            | 31<br>29<br>25<br>24<br>24             | 21<br>20<br>19<br>19<br>20       | 21<br>22<br>32<br>26<br>22     | 26<br>37<br>28<br>25<br>23                | 39<br>38<br>91<br>72<br>49                | 44<br>45<br>45<br>66<br>53                | 37<br>32<br>29<br>36<br>30                | 44<br>43<br>40<br>50                    | 24<br>25<br>25<br>25<br>25<br>38       | 24<br>23<br>23<br>23<br>23              |
| 6<br>7<br>8<br>9                           | 21<br>21<br>21<br>21<br>21            | 20<br>19<br>18<br>20<br>19            | 37<br>26<br>21<br>21<br>20             | 26<br>23<br>21<br>20<br>26       | 22<br>33<br>28<br>25<br>22     | 23<br>39<br>47<br>49                      | 44<br>43<br>48<br>54<br>165               | 44<br>41<br>40<br>40<br>39                | 26<br>33<br>29<br>25<br>23                | 41<br>37<br>35<br>34<br>31              | 32<br>26<br>24<br>25<br>24             | 22<br>22<br>68<br>54<br>24              |
| 11<br>12<br>13<br>14<br>15                 | 21<br>21<br>21<br>21<br>21            | 19<br>20<br>52<br>36<br>27            | 20<br>23<br>21<br>21<br>22             | 49<br>31<br>24<br>21<br>28       | 23<br>24<br>22<br>21<br>22     | 39<br>45<br>35<br>30<br>30                | 164<br>70<br>53<br>49                     | 38<br>38<br>38<br>38<br>44                | 22<br>22<br>21<br>20<br>19                | 29<br>29<br>27<br>26<br>26              | 26<br>39<br>29<br>27<br>26             | 24<br>24<br>24<br>24<br>24              |
| 16<br>17<br>18<br>19<br>20                 | 21<br>21<br>21<br>21<br>21            | 23<br>22<br>21<br>21<br>21            | 63<br>56<br>30<br>24<br>24             | 26<br>22<br>21<br>19<br>20       | 24<br>26<br>27<br>27<br>25     | 29<br>29<br>56<br>100<br>61               | 291<br>142<br>63<br>58<br>66              | 93<br>125<br>62<br>43<br>53               | 18<br>17<br>16<br>18<br>289               | 27<br>26<br>25<br>25<br>26              | 25<br>25<br>26<br>25<br>24             | 24<br>25<br>25<br>24<br>24              |
| 21<br>22<br>23<br>24<br>25                 | 26<br>22<br>21<br>21<br>29            | 20<br>21<br>21<br>21<br>21<br>20      | 22<br>21<br>21<br>20<br>20             | 20<br>20<br>32<br>32<br>27       | 24<br>23<br>28<br>27<br>25     | 100<br>114<br>53<br>40<br>37              | 60<br>50<br>46<br>82<br>126               | 55<br>68<br>165<br>84<br>50               | 2150<br>228<br>76<br>92<br>67             | 26<br>28<br>26<br>27<br>25              | 24<br>24<br>24<br>24<br>24             | 31<br>79<br>35<br>26<br>24              |
| 26<br>27<br>28<br>29<br>30<br>31           | 33<br>24<br>20<br>18<br>18            | 20<br>20<br>21<br>72<br>47            | 20<br>20<br>20<br>23<br>23<br>21       | 24<br>22<br>22<br>21<br>21<br>22 | 23<br>21<br>21<br>             | 35<br>45<br>111<br>66<br>44<br>40         | 78<br>63<br>49<br>46<br>45                | 41<br>81<br>70<br>44<br>45                | 49<br>46<br>46<br>57<br>47                | 25<br>25<br>25<br>25<br>25<br>25        | 24<br>25<br>29<br>29<br>24             | 24<br>24<br>24<br>26                    |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 670<br>21.6<br>33<br>18<br>.77<br>.89 | 737<br>24.6<br>72<br>18<br>.88<br>.98 | 793<br>25.6<br>63<br>20<br>.91<br>1.05 | 739<br>23.8<br>49<br>19<br>.85   | 686<br>24.5<br>33<br>21<br>.87 | 1483<br>47.8<br>114<br>23<br>1.71<br>1.97 | 2293<br>76.4<br>291<br>38<br>2.73<br>3.05 | 1777<br>57.3<br>165<br>38<br>2.05<br>2.36 | 3620<br>121<br>2150<br>16<br>4.32<br>4.81 | 953<br>30.7<br>50<br>25<br>1.10<br>1.27 | 815<br>26.3<br>39<br>24<br>.94<br>1.08 | 865<br>28.8<br>79<br>22<br>1.03<br>1.15 |

CAL YR 1982 TOTAL 10703 MEAN 29.3 MAX 258 MIN 16 CFSM 1.05 IN. 14.22 WTR YR 1983 TOTAL 15431 MEAN 42.3 MAX 2150 MIN 16 CFSM 1.51 IN. 20.50

## COHANSEY RIVER BASIN

# 01412800 COHANSEY RIVER AT SEELEY, NJ -- Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1975 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

| DAT               | ΓE               | TIME           | FL<br>INS<br>TAN               | EAM-<br>OW,<br>TAN-<br>EOUS<br>FS)                | DU<br>AN                      | FIC<br>N-<br>CT-         | (ST                                    | H<br>AND-<br>RD<br>TS)     | AT       | PER-<br>URE<br>G C)                   | SOI                    | GEN,<br>IS-<br>LVED<br>G/L)                                    | OXY<br>DI<br>SOL<br>(PE<br>CE<br>SAT<br>ATI | VED<br>R-<br>NT<br>UR-             | BI<br>CH<br>IC<br>5 | YGEN<br>AND,<br>O-<br>EM-<br>AL,<br>DAY<br>G/L) | F C             | DLI-<br>DRM,<br>CCAL,<br>CC<br>OTH    | STREP<br>TOCOCC<br>FECAL<br>(MPN) | I |
|-------------------|------------------|----------------|--------------------------------|---------------------------------------------------|-------------------------------|--------------------------|----------------------------------------|----------------------------|----------|---------------------------------------|------------------------|----------------------------------------------------------------|---------------------------------------------|------------------------------------|---------------------|-------------------------------------------------|-----------------|---------------------------------------|-----------------------------------|---|
| OCT               |                  |                |                                |                                                   |                               |                          |                                        |                            |          |                                       |                        | 4,                                                             |                                             |                                    |                     |                                                 |                 |                                       |                                   |   |
| O7.               |                  | 1230           |                                | 21                                                |                               | 237                      |                                        | 6.7                        |          | 18.0                                  |                        | 9.4                                                            |                                             | 99                                 |                     | 1.8                                             |                 | 130                                   | 14                                | 0 |
| MAR               |                  | 1130           |                                | 26                                                |                               | 211                      |                                        |                            |          | 6.0                                   |                        | 12.1                                                           |                                             |                                    |                     | .9                                              |                 | 94                                    | 2                                 | 0 |
| 14.               |                  | 1115           |                                | 30                                                |                               | 201                      |                                        | 6.9                        |          | 8.0                                   | - 1                    | 12.3                                                           |                                             | 105                                |                     | .7                                              |                 | 2                                     |                                   | 4 |
| 18.               |                  | 0930           |                                | 64                                                |                               | 151                      |                                        |                            |          | 13.5                                  |                        | 8.8                                                            |                                             | 84                                 |                     | 1.6                                             | >2              | 4000                                  | 80                                | 0 |
| JUL<br>19.<br>AUG |                  | 1100           |                                | 26                                                |                               | 237                      |                                        | 6.7                        |          | 22.0                                  |                        | 5.2                                                            |                                             | 60                                 |                     | 1.8                                             |                 | 900                                   | 3500                              | 0 |
| 09                |                  | 1230           |                                | 25                                                |                               | 210                      |                                        | 6.4                        |          | 22.0                                  |                        | 8.0                                                            |                                             |                                    |                     | 3.0                                             |                 | 490                                   | 92                                | 0 |
|                   | DATE             | NE<br>(M       | G/L                            | CALC:<br>DIS:<br>SOL:<br>(MG:<br>AS               | VED<br>/L                     | DI<br>SOL<br>(MG         | NE-<br>IUM,<br>IS-<br>VED              | SODI<br>DIS<br>SOLV<br>(MG | ED.      | POT<br>SI<br>DI<br>SOL<br>(MG<br>AS   | UM,<br>S-<br>VED<br>/L | ALKA-<br>LINITY<br>LAB<br>(MG/L<br>AS<br>CACOS                 |                                             | SULF<br>DIS<br>SOL<br>(MG/         | VÈ D                | CHL<br>RID<br>DIS<br>SOL<br>(MG<br>AS           | E,<br>VED<br>/L | FLUC<br>RID<br>DI<br>SOL<br>(MG<br>AS | E,<br>S-<br>VED<br>/L             |   |
|                   |                  |                | 3.,                            |                                                   |                               |                          |                                        |                            | ,        |                                       |                        |                                                                |                                             |                                    |                     |                                                 | 100             |                                       |                                   |   |
| **                | OCT<br>O7<br>JAN |                | 60                             | 12                                                |                               | 7                        | 7.2                                    | 15                         | ;        | 4                                     | . 2                    | 19                                                             |                                             | 2                                  | 1                   | 29                                              |                 | <                                     | . 10                              |   |
|                   | 25<br>MAR        | •              | 58                             | 12                                                |                               | 6                        | . 9                                    | 11                         |          | 4                                     | . 0                    | 9.0                                                            |                                             | 2                                  | 3                   | 27                                              |                 | <                                     | . 10                              |   |
|                   | 14<br>MAY        | •              | 51                             | 10                                                |                               | 6                        | 5.2                                    | 9                          | .9       | 3                                     | . 8                    | 11                                                             |                                             | 2                                  | 4                   | 24                                              |                 |                                       | . 10                              |   |
|                   | 18<br>JUL        |                | 53                             | 11                                                |                               | . 6                      | 5.3                                    | 8                          | . 2      | 3                                     | . 6                    | 15                                                             | ,                                           | 2                                  | 3                   | 19                                              |                 |                                       | . 10                              |   |
|                   | 19<br>AUG        | •              | 63                             | 12                                                |                               | 8                        | 3.1                                    | 15                         | ;        | 4                                     | .5                     | 14                                                             |                                             | 2                                  | 2                   | 28                                              |                 |                                       | . 10                              |   |
|                   | 09               | •              | 59                             | 12                                                | 1                             | 7                        | 7.1                                    | 12                         | 2        | 4                                     | . 1                    | 16                                                             |                                             | 2                                  | 1                   | 27                                              |                 |                                       | . 10                              |   |
|                   | DATE             | DI<br>SO<br>(M | ICA,<br>S-<br>LVED<br>G/L<br>S | SOLI<br>RESI<br>AT 1:<br>DEG<br>DI:<br>SOL<br>(MG | DUÉ<br>80<br>. C<br>S-<br>VED | OF<br>NITE<br>TOT<br>(MC | RO-<br>EN,<br>RITE<br>FAL<br>G/L<br>N) |                            | AL<br>/L | NIT<br>GE<br>AMMO<br>TOT<br>(MG<br>AS | N,<br>NIA<br>AL<br>/L  | NITRO<br>GEN, AN<br>MONIA<br>ORGANI<br>TOTAI<br>(MG/I<br>AS NI | 1-<br>tc                                    | NITI<br>GE:<br>TOT:<br>(MG:<br>AS: | N,<br>AL            | PHO<br>PHA<br>TOT<br>(MG<br>AS P                | TE,<br>AL<br>/L | TOT                                   | NIC<br>Al<br>/L                   |   |
|                   |                  |                | · - /                          | (                                                 | , -,                          |                          |                                        |                            | .,       |                                       | . A                    |                                                                | -                                           |                                    | 1,000               |                                                 |                 |                                       |                                   |   |
|                   | OCT<br>O7<br>JAN | •              | 7.8                            |                                                   | 125                           | Ε.                       | 010                                    | 4.                         | 10       |                                       | 050                    | . (                                                            | 06                                          | 4                                  | . 2                 |                                                 | . 15            | 1                                     | • 7                               |   |
| 1                 | 25               | •              | 8.5                            |                                                   | 128                           |                          | 020                                    | 5.                         | 40       |                                       | 120                    | 1.0                                                            | 0.                                          | 6                                  | . 4                 |                                                 | . 12            | 1                                     | . 8                               |   |
|                   | MAR<br>14<br>MAY |                | 6.3                            |                                                   | 107                           |                          | 020                                    | 4.                         | 20       | <.                                    | 050                    |                                                                | 92                                          | 5                                  | .1                  |                                                 | . 12            | 3                                     | .6                                |   |
|                   | 18               |                | 4.7                            |                                                   | 113                           |                          | 030                                    | 2.                         | 90       |                                       | 140                    | . !                                                            | 58                                          | 3                                  | .5                  |                                                 | . 58            | 6                                     | .3                                |   |
|                   | 19<br>AUG        |                | 8.5                            |                                                   | 130                           |                          | 040                                    | 5.                         | 20       | ۷.                                    | 050                    | L 10                                                           | 31                                          | 5                                  | .5                  |                                                 | . 28            | 4                                     | .1                                |   |
|                   | 09               | •              | 8.9                            |                                                   | 123                           |                          | 020                                    | 4.                         | 70       |                                       | 070                    | E. :                                                           | 24                                          |                                    |                     |                                                 | .21             | 3                                     | . 9                               |   |
|                   |                  |                |                                |                                                   |                               |                          |                                        |                            |          |                                       |                        |                                                                |                                             |                                    |                     |                                                 |                 |                                       |                                   |   |

## 01413015 COHANSEY RIVER AT BRIDGETON, NJ

LOCATION.--Lat 39°25'54", long 75°14'11", Cumberland County, Hydrologic Unit 02040206, at bridge on Washington Street in Bridgeton, 1.3 mi downstream from Sunset Lake, and 18.6 mi upstream from mouth.

DRAINAGE AREA .-- 47.3 mi2.

## WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1975 to May 1983 (discontinued).

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

| DA  | TE        | TIME                            | DUC<br>ANO      | FIC<br>N-<br>CT-                                |                               | AND-                                   | TEM I                 | JRE                                          | SOI                    | GEN,<br>IS-<br>LVED<br>G/L)               | Si (I                 | YGEN,<br>DIS-<br>DLVED<br>PER-<br>CENT<br>ATUR-<br>FION) | DEM<br>BI<br>CH<br>IC<br>5    | O- I<br>EM- I<br>AL,<br>DAY                  | COLI-<br>FORM,<br>FECAL,<br>EC<br>BROTH | TO                                     | TREP-<br>COCCI<br>ECAL<br>MPN) | NES<br>(MC            | G/L |
|-----|-----------|---------------------------------|-----------------|-------------------------------------------------|-------------------------------|----------------------------------------|-----------------------|----------------------------------------------|------------------------|-------------------------------------------|-----------------------|----------------------------------------------------------|-------------------------------|----------------------------------------------|-----------------------------------------|----------------------------------------|--------------------------------|-----------------------|-----|
| OCT |           |                                 |                 |                                                 |                               |                                        |                       | ,                                            |                        |                                           |                       |                                                          |                               |                                              |                                         |                                        |                                |                       |     |
| JAN |           | 1115                            | •               | 2440                                            |                               | 7.5                                    | 1                     | 9.5                                          |                        | 9.8                                       |                       | 108                                                      |                               | 21                                           |                                         |                                        |                                |                       | 200 |
| MAR |           | 1030                            |                 | 195                                             |                               |                                        |                       | .0                                           |                        | 14.8                                      |                       | 99                                                       |                               | 1.8                                          | 33                                      |                                        | 79                             |                       | 51  |
|     |           | 0930                            |                 | 518                                             |                               | 6.5                                    |                       | 8.0                                          |                        | 10.3                                      |                       | 88                                                       |                               | 2.1                                          | 130                                     |                                        | 90                             |                       | 66  |
|     |           | 1130                            |                 | 159                                             |                               | 6.5                                    | 1                     | 7.0                                          |                        | 8.1                                       |                       | 83                                                       |                               | 4.2                                          | 2200                                    |                                        | <200                           |                       | 51  |
|     | DATE      | CALC<br>DIS<br>SOL<br>(MG<br>AS | -<br>VE D<br>/L | MAG<br>SI<br>DI<br>SOL<br>(MG<br>AS             | UM,<br>S-<br>VED<br>/L        | SODIU<br>DIS-<br>SOLVE<br>(MG/<br>AS N | D<br>L                | POTA<br>SIU<br>DIS<br>SOLV<br>(MG/<br>AS F   | JM,<br>S-<br>VED<br>'L | ALKA<br>LINIT<br>LAI<br>(MG,<br>AS<br>CAC | TY<br>B<br>/L         | SULF:<br>TOT:<br>(MG:<br>AS:                             | AL<br>L                       | SULFATI<br>DIS-<br>SOLVE:<br>(MG/L<br>AS SO4 | E RI<br>DIS<br>O SO<br>(M               | LO-<br>DE,<br>S-<br>LVED<br>G/L<br>CL) |                                | E,<br>S-<br>VED<br>/L |     |
|     | ОСТ       |                                 |                 |                                                 |                               |                                        |                       |                                              |                        |                                           |                       |                                                          |                               |                                              |                                         |                                        |                                |                       |     |
|     | 04<br>JAN | . 11                            |                 | 43                                              |                               | 370                                    |                       | 19                                           |                        | 26                                        |                       |                                                          | .5                            | 97                                           | 70                                      | 0                                      |                                | . 10                  |     |
|     | 20<br>MAR | . 9                             | .7              | 6                                               | . 6                           | 12                                     |                       | 3.                                           | 9                      | 13                                        |                       |                                                          |                               | 21                                           | 2                                       | 3                                      | <                              | .10                   |     |
|     | 14        | . 9                             | . 9             | 10                                              |                               | 52                                     |                       | 5.                                           | . 0                    | 19                                        |                       |                                                          |                               | 31                                           | 9                                       | 9                                      | <                              | .10                   |     |
|     | 18        | . 10                            |                 | 6                                               | • 3                           | 11                                     |                       | 3.                                           | . 6                    | 22                                        |                       |                                                          | .5                            | 22                                           | 1                                       | 8                                      |                                | .10                   |     |
|     | DATE      | SILI<br>DIS<br>SOL<br>(MG<br>AS | VE D            | SOLI<br>RESI<br>AT 1<br>DEG<br>DI<br>SOL<br>(MG | DUE<br>80<br>. C<br>S-<br>VED | NITE<br>GEN<br>NITE<br>TOTA<br>(MG/    | I,<br>ITE<br>IL<br>'L | NITH<br>GEN<br>NO2+N<br>TOTA<br>(MG/<br>AS N | N,<br>NO3<br>AL<br>/L  | NIT                                       | N,<br>NIA<br>AL<br>/L | NIT<br>GEN,<br>MONI<br>ORGA<br>TOT<br>(MG                | AM-<br>A +<br>NIC<br>AL<br>/L | NITROGEN,<br>TOTAL<br>(MG/L<br>AS N)         | PH<br>TO<br>(M                          | OS-<br>ATE,<br>TAL<br>G/L<br>PO4)      | CARE<br>ORGA<br>TOT<br>(MC     | NIC<br>AL<br>/L       |     |
|     | OCT       |                                 |                 |                                                 |                               |                                        |                       |                                              |                        |                                           |                       |                                                          |                               |                                              |                                         |                                        |                                |                       |     |
|     | 04<br>JAN |                                 | 3.9             | 1                                               | 480                           | . (                                    | 020                   | . (                                          | 500                    | •                                         | 070                   | 1                                                        | . 1                           | 1.7                                          |                                         | .61                                    | 3                              | . 3                   |     |
|     | 20<br>MAR |                                 | 8.2             |                                                 | 108                           | . (                                    | 020                   | 4.2                                          | 20                     | •                                         | 120                   |                                                          | . 13                          | 4.3                                          |                                         | . 12                                   | 6                              | • 3                   |     |
|     | 14<br>MAY |                                 | 7.0             |                                                 | 239                           | . (                                    | 020                   | 3.2                                          | 20                     | •                                         | 300                   | 1                                                        | . 4                           | 4.6                                          |                                         | 1.00                                   | 4                              | . 8                   |     |
|     | 18        |                                 | 5.9             |                                                 | 104                           | . (                                    | 010                   | 2.4                                          | 40                     | •                                         | 480                   | 1                                                        | . 4                           | 3.8                                          |                                         | .52                                    | 7                              | . 8                   |     |

## COHANSEY RIVER BASIN

# 01413015 COHANSEY RIVER AT BRIDGETON, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

| DA TE     | TIME                                                  | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)   | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)                             | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE) | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)   | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD) | CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR)            | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU) |
|-----------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|
| OCT       |                                                       |                                                       |                                                                 |                                                                 |                                                         |                                                         |                                                       | A C                                                     |
| 04<br>MAY | 1115                                                  | 10                                                    | 1                                                               | <10                                                             | 200                                                     | 2                                                       | 20                                                    | 9                                                       |
| 18        | 1130                                                  | 50                                                    | 2                                                               | <10                                                             | 40                                                      | 1                                                       | <10                                                   | 7                                                       |
| DATE      | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG)         | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE)              | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | PHENOLS<br>TOTAL<br>(UG/L)                              |
| OCT<br>04 | 1200                                                  | 9                                                     | 120                                                             | .2                                                              | . 5                                                     | <1                                                      | 40                                                    | <1                                                      |
| MAY<br>18 | 3000                                                  | 53                                                    | 110                                                             | <.1                                                             | 9                                                       | <1                                                      | 50                                                    | - 1                                                     |

## 01434000 DELAWARE RIVER AT PORT JERVIS, NY

LOCATION.--Lat 41°22'14", long 74°41'52", Pike County, PA, Hydrologic Unit 02040104, on right bank 250 ft downstream from bridge (on U.S. Highways 6 and 209) between Port Jervis, NY and Matamoras, PA, 1.2 mi upstream from Neversink River, and 6.5 mi downstream from Mongaup River. Water-quality sampling site at discharge station.

DRAINAGE AREA. -- 3,070 mi2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD, -- October 1904 to current year.

REVISED RECORD. -- WSP 1031: 1905-36. WDR NY-71-1: 1970. WDR NY-82-1: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 415.35 ft National Geodetic Vertical Datum of 1929. October 1904 to August 13, 1928, nonrecording gage at bridge 250 ft upstream at present datum; operated by U.S. Weather Bureau prior to June 20, 1914.

REMARKS.--Records good. Flow regulated by Lake Wallenpaupack and by Toronto, Cliff Lake, and Swinging Bridge
Reservoirs (see Reservoirs in Delaware River Basin) and smaller reservoirs. Large diurnal fluctuations at medium
and low flows caused by powerplants on tributary streams. Subsequent to September 1954, entire flow from 371 mi<sup>2</sup>
of drainage area controlled by Pepacton Reservoir, and subsequent to October 1963, entire flow from 454 mi<sup>2</sup> of
drainage area controlled by Cannonsville Reservoir (see Reservoirs in Delaware River Basin). Part of flow from these reservoirs diverted for New York City municipal supply. Remainder of flow (except for conservation releases and spill) impounded for release during periods of low flow in the lower Delaware River basin, as directed by the Delaware River Master.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 233,000 ft<sup>3</sup>/s Aug. 19, 1955, gage height, 23.91 ft, from floodmarks in gage house, from rating curve extended above 89,000 ft<sup>3</sup>/s on basis of slope-area measurement of peak flow; maximum gage height, 26.6 ft Feb. 12, 1981 (ice jam), from floodmarks; minimum observed discharge, 175 ft<sup>3</sup>/s Sept. 23, 1908, gage height, 0.6 ft.

EXTREMES OUTSIDE PERIOD OF RECORD.--The U.S. Weather Bureau reported a discharge of 205,000 ft<sup>3</sup>/s Oct. 10, 1903, gage height, 23.1 ft, from rating curve extended above 70,000 ft<sup>3</sup>/s by velocity-area studies; stage on Mar. 8, 1904, was 25.5 ft, ice jam.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 72,700 ft<sup>3</sup>/s Apr. 16, gage height, 13.05 ft; minimum, 697 ft<sup>3</sup>/s Oct. 15, gage height, 1.65 ft; minimum daily, 870 ft<sup>3</sup>/s Dec. 12.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983 MEAN VALUES APR MAY JUN JUL AUG SEP OCT NOV DEC JAN FEB MAR DAY 5770 1450 18 TOTAL 47900 MEAN MAX MIN CAL YR 1982 TOTAL MEAN MAX MIN 870 WTR YR 1983 TOTAL MEAN 4693 

MIN 870

MAX

## 01434000 DELAWARE RIVER AT PORT JERVIS, NY -- Continued

## WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1957-60, 1964 to current year.

CHEMICAL DATA: 1958-59(e), 1964-65(c), 1966(a), 1967-68(c), 1969-76(d).

MINOR ELEMENTS DATA: 1970(a), 1972-73(a), 1974-76(c).

PESTICIDE DATA: 1974(a).

ORGANIC DATA: 0C--1974(b), 1975(d).

NUTRIENT DATA: 1968(a), 1969-76(d).

BIOLOGICAL DATA:

Bacteria -- 1973-76(d).

Phytoplankton--1974(b), 1975-76(c).

Periphyton--1976(a).
SEDIMENT DATA: 1959(c), 1976(c).

PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE: January 1973 to September 1973.

WATER TEMPERATURES: February 1957 to September 1960, January 1973 to September 1973, June 1974 to current year.

SUSPENDED-SEDIMENT DISCHARGE: February 1957 to September 1960, March 1970 to June 1976.

INSTRUMENTATION .-- Temperature recorder since January 1973.

REMARKS .-- No temperature record Dec. 16 to Jan. 19, Mar. 4 to Apr. 18, and Apr. 24 to June 10, due to instrument malfunctions.

EXTREMES FOR PERIOD OF DAILY RECORD. -WATER TEMPERATURES: Maximum (water years 1957-59, 1973-81, 1983), 30.0°C July 13, 1981; minimum (water years 1958-60, 1973, 1975-83), freezing point on many days during winter periods.

EXTREMES FOR CURRENT YEAR.-WATER TEMPERATURES: Maximum, 27.5°C July 17, 18, 31, Aug. 1; minimum, freezing point on many days during winter period.

TEMPERATURE (DEG. C) OF WATER, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

|                                  |                                      |                                      |                                      |                                      |                                      | ,                                    |                                   | -,                              |                                  |                      |          |      |
|----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------|---------------------------------|----------------------------------|----------------------|----------|------|
| DAY                              | MAX                                  | MIN                                  | MEAN                                 | MAX                                  | MIN                                  | MEAN                                 | MAX                               | MIN                             | MEAN                             | MAX                  | MIN      | MEAN |
|                                  |                                      | OCTOBE                               | IR .                                 |                                      | NOVEMBE                              | R                                    |                                   | DECEMBE                         | R                                |                      | JANUAR   | Y    |
| 1<br>2<br>3<br>4<br>5            | 18.5<br>18.5<br>17.5<br>18.0<br>17.5 | 16.5<br>17.0<br>16.0<br>16.5<br>16.0 | 18.0<br>17.5<br>17.0<br>17.5         | 12.0<br>13.5<br>14.0<br>15.5<br>15.0 | 10.5<br>11.5<br>13.0<br>14.5<br>11.5 | 11.5<br>12.5<br>13.5<br>15.0<br>13.0 | 4.0<br>5.5<br>6.0<br>8.0<br>9.0   | 3.5<br>4.0<br>5.0<br>6.0<br>8.0 | 3.5<br>4.5<br>5.5<br>7.0<br>8.5  | =                    | ==       | =    |
| 6<br>7<br>8<br>9                 | 18.0<br>18.0<br>18.0<br>17.5         | 16.5<br>16.5<br>17.0<br>17.5<br>16.0 | 17.5<br>17.0<br>17.5<br>18.0<br>16.5 | 11.0<br>9.0<br>8.5<br>8.5<br>7.5     | 9.5<br>8.0<br>7.0<br>7.5<br>6.5      | 10.0<br>8.5<br>8.0<br>8.0<br>7.0     | 10.5<br>10.0<br>8.0<br>6.5<br>2.5 | 9.0<br>8.0<br>6.5<br>2.5<br>1.0 | 10.0<br>9.0<br>7.0<br>4.5<br>1.5 | =                    | <u>=</u> | =    |
| 11<br>12<br>13<br>14<br>15       | 15.5<br>15.5<br>14.5<br>14.5<br>14.0 | 14.5<br>14.5<br>14.0<br>13.5<br>13.0 | 15.0<br>15.0<br>14.0<br>14.0         | 6.5<br>8.0<br>8.0<br>6.5             | 6.0<br>6.0<br>7.0<br>6.0<br>5.0      | 6.0<br>6.5<br>7.5<br>6.0<br>5.5      | 1.0<br>1.0<br>.0<br>.0            | .5<br>.0<br>.0                  | .5<br>.5<br>.0                   | Ē                    |          |      |
| 16<br>17<br>18<br>19<br>20       | 13.0<br>11.0<br>10.0<br>10.5<br>12.0 | 11.0<br>10.0<br>8.5<br>9.0<br>10.0   | 12.5<br>10.5<br>9.5<br>10.0          | 4.5<br>4.0<br>4.0<br>4.0             | 4.0<br>3.5<br>3.0<br>3.5<br>4.0      | 4.5<br>3.5<br>3.5<br>3.5<br>4.0      | ==                                | =                               | =                                |                      |          |      |
| 21<br>22<br>23<br>24<br>25       | 12.5<br>11.5<br>10.5<br>9.5<br>8.5   | 11.5<br>10.5<br>9.5<br>8.0<br>7.0    | 12.0<br>11.0<br>10.0<br>8.5<br>7.5   | 6.0<br>6.5<br>8.0<br>8.5<br>6.5      | 4.5<br>6.0<br>6.5<br>7.0<br>5.5      | 5.0<br>6.0<br>7.5<br>8.0<br>6.0      | =                                 | =                               |                                  | .0<br>.0<br>.0<br>.0 | .0       | .0   |
| 26<br>27<br>28<br>29<br>30<br>31 | 8.5<br>9.0<br>9.5<br>10.0<br>11.0    | 7.0<br>7.5<br>8.0<br>8.5<br>9.0      | 8.0<br>8.5<br>9.0<br>9.0<br>10.0     | 5.5<br>4.5<br>3.0<br>2.5<br>3.5      | 4.5<br>3.0<br>1.5<br>2.0<br>2.5      | 4.5<br>4.0<br>2.0<br>2.0<br>3.0      |                                   | ===                             | =                                | .0<br>.0<br>.0<br>.0 | .0       | .0   |
| MONTH                            | 18.5                                 | 7.0                                  | 13.0                                 | 15.5                                 | 1.5                                  | 7.0                                  | 10.5                              | .0                              | 4.0                              | •5                   | .0       | .0   |
|                                  |                                      |                                      |                                      |                                      |                                      |                                      |                                   |                                 |                                  |                      |          |      |

01434000 DELAWARE RIVER AT PORT JERVIS, NY -- Continued TEMPERATURE (DEG. C) OF WATER, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

|                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7                                                                                             | remperature                                                                                | (DEG. C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | OF WATER,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | YEAR OCTOBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1982 TO                                                                                                                                                      | SEPTEMBE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | R 1983                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DAY                                                                                | MAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MIN                                                                                           | MEAN                                                                                       | MAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MEAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MIN                                                                                                                                                          | MEAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MAX                                                                                                                                                                                                                                                                                                                                          | MIN                                                                                                                                                                                                         | MEAN                                                                                                                                                                                                                                                               |
|                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FEBRUAR                                                                                       | RY                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MARCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | APRIL                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                              | MAY                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                    |
| 1                                                                                  | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .5                                                                                            | 1.0                                                                                        | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                    |
| 2                                                                                  | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.0                                                                                           | 1.0                                                                                        | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                    |
| 3                                                                                  | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.0                                                                                           | 1.5                                                                                        | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                    |
| 4<br>5                                                                             | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .0                                                                                            | .0                                                                                         | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                    |
|                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                               |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                    |
| 6<br>7                                                                             | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .0                                                                                            | .0                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                    |
| 8                                                                                  | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .0                                                                                            | .0                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                    |
| 9<br>10                                                                            | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .0                                                                                            | .0                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                    |
|                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                               |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                    |
| 11<br>12                                                                           | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .0                                                                                            | .0                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                    |
| 13                                                                                 | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .0                                                                                            | .0                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                    |
| 14<br>15                                                                           | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .0                                                                                            | .0                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                    |
|                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                               |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                    |
| 16<br>17                                                                           | •5<br>•5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .0                                                                                            | •5                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                    |
| 18                                                                                 | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •5                                                                                            | 1.0                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                    |
| 19                                                                                 | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.0                                                                                           | 1.5<br>1.0                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.5<br>5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.5                                                                                                                                                          | 6.5<br>5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                    |
| 20                                                                                 | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •5                                                                                            | 1.0                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                    |
| 21                                                                                 | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.0                                                                                           | 1.5                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.0<br>7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.0                                                                                                                                                          | 5.5<br>7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                    |
| 22<br>23                                                                           | 3.0<br>2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.5                                                                                           | 2.0                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.5                                                                                                                                                          | 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                    |
| 24                                                                                 | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.5                                                                                           | 2.0                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                    |
| 25                                                                                 | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.5                                                                                           | 2.0                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                    |
| 26                                                                                 | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •5                                                                                            | 1.0                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                    |
| 27<br>28                                                                           | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •5                                                                                            | .5<br>1.5                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                    |
| 29                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                               |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                    |
| 30                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                               |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                    |
| 31                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                               |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                    |
| MONTH                                                                              | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .0                                                                                            | .5                                                                                         | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.0                                                                                                                                                          | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                             | ,                                                                                                                                                                                                                                                                  |
|                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                               |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                    |
| DAY                                                                                | MAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MIN                                                                                           | MEAN .                                                                                     | MAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MEAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MIN                                                                                                                                                          | MEAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MAX                                                                                                                                                                                                                                                                                                                                          | MIN                                                                                                                                                                                                         | MEAN                                                                                                                                                                                                                                                               |
|                                                                                    | MAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MIN                                                                                           | MEAN .                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MEAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MIN<br>AUGUST                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MAX                                                                                                                                                                                                                                                                                                                                          | MIN<br>SEPTEMB                                                                                                                                                                                              |                                                                                                                                                                                                                                                                    |
| DAY                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MIN<br>JUNE                                                                                   | MEAN .                                                                                     | MAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | JULY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AUGUST                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                              | SEPTEMB                                                                                                                                                                                                     | BER                                                                                                                                                                                                                                                                |
|                                                                                    | MAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MIN                                                                                           | MEAN .                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27.5<br>26.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AUGUST<br>26.0<br>25.0                                                                                                                                       | 27.0<br>26.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24.0<br>24.0                                                                                                                                                                                                                                                                                                                                 | SEPTEMB<br>21.5<br>21.5                                                                                                                                                                                     | 23.0<br>23.0                                                                                                                                                                                                                                                       |
| DAY 1 2 3                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MIN<br>JUNE                                                                                   | MEAN .                                                                                     | MAX<br>22.0<br>24.5<br>26.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | JULY<br>20.5<br>21.0<br>23.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21.0<br>22.0<br>24.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27.5<br>26.5<br>27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AUGUST<br>26.0<br>25.0<br>24.5                                                                                                                               | 27.0<br>26.0<br>26.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24.0<br>24.0<br>24.0                                                                                                                                                                                                                                                                                                                         | SEPTEMB<br>21.5<br>21.5<br>22.0                                                                                                                                                                             | 23.0<br>23.0<br>23.5                                                                                                                                                                                                                                               |
| DAY<br>1<br>2                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MIN<br>JUNE                                                                                   | MEAN .                                                                                     | MAX<br>22.0<br>24.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | JULY<br>20.5<br>21.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27.5<br>26.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AUGUST<br>26.0<br>25.0                                                                                                                                       | 27.0<br>26.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24.0<br>24.0                                                                                                                                                                                                                                                                                                                                 | SEPTEMB<br>21.5<br>21.5                                                                                                                                                                                     | 23.0<br>23.0                                                                                                                                                                                                                                                       |
| DAY 1 2 3 4 5                                                                      | ===                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MIN<br>JUNE                                                                                   | MEAN                                                                                       | MAX<br>22.0<br>24.5<br>26.0<br>26.0<br>25.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | JULY 20.5 21.0 23.0 24.0 24.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21.0<br>22.0<br>24.0<br>25.0<br>25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27.5<br>26.5<br>27.0<br>26.5<br>26.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AUGUST<br>26.0<br>25.0<br>24.5<br>25.5<br>25.0                                                                                                               | 27.0<br>26.0<br>26.0<br>26.0<br>26.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24.0<br>24.0<br>24.0<br>23.5<br>24.5                                                                                                                                                                                                                                                                                                         | 21.5<br>21.5<br>22.0<br>22.5<br>22.5                                                                                                                                                                        | 23.0<br>23.0<br>23.5<br>23.0<br>23.5                                                                                                                                                                                                                               |
| DAY 1 2 3 4                                                                        | ===                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MIN<br>JUNE                                                                                   | MEAN                                                                                       | MAX<br>22.0<br>24.5<br>26.0<br>26.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | JULY<br>20.5<br>21.0<br>23.0<br>24.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21.0<br>22.0<br>24.0<br>25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 27.5<br>26.5<br>27.0<br>26.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AUGUST<br>26.0<br>25.0<br>24.5<br>25.5<br>25.0<br>24.0<br>25.0                                                                                               | 27.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24.0<br>24.0<br>23.5<br>24.5<br>25.0                                                                                                                                                                                                                                                                                                         | 21.5<br>21.5<br>22.0<br>22.5<br>22.5<br>23.5<br>23.5                                                                                                                                                        | 23.0<br>23.0<br>23.5<br>23.0<br>23.5<br>24.0<br>24.0                                                                                                                                                                                                               |
| DAY  1 2 3 4 5 6 7 8                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MIN<br>JUNE                                                                                   | MEAN                                                                                       | MAX  22.0 24.5 26.0 25.5 24.5 24.5 24.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | JULY 20.5 21.0 23.0 24.0 24.0 23.0 22.0 21.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21.0<br>22.0<br>24.0<br>25.0<br>25.0<br>25.0<br>23.5<br>23.0<br>23.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27.5<br>26.5<br>27.0<br>26.5<br>26.5<br>27.0<br>27.0<br>27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AUGUST<br>26.0<br>25.0<br>24.5<br>25.5<br>25.0<br>24.0<br>25.0<br>25.0                                                                                       | 27.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24.0<br>24.0<br>24.0<br>23.5<br>24.5<br>25.0<br>25.0<br>23.5                                                                                                                                                                                                                                                                                 | SEPTEMB 21.5 21.5 22.0 22.5 22.5 23.5 23.5 21.5                                                                                                                                                             | 23.0<br>23.0<br>23.5<br>23.0<br>23.5<br>24.0<br>24.0<br>23.0                                                                                                                                                                                                       |
| DAY  1 2 3 4 5                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MIN<br>JUNE                                                                                   | MEAN                                                                                       | MAX 22.0 24.5 26.0 26.0 25.5 24.5 24.0 24.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | JULY 20.5 21.0 23.0 24.0 24.0 23.0 22.0 21.5 22.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21.0<br>22.0<br>24.0<br>25.0<br>25.0<br>23.5<br>23.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27.5<br>26.5<br>27.0<br>26.5<br>26.5<br>27.0<br>27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AUGUST<br>26.0<br>25.0<br>24.5<br>25.5<br>25.0<br>24.0<br>25.0                                                                                               | 27.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24.0<br>24.0<br>23.5<br>24.5<br>25.0                                                                                                                                                                                                                                                                                                         | 21.5<br>21.5<br>22.0<br>22.5<br>22.5<br>23.5<br>23.5                                                                                                                                                        | 23.0<br>23.0<br>23.5<br>23.0<br>23.5<br>24.0<br>24.0                                                                                                                                                                                                               |
| DAY  1 2 3 4 5 6 7 8 9 10                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MIN<br>JUNE                                                                                   | MEAN                                                                                       | MAX  22.0 24.5 26.0 26.0 25.5 24.5 24.5 24.0 23.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | JULY 20.5 21.0 23.0 24.0 24.0 23.0 22.0 21.5 22.5 21.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21.0<br>22.0<br>24.0<br>25.0<br>25.0<br>23.0<br>23.0<br>23.0<br>22.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27.5<br>26.5<br>27.0<br>26.5<br>26.5<br>27.0<br>27.0<br>27.0<br>26.5<br>26.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AUGUST<br>26.0<br>25.0<br>24.5<br>25.5<br>25.0<br>24.0<br>25.0<br>24.5<br>24.0                                                                               | 27.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24.0<br>24.0<br>23.5<br>23.5<br>25.0<br>25.0<br>23.5<br>23.5<br>24.0                                                                                                                                                                                                                                                                         | SEPTEMB 21.5 21.5 22.0 22.5 22.5 23.5 23.5 21.5 21.5 21.5                                                                                                                                                   | 23.0<br>23.0<br>23.5<br>23.5<br>24.0<br>24.0<br>23.0<br>22.5<br>23.0                                                                                                                                                                                               |
| DAY  1 2 3 4 5 6 7 8 9 10 11                                                       | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MIN JUNE 18.0                                                                                 | MEAN                                                                                       | MAX  22.0 24.5 26.0 26.0 25.5 24.5 24.0 23.5 24.0 23.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | JULY 20.5 21.0 23.0 24.0 24.0 23.0 22.5 21.0 21.5 22.5 21.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21.0<br>22.0<br>24.0<br>25.0<br>25.0<br>23.5<br>23.0<br>23.0<br>22.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27.5<br>26.5<br>27.0<br>26.5<br>26.5<br>27.0<br>27.0<br>27.0<br>26.5<br>26.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AUGUST<br>26.0<br>25.0<br>24.5<br>25.5<br>25.0<br>24.0<br>25.0<br>24.5<br>24.0<br>23.0<br>20.0                                                               | 27.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24.0<br>24.0<br>23.5<br>24.5<br>25.0<br>25.0<br>23.5<br>24.5<br>24.5                                                                                                                                                                                                                                                                         | 21.5<br>21.5<br>22.0<br>22.5<br>22.5<br>23.5<br>23.5<br>21.5<br>21.5<br>21.5<br>22.5                                                                                                                        | 23.0<br>23.0<br>23.5<br>23.5<br>24.0<br>24.0<br>22.5<br>23.0                                                                                                                                                                                                       |
| DAY  1 2 3 4 5 6 7 8 9 10 11 12 13                                                 | 20.0 20.5 21.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MIN JUNE 18.0 19.5 20.0                                                                       | MEAN 19.0 20.0 21.0                                                                        | MAX  22.0 24.5 26.0 25.5 24.0 24.5 24.0 23.5 24.0 25.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | JULY 20.5 21.0 23.0 24.0 24.0 23.0 22.0 21.5 22.5 21.0 21.5 22.5 23.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21.0<br>22.0<br>24.0<br>25.0<br>25.0<br>23.5<br>23.0<br>23.0<br>23.5<br>23.0<br>24.0<br>24.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 27.5<br>26.5<br>27.0<br>26.5<br>26.5<br>27.0<br>27.0<br>27.0<br>26.5<br>26.0<br>23.0<br>21.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AUGUST<br>26.0<br>25.0<br>24.5<br>25.5<br>25.0<br>24.0<br>25.0<br>24.0<br>25.0<br>24.0<br>20.0                                                               | 27.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24.0<br>24.0<br>24.5<br>23.5<br>25.0<br>25.5<br>25.5<br>25.5<br>24.5<br>24.5<br>24.5<br>24.5                                                                                                                                                                                                                                                 | SEPTEMB 21.5 21.5 22.5 22.5 22.5 23.5 21.5 21.5 21.5 21.5 22.5 20.5                                                                                                                                         | 23.0<br>23.0<br>23.5<br>23.5<br>24.0<br>24.0<br>22.5<br>23.0<br>24.0<br>22.5<br>23.0                                                                                                                                                                               |
| DAY  1 2 3 4 5 6 7 8 9 10 11 12 13 14                                              | 20.0 20.5 21.5 23.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MIN JUNE 18.0 19.5 20.0 21.0                                                                  | MEAN 19.0 20.0 21.0 22.0                                                                   | MAX  22.0 24.5 26.0 26.0 25.5 24.5 24.5 24.0 23.5 24.0 25.5 25.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | JULY 20.5 21.0 23.0 24.0 24.0 23.0 21.5 22.5 21.5 22.5 22.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21.0<br>22.0<br>24.0<br>25.0<br>25.0<br>23.0<br>23.0<br>23.0<br>22.5<br>23.0<br>24.5<br>24.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 27.5<br>26.5<br>27.0<br>26.5<br>26.5<br>27.0<br>27.0<br>27.0<br>26.5<br>26.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AUGUST<br>26.0<br>25.0<br>24.5<br>25.5<br>25.0<br>24.0<br>25.0<br>24.5<br>24.0<br>23.0<br>20.0                                                               | 27.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24.0<br>24.0<br>23.5<br>24.5<br>25.0<br>25.0<br>23.5<br>24.5<br>24.5                                                                                                                                                                                                                                                                         | 21.5<br>21.5<br>22.0<br>22.5<br>22.5<br>23.5<br>23.5<br>21.5<br>21.5<br>21.5<br>22.5                                                                                                                        | 23.0<br>23.0<br>23.5<br>23.5<br>24.0<br>24.0<br>22.5<br>23.0                                                                                                                                                                                                       |
| DAY  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15                                           | 20.0 20.5 21.5 23.5 25.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MIN JUNE 18.0 19.5 20.0 21.0 22.5                                                             | MEAN 19.0 20.0 21.0 22.0 23.5                                                              | MAX  22.0 24.5 26.0 25.5 24.0 24.5 24.0 23.5 24.0 25.5 24.0 25.5 24.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | JULY 20.5 21.0 23.0 24.0 24.0 21.5 22.5 21.0 21.5 22.5 21.0 21.5 22.5 23.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21.0<br>22.0<br>24.0<br>25.0<br>23.5<br>23.0<br>23.0<br>23.5<br>23.0<br>24.5<br>24.5<br>24.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 27.5<br>26.5<br>27.0<br>26.5<br>27.0<br>27.0<br>27.0<br>26.5<br>26.0<br>25.0<br>21.5<br>22.0<br>22.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AUGUST 26.0 25.0 24.5 25.5 25.0 24.0 25.0 24.0 25.0 24.0 20.0 20.0 19.0 20.0                                                                                 | 27.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24.0<br>24.0<br>23.5<br>24.5<br>25.0<br>25.0<br>23.5<br>24.5<br>24.5<br>24.5<br>24.5<br>22.5<br>21.0                                                                                                                                                                                                                                         | SEPTEMB 21.5 21.5 22.5 22.5 22.5 23.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21                                                                                                                                 | 23.0<br>23.0<br>23.5<br>23.5<br>23.5<br>24.0<br>23.0<br>22.5<br>23.0<br>24.0<br>22.5<br>23.0                                                                                                                                                                       |
| DAY  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16                                        | 20.0<br>20.5<br>21.5<br>23.5<br>25.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MIN JUNE 18.0 19.5 20.0 21.0 22.5                                                             | MEAN                                                                                       | MAX  22.0 24.5 26.0 26.0 25.5 24.5 24.5 24.5 24.5 24.6 25.5 24.0 25.6 26.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | JULY 20.5 21.0 23.0 24.0 24.0 23.0 21.5 22.5 21.0 21.5 22.5 23.5 23.5 24.0 24.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21.0<br>22.0<br>24.0<br>25.0<br>23.5<br>23.0<br>23.0<br>23.5<br>23.0<br>24.5<br>24.5<br>24.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 27.5<br>26.5<br>27.0<br>26.5<br>26.5<br>27.0<br>27.0<br>27.0<br>26.5<br>26.0<br>23.0<br>21.5<br>22.0<br>22.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AUGUST 26.0 25.0 24.5 25.5 25.0 24.0 25.0 24.5 24.0 20.0 20.0 20.0 20.0                                                                                      | 27.0<br>26.0<br>26.0<br>26.0<br>26.0<br>25.5<br>26.0<br>26.0<br>25.0<br>26.0<br>21.5<br>20.5<br>20.5<br>21.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24.0<br>24.0<br>24.0<br>23.5<br>24.5<br>25.0<br>23.5<br>23.5<br>24.0<br>24.5<br>22.5<br>21.0<br>19.5                                                                                                                                                                                                                                         | SEPTEMB  21.5 21.5 22.0 22.5 22.5 23.5 21.5 21.0 21.5 22.5 22.5 19.5 18.0                                                                                                                                   | 23.0<br>23.0<br>23.5<br>23.5<br>24.0<br>23.0<br>24.0<br>22.5<br>23.0<br>24.0<br>23.5<br>24.0<br>23.5<br>21.5<br>20.0<br>19.0                                                                                                                                       |
| DAY  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18                                  | 20.0<br>20.5<br>21.5<br>23.5<br>25.5<br>26.0<br>24.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MIN  JUNE  18.0 19.5 20.0 21.0 22.5 24.0 23.0 23.0                                            | MEAN 19.0 20.0 21.0 22.0 23.5 25.0 23.5                                                    | MAX  22.0 24.5 26.0 25.5 24.0 25.5 24.0 25.5 24.0 25.5 24.0 25.5 26.5 27.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | JULY 20.5 21.0 23.0 24.0 24.0 23.0 21.5 22.5 21.0 21.5 22.5 23.5 23.5 24.0 24.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21.0<br>22.0<br>24.0<br>25.0<br>23.5<br>23.0<br>23.5<br>23.5<br>23.5<br>23.5<br>23.5<br>23.5<br>24.5<br>25.5<br>25.0<br>25.0<br>25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27.5<br>26.5<br>27.0<br>26.5<br>27.0<br>27.0<br>27.0<br>26.5<br>26.0<br>25.0<br>21.5<br>22.5<br>24.5<br>24.5<br>26.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AUGUST 26.0 25.0 24.5 25.5 25.0 24.0 25.0 24.5 24.0 20.0 20.0 20.0 20.0                                                                                      | 27.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00 | 24.0<br>24.0<br>23.5<br>24.5<br>25.0<br>25.0<br>23.5<br>24.5<br>24.5<br>22.5<br>21.0<br>19.0<br>19.5                                                                                                                                                                                                                                         | SEPTEMB 21.5 21.5 22.5 22.5 22.5 23.5 21.5 21.5 21.5 22.5 21.7 21.7 22.7 22.7 22.7 22.7 22.7 22.7                                                                                                           | 23.0<br>23.0<br>23.5<br>23.5<br>24.0<br>23.0<br>24.0<br>22.5<br>23.0<br>24.0<br>23.5<br>24.0<br>23.5<br>21.5<br>20.0<br>19.0                                                                                                                                       |
| DAY  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19                               | 20.0<br>20.5<br>21.5<br>23.5<br>26.0<br>24.5<br>24.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MIN JUNE 18.0 19.5 20.0 21.0 22.5 24.0 23.0 23.0 23.0                                         | MEAN 19.0 20.0 21.0 22.0 23.5                                                              | MAX  22.0 24.5 26.0 25.5 24.0 25.5 24.0 25.5 24.0 25.5 24.0 25.5 26.5 27.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | JULY 20.5 21.0 23.0 24.0 24.0 21.5 22.5 21.0 21.5 22.5 21.5 22.5 23.5 24.0 24.5 25.5 24.5 25.5 24.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21.0<br>22.0<br>24.0<br>25.0<br>23.5<br>23.0<br>23.5<br>23.5<br>23.5<br>23.5<br>23.5<br>23.5<br>24.5<br>25.5<br>25.0<br>25.0<br>25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27.5<br>26.5<br>27.0<br>26.5<br>27.0<br>27.0<br>27.0<br>26.5<br>26.0<br>21.5<br>22.0<br>22.5<br>24.0<br>24.5<br>26.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AUGUST 26.0 25.0 24.5 25.5 25.0 24.0 25.0 24.5 24.0 20.0 20.0 20.0 20.0                                                                                      | 27.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00 | 24.0<br>24.0<br>23.5<br>23.5<br>25.0<br>25.0<br>23.5<br>24.5<br>24.5<br>24.5<br>21.0<br>19.5<br>19.0<br>19.5                                                                                                                                                                                                                                 | SEPTEMB  21.5 21.5 22.5 22.5 22.5 23.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21                                                                                                                                | 23.0<br>23.0<br>23.5<br>23.5<br>24.0<br>23.0<br>24.0<br>22.5<br>23.0<br>24.0<br>23.5<br>24.0<br>23.5<br>21.5<br>20.0<br>19.0                                                                                                                                       |
| DAY  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20                            | 20.0 55 21.55 23.5 24.5 24.5 23.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MIN JUNE 18.0 19.5 20.0 21.0 22.5 24.0 23.0 23.0 23.0 23.0                                    | MEAN  19.0 20.0 21.0 22.0 23.5 25.0 23.5 24.0 23.5 23.0                                    | MAX  22.0 24.5 26.0 26.0 25.5 24.5 24.5 24.0 23.5 24.0 25.5 25.5 26.0 26.5 27.5 27.0 24.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | JULY 20.5 21.0 23.0 24.0 24.0 23.0 21.5 22.5 21.0 21.5 22.5 23.5 24.0 24.5 23.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21.0<br>22.0<br>24.0<br>25.0<br>23.5<br>23.0<br>23.0<br>23.0<br>23.0<br>24.5<br>25.0<br>24.5<br>25.0<br>25.0<br>26.0<br>27.5<br>27.5<br>24.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 27.5<br>26.5<br>27.0<br>26.5<br>26.5<br>27.0<br>27.0<br>27.0<br>26.5<br>26.0<br>23.0<br>21.5<br>22.0<br>22.5<br>24.0<br>27.0<br>27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AUGUST 26.0 25.0 24.5 25.0 24.0 25.0 24.0 25.0 24.5 24.0 20.0 20.0 21.5 22.0 23.5 25.0                                                                       | 27.0<br>26.0<br>26.0<br>26.0<br>26.0<br>25.5<br>26.0<br>26.0<br>25.0<br>21.5<br>20.5<br>21.5<br>21.5<br>23.0<br>24.0<br>24.0<br>26.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24.0<br>24.0<br>24.0<br>23.5<br>24.5<br>25.0<br>23.5<br>23.5<br>24.0<br>24.5<br>22.5<br>21.0<br>19.5<br>19.0<br>19.5<br>22.0                                                                                                                                                                                                                 | SEPTEMB  21.5 22.0 22.5 22.5 23.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21                                                                                                                                     | 23.0<br>23.0<br>23.5<br>23.5<br>23.5<br>24.0<br>23.5<br>24.0<br>23.5<br>23.5<br>24.0<br>23.5<br>21.5<br>20.0<br>19.0<br>18.5<br>19.5<br>21.0                                                                                                                       |
| DAY  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21                         | 20.0<br>20.5<br>21.5<br>23.5<br>25.5<br>26.0<br>24.5<br>24.5<br>23.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MIN JUNE 18.0 19.5 20.0 21.0 22.5 24.0 23.0 23.0 23.0 22.5                                    | MEAN  19.0 20.0 21.0 22.0 23.5 25.0 23.5 24.0 23.5 23.0                                    | MAX  22.0 24.5 26.0 25.5 24.0 25.5 24.0 25.5 24.0 25.5 26.0 26.5 27.5 27.0 24.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JULY 20.5 21.0 23.0 24.0 24.0 21.5 22.5 21.0 21.5 22.5 23.5 24.0 24.5 23.5 24.0 24.5 23.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21.0<br>22.0<br>24.0<br>25.0<br>23.0<br>23.0<br>23.0<br>23.0<br>23.0<br>23.0<br>23.0<br>23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 27.5<br>26.5<br>27.0<br>26.5<br>27.0<br>27.0<br>27.0<br>26.0<br>23.0<br>21.5<br>22.0<br>22.5<br>24.0<br>24.0<br>24.0<br>27.0<br>27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AUGUST 26.0 25.0 24.5 25.5 25.0 24.0 25.0 24.0 25.0 24.0 20.0 20.0 21.5 22.0 23.0 23.0                                                                       | 27.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00 | 24.0<br>24.0<br>23.5<br>24.5<br>25.0<br>23.5<br>24.5<br>24.5<br>24.5<br>24.5<br>21.0<br>19.5<br>20.5<br>22.0<br>21.5                                                                                                                                                                                                                         | SEPTEMB 21.5 21.5 22.5 22.5 22.5 23.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21                                                                                                                                 | 23.0<br>23.0<br>23.5<br>23.5<br>23.5<br>24.0<br>23.5<br>24.0<br>23.5<br>23.5<br>24.0<br>23.5<br>21.5<br>20.0<br>19.0<br>18.5<br>19.5<br>21.0                                                                                                                       |
| DAY  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22                      | 20.0 5 21.5 25.5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5 24.5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MIN JUNE 18.0 19.5 20.0 21.0 22.5 24.0 23.0 23.0 23.0 22.5                                    | MEAN  19.0 20.0 21.0 22.0 23.5 24.0 23.5 24.0 23.5 24.0 23.5                               | MAX  22.0 24.5 26.0 26.5 24.5 24.0 25.5 24.0 25.5 26.7 27.5 27.7 24.5 25.5 24.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JULY 20.5 21.0 23.0 24.0 23.0 21.5 22.5 21.5 22.5 23.5 24.5 23.5 24.5 23.5 23.5 24.7 25.5 24.7 25.5 24.7 25.5 25.5 26.7 26.7 27.7 27.7 27.7 27.7 27.7 27.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21.0<br>22.0<br>24.0<br>25.0<br>23.0<br>23.0<br>23.0<br>23.0<br>23.0<br>23.0<br>23.0<br>23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 27.5<br>26.5<br>27.0<br>26.5<br>27.0<br>27.0<br>27.0<br>26.5<br>26.0<br>23.0<br>21.5<br>22.0<br>22.5<br>24.0<br>27.0<br>27.0<br>27.0<br>21.5<br>22.0<br>22.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AUGUST 26.0 25.0 24.5 25.0 24.0 25.0 24.0 25.0 24.5 24.0 20.0 21.5 23.5 25.0 23.5 25.0 23.5 25.0 23.5                                                        | 27.00<br>26.00<br>26.00<br>26.00<br>26.00<br>25.50<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00 | 24.0<br>24.0<br>24.0<br>23.5<br>25.0<br>25.0<br>25.0<br>23.5<br>24.0<br>24.5<br>24.5<br>24.5<br>22.5<br>22.5<br>21.0<br>19.5<br>19.0<br>19.5<br>22.0<br>21.5<br>22.0                                                                                                                                                                         | SEPTEMB  21.5 22.0 22.5 22.5 23.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21                                                                                                                                     | 23.0<br>23.0<br>23.5<br>23.5<br>24.0<br>22.5<br>23.0<br>24.0<br>23.5<br>24.0<br>23.5<br>21.0<br>23.5<br>21.0<br>21.0<br>21.5<br>21.0<br>21.0<br>21.0<br>21.0<br>21.0<br>21.0<br>21.0<br>21.0                                                                       |
| DAY  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24                | 20.55555<br>20.55555<br>20.55555<br>24.55<br>23.55<br>24.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MIN  JUNE  18.0 19.5 20.0 21.0 22.5 24.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23                | MEAN  19.0 20.0 21.0 22.0 23.5 25.0 23.5 24.0 23.5 23.0 22.5 23.0                          | MAX 22.50 24.50 25.5 24.66.0 25.5 24.66.0 25.5 24.66.0 25.5 24.66.0 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 26.7 27.60 27.7 27.7 27.7 27.7 27.7 27.7 27.7 27.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | JULY 20.5 21.0 23.0 24.0 24.0 21.5 22.5 21.5 22.5 23.5 24.5 23.5 24.5 23.5 24.5 23.5 24.5 23.5 24.5 23.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21.00<br>225.00<br>225.00<br>233.05<br>233.22<br>234.55<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>2 | 27.5<br>26.5<br>27.0<br>26.5<br>27.0<br>27.0<br>26.0<br>27.0<br>26.0<br>21.5<br>22.5<br>24.0<br>27.0<br>24.0<br>27.0<br>24.0<br>27.0<br>24.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AUGUST 26.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25                                                                                                            | 27.00<br>26.00<br>26.00<br>26.00<br>26.00<br>25.50<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00 | 24.0<br>24.0<br>23.5<br>24.5<br>25.0<br>23.5<br>23.5<br>24.5<br>22.5<br>21.0<br>19.5<br>22.5<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.5                                                                                                                                                                                 | SEPTEMB 21.5 21.5 22.5 22.5 22.5 23.5 21.5 21.5 22.5 21.5 21.5 22.5 21.5 20.5 19.5 18.0 17.0 19.5 20.0 19.0 19.0 17.0 16.0                                                                                  | 23.0<br>23.5<br>23.5<br>23.5<br>23.5<br>24.0<br>23.5<br>24.0<br>23.5<br>23.5<br>24.0<br>23.5<br>21.5<br>20.0<br>19.0<br>18.5<br>19.5<br>21.0<br>20.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5                                                                       |
| DAY  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25             | 20.055555<br>20.055555<br>24.555<br>24.555<br>24.555<br>24.555<br>24.555<br>24.555<br>24.555<br>24.555<br>24.555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MIN JUNE 18.0 19.5 20.0 21.0 22.5 24.0 23.0 23.0 22.5 22.0 21.0 22.5 22.0                     | MEAN  19.0 20.0 21.0 22.0 23.5 24.0 23.5 24.0 23.5 24.0 23.5 23.0                          | MAX  22.0 24.5 26.0 26.0 25.5 24.0 25.5 24.0 25.5 26.0 25.5 26.0 277.5 274.0 25.2 24.0 25.0 25.2 24.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | JULY 20.5 21.0 23.0 24.0 23.0 21.5 22.5 21.0 21.5 22.5 23.5 24.0 24.5 23.5 24.0 25.5 23.5 24.0 25.5 23.5 24.0 25.5 23.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21.00<br>24.00<br>24.00<br>25.50<br>233.33<br>22.55<br>23.23<br>23.24<br>24.55<br>26.00<br>25.55<br>26.00<br>27.55<br>28.33<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43<br>28.43 | 27.5<br>26.5<br>27.0<br>26.5<br>27.0<br>27.0<br>27.0<br>26.5<br>26.0<br>21.5<br>22.5<br>24.5<br>24.5<br>26.0<br>27.0<br>22.5<br>24.5<br>24.5<br>26.0<br>27.0<br>27.0<br>27.0<br>28.0<br>29.0<br>29.0<br>29.0<br>29.0<br>29.0<br>29.0<br>29.0<br>29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AUGUST 26.0 25.0 24.0 25.0 24.0 25.0 24.0 25.0 24.0 20.0 21.5 22.0 23.0 23.0 22.5 22.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0                                    | 27.00<br>26.00<br>26.00<br>26.00<br>25.00<br>26.00<br>26.00<br>26.00<br>27.00<br>26.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00 | 24.0<br>24.0<br>24.0<br>23.5<br>25.0<br>25.0<br>25.5<br>24.5<br>24.5<br>24.5<br>21.0<br>19.0<br>19.5<br>20.5<br>21.5<br>21.0<br>21.5<br>21.5<br>21.5<br>21.6<br>21.5<br>21.5<br>21.5<br>21.5<br>21.5<br>21.5<br>21.5<br>21.5                                                                                                                 | SEPTEMB  21.5 22.5 22.5 22.5 23.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21                                                                                                                                     | 23.0<br>23.0<br>23.5<br>23.5<br>24.0<br>22.5<br>23.0<br>24.0<br>23.5<br>21.0<br>23.5<br>21.0<br>23.5<br>21.0<br>20.0<br>18.5<br>19.5<br>21.0<br>20.5<br>21.0                                                                                                       |
| DAY  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26          | 20.55555<br>20.55555<br>20.55555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.5555<br>20.                                                                                                             | MIN JUNE 18.0 19.5 20.0 21.0 22.5 24.0 23.0 23.0 23.0 22.5 22.0 21.0 22.5 22.0                | MEAN  19.0 20.0 21.0 22.0 23.5 24.0 23.5 24.0 23.5 23.0 22.5 23.0 22.5 23.0                | MAX  22.4.5 224.0 26.0 25.5 24.0 25.5 24.0 25.5 24.0 25.5 24.0 25.5 26.7 27.7 27.2 24.0 25.0 25.5 25.5 25.5 25.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | JULY 20.5 21.0 23.0 24.0 24.0 21.5 22.0 21.5 22.5 23.5 24.5 23.5 24.5 23.5 24.5 23.5 24.5 23.5 24.5 23.5 24.5 23.5 24.5 23.5 24.5 23.5 24.5 23.5 24.5 23.5 24.5 23.5 23.5 24.5 23.5 23.5 23.5 23.5 23.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21.00<br>24.00<br>24.00<br>25.50<br>23.30<br>23.30<br>23.30<br>23.30<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50  | 27.5<br>26.5<br>27.0<br>26.5<br>27.0<br>27.0<br>27.0<br>27.0<br>26.0<br>25.0<br>25.0<br>21.5<br>22.5<br>24.5<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AUGUST 26.0 25.0 24.5 25.0 24.0 25.0 24.0 25.0 24.5 24.0 20.0 21.5 22.5 23.5 22.5 23.5 22.5 23.5 22.6 23.5 22.6 23.5 22.6 23.6 23.6 23.6 23.6 23.6 23.6 23.6 | 27.00<br>26.00<br>26.00<br>26.00<br>25.50<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00 | 24.0<br>24.0<br>23.5<br>24.5<br>25.0<br>23.5<br>24.5<br>22.0<br>24.5<br>22.5<br>21.0<br>24.5<br>22.5<br>21.0<br>29.5<br>21.5<br>22.5<br>21.5<br>22.5<br>21.5<br>22.6<br>21.5<br>22.6<br>21.5<br>22.6<br>21.5<br>22.6<br>21.5<br>22.6<br>21.5<br>22.6<br>21.5<br>22.6<br>21.5<br>22.6<br>21.6<br>21.6<br>21.6<br>21.6<br>21.6<br>21.6<br>21.6 | SEPTEMB  21.5 22.0 22.5 22.5 23.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21                                                                                                                                     | 23.0<br>23.0<br>23.5<br>23.5<br>24.0<br>23.5<br>24.0<br>22.5<br>23.0<br>24.0<br>22.5<br>23.0<br>24.0<br>22.5<br>23.0<br>24.0<br>22.5<br>23.0<br>24.0<br>25.5<br>26.0<br>26.0<br>27.0<br>27.0<br>28.0<br>29.0<br>29.0<br>29.0<br>29.0<br>29.0<br>29.0<br>29.0<br>29 |
| DAY  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28    | 20.55555<br>20.55555<br>20.55555<br>24.555<br>23.555<br>24.555<br>23.555<br>24.555<br>23.555<br>24.555<br>24.555<br>24.555<br>25.555<br>26.5555<br>26.5555<br>26.5555<br>26.5555<br>26.5555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MIN JUNE 18.0 19.5 20.0 21.0 22.5 24.0 23.0 23.0 22.5 22.0 21.0 22.5 22.0                     | MEAN  19.0 20.0 21.0 22.0 23.5 24.0 23.5 24.0 23.5 24.0 23.5 23.0                          | MAX  22.50 24.50 26.00 26.55 24.50 26.55 24.55 24.55 26.55 26.55 26.77 27.24 25.50 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 2 | JULY 20.5 21.0 23.0 23.0 24.0 21.5 22.5 21.5 22.5 23.5 24.5 23.5 24.5 25.5 23.5 24.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 212.000.00 500.00 500.00 0.55550 2224455 256.00 0.55550 500.00 0.55550 2224455 22224 22222 22222 22222 2225 22222 22222 2225 22222 2225 22222 2225 22222 22222 2225 22222 2225 22222 2225 22222 2225 22222 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 27.5<br>26.5<br>27.0<br>26.5<br>27.0<br>26.5<br>27.0<br>26.0<br>27.0<br>26.0<br>21.0<br>22.5<br>24.5<br>24.5<br>27.0<br>25.0<br>27.0<br>21.0<br>22.5<br>24.5<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AUGUST 26.0 25.0 24.5 25.0 24.0 25.0 24.0 25.0 24.0 25.0 25.0 24.0 25.0 25.0 25.0 24.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25                                 | 27.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00 | 24.0<br>24.0<br>24.0<br>23.5<br>25.0<br>23.5<br>25.0<br>23.5<br>24.5<br>24.5<br>22.5<br>21.0<br>19.0<br>19.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>22.0<br>22.0<br>22.0<br>22.0<br>22.0<br>22.0<br>22                                                                                   | SEPTEMB  21.5 22.5 22.5 22.5 23.5 21.5 21.5 21.5 22.5 21.5 21.5 21.5 21                                                                                                                                     | 23.0<br>23.0<br>23.5<br>23.5<br>24.0<br>23.5<br>24.0<br>22.5<br>23.0<br>24.0<br>22.5<br>23.0<br>24.0<br>22.5<br>23.0<br>24.0<br>22.5<br>23.0<br>24.0<br>25.5<br>26.0<br>26.0<br>27.0<br>27.0<br>28.0<br>29.0<br>29.0<br>29.0<br>29.0<br>29.0<br>29.0<br>29.0<br>29 |
| DAY  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | 20.055555<br>20.055555<br>20.055555<br>24.550<br>23.555<br>24.550<br>23.555<br>24.50<br>23.555<br>24.50<br>23.555<br>24.50<br>23.555<br>24.50<br>25.555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MIN JUNE 18.0 19.5 20.0 21.0 22.5 24.0 23.0 23.0 23.0 22.5 22.0 21.0 22.5 22.0 22.0 22.5      | MEAN  19.0 20.0 21.0 22.0 23.5 24.0 23.5 24.0 23.5 24.0 23.5 24.0 23.5 24.0 23.5           | MAX  22.50 24.50 24.50 25.50 24.60 25.50 24.60 25.50 24.60 25.50 24.60 25.50 26.60 277.72 24.60 25.50 26.60 25.50 26.60 25.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | JULY 20.5 21.0 23.0 23.0 24.0 23.0 21.5 22.5 21.5 22.5 23.5 24.5 25.5 23.5 24.5 25.5 23.5 23.5 23.5 23.5 23.5 23.5 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21.000.00 5.00.05 0.05.50 0.5.55.0 2333332 23244225 256.75.0 5.00.5 22233334 445.55.0 5.00.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 27.5<br>26.5<br>27.0<br>26.5<br>27.0<br>26.5<br>27.0<br>26.0<br>27.0<br>26.0<br>21.0<br>22.5<br>24.5<br>24.5<br>27.0<br>25.0<br>27.0<br>21.0<br>22.5<br>24.5<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AUGUST 26.0 25.0 24.5 25.0 24.0 25.0 25.0 24.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 20.0 20                                                                    | 27.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00 | 24.0<br>24.0<br>24.0<br>23.5<br>25.0<br>23.5<br>24.5<br>25.0<br>24.5<br>22.5<br>21.0<br>19.0<br>19.5<br>20.5<br>21.5<br>21.0<br>21.5<br>22.5<br>21.0<br>21.5<br>22.5<br>21.0<br>21.5<br>22.5<br>22.5<br>22.5<br>22.5<br>22.5<br>22.5<br>22.5                                                                                                 | SEPTEMB  21.5 22.5 22.5 22.5 23.5 21.5 21.5 22.5 21.5 21.5 21.5 22.5 21.5 21                                                                                                                                | 23.0<br>23.0<br>23.5<br>23.5<br>24.0<br>23.5<br>24.0<br>22.5<br>23.0<br>24.0<br>22.5<br>23.0<br>24.0<br>22.5<br>23.0<br>24.0<br>22.5<br>23.0<br>24.0<br>25.5<br>26.0<br>26.0<br>27.0<br>27.0<br>28.0<br>29.0<br>29.0<br>29.0<br>29.0<br>29.0<br>29.0<br>29.0<br>29 |
| DAY  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28    | 20.55555<br>20.55555<br>20.55555<br>24.555<br>23.555<br>24.555<br>23.555<br>23.555<br>24.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23.555<br>23. | MIN JUNE 18.0 19.5 20.0 21.0 22.5 24.0 23.0 23.0 22.5 22.0 22.0 22.0 22.0 22.0 22.0           | MEAN  19.0 20.0 21.0 22.0 23.5 24.0 23.5 24.0 23.5 24.0 23.5 23.0                          | MAX  22.50 24.50 26.00 26.55 24.50 26.55 24.55 24.55 26.55 26.55 26.77 27.24 25.50 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 2 | JULY 20.5 21.0 23.0 23.0 24.0 21.5 22.5 21.5 22.5 23.5 24.5 23.5 24.5 25.5 23.5 24.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 212.000.00 500.00 500.00 0.55550 2224455 256.00 0.55550 500.00 0.55550 2224455 22224 22222 22222 22222 2225 22222 22222 2225 22222 2225 22222 2225 22222 22222 2225 22222 2225 22222 2225 22222 2225 22222 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 27.55<br>26.50<br>26.50<br>26.50<br>27.00<br>27.00<br>26.00<br>27.05<br>26.00<br>27.05<br>26.00<br>27.05<br>26.00<br>27.00<br>27.05<br>24.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00  | AUGUST 26.0 25.0 24.5 25.0 24.0 25.0 25.0 24.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 20.0 20                                                                    | 27.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00 | 24.0<br>24.0<br>24.0<br>23.5<br>25.0<br>23.5<br>25.0<br>23.5<br>24.5<br>24.5<br>22.5<br>21.0<br>19.0<br>19.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>22.0<br>22.0<br>22.0<br>22.0<br>22.0<br>22.0<br>22                                                                                   | SEPTEMB  21.5 22.5 22.5 22.5 23.5 21.5 21.5 21.5 22.5 21.5 21.5 21.5 21                                                                                                                                     | 23.0<br>23.0<br>23.5<br>23.5<br>24.0<br>22.5<br>23.0<br>24.0<br>23.5<br>21.0<br>23.5<br>21.0<br>23.5<br>21.0<br>20.0<br>18.5<br>19.5<br>21.0<br>20.5<br>21.0                                                                                                       |
| DAY  1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 17 18 19 20 21 22 24 25 26 27 28 29 30  | 20.55555 0555550 0555550 0555550 0555550 0555550 0555550 055550 055550 055550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 0550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 055550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 05550 055500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MIN JUNE 18.0 19.5 20.0 21.0 22.5 24.0 23.0 23.0 23.0 22.5 22.0 21.0 22.5 22.0 21.0 22.5 22.0 | MEAN  19.0 20.0 21.0 22.0 23.5 25.0 23.5 24.0 23.5 23.5 23.0 22.5 23.5 23.5 23.0 23.5 23.6 | MAX 224.50 224.66.05 224.66.05 224.66.05 224.66.05 224.66.05 224.66.05 224.66.05 224.66.05 224.66.05 224.66.05 224.66.05 224.66.05 225.66.06 226.66.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | JULY 20.50 23.00 23.00 24.00 23.00 24.00 23.05 25.55 24.55 24.55 25.55 24.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 2 | 21220000 500005 005550 50050 055550 50050 22222 22222 22222 22222 22222 22222 2222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 27.55.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27. | AUGUST 26.0 25.0 24.5 25.0 24.0 25.0 24.0 25.0 24.0 25.0 25.0 24.0 25.0 25.0 25.0 24.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25                                 | 2766.00 50000 055555 055000 550050 050555 22222 22222 22222 22222 22222 22222 2222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24.0<br>24.0<br>23.5<br>24.5<br>25.0<br>23.5<br>24.5<br>22.5<br>21.0<br>24.5<br>22.5<br>21.0<br>29.5<br>20.5<br>20.5<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>22.5<br>22.0<br>22.0<br>22.0<br>22.0<br>22.0<br>22                                                                                   | SEPTEMB  21.5 22.5 22.5 22.5 23.5 21.5 21.5 22.5 21.5 22.5 21.5 22.5 21.5 22.5 21.6 22.5 22.5 22.5 22.5 22.6 23.5 22.6 23.5 22.6 23.5 22.6 23.5 22.6 23.5 22.6 23.5 22.6 23.6 23.6 23.6 23.6 23.6 23.6 23.6 | 23.0<br>23.5<br>23.5<br>23.5<br>23.5<br>24.0<br>23.5<br>23.5<br>24.0<br>23.5<br>23.5<br>21.5<br>20.0<br>19.0<br>18.5<br>19.5<br>21.0<br>20.5<br>19.5<br>16.5<br>16.5<br>17.5<br>16.0                                                                               |

## 01437500 NEVERSINK RIVER AT GODEFFROY, NY

LOCATION.--Lat 41°26'28", long 74°36'07", Orange County, NY, Hydrologic Unit 02040104, on right bank just upstream from highway bridge on Graham Road, 0.5 mi downstream from Basher Kill, 0.8 mi southeast of Godeffroy, 1.7 mi south of Cluddebackville, and 8.5 mi upstream from mouth.

DRAINAGE AREA .-- 307 mi2.

PERIOD OF RECORD. -- August to October 1903, July 1937 to current year. Gage heights and discharge measurements, August 1909 to April 1914. Twice-daily figures of discharge, January 1911 to December 1912, which do not represent daily mean discharges because of diurnal fluctuation. August to October 1903, published as "Navesink River at Godeffroy, NY."

REVISED RECORD. -- WSP 1502: 1951(M). WDR NY-82-1: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 459.66 ft National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers). Prior to Apr. 30, 1914, nonrecording gages at same site (August to October 1903 at datum 0.98 ft

REMARKS. -- Records fair except those for winter periods, which are poor. Prior to 1949, diurnal fluctuation at low and medium flow caused by powerplant at Cuddebackville. Subsequent to June 1953, entire flow from 91.8 mi<sup>2</sup> of drainage area controlled by Neversink Reservoir (see Reservoirs in Delaware River Basin). Part of flow diverted for New York City municipal supply. Remainder of flow (except for conservation releases and spill), impounded for release during periods of low flow in the lower Delaware River basin, as directed by the Delaware River Master.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 33,000 ft<sup>3</sup>/s Aug. 19, 1955, gage height, 12.49 ft, from rating curve extended above 11,000 ft<sup>3</sup>/s on basis of slope-area measurment of peak flow; practically no flow several times in July 1911.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 7,910 ft3/s Apr. 16, gage height, 8.71 ft; minimum discharge, 82 ft3/s Nov. 1, gage height, 3.25 ft; minimum gage height, 2.99 ft Aug. 27.

|                                  |                                        | DISCHARG                        | E, IN                                  | CUBIC FEET                             | PER SECON<br>MEA                  | D, WATER<br>N VALUES                      | YEAR OCT                             | OBER 1982                                | TO SEPTE                          | MBER 1983                              |                                        |                                 |
|----------------------------------|----------------------------------------|---------------------------------|----------------------------------------|----------------------------------------|-----------------------------------|-------------------------------------------|--------------------------------------|------------------------------------------|-----------------------------------|----------------------------------------|----------------------------------------|---------------------------------|
| DAY                              | OCT                                    | NOV                             | DEC                                    | JAN                                    | FEB                               | MAR                                       | APR                                  | MAY                                      | JUN                               | JUL                                    | AUG                                    | SEP                             |
| 1<br>2<br>3<br>4<br>5            | 152<br>140<br>137<br>137<br>131        | 103<br>149<br>134<br>125<br>373 | 197<br>176<br>162<br>155<br>159        | 190<br>170<br>150<br>140<br>140        | 190<br>190<br>1680<br>1520<br>900 | 327<br>534<br>769<br>737<br>698           | 737<br>646<br>942<br>1180<br>961     | 1350<br>1210<br>1090<br>1030<br>879      | 974<br>845<br>715<br>1170<br>1120 | 266<br>240<br>224<br>220<br>240        | 125<br>143<br>134<br>122<br>122        | 119<br>109<br>103<br>103<br>101 |
| 6<br>7<br>8<br>9                 | 128<br>122<br>131<br>146<br>140        | 279<br>208<br>179<br>162<br>159 | 152<br>146<br>137<br>143<br>106        | 130<br>130<br>120<br>120<br>120        | 560<br>450<br>380<br>350<br>320   | 683<br>888<br>1020<br>1210<br>1140        | 836<br>729<br>737<br>897<br>1260     | 721<br>609<br>561<br>602<br>534          | 900<br>1260<br>979<br>786<br>660  | 216<br>176<br>159<br>155<br>149        | 125<br>125<br>137<br>131<br>128        | 101<br>101<br>106<br>94<br>89   |
| 11<br>12<br>13<br>14<br>15       | 117<br>125<br>131<br>155<br>137        | 149<br>143<br>224<br>244<br>201 | 137<br>140<br>96<br>100<br>140         | 322<br>352<br>266<br>220<br>210        | 290<br>270<br>250<br>230<br>210   | 1240<br>1190<br>1030<br>933<br>836        | 1930<br>1370<br>1160<br>988<br>897   | 483<br>452<br>423<br>389<br>384          | 574<br>502<br>441<br>400<br>373   | 140<br>134<br>134<br>140<br>140        | 137<br>284<br>275<br>197<br>165        | 91<br>91<br>96<br>96<br>94      |
| 16<br>17<br>18<br>19<br>20       | 149<br>143<br>137<br>137<br>140        | 169<br>169<br>162<br>155<br>149 | 249<br>362<br>220<br>190<br>170        | 200<br>190<br>190<br>180<br>180        | 200<br>190<br>180<br>180<br>170   | 753<br>675<br>646<br>2220<br>1870         | 5070<br>4310<br>2730<br>2140<br>1920 | 819<br>714<br>547<br>464<br>458          | 384<br>452<br>389<br>362<br>435   | 162<br>149<br>140<br>137<br>131        | 149<br>165<br>140<br>143<br>131        | 91<br>94<br>96<br>98<br>91      |
| 21<br>22<br>23<br>24<br>25       | 137<br>131<br>125<br>125<br>131        | 143<br>143<br>149<br>155<br>140 | 160<br>160<br>150<br>150               | 180<br>170<br>170<br>700<br>500        | 170<br>170<br>368<br>384<br>360   | 1790<br>2200<br>1520<br>1230<br>1030      | 1720<br>1630<br>1720<br>2000<br>3540 | 452<br>423<br>698<br>646<br>536          | 357<br>298<br>261<br>236<br>232   | 131<br>190<br>146<br>193<br>224        | 119<br>117<br>114<br>109<br>106        | 103<br>317<br>149<br>114<br>103 |
| 26<br>27<br>28<br>29<br>30<br>31 | 137<br>137<br>134<br>134<br>131<br>125 | 143<br>143<br>134<br>193<br>224 | 266<br>284<br>249<br>253<br>240<br>216 | 362<br>302<br>270<br>230<br>210<br>200 | 330<br>310<br>290                 | 871<br>778<br>1260<br>1280<br>1030<br>845 | 3680<br>2710<br>2220<br>2020<br>1870 | 539<br>865<br>892<br>827<br>1070<br>1110 | 220<br>208<br>288<br>561<br>327   | 172<br>146<br>131<br>128<br>125<br>125 | 106<br>106<br>122<br>117<br>119<br>119 | 103<br>98<br>94<br>89<br>96     |
| TOTAL<br>MEAN<br>MAX<br>MIN      | 4182<br>135<br>155<br>117              | 5203<br>173<br>373<br>103       | 5615<br>181<br>362<br>96               | 7014<br>226<br>700<br>120              | 11092<br>396<br>1680<br>170       | 33233<br>1072<br>2220<br>327              | 54550<br>1818<br>5070<br>646         | 21777<br>702<br>1350<br>384              | 16709<br>557<br>1260<br>208       | 5163<br>167<br>266<br>125              | 4332<br>140<br>284<br>106              | 3230<br>108<br>317<br>89        |
| CAL YR<br>WTR YR                 |                                        |                                 | MEAN<br>MEAN                           | 355<br>472                             | MAX 252<br>MAX 507                |                                           | 94<br>89                             |                                          |                                   |                                        |                                        |                                 |

#### 01438500 DELAWARE RIVER AT MONTAGUE, NJ

LOCATION.--Lat 41°18'33", long 74°47'44", Pike County, PA, Hydrologic Unit 02040104, on right bank 0.4 mi upstream from toll bridge on U.S. Route 206 at Montague, 0.8 mi downstream from Sawkill Creek, and at mile 246.3.

DRAINAGE AREA .-- 3,480 mi2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--March 1936 to September 1939 (gage heights only, published as "at Milford, PA"). October 1939 to current year. Monthly discharge only for some periods, published in WSP 1302.

REVISED RECORDS .-- WDR-NJ-81-2: 1980.

GAGE.--Water-stage recorder. Datum of gage is 369.93 ft National Geodetic Vertical Datum of 1929. Prior to Feb. 9, 1940, nonrecording gage on upstream side of left span of subsequently dismantled bridge at present site at datum

REMARKS.--Water-discharge records excellent except those for winter months, which are good. Diurnal fluctuations at medium and low flow caused by powerplants on tributary streams. Flow regulated by Lake Wallenpaupack and by Pepacton, Cannonsville, Swinging Bridge, Toronto, Cliff Lake, and Neversink Reservoirs (see Delaware River Basin, reservoirs in) and smaller reservoirs. Diversion from Pepacton, Cannonsville, and Neversink Reservoirs (see Delaware River Basin, diversions).

AVERAGE DISCHARGE .-- 44 years, 5,829 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 250,000 ft³/s Aug. 19, 1955, gage height, 35.15 ft, from rating curve extended above 90,000 ft³/s on basis of flood-routing study; minimum, 382 ft³/s Aug. 24, 1954, gage height, 3.83 ft, minimum daily, 412 ft³/s Aug. 23, 1954.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood of October 10, 1903, reached a stage of 35.5 ft from floodmark, present datum.

EXTREMES FOR CURRENT YEAR .-- Maximum discharge, 81,100 ft3/s Apr. 16, gage height, 19.80 ft; minimum discharge, 848 ft3/s Sept. 28, gage height, 4.31 ft.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983
MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 11300 3430 1640 ---------TOTAL MEAN MAX MIN 

CAL YR 1982 TOTAL 1556120 MEAN 4263 MAX 29200 WTR YR 1983 TOTAL 1972790 MEAN 5405 MAX 56500 MIN 1060 MIN 1060

## 01440000 FLAT BROOK NEAR FLATBROOKVILLE, NJ

LOCATION.--Lat 41°06'24", long 74°57'09", Sussex County, Hydrologic Unit 02040104, on right bank 1.0 mi upstream from Flatbrookville, and 1.5 mi upstream from mouth.

DRAINAGE AREA .-- 64.0 mi2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- July 1923 to current year.

REVISED RECORDS.--WSP 1432: 1924(M), 1928(M), 1929, 1930(M), 1932, 1933(M), 1936, 1938(M), 1939-40, 1949(M), 1952-53(M). WDR-NJ-80-2: 1970(M). WDR NJ-82-2: Drainage area.

GAGE.--Water-stage recorder. Concrete control since Aug. 19, 1929. Datum of gage is 347.73 ft National Geodetic Vertical Datum of 1929. Prior to Jan. 6, 1926, nonrecording gage at same site and datum.

REMARKS .-- Water-discharge records good. Flow occasionally regulated by ponds above station.

AVERAGE DISCHARGE .-- 60 years, 109 ft3/s, 23.16 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 9,560 ft<sup>3</sup>/s Aug. 19, 1955, gage height, 12.58 ft, from high-water mark in gage house, from rating curve extended above 2,000 ft<sup>3</sup>/s on basis of slope-area measurement of peak flow; minimum, 3.6 ft<sup>3</sup>/s Sept. 25, 26, 1964, Sept. 11, 1966, but may have been lower during period of ice effect, Feb. 2-11, 1981.

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 650 ft3/s and maximum (\*):

| Date              | Time         | Discharge<br>(ft³/s) | Gage height (ft) | Date               | Time         | Discharge (ft³/s) | Gage height (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------|--------------|----------------------|------------------|--------------------|--------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Feb. 3<br>Mar. 22 | 2000<br>0245 | 984<br>742           | 4.39<br>3.96     | Apr. 10<br>Apr. 16 | 1800<br>0830 | 1470<br>*5110     | 5.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Mar. 28           | 1415         | 753                  | 3.98             |                    |              | 74.5              | The state of the s |

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

Minimum discharge, 8.1 ft3/s Sept. 21, gage height, 1.77 ft.

|                                            |                                  |                                  | ,                                 |                                           |                                           | MEAN VA                                   | LUES                                        |                                          |                                          |                                         | -                                     |                                          |
|--------------------------------------------|----------------------------------|----------------------------------|-----------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|---------------------------------------------|------------------------------------------|------------------------------------------|-----------------------------------------|---------------------------------------|------------------------------------------|
| DA Y                                       | OCT                              | NOV                              | DEC                               | JAN                                       | FEB                                       | MAR                                       | APR                                         | MAY                                      | JUN                                      | JUL                                     | AUG                                   | SEP                                      |
| 1<br>2<br>3<br>4<br>5                      | 25<br>22<br>21<br>18<br>18       | 17<br>17<br>18<br>20<br>110      | 59<br>53<br>50<br>48<br>53        | 61<br>59<br>56<br>50<br>52                | 114<br>122<br>661<br>626<br>341           | 130<br>255<br>380<br>295<br>247           | 236<br>208<br>350<br>441<br>298             | 244<br>222<br>209<br>193<br>177          | 196<br>162<br>138<br>251<br>237          | 55<br>49<br>44<br>42<br>41              | 22<br>28<br>24<br>20<br>24            | 14<br>13<br>13<br>13                     |
| 6<br>7<br>8<br>9                           | 16<br>17<br>15<br>21             | 90<br>70<br>58<br>50<br>46       | 50<br>46<br>43<br>41<br>36        | 70<br>68<br>57<br>51<br>50                | 251<br>216<br>206<br>172<br>143           | 212<br>223<br>236<br>300<br>292           | 244<br>240<br>322<br>329<br>983             | 158<br>144<br>136<br>152<br>132          | 183<br>328<br>230<br>169<br>143          | 42<br>38<br>33<br>33<br>30              | 29<br>21<br>19<br>17<br>15            | 11<br>11<br>10<br>9.4<br>9.4             |
| 11<br>12<br>13<br>14<br>15                 | 19<br>17<br>18<br>21<br>24       | 42<br>40<br>104<br>113<br>83     | 38<br>38<br>32<br>37<br>35        | 159<br>150<br>104<br>88<br>87             | 130<br>118<br>169<br>152<br>129           | 391<br>329<br>294<br>269<br>237           | 799<br>476<br>371<br>312<br>600             | 119<br>110<br>103<br>97<br>96            | 126<br>110<br>98<br>88<br>79             | 28<br>27<br>26<br>26<br>25              | 23<br>63<br>89<br>43<br>30            | 9.2<br>9.6<br>11<br>12<br>11             |
| 16<br>17<br>18<br>19<br>20                 | 21<br>19<br>17<br>16<br>16       | 69<br>62<br>58<br>57<br>53       | 112<br>206<br>116<br>92<br>84     | 87<br>77<br>79<br>78<br>80                | 121<br>123<br>128<br>133<br>121           | 204<br>182<br>174<br>489<br>478           | 3600<br>1320<br>707<br>567<br>516           | 126<br>219<br>137<br>111<br>108          | 72<br>71<br>70<br>66<br>68               | 27<br>26<br>24<br>23<br>24              | 25<br>22<br>21<br>21<br>19            | 10<br>10<br>9.9<br>9.6<br>9.1            |
| 21<br>22<br>23<br>24<br>25                 | 17<br>18<br>16<br>14<br>17       | 50<br>48<br>46<br>44<br>41       | 78<br>71<br>66<br>70<br>88        | 82<br>79<br>119<br>256<br>228             | 115<br>125<br>151<br>176<br>169           | 416<br>615<br>394<br>316<br>268           | 464<br>468<br>439<br>416<br>540             | 104<br>98<br>244<br>206<br>151           | 71<br>61<br>54<br>50<br>47               | 24<br>115<br>49<br>38<br>46             | 16<br>15<br>15<br>15<br>13            | 12<br>46<br>25<br>17<br>14               |
| 26<br>27<br>28<br>29<br>30<br>31           | 21<br>26<br>22<br>20<br>19<br>18 | 39<br>38<br>37<br>62<br>74       | 84<br>75<br>71<br>72<br>67<br>62  | 177<br>143<br>123<br>109<br>105<br>113    | 150<br>129<br>128<br>                     | 227<br>218<br>627<br>432<br>314<br>270    | 528<br>399<br>349<br>303<br>274             | 132<br>266<br>262<br>196<br>249<br>246   | 43<br>41<br>56<br>158<br>77              | 36<br>29<br>26<br>23<br>23<br>22        | 13<br>13<br>13<br>13<br>13            | 13<br>12<br>11<br>11<br>11               |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 590<br>19.0<br>26<br>14<br>.30   | 1656<br>55.2<br>113<br>17<br>.86 | 2073<br>66.9<br>206<br>32<br>1.05 | 3097<br>99.9<br>256<br>50<br>1.56<br>1.80 | 5319<br>190<br>661<br>114<br>2.97<br>3.09 | 9714<br>313<br>627<br>130<br>4.89<br>5.65 | 17099<br>570<br>3600<br>208<br>8.91<br>9.94 | 5147<br>166<br>266<br>96<br>2.59<br>2.99 | 3543<br>118<br>328<br>41<br>1.84<br>2.06 | 1094<br>35·3<br>115<br>22<br>•55<br>•64 | 727<br>23.5<br>89<br>13<br>.37<br>.42 | 389.2<br>13.0<br>46<br>9.1<br>.20<br>.23 |

CAL YR 1982 TOTAL 33659 MEAN 92.2 MAX 823 MIN 10 CFSM 1.44 IN. 19.56 WTR YR 1983 TOTAL 50448.2 MEAN 138 MAX 3600 MIN 9.1 CFSM 2.16 IN. 29.32

#### DELAWARE RIVER BASTN

## 01440200 DELAWARE RIVER BELOW TOCKS ISLAND DAMSITE, NEAR DELAWARE WATER GAP, PA

LOCATION.--Lat 41°00'42", long 75°05'09", Warren County, NJ, Hydrologic Unit 02040105, on left bank 40 ft streamward from River Road, 1.0 mi downstream from Tocks Island, 3.7 mi northeast of Delaware Water Gap, PA, 4.0 mi upstream from bridge on Interstate Highway 80, and at mile 216.1.

DRAINAGE AREA .-- 3,850 mi2 approximately.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- May 1964 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 293.64 ft National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records poor. Diurnal fluctuation at medium and low flow caused by powerplants on tributary streams. Flow regulated by Lake Wallenpaupack, and by Pepacton, Cannonsville, Swinging Bridge, Toronto, Cliff Lake, and Neversink Reservoirs (see Delaware River Basin, reservoirs in) and smaller reservoirs. Diversion from Pepacton, Cannonsville, and Neversink Reservoirs (see Delaware River Basin, diversions).

AVERAGE DISCHARGE. -- 19 years, 6,398 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 103,000 ft<sup>3</sup>/s June 30, 1973, gage height, 23.82 ft; minimum daily, 580 ft<sup>3</sup>/s July 7, 8, 1965.

EXTREMES FOR CURRENT YEAR. -- Maximum discharge, 88,100 ft<sup>3</sup>/s Apr. 17, gage height, 20.97 ft; minimum daily discharge, 1,250 ft<sup>3</sup>/s Sept. 15:

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983 MEAN VALUES DAY OCT NOV DEC JAN FEB JUN JUL. AUG SEP MAR APR MAY 1950 2120 2230 1530 6340 ---TOTAL MEAN MAX 

CAL YR 1982 TOTAL 1919720 MEAN 5260 MAX 32400 MIN 1260 WTR YR 1983 TOTAL 2398230 MEAN 6570 MAX 74100 MIN 1250

MIN

## 01443000 DELAWARE RIVER AT PORTLAND, PA

LOCATION.--Lat 40°55'26", long 75°05'46", Northampton County, Hydrologic Unit 02040105, at walkbridge connecting Portland, PA and Columbia, NJ, and 0.5 mi upstream of Paulins Kill.

DRAINAGE AREA . -- 4, 165 mi2.

## WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION. -- Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

| DATE         | TIME                                              | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(UMHOS)                  | PH<br>(STAND-<br>ARD<br>UNITS)                       | TEMPER-<br>ATURE<br>(DEG C)                          | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)                  | OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)                        | COLI-<br>FORM,<br>FECAL,<br>EC<br>BROTH<br>(MPN) | STREP-<br>TOCOCCI<br>FECAL<br>(MPN)                 | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3)             |  |
|--------------|---------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------|----------------------------------------------------|--|
| OCT          |                                                   |                                                                    |                                                      |                                                      |                                                      |                                                                     |                                                  | *                                                   |                                                    |  |
| 18<br>FEB    | 1245                                              | 97                                                                 | 7.5                                                  | 11.5                                                 | 11.8                                                 | E1.9                                                                | 140                                              | 2                                                   | 32                                                 |  |
| 28           | 1045                                              | 93                                                                 | 7.8                                                  | 2.0                                                  | 13.6                                                 | E1.5                                                                | 80                                               | 4                                                   | 30                                                 |  |
| 11<br>JUN    | 1100                                              | 79                                                                 | 7.7                                                  | 10.5                                                 | 11.8                                                 | 2.4                                                                 | <20                                              | <2                                                  | 23                                                 |  |
| 16<br>JUL    | 1330                                              | 79                                                                 | 7.4                                                  | 24.0                                                 | 8.4                                                  | E2.2                                                                | <20                                              | 170                                                 | 30                                                 |  |
| 26<br>AUG    | 1345                                              | 96                                                                 | 8.2                                                  | 24.0                                                 | 7.3                                                  | E1.4                                                                | 1'30                                             | 70                                                  | 30                                                 |  |
| 30           | 1330                                              | 95                                                                 | 7.9                                                  | 26.0                                                 | 8.6                                                  | E1.8                                                                | <20                                              | 14                                                  | 31                                                 |  |
| DATE         | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)      | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)               | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)         | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)  | ALKA-<br>LINITY<br>LAB<br>(MG/L<br>AS<br>CACO3)      | SULFIDE<br>TOTAL<br>(MG/L<br>AS S)                                  | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)    | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F) |  |
| OCT          |                                                   |                                                                    |                                                      |                                                      |                                                      | 1                                                                   |                                                  |                                                     |                                                    |  |
| 18···<br>FEB | 9.5                                               | 2.1                                                                | 4.9                                                  | .60                                                  | 22                                                   |                                                                     | 10                                               | 6.8                                                 | <.10                                               |  |
| 28<br>MAY    | 8.9                                               | 1.8                                                                | 4.5                                                  | .70                                                  | 16                                                   | -                                                                   | 14                                               | 8.0                                                 | <.10                                               |  |
| 11<br>JUN    | 7.0                                               | 1.4                                                                | 3 - 3                                                | .80                                                  | 13                                                   |                                                                     | 13                                               | 5.1                                                 | <.10                                               |  |
| 16<br>JUL    | 9.1                                               | 1.8                                                                | 4.2                                                  | . 90                                                 | 16                                                   | <.5                                                                 | 11                                               | 6.2                                                 | <.10                                               |  |
| 26<br>AUG    | 9.1                                               | 1.7                                                                | 4.7                                                  | . 90                                                 | 19                                                   |                                                                     | 12                                               | 7.0                                                 | .10                                                |  |
| 30           | .9.2                                              | 1.9                                                                | 4.5                                                  | .90                                                  | 20                                                   |                                                                     | 12                                               | 6.7                                                 | <.10                                               |  |
| DATE         | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2) | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L) | NITRO-<br>GEN,<br>NITRITE<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>AMMONIA<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)        | PHOS-<br>PHATE,<br>TOTAL<br>(MG/L<br>AS PO4)        | CARBON,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS C)      |  |
| OCT<br>18    | 1.1                                               | 52                                                                 | .010                                                 | .300                                                 | .110                                                 | E.38                                                                |                                                  | .09                                                 | 2.2                                                |  |
| FEB 28       | 3.6                                               | 58                                                                 |                                                      |                                                      | . 150                                                |                                                                     | .60                                              | <.06                                                | 2.1                                                |  |
| MAY<br>11    | 2.8                                               | 44                                                                 | <.010                                                | .300                                                 |                                                      | .30                                                                 |                                                  | .12                                                 |                                                    |  |
| JUN          |                                                   |                                                                    | <.010                                                |                                                      | . 170                                                | .37                                                                 | .77                                              |                                                     | 2.8                                                |  |
| JUL          | 1.9                                               | 61                                                                 | <.010                                                | .300                                                 | .310                                                 |                                                                     |                                                  | .21                                                 | 3.7                                                |  |
| 26<br>AUG    | 1.7                                               | 40                                                                 | .010                                                 | . 280                                                | <.050                                                | - 47                                                                | - 75                                             | .21                                                 | 3.5                                                |  |
| 30           | 1.8                                               | 60                                                                 | .020                                                 | .500                                                 | . 050                                                | .28                                                                 | .78                                              | . 15                                                | 2.8                                                |  |

# 01443000 DELAWARE RIVER AT PORTLAND, PA--Continued

## WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

|      |                 |                |         | BERYL-         |                 |         | CHRO-          |                  |
|------|-----------------|----------------|---------|----------------|-----------------|---------|----------------|------------------|
|      |                 | ALUM-<br>INUM. |         | LIUM,<br>TOTAL | BORON,<br>TOTAL | CADMIUM | MIUM,<br>TOTAL | COPPER,<br>TOTAL |
|      |                 | DIS-           | ARSENIC | RECOV-         | RECOV-          | RECOV-  | RECOV-         | RECOV-           |
|      |                 | SOLVED         | TOTAL   | ERABLE         | ERABLE          | ERABLE  | ERABLE         | ERABLE           |
|      | TIME            | (UG/L          | (UG/L   | (UG/L          | (UG/L           | (UG/L   | (UG/L          | (UG/L            |
| DATE |                 | AS AL)         | AS AS)  | AS BE)         | AS B)           | AS CD)  | AS CR)         | AS CU)           |
| JUN  |                 |                |         |                |                 |         |                |                  |
| 16   | 1330            | 10             | 1       | <10            | 30              | 1       | <10            | 68               |
|      |                 |                | MANGA-  |                |                 |         |                |                  |
|      | IRON,           | LEAD,          | NESE,   | MERCURY        | NICKEL,         | 400     | ZINC,          |                  |
|      | TOTAL           | TOTAL          | TOTAL   | TOTAL          | TOTAL           | SELE-   | TOTAL          |                  |
|      | RECOV-          | RECOV-         | RECOV-  | RECOV-         | RECOV-          | NIUM,   | RECOV-         | PURMOI C         |
|      | ERABLE          | ERABLE         | ERABLE  | ERABLE         | ERABLE          | TOTAL   | ERABLE         | PHENOLS          |
| DATE | (UG/L<br>AS FE) | (UG/L          | (UG/L   | (UG/L          | (UG/L           | (UG/L   | (UG/L          | TOTAL            |
| DATE | AS FE)          | AS PB)         | AS MN)  | AS HG)         | AS NI)          | AS SE)  | AS ZN)         | (UG/L)           |
| JUN  |                 |                |         |                |                 |         |                |                  |
| 16   | 130             | 2              | 40      | <.1            | 1               | <1      | 20             | 5                |
|      |                 |                |         |                |                 |         |                |                  |

## 01443440 PAULINS KILL AT BALESVILLE, NJ

LOCATION.--Lat 41°06'20", long 74°45'19", Sussex County, Hydrologic Unit 02040105, at bridge on unnamed road at Balesville, 2.2 mi downstream from Dry Brook, and 3.4 mi north of Newton.

DRAINAGE AREA .-- 67.1 mi2.

## WATER-QUALITY RECORDS

PERIOD OF RECORD. -- January 1979 to current year.

COOPERATION. -- Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

| DATE      | TIME                                        | STREAM<br>FLOW,<br>INSTAN<br>TANEOU<br>(CFS) | I- CI<br>CO<br>I- DU<br>IS AN                               | CE                                           | PH<br>(STAND-<br>ARD<br>UNITS)    | AT       | PER-<br>URE<br>G C)                          | OXYGE<br>DIS<br>SOLV<br>(MG/ | N, (                                                         | XYGEN<br>EMAND,<br>3IO-<br>CHEM-<br>ICAL,<br>5 DAY<br>(MG/L) | COL<br>FOR<br>FEC<br>EC<br>BRO | M,<br>AL,<br>TH                                   | STREP-<br>OCOCC:<br>FECAL<br>(MPN) | - NE                                          | RD-<br>SS<br>IG/L<br>IS |
|-----------|---------------------------------------------|----------------------------------------------|-------------------------------------------------------------|----------------------------------------------|-----------------------------------|----------|----------------------------------------------|------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|--------------------------------|---------------------------------------------------|------------------------------------|-----------------------------------------------|-------------------------|
| OCT       |                                             |                                              |                                                             |                                              |                                   |          |                                              |                              |                                                              |                                                              |                                |                                                   |                                    |                                               |                         |
| 18<br>FEB | 1045                                        | 3                                            | 2                                                           | 566                                          | 8.0                               |          | 6.5                                          | 11                           | . 7                                                          | E3.4                                                         | 2                              | 800                                               | 110                                | )                                             | 220                     |
| 24<br>MAY | 1245                                        | 20                                           | 1                                                           | 383                                          | 8.0                               |          | 3.0                                          | 13                           | . 4                                                          | E2.1                                                         |                                | 50                                                | 79                                 | 9                                             | 130                     |
| 09<br>JUN | 1315                                        | . 14                                         | 19                                                          | 417                                          | 8.5                               |          | 12.5                                         |                              |                                                              | E1.9                                                         | 1                              | 700                                               | 13                                 | 0                                             | 160                     |
| 02<br>JUL | 1045                                        | 15                                           | 7                                                           | 354                                          | 8.1                               |          | 14.5                                         | 12                           | . 4                                                          | <.7                                                          |                                | 170                                               | 3                                  | 4                                             | 130                     |
| 26<br>AUG | 1045                                        | 14                                           | 2                                                           | 540                                          | 8.2                               |          | 20.0                                         | 8                            | • 3                                                          | E2.0                                                         | •                              | 790                                               | 160                                | )                                             | 210                     |
| 30        | 1045                                        | -                                            | -                                                           | 562                                          | 8.2                               |          | 22.5                                         | 7                            | . 4                                                          | E1.9                                                         |                                | 490                                               | 17                                 | )                                             | 220                     |
| DATE      | CALC:<br>DIS-<br>SOLY<br>(MG/<br>AS (       | TUM<br>-<br>/ED S<br>'L (                    | AGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>MG/L<br>S MG)           | SODIU<br>DIS-<br>SOLVE<br>(MG/               | M, SI<br>DI<br>D SOL<br>L (MG     |          | ALKA<br>LINIT<br>LAE<br>(MG/<br>AS<br>CACO   | y<br>L                       | ULFIDI<br>TOTAL<br>(MG/L<br>AS S)                            | SULFA<br>E DIS-<br>SOLV<br>(MG/                              | /ED                            | CHLO-<br>RIDE,<br>DIS-<br>SOLVE<br>(MG/L<br>AS CI | D SO                               | LUO-<br>IDE,<br>DIS-<br>DLVED<br>MG/L<br>S F) |                         |
| OCT       |                                             |                                              | ,                                                           |                                              | .,                                | ,        | 000                                          | 3,                           |                                                              |                                                              | ,                              |                                                   |                                    | ,                                             | 7                       |
| 18<br>FEB | . 51                                        |                                              | 22                                                          | 28                                           | 1                                 | .9       | 165                                          |                              | <.!                                                          | 5 33                                                         | 3                              | 48                                                |                                    | . 10                                          |                         |
| 24<br>MAY | 33                                          |                                              | 11                                                          | 19                                           | 1                                 | . 8      | 93                                           |                              |                                                              | - 25                                                         | 5                              | 34                                                |                                    | . 10                                          |                         |
| 09<br>JUN | . 42                                        |                                              | 14                                                          | 23                                           | 1                                 | .5       | 124                                          |                              |                                                              | - 21                                                         | 4                              | 36                                                |                                    | . 10                                          |                         |
| 02<br>JUL | 34                                          |                                              | 11                                                          | 17                                           | 1                                 | . 1      | 105                                          |                              | -                                                            | - 22                                                         | 2                              | 30                                                |                                    | <.10                                          |                         |
| 26<br>AUG | . 51                                        |                                              | 19                                                          | 26                                           | 2                                 | 2.1      | 163                                          |                              |                                                              | - 3                                                          | 1                              | 47                                                |                                    | .30                                           |                         |
| 30        | 55                                          |                                              | 21                                                          | 28                                           | 2                                 | 2.4      | 177                                          |                              |                                                              | - 35                                                         | 5                              | 50                                                |                                    | . 20                                          |                         |
| DATE      | SILIO<br>DIS-<br>SOLI<br>(MG/<br>AS<br>SIO2 | CA, RE<br>- AT<br>VED I                      | DLIDS,<br>SIDUE<br>180<br>DEG. C<br>DIS-<br>SOLVED<br>MG/L) | NITR<br>GEN<br>NITRI<br>TOTA<br>(MG/<br>AS N | , GE<br>TE NO2+<br>L TOT<br>L (MC | AL<br>JL | NITE<br>GEN<br>AMMON<br>TOTA<br>(MG/<br>AS N | O- G<br>, M<br>IIA O<br>L    | NITRO<br>EN, AM<br>ONIA<br>RGANIO<br>TOTAL<br>(MG/L<br>AS N) | - NITI                                                       | N,<br>AL<br>/L                 | PHOS-<br>PHATE<br>TOTAL<br>(MG/L<br>AS PO4        | OR TO                              | RBON,<br>GANIC<br>OTAL<br>MG/L<br>S C)        |                         |
| OCT<br>18 |                                             | 7.4                                          | 311                                                         |                                              | 40 1.                             | 10       |                                              | 80                           | 3                                                            |                                                              | . 4                            |                                                   | 15                                 | 3.5                                           |                         |
| FEB       |                                             |                                              |                                                             | .0                                           | 40 1.                             | 10       | • 0                                          | 100                          | • 3                                                          |                                                              |                                |                                                   |                                    |                                               |                         |
| 24<br>MAY |                                             | 5.3                                          | 209                                                         | <.0                                          | 10 .                              | 700      | • 3                                          | 50                           | . 9                                                          |                                                              | . 6                            | . 2                                               |                                    | 5.2                                           |                         |
| 09<br>JUN |                                             | 1.9                                          | 230                                                         |                                              |                                   | 00       |                                              | 30                           | - 8                                                          |                                                              | . 8                            | . 2                                               | 21                                 | 5.2                                           |                         |
| JUL 02    |                                             | 5.1                                          | 219                                                         |                                              |                                   | 900      |                                              | 00                           | .6                                                           |                                                              | . 6                            |                                                   |                                    | 5.9                                           |                         |
| 26<br>AUG |                                             | 5.2                                          | 305                                                         |                                              |                                   | 40       |                                              | 20                           | . 6                                                          |                                                              | . 0                            |                                                   | 57                                 | 4.3                                           |                         |
| 30        |                                             | 5.7                                          | 361                                                         | .0                                           | 50 1.                             | 30       | . (                                          | 60                           | .5                                                           | 0 1                                                          | . 8                            | • 1                                               | 71                                 | 4.1                                           |                         |

## 01443440 PAULINS KILL AT BALESVILLE, NJ--Continued

## WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

| DATE      | TIME                                                                | NITRO-<br>GEN, NH4<br>+ ORG.<br>TOT IN<br>BOT MAT<br>(MG/KG<br>AS N) | CARBON,<br>INOR-<br>GANIC,<br>TOT IN<br>BOT MAT<br>(G/KG<br>AS C)    | CARBON,<br>INORG +<br>ORGANIC<br>TOT. IN<br>BOT MAT<br>(G/KG<br>AS C) | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)                  | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)                                | ARSENIC<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS AS) | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE)      | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)              | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD)         | CADMIUM<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CD) |
|-----------|---------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------|
| OCT       |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     |                                                                      |                                                                    |                                                                 |                                                                      |
| 18        | 1045                                                                | 1200                                                                 | 3.2                                                                  | 6.6                                                                   | 10                                                                   | 1                                                                  | <1                                                                  | <10                                                                  | 40                                                                 | <1                                                              | <1                                                                   |
| DATE      | CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR)                          | CHRO-<br>MIUM,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)   | COBALT,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CO) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU)               | COPPER,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CU) | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE)              | IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)                    | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB)                | LEAD,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MANGA-<br>NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  |
| OCT       |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     |                                                                      |                                                                    |                                                                 |                                                                      |
| 18        | 10                                                                  | 2                                                                    | 10                                                                   | 8                                                                     | 0                                                                    | 180                                                                | 1900                                                                | 2                                                                    | 40                                                                 | 40                                                              | 1000                                                                 |
| DATE      | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG)             | MERCURY<br>RECOV.<br>FM BOT-<br>TOMCMA-<br>TERIAL<br>(UG/L<br>AS HG) | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI)              | NICKEL,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS NI)  | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE)                           | SELE-<br>NIUM,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN)               | ZINC,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS ZN)   | PHENOLS<br>TOTAL<br>(UG/L)                                         | PCB,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)        | PCN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             |
| ост<br>18 | <.1                                                                 | <.01                                                                 | 2                                                                    | <10                                                                   | <1                                                                   | <1                                                                 | 30                                                                  | 50                                                                   | 6                                                                  | <1                                                              | <1.0                                                                 |
| DATE      | ALDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)         | CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)                     | DDD,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DDE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)              | DDT,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DI-<br>AZINON,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | DI-<br>ELDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | ENDO-<br>SULFAN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | ENDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)        | ETHION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)     | HEPTA-<br>CHLOR,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) |
| OCT<br>18 | <.1                                                                 | <1.0                                                                 | <.1                                                                  | <.1                                                                   | <.1                                                                  | <.1                                                                | <.1                                                                 | <.1                                                                  | <.1                                                                | <.1                                                             | <.1                                                                  |
| DATE      | HEPTA-<br>CHLOR<br>EPOXIDE<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG) | LINDANE<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)          | MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)                    | METH-<br>OXY-<br>CHLOR,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)      | METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)                     | METHYL<br>TRI-<br>THION,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)  | MIREX,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)          | PARA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | PER-<br>THANE<br>IN<br>BOTTOM<br>MATERIL<br>(UG/KG)                | TOXA - PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)              | TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)                     |
| OCT       |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     |                                                                      |                                                                    |                                                                 |                                                                      |
| 18        | <.1                                                                 | <.1                                                                  | <.1                                                                  | <.1                                                                   | <.1                                                                  | <.1                                                                | <.1                                                                 | <.1                                                                  | <1.00                                                              | <10                                                             | <.1                                                                  |

## 01443500 PAULINS KILL AT BLAIRSTOWN, NJ

LOCATION.--Lat 40°58'44", long 74°57'15", Warren County, Hydrologic Unit 02040105, on right bank 1,200 ft upstream from bridge on State Highway 94 in Blairstown, 1,400 ft upstream from Blairs Creek, and 10 mi upstream from mouth. Water-quality samples collected at bridge 1,200 ft downstream from gage at high flows.

DRAINAGE AREA .-- 126 mi2.

## WATER-DISCHARGE RECORDS

PERIOD OF RECORD. - 1921 to September 1976, October 1977 to current year.

REVISED RECORDS. -- WSP 971: 1942. WSP 1382: 1952-53(M).

GAGE.--Water-stage recorder and concrete control (Aug. 1, 1931, to Aug. 3, 1941, concrete control at site 280 ft, downstream). Datum of gage is 335.86 ft National Geodetic Vertical Datum of 1929. Prior to May 24, 1922, nonrecording gage and May 24, 1922 to July 31, 1931, water-stage recorder, at site of former highway bridge 1,300 ft downstream at different datum. Aug. 1, 1931 to July 28, 1939, water-stage recorder at site 100 ft downstream at present datum.

REMARKS.-Water-discharge records good except those for winter periods, which are fair. Diurnal fluctuation caused by powerplant above station and flow regulated slightly by Swartswood Lake.

AVERAGE DISCHARGE.--61 years, (water years 1922-76, 1978-83) 194 ft3/s, 20.91 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 8,750 ft<sup>3</sup>/s Aug. 19, 1955, gage height, 11.12 ft, from high-water mark in gage house; minimum, about 2.8 ft<sup>3</sup>/s Nov. 1, 1922; minimum daily, 5 ft<sup>3</sup>/s Aug. 13, 14, 1930.

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 1,000 ft3/s and maximum (\*):

| Date    | Time | Discharge<br>(ft³/s) | Gage height (ft) | Date    | Time | Discharge<br>(ft³/s) | Gage height (ft) |
|---------|------|----------------------|------------------|---------|------|----------------------|------------------|
| Feb. 3  | 1930 | 1090                 | 3.56             | Apr. 16 | 2015 | *3200                | 7.25             |
| Mar. 22 | 0345 | 1240                 | 4.02             | Apr. 25 | 1500 | 1060                 | 3.47             |

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

Minimum discharge, 19 ft<sup>3</sup>/s Sept. 11, gage height, 1.45 ft.

|                                            |                                        |                                          |                                          |                                           |                                           | MEAN VA                                     |                                             |                                           |                                          |                                  | 100                              |                                         |
|--------------------------------------------|----------------------------------------|------------------------------------------|------------------------------------------|-------------------------------------------|-------------------------------------------|---------------------------------------------|---------------------------------------------|-------------------------------------------|------------------------------------------|----------------------------------|----------------------------------|-----------------------------------------|
| DAY                                        | OCT                                    | NOV                                      | DEC                                      | JAN                                       | FEB                                       | MAR                                         | APR                                         | MAY                                       | JUN                                      | JUL                              | AUG                              | SEP                                     |
| 1<br>2<br>3<br>4<br>5                      | 76<br>71<br>64<br>60<br>57             | 49<br>47<br>46<br>58<br>339              | 157<br>139<br>78<br>79<br>106            | 153<br>145<br>140<br>130<br>122           | 260<br>264<br>764<br>817<br>556           | 292<br>427<br>482<br>423<br>390             | 418<br>378<br>522<br>595<br>480             | 418<br>383<br>365<br>351<br>327           | 308<br>269<br>239<br>371<br>367          | 117<br>103<br>95<br>85<br>86     | 40<br>41<br>39<br>37<br>37       | 35<br>30<br>29<br>28<br>27              |
| 6<br>7<br>8<br>9                           | 54<br>53<br>51<br>73<br>73             | 262<br>198<br>162<br>146<br>133          | 204<br>213<br>197<br>169<br>143          | 133<br>130<br>126<br>117<br>117           | 447<br>408<br>386<br>349<br>310           | 357<br>378<br>404<br>493<br>534             | 423<br>395<br>452<br>646<br>1070            | 297<br>270<br>259<br>269<br>246           | 299<br>495<br>408<br>321<br>272          | 86<br>77<br>69<br>66<br>61       | 46<br>44<br>37<br>36<br>35       | 26<br>25<br>23<br>23<br>22              |
| 11<br>12<br>13<br>14<br>15                 | 58<br>52<br>53<br>61<br>60             | 126<br>122<br>256<br>346<br>278          | 139<br>124<br>116<br>109<br>108          | 198<br>211<br>198<br>191<br>195           | 260<br>241<br>304<br>283<br>258           | 667<br>627<br>575<br>511<br>456             | 1690<br>1260<br>981<br>729<br>605           | 229<br>217<br>208<br>197<br>195           | 241<br>218<br>198<br>183<br>167          | 58<br>58<br>57<br>54<br>53       | 81<br>184<br>158<br>108<br>81    | 21<br>140<br>144<br>127<br>105          |
| 16<br>17<br>18<br>19<br>20                 | 56<br>51<br>48<br>46<br>45             | 243<br>233<br>222<br>204<br>189          | 179<br>200<br>178<br>182<br>221          | 196<br>188<br>197<br>190<br>184           | 248<br>246<br>256<br>265<br>249           | 407<br>377<br>369<br>836<br>851             | 2250<br>2550<br>1810<br>1420<br>1270        | 246<br>352<br>275<br>230<br>226           | 154<br>166<br>155<br>145<br>149          | 55<br>53<br>48<br>61<br>58       | 67<br>57<br>55<br>55<br>48       | 80<br>37<br>24<br>28<br>25              |
| 21<br>22<br>23<br>24<br>25                 | 46<br>47<br>50<br>47<br>58             | 180<br>172<br>163<br>149<br>138          | 216<br>204<br>199<br>200<br>201          | 178<br>168<br>207<br>259<br>260           | 244<br>261<br>302<br>333<br>338           | 874<br>1150<br>904<br>684<br>561            | 1160<br>1030<br>810<br>782<br>1010          | 226<br>213<br>366<br>363<br>290           | 149<br>134<br>117<br>108<br>99           | 52<br>72<br>65<br>60<br>69       | 44<br>38<br>37<br>34<br>32       | 30<br>61<br>56<br>48<br>39              |
| 26<br>27<br>28<br>29<br>30<br>31           | 77<br>71<br>61<br>56<br>52<br>50       | 133<br>128<br>125<br>174<br>163          | 199<br>187<br>185<br>184<br>174<br>160   | 287<br>293<br>270<br>248<br>238<br>256    | 320<br>288<br>286<br>                     | 477<br>444<br>797<br>672<br>523<br>458      | 917<br>694<br>579<br>506<br>456             | 260<br>386<br>358<br>318<br>381<br>359    | 89<br>84<br>120<br>206<br>154            | 60<br>52<br>47<br>43<br>43       | 31<br>30<br>33<br>38<br>38<br>38 | 24<br>32<br>31<br>25<br>28              |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 1777<br>57·3<br>77<br>45<br>.45<br>.52 | 5184<br>173<br>346<br>46<br>1.37<br>1.53 | 5150<br>166<br>221<br>78<br>1.32<br>1.52 | 5925<br>191<br>293<br>117<br>1.52<br>1.75 | 9543<br>341<br>817<br>241<br>2.71<br>2.82 | 17400<br>561<br>1150<br>292<br>4.45<br>5.14 | 27888<br>930<br>2550<br>378<br>7.38<br>8.23 | 9080<br>293<br>418<br>195<br>2.33<br>2.68 | 6385<br>213<br>495<br>84<br>1.69<br>1.89 | 2008<br>64.8<br>117<br>43<br>.51 | 1674<br>54.0<br>184<br>30<br>.43 | 1373<br>45.8<br>144<br>21<br>.36<br>.41 |

CAL YR 1982 TOTAL 74266 MEAN 203 MAX 1170 MIN 45 CFSM 1.61 IN. 21.93 WTR YR 1983 TOTAL 93387 MEAN 256 MAX 2550 MIN 21 CFSM 2.03 IN. 27.57

## 01443500 PAULINS KILL AT BLAIRSTOWN, NJ--Continued

## WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1921, 1925, 1957-60, 1962-63, 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

| DATE             | TIME                                              | STREAM-<br>FLOW,<br>INSTAN-<br>TANEOUS<br>(CFS)                    | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(UMHOS)    | PH<br>(STAND-<br>ARD<br>UNITS)                       | TEMPER<br>ATURE<br>(DEG C                           | SOLVE                                                               | ED 5 DAY                                      | FORM, FECAL EC BROTH                                | , STREP-<br>TOCOCCI<br>FECAL                       |
|------------------|---------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------|----------------------------------------------------|
| FEB              |                                                   |                                                                    |                                                      |                                                      |                                                     |                                                                     |                                               |                                                     |                                                    |
| 24<br>APR        | 1145                                              | 335                                                                | 380                                                  | 8.2                                                  | 3.0                                                 | 13.8                                                                | E2.0                                          | 90                                                  | 13                                                 |
| 27<br>JUN        | 1115                                              | 671                                                                | 250                                                  | 7.7                                                  | 8.0                                                 | 12.4                                                                | E1.5                                          | 70                                                  | 17                                                 |
| 02<br>JUL        | 1215                                              | 267                                                                | 289                                                  | 8.3                                                  | 16.0                                                | 11.5                                                                | E 1.0                                         | 130                                                 | 11                                                 |
| 26<br>AUG        | 1230                                              | 60                                                                 | 483                                                  | 8.4                                                  | 23.0                                                | 7.8                                                                 | E1.9                                          | 110                                                 | 350                                                |
| 30               | 1215                                              | 39                                                                 | 468                                                  | 8.3                                                  | 24.0                                                | 8.3                                                                 | E1.9                                          | 80                                                  | 240                                                |
| DATE             | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3)            | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)                       | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG) | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)         | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K) | ALKA-<br>LINITY<br>LAB<br>(MG/L<br>AS<br>CACO3)                     | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F) |
| FEB              |                                                   |                                                                    |                                                      |                                                      |                                                     |                                                                     |                                               |                                                     |                                                    |
| 24<br>APR        | 130                                               | 33                                                                 | 12                                                   | 17                                                   | 1.4                                                 | 102                                                                 | 23                                            | 29                                                  | <.10                                               |
| 27<br>JUN        | 100                                               | 25                                                                 | 9.1                                                  | 12                                                   | 1.1                                                 | 83                                                                  | 20                                            | 20                                                  | <.10                                               |
| 02<br>JUL        | 110                                               | 29                                                                 | 9.8                                                  | 12                                                   | 1.0                                                 | 95                                                                  | 18                                            | 21                                                  | <.10                                               |
| 26<br>AUG        | 170                                               | 39                                                                 | 18                                                   | 19                                                   | 1.4                                                 | 145                                                                 | 22                                            | 33                                                  | .20                                                |
| 30               | 180                                               | 42                                                                 | 1.9                                                  | 20                                                   | 1.8                                                 | 148                                                                 | 27                                            | 35                                                  | .10                                                |
| DATE             | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2) | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L) | NITRO-<br>GEN,<br>NITRITE<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L<br>AS N) | GEN,                                                | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)     | PHOS-<br>PHATE,<br>TOTAL<br>(MG/L<br>AS PO4)        | CARBON,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS C)      |
|                  | 5102)                                             | (Md/L)                                                             | AS N                                                 | NO N                                                 | AS N                                                | AS N                                                                | AD My                                         | NO 104)                                             | 110 07                                             |
| FEB<br>24<br>APR | 6.0                                               | 216                                                                | <.010                                                | .800                                                 | . 250                                               | .70                                                                 | 1.5                                           | . 15                                                | 2.9                                                |
| 27<br>JUN        | 4.1                                               | 183                                                                | .030                                                 | .500                                                 | .050                                                | .63                                                                 | 1.1                                           | . 24                                                | 4.2                                                |
| 02<br>JUL        | 4.8                                               | 177                                                                | .010                                                 | .500                                                 | <.050                                               | • 55                                                                | 1.1                                           | . 24                                                | 5.6                                                |
| 26<br>AUG        | 2.1                                               | 279                                                                | .010                                                 | .300                                                 | .090                                                | .56                                                                 | .86                                           | .28                                                 | 4.1                                                |
| 30               | 2.1                                               | 270                                                                | .020                                                 | .300                                                 | .050                                                | . 49                                                                | .79                                           | .31                                                 | 4.8                                                |
|                  |                                                   |                                                                    |                                                      |                                                      |                                                     |                                                                     |                                               |                                                     |                                                    |

## 01443900 YARDS CREEK NEAR BLAIRSTOWN, NJ

LOCATION.--Lat 40°58'51", long 75°02'25", Warren County, Hydrologic Unit 02040105, on left bank 100 ft upstream from bridge on Hainesburg-Mount Vernon Road, 1.4 mi downstream of Yards Creek Reservoir, 2.2 mi northeast of Hainesburg, 2.4 mi upstream from mouth, and 4.2 mi west of Blairstown.

DRAINAGE AREA .-- 5.34 mi2.

## WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1966 to current year.

REVISED RECORDS.--WDR NJ-77-2: 1976. WDR NJ-79-2: 1977(m). WDR NJ-82-2: Drainage area.

GAGE. -- Water-stage recorder and concrete control. Altitude of gage is 608 ft, from topographic map.

REMARKS.--Water-discharge records fair. Complete regulation by the Jersey Central Power and Light Co., at Yards Creek Reservoir 1.4 mi above station.

AVERAGE DISCHARGE. -- 17 years, 11.1 ft3/s.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 583 ft3/s, Feb. 24, 1977, gage height, 3.92 ft; no flow Sept. 12, 1971.

EXTREMES FOR CURRENT YEAR. -- Maximum discharge, 154 ft3/s Apr. 16, gage height, 3.11 ft; minimum, 0.53 ft3/s Aug. 4.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

DAY OCT AIIG SEP NOV DEC JAN FEB MAR APR MAY JUN JUI. 2.9 1.5 6.8 21 17 19 2.1 . 86 2.1 .96 2.1 2 2.7 1.6 7.0 17 16 23 24 16 19 2.0 2.5 .87 1.5 17 28 20 30 16 19 1.8 2.1 2.4 6.0 8.3 15 15 22 24 1.6 18 31 17 1.4 5 2.2 7.6 7.2 19 22 17 19 1.8 1.7 13 1.6 1.6 6 2.1 3.0 6.0 19 14 21 19 1.6 2.3 2.0 2.9 18 22 14 22 31 1.6 1.1 2.0 2.4 .95 1.9 8 1.9 1.9 12 21 16 34 9.7 40 1.6 1.3 2.2 2.0 2.0 11 23 16 28 8.8 42 1.6 1.8 .97 1.4 2.8 2.3 10 6.8 11 30 20 59 8.8 33 11 2.4 2.2 4.9 13 50 19 90 7.7 21 1.3 6.5 1.4 3.5 2.4 3.8 1.3 12 2.1 2.3 12 45 21 105 19 7.8 13 29 88 2.3 18 1.1 2.3 1.7 18 .80 3.4 14 2.3 3.8 27 2.2 16 1.5 1.8 15 2.5 3.4 3.3 13 18 20 54 2.2 15 .90 1.1 1.8 4.8 14 1.9 2.3 18 21 101 .89 16 3.2 11 2.0 3.0 .83 1.9 5.2 20 4.4 9.2 17 12 22 119 4.2 18 1.9 3.0 15 22 23 109 7.2 9.8 .61 1.1 1.7 3.3 1.4 2.9 4.0 9.4 1.1 19 1.0 1.5 20 1.8 2.8 3.8 19 21 26 113 3.2 9.3 3.6 1.8 2.8 3.7 28 19 38 57 2.5 9.0 1.3 21 99 22 1.8 2.6 34 20 57 3.4 8.9 1.3 .74 2.8 23 1.8 2.5 8.0 54 22 55 24 6.2 9.0 1.0 .86 1.9 24 1.7 2.6 6.7 17 22 55 26 5.7 1.2 2.0 1.9 2.7 4.7 58 30 9.8 2.7 .98 1.2 1.8 1.6 47 2.7 1.0 1.1 26 2.7 2.4 3.5 15 21 25 11 27 1.9 2.3 3.4 15 21 25 58 15 2.3 1.0 1.9 1.7 2.3 2.0 1.7 28 29 3.5 1.0 18 20 26 48 19 5.1 1.8 .98 1.9 23 3.0 1.7 1.7 ---23 18 20 1.5 2.2 30 1.7 5.7 20 ---33 18 18 19 2.1 25 13 47.93 456.3 41.69 56.2 304.6 547 1659 TOTAL 65.5 95.5 191.6 675 838 15.2 1.34 1.55 1.87 55.3 9.83 MEAN 2.11 3.18 6.18 17.6 24.1 27.0 20 6.5 3.6 3.3 MAX 2.9 7.8 25 54 50 14 2.2 .61 1.3 2.0 11 18 2.2 MIN 1.7

CAL YR 1982 TOTAL 4019.4 MEAN 11.0 MAX 180 MIN 1.0 WTR YR 1983 TOTAL 4978.32 MEAN 13.6 MAX 119 MIN .61

## 01444100 PAULINS KILL AT MOUTH AT COLUMBIA, NJ

LOCATION.--Lat 40°55'14", long 75°05'18", Warren County, Hydrologic Unit 02040206, at bridge on U.S. Route 46 in Columbia, 2.3 mi southwest of Polkville, and 3.2 mi southeast of Knowlton.

DRAINAGE AREA .-- 177 mi2.

## WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1976 to June 1983 (discontinued).

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

|           |                                                   | CDE                                                                |                                                      |                                                      |                                                      | OXYGEN                                                              | COLI-                                         |                                                     |                                                    |
|-----------|---------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------|----------------------------------------------------|
| DATE      | TIME                                              | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(UMHOS)                  | PH<br>(STAND-<br>ARD<br>UNITS)                       | TEMPER-<br>ATURE<br>(DEG C)                          | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)                  | DEMAND,<br>BIO-<br>CHEM-<br>ICAL,<br>5 DAY<br>(MG/L)                | FORM,<br>FECAL,<br>EC<br>BROTH<br>(MPN)       | STREP-<br>TOCOCCI<br>FECAL<br>(MPN)                 | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3)             |
| FEB       |                                                   |                                                                    |                                                      |                                                      |                                                      |                                                                     |                                               |                                                     |                                                    |
| 24<br>APR | 1030                                              | 333                                                                | 8.1                                                  | 3.0                                                  | 13.4                                                 | E2.0                                                                | 260                                           | 17                                                  | 120                                                |
| 27<br>JUN | 1200                                              | 237                                                                | 7.6                                                  | 8.5                                                  | 11.4                                                 | E1.3                                                                | 490                                           | 14                                                  | 98                                                 |
| 02        | 1330                                              | 272                                                                | 8.2                                                  | 16.0                                                 | 11.4                                                 | E1.9                                                                | 330                                           | 11                                                  | 120                                                |
| DATE      | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)      | SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)                         | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)         | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)  | ALKA-<br>LINITY<br>LAB<br>(MG/L<br>AS<br>CACO3)      | SULFIDE<br>TOTAL<br>(MG/L<br>AS S)                                  | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F) |
| FEB       |                                                   |                                                                    |                                                      |                                                      |                                                      |                                                                     |                                               |                                                     |                                                    |
| 24<br>APR | 30                                                | 11                                                                 | 14                                                   | 1.1                                                  | 92                                                   |                                                                     | 22                                            | 24                                                  | <.10                                               |
| 27<br>JUN | 25                                                | 8.7                                                                | 9.9                                                  | .90                                                  | 77                                                   | 4-                                                                  | 20                                            | 17                                                  | <.10                                               |
| 02        | 28                                                | 11                                                                 | 12                                                   | .90                                                  | 88                                                   | <.5                                                                 | 20                                            | 18                                                  | <.10                                               |
| DATE      | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2) | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L) | NITRO-<br>GEN,<br>NITRITE<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>AMMONIA<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)     | PHOS-<br>PHATE,<br>TOTAL<br>(MG/L<br>AS PO4)        | CARBON,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS C)      |
| FEB       |                                                   |                                                                    |                                                      |                                                      |                                                      |                                                                     |                                               |                                                     |                                                    |
| 24<br>APR | 5.7                                               | 192                                                                | <.010                                                | .800                                                 | .320                                                 | .48                                                                 | 1.3                                           | .09                                                 | 2.2                                                |
| 27<br>JUN | 4.1                                               | 165                                                                | .020                                                 | .600                                                 | .050                                                 | . 47                                                                | 1.1                                           | .12                                                 | 3.1                                                |
| 02        | 5.2                                               | 177                                                                | .010                                                 | .600                                                 | <.050                                                | E.51                                                                |                                               | .24                                                 | 4.9                                                |
|           |                                                   |                                                                    |                                                      |                                                      |                                                      |                                                                     |                                               |                                                     |                                                    |

# 01444100 PAULINS KILL AT MOUTH AT COLUMBIA, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

| DATE      | TIME                                                  | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)   | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)                             | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE) | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)   | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD) | CHRO-MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU) |
|-----------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------|
| JUN       |                                                       |                                                       |                                                                 |                                                                 |                                                         |                                                         |                                                            |                                                         |
| 02        | 1330                                                  | 110                                                   | <1                                                              | <10                                                             | 50                                                      | <1                                                      | 10                                                         | 3                                                       |
| DATE      | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG)         | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE)              | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN)      | PHENOLS<br>TOTAL<br>(UG/L)                              |
| JUN<br>02 | 260                                                   | <1                                                    | 50                                                              | •5                                                              | 3                                                       | <1                                                      | 40                                                         | <1                                                      |

## 01445500 PEQUEST RIVER AT PEQUEST, NJ

LOCATION.--Lat 40°49'50", long 74°58'43", Warren County, Hydrologic Unit 02040105, on right bank at Pequest, 100 ft upstream from CONRAIL (formerly Lehigh and Hudson River Railway) bridge, and 300 ft downstream from Furnace Brook.

DRAINAGE AREA.--106 mi<sup>2</sup>.

## WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1921 to current year. Monthly discharge only for October 1921, published in WSP 1302. REVISED RECORDS. -- WSP 1902: 1940(M), 1945, 1955(M), 1957, 1959(M).

GAGE.--Water-stage recorder. Concrete control since Sept. 29, 1929. Datum of gage is 398.78 ft National Geodetic Vertical Datum of 1929. Prior to June 22, 1926, nonrecording gage at site 10 ft upstream at same datum.

REMARKS. -- Water-discharge records good.

AVERAGE DISCHARGE. -- 62 years, 154 ft3/s, 19.36 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,130 ft<sup>3</sup>/s Jan. 25, 1979, gage height, 5.97 ft, from floodmark; minimum, 12 ft<sup>3</sup>/s Aug. 17-22, Dec. 10, 1965.

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 650 ft3/s and maximum (\*):

| Date    | Time | Discharge<br>(ft³/s) | Gage height (ft) | Date    | Time | Discharge<br>(ft³/s) | Gage height<br>(ft) |
|---------|------|----------------------|------------------|---------|------|----------------------|---------------------|
| Mar. 19 | 1200 | 744                  | 3.35             | Apr. 10 | 2045 | 1090                 | 4.11                |
| Mar. 21 | 2230 | 819                  | 3.52             | Apr. 16 | 1415 | *1500                | 4.90                |
| Mar. 28 | 0600 | 673                  | 3.18             | Apr. 25 | 1115 | 973                  | 3.86                |

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

Minimum discharge, 27 ft3/s Sept. 20, 21, gage height, 1.22 ft.

|                                            |                                 |                                          |                                          |                                          |                                          | MEAN V                                     | ALUES                                       |                                           | ,                                        |                                         |                                         |                                        |
|--------------------------------------------|---------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|--------------------------------------------|---------------------------------------------|-------------------------------------------|------------------------------------------|-----------------------------------------|-----------------------------------------|----------------------------------------|
| DA Y                                       | OCT                             | NOV                                      | DEC                                      | JAN                                      | FEB                                      | MAR                                        | APR                                         | MAY                                       | JUN                                      | JUL                                     | AUG                                     | SEP                                    |
| 1<br>2<br>3<br>4<br>5                      | 59<br>53<br>50<br>49<br>47      | 44<br>46<br>44<br>55<br>217              | 133<br>130<br>116<br>115<br>110          | 99<br>97<br>93<br>89<br>86               | 176<br>188<br>542<br>434<br>353          | 228<br>397<br>380<br>317<br>281            | 349<br>319<br>403<br>450<br>404             | 439<br>412<br>389<br>372<br>341           | 253<br>220<br>197<br>255<br>247          | 131<br>114<br>104<br>95<br>90           | 55<br>65<br>54<br>51<br>50              | 42<br>39<br>37<br>36<br>36             |
| 6<br>7<br>8<br>9                           | 46<br>46<br>44<br>43            | 150<br>106<br>86<br>79<br>77             | 106<br>100<br>94<br>91<br>84             | 111<br>110<br>101<br>93<br>90            | 305<br>278<br>265<br>252<br>218          | 264<br>290<br>302<br>345<br>426            | 349<br>321<br>347<br>480<br>737             | 313<br>289<br>275<br>283<br>261           | 212<br>328<br>257<br>206<br>181          | 87<br>81<br>78<br>73<br>70              | 49<br>48<br>46<br>44<br>42              | 34<br>33<br>33<br>32<br>32             |
| 11<br>12<br>13<br>14<br>15                 | 42<br>42<br>46<br>50<br>49      | 72<br>70<br>254<br>231<br>170            | 82<br>84<br>78<br>67<br>88               | 240<br>180<br>135<br>114<br>124          | 183<br>91<br>192<br>228<br>214           | 445<br>433<br>394<br>346<br>314            | 973<br>825<br>674<br>561<br>491             | 245<br>236<br>222<br>202<br>195           | 166<br>153<br>146<br>137<br>127          | 67<br>66<br>62<br>59                    | 81<br>235<br>131<br>95<br>77            | 30<br>29<br>33<br>33<br>32             |
| 16<br>17<br>18<br>19<br>20                 | 47<br>44<br>43<br>42<br>41      | 131 •<br>116<br>105<br>98<br>93          | 192<br>226<br>152<br>127<br>123          | 122<br>113<br>96<br>79<br>104            | 204<br>195<br>200<br>211<br>202          | 291<br>274<br>277<br>654<br>576            | 1170<br>1460<br>1460<br>1390<br>1230        | 205<br>225<br>244<br>219<br>218           | 123<br>120<br>126<br>125<br>130          | 62<br>56<br>54<br>89<br>159             | 70<br>63<br>57<br>55<br>52              | 31<br>31<br>29<br>28<br>28             |
| 21<br>22<br>23<br>24<br>25                 | 42<br>41<br>39<br>38<br>42      | 91<br>94<br>92<br>88<br>82               | 119<br>115<br>111<br>117<br>123          | 100<br>95<br>173<br>303<br>262           | 200<br>216<br>247<br>276<br>268          | 634<br>712<br>595<br>503<br>446            | 1050<br>815<br>685<br>699<br>921            | 211<br>204<br>261<br>232<br>200           | 127<br>120<br>112<br>104<br>97           | 85<br>81<br>76<br>71<br>76              | 49<br>45<br>44<br>42<br>41              | 34<br>77<br>48<br>38<br>35             |
| 26<br>27<br>28<br>29<br>30<br>31           | 66<br>58<br>52<br>48<br>45      | 80<br>78<br>75<br>169<br>167             | 126<br>119<br>117<br>118<br>111<br>103   | 233<br>203<br>181<br>165<br>158<br>177   | 246<br>217<br>218<br>                    | 402<br>383<br>608<br>525<br>440<br>384     | 790<br>652<br>583<br>524<br>476             | 206<br>349<br>290<br>259<br>317<br>302    | 89<br>87<br>113<br>263<br>187            | 76<br>67<br>61<br>57<br>55<br>62        | 40<br>38<br>38<br>60<br>44<br>42        | 33<br>33<br>32<br>32<br>34             |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 1441<br>46.5<br>66<br>38<br>.44 | 3260<br>109<br>254<br>44<br>1.03<br>1.14 | 3577<br>115<br>226<br>67<br>1.08<br>1.26 | 4326<br>140<br>303<br>79<br>1.32<br>1.52 | 6819<br>244<br>542<br>91<br>2.30<br>2.39 | 12866<br>415<br>712<br>228<br>3.92<br>4.52 | 21588<br>720<br>1460<br>319<br>6.79<br>7.58 | 8416<br>271<br>439<br>195<br>2.56<br>2.95 | 5008<br>167<br>328<br>87<br>1.58<br>1.76 | 2423<br>78.2<br>159<br>54<br>.74<br>.85 | 1903<br>61.4<br>235<br>38<br>.58<br>.67 | 1054<br>35.1<br>77<br>28<br>.33<br>.37 |

CAL YR 1982 TOTAL 56641 MEAN 155 MAX 844 MIN 38 CFSM 1.46 IN. 19.88 WTR YR 1983 TOTAL 72681 MEAN 199 MAX 1460 MIN 28 CFSM 1.88 IN. 25.51

## 01446500 DELAWARE RIVER AT BELVIDERE, NJ

LOCATION.--Lat 40°49'36", long 75°05'02", Warren County, Hydrologic Unit 02040105, on left bank at Belvidere, 800 ft downstream from Pequest River, and at mile 197.7.

DRAINAGE AREA .-- 4,535 mi2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1922 to current year.

REVISED RECORDS.--WSP 781: 1933(M). WSP 951: 1940-41, Drainage area. WSP 1432: 1923, 1924(M).

GAGE.--Water-stage recorder. Datum of gage 226.43 ft National Geodetic Vertical Datum of 1929. Prior to Jan. 1, 1929, nonrecording gage at site 200 ft upstream at same datum.

REMARKS.--Water-discharge records good. Diurnal fluctuations at medium and low flow caused by powerplants on tributary streams. Flow regulated by Lake Wallenpaupack, and by Pepacton, Cannonsville, Swinging Bridge, Toronto, Cliff Lake, and Neversink Reservoirs (see Delaware River Basin, reservoirs in) and smaller reservoirs. Diversion from Pepacton, Cannonsville, and Neversink Reservoirs (see Delaware River Basin, diversions).

AVERAGE DISCHARGE. -- 61 years, 7,890 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 273,000 ft<sup>3</sup>/s Aug. 19, 1955, gage height, 30.21 ft, from high-water mark in gage house, from rating curve extended above 170,000 ft<sup>3</sup>/s on basis of flood-routing study; minimum, 609 ft<sup>3</sup>/s Sept. 28, 29, 1943, gage height, 2.11 ft.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Oct. 10, 1903, reached a stage of 28.6 ft, from floodmark, discharge, 220,000 ft<sup>3</sup>/s, from rating curve extended above 170,000 ft<sup>3</sup>/s.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 101,000 ft<sup>3</sup>/s Apr. 17, gage height, 18.04 ft; minimum, 1,200 ft<sup>3</sup>/s Sept. 29, gage height, 2.78 ft.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983 MEAN VALUES

| DA Y                       | OCT                                          | NOA                                  | DEC                                          | JAN                                           | FEB                                      | MAR                                                | APR                                       | MAY                                            | JUN                                       | JUL                                          | AUG                                          | SEP                                  |
|----------------------------|----------------------------------------------|--------------------------------------|----------------------------------------------|-----------------------------------------------|------------------------------------------|----------------------------------------------------|-------------------------------------------|------------------------------------------------|-------------------------------------------|----------------------------------------------|----------------------------------------------|--------------------------------------|
| 1                          | 2530                                         | 2200                                 | 3310                                         | 5290                                          | 6310                                     | 6560                                               | 12400                                     | 26500                                          | 11800                                     | 7420                                         | 1860                                         | 2170                                 |
| 2                          | 2550                                         | 2160                                 | 3990                                         | 4640                                          | 6520                                     | 7650                                               | 11200                                     | 24200                                          | 10900                                     | 5840                                         | 2280                                         | 2250                                 |
| 3                          | 2500                                         | 2190                                 | 3590                                         | 4200                                          | 15900                                    | 10500                                              | 12800                                     | 25600                                          | 9750                                      | 5100                                         | 2210                                         | 1760                                 |
| 4                          | 2400                                         | 2290                                 | 3250                                         | 4140                                          | 33200                                    | 11600                                              | 15400                                     | 24100                                          | 11100                                     | 4650                                         | 1940                                         | 1650                                 |
| 5                          | 2340                                         | 4110                                 | 3000                                         | 3680                                          | 27100                                    | 11000                                              | 15200                                     | 22800                                          | 12600                                     | 4240                                         | 2140                                         | 1930                                 |
| 6<br>7<br>8<br>9           | 2280<br>2370<br>2250<br>2350<br>2430         | 4190<br>3500<br>2850<br>2630<br>2460 | 2910<br>2800<br>2770<br>2560<br>2380         | 3820<br>3860<br>3710<br>3180<br>2870          | 17400<br>14200<br>12800<br>11200<br>9350 | 9640<br>9880<br>12000<br>13900<br>14800            | 13500<br>12200<br>12300<br>14800<br>19600 | 20000<br>16800<br>13600<br>12800<br>14400      | 11600<br>13700<br>15100<br>13000<br>11200 | 3800<br>3720<br>3430<br>3270<br>2920         | 2210<br>2460<br>2300<br>2320<br>2110         | 1870<br>1960<br>2810<br>2440<br>2080 |
| 11                         | 2420                                         | 2270                                 | 2410                                         | 4440                                          | 7680                                     | 16400                                              | 33100                                     | 12900                                          | 10100                                     | 2330                                         | 2350                                         | 1930                                 |
| 12                         | 2260                                         | 2470                                 | 2500                                         | 5680                                          | 5520                                     | 17100                                              | 30400                                     | 11600                                          | 8950                                      | 2070                                         | 3630                                         | 1970                                 |
| 13                         | 2240                                         | 3500                                 | 1790                                         | 6240                                          | 6870                                     | 15200                                              | 23300                                     | 10200                                          | 8240                                      | 2560                                         | 4220                                         | 2270                                 |
| 14                         | 2240                                         | 4030                                 | 1770                                         | 5270                                          | 6800                                     | 13200                                              | 19100                                     | 9360                                           | 7590                                      | 2710                                         | 3800                                         | 2450                                 |
| 15                         | 2200                                         | 3920                                 | 1900                                         | 4620                                          | 7100                                     | 13100                                              | 16900                                     | 8050                                           | 6220                                      | 2700                                         | 2710                                         | 1540                                 |
| 16                         | 1840                                         | 3840                                 | 3170                                         | 3910                                          | 7580                                     | 12200                                              | 45300                                     | 8360                                           | 5530                                      | 2690                                         | 2070                                         | 1500                                 |
| 17                         | 1960                                         | 3360                                 | 5310                                         | 3490                                          | 7730                                     | 11300                                              | 91000                                     | 11200                                          | 5730                                      | 2590                                         | 1790                                         | 1960                                 |
| 18                         | 2410                                         | 2950                                 | 7810                                         | 3130                                          | 7400                                     | 10600                                              | 53400                                     | 9650                                           | 5490                                      | 2520                                         | 1810                                         | 1910                                 |
| 19                         | 2200                                         | 2750                                 | 6110                                         | 3180                                          | 7420                                     | 16500                                              | 37300                                     | 8340                                           | 5250                                      | 2470                                         | 2330                                         | 1840                                 |
| 20                         | 2240                                         | 2660                                 | 5060                                         | 3030                                          | 6380                                     | 19200                                              | 30700                                     | 7790                                           | 5190                                      | 3380                                         | 2470                                         | 1660                                 |
| 21                         | 2310                                         | 2750                                 | 4840                                         | 3190                                          | 5980                                     | 19700                                              | 27400                                     | 8060                                           | 5470                                      | 2980                                         | 2330                                         | 2700                                 |
| 22                         | 2230                                         | 2780                                 | 4590                                         | 3570                                          | 5960                                     | 26900                                              | 25600                                     | 7440                                           | 5130                                      | 3100                                         | 2190                                         | 3430                                 |
| 23                         | 2020                                         | 2750                                 | 4240                                         | 4670                                          | 6970                                     | 24800                                              | 24400                                     | 8690                                           | 4760                                      | 3150                                         | 2200                                         | 3560                                 |
| 24                         | 2180                                         | 2890                                 | 4010                                         | 7390                                          | 8100                                     | 19700                                              | 25400                                     | 9760                                           | 4280                                      | 2740                                         | 1990                                         | 2800                                 |
| 25                         | 2260                                         | 3210                                 | 3860                                         | 10300                                         | 8490                                     | 16700                                              | 40300                                     | 8890                                           | 3890                                      | 2320                                         | 3150                                         | 1920                                 |
| 26<br>27<br>28<br>29<br>30 | 2450<br>2440<br>2370<br>2370<br>2350<br>2330 | 3020<br>2700<br>2560<br>2990<br>3170 | 4070<br>4970<br>8250<br>7340<br>7250<br>6310 | 11600<br>9730<br>8170<br>7340<br>6180<br>5910 | 8020<br>6840<br>6190                     | 14600<br>12400<br>17100<br>18000<br>16100<br>14000 | 56200<br>47200<br>38400<br>31700<br>28300 | 7920<br>8640<br>10000<br>8930<br>9570<br>11100 | 3400<br>2800<br>3140<br>6180<br>10300     | 2830<br>2650<br>2110<br>1910<br>2310<br>2250 | 3990<br>4100<br>2280<br>3500<br>2370<br>2220 | 1520<br>1720<br>1700<br>1360<br>1710 |
| TOTAL                      | 71320                                        | 89150                                | 128120                                       | 160430                                        | 281010                                   | 452330                                             | 864800                                    | 397250                                         | 238390                                    | 98760                                        | 79330                                        | 62370                                |
| MEAN                       | 2301                                         | 2972                                 | 4133                                         | 5175                                          | 10040                                    | 14590                                              | 28830                                     | 12810                                          | 7946                                      | 3186                                         | 2559                                         | 2079                                 |
| MAX                        | 2550                                         | 4190                                 | 8250                                         | 11600                                         | 33200                                    | 26900                                              | 91000                                     | 26500                                          | 15100                                     | 7420                                         | 4220                                         | 3560                                 |
| MIN                        | 1840                                         | 2160                                 | 1770                                         | 2870                                          | 5520                                     | 6560                                               | 11200                                     | 7440                                           | 2800                                      | 1910                                         | 1790                                         | 1360                                 |

CAL YR 1982 TOTAL 2294710 MEAN 6287 MAX 37000 MIN 1770 WTR YR 1983 TOTAL 2923260 MEAN 8009 MAX 91000 MIN 1360

## 01447000 DELAWARE RIVER AT NORTHAMPTON STREET AT EASTON, PA

LOCATION.--Lat 40°41'30", long 75°12'15", Northampton County, Hydrologic Unit 02040105, at bridge on Northampton Street in Easton, 600 ft upstream from Lehigh River, and 0.2 mi downstream from U.S. Route 22 toll bridge in Easton.

DRAINAGE AREA. -- 4,717 mi2.

## WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

| DATE      | TIME                                              | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(UMHOS)                  | PH<br>(STAND-<br>ARD<br>UNITS)                       | TEMPER-<br>ATURE<br>(DEG C)                          | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)                  | OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)                        | COLI-<br>FORM,<br>FECAL,<br>EC<br>BROTH<br>(MPN) | STREP-<br>TOCOCCI<br>FECAL<br>(MPN)                 | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3)             |
|-----------|---------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------|----------------------------------------------------|
| FEB       |                                                   |                                                                    |                                                      |                                                      |                                                      |                                                                     |                                                  |                                                     |                                                    |
| 28<br>MAY | 1245                                              | 163                                                                | 8.1                                                  | 2.0                                                  | 13.1                                                 | E1.6                                                                | 490                                              | 2                                                   | 56                                                 |
| 11<br>JUN | 1300                                              | 112                                                                | 7.9                                                  | 10.5                                                 | 10.9                                                 | E1.8                                                                | <20                                              | 2                                                   | 40                                                 |
| 16<br>JUL | 1100                                              | 134                                                                | 7.5                                                  | 25.0                                                 | 8.6                                                  | 2.6                                                                 | <20                                              | 330                                                 | 51                                                 |
| 27<br>AUG | 1030                                              | 146                                                                | 8.2                                                  | 24.5                                                 |                                                      | E1.4                                                                | , 170                                            | 49                                                  | 55                                                 |
| 22        | 1230                                              | 165                                                                | 8.5                                                  | 26.0                                                 |                                                      | E2.0                                                                | 50                                               | 70                                                  | 58                                                 |
| DATE      | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)      | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)               | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)         | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)  | ALKA-<br>LINITY<br>LAB<br>(MG/L<br>AS<br>CACO3)      | SULFIDE<br>TOTAL<br>(MG/L<br>AS S)                                  | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)    | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F) |
| FEB       |                                                   |                                                                    |                                                      |                                                      |                                                      |                                                                     |                                                  |                                                     |                                                    |
| 28<br>MAY | 15                                                | 4.4                                                                | 6.7                                                  | 1.0                                                  | 34                                                   |                                                                     | 21                                               | 6.5                                                 | <.10                                               |
| 11<br>JUN | 11                                                | 3.0                                                                | 4.2                                                  | .90                                                  | 24                                                   |                                                                     | 17                                               | 6.3                                                 | <.10                                               |
| 16<br>JUL | 14                                                | 3.8                                                                | 6.5                                                  | 1.0                                                  | 32                                                   | <.5                                                                 | 17                                               | 7.8                                                 | <.10                                               |
| 27<br>AUG | 15                                                | 4.2                                                                | 7.3                                                  | 1.1                                                  | 37                                                   |                                                                     | 26                                               | 9.1                                                 | . 10                                               |
| 22        | 16                                                | 4.4                                                                | 7.6                                                  | 1.1                                                  | 37                                                   |                                                                     | 19                                               | 10                                                  | <.10                                               |
| DATE      | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2) | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L) | NITRO-<br>GEN,<br>NITRITE<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>AMMONIA<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)        | PHOS-<br>PHATE,<br>TOTAL<br>(MG/L<br>AS PO4)        | CARBON,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS C)      |
| FEB       |                                                   |                                                                    |                                                      |                                                      |                                                      |                                                                     |                                                  |                                                     |                                                    |
| 28<br>MAY | 4.1                                               | 94                                                                 | <.010                                                | .800                                                 | <.050                                                | • 33                                                                | 1.1                                              | .06                                                 | 2.3                                                |
| 11<br>JUN | 2.9                                               | 73                                                                 | <.010                                                | .600                                                 | .070                                                 | . 32                                                                | .92                                              | .12                                                 | 3.0                                                |
| 16<br>JUL | 2.0                                               | 76                                                                 | <.010                                                | .600                                                 |                                                      |                                                                     |                                                  | . 18                                                | 4.0                                                |
| 27<br>AUG | 2.1                                               | 78                                                                 | .020                                                 | .600                                                 | .090                                                 | .43                                                                 | 1.0                                              | . 15                                                | 3.5                                                |
| 22        | 2.2                                               | 100                                                                | .030                                                 | .700                                                 | <.050                                                | . 44                                                                | 1.1                                              | .21                                                 | 2.7                                                |

# 01447000 DELAWARE RIVER AT NORTHAMPTON STREET AT EASTON, PA--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

| DATE | TIME                                                  | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)   | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)                             | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE) | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)   | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD) | CHRO-<br>MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU) |
|------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|
| JUN  |                                                       |                                                       |                                                                 |                                                                 |                                                         |                                                         |                                                                | - 4 -                                                   |
| 16   | 1100                                                  | 10                                                    | 1                                                               | <10                                                             | 10                                                      | . 1                                                     | 20                                                             | 22                                                      |
| DATE | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG)         | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE)              | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN)          | PHENOLS<br>TOTAL<br>(UG/L)                              |
| JUN  |                                                       |                                                       |                                                                 |                                                                 |                                                         |                                                         |                                                                |                                                         |
| 16   | 150                                                   | . 1                                                   | 30                                                              | <.1                                                             | 7                                                       | <1                                                      | 20                                                             | <1                                                      |

## 01453000 LEHIGH RIVER AT BETHLEHEM, PA

LOCATION.--Lat 40°36'55", long 75°22'45", Lehigh County, PA, Hydrologic Unit 02040106, on left bank 110 ft upstream from New Street Bridge at Bethlehem, and 1,800 ft upstream from Monocacy Creek. Records include flow of Monocacy Creek.

DRAINAGE AREA .-- 1.279 mi2.

PERIOD OF RECORD. -- September 1902 to February 1905, April 1909 to current year. Monthly discharge only for some periods, published in WSP 1302. Published as "at South Bethlehem" prior to October 1913.

REVISED RECORDS.--WSP 261: 1903-5, WSP 321: 1910-11. WSP 1051: Drainage area. WSP 1141: 1929-34(M). WSP 1302: 1914(M), 1916(M), 1918, 1921, 1927-28. WSP 1432: 1903, 1919(M), 1920-21, 1929, 1933-

GAGE.--Water-stage recorder. Datum of gage is 210.94 ft National Geodetic Vertical Datum of 1929. Prior to October 1928, nonrecording gage at New Street Bridge 120 ft downstream at same datum. Oct. 1, 1928, to Sept. 30, 1962, water-stage recorder at site 4,250 ft downstream at datum 2.49 ft lower. Oct. 1, 1963, to Dec. 14, 1975, water-stage recorder at site 40 ft downstream at same datum.

REMARKS.--Records good. Flow regulated by Wild Creek Reservoir (station 01449700) since January 1941, Penn Forest Reservoir (station 01449400) since October 1958, Francis E. Walter Reservoir (station 01447780) since February 1961, and Beltzville Lake (station 01449790) since February 1971. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--76 years (water years 1902-04, 1909-83), 2,335 ft $^3$ /s, 24.79 in/yr, adjusted for diversion 1902-04, 1909-42 and, for recirculated water, October 1, 1959 to September 30, 1962.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 92,000 ft³/s May 23, 1942, gage height, about 25.9 ft, from floodmark, present site and datum, from rating curve extended above 48,000 ft³/s; minimum, 125 ft³/s June 28, 1965, gage height, 0.94 ft.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of February 28, 1902, reached a stage of 24.9 ft, from floodmark, present site and datum, discharge, about 88,000 ft3/s.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 46,800 ft<sup>3</sup>/s, Apr. 16, gage height, 15.53 ft; minimum, 397 ft<sup>3</sup>/s Sept. 17, gage height, 1.12 ft.

|             |       | DISC  | CHARGE, IN | CUBIC FEET |       | SECOND, WATER<br>MEAN VALUES | R YEAR | OCTOBER 198 | 2 TO SE | PTEMBER 198 | 3     |       |
|-------------|-------|-------|------------|------------|-------|------------------------------|--------|-------------|---------|-------------|-------|-------|
| DAY         | OCT   | NOV   | DEC        | JAN        | FEE   | MAR                          | APR    | MAY         | JUN     | JUL         | AUG   | SEP   |
| 1           | 698   | 909   | 1530       | 1460       | 2000  | 2230                         | 4110   | 5200        | 3110    | 2250        | 816   | 762   |
| 2           | 672   | 678   | 1520       | 1450       | 1980  | 2800                         | 3500   | 4840        | 2820    | 2200        | 789   | 687   |
| 3           | 679   | 577   | 1410       | 1430       | 9390  |                              | 4750   |             | 2390    | 2030        | 771   | 568   |
| 3<br>4<br>5 | 682   | 725   | 1330       | 1300       | 8840  |                              | 4620   | 4880        | 4050    | 1920        | 771   | 541   |
| 5           | 666   | 1820  | 1290       | 1200       | 7500  | 3200                         | 4800   | 4470        | 4280    | 1920        | 807   | 541   |
| 6           | 572   | 1600  | 1260       | 1300       | 6210  | 2900                         | 4260   | 3900        | 4050    | 1500        | 867   | 541   |
| 7           | 583   | 1540  | 1260       | 1330       | 5740  | 3070                         | 3840   | 3380        | 5650    | 1300        | 825   | 515   |
| 8           | 587   | 1490  | 1220       | 1240       | 5150  | 3070                         | 4300   | 3280        | 5130    | 1250        | 780   | 524   |
| 9           | 610   | 1240  | 1210       | 1160       | 4600  | 3240                         | 5510   | 3460        | 4430    | 1130        | 735   | 524   |
| 10          | 656   | 1030  | 1110       | 1180       | 3380  | 3460                         | 7070   | 3200        | 3920    | 1060        | 706   | 524   |
| 11          | 611   | 970   | 1080       | 1760       | 2600  | 4470                         | 8790   | 3010        | 3150    | 1030        | 1010  | 498   |
| 12          | 578   | 940   | 1060       | 1920       | 3300  | 4490                         | 8360   | 2760        | 2900    | 1000        | 1870  | 533   |
| 13          | 694   | 1450  | 1010       | 1780       | 3580  | 4130                         | 7420   | 2600        | 2620    | 980         | 1140  | 613   |
| 14          | 1570  | 1300  | 909        | 1530       | 2780  | 3400                         | 5840   | 2220        | 2050    | 950         | 990   | 559   |
| 15          | 1460  | 1140  | 960        | 1530       | 2410  | 3160                         | 5650   | 2120        | 1840    | 930         | 919   | 480   |
| 16          | 1450  | 1110  | 1700       | 1540       | 2230  | 2950                         | 36100  | 2390        | 1680    | 898         | 846   | 447   |
| 17          | 1570  | 1130  | 2920       | 1430       | 2170  |                              | 17900  | 3320        | 1790    | 846         | 716   | 447   |
| 18          | 1220  | 1060  | 2460       | 1340       | 2100  |                              | 16500  | 2700        | 2020    | 816         | 706   | 622   |
| 19          | 1190  | 1000  | 2120       | 1180       | 2100  | 5260                         | 15400  | 2500        | 2080    | 867         | 706   | 515   |
| 20          | 1160  | 960   | 2070       | 1450       | 1980  | 6070                         | 14000  | 2460        | 3110    | 930         | 697   | 463   |
| 21          | 1160  | 980   | 1900       | 1410       | 1950  | 9440                         | 9250   | 2760        | 3160    | 856         | 668   | 550   |
| 22          | 1160  | 1010  | 1740       | 1410       | 2000  | 9410                         | 6210   | 2540        | 2570    | 867         | 659   | 807   |
| 23          | 1200  | 1050  | 1600       | 2050       | 2330  | 8330                         | 5510   | 3840        | 2150    | 919         | 640   | 668   |
| 24          | 1190  | 1050  | 1620       | 3940       | 2680  | 6240                         | 5630   | 4280        | 1810    | 1190        | 604   | 687   |
| 25          | 1260  | 1030  | 1620       | 4010       | 2760  | 4840                         | 10500  | 3280        | 1700    | 1220        | 595   | 568   |
| 26          | 1450  | 1050  | 1630       | 3380       | 2540  | 3780                         | 13000  | 3220        | 1730    | 930         | 577   | 550   |
| 27          | 1390  | 1010  | 1620       | 2840       | 2330  | 3720                         | 15000  | 3200        | 1570    | 798         | 559   | 622   |
| 28          | 1300  | 960   | 1810       | 2550       | 2280  | 6260                         | 10700  | 2920        | 1440    | 744         | 559   | 604   |
| 29          | 1240  | 1570  | 1810       | 2220       |       | 5950                         | 6850   | 3030        | 3720    | 735         | 604   | 577   |
| 30          | 950   | 1620  | 1740       | 2100       |       | 5540                         | 5770   | 3480        | 2310    | 825         | 604   | 586   |
| 31          | 919   |       | 1540       | 2120       |       | 4670                         |        | 3260        |         | 816         | 595   |       |
| TOTAL       | 31127 | 33999 | 48059      | 56540      | 98910 | 138210 2                     | 71140  | 103210      | 85230   | 35707       | 24131 | 17123 |
| MEAN        | 1004  | 1133  | 1550       | 1824       | 3533  |                              | 9038   | 3329        | 2841    | 1152        | 778   | 571   |
| MAX         | 1570  | 1820  | 2920       | 4010       | 9390  |                              | 36100  | 5200        | 5650    | 2250        | 1870  | 807   |
| MIN         | 572   | 577   | 909        | 1160       | 1950  |                              | 3500   | 2120        | 1440    | 735         | 559   | 447   |

CAL YR 1982 TOTAL 747900 MEAN 2049 MAX 8610 MIN 572 WTR YR 1983 TOTAL 943386 MEAN 2585 MAX 36100 MIN 447

### 01455200 POHATCONG CREEK AT NEW VILLAGE, NJ

LOCATION.--Lat 40°42'57", long 75°04'20", Warren County, Hydrologic Unit 02040105, at bridge on Edison Road, 0.4 mi southeast of New Village, and 4.3 mi upstream from Merrill Creek.

DRAINAGE AREA .-- 33.3 mi2.

### WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1959, 1962 and January 1979 to current year.

COOPERATION. -- Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

| DATE       | TIME                                              | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(UMHOS)                  | PH<br>(STAND-<br>ARD<br>UNITS)                       | TEMPER-<br>ATURE<br>(DEG C)                          | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)                  | OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)                        | COLI-<br>FORM,<br>FECAL,<br>EC<br>BROTH<br>(MPN) | STREP-<br>TOCOCCI<br>FECAL<br>(MPN)                 | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3)             |
|------------|---------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------|----------------------------------------------------|
| FEB        |                                                   |                                                                    |                                                      |                                                      |                                                      |                                                                     |                                                  |                                                     |                                                    |
| 24<br>APR  | 1020                                              | 162                                                                | 6.6                                                  | 2.5                                                  | 15.0                                                 | 2.3                                                                 | 40                                               | 11                                                  | 48                                                 |
| 05<br>JUN  | 1030                                              | 175                                                                | 8.2                                                  | 9.5                                                  | 13.1                                                 | <1.3                                                                | 50                                               | 79                                                  | 58                                                 |
| 07<br>JUL  | 1040                                              | 188                                                                | 7.2                                                  | 16.0                                                 | 9.8                                                  | E2.9                                                                | 3500                                             | 1600                                                | 80                                                 |
| 20<br>AUG  | 1045                                              | 197                                                                | 7.5                                                  | 20.5                                                 | 8.3                                                  | 3.8                                                                 | 16000                                            | >2400                                               | 80                                                 |
| 22         | 1100                                              | 375                                                                | 8.6                                                  | 20.0                                                 | 12.0                                                 | E2.3                                                                | 5400                                             | >2400                                               | 110                                                |
| DATE       | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)      | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)               | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)         | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)  | ALKA-<br>LINITY<br>LAB<br>(MG/L<br>AS<br>CACO3)      | SULFIDE<br>TOTAL<br>(MG/L<br>AS S)                                  | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)    | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F) |
| FEB        |                                                   |                                                                    |                                                      |                                                      |                                                      |                                                                     |                                                  |                                                     |                                                    |
| 24<br>APR  | 12                                                | 4.5                                                                | 8.0                                                  | 2.1                                                  | 29                                                   |                                                                     | 19                                               | 14                                                  | <.10                                               |
| 05<br>JUN  | 14                                                | 5.5                                                                | 7.3                                                  | 1.5                                                  | 36                                                   |                                                                     | 20                                               | 11                                                  | <.10                                               |
| 07<br>JUL  | 19                                                | 7.8                                                                | 7.3                                                  | 1.6                                                  | 54                                                   | <.5                                                                 | 20                                               | 11                                                  | .10                                                |
| 20<br>AUG  | 19                                                | 7.8                                                                | 9.0                                                  | 2.4                                                  | 54                                                   |                                                                     | 21                                               | 13                                                  | .10                                                |
| 22         | 26                                                | 12                                                                 | 13                                                   | 2.4                                                  | 90                                                   |                                                                     | 19                                               | 17                                                  | <.10                                               |
| DATE       | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2) | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L) | NITRO-<br>GEN,<br>NITRITE<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>AMMONIA<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)        | PHOS-<br>PHATE,<br>TOTAL<br>(MG/L<br>AS PO4)        | CARBON,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS C)      |
| FEB 24     | 11                                                | 103                                                                | <.010                                                | 1.10                                                 | . 250                                                | . 84                                                                | 1.9                                              | .55                                                 | 3.4                                                |
| A PR<br>05 | 12                                                | 99                                                                 | .020                                                 | 1.40                                                 | . 140                                                | .51                                                                 | 1.9                                              | . 27                                                | 2.8                                                |
| JUN<br>07  | 14                                                | 134                                                                | .040                                                 | 1.70                                                 | .090                                                 | .87                                                                 | 2.6                                              | 1.00                                                | 2.8                                                |
| JUL<br>20  | 13                                                | 139                                                                | .060                                                 | 1.60                                                 | .090                                                 | .98                                                                 | 2.6                                              | .71                                                 | 10                                                 |
| AUG<br>22  | 12                                                | 187                                                                | .040                                                 | 2.30                                                 | <.050                                                | . 47                                                                | 2.8                                              | .83                                                 | 4.9                                                |
|            |                                                   |                                                                    |                                                      |                                                      |                                                      |                                                                     |                                                  |                                                     |                                                    |

63

### 01455200 POHATCONG CREEK AT NEW VILLAGE, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

| DATE      | TIME                                                  | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)   | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)                             | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE) | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)   | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD) | CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR)            | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU) |
|-----------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|
| JUN<br>07 | 1040                                                  | <10                                                   | 1                                                               | <10                                                             | 20                                                      | 1                                                       | 20                                                    | 6                                                       |
| DATE      | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG)         | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE)              | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | PHENOLS<br>TOTAL<br>(UG/L)                              |
| JUN<br>07 | 490                                                   | <1                                                    | 40                                                              | <.1                                                             | 4                                                       | <1                                                      | 50                                                    | <1                                                      |

### 01455300 POHATCONG CREEK AT CARPENTERSVILLE, NJ

LOCATION.--Lat 40°37'30", long 75°11'10", Warren County, Hydrologic Unit 02040105, at bridge on Carpentersville-Riegelsville Road in Carpentersville, and 2,000 ft upstream from mouth.

DRAINAGE AREA .-- 57.0 mi2.

### WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1959-62, 1976 to June 1983 (discontinued).

COOPERATION. -- Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

| DATE             | TIME                                         | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(UMHOS)    | PH<br>(STAND-<br>ARD<br>UNITS)               | TEMPER-<br>ATURE<br>(DEG C)                         | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)             | OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)  | COLI-<br>FORM,<br>FECAL,<br>EC<br>BROTH<br>(MPN)    | STREP-<br>TOCOCCI<br>FECAL<br>(MPN)                | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3)            |
|------------------|----------------------------------------------|------------------------------------------------------|----------------------------------------------|-----------------------------------------------------|-------------------------------------------------|-----------------------------------------------|-----------------------------------------------------|----------------------------------------------------|---------------------------------------------------|
| JAN<br>24<br>APR | 1045                                         | 206                                                  | 7.5                                          | .5                                                  | 12.4                                            | 3.8                                           | 3500                                                | 540                                                | 52                                                |
| 05               | 1200                                         | 254                                                  | 8.2                                          | 10.0                                                | 12.2                                            | E1.5                                          | 130                                                 | 17                                                 | 99                                                |
| JUN<br>07        | 1230                                         | 280                                                  | 7.7                                          | 17.0                                                | 10.2                                            | E2.7                                          | 490                                                 | 350                                                | 140                                               |
| DATE             | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA) | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG) | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K) | ALKA-<br>LINITY<br>LAB<br>(MG/L<br>AS<br>CACO3) | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2) |
| JAN<br>24<br>APR | 12                                           | 5.3                                                  | 12                                           | 2.0                                                 | 35                                              | 17                                            | 18                                                  | <.10                                               | 9.3                                               |
| 05<br>JUN        | 23                                           | 10                                                   | 6.8                                          | 1.7                                                 | 76                                              | 24                                            | 10                                                  | <.10                                               | 11                                                |
| 07               | 31                                           | 14                                                   | 6.3                                          | 1.8                                                 | 99                                              | 25                                            | 10                                                  | <.10                                               | 13                                                |
| D                | RES<br>AT<br>DE<br>D<br>SO                   | 180 C<br>G. C NIT<br>IS- TO<br>LVED (N               | GEN, GRITE NO2<br>OTAL TO<br>MG/L (M         | EN, G<br>+NO3 AMM<br>TAL TO                         | TRO- GEN<br>EN, MON<br>ONIA ORG<br>TAL TO       | ANIC G<br>TAL TO                              | EN, PH<br>TAL TO<br>G/L (N                          | HATE, ORG<br>OTAL TO<br>MG/L (M                    | BON,<br>ANIC<br>TAL<br>G/L<br>C)                  |
| JA               | N                                            |                                                      |                                              |                                                     |                                                 | 1                                             |                                                     |                                                    |                                                   |
| A P              | 4<br>R                                       | 109                                                  | .010 1                                       | .10                                                 | . 190                                           | 1.1                                           | 2.3                                                 | 1.1                                                | 9.2                                               |
|                  | 5                                            | 137                                                  | .020 1                                       | .90                                                 | .050                                            | • 33                                          | 2.2                                                 | .21                                                | 2.5                                               |
|                  | 7                                            | 170                                                  | .020 2                                       | .40 <                                               | .050                                            | 2.0                                           | 4.4                                                 | . 36                                               | 3.4                                               |

### 01455500 MUSCONETCONG RIVER AT OUTLET OF LAKE HOPATCONG, NJ

LOCATION.--Lat 40°55'00", long 74°39'55", Morris County, Hydrologic Unit 02040105, just upstream of bridge on Warren County Route 43 and 300 ft downstream from Lake Hopatcong dam in Landing.

DRAINAGE AREA .-- 25.3 mi2.

### WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1962, 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

| DATE             | TIME                                              | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(UMHOS)                  | PH<br>(STAND-<br>ARD<br>UNITS)                       | TEMPER-<br>ATURE<br>(DEG C)                          | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)                  | OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)                        | COLI-<br>FORM,<br>FECAL,<br>EC<br>BROTH<br>(MPN) | STREP-<br>TOCOCCI<br>FECAL<br>(MPN)                 | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3)             |
|------------------|---------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------|----------------------------------------------------|
| OCT<br>27<br>JAN | 1030                                              | 242                                                                | 7.2                                                  | 7.0                                                  | 11.8                                                 | 3.3                                                                 | 80                                               | 130                                                 | 53                                                 |
| 18<br>MAR        | 1030                                              | 253                                                                | 7.9                                                  | 1.5                                                  | 14.0                                                 | E2.0                                                                | <20                                              | 6                                                   | 57                                                 |
| 17<br>MAY        | 1030                                              | 255                                                                | 8.3                                                  | 5.5                                                  | 13.6                                                 | 2.3                                                                 | <20                                              | 70                                                  | 54                                                 |
| 18<br>JUL        | 1100                                              | 237                                                                | 7.9                                                  | 14.0                                                 | 10.6                                                 | E2.3                                                                | <20                                              | <2                                                  | 53                                                 |
| 12<br>AUG        | 1045                                              | 221                                                                | 8.5                                                  | 24.0                                                 | 8.3                                                  | 2.6                                                                 | <20                                              | 20                                                  | 70                                                 |
| 02<br>SEP        | 1030                                              | 204                                                                | 7.9                                                  | 26.0                                                 | 7.7                                                  | E2.3                                                                | 20                                               | 1600                                                | 50                                                 |
| 22               | 1400                                              | 216                                                                | 7.3                                                  | 20.5                                                 | 8.6                                                  | E1.9                                                                | 50                                               | 79                                                  | 50                                                 |
| DATE             | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)      | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)               | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)         | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)  | ALKA-<br>LINITY<br>LAB<br>(MG/L<br>AS<br>CACO3)      | SULFIDE<br>TOTAL<br>(MG/L<br>AS S)                                  | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)    | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F) |
| OCT 27           | 14                                                | 4.4                                                                | 20                                                   | 00                                                   | 20                                                   |                                                                     | 10                                               | 40                                                  | <.10                                               |
| JAN              |                                                   |                                                                    |                                                      | .80                                                  | 28                                                   | <.5                                                                 | 18                                               |                                                     |                                                    |
| 18<br>MAR        | 15                                                | 4.8                                                                | 22                                                   | 1.1                                                  | 27                                                   |                                                                     | 17                                               | 41                                                  | <.10                                               |
| 17<br>MAY        | 14                                                | 4.7                                                                | 22                                                   | 1.1                                                  | 27                                                   |                                                                     | 20                                               | 43                                                  | <.10                                               |
| 18<br>JUL        | 14                                                | 4.3                                                                | 20                                                   | . 90                                                 | 26                                                   |                                                                     | 18                                               | 39                                                  | <.10                                               |
| 12<br>AUG        | 18                                                | 6.1                                                                | 17                                                   | 2.0                                                  | 29                                                   |                                                                     | 17                                               | 38                                                  | . 10                                               |
| 02<br>SEP        | 14                                                | 3.6                                                                | 19                                                   | . 80                                                 | 28                                                   |                                                                     | 15                                               | 36                                                  | . 10                                               |
| 22               | 13                                                | 4.2                                                                | 19                                                   | .40                                                  | 26                                                   | <.5                                                                 | 15                                               | 37                                                  | <.10                                               |
| DATE             | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2) | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L) | NITRO-<br>GEN,<br>NITRITE<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>AMMONIA<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)        | PHOS-<br>PHATE,<br>TOTAL<br>(MG/L<br>AS PO4)        | CARBON,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS C)      |
| OCT              |                                                   |                                                                    |                                                      |                                                      |                                                      |                                                                     |                                                  |                                                     |                                                    |
| 27<br>JAN        | 4.3                                               | 132                                                                | .010                                                 | E.050                                                | <.050                                                | E.55                                                                | 72                                               | .06                                                 | 3.2                                                |
| 18<br>MAR        | 1.4                                               | 148                                                                | .000                                                 | . 100                                                | .050                                                 | . 41                                                                | .51                                              | .06                                                 | 3.3                                                |
| 17<br>MAY        | 0.7                                               | 130                                                                | <.050                                                | .200                                                 | <.050                                                | • 38                                                                | .58                                              | .06                                                 | 3.5                                                |
| 18<br>JUL        | 0.1                                               | 130                                                                | <.010                                                | .200                                                 | .080                                                 | • 45                                                                | . 65                                             | .09                                                 | 4.1                                                |
| 12<br>AUG        | 4.7                                               | 139                                                                | .010                                                 | . 100                                                | .070                                                 | . 48                                                                | .58                                              | . 25                                                | 4.5                                                |
| 02<br>SEP        | 3.3                                               | 149                                                                | .010                                                 | . 100                                                | <.050                                                | .51                                                                 | .61                                              | .21                                                 | 3.1                                                |
| 22               | 2.9                                               | 125                                                                | <.010                                                | <.100                                                | .060                                                 | . 43                                                                |                                                  | . 18                                                | 3.6                                                |

# 01455500 MUSCONETCONG RIVER AT OUTLET OF LAKE HOPATCONG, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

| DATE             | TIME                                                                | NITRO-<br>GEN, NH4<br>+ ORG.<br>TOT IN<br>BOT MAT<br>(MG/KG<br>AS N) | CARBON,<br>INOR-<br>GANIC,<br>TOT IN<br>BOT MAT<br>(G/KG<br>AS C)    | CARBON,<br>INORG +<br>ORGANIC<br>TOT. IN<br>BOT MAT<br>(G/KG<br>AS C) | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)                  | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)                               | ARSENIC<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS AS) | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE)      | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)              | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD)             | CADMIUM<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CD) |
|------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|
| OCT<br>27<br>SEP | 1030                                                                | 450                                                                  | .6                                                                   | 5.1                                                                   | <10                                                                  | 1                                                                 | <1                                                                  | <10                                                                  | 30                                                                 | <1                                                                  | <1                                                                   |
| 22               | 1400                                                                |                                                                      |                                                                      |                                                                       | <10                                                                  | 2                                                                 |                                                                     | <10                                                                  | 30                                                                 |                                                                     | 110                                                                  |
| DATE             | CHRO-MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR)          | CHRO-MIUM,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)       | COBALT,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CO) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU)               | COPPER,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CU) | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE)             | IRON,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS FE)  | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB)                | LEAD,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN)     | MANGA-<br>NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  |
| OCT              |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                   |                                                                     |                                                                      |                                                                    |                                                                     |                                                                      |
| 27<br>SEP        | 10                                                                  | 1                                                                    | <10                                                                  | 3                                                                     | 0                                                                    | 130                                                               | 2400                                                                | 7                                                                    | 10                                                                 | 10                                                                  | 300                                                                  |
| 22               |                                                                     |                                                                      |                                                                      | 2                                                                     |                                                                      | 210                                                               |                                                                     | 8                                                                    |                                                                    | 50                                                                  |                                                                      |
| DATE             | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG)             | MERCURY<br>RECOV.<br>FM BOT-<br>TOMCMA-<br>TERIAL<br>(UG/L<br>AS HG) | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI)              | NICKEL,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS NI)  | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE)                           | SELE-<br>NIUM,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN)               | ZINC,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS ZN)   | PHENOLS<br>TOTAL<br>(UG/L)                                         | PCB,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)            | PCN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             |
| OCT              |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                   |                                                                     |                                                                      |                                                                    |                                                                     |                                                                      |
| 27<br>SEP        | <.1                                                                 | <.01                                                                 | 2                                                                    | <10                                                                   | <1                                                                   | <1                                                                | 40                                                                  | 20                                                                   | <1                                                                 | 230                                                                 | <1.0                                                                 |
| 22               | <.1                                                                 |                                                                      | <1                                                                   |                                                                       | <1                                                                   |                                                                   | 70                                                                  |                                                                      | 41                                                                 |                                                                     |                                                                      |
| DATE             | ALDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)         | CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)                     | DDD,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DDE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)              | DDT,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)                  | DI-<br>ELDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | ENDO-<br>SULFAN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | ENDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)        | ETHION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)         | HEPTA-<br>CHLOR,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) |
| OCT              |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                   |                                                                     |                                                                      |                                                                    |                                                                     |                                                                      |
| 27<br>SEP        | <.1                                                                 | <1.0                                                                 | <.1                                                                  | <.1                                                                   | <.1                                                                  | <.1                                                               | .1                                                                  | <.1                                                                  | <.1                                                                | <.1                                                                 | <.1                                                                  |
| 22               |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                   |                                                                     |                                                                      |                                                                    |                                                                     |                                                                      |
| DATE             | HEPTA-<br>CHLOR<br>EPOXIDE<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG) | LINDANE<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)          | MALA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | METH-<br>OXY-<br>CHLOR,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)      | METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)                     | METHYL<br>TRI-<br>THION,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG) | MIREX,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)          | PARA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | PER-<br>THANE<br>IN<br>BOTTOM<br>MATERIL<br>(UG/KG)                | TOXA-<br>PHENE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)                     |
| OCT<br>27<br>SEP | <.1                                                                 | <.1                                                                  | <.1                                                                  | <.1                                                                   | <.1                                                                  | <.1                                                               | <.1                                                                 | <.1                                                                  | <1.00                                                              | <10                                                                 | <.1                                                                  |
| 22               |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                   |                                                                     |                                                                      |                                                                    |                                                                     |                                                                      |

67

#### 01455801 MUSCONETCONG RIVER AT LOCKWOOD, NJ

LOCATION.--Lat 40°55'10", long 74°44'07", Sussex County, Hydrologic Unit 02040105, at bridge in Lockwood, at boundary between Sussex County and Morris County, 0.2 mi southeast of Cage Hill, 0.4 mi south of Jefferson Lake, and 0.9 mi downstream from Lubbers Run.

DRAINAGE AREA. -- 60.1 mi2.

#### WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

| DATE      | TIME TA                                           | TREAM- CI<br>FLOW, CO<br>NSTAN- DU<br>ANEOUS AN | ICT- (ST                                             | ARD A                                                | MPER-<br>TURE<br>EG C) | DXYGEN,<br>DIS-<br>SOLVED<br>(MG/L) | OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) | FORI<br>FEC<br>EC<br>BRO<br>(MP   | M,<br>AL, SI<br>TO<br>TH FI                         | TREP-<br>COCCI<br>ECAL<br>MPN)                    | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3) |
|-----------|---------------------------------------------------|-------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------|-------------------------------------|----------------------------------------------|-----------------------------------|-----------------------------------------------------|---------------------------------------------------|----------------------------------------|
| OCT 27    | 1220                                              | 35                                              | 310                                                  | 7.7                                                  | 9.0                    | 11.2                                | E2.1                                         |                                   | <20                                                 | 240                                               | 78                                     |
| JAN<br>18 | 1145                                              | 74                                              | 270                                                  | 7.6                                                  | .0                     | 14.6                                | E2.1                                         |                                   | <20                                                 | 2                                                 | 78                                     |
| MAR<br>17 | 1215                                              | 123                                             | 235                                                  | 8.0                                                  | 6.0                    | 12.2                                | E2.3                                         |                                   | <20                                                 | 8                                                 | 65                                     |
| MAY<br>18 | 1215                                              | 123                                             | 240                                                  | 7.9                                                  | 13.5                   | 10.5                                | E,1.5                                        |                                   | 170                                                 | 17                                                | 73                                     |
| JUL<br>12 | 1215                                              | 21                                              | 356                                                  | 8.7                                                  | 22.0                   | 8.5                                 | 2.9                                          |                                   | 70                                                  | 49                                                | 120                                    |
| O2<br>SEP | 1200                                              | 31                                              | 327                                                  | 7.9                                                  | 23.0                   | 7.8                                 | E3.6                                         |                                   | 130                                                 | 540                                               | 110                                    |
| 22        | 1245                                              | 61                                              | 365                                                  | 8.0                                                  | 18.0                   | 8.5                                 | 3.3                                          | 1                                 | 100                                                 | 920                                               | 92                                     |
| DATE      | CALCIUM<br>DIS-<br>SOLVEI<br>(MG/L<br>AS CA)      | DIS-<br>SOLVED<br>(MG/L                         | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)         | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)  | LINITY<br>LAB          | SULF:                               | IDE DI<br>AL SO<br>/L (M                     | FATE<br>S-<br>LVED<br>G/L<br>SO4) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL) | FLUO-<br>RIDE,<br>DIS-<br>SOLVE<br>(MG/I<br>AS F) | ED<br>L                                |
| OCT       | **                                                |                                                 | 1                                                    |                                                      |                        |                                     |                                              |                                   |                                                     |                                                   |                                        |
| 27<br>JAN | . 19                                              | 7.4                                             | 21                                                   | 1.4                                                  | 56                     |                                     |                                              | 19                                | 42                                                  | <.                                                | 10                                     |
| 18<br>MAR | . 19                                              | 7.3                                             | 17                                                   | 1.1                                                  | 50                     |                                     |                                              | 16                                | 32                                                  | <.                                                | 10                                     |
| 17<br>MAY | . 16                                              | 6.1                                             | 15                                                   | .80                                                  | 41                     |                                     |                                              | 18                                | 30                                                  | <.                                                | 10                                     |
| 18<br>JUL | . 18                                              | 6.7                                             | 16                                                   | .80                                                  | 48                     |                                     |                                              | 17                                | 30                                                  | <.                                                | 10                                     |
| 12<br>AUG | 29                                                | 11                                              | 22                                                   | 2.1                                                  | 80                     |                                     |                                              | 17                                | 45                                                  | • :                                               | 20                                     |
| 02<br>SEP | . 28                                              | 10                                              | 21                                                   | 2.0                                                  | 80                     |                                     |                                              | 16                                | 42                                                  |                                                   | 20                                     |
| 22        | 23                                                | 8.5                                             | 18                                                   | 1.6                                                  | 63                     |                                     | <.5                                          | 19                                | 34                                                  |                                                   | 10                                     |
| DATE      | SILICA,<br>DIS-<br>SOLVEI<br>(MG/L<br>AS<br>SIO2) | AT 180                                          | NITRO-<br>GEN,<br>NITRITE<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L<br>AS N) | GEN,                   | MONÍ. A ORGA TOT. (MG               | AM-<br>A + NI<br>NIC G<br>AL TO<br>/L (M     | TRO-<br>EN,<br>TAL<br>G/L<br>N)   | PHOS-<br>PHATE,<br>TOTAL<br>(MG/L<br>AS PO4)        | CARBO<br>ORGAN<br>TOTAL<br>(MG/I                  | IĆ<br>L<br>L                           |
| OCT       | 5102)                                             | (MG/L)                                          | AS N)                                                | AS N                                                 | AD N                   | , as                                | N, AD                                        | .,,                               | AD 1047                                             |                                                   | <b>,</b>                               |
| 27<br>JAN | 6.0                                               | 202                                             | .090                                                 | . 400                                                | . 40                   | 00                                  | . 90                                         | 1.3                               | . 49                                                | 3.                                                | 1                                      |
| 18<br>MAR | 6.0                                               | 140                                             | .020                                                 | .200                                                 | . 30                   | 00                                  | . 78                                         | .98                               | .28                                                 | 3.                                                | 5                                      |
| 17        | 5.                                                | 3 134                                           | .010                                                 | .200                                                 | . 20                   | 00                                  | .54                                          | .74                               | . 18                                                | 3.                                                | 4                                      |
| 18<br>JUL | 4.                                                | 4 136                                           | .020                                                 | . 300                                                | . 21                   | 10                                  | .60                                          | . 90                              | . 18                                                | 4.                                                | 6                                      |
| 12<br>AUG | . 11                                              | 205                                             | - 380                                                | 1.20                                                 | . 56                   | 50 1                                | .1                                           | 2.3                               | .61                                                 | 4.                                                | 4                                      |
| 02<br>SEP | . 11                                              | 239                                             | .330                                                 | .900                                                 | . 49                   | 90 1                                | .6                                           | 2.5                               | . 37                                                | 4.                                                | 6                                      |
| 22        | 6.                                                | 3 181                                           | .070                                                 | . 400                                                | . 28                   | 30 1                                | .1                                           | 1.5                               |                                                     | 4.                                                | 6                                      |

### 01455801 MUSCONETCONG RIVER AT LOCKWOOD, NJ--Continued

### WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

| DATE             | TIME                                                        | NITRO-<br>GEN, NH4<br>+ ORG.<br>TOT IN<br>BOT MAT<br>(MG/KG<br>AS N) | CARBON,<br>INOR-<br>GANIC,<br>TOT IN<br>BOT MAT<br>(G/KG<br>AS C)    | CARBON,<br>INORG +<br>ORGANIC<br>TOT. IN<br>BOT MAT<br>(G/KG<br>AS C) | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)                  | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)                               | ARSENIC<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS AS) | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE)      | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)              | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD)         | CADMIUM<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CD) |
|------------------|-------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------|
| OCT<br>27<br>SEP | 1220                                                        | 400                                                                  | . 2                                                                  | 2.4                                                                   |                                                                      |                                                                   | <1                                                                  | •                                                                    |                                                                    |                                                                 | <1                                                                   |
| 22               | 1245                                                        |                                                                      |                                                                      |                                                                       | 20                                                                   | 3                                                                 |                                                                     | <10                                                                  | 40                                                                 | <1                                                              |                                                                      |
| DATE             | CHRO-MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR)  | CHRO-MIUM,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)       | COBALT,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CO) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU)               | COPPER,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CU) | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE)             | IRON,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS FE)  | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB)                | LEAD,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MANGA-<br>NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  |
| OCT 27           | 0                                                           | 1                                                                    | <10                                                                  |                                                                       | 0                                                                    |                                                                   | 1300                                                                |                                                                      | 10                                                                 |                                                                 | 330                                                                  |
| SEP 22           | 20                                                          |                                                                      |                                                                      | 5                                                                     |                                                                      | 1100                                                              |                                                                     | 18                                                                   |                                                                    | 110                                                             |                                                                      |
| DATE             | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG)     | MERCURY<br>RECOV.<br>FM BOT-<br>TOMCMA-<br>TERIAL<br>(UG/L<br>AS HG) | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI)              | NICKEL,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS NI)  | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE)                           | SELE-<br>NIUM,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN)               | ZINC,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS ZN)   | PHENOLS<br>TOTAL<br>(UG/L)                                         | PCB,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)        | PCN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             |
| OCT 27           |                                                             | <.01                                                                 |                                                                      | 410                                                                   |                                                                      |                                                                   |                                                                     | 20                                                                   |                                                                    | <1                                                              | <1.0                                                                 |
| SEP              |                                                             |                                                                      | -                                                                    | <10                                                                   |                                                                      | <1                                                                | -                                                                   | 20                                                                   |                                                                    | NI.                                                             | X1.0                                                                 |
| 22               | <.1                                                         |                                                                      | <1                                                                   |                                                                       | <1                                                                   |                                                                   | 100                                                                 |                                                                      | <1                                                                 |                                                                 |                                                                      |
| DATE             | ALDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | CHLOR-DANE, TOTAL IN BOT-TOM MA-TERIAL (UG/KG)                       | DDD,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DDE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)              | DDT,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)                  | DI-<br>ELDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | ENDO-<br>SULFAN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | ENDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)        | ETHION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)     | HEPTA-<br>CHLOR,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) |
| OCT<br>27<br>SEP | <.1                                                         | <1.0                                                                 | <.1                                                                  | <.1                                                                   | .1                                                                   | <.1                                                               | <.1                                                                 | <.1                                                                  | <.1                                                                | <.1                                                             | <.1                                                                  |
| 22               |                                                             |                                                                      |                                                                      |                                                                       |                                                                      |                                                                   |                                                                     |                                                                      |                                                                    |                                                                 |                                                                      |
|                  | HEPTA - CHLOR EPOXIDE TOT. IN BOTTOM MATL.                  | LINDANE<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL                     | MALA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL             | METH-<br>OXY-<br>CHLOR,<br>TOT. IN<br>BOTTOM<br>MATL.                 | METHYL PARA- THION, TOT. IN BOTTOM MATL.                             | METHYL<br>TRI-<br>THION,<br>TOT. IN<br>BOTTOM<br>MATL.            | MIREX,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL                     | PARA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL             | PER-<br>THANE<br>IN<br>BOTTOM<br>MATERII                           | TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL                       | TRI- THION, TOTAL IN BOT- TOM MA- TERIAL                             |
| DATE             | (UG/KG)                                                     | (UG/KG)                                                              | (UG/KG)                                                              | (UG/KG)                                                               | (UG/KG)                                                              | (UG/KG)                                                           | (UG/KG)                                                             | (UG/KG)                                                              | (UG/KG)                                                            | (UG/KG)                                                         | (UG/KG)                                                              |
| DATE OCT 27 SEP  |                                                             | (UG/KG)                                                              | (UG/KG)                                                              | (UG/KG)                                                               | (UG/KG)                                                              | (UG/KG)                                                           | (UG/KG)                                                             | (UG/KG)                                                              | <1.00                                                              | (0G/kG)<br>(10                                                  | (UG/KG)                                                              |

### 01456200 MUSCONETCONG RIVER AT BEATTYSTOWN, NJ

LOCATION.--Lat 40°48'48", long 74°50'32", Warren County, Hydrologic Unit 02040105, at bridge at Beattystown, 1.6 mi upstream of Hanes Brook, 2.1 mi northeast of Stephensburg, and 3.5 mi northeast of Scrappy Corner.

DRAINAGE AREA .-- 90.3 mi2.

### WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

| DATE       | TIME                                        | STREAM-<br>FLOW,<br>INSTAN-<br>TANEOUS<br>(CFS) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(UMHOS) | PH<br>(STAND-<br>ARD<br>UNITS)            | TEMPE<br>ATUR<br>(DEG                     | R-<br>E S                                            | YGEN,<br>DIS-<br>OLVED<br>MG/L) | DEM<br>BI<br>CH<br>IC         | IO- I<br>HEM- I<br>CAL,<br>DAY I             | COLI-<br>FORM,<br>FECAL,<br>EC<br>BROTH<br>(MPN) | STR<br>TOCO<br>FEC<br>(MF  | EP-<br>CCI<br>AL                                  | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3) |
|------------|---------------------------------------------|-------------------------------------------------|---------------------------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------------------|---------------------------------|-------------------------------|----------------------------------------------|--------------------------------------------------|----------------------------|---------------------------------------------------|----------------------------------------|
| OCT 27     | 1345                                        | 70                                              | 356                                               | 8.1                                       | 9                                         | .0                                                   | 12.3                            |                               | E1.5                                         | 80                                               |                            | 23                                                | 120                                    |
| JAN<br>18  | 1300                                        | 100                                             | 317                                               | 7.9                                       |                                           | .0                                                   | 14.0                            |                               | E2.2                                         | 20                                               |                            | 5                                                 | 100                                    |
| MAR<br>17  | 1315                                        | 215                                             | 265                                               | 8.3                                       | 7                                         | .0                                                   | 13.0                            |                               | E2.2                                         | <20                                              |                            | 2                                                 | 87                                     |
| MAY<br>18  | 1330                                        | 237                                             | 283                                               | 8.6                                       | 14                                        | 1.0                                                  | 12.6                            |                               | E2.0                                         | 490                                              |                            | 13                                                | 100                                    |
| JUL<br>12  | 1330                                        | 63                                              | 373                                               | 8.8                                       | 22                                        | 2.5                                                  | 11.2                            |                               | E1.9                                         | 170                                              |                            | 33                                                | 140                                    |
| AUG<br>02  | 1330                                        | 66                                              | 328                                               | 8.5                                       |                                           | 1.0                                                  | 9.6                             |                               | E2.0                                         | 110                                              |                            | 220                                               | 130                                    |
| SEP 22     | 1030                                        | 121                                             | 395                                               | 8.2                                       |                                           | 7.5                                                  | 9.0                             |                               | 3.1                                          | 790                                              | >2                         | 400                                               | 130                                    |
| DATE       | CALCI<br>DIS-<br>SOLV<br>(MG/<br>AS C       | MAG<br>UM SI<br>DI<br>ED SOL<br>L (MG           | NE-<br>UM, SOD<br>S- DI<br>VED SOL<br>/L (M       | POTIUM, ST                                | TAS-<br>IUM, I<br>IS-<br>LVED<br>G/L      | ALKA-<br>INITY<br>LAB<br>(MG/L<br>AS<br>CACO3)       | SULF<br>TOT                     | AL<br>/L                      | SULFATI<br>DIS-<br>SOLVE:<br>(MG/L<br>AS SO4 | CHL<br>E RID<br>DIS<br>D SOL<br>(MG              | O-<br>E,<br>-<br>VED<br>/L | FLUO-<br>RIDE,<br>DIS-<br>SOLVE<br>(MG/L<br>AS F) | D                                      |
| ост<br>27  | 27                                          | 12                                              | 1                                                 | 9 .                                       | 1.7                                       | 90                                                   |                                 | <.5                           | 20                                           | 35                                               |                            | . 1                                               | 0                                      |
| JAN<br>18  | 24                                          | 10                                              | 1                                                 | 8                                         | 1.3                                       | 72                                                   |                                 |                               | 18                                           | 32                                               |                            | <.1                                               | 0                                      |
| MAR<br>17  | 21                                          | 8                                               | . 4 1                                             | 5                                         | 1.0                                       | 62                                                   |                                 |                               | 19                                           | 28                                               |                            | <.1                                               | 0                                      |
| MAY<br>18  | 24                                          | 10                                              | . 1                                               | 4 .                                       | 1.0                                       | 78                                                   |                                 |                               | 18                                           | 24                                               |                            | <.1                                               | 0                                      |
| JUL<br>12, | 32                                          | 15                                              | 1                                                 | 8                                         | 1.7                                       | 114                                                  |                                 |                               | 19                                           | 34                                               |                            | . 2                                               | 0                                      |
| AUG<br>02  | . 29                                        | 13                                              | 1                                                 | 6                                         | 1.8                                       | 105                                                  |                                 |                               | 19                                           | 31                                               |                            | . 1                                               | 0                                      |
| SEP 22     | 30                                          | 13                                              |                                                   |                                           |                                           | 100                                                  |                                 |                               | 18                                           | 32                                               |                            | . 1                                               | 0                                      |
| DATE       | SILIC<br>DIS-<br>SOLV<br>(MG/<br>AS<br>SIO2 | ED DEG<br>L DI<br>SOL                           | DUÉ NI<br>80 G<br>. C NIT<br>S- TO<br>VED (M      | EN, GI<br>RITE NO2-<br>TAL TO'<br>G/L (MO | TRO-<br>EN,<br>+NO3 A<br>TAL<br>G/L<br>N) | NITRO-<br>GEN,<br>AMMONIA<br>TOTAL<br>(MG/L<br>AS N) | MONI                            | AM-<br>A +<br>NIC<br>AL<br>/L | NITRO<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)     | PHOPHATOT                                        | TE,<br>AL<br>/L            | CARBON<br>ORGANI<br>TOTAL<br>(MG/L<br>AS C)       | Ċ                                      |
| OCT        |                                             |                                                 |                                                   |                                           |                                           |                                                      |                                 |                               |                                              |                                                  |                            |                                                   |                                        |
| 27<br>JAN  |                                             | . 1                                             | 207                                               | .060                                      | . 700                                     | . 100                                                | ) E                             | . 80                          | -                                            |                                                  | . 86                       | 3.6                                               |                                        |
| 18<br>MAR  | . 6                                         | . 9                                             | 166                                               | .020                                      | .700                                      | . 250                                                | )                               | . 69                          | 1.4                                          |                                                  | . 49                       | 3.3                                               |                                        |
| 17<br>MAY  | . 6                                         | • 5                                             | 142                                               | .010                                      | . 450                                     | . 150                                                | )                               | . 62                          | 1.1                                          |                                                  | • 33                       | 3.2                                               |                                        |
| 18<br>JUL  | . 6                                         | . 9                                             | 160                                               | .020                                      | .700                                      | . 120                                                | )                               | . 55                          | 1.3                                          |                                                  | • 33                       | 3.6                                               |                                        |
| 12<br>AUG  | . 9                                         | . 4                                             | 220                                               | .060 1                                    | . 10                                      | . 110                                                | )                               | .70                           | 1.8                                          |                                                  | .80                        | 3.8                                               |                                        |
| 02<br>SEP  | . 8                                         | . 8                                             | 237                                               | .050 1                                    | . 30                                      | . 180                                                | )                               | .56                           | 1.9                                          |                                                  | .89                        | 3.9                                               |                                        |
| 22         | . 6                                         | . 6                                             | 204                                               | .030                                      | . 800                                     | .090                                                 |                                 | .77                           | 1.6                                          |                                                  | .71                        | 4.2                                               |                                        |

### 01456200 MUSCONETCONG RIVER AT BEATTYSTOWN, NJ--Continued

### WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

| DATE             | TIME                                                        | NITRO-<br>GEN, NH4<br>+ ORG.<br>TOT IN<br>BOT MAT<br>(MG/KG<br>AS N) | CARBON,<br>INOR-<br>GANIC,<br>TOT IN<br>BOT MAT<br>(G/KG<br>AS C)    | CARBON,<br>INORG +<br>ORGANIC<br>TOT. IN<br>BOT MAT<br>(G/KG<br>AS C) | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)                  | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)                               | ARSENIC<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS AS) | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE)      | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)              | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD)         | CADMIUM<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CD) |
|------------------|-------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------|
| OCT<br>27<br>SEP | 1345                                                        |                                                                      |                                                                      |                                                                       | <10                                                                  | 1                                                                 |                                                                     | <10                                                                  | 40                                                                 | <1                                                              | *                                                                    |
| 22               | 1030                                                        | 970                                                                  | 2.4                                                                  | 5.0                                                                   |                                                                      |                                                                   | <1                                                                  |                                                                      |                                                                    |                                                                 | <1                                                                   |
| DATE             | CHRO-MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR)  | CHRO-MIUM, RECOV. FM BOT-TOM MA-TERIAL (UG/G)                        | COBALT,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CO) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU)               | COPPER,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CU) | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE)             | IRON,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS FE)  | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB)                | LEAD,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MANGA-<br>NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  |
| OCT 27           | 10                                                          |                                                                      |                                                                      |                                                                       |                                                                      | -                                                                 |                                                                     | ,                                                                    |                                                                    | 20                                                              |                                                                      |
| SEP              | 10                                                          |                                                                      |                                                                      | 19                                                                    |                                                                      | 200                                                               |                                                                     | 6                                                                    |                                                                    | 20                                                              |                                                                      |
| 22               |                                                             | 3                                                                    | <10                                                                  |                                                                       | 0                                                                    |                                                                   | 2300                                                                |                                                                      | <10                                                                |                                                                 | 260                                                                  |
| DATE             | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG)     | MERCURY<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/L<br>AS HG) | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI)              | NICKEL,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS NI)  | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE)                           | SELE-<br>NIUM,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN)               | ZINC,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS ZN)   | PHENOLS<br>TOTAL<br>(UG/L)                                         | PCB,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)        | PCN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             |
| OCT              | ,                                                           |                                                                      | ,                                                                    |                                                                       | 527                                                                  | (00/0/                                                            | ,                                                                   | ,                                                                    |                                                                    | 1                                                               |                                                                      |
| 27<br>SEP        | <.1                                                         |                                                                      | 2                                                                    |                                                                       | <1                                                                   |                                                                   | 50                                                                  |                                                                      | <1                                                                 |                                                                 |                                                                      |
| 22               |                                                             | .02                                                                  |                                                                      | <10                                                                   |                                                                      | <1                                                                |                                                                     | 20                                                                   | U 0                                                                | <1                                                              | <1.0                                                                 |
| DATE             | ALDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)                     | DDD,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DDE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)              | DDT,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)                  | DI-<br>ELDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | ENDO-<br>SULFAN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | ENDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)        | ETHION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)     | HEPTA-<br>CHLOR,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) |
| OCT              |                                                             |                                                                      |                                                                      |                                                                       |                                                                      |                                                                   |                                                                     |                                                                      |                                                                    |                                                                 |                                                                      |
| 27<br>SEP        |                                                             |                                                                      |                                                                      |                                                                       |                                                                      |                                                                   |                                                                     |                                                                      |                                                                    |                                                                 |                                                                      |
| 22               | <.1                                                         | 1.0                                                                  | <.1                                                                  | <.1                                                                   | <.1                                                                  | <.1                                                               | <.1                                                                 | <.1                                                                  | <.1                                                                | <.1                                                             | <.1                                                                  |
| DATE             | HEPTA-CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)            | LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)                         | MALA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | METH-<br>OXY-<br>CHLOR,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)      | METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)                     | METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)                   | MIREX,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)          | PARA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | PER-<br>THANE<br>IN<br>BOTTOM<br>MATERIL<br>(UG/KG)                | TOXA - PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)              | TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)                     |
| OCT 27           |                                                             |                                                                      |                                                                      |                                                                       |                                                                      |                                                                   |                                                                     |                                                                      |                                                                    |                                                                 | 22                                                                   |
| SEP 22           | <.1                                                         | <.1                                                                  | <.1                                                                  | <.1                                                                   | <.1                                                                  | <.1                                                               | <.1                                                                 | <.1                                                                  | <1.00                                                              | <10                                                             | <.1                                                                  |
|                  | ,.,                                                         |                                                                      |                                                                      |                                                                       |                                                                      |                                                                   | ,.,                                                                 |                                                                      |                                                                    | 14.35                                                           |                                                                      |

71

### 01457000 MUSCONETCONG RIVER NEAR BLOOMSBURY, NJ

LOCATION.--Lat 40°40'20", long 75°03'40", Warren County, Hydrologic Unit 02040105, on right bank just downstream from highway bridge, 1.5 mi upstream from Bloomsbury, and 9.5 mi upstream from mouth.

DRAINAGE AREA. -- 141 mi2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- July 1903 to March 1907, July 1921 to current year.

REVISED RECORDS.--WSP 1051: 1944-45. WSP 1382: 1904-06, 1922, 1923-29(M), 1931(M), 1933-34(M), 1936(M), 1940, 1942(M), 1944-45(M), 1951-52(M). WDR NJ-82-2: Drainage area.

GAGE.--Water-stage recorder and crest-stage gage. Concrete control since Sept. 29, 1932. Datum of gage is 274.83 ft National Geodetic Vertical Datum of 1929. July 1903 to Mar. 31, 1907, nonrecording gage at bridge 15 ft upstream at different datum. July 26 to Sept. 12, 1921, nonrecording gage at bridge at present datum.

REMARKS.--Water-discharge records good except those for periods of no gage-height record, Dec. 6 to Jan. 10 and Apr. 8 to 17, which are fair. Flow regulated by Lake Hopatcong (see Delaware River Basin, reservoirs in). Diurnal fluctuation caused by small powerplants above station.

AVERAGE DISCHARGE.--65 years (water years 1904-06, 1922-83), 234 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 7,200 ft³/s Jan. 25, 1979, gage height, 8.50 ft, from floodmark, from rating curve extended above 1,800 ft³/s on basis of slope-area measurement at gage height 6.95 ft; minimum, 8.1 ft³/s Aug. 2, 1955; minimum daily 27 ft³/s Sept. 8, 1966.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 1,000 ft3/s and maximum (\*):

| Date    | Time | Discharge<br>(ft³/s) | Gage height (ft) | Date    | Time      | Discharge<br>(ft³/s) | Gage height (ft) |
|---------|------|----------------------|------------------|---------|-----------|----------------------|------------------|
| Mar. 21 | 1745 | 1180                 | 3.92             | Apr. 16 | Un kno wn | <b>*</b> 2950        | 6.23             |
| Mar. 28 | 0515 | 1090                 | 3.75             | Apr. 25 | 0845      | 1530                 |                  |

Minimum discharge, 68 ft3/s Sept. 16, 28, 29, gage height, 1.30 ft.

|                             |                                    | DISCH                           | HARGE, IN                              | CUBIC FEE                              | T PER SE                        | COND, WAT<br>MEAN VA                   | ER YEAR (                            | OCTOBER 198                            | 32 TO SEPT                      | TEMBER 1983                            |                                 |                              |
|-----------------------------|------------------------------------|---------------------------------|----------------------------------------|----------------------------------------|---------------------------------|----------------------------------------|--------------------------------------|----------------------------------------|---------------------------------|----------------------------------------|---------------------------------|------------------------------|
| DA Y                        | OCT                                | NOV                             | DEC                                    | JAN                                    | FEB                             | MAR                                    | APR                                  | MAY                                    | JUN                             | JUL                                    | AUG                             | SEP                          |
| 1 2 3 4                     | 238<br>232<br>237<br>260<br>268    | 82<br>81<br>79<br>88<br>178     | 181<br>180<br>167<br>166<br>164        | 132<br>129<br>126<br>122<br>120        | 190<br>205<br>572<br>540<br>412 | 264<br>380<br>369<br>341               | 567<br>523<br>729<br>746<br>640      | 678<br>626<br>583<br>561<br>551        | 558<br>510<br>472<br>516<br>494 | 186<br>168<br>155<br>146<br>140        | 137<br>122<br>117<br>110<br>104 | 93<br>88<br>83<br>81         |
| 5<br>6<br>7<br>8<br>9       | 274<br>292<br>290<br>290<br>282    | 162<br>120<br>107<br>103<br>97  | 161<br>155<br>140<br>128<br>119        | 132<br>164<br>148<br>132<br>125        | 337<br>318<br>305<br>274<br>245 | 316<br>294<br>310<br>326<br>358<br>448 | 580<br>544<br>635<br>966<br>1290     | 496<br>450<br>401<br>390<br>379        | 439<br>498<br>544<br>427<br>333 | 136<br>132<br>129<br>126<br>124        | 105<br>98<br>93<br>92<br>89     | 79<br>77<br>74<br>73<br>71   |
| 11<br>12<br>13<br>14<br>15  | 269<br>268<br>265<br>261<br>209    | 102<br>105<br>239<br>245<br>186 | 115<br>122<br>116<br>120<br>128        | 328<br>266<br>212<br>179<br>175        | 220<br>497<br>299<br>314<br>278 | 471<br>535<br>488<br>428<br>375        | 1140<br>1030<br>920<br>780<br>650    | 371<br>361<br>344<br>332<br>302        | 311<br>296<br>284<br>288<br>286 | 121<br>119<br>116<br>108<br>105        | 140<br>321<br>239<br>182<br>153 | 71<br>77<br>82<br>73<br>71   |
| 16<br>17<br>18<br>19<br>20  | 213<br>241<br>239<br>202<br>114    | 165<br>169<br>184<br>184<br>183 | 200<br>305<br>240<br>190<br>170        | 177<br>170<br>167<br>157<br>179        | 232<br>233<br>242<br>248<br>234 | 338<br>311<br>342<br>869<br>894        | 1130<br>2590<br>1880<br>1530<br>1390 | 320<br>392<br>343<br>342<br>380        | 276<br>262<br>243<br>262<br>254 | 108<br>104<br>101<br>106<br>181        | 133<br>122<br>114<br>109<br>103 | 70<br>70<br>73<br>77<br>76   |
| 21<br>22<br>23<br>24<br>25  | 90<br>83<br>81<br>81               | 183<br>180<br>168<br>135<br>118 | 165<br>160<br>153<br>158<br>180        | 181<br>175<br>227<br>304<br>294        | 230<br>244<br>274<br>293<br>286 | 930<br>934<br>829<br>732<br>652        | 1290<br>1170<br>1030<br>1070<br>1360 | 371<br>357<br>446<br>393<br>344        | 210<br>173<br>157<br>156<br>159 | 138<br>126<br>117<br>115<br>118        | 99<br>93<br>90<br>87<br>85      | 83<br>146<br>118<br>95<br>84 |
| 26<br>27<br>28<br>29<br>30  | 138<br>120<br>96<br>88<br>83<br>82 | 115<br>111<br>111<br>218<br>206 | 165<br>152<br>149<br>149<br>147<br>137 | 275<br>250<br>233<br>204<br>183<br>192 | 275<br>258<br>254<br>           | 594<br>589<br>911<br>784<br>680<br>613 | 1140<br>1010<br>910<br>819<br>747    | 367<br>547<br>433<br>423<br>566<br>607 | 154<br>150<br>184<br>307<br>220 | 118<br>109<br>104<br>101<br>106<br>128 | 82<br>81<br>83<br>110<br>91     | 79<br>78<br>75<br>71<br>77   |
| TOTAL<br>MEAN<br>MAX<br>MIN | 5973<br>193<br>292<br>81           | 4404<br>147<br>245<br>79        | 4982<br>161<br>305<br>115              | 5858<br>189<br>328<br>120              | 8309<br>297<br>572<br>190       | 16705<br>539<br>934<br>264             | 30806<br>1027<br>2590<br>523         | 13456<br>434<br>678<br>302             | 9423<br>314<br>558<br>150       | 3891<br>126<br>186<br>101              | 3683<br>119<br>321<br>81        | 2445<br>81.5<br>146<br>70    |

CAL YR 1982 TOTAL 87915 MEAN 241 MAX 1630 MIN 74 WTR YR 1983 TOTAL 109935 MEAN 301 MAX 2590 MIN 70

### 01457400 MUSCONETCONG RIVER AT RIEGELSVILLE, NJ

LOCATION.--Lat 40°35'32", long 75°11'20", Warren County, Hydrologic Unit 02040105, at bridge on State Highway 13 in Riegelsville, 0.2 mi north of Mount Joy, and 0.2 mi upstream from mouth.

#### WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1962, 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

| DATE                   | TIME                                   | STREAM-<br>FLOW,<br>INSTAN-<br>TANEOUS<br>(CFS) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(UMHOS | (ST<br>A                                       | RD                                                 | EMPER-<br>ATURE<br>DEG C) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)            | DEN<br>BI<br>CH<br>IC                                | IO-<br>HEM-<br>CAL,                        | COLI-<br>FORM,<br>FECAL,<br>EC<br>BROTH<br>(MPN) | TOCO      | REP-<br>DCCI<br>CAL                               | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3) |
|------------------------|----------------------------------------|-------------------------------------------------|--------------------------------------------------|------------------------------------------------|----------------------------------------------------|---------------------------|------------------------------------------------|------------------------------------------------------|--------------------------------------------|--------------------------------------------------|-----------|---------------------------------------------------|----------------------------------------|
| OCT                    |                                        |                                                 |                                                  |                                                |                                                    |                           |                                                |                                                      |                                            |                                                  |           |                                                   |                                        |
| 26<br>JAN              | 1030                                   | 104                                             | 33                                               | 9                                              | 7.8                                                | 8.0                       | 12.5                                           |                                                      | 2.8                                        | 3500                                             |           | 920                                               | 120                                    |
| 24                     | 1215                                   | 195                                             | 37                                               | 9                                              | 8.0                                                | .5                        | 13.4                                           |                                                      | E2.1                                       | 3500                                             |           | 540                                               | 85                                     |
| APR<br>05              | 1330                                   | 520                                             | 25                                               | 2                                              | 8.3                                                | 9.5                       | 13.2                                           |                                                      | E1.9                                       | 20                                               |           | 46                                                | 86                                     |
| JUN<br>09              | 1100                                   | 392                                             | 25                                               | 5                                              | 7.6                                                | 17.0                      | 10.2                                           |                                                      | E2.3                                       | 1100                                             |           | 49                                                | 99                                     |
| JUL<br>20              | 1145                                   |                                                 | 34                                               | 0                                              | 8.2                                                | 20.5                      | 9.5                                            |                                                      | E2.3                                       | 5400                                             | >:        | 2400                                              | 150                                    |
| AUG<br>22              | 1345                                   |                                                 | 38                                               |                                                | 8.4                                                | 21.0                      | 10.8                                           |                                                      | E1.9                                       | 230                                              |           | 540                                               | 150                                    |
| DATE                   | CALC<br>DIS<br>SOL<br>(MG,             | MAGIUM S - D VED SO                             | GNE-<br>IUM, SC<br>IS- E<br>LVED SC<br>G/L (     | DIUM,<br>DIS-<br>DLVED<br>MG/L<br>S NA)        | POTAS-<br>SIUM<br>DIS-<br>SOLVE<br>(MG/L<br>AS K)  | - ALKA<br>, LINIT         | Y<br>S SUL<br>L TO                             | FIDE<br>TAL<br>G/L<br>S)                             | SULFAT<br>DIS-<br>SOLVE<br>(MG/L<br>AS SO4 | CHL<br>E RID<br>DIS<br>D SOL<br>(MG              | E,<br>VED | FLUO-<br>RIDE,<br>DIS-<br>SOLVE<br>(MG/L<br>AS F) | D                                      |
| OCT<br>26<br>JAN<br>24 |                                        |                                                 | 3                                                | 11<br>31                                       | 1.5                                                | 106<br>58                 |                                                |                                                      | 20<br>17                                   | 23<br>53                                         |           | <.1                                               |                                        |
| APR                    |                                        |                                                 |                                                  |                                                |                                                    |                           |                                                |                                                      |                                            |                                                  |           |                                                   |                                        |
| 05<br>JUN              |                                        |                                                 | 8.8                                              | 13                                             | 1.1                                                | 61                        |                                                |                                                      | 20                                         | 23                                               |           | <.1                                               |                                        |
| JUL                    | . 23                                   | 1                                               | 0                                                | 14                                             | 1.5                                                | 70                        |                                                | <.5                                                  | 19                                         | 24                                               | -         | <.1                                               | 10                                     |
| 20<br>AUG              | . 34                                   | 1                                               | 7                                                | 11                                             | 1.8                                                | 123                       |                                                |                                                      | 22                                         | 20                                               |           | 17:                                               | 10                                     |
| 22                     | . 34                                   | 1                                               | 7                                                | 11                                             | 1.5                                                | 124                       |                                                |                                                      | 20                                         | 21                                               |           | <.1                                               | 10                                     |
| DATE                   | SILI<br>DIS<br>SOL<br>(MG<br>AS<br>SIO | CA, RES<br>- AT<br>VED DE<br>/L D<br>SO         | 180<br>G. C NI<br>IS- I<br>LVED (                | ITRO-<br>GEN,<br>TRITE<br>OTAL<br>MG/L<br>S N) | NITRO<br>GEN,<br>NO2+NO<br>TOTAL<br>(MG/L<br>AS N) | GE1<br>3 AMMOI            | RO- GEN<br>N, MON<br>NIA ORO<br>AL TO<br>'L (M | TRO-<br>I, AM-<br>IA +<br>IANIC<br>TAL<br>IG/L<br>N) | NITRO<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)   | TOT                                              | TE,<br>AL | CARBON<br>ORGANI<br>TOTAL<br>(MG/L<br>AS C)       | ić                                     |
| OCT<br>26<br>JAN       |                                        | 6.9                                             | 194                                              | .030                                           | 1.10                                               | <                         | 050                                            | E.65                                                 |                                            | 464                                              | .21       | 2.7                                               | 7                                      |
| 24                     |                                        | 7.7                                             | 190                                              | .010                                           | 1.20                                               |                           | 100                                            | .53                                                  | 1.7                                        | 7                                                | .40       | 2.                                                | 7                                      |
| APR<br>05              |                                        | 6.5                                             | 126                                              | .010                                           | 1.10                                               | <                         | 050                                            | . 39                                                 | 1.5                                        | 5                                                | . 15      | 2.5                                               | 5                                      |
| JUN<br>09              |                                        | 7.6                                             | 157                                              | .010                                           | 1.20                                               | E.                        | 030                                            | . 79                                                 | 2.0                                        | ) 2                                              | 2.50      | 4.                                                | 1                                      |
| JUL<br>20<br>AUG       |                                        | 8.1                                             | 231                                              | .020                                           | 2.30                                               |                           | 090                                            | .69                                                  | 3.0                                        | )                                                | . 40      | 1.9                                               | 9                                      |
| 22                     |                                        | 7.3                                             | 229                                              | .020                                           | 1.90                                               |                           | 110                                            | . 47                                                 | 2.1                                        | 15.7                                             | . 28      | 2.3                                               | 2                                      |

# 01457400 MUSCONETCONG RIVER AT RIEGELSVILLE, NJ--Continued

| WATER | QUALITY. | DATA  | WATER | VFAR | OCTOBER | 1082 | TO | SEPTEMBER | 1983  |
|-------|----------|-------|-------|------|---------|------|----|-----------|-------|
| MUTPH | MOUPTIT  | Dulu. | WHIER | ILAN | OCIOBER | 1902 | 10 | DELIEUER  | 1903. |

| DATE             | TIME                                                        | NITRO-<br>GEN, NH4<br>+ ORG.<br>TOT IN<br>BOT MAT<br>(MG/KG<br>AS N) | CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)                      | CARBON,<br>INORG +<br>ORGANIC<br>TOT. IN<br>BOT MAT<br>(G/KG<br>AS C) | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)                  | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)                               | ARSENIC<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS AS) | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE)      | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)              | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD)         | CADMIUM<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CD) |
|------------------|-------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------|
| OCT<br>26<br>JUN | 1030                                                        | 720                                                                  | .6                                                                   | 11                                                                    |                                                                      |                                                                   | <1                                                                  |                                                                      |                                                                    |                                                                 | <1                                                                   |
| 09               | 1100                                                        |                                                                      |                                                                      |                                                                       | 50                                                                   | 1                                                                 |                                                                     | <10                                                                  | 30                                                                 | <1                                                              |                                                                      |
| DATE             | CHRO-MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR)  | CHRO-MIUM, RECOV. FM BOT-TOM MA-TERIAL (UG/G)                        | COBALT,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CO) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU)               | COPPER,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CU) | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE)             | IRON,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS FE)  | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB)                | LEAD,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MANGA-<br>NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  |
| ост<br>26        |                                                             | 2                                                                    | 440                                                                  |                                                                       |                                                                      |                                                                   |                                                                     |                                                                      |                                                                    |                                                                 | 4.50                                                                 |
| JUN              | -                                                           | 3                                                                    | <10                                                                  |                                                                       | 0                                                                    |                                                                   | 1700                                                                |                                                                      | 20                                                                 |                                                                 | 150                                                                  |
| 09               | 10                                                          | 7.7                                                                  |                                                                      | 110                                                                   |                                                                      | 930                                                               |                                                                     | 16                                                                   |                                                                    | 70                                                              |                                                                      |
| DATE             | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG)     | MERCURY<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/L<br>AS HG) | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI)              | NICKEL,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS NI)  | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE)                           | SELE-<br>NIUM,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN)               | ZINC,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS ZN)   | PHENOLS<br>TOTAL<br>(UG/L)                                         | PCB,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)        | PCN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             |
| OCT              |                                                             |                                                                      |                                                                      |                                                                       |                                                                      |                                                                   |                                                                     |                                                                      |                                                                    |                                                                 |                                                                      |
| 26<br>JUN        |                                                             | <.01                                                                 |                                                                      | <10                                                                   |                                                                      | <1                                                                |                                                                     | 20                                                                   |                                                                    | <1                                                              | <1.0                                                                 |
| 09               | <.1                                                         |                                                                      | 1                                                                    |                                                                       | <1                                                                   |                                                                   | 20                                                                  |                                                                      | <1                                                                 |                                                                 |                                                                      |
| DATE             | ALDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | CHLOR-DANE, TOTAL IN BOT-TOM MA-TERIAL (UG/KG)                       | DDD,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DDE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)              | DDT,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)                  | DI-<br>ELDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | ENDO-<br>SULFAN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | ENDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)        | ETHION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)     | HEPTA-<br>CHLOR,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) |
| OCT              |                                                             |                                                                      |                                                                      |                                                                       |                                                                      |                                                                   |                                                                     |                                                                      |                                                                    |                                                                 |                                                                      |
| 26<br>JUN        | <.1                                                         | 4.0                                                                  | 3.8                                                                  | . 7                                                                   | <.1                                                                  | <.1                                                               | 1.3                                                                 | <.1                                                                  | <.1                                                                | <.1                                                             | <.1                                                                  |
| 09               |                                                             |                                                                      | 77                                                                   |                                                                       |                                                                      |                                                                   |                                                                     |                                                                      |                                                                    |                                                                 |                                                                      |
| DATE             | HEPTA - CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)          | LINDANE<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)          | MALA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | METH-<br>OXY-<br>CHLOR,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)      | METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)                     | METHYL<br>TRI-<br>THION,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG) | MIREX,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)          | PARA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | PER-<br>THANE<br>IN<br>BOTTOM<br>MATERIL<br>(UG/KG)                | TOXA - PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)              | TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)                     |
| OCT              |                                                             |                                                                      |                                                                      |                                                                       |                                                                      |                                                                   |                                                                     |                                                                      |                                                                    |                                                                 |                                                                      |
| 26<br>JUN        | <.1                                                         | <.1                                                                  | <.1                                                                  | <.1                                                                   | <.1                                                                  | <.1                                                               | <.1                                                                 | <.1                                                                  | <1.00                                                              | <10                                                             | <.1                                                                  |
| 09               |                                                             |                                                                      |                                                                      |                                                                       |                                                                      |                                                                   |                                                                     |                                                                      |                                                                    |                                                                 |                                                                      |

#### 01460500 DELAWARE AND RARITAN CANAL AT KINGSTON, NJ

LOCATION.--Lat 40°22'24", long 74°37'08", Middlesex County, Hydrologic Unit 02040105, on right bank at canal lock at Kingston, and 250 ft upstream from new bridge on State Highway 27.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- March 1947 to current year.

GAGE.--Two water-stage recorders and concrete control. Datum of gage is 40.00 ft National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good. The canal diverts water from the Delaware River at Raven Rock and discharges into Raritan River at New Brunswick. Some water wasted to the Millstone River 500 ft above station.

AVERAGE DISCHARGE. -- 36 years, 75.0 ft3/s.

EXTREMES FOR PERIOD OF RECORD. -- Maximum daily discharge, 174 ft3/s Apr. 6, 1957; no flow many days in many years.

EXTREMES FOR CURRENT YEAR .-- Maximum daily discharge, 108 ft 3/s Dec. 29; minimum daily, 3.8 ft 3/s July 29.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983
MEAN VALUES

AY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL

1 33 70 91 101 100 96 89 69 75 61

| DA Y                             | OCT                              | NOA                        | DEC                                    | JAN                             | FEB                             | MAR                              | APR                          | MAY                              | JUN                        | JUL                                  | A UG                             | SEP                        |
|----------------------------------|----------------------------------|----------------------------|----------------------------------------|---------------------------------|---------------------------------|----------------------------------|------------------------------|----------------------------------|----------------------------|--------------------------------------|----------------------------------|----------------------------|
| 1<br>2<br>3<br>4<br>5            | 33<br>31<br>33<br>48<br>53       | 70<br>72<br>73<br>74<br>76 | 91<br>100<br>103<br>101<br>100         | 101<br>101<br>101<br>101<br>101 | 100<br>101<br>102<br>102<br>102 | 96<br>101<br>98<br>95            | 89<br>89<br>95<br>95<br>93   | 69<br>73<br>79<br>79<br>77       | 75<br>72<br>68<br>67       | 61<br>53<br>29<br>17<br>22           | 16<br>23<br>30<br>15<br>12       | 19<br>19<br>19<br>18<br>18 |
| 6<br>7<br>8<br>9<br>10           | 27<br>11<br>33<br>70<br>67       | 79<br>78<br>76<br>75<br>75 | 98<br>96<br>95<br>94                   | 104<br>102<br>100<br>101<br>101 | 101<br>101<br>101<br>100<br>99  | 93<br>94<br>95<br>95<br>96       | 91<br>91<br>90<br>93<br>102  | 77<br>75<br>73<br>73<br>69       | 66<br>62<br>59<br>56       | 28<br>26<br>26<br>27<br>27           | 16<br>4.1<br>12<br>22<br>22      | 18<br>17<br>15<br>15       |
| 11<br>12<br>13<br>14<br>15       | 57<br>55<br>52<br>55<br>62       | 75<br>77<br>85<br>91<br>90 | 96<br>96<br>101<br>104<br>104          | 101<br>97<br>96<br>95<br>96     | 98<br>93<br>86<br>85<br>86      | 94<br>97<br>96<br>95<br>93       | 95<br>94<br>92<br>91<br>89   | 68<br>69<br>68<br>67             | 56<br>56<br>56<br>57<br>59 | 25<br>20<br>18<br>20<br>21           | 21<br>41<br>64<br>63<br>59       | 15<br>16<br>17<br>17       |
| 16<br>17<br>18<br>19<br>20       | 62<br>60<br>60<br>61<br>61       | 97<br>102<br>97<br>93      | 105<br>106<br>105<br>106<br>104        | 98<br>97<br>96<br>94<br>92      | 88<br>90<br>93<br>97<br>99      | 93<br>93<br>95<br>98<br>97       | 102<br>104<br>93<br>91<br>92 | 68<br>74<br>73<br>72<br>68       | 58<br>56<br>56<br>56<br>58 | 21<br>18<br>9.1<br>4.0<br>4.3        | 58<br>26<br>8.6<br>11<br>16      | 28<br>40<br>44<br>37<br>23 |
| 21<br>22<br>23<br>24<br>25       | 64<br>67<br>67<br>67<br>67       | 90<br>90<br>90<br>84<br>81 | 104<br>104<br>103<br>102               | 93<br>94<br>95<br>100<br>101    | 101<br>102<br>100<br>99<br>98   | 99<br>99<br>97<br>94<br>93       | 90<br>91<br>89<br>89<br>95   | 67<br>69<br>72<br>74<br>72       | 65<br>71<br>72<br>69<br>68 | 4.6<br>4.8<br>21<br>15<br>4.1        | 11<br>31<br>36<br>22<br>15       | 20<br>33<br>39<br>40<br>40 |
| 26<br>27<br>28<br>29<br>30<br>31 | 80<br>85<br>75<br>84<br>73<br>69 | 82<br>82<br>82<br>86<br>90 | 102<br>102<br>102<br>108<br>106<br>102 | 101<br>100<br>99<br>99<br>99    | 98<br>97<br>96<br>              | 92<br>93<br>99<br>95<br>92<br>89 | 93<br>90<br>89<br>81<br>69   | 70<br>75<br>80<br>78<br>78<br>80 | 65<br>58<br>56<br>62<br>63 | 4.1<br>21<br>18<br>3.8<br>4.0<br>4.2 | 15<br>15<br>15<br>15<br>18<br>19 | 38<br>38<br>38<br>38<br>38 |
| TOTAL<br>MEAN<br>MAX<br>MIN      | 1789<br>57•7<br>85<br>11         | 2504<br>83.5<br>102<br>70  | 3136<br>101<br>108<br>91               | 3056<br>98.6<br>104<br>92       | 2715<br>97.0<br>102<br>85       | 2951<br>95.2<br>101<br>89        | 2747<br>91.6<br>104<br>69    | 2254<br>72.7<br>80<br>67         | 1865<br>62.2<br>75<br>56   | 581.0<br>18.7<br>61<br>3.8           | 751.7<br>24.2<br>64<br>4.1       | 789<br>26.3<br>44<br>15    |

CAL YR 1982 TOTAL 18249.28 MEAN 50.0 MAX 108 MIN .00 WTR YR 1983 TOTAL 25138.7 MEAN 68.9 MAX 108 MIN 3.8

### 01461000 DELAWARE RIVER AT LUMBERVILLE, PA

LOCATION.--Lat 40°24'27", long 75°02'16", Bucks County, Hydrologic Unit 02040105, at pedestrian bridge at Lumberville, 1.4 mi upstream of Lockatong Creek.

DRAINAGE AREA. -- 6,598 mi2.

#### WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1976 to current year.

COOPERATION. -- Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

| DA TE      | TIME                                              | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(UMHOS)                  | PH<br>(STAND-<br>ARD<br>UNITS)                       | TEMPER-<br>ATURE<br>(DEG C)                          | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)                  | OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)                        | COLI-<br>FORM,<br>FECAL,<br>EC<br>BROTH<br>(MPN) | STREP-<br>TOCOCCI<br>FECAL<br>(MPN)                 | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3)             |
|------------|---------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------|----------------------------------------------------|
| OCT        |                                                   |                                                                    |                                                      |                                                      |                                                      |                                                                     |                                                  |                                                     |                                                    |
| 13<br>JAN  | 1130                                              | 211                                                                | 7.6                                                  | 16.0                                                 | 9.2                                                  | E2.3                                                                | 70                                               | 11                                                  | 78                                                 |
| 27         | 1030                                              | 155                                                                | 7.2                                                  | 1.5                                                  | 12.5                                                 | E1.8                                                                | 490                                              | 350                                                 | 44                                                 |
| A PR<br>13 | 1000                                              | 134                                                                | 7.7                                                  | 8.0                                                  | 11.0                                                 | E2.2                                                                | 170                                              | 23                                                  | 41                                                 |
| JUN<br>09  | 1300                                              | 112                                                                | 7.3                                                  | 19.0                                                 | 10.0                                                 | E2.0                                                                | 130                                              | 22                                                  | 43                                                 |
| JUL<br>27  | 1230                                              | 228                                                                | 8.2                                                  | 25.5                                                 | 7 1                                                  | 2.4                                                                 | 20                                               | 23                                                  | 82                                                 |
| AUG        |                                                   |                                                                    |                                                      |                                                      | 7.1                                                  |                                                                     |                                                  |                                                     |                                                    |
| 24         | 1240                                              | 224                                                                | 7.0                                                  | 25.0                                                 | 8.7                                                  | E2.2                                                                | <20                                              | 17                                                  | 87                                                 |
| DATE       | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)      | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)               | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)         | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)  | ALKA-<br>LINITY<br>LAB<br>(MG/L<br>AS<br>CACO3)      | SULFIDE<br>TOTAL<br>(MG/L<br>AS S)                                  | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)    | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F) |
| OCT        |                                                   |                                                                    |                                                      |                                                      |                                                      |                                                                     |                                                  | 4.0                                                 |                                                    |
| 13<br>JAN  | 20                                                | 6.9                                                                | 11                                                   | 1.1                                                  | 51                                                   | <.5                                                                 | 22                                               | 13                                                  | .10                                                |
| 27<br>APR  | 12                                                | 3.4                                                                | 6.6                                                  | 1.1                                                  | 24                                                   |                                                                     | 17                                               | 11                                                  | <.10                                               |
| 13<br>JUN  | 11                                                | 3.3                                                                | 5.4                                                  | . 90                                                 | 24                                                   |                                                                     | 17                                               | 8.2                                                 | <.10                                               |
| 09<br>JUL  | 11                                                | 3.7                                                                | 5.8                                                  | .90                                                  | 25                                                   | . 5                                                                 | 17                                               | 7.3                                                 | . 10                                               |
| 27<br>AUG  | 21                                                | 7.1                                                                | 9.2                                                  | 1.5                                                  | 50                                                   |                                                                     | 18                                               | 13                                                  | .20                                                |
| 24         | 22                                                | 7.9                                                                | 11                                                   | 1.7                                                  | 57                                                   |                                                                     | 26                                               | 14                                                  | .10                                                |
| DATE       | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2) | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L) | NITRO-<br>GEN,<br>NITRITE<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>AMMONIA<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)        | PHOS-<br>PHATE,<br>TOTAL<br>(MG/L<br>AS PO4)        | CARBON,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS C)      |
| OCT        |                                                   |                                                                    |                                                      |                                                      |                                                      |                                                                     |                                                  |                                                     |                                                    |
| 13<br>JAN  | 2.3                                               | 127                                                                | E.070                                                | 1.00                                                 | .090                                                 | E.66                                                                |                                                  | 1.30                                                | 2.7                                                |
| 27<br>APR  | 4.3                                               | 74                                                                 | .010                                                 | 1.10                                                 | .230                                                 | • 79                                                                | 1.9                                              | . 28                                                | 3.4                                                |
| 13<br>JUN  | 4.2                                               | 75                                                                 | .010                                                 | .800                                                 | .240                                                 | .52                                                                 | 1.3                                              | .21                                                 | 4.1                                                |
| 09<br>JUL  | 3.4                                               | 67                                                                 | .020                                                 | .600                                                 | E.070                                                | . 45                                                                | 1.1                                              | .30                                                 | 4.6                                                |
| 27<br>AUG  | 3.5                                               | 135                                                                | .100                                                 | 1.30                                                 | .120                                                 | . 97                                                                | 2.3                                              | . 34                                                | 4.2                                                |
| 24         | 3.3                                               | 135                                                                | .090                                                 | E1.50                                                | <.050                                                | . 49                                                                |                                                  | .28                                                 | 3.1                                                |

# 01461000 DELAWARE RIVER AT LUMBERVILLE, PA--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

| DA TE     | TIME                                   | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)   | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)                             | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE) | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)   | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD) | CHRO-<br>MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU) |
|-----------|----------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|
| OCT       |                                        |                                                       |                                                                 |                                                                 |                                                         |                                                         |                                                                |                                                         |
| 13<br>JUN | 1130                                   | 30                                                    | 2                                                               | <10                                                             | 240                                                     | <1                                                      | 10                                                             | 29                                                      |
| 09        | 1300                                   | 50                                                    | 1                                                               | <10                                                             | 30                                                      | <1                                                      | 20                                                             | 31                                                      |
| DATE      | IRON, TOTAL RECOV- ERABLE (UG/L AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG)         | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE)              | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN)          | PHENOLS<br>TOTAL<br>(UG/L)                              |
| OCT       |                                        |                                                       |                                                                 |                                                                 |                                                         |                                                         |                                                                | 9.43                                                    |
| 13<br>JUN | 200                                    | 41                                                    | 30                                                              | . 1                                                             | 4                                                       | <1                                                      | 40                                                             | 1                                                       |
| 09        | 450                                    | 30                                                    | 70                                                              | <.1                                                             | 1                                                       | <1                                                      | 30                                                             | 1                                                       |

### 01461300 WICKECHEOKE CREEK AT STOCKTON, NJ

LOCATION.--Lat 40°24'41", long 74°59'13", Hunterdon County, Hydrologic Unit 02040105, at bridge on State Route 29 in Stockton, 900 ft upstream from mouth.

DRAINAGE AREA .-- 26.6 mi2.

### WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1959-63, 1976 to current year.

COOPERATION. -- Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

| DATE       | TIME                              | STREAM-<br>FLOW,<br>INSTAN-<br>TANEOUS<br>(CFS) | SPE -<br>CIFIC<br>CON -<br>DUCT-<br>ANCE<br>(UMHOS | - (ST                                               | RD                                                 | EMPER-<br>ATURE<br>DEG C)   | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)        | DEN<br>BI<br>CH<br>IC           | IO-<br>HEM-<br>CAL,<br>DAY                 | COLI-<br>FORM,<br>FECAL,<br>EC<br>BROTH<br>(MPN) | TOC       | REP-<br>OCCI<br>CAL<br>PN)                  | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3) |
|------------|-----------------------------------|-------------------------------------------------|----------------------------------------------------|-----------------------------------------------------|----------------------------------------------------|-----------------------------|--------------------------------------------|---------------------------------|--------------------------------------------|--------------------------------------------------|-----------|---------------------------------------------|----------------------------------------|
| OCT<br>13  | 1315                              | 15                                              | 21                                                 | 53                                                  | 7.7                                                | 13.0                        | 11.5                                       |                                 | E1.8                                       | <20                                              |           | 170                                         | 70                                     |
| JAN 27     | 1215                              | 53                                              |                                                    | 95                                                  | 7.4                                                | 1.0                         | 14.1                                       |                                 | <.8                                        | 20                                               |           | 1600                                        | 44                                     |
| APR        |                                   |                                                 |                                                    |                                                     |                                                    |                             |                                            |                                 |                                            |                                                  |           |                                             |                                        |
| 13<br>JUN  | 1130                              | 76                                              |                                                    | 30                                                  | 7.6                                                | 11.0                        | 10.9                                       |                                 | E1.1                                       | 50                                               |           | 8                                           | 40                                     |
| 09<br>JUL  | 1400                              |                                                 | 2                                                  | 40                                                  | 8.2                                                | 20.5                        | 10.3                                       |                                 | E2.0                                       | 20                                               |           | 8                                           | 50                                     |
| 28<br>AUG  | 1100                              |                                                 |                                                    | -                                                   | 8.6                                                | 22.0                        | 8.7                                        |                                 | E1.3                                       | 20                                               |           | 350                                         | 63                                     |
| 24         | 1145                              |                                                 | 2                                                  | 12                                                  | 7.5                                                | 20.0                        | 9.8                                        |                                 | <.9                                        | <20                                              |           | 920                                         | 68                                     |
| DAT        | CALC<br>DIS<br>SOL<br>(MG<br>E AS | IUM SI<br>- DI<br>VED SOL<br>/L (MO             | IS- I<br>LVED SO<br>G/L (                          | DDIUM,<br>DIS-<br>DLVED<br>(MG/L<br>AS NA)          | POTAS<br>SIUM<br>DIS-<br>SOLVE<br>(MG/L<br>AS K)   | LINI:                       | TY B SULI                                  | FIDE<br>TAL<br>G/L<br>S)        | SULFAT<br>DIS-<br>SOLVE<br>(MG/L<br>AS SO4 | DIS<br>D SOL<br>(MG                              | E,<br>VED | FLUO<br>RIDE<br>DIS<br>SOLV<br>(MG/<br>AS F | ED<br>L                                |
| OCT        |                                   |                                                 |                                                    |                                                     |                                                    |                             |                                            |                                 | 0.5                                        |                                                  |           | ,                                           | 10                                     |
| 13.<br>JAN |                                   |                                                 | 5.7                                                | 24                                                  | 1.7                                                |                             |                                            | <.5                             | 25                                         | 23                                               |           |                                             | 10                                     |
| APR        | 10                                | 1                                               | 1.7                                                | 100                                                 | 2.0                                                | 29                          |                                            |                                 | 58                                         | 160                                              |           | <.                                          | 10                                     |
| 13.<br>JUN | 9                                 | •5 3                                            | 3.9                                                | 48                                                  | 1.6                                                | 20                          |                                            |                                 | 34                                         | 58                                               |           | <.                                          | 10                                     |
| 09.<br>JUL | 12                                | 1                                               | 4.9                                                | 32                                                  | 1.7                                                | 30                          |                                            |                                 | 30                                         | 32                                               |           | <.                                          | 10                                     |
| 28.<br>AUG | 15                                |                                                 | 5.2                                                | 15                                                  | 1.9                                                | 46                          |                                            |                                 | 25                                         | 14                                               |           | <.                                          | 10                                     |
| 24.        | 16                                | 6                                               | 5.9                                                | 17                                                  | 2.2                                                | 53                          |                                            |                                 | 25                                         | 14                                               |           |                                             | 20                                     |
| DAT        | (MG<br>AS                         | - AT T<br>VED DEC<br>/L DI<br>SOI               | IDUÉ<br>180<br>G.C.N<br>IS-<br>LVED                | NITRO-<br>GEN,<br>ITRITE<br>TOTAL<br>(MG/L<br>AS N) | NITRO<br>GEN,<br>NO2+NO<br>TOTAL<br>(MG/L<br>AS N) | GET<br>3 AMMO<br>TOT<br>(MG | RO- GEN<br>N, MON<br>NIA ORGAL<br>TO'/L (M | TRO-, AM-, IA + ANIC TAL G/L N) | NITRO<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)   | PHA<br>TOT                                       | TE,<br>AL | CARBO<br>ORGAN<br>TOTA<br>(MG/<br>AS C      | IIĆ<br>L<br>L                          |
| OCT        |                                   |                                                 |                                                    |                                                     |                                                    |                             |                                            |                                 |                                            |                                                  |           |                                             |                                        |
| 13.<br>JAN | ••                                | 8.8                                             | 155                                                | <.010                                               | 1.00                                               |                             | 060                                        | E.30                            | -                                          | - 2                                              | . 10      | 2.                                          |                                        |
| 27.<br>APR | ••                                | 9.9                                             | 363                                                | <.010                                               | 1.80                                               | <.                          | 050                                        | • 33                            | 2.1                                        |                                                  | . 15      | 3.                                          | 3                                      |
| 13.<br>JUN | 1                                 | 2                                               | 190                                                | .010                                                | 2.20                                               |                             | 060                                        | . 20                            | 2.1                                        | 1                                                | . 18      | 3.                                          | 2                                      |
| 09.<br>JUL |                                   | 9.6                                             | 140                                                | .080                                                | 2.50                                               | E.                          | 110                                        | . 27                            | 2.8                                        | 3                                                | • 33      | 3.                                          | 0                                      |
| 23.<br>AUG | 1                                 | 6                                               | 127                                                | .020                                                | 2.60                                               |                             | 070                                        | . 47                            | 3.1                                        |                                                  | . 18      | 3.                                          | 4                                      |
| 24.        | 1                                 | 1                                               | 145                                                | .020                                                | E1.80                                              | <.                          | 050                                        | . 22                            |                                            | -                                                | .09       | 2.                                          | 1                                      |
|            |                                   |                                                 |                                                    |                                                     |                                                    |                             |                                            |                                 |                                            |                                                  |           |                                             |                                        |

## 01461300 WICKECHEOKE CREEK AT STOCKTON, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

| DA TE     | TIME                                                                | NITRO-<br>GEN, NH4<br>+ ORG.<br>TOT IN<br>BOT MAT<br>(MG/KG<br>AS N) | CARBON,<br>INOR-<br>GANIC,<br>TOT IN<br>BOT MAT<br>(G/KG<br>AS C)    | CARBON,<br>INORG +<br>ORGANIC<br>TOT. IN<br>BOT MAT<br>(G/KG<br>AS C) | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)                  | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)                               | ARSENIC<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS AS) | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE)      | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)              | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD)         | CADMIUM<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CD) |
|-----------|---------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------|
| OCT<br>13 | 1315                                                                | 700                                                                  | <.1                                                                  | 1.9                                                                   | 20                                                                   | 1                                                                 | <1                                                                  | <10                                                                  | 140                                                                | <1                                                              | <1                                                                   |
| DATE      | CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR)                          | CHRO-MIUM,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)       | COBALT,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CO) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU)               | COPPER,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CU) | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE)             | IRON,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS FE)  | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB)                | LEAD,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MANGA-<br>NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  |
| OCT       |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                   |                                                                     |                                                                      |                                                                    |                                                                 |                                                                      |
| 13        | 10                                                                  | 2                                                                    | 20                                                                   | 30                                                                    | 0                                                                    | 460                                                               | 2400                                                                | 3                                                                    | 20                                                                 | 80                                                              | 540                                                                  |
| DATE      | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG)             | MERCURY<br>RECOV.<br>FM BOT-<br>TOMCMA-<br>TERIAL<br>(UG/L<br>AS HG) | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI)              | NICKEL,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS NI)  | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE)                           | SELE-<br>NIUM,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN)               | ZINC,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS ZN)   | PHENOLS<br>TOTAL<br>(UG/L)                                         | PCB,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)        | PCN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             |
| OCT       |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                   |                                                                     |                                                                      |                                                                    |                                                                 |                                                                      |
| 13        | <.1                                                                 | <.01                                                                 | 4                                                                    | 13.5                                                                  | <1                                                                   | <1                                                                | 30                                                                  | 20                                                                   | 11                                                                 | 12                                                              | <1.0                                                                 |
| DATE      | ALDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)         | CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)                     | DDD,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DDE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)              | DDT,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)                  | DI-<br>ELDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | ENDO-<br>SULFAN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | ENDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)        | ETHION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)     | HEPTA-<br>CHLOR,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) |
| OCT       |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                   |                                                                     |                                                                      |                                                                    |                                                                 |                                                                      |
| 13        | <.1                                                                 | 2.0                                                                  | .6                                                                   | .5                                                                    | .2                                                                   | <.1                                                               | <.1                                                                 | <.1                                                                  | <.1                                                                | <.1                                                             | <.1                                                                  |
| DATE      | HEPTA-<br>CHLOR<br>EPOXIDE<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG) | LINDANE<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)          | MALA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | METH-<br>OXY-<br>CHLOR,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)      | METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)                     | METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)                   | MIREX,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)          | PARA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | PER-<br>THANE<br>IN<br>BOTTOM<br>MATERIL<br>(UG/KG)                | TOXA-PHENE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)                     |
| ост<br>13 | <.1                                                                 | . <.1                                                                | <·.1                                                                 | <.1                                                                   | <.1                                                                  | <.1                                                               | <.1                                                                 | <.1                                                                  | <1.00                                                              | <10                                                             | <.1                                                                  |

### 01462500 DELAWARE RIVER AT WASHINGTON CROSSING, NJ

LOCATION.--Lat 40°17'20", long 74°52'08", Mercer County, Hydrologic Unit 02040105, at bridge at Washington Crossing, 1.4 mi upstream of Jacobs Creek.

DRAINAGE AREA. -- 6,735 mi2.

#### WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION. -- Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

| DATE             | TIME                                              | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(UMHOS)                  | PH<br>(STAND-<br>ARD<br>UNITS)                       | TEMPER-<br>ATURE<br>(DEG C)                          | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)                  | OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)                        | COLI-<br>FORM,<br>FECAL,<br>EC<br>BROTH<br>(MPN) | STREP-<br>TOCOCCI<br>FECAL<br>(MPN)                 | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3)             |
|------------------|---------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------|----------------------------------------------------|
| OCT<br>13<br>JAN | 0945                                              | 208                                                                | 7.8                                                  | 15.5                                                 | 9.6                                                  | E3.2                                                                | 50                                               | 33                                                  | 78                                                 |
| 27<br>A P R      | 1345                                              | 157                                                                | 7.7                                                  | 1.5                                                  | 12.9                                                 | 2.3                                                                 | 110                                              | 920                                                 | 44                                                 |
| 13               | 1330                                              | 126                                                                | 7.6                                                  | 9.0                                                  | 11.2                                                 | E1.4                                                                | 130                                              | 49                                                  | 41                                                 |
| JUN<br>29        | 1040                                              | 244                                                                | 7.4                                                  | 22.5                                                 | 8.4                                                  | 2.3                                                                 | 700                                              | 79                                                  | 78                                                 |
| JUL<br>27        | 1415                                              |                                                                    | 8.6                                                  | 26.5                                                 | 9.3                                                  | E2.2                                                                | . 20                                             | 14                                                  | 84                                                 |
| AUG<br>29        | 1400                                              | 234                                                                | 7.9                                                  | 26.0                                                 | 6.6                                                  | E1.9                                                                | 50                                               | 17                                                  | 80                                                 |
| DATE             | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)      | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)               | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)         | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)  | ALKA-<br>LINITY<br>LAB<br>(MG/L<br>AS<br>CACO3)      | SULFIDE<br>TOTAL<br>(MG/L<br>AS S)                                  | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)    | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F) |
| OCT<br>13        | 20                                                | 6.9                                                                | 11                                                   | 1.1                                                  | 52                                                   | <.5                                                                 | 22                                               | 14                                                  | .10                                                |
| JAN<br>27        | 12                                                | 3.5                                                                | 7.0                                                  | 1.1                                                  | 23                                                   |                                                                     | 18                                               | 12                                                  | <.10                                               |
| A PR<br>13       | 11                                                | 3.2                                                                | 5.4                                                  | .80                                                  | 24                                                   |                                                                     | 18                                               | 8.4                                                 | <.10                                               |
| JUN<br>29        | 20                                                | 6.8                                                                | 8.0                                                  | 1.9                                                  | 50                                                   |                                                                     | 25                                               | 12                                                  | .20                                                |
| JUL<br>27        | 21                                                | 7.6                                                                | 9.5                                                  | 1.5                                                  | 54                                                   |                                                                     | 29                                               | 13                                                  | .20                                                |
| AUG<br>29        | 20                                                | 7.2                                                                | 10                                                   | 1.8                                                  | 50                                                   |                                                                     | 26                                               | 15                                                  | <.10                                               |
| DATE             | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2) | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L) | NITRO-<br>GEN,<br>NITRITE<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>AMMONIA<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)        | PHOS-<br>PHATE,<br>TOTAL<br>(MG/L<br>AS PO4)        | CARBON,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS C)      |
| OCT              |                                                   | 404                                                                |                                                      |                                                      |                                                      |                                                                     |                                                  | .65                                                 | 2.7                                                |
| 13<br>JAN        | 2.0                                               | 131                                                                | E.050                                                | 1.00                                                 | .030                                                 | .51                                                                 | 1.5                                              |                                                     |                                                    |
| 27<br>APR        | 4.5                                               | 91                                                                 | .010                                                 | 1.10                                                 | . 250                                                | . 68                                                                | 1.8                                              | . 28                                                | 3.4                                                |
| 13<br>JUN        | 4.5                                               | 68                                                                 | .010                                                 | .800                                                 | . 140                                                | . 52                                                                | 1.3                                              | . 18                                                | 6.8                                                |
| 29<br>JUL        | 3.6                                               | 125                                                                | .060                                                 | 1.30                                                 | .200                                                 | • 57                                                                | 1.9                                              | 1.32                                                | 3.7                                                |
| 27<br>AUG        | 3.7                                               | 128                                                                | .050                                                 | 1.30                                                 | <.050                                                | • 50                                                                | 1.8                                              | . 40                                                | 2.6                                                |
| 29               | 2.7                                               | 122                                                                | .080                                                 | E1.50                                                | .120                                                 | .51                                                                 |                                                  | .31                                                 | 3.3                                                |

01462500 DELAWARE RIVER AT WASHINGTON CROSSING, NJ--Continued
WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

| DATE      | TIME                                                  | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)   | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)                             | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE) | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)   | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD) | CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR)            | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU) |
|-----------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|
| OCT       |                                                       |                                                       |                                                                 |                                                                 |                                                         |                                                         | S Deler                                               |                                                         |
| 13        | 0945                                                  | 40                                                    | 1                                                               | <10                                                             | 290                                                     | <1                                                      | 10                                                    | 22                                                      |
| DATE      | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG)         | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE)              | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | PHENOLS<br>TOTAL<br>(UG/L)                              |
| ост<br>13 | 150                                                   | 23                                                    | 30                                                              | <.1                                                             | 6                                                       | <1                                                      | 30                                                    | 1                                                       |
|           |                                                       |                                                       |                                                                 |                                                                 |                                                         |                                                         |                                                       |                                                         |

81

#### 01463500 DELAWARE RIVER AT TRENTON, NJ (National stream quality accounting network and Radiochemical program station)

LOCATION.--Lat 40°13'18", long 74°46'42", Mercer County, Hydrologic Unit 02040105, on left bank 450 ft upstream from Calhoun Street Bridge at Trenton, 0.5 mi upstream from Assunpink Creek, and at mile 134.5.

DRAINAGE AREA. -- 6,780 mi2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--February 1913 to current year. October 1912 to February 1913 monthly discharge only, published in WSP 1302. Gage-height records collected in this vicinity since 1904 are contained in reports of the National Weather Service.

REVISED RECORDS.--WSP 951: Drainage area. WSP 1302: 1913-20. WSP 1382: 1924, 1928.

GAGE. -- Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929. Prior to Sept. 30, 1965, at datum 7.77 ft higher. Feb. 24, 1913, to Oct. 2, 1928, nonrecording gage on downstream side of highway bridge at site 500 ft downstream.

REMARKS. -- Water-discharge records good. Diurnal fluctuations at medium and low flow caused by powerplants on tributary streams. Flow regulated by Lakes Wallenpaupack and Hopatcong, and by Pepacton, Cannonsville, Swinging Bridge, Toronto, Cliff Lake, Neversink, and Wild Creek Reservoirs (see Delaware River Basin, reservoirs in) and smaller reservoirs. Diversion from Pepacton, Cannonsville, and Neversink Reservoirs and to Delaware and Raritan Canal (see Delaware River Basin, diversions). Water diverted just above station by borough of Morrisville, PA, and city of Trenton for municipal supply (see Delaware River Basin, diversions).

AVERAGE DISCHARGE. -- 71 years, 11,685 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 329,000 ft³/s Aug. 20, 1955, elevation, 28.60 ft, from high-water mark in gage house, from rating curve extended above 230,000 ft³/s; minimum, 1,180 ft³/s Oct. 31, 1963, elevation, 7.26 ft. Flow in Delaware and Raritan Canal not included.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Oct. 11, 1903, reached an elevation of about 28.5 ft National Geodetic Vertical Datum of 1929, discharge estimated, 295,000 ft<sup>3</sup>/s. Maximum elevation since 1903, 30.6 ft National Geodetic Vertical Datum of 1929, Mar. 8, 1904, from floodmark (ice jam).

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 50,000 ft3/s and maximum (\*):

| Date               | Time         | Discharge<br>(ft³/s) | Elevation<br>(ft) | Date    | Time | Discharge<br>(ft³/s) | Elevation<br>(ft) |
|--------------------|--------------|----------------------|-------------------|---------|------|----------------------|-------------------|
| Apr. 10<br>Apr. 17 | 1800<br>1630 | 54800<br>*138000     | 14.38<br>19.89    | Apr. 26 | 1500 | 79600                | 16.16             |

Minimum discharge, 2,360 ft3/s Sept. 17, gage height, 7.84 ft.

|       |        | DISC   | CHARGE, II | N CUBIC F | EET PER SI | ECOND, WA<br>MEAN V | TER YEAR | OCTOBER 19 | 982 TO SEI | PTEMBER 19 | 983    |       |
|-------|--------|--------|------------|-----------|------------|---------------------|----------|------------|------------|------------|--------|-------|
| DAY.  | OCT    | NOV    | DEC        | JAN       | FEB        | MAR                 | APR      | MAY        | JUN        | JUL        | AUG    | SEP   |
| 1     | 3990   | 3900   | 6520       | 8530      | 9490       | 10000               | 20000    | 35800      | 17500      | 12100      | 3880   | 3510  |
| 2     | 4110   | 3740   | 6920       | 7480      | 9820       | 15200               | 18000    | 33000      | 16100      | 10400      | 3510   | 3640  |
| 3     | 4100   | 3470   | 7010       | 6870      | 18000      | 15900               | 22700    | 32100      | 14600      | 8940       | 3700   | 3490  |
| 4     | 4050   | 3370   | 6320       | 6390      | 41600      | 17400               | 25100    | 32000      | 14800      | 8100       | 3710   | 2980  |
| 5     | 3930   | 4960   | 5820       | 6220      | 44200      | 16900               | 23600    | 30300      | 19400      | 7580       | 3350   | 2790  |
| 6     | 3880   | 7810   | 5500       | 6260      | 30100      | 15400               | 21600    | 27500      | 18700      | 7020       | 3580   | 2970  |
| 7     | 3770   | 6920   | 5300       | 6390      | 23500      | 14500               | 19400    | 23600      | 18300      | 6210       | 3720   | 2970  |
| 8     | 3880   | 6070   | 5130       | 6280      | 20500      | 16000               | 18800    | 19800      | 22400      | 5990       | 3870   | 2900  |
| 9     | 3790   | 5220   | 4960       | 5900      | 18300      | 19400               | 25600    | 17900      | 20400      | 5600       | 3670   | 3810  |
| 10    | 3850   | 4630   | 4630       | 5320      | 15700      | 21900               | 38200    | 18100      | 17400      | 5280       | 3540   | 3470  |
| 11    | 3900   | 4210   | 4330       | 9080      | 13200      | 24000               | 51800    | 17800      | 15400      | 4790       | 3580   | 3120  |
| 12    | 3840   | 3950   | 4350       | 9390      | 10500      | 26600               | 49400    | 16100      | 13700      | 4260       | 5610   | 3040  |
| 13    | 3720   | 5180   | 4340       | 9550      | 10100      | 24500               | 39500    | 14700      | 12600      | 3950       | 6810   | 3280  |
| 14    | 3860   | 7000   | 3590       | 9240      | 10700      | 20700               | 31900    | 13300      | 11600      | 4320       | 6160   | 3440  |
| 15    | 4820   | 6540   | 3380       | 8130      | 10500      | 18500               | 26500    | 12300      | 10300      | 4400       | 5540   | 3590  |
| 16    | 4600   | 6080   | 4280       | 7580      | 11000      | 17700               | 75000    | 11600      | 9090       | 4390       | 4430   | 2740  |
| 17    | 4300   | 5870   | 9030       | 6830      | 11200      | 16300               | 129000   | 14800      | 8360       | 4340       | 3670   | 2470  |
| 18    | 4460   | 5380   | 10400      | 6020      | 11100      | 15900               | 91800    | 15100      | 8900       | 4120       | 3230   | 2870  |
| 19    | 4590   | 4940   | 11300      | 6320      | 11300      | 26300               | 66500    | 12800      | 8680       | 4040       | 3200   | 3140  |
| 20    | 4350   | 4660   | 9240       | 6100      | 11100      | 31900               | 55900    | 11900      | 10300      | 4710       | 3320   | 2960  |
| 21    | 4250   | 4480   | 8350       | 5160      | 9980       | 37000               | 47700    | 12300      | 10600      | 5250       | 3420   | 2880  |
| 22    | 4210   | 4600   | 7880       | 5640      | 10300      | 44300               | 39100    | 13100      | 9780       | 4660       | 3890   | 4600  |
| 23    | 4120   | 4620   | 7380       | 5980      | 11400      | 41300               | 35400    | 16200      | 8910       | 4740       | 3300   | 5070  |
| 24    | 3960   | 4640   | 6960       | 13400     | 13400      | 33400               | 36500    | 16600      | 7940       | 4930       | 3160   | 4920  |
| 25    | 4190   | 4720   | 6790       | 15500     | 14200      | 26900               | 53400    | 15300      | 7120       | 4920       | 3640   | 4180  |
| 26    | 4770   | 4990   | 6600       | 18200     | 13700      | 22700               | 74400    | 14000      | 6710       | 4410       | 3490   | 3250  |
| 27    | 4940   | 4780   | 6820       | 15800     | 12000      | 19700               | 71800    | 18000      | 6120       | 4500       | 3580   | 2690  |
| 28    | 4730   | 4430   | 8600       | 13300     | 10100      | 30300               | 60700    | 15200      | 5480       | 4170       | 3210   | 2930  |
| 29    | 4500   | 5630   | 10700      | 11800     |            | 29700               | 46700    | 15100      | 8230       | 3520       | 3420   | 2970  |
| 30    | 4370   | 7080   | 10000      | 10700     |            | 26700               | 39600    | 16200      | 12700      | 3350       | 3560   | 2620  |
| 31    | 3990   |        | 9680       | 9750      |            | 23200               |          | 16800      |            | 4230       | 3500   |       |
| TOTAL | 129820 | 153870 | 212110     | 269110    | 436990     | 720200              | 1355600  | 579300     | 372120     | 169220     | 120250 | 99290 |
| MEAN  | 4188   | 5129   | 6842       | 8681      | 15610      | 23230               | 45190    | 18690      | 12400      | 5459       | 3879   | 3310  |
| MAX   | 4940   | 7810   | 11300      | 18200     | 44200      | 44300               | 129000   | 35800      | 22400      | 12100      | 6810   | 5070  |
| MIN   | 3720   | 3370   | 3380       | 5160      | 9490       | 10000               | 18000    | 11600      | 5480       | 3350       | 3160   | 2470  |

CAL YR 1982 TOTAL 3693440 MEAN 10120 MAX 51000 MIN 3370 WTR YR 1983 TOTAL 4617880 MEAN 12650 MAX 129000 MIN 2470

### 01463500 DELAWARE RIVER AT TRENTON, NJ -- Continued

#### WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1945 to current year.

PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE: June 1968 to September 1978, May 1979 to current year.
pH: June 1968 to September 1978, May to September 1978, February 1980 to August 1982, April 1983 to current year.
WATER TEMPERATURES: October 1944 to September 1978, May 1979 to current year.
DISSOLVED OXYGEN: October 1962 to September 1978, May 1979 to current year.
SUSPENDED-SEDIMENT DISCHARGE: Water years 1949 to 1981.

INSTRUMENTATION. -- Temperature recorder since October 1944, water-quality monitor since October 1962.

REMARKS.--Missing continuous water-quality records are the result of malfunction of sensor or sampling mechanism.

Unpublished records of suspended sediment discharge for the period October 1, 1981 to March 31, 1982 are available in files of the district office.

EXTREMES FOR PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE: Maximum, 400 micromhos Jan. 24, 1959; minimum, 50 micromhos Mar. 19, 1945. pH: Maximum, 10.3 August 9, 10, 1983; minimum, 5.3 June 22, 1972. WATER TEMPERATURES: Maximum, 34.0°C June 18, 1957; minimum 0.0°C on many days during winter months. DISSOLVED OXYGEN: Maximum, 18.4 mg/L January 10, 1980; minimum, 4.0 mg/L Nov. 9, 1972.

EXTREMES FOR CURRENT YEAR .--

SPECIFIC CONDUCTANCE: Maximum, 250 micromhos Dec. 16; minimum, 76 micromhos Apr. 17.
pH: Maximum, 10.3 Aug. 9, 10; minimum, 7.1 Apr. 17, 18.
WATER TEMPERATURES: Maximum, 31.5°C Aug. 7, 8; minimum 0.0°C on many days during February.
DISSOLVED OXYGEN: Maximum, 15.5 mg/L Dec. 15; minimum, 5.9 mg/L Sept. 1.

#### WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

| DATE      |           | IME                  | STREA<br>FLOW<br>INSTA<br>TANEO<br>(CFS        | N, CON<br>N- DUC<br>OUS AND                  | IC<br>- P<br>T- (ST<br>E A                                     | H<br>AND-<br>RD<br>TS) | TEMPI<br>ATU                                      | RE                                          | TUR<br>BID<br>ITY<br>(NTU    | DI<br>SOL                                                     | SEN, (I<br>SEN, (I<br>SEN, (I<br>SEN, (I<br>SEN, (I            | GEN,<br>DIS-<br>DLVED<br>PER-<br>ENT<br>TUR-<br>TION) | OXYG<br>DEMA<br>BIO<br>CHE<br>ICA<br>5 I | ND,<br>-<br>M-<br>L,<br>AY | COL<br>FOR<br>FEC<br>0.7<br>UM-<br>(COL<br>100 | M,<br>AL,<br>MF<br>S./ | STREP-<br>TOCOCCI<br>FECAL,<br>KF AGAR<br>(COLS.<br>PER<br>100 ML) |
|-----------|-----------|----------------------|------------------------------------------------|----------------------------------------------|----------------------------------------------------------------|------------------------|---------------------------------------------------|---------------------------------------------|------------------------------|---------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------|------------------------------------------|----------------------------|------------------------------------------------|------------------------|--------------------------------------------------------------------|
| NOV<br>08 | . 1       | 000                  | 60                                             | 080                                          | 205                                                            | 7.0                    | 1                                                 | 0.0                                         | 4.                           | 0 1                                                           | 11.0                                                           | 95                                                    |                                          | 5.6                        | К                                              | 460                    |                                                                    |
| FEB 24    | . 1       | 030                  | 137                                            | 700                                          | 180                                                            | 7.9                    |                                                   | 5.0                                         | 4.                           | 3 1                                                           | 12.3                                                           | 96                                                    |                                          | 1.1                        |                                                |                        | K180                                                               |
| JUN<br>24 | . 1       | 100                  | 80                                             | 20                                           | 174                                                            | 8.5                    | 2                                                 | 4.5                                         | 3.                           | 0                                                             | 9.9                                                            | 118                                                   |                                          | 3.0                        |                                                | 140                    | 2100                                                               |
| AUG<br>31 | . 1       | 130                  | 31                                             | 160                                          | 225                                                            | 8.0                    | 2                                                 | 6.0                                         | 1.                           | 0                                                             | 7.0                                                            | 85                                                    |                                          | 1.4                        |                                                | 110                    | 3200                                                               |
|           | DATE      | NE<br>(M             | RD-<br>SS<br>IG/L<br>S<br>ICO3)                | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA) | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)           | SOD<br>DI<br>SOL<br>(M |                                                   | POTA<br>SII<br>DIS<br>SOL'<br>(MG/<br>AS I  | UM,<br>S-<br>VED<br>/L       | ALKA-<br>LINITY<br>LAB<br>(MG/L<br>AS<br>CACO3)               | SULFATE<br>DIS-<br>SOLVET<br>(MG/L<br>AS SO4)                  | R: R: D: D: S: (1                                     | HLO- IDE, IS- OLVED MG/L S CL)           | SOI                        | DE,<br>IS-<br>LVED<br>G/L                      | DI<br>SO<br>(M<br>A    | ICA,<br>S-<br>LVED<br>G/L<br>S<br>O2)                              |
|           | NOV<br>08 |                      | 64                                             | 16                                           | F 0                                                            |                        | 0 5                                               | 2                                           | . 1                          | 43                                                            | 24                                                             |                                                       | 11                                       |                            | · 10                                           |                        | 3.2                                                                |
|           | FEB       |                      |                                                |                                              | 5.9                                                            |                        | 9.5                                               |                                             |                              |                                                               |                                                                |                                                       |                                          | 13                         |                                                |                        |                                                                    |
|           | 24<br>JUN |                      | 59                                             | 15                                           | 5.1                                                            |                        | 9.1                                               | 1                                           | • 3                          | 34                                                            | 22                                                             |                                                       | 14                                       |                            | . 10                                           |                        | 5.6                                                                |
|           | 24<br>AUG |                      | 65                                             | 17                                           | 5.4                                                            |                        | 7.4                                               | 1                                           | . 4                          | 41                                                            | 21                                                             |                                                       | 10                                       |                            | (.10                                           |                        | 3.6                                                                |
|           | 31        |                      | 85                                             | 21                                           | 7.8                                                            | 1                      | 0                                                 | 1                                           | . 7                          | 55                                                            | 25                                                             |                                                       | 15                                       |                            | .10                                            |                        | 2.9                                                                |
|           | DATE      | RES<br>AT<br>DE<br>I | IDS,<br>SIDUE<br>180<br>IG. C<br>DIS-<br>DLVED | SEDI-<br>MENT,<br>SUS-<br>PENDED<br>(MG/L)   | SEDI-<br>MENT,<br>DIS-<br>CHARGE,<br>SUS-<br>PENDEI<br>(T/DAY) | SI<br>D<br>% F         | ED.<br>USP.<br>EVE<br>IAM.<br>INER<br>HAN<br>2 MM | NIT<br>GE<br>NO2+<br>DI<br>SOL<br>(MG<br>AS | N,<br>NO3<br>S-<br>VED<br>/L | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | NITRO<br>GEN, AM<br>MONIA<br>ORGANI<br>TOTAL<br>(MG/L<br>AS N) | PH<br>T                                               | HOS-<br>ORUS,<br>OTAL<br>MG/L<br>S P)    | PHOI<br>DO<br>SOI<br>(M    | OS-<br>RUS,<br>IS-<br>LVED<br>G/L<br>P)        | PHC<br>OR<br>DI        |                                                                    |
|           | NOV       |                      |                                                |                                              |                                                                |                        |                                                   |                                             |                              |                                                               |                                                                |                                                       |                                          |                            |                                                |                        |                                                                    |
|           | 08<br>FEB |                      | 115                                            | 13                                           | 213                                                            |                        | 75                                                |                                             |                              |                                                               | -                                                              | •                                                     |                                          |                            |                                                |                        |                                                                    |
|           | 24<br>JUN |                      | 107                                            | 28                                           | 1040                                                           | 1                      | 46                                                | 1.                                          | 30                           | .210                                                          | • 5                                                            | )                                                     | .080                                     |                            | .060                                           |                        | .040                                                               |
|           | 24<br>AUG |                      | 104                                            | 13                                           | 282                                                            |                        | 84                                                | 1.                                          | 10                           | .020                                                          | . 5                                                            | )                                                     | .050                                     |                            | .030                                           |                        | .010                                                               |
|           | 31        |                      | 129                                            | 31                                           | 290                                                            |                        | 52                                                | 1.                                          | 60                           | <.010                                                         | • 3                                                            | 0                                                     | .110                                     |                            | . 100                                          |                        | .080                                                               |

### 01463500 DELAWARE RIVER AT TRENTON, NJ--Continued

### WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

| DATE             | TIME                                       | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL) | ARSENIC<br>DIS-<br>SOLVED<br>(UG/L<br>AS AS)               | BARIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS BA) | BERYL-<br>LIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS BE)        | CADMIUM<br>DIS-<br>SOLVED<br>(UG/L<br>AS CD)                | CHRO-<br>MIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CR) | COBALT,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CO)                   | COPPER,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CU)                    | IRON,<br>DIS-<br>SOLVED<br>(UG/L<br>AS FE)              |
|------------------|--------------------------------------------|-----------------------------------------------------|------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|
| NOV              |                                            |                                                     |                                                            |                                              |                                                             |                                                             |                                                     |                                                                |                                                                 |                                                         |
| 08<br>FEB        | 1000                                       | 70                                                  | 2                                                          | 34                                           | <1                                                          | <1                                                          | <1                                                  | <3                                                             | 4                                                               | 55                                                      |
| 24<br>JUN        | 1030                                       | 50                                                  | 1                                                          | 30                                           | <1                                                          | <1                                                          | <1                                                  | <3                                                             | 3                                                               | 29                                                      |
| 24<br>AUG        | 1100                                       | 10                                                  | 1                                                          | 50                                           | <0                                                          | <1                                                          | 4                                                   | <3                                                             | 3                                                               | . 21                                                    |
| 31               | 1130                                       | <10                                                 | 2                                                          | 43                                           | <0                                                          | <1                                                          | <1                                                  | <3                                                             | 4                                                               | 11                                                      |
| DATE             | LEAD,<br>DIS-<br>SOLVED<br>(UG/L<br>AS PB) | LITHIUM<br>DIS-<br>SOLVED<br>(UG/L<br>AS LI)        | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(UG/L<br>AS MN)       | MERCURY<br>DIS-<br>SOLVED<br>(UG/L<br>AS HG) | MOLYB-<br>DENUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS MO)       | NICKEL,<br>DIS-<br>SOLVED<br>(UG/L<br>AS NI)                | SELE-<br>NIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS SE) | SILVER,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AG)                   | STRON-<br>TIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS SR)            | VANA-<br>DIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS V)      |
| NOV<br>08        | 2                                          | <4                                                  | 16                                                         | <.1                                          | <10                                                         | 2                                                           | <1                                                  |                                                                | 74                                                              | <6                                                      |
| FEB 24           | 11                                         | <4                                                  | 27                                                         | . 4                                          | <10                                                         | 6                                                           | <1                                                  | <1                                                             | 67                                                              | <6                                                      |
| JUN<br>24<br>AUG | <1                                         | 6                                                   | <1                                                         | .5                                           | <10                                                         | 1                                                           | <1                                                  | <1                                                             | 68                                                              | <6                                                      |
| 31               | 1                                          | 5                                                   | 3                                                          | . 1                                          | <10                                                         | 2                                                           | <1                                                  | <1                                                             | 80                                                              | <6                                                      |
| DATE             | ZINC,<br>DIS-<br>SOLVED<br>(UG/L<br>AS ZN) | GROSS ALPHA, DIS- SOLVED (UG/L AS U-NAT)            | GROSS<br>ALPHA,<br>SUSP.<br>TOTAL<br>(UG/L<br>AS<br>U-NAT) | GROSS ALPHA, DIS- SOLVED (PCI/L AS U-NAT)    | GROSS<br>BETA,<br>DIS-<br>SOLVED<br>(PCI/L<br>AS<br>CS-137) | GROSS<br>BETA,<br>SUSP.<br>TOTAL<br>(PCI/L<br>AS<br>CS-137) | GROSS BETA, DIS- SOLVED (PCI/L AS SR/ YT-90)        | GROSS<br>BETA,<br>SUSP.<br>TOTAL<br>(PCI/L<br>AS SR/<br>YT-90) | RADIUM<br>226,<br>DIS-<br>SOLVED,<br>RADON<br>METHOD<br>(PCI/L) | URANIUM<br>DIS-<br>SOLVED,<br>EXTRAC-<br>TION<br>(UG/L) |
| NOV              | 7                                          | 2.7                                                 | , -                                                        | 0.5                                          | 4.0                                                         |                                                             | 4.5                                                 |                                                                | O.H                                                             | .15                                                     |
| 08<br>FEB        | 7                                          | 3.7                                                 | <.5                                                        | 2.5                                          | 18                                                          | <.5                                                         | 17                                                  | <.5                                                            | . 04                                                            | . 15                                                    |
| 24<br>JUN        | 13                                         |                                                     |                                                            |                                              |                                                             |                                                             |                                                     |                                                                |                                                                 |                                                         |
| 24<br>AUG        | 5                                          | <3.2                                                | <.7                                                        |                                              | 2.1                                                         | <.6                                                         | 1.8                                                 | <.6                                                            | .04                                                             | .22                                                     |
| 31               | 12                                         |                                                     |                                                            |                                              |                                                             |                                                             |                                                     |                                                                |                                                                 |                                                         |
|                  |                                            |                                                     |                                                            |                                              |                                                             |                                                             | - 05                                                |                                                                |                                                                 |                                                         |

|           |      |           |        | SEDI-<br>MENT, | SED.<br>SUSP. |
|-----------|------|-----------|--------|----------------|---------------|
|           |      | STREAM-   | SEDI-  | DIS-           | SIEVE         |
|           |      | FLOW,     | MENT,  | CHARGE,        | DIAM.         |
|           |      | INSTAN-   | SUS-   | SUS-           | % FINER       |
|           | TIME | TANEOUS   | PENDED | PENDED         | THAN          |
| DATE      |      | (CFS)     | (MG/L) | (T/DAY)        | .062 MM       |
| NOV       |      |           |        |                |               |
| 08<br>FEB | 1000 | 6080      | 13     | 213            | 75            |
| 24<br>APR | 1030 | 13700     | 28     | 1040           | 46            |
| 11        | 1115 | 50200     | 197    | 26700          |               |
| 11        | 1145 | 50500     | 175    | 23900          | 86            |
| 17        | 1145 | 137000    | 646    | 239000         | 47            |
| 17        | 1440 | 137000    | 528    | 195000         | 41            |
| 17        | 1650 | 138000    | 423    | 158000         | 29            |
| 18        | 0945 | 91100     | 182    | 44800          | 38            |
| 29        | 1150 | 46200     | 34     | 4240           | 38            |
| MAY       | 4000 | 7042345.5 | -      |                |               |
| 31<br>JUN | 1330 | 16700     | 30     | 1350           | 17            |
| 24        | 1100 | 8020      | 13     | 282            | 84            |
| 29        | 1530 | 9440      | 12     | 306            | 22            |
| 30<br>JUL | 1430 | 13800     | 34     | 1270           | 12            |
| 29<br>AUG | 1500 | 3460      | 5      | 47             |               |
| 12        | 1530 | 6590      | 16     | 285            |               |
| 13        | 1045 | 6460      | 38     | 663            |               |
| 31        | 1130 | 3460      | 31     | 290            | 52            |
|           |      |           |        |                |               |

01463500 DELAWARE RIVER AT TRENTON, NJ--Continued

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

|                                  | SF                                     | ECIFIC C                               | ONDUCTANCE                             | (MICKOWHOS                             | CM AT                                  | 25 DEG. C)                             | , WATER YEA                            | K OCTOB                                | ER 1982 10                      | SEPIEMBER                               | 1903                                    |                                         |
|----------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|---------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|
| DAY                              | MAX                                    | MIN                                    | MEAN                                   | MAX                                    | MIN                                    | MEAN                                   | MAX                                    | MIN                                    | MEAN                            | MAX                                     | MIN                                     | MEAN                                    |
|                                  |                                        | OCTOBER                                |                                        |                                        | NOVEMBE                                | R                                      |                                        | DECEMBE                                | R                               |                                         | JANUAR                                  | Y                                       |
| 1<br>2<br>3<br>4<br>5            | 217<br>224<br>223<br>222<br>216        | 210<br>217<br>219<br>213<br>212        | 213<br>220<br>221<br>218<br>214        | 187<br>184<br>191<br>192<br>188        | 177<br>177<br>186<br>187<br>187        | 181<br>180<br>188<br>190<br>187        | 196<br>203<br>199<br>190<br>186        | 192<br>194<br>192<br>182<br>183        | 194<br>199<br>195<br>185<br>184 | 136<br>140<br>148<br>152<br>160         | 134<br>134<br>140<br>146<br>151         | 135<br>136<br>144<br>149<br>155         |
| 6<br>7<br>8<br>9                 | 217<br>218<br>219<br>221<br>221        | 212<br>212<br>218<br>216<br>216        | 214<br>216<br>218<br>218<br>217        | 210<br>206<br>184<br>178<br>178        | 187<br>183<br>177<br>177               | 199<br>196<br>179<br>177<br>178        | 188<br>190<br>193<br>201<br>203        | 184<br>187<br>187<br>193<br>197        | 187<br>188<br>189<br>196<br>200 | 168<br>175<br>180<br>181<br>174         | 161<br>170<br>176<br>172<br>154         | 164<br>173<br>179<br>176<br>170         |
| 11<br>12<br>13<br>14<br>15       | 222<br>218<br>217<br>215<br>229        | 217<br>211<br>214<br>210<br>214        | 220<br>216<br>216<br>213<br>217        | 186<br>194<br>200<br>204<br>204        | 178<br>186<br>175<br>197               | 1 82<br>18 9<br>1 92<br>200<br>1 97    | 205<br>206<br>207<br>206<br>210        | 201<br>201<br>201<br>196<br>202        | 202<br>203<br>204<br>200<br>204 | ======================================= | ======================================= | ===                                     |
| 16<br>17<br>18<br>19<br>20       | 248<br>230<br>207<br>206<br>194        | 229<br>205<br>203<br>194<br>187        | 241<br>212<br>205<br>201<br>189        | 194<br>187<br>188<br>192<br>194        | 188<br>184<br>184<br>188<br>188        | 191<br>185<br>185<br>190<br>191        | 250<br>217<br>217<br>167<br>145        | 206<br>192<br>170<br>139<br>136        | 225<br>207<br>193<br>152<br>140 | ===                                     | ===                                     |                                         |
| 21<br>22<br>23<br>24<br>25       | 196<br>199<br>199<br>200<br>200        | 185<br>195<br>195<br>194<br>193        | 190<br>197<br>197<br>198<br>197        | 201<br>203<br>202<br>199<br>198        | 193<br>198<br>195<br>194<br>193        | 196<br>200<br>199<br>196               | 156<br>164<br>163<br>163<br>168        | 145<br>158<br>159<br>160<br>161        | 150<br>161<br>161<br>161<br>165 | ======================================= | ===                                     | ===                                     |
| 26<br>27<br>28<br>29<br>30<br>31 | 197<br>190<br>188<br>191<br>193<br>188 | 190<br>177<br>182<br>186<br>187<br>183 | 192<br>185<br>187<br>187<br>190<br>186 | 195<br>189<br>181<br>182<br>195        | 189<br>178<br>174<br>175<br>174        | 193<br>184<br>178<br>179<br>184        | 169<br>168<br>166<br>162<br>139<br>138 | 165<br>165<br>161<br>135<br>134<br>134 | 166<br>166<br>164<br>144<br>136 |                                         | ======================================= | ======================================= |
| MONTH                            | 248                                    | 177                                    | 207                                    | 210                                    | 174                                    | 189                                    | 250                                    | 134                                    | 179                             | 181                                     | 134                                     | 158                                     |
| DAY                              | MAX                                    | MIN                                    | MEAN                                   | MAX                                    | MIN                                    | MEAN                                   | MAX                                    | MIN                                    | MEAN                            | MAX                                     | MIN                                     | MEAN                                    |
|                                  |                                        | FEBRUAR                                | Y                                      |                                        | MARCH                                  | I                                      |                                        | APRIL                                  |                                 |                                         | MAY                                     |                                         |
| 1<br>2<br>3<br>4<br>5            | 162<br>164<br>171<br>160<br>99         | 152<br>158<br>159<br>100<br>91         | 158<br>161<br>162<br>122<br>94         | 179<br>177<br>170<br>163<br>142        | 171<br>156<br>155<br>143<br>135        | 175<br>165<br>166<br>154<br>138        | 131<br>134<br>134<br>128<br>121        | 124<br>132<br>106<br>120<br>119        | 127<br>133<br>116<br>124<br>120 | 111<br>112<br>114<br>112<br>112         | 108<br>109<br>112<br>110<br>110         | 110<br>111<br>113<br>111<br>111         |
| 6<br>7<br>8<br>9                 | 98<br>107<br>119<br>121<br>124         | 94<br>98<br>105<br>115<br>120          | 95<br>102<br>111<br>119<br>122         | 134<br>133<br>135<br>133<br>125        | 129<br>128<br>130<br>124<br>118        | 132<br>132<br>133<br>128<br>122        | 122<br>125<br>130<br>133<br>130        | 119<br>121<br>126<br>127<br>98         | 120<br>123<br>128<br>130<br>115 | 112<br>118<br>125<br>131<br>132         | 109<br>113<br>118<br>125<br>129         | 111<br>115<br>121<br>128<br>131         |
| 11<br>12<br>13<br>14<br>15       | 134<br>144<br>155<br>149<br>154        | 123<br>131<br>141<br>143<br>149        | 128<br>137<br>149<br>147<br>151        | 124<br>123<br>118<br>121<br>126        | 119<br>113<br>113<br>118<br>121        | 122<br>117<br>116<br>120<br>123        | 120<br>104<br>105<br>111<br>119        | 103<br>99<br>99<br>106<br>112          | 111<br>102<br>103<br>109<br>116 | 129<br>128<br>132<br>136<br>142         | 123<br>124<br>128<br>132<br>138         | 125<br>126<br>129<br>135<br>141         |
| 16<br>17<br>18<br>19<br>20       | 154<br>150<br>154<br>160<br>160        | 149<br>144<br>148<br>153<br>158        | 153<br>148<br>150<br>156<br>159        | 127<br>127<br>130<br>129<br>129        | 122<br>125<br>125<br>114<br>109        | 124<br>126<br>128<br>122<br>117        | 119<br>89<br>90<br>96<br>106           | 87<br>76<br>79<br>88<br>97             | 99<br>80<br>86<br>93<br>102     | 149<br>152<br>149<br>139<br>146         | 141<br>147<br>133<br>133<br>140         | 146<br>150<br>139<br>136<br>143         |
| 21<br>22<br>23<br>24<br>25       | 162<br>167<br>164<br>167<br>160        | 157<br>159<br>159<br>159<br>154        | 159<br>163<br>163<br>163<br>158        | 116<br>113<br>110<br>109<br>115        | 103<br>103<br>103<br>101<br>109        | 112<br>110<br>108<br>105<br>112        | 109<br>115<br>118<br>119<br>115        | 106<br>109<br>116<br>115<br>107        | 107<br>113<br>117<br>118<br>111 | 151<br>152<br>148<br>155<br>144         | 146<br>144<br>130<br>144<br>136         | 149<br>147<br>140<br>150<br>140         |
| 26<br>27<br>28<br>29<br>30<br>31 | 156<br>155<br>173<br>                  | 149<br>148<br>150                      | 153<br>152<br>160<br>                  | 120<br>123<br>127<br>127<br>122<br>123 | 115<br>119<br>117<br>120<br>119<br>118 | 117<br>122<br>120<br>123<br>121<br>120 | 108<br>92<br>96<br>104<br>109          | 89<br>90<br>90<br>98<br>105            | 96<br>91<br>93<br>101<br>107    | 141<br>143<br>147<br>147<br>144         | 133<br>114<br>142<br>137<br>137<br>140  | 138<br>128<br>145<br>143<br>142<br>143  |
| MONTH                            | 173                                    | 91                                     | 143                                    | 179                                    | 101                                    | 127                                    | 134                                    | 76                                     | 110                             | 155                                     | 108                                     | 132                                     |

### 01463500 DELAWARE RIVER AT TRENTON, NJ--Continued

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

85

| DAY         | MAX | MIN  | MEAN | MAX | MIN  | MEAN | MAX | MIN    | MEAN | MAX | MIN     | MEAN |
|-------------|-----|------|------|-----|------|------|-----|--------|------|-----|---------|------|
|             |     | JUNE |      |     | JULY |      |     | AUGUST |      |     | SEPTEME | BER  |
| 1           | 140 | 133  | 137  | 159 | 136  | 142  | 229 | 218    | 223  | 219 | 216     | 217  |
|             | 133 | 130  | 131  | 153 | 137  | 145  | 233 | 216    | 225  | 219 | 210     | 214  |
| 2<br>3<br>4 | 135 | 133  | 134  | 158 | 151  | 154  | 223 | 216    | 219  | 222 | 216     | 218  |
| 4           | 138 | 134  | 136  | 161 | 156  | 158  | 230 | 215    | 225  | 227 | 223     | 225  |
| 5           | 145 | 126  | 135  | 162 | 160  | 161  | 225 | 216    | 222  | 225 | 222     | 224  |
| 6           | 127 | 121  | 124  | 164 | 157  | 162  | 233 | 222    | 228  | 226 | 223     | 225  |
| 7           | 126 | 120  | 122  | 171 | 165  | 168  | 234 | 228    | 231  | 228 | 223     | 226  |
| 8           | 128 | 110  | 118  | 174 | 171  | 172  | 233 | 229    | 232  | 223 | 219     | 221  |
| 9           | 112 | 109  | 111  | 184 | 175  | 181  | 232 | 217    | 225  | 222 | 220     | 221  |
| 10          | 118 | 111  | 115  | 190 | 182  | 187  | 217 | 212    | 215  | 220 | 201     | 207  |
| 11          | 124 | 118  | 121  | 193 | 185  | 189  | 217 | 144    | 206  | 204 | 199     | 202  |
| 12          | 129 | 124  | 125  | 198 | 187  | 190  | 214 | 187    | 209  | 213 | 1 95    | 206  |
| 13          | 132 | 129  | 131  | 209 | 199  | 204  | 230 | 212    | 220  | 216 | 200     | 213  |
| 14          | 137 | 132  | 1 35 | 222 | 210  | 217  | 212 | 1 95   | 204  | 217 | 212     | 214  |
| 15          | 145 | 137  | 141  | 222 | 213  | 218  | 194 | 185    | 189  | 218 | 214     | 216  |
| 16          | 158 | 1 44 | 151  | 218 | 211  | 214  | 187 | 183    | 1 84 |     |         |      |
| 17          | 165 | 157  | 161  | 214 | 206  | 211  | 200 | 187    | 192  |     |         |      |
| 18          | 170 | 164  | 166  | 208 | 202  | 205  | 215 | 201    | 207  |     |         |      |
| 19          | 169 | 164  | 166  | 208 | 200  | 204  | 225 | 216    | 220  |     |         |      |
| 20          | 168 | 160  | 164  | 212 | 207  | 210  | 231 | 225    | 228  | 239 | 229     | 233  |
| 21          | 162 | 156  | 159  | 217 | 209  | 214  | 236 | 231    | 234  | 240 | 103     | 222  |
| 22          | 169 | 160  | 166  | 211 | 207  | 209  | 233 | 229    | 231  | 219 | 158     | 211  |
| 23          | 169 | 164  | 166  | 213 | 205  | 208  | 229 | 211    | 218  | 215 | 196     | 206  |
| 24          | 173 | 166  | 168  | 214 | 203  | 210  | 220 | 212    | 216  | 208 | 1 86    | 199  |
| 25          | 177 | 171  | 173  | 207 | 200  | 203  | 226 | 221    | 223  | 186 | 178     | 181  |
| 26          | 182 | 178  | 180  | 213 | 207  | 212  | 228 | 221    | 224  | 187 | 175     | 179  |
| 27          | 189 | 183  | 187  | 212 | 210  | 210  | 220 | 211    | 214  | 197 | 186     | 193  |
| 28          | 192 | 187  | 190  | 209 | 202  | 205  | 213 | 204    | 208  | 214 | 198     | 205  |
| 29          | 200 | 189  | 194  | 204 | 198  | 200  | 214 | 205    | 212  | 217 | 212     | 215  |
| 30          | 202 | 162  | 188  | 214 | 205  | 211  | 216 | 212    | 214  | 220 | 215     | 217  |
| 31          |     |      |      | 229 | 214  | 223  | 220 | 216    | 218  |     |         |      |
| MONTH       | 202 | 109  | 150  | 229 | 136  | 193  | 236 | 1 44   | 217  | 240 | 103     | 212  |
| YEAR        | 250 | 76   | 168  |     |      |      |     |        |      |     |         |      |

### PH (STANDARD UNITS), WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

| DAY | MAX | MIN     | MEAN | MAX | MIN      | MEAN | MAX | MIN      | MEAN | MAX | MIN       | MEAN |
|-----|-----|---------|------|-----|----------|------|-----|----------|------|-----|-----------|------|
|     |     | OCTOBER |      |     | NOVEMBER |      | . 1 | DECEMBER |      |     | JA NUA RY |      |

DELAWARE RIVER BASIN
01463500 DELAWARE RIVER AT TRENTON, NJ--Continued

PH (STANDARD UNITS), WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

| DAY                              | MAX                             | MIN                             | MEAN                            | MAX                                  | MIN                             | MEAN                            | MA X                                 | MIN                             | MEAN                                   | MAX                                    | MIN                             | MEAN                            |
|----------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------------------|---------------------------------|---------------------------------|--------------------------------------|---------------------------------|----------------------------------------|----------------------------------------|---------------------------------|---------------------------------|
|                                  |                                 | FEBRUARY                        | t .                             |                                      | MARCH                           |                                 |                                      | APRIL                           |                                        |                                        | MAY                             |                                 |
| 1<br>2<br>3<br>4<br>5            |                                 |                                 |                                 |                                      |                                 |                                 |                                      | ===                             |                                        | 7.6<br>7.5<br>7.6<br>7.7<br>7.7        | 7.5<br>7.5<br>7.5<br>7.6<br>7.4 | 7.5<br>7.5<br>7.6<br>7.6        |
| 6<br>7<br>8<br>9                 |                                 |                                 |                                 |                                      |                                 |                                 | 8.0<br>7.9<br>7.9<br>7.8<br>7.9      | 7.8<br>7.8<br>7.6<br>7.5<br>7.5 | 7.9<br>7.9<br>7.8<br>7.6<br>7.7        | 7.6<br>7.4<br>7.3<br>7.5<br>7.5        | 7.3<br>7.2<br>7.2<br>7.3<br>7.4 | 7.4<br>7.3<br>7.3<br>7.4<br>7.4 |
| 11<br>12<br>13<br>14<br>15       |                                 |                                 |                                 |                                      | 5%                              |                                 | 7.7<br>7.5<br>7.6<br>7.6<br>7.6      | 7.5<br>7.5<br>7.6<br>7.6        | 7.6<br>7.5<br>7.5<br>7.6<br>7.6        | 7.6<br>7.8<br>8.0<br>8.1<br>8.1        | 7.5<br>7.5<br>7.5<br>7.6<br>7.7 | 7.5<br>7.7<br>7.8<br>7.8<br>7.8 |
| 16<br>17<br>18<br>19<br>20       |                                 |                                 |                                 |                                      |                                 |                                 | 7.6<br>7.3<br>7.3<br>7.4<br>7.5      | 7.3<br>7.1<br>7.1<br>7.2<br>7.3 | 7.4<br>7.2<br>7.2<br>7.3<br>7.4        | 7.9<br>8.6<br>8.9<br>8.9               | 7.7<br>7.8<br>7.8<br>7.9<br>7.9 | 7.8<br>8.2<br>8.3<br>8.3        |
| 21<br>22<br>23<br>24<br>25       |                                 |                                 |                                 |                                      |                                 |                                 | 7.5<br>7.5<br>7.6<br>7.5<br>7.5      | 7.4<br>7.5<br>7.5<br>7.5<br>7.4 | 7.5<br>7.5<br>7.6<br>7.5<br>7.5        | 8.8<br>7.9<br>7.8<br>8.2<br>8.7        | 7.8<br>7.6<br>7.5<br>7.7<br>7.9 | 8.2<br>7.7<br>7.7<br>7.9<br>8.2 |
| 26<br>27<br>28<br>29<br>30<br>31 |                                 |                                 |                                 |                                      |                                 |                                 | 7.5<br>7.3<br>7.4<br>7.5<br>7.6      | 7.3<br>7.2<br>7.3<br>7.4        | 7.4<br>7.3<br>7.4<br>7.5               | 8.9<br>7.9<br>8.1<br>8.1<br>8.0<br>8.2 | 7.8<br>7.5<br>7.8<br>7.9<br>7.9 | 8.2<br>7.6<br>7.9<br>8.0<br>8.0 |
| MONTH                            |                                 |                                 |                                 |                                      |                                 |                                 | 8.0                                  | 7.1                             | 7.5                                    | 9.0                                    | 7.2                             | 7.8                             |
| DAY                              | MAX                             | MIN                             | MEAN                            | MAX                                  | MIN                             | MEAN                            | MAX                                  | MIN                             | MEAN                                   | MAX                                    | MIN                             | MEAN                            |
|                                  |                                 | JUNE                            |                                 |                                      | JULY                            |                                 |                                      | AUGUST                          |                                        |                                        | SEPTEME                         | BER                             |
| 1<br>2<br>3<br>4<br>5            | 8.2<br>8.3<br>8.2<br>8.3<br>8.1 | 8.1<br>8.1<br>8.0<br>8.0<br>7.9 | 8.2<br>8.2<br>8.1<br>8.1        | 8.1<br>8.6<br>9.3<br>9.8             | 7.7<br>7.8<br>7.9<br>8.3<br>8.6 | 7.9<br>8.1<br>8.6<br>9.1<br>9.3 | 9.7<br>9.9<br>10.0<br>10.1<br>10.0   | 8.6<br>8.5<br>8.8<br>9.2<br>9.0 | 9.1<br>9.2<br>9.5<br>9.7<br>9.5        |                                        |                                 |                                 |
| 6<br>7<br>8<br>9                 | 8.1<br>8.2<br>7.9<br>7.7<br>7.9 | 7.8<br>7.8<br>7.6<br>7.6<br>7.5 | 7.9<br>8.0<br>7.7<br>7.6<br>7.7 | 9.9<br>9.9<br>9.9<br>10.0            | 8.6<br>8.9<br>8.9<br>8.9        | 9.4<br>9.5<br>9.5<br>9.5        | 10.1<br>10.2<br>10.2<br>10.3<br>10.3 | 8.8<br>9.0<br>9.1<br>9.2<br>9.4 | 9.5<br>9.7<br>9.7<br>9.8<br>9.9        |                                        |                                 |                                 |
| 11<br>12<br>13<br>14<br>15       | 8.3<br>8.7<br>9.1<br>9.3<br>9.5 | 7.6<br>7.8<br>7.9<br>8.1<br>8.3 | 7.9<br>8.2<br>8.4<br>8.7<br>8.9 | 10.0<br>10.1<br>10.1<br>10.1<br>10.1 | 9.1<br>9.1<br>9.2<br>9.4<br>9.2 | 9.6<br>9.7<br>9.7<br>9.8<br>9.7 | 10.0<br>9.4<br>8.8<br>8.7<br>9.0     | 7.8<br>8.6<br>8.5<br>8.4<br>8.3 | 9.5<br>8.9<br>8.6<br>8.6               |                                        |                                 |                                 |
| 16<br>17<br>18<br>19<br>20       | 9.5<br>9.5<br>9.4<br>9.4<br>8.5 | 8.4<br>8.7<br>8.6<br>8.3<br>7.7 | 9.1<br>9.1<br>9.0<br>8.9<br>8.1 | 10.1<br>10.0<br>10.0<br>9.6<br>9.5   | 9.1<br>8.7<br>8.7<br>8.8<br>8.2 | 9.6<br>9.4<br>9.2<br>8.9        | 9.4<br>9.7<br>9.7<br>10.0<br>10.0    | 8.3<br>8.4<br>8.6<br>9.0        | 8.9<br>9.0<br>9.0<br>9.3<br>9.6        |                                        |                                 |                                 |
| 21<br>22<br>23<br>24<br>25       | 7.9<br>8.4<br>9.0<br>9.4<br>9.7 | 7.7<br>7.8<br>7.9<br>8.1<br>8.3 | 7.8<br>8.0<br>8.4<br>8.8<br>9.1 | 9.8<br>9.8<br>9.9<br>9.7<br>9.6      | 8.4<br>8.4<br>8.7<br>8.6<br>8.5 | 9.1<br>9.2<br>9.3<br>9.2<br>9.1 | 9.9<br>9.8<br>9.8<br>9.8             | 9.1<br>8.9<br>8.7<br>8.7<br>8.8 | 9.5<br>9.4<br>9.3<br>9.3               |                                        |                                 |                                 |
| 26<br>27<br>28<br>29<br>30<br>31 | 9.8<br>9.9<br>9.5<br>9.1<br>8.3 | 8.6<br>8.8<br>8.5<br>8.2<br>7.8 | 9.3<br>9.5<br>9.2<br>8.6<br>8.2 | 9.7<br>9.7<br>9.9<br>9.9<br>9.9      | 8.5<br>8.6<br>8.7<br>8.6<br>8.6 | 9.1<br>9.2<br>9.4<br>9.3<br>9.3 | 10.0<br>9.9<br>9.8<br>9.6<br>9.6     | 8.9<br>8.7<br>8.5<br>8.3<br>8.3 | 9.5<br>9.3<br>9.1<br>8.9<br>8.8<br>8.6 |                                        |                                 |                                 |
| MONTH                            | 9.9                             | 7.5                             | 8.4                             | 10.1                                 | 7.7                             | 9.3                             | 10.3                                 | 7.8                             | 9.3                                    |                                        |                                 |                                 |

01463500 DELAWARE RIVER AT TRENTON, NJ -- Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

|                                  |                                      |                                      | TEMPERATURE,                                 | WATER                              | (DEG. C),                       | WATER Y                          | EAR OCTOBER                            | 1982 TO                           | SEPTEMBER                         | 1983                                 |                                      |                                      |
|----------------------------------|--------------------------------------|--------------------------------------|----------------------------------------------|------------------------------------|---------------------------------|----------------------------------|----------------------------------------|-----------------------------------|-----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| DAY                              | MAX                                  | MIN                                  | MEAN                                         | MAX                                | MIN                             | MEAN                             | MAX                                    | MIN                               | MEAN                              | MAX                                  | MIN                                  | MEAN                                 |
| 1<br>2<br>3<br>4                 | 21.5<br>21.5<br>21.0<br>21.5         | 18.0<br>18.5<br>17.5<br>18.5         | 19.5<br>20.0<br>19.0<br>20.0                 | 15.0<br>16.0<br>16.0<br>17.5       | 12.0<br>13.0<br>14.0<br>15.0    | 13.5<br>14.5<br>15.0<br>16.5     | 6.5<br>7.5<br>8.5<br>10.5              | 6.0<br>6.5<br>8.0<br>8.5          | 6.5<br>7.0<br>8.0<br>9.5          | 5.0<br>4.0<br>4.0<br>3.0             | 4.0<br>3.5<br>3.0<br>2.0             | 4.5<br>4.0<br>3.5<br>2.5             |
| 5<br>6<br>7<br>8                 | 21.5<br>22.0<br>22.0<br>22.0         | 18.5<br>19.0<br>19.5<br>20.0         | 20.0<br>20.5<br>20.5<br>21.0                 | 17.0<br>13.0<br>11.5<br>11.5       | 12.5<br>11.5<br>10.5<br>9.5     | 15.0<br>12.0<br>11.0<br>10.5     | 11.5<br>12.5<br>12.0<br>10.5           | 10.5<br>11.5<br>10.0<br>9.0       | 11.0<br>12.0<br>11.0<br>9.5       | 4.0<br>4.0<br>4.0                    | 2.0<br>2.5<br>2.5<br>3.0             | 2.5<br>3.0<br>3.5<br>3.5             |
| 9<br>10<br>11                    | 22.5<br>21.0                         | 20.5<br>18.5                         | 21.0<br>20.0<br>18.0                         | 11.0                               | 9.5<br>9.0<br>8.5               | 10.5<br>10.0<br>9.5              | 9.0<br>6.0<br>5.0                      | 6.0<br>4.5<br>5.0                 | 8.0<br>5.0<br>5.0                 | 3.5<br>4.5                           | 3.0                                  | 3.0                                  |
| 12<br>13<br>14<br>15             | 17.5<br>16.5<br>18.0<br>17.0         | 16.5<br>16.0<br>15.5<br>15.0         | 17.0<br>16.5<br>16.5<br>16.0                 | 12.0<br>12.5<br>10.0<br>9.0        | 9.0<br>10.0<br>8.5<br>8.0       | 10.5<br>11.5<br>9.0<br>8.5       | 4.5<br>3.0<br>2.5<br>3.0               | 2.5<br>1.5<br>.5<br>1.0           | 3.5<br>2.0<br>1.5<br>2.0          | =                                    | ==                                   |                                      |
| 16<br>17<br>18<br>19<br>20       | 15.5<br>14.0<br>13.5<br>14.5<br>15.0 | 13.0<br>12.0<br>11.0<br>11.0         | 14.5<br>13.0<br>12.0<br>12.5<br>13.5         | 8.0<br>7.5<br>8.0<br>8.0<br>8.5    | 7.0<br>6.5<br>6.0<br>7.5<br>7.0 | 7.5<br>7.0<br>7.0<br>7.5<br>7.5  | 6.0<br>5.0<br>4.5<br>3.0<br>2.0        | 3.0<br>4.5<br>3.5<br>2.0<br>2.0   | 4.5<br>5.0<br>4.0<br>2.5<br>2.0   | ===                                  | ===                                  | ===                                  |
| 21<br>22<br>23<br>24<br>25       | 15.5<br>14.5<br>13.5<br>12.5<br>11.0 | 13.5<br>12.0<br>11.0<br>10.5<br>10.5 | 14.0<br>13.0<br>12.0<br>11.5<br>10.5         | 9.5<br>10.5<br>11.0<br>10.0<br>8.5 | 8.0<br>9.0<br>9.5<br>8.0<br>7.0 | 8.5<br>9.5<br>10.0<br>9.5<br>7.5 | 2.5<br>3.0<br>3.0<br>4.5<br>5.5        | 2.0<br>2.0<br>2.5<br>3.0<br>4.0   | 2.0<br>2.5<br>3.0<br>4.0<br>5.0   | ===                                  | ===                                  | ===                                  |
| 26<br>27<br>28<br>29<br>30<br>31 | 12.0<br>12.0<br>12.5<br>13.0<br>13.5 | 10.0<br>10.0<br>10.0<br>10.5<br>11.0 | 10.5<br>11.0<br>11.0<br>11.5<br>12.0<br>12.5 | 8.0<br>7.5<br>5.5<br>6.0<br>7.0    | 7.0<br>6.0<br>4.5<br>5.0<br>5.5 | 7.5<br>7.0<br>5.0<br>5.5<br>6.0  | 6.5<br>5.5<br>7.0<br>7.0<br>5.5<br>5.0 | 5.5<br>5.0<br>5.0<br>6.0<br>5.0   | 6.0<br>5.0<br>5.5<br>6.5<br>5.0   |                                      | ===                                  |                                      |
| MONTH                            | 22.5                                 | 10.0                                 | 15.5                                         | 17.5                               | 4.5                             | 9.5                              | 12.5                                   | • •5                              | 5.5                               | 5.0                                  | 2.0                                  | 3.5                                  |
| DAY                              | MAX                                  | MIN                                  | M EA N                                       | MAX                                | MIN                             | MEAN                             | MAX                                    | MIN                               | MEAN                              | MAX                                  | MIN                                  | MEAN                                 |
|                                  |                                      | FEBRUAR                              |                                              |                                    | MARCH                           |                                  |                                        | APRIL                             |                                   | 15.0                                 | MAY                                  | 14.0                                 |
| 1<br>2<br>3<br>4<br>5            | 3.5<br>4.5<br>5.5<br>5.0<br>3.0      | 2.5<br>3.0<br>4.5<br>3.5<br>1.5      | 3.0<br>3.5<br>5.0<br>4.5<br>2.0              | 4.5<br>6.0<br>7.0<br>7.0<br>7.5    | 4.0<br>4.5<br>5.5<br>6.0<br>6.5 | 4.5<br>5.5<br>6.0<br>6.5<br>7.0  | 8.0<br>7.5<br>8.0<br>8.5<br>9.0        | 6.0<br>7.0<br>7.5<br>7.5<br>7.5   | 7.0<br>7.5<br>7.5<br>8.0<br>8.5   | 15.0<br>15.0<br>15.5<br>15.0<br>14.5 | 13.0<br>14.0<br>14.5<br>14.5<br>13.5 | 14.5<br>15.0<br>14.5<br>14.0         |
| 6<br>7<br>8<br>9                 | 1.5<br>1.0<br>1.5<br>2.0             | 1.0<br>.5<br>.5<br>.5                | 1.0<br>.5<br>1.0<br>1.0                      | 7.0<br>7.0<br>6.5<br>6.5<br>6.0    | 6.5<br>7.0<br>6.0<br>6.0<br>5.5 | 7.0<br>7.0<br>6.5<br>6.0         | 9.5<br>10.0<br>10.0<br>10.5<br>10.0    | 8.5<br>9.5<br>9.5<br>10.0<br>9.0  | 9.0<br>9.5<br>10.0<br>10.0<br>9.5 | 14.0<br>14.5<br>15.0<br>14.5<br>14.5 | 13.0<br>13.0<br>13.5<br>13.5         | 13.5<br>13.5<br>14.5<br>14.0<br>14.0 |
| 11<br>12<br>13<br>14             | 1.0<br>.0<br>.5<br>.5                | .0                                   | .5<br>.0<br>.0                               | 6.0<br>6.0<br>6.5<br>7.5           | 5.5<br>5.0<br>4.5<br>5.0<br>6.0 | 6.0<br>5.5<br>5.5<br>5.5<br>7.0  | 9.0<br>9.0<br>9.5<br>10.0<br>11.0      | 8.5<br>8.5<br>8.5<br>9.0<br>9.5   | 9.0<br>8.5<br>9.0<br>9.5<br>10.5  | 14.5<br>13.5<br>14.5<br>16.0<br>16.0 | 13.0<br>12.5<br>12.0<br>13.5<br>15.0 | 13.5<br>13.0<br>13.5<br>14.5         |
| 16<br>17<br>18<br>19<br>20       | 2.5<br>2.5<br>4.0<br>4.5             | .5<br>2.0<br>2.5<br>3.0<br>3.5       | 1.5<br>2.5<br>3.5<br>4.0                     | 8.5<br>8.0<br>7.5<br>8.5<br>9.0    | 7.0<br>7.5<br>7.0<br>7.5<br>8.0 | 7.5<br>7.5<br>7.5<br>8.0<br>8.5  | 11.0<br>8.5<br>8.0<br>7.5<br>6.0       | 8.5<br>7.0<br>7.0<br>6.5<br>6.0   | 10.0<br>8.0<br>7.5<br>7.0<br>6.0  | 16.0<br>15.5<br>15.5<br>15.0<br>15.5 | 14.0<br>13.5<br>13.5<br>14.5<br>14.5 | 15.0<br>14.5<br>14.5<br>15.0<br>15.0 |
| 21<br>22<br>23<br>24<br>25       | 4.5<br>5.5<br>5.0<br>5.5<br>5.5      | 3.5<br>4.0<br>4.5<br>4.5<br>5.0      | 4.0<br>4.5<br>5.0<br>5.0                     | 8.5<br>8.0<br>6.5<br>5.5           | 8.0<br>6.5<br>5.5<br>5.0<br>4.5 | 8.0<br>7.5<br>6.0<br>5.5<br>5.0  | 7.0<br>8.0<br>9.0<br>9.5<br>9.5        | 5.5<br>6.5<br>7.5<br>9.0<br>8.0   | 6.5<br>7.5<br>8.5<br>9.0          | 16.5<br>16.0<br>17.5<br>18.5<br>19.5 | 15.5<br>15.5<br>16.0<br>17.0         | 16.0<br>16.0<br>16.5<br>18.0<br>18.5 |
| 26<br>27<br>28<br>29<br>30<br>31 | 5.0<br>4.5<br>4.0                    | 3.5<br>3.0<br>3.5                    | 4.5<br>4.0<br>4.0<br>                        | 6.0<br>5.5<br>6.0<br>7.0<br>7.0    | 4.5<br>5.0<br>6.0<br>6.0<br>6.0 | 5.0<br>5.5<br>6.0<br>6.5<br>6.5  | 8.5<br>8.5<br>10.5<br>12.0<br>13.5     | 8.0<br>7.5<br>8.5<br>10.5<br>12.0 | 8.0<br>8.0<br>9.5<br>11.0<br>12.5 | 18.5<br>17.0<br>17.5<br>17.5<br>17.0 | 17.0<br>15.5<br>16.0<br>16.5<br>16.0 | 18.0<br>16.0<br>17.0<br>16.5<br>16.5 |
| MONTH                            | 5.5                                  | .0                                   | 2.5                                          | 9.0                                | 4.0                             | 6.5                              | 13.5                                   | 5.5                               | 8.5                               | 19.5                                 | 12.0                                 | 15.0                                 |

### 01463500 DELAWARE RIVER AT TRENTON, NJ--Continued

### TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

|                                  |                                      |                                      |                                      |                                              | (200, 0),                                    |                                              | TLAM | 001000                               | 1,00                                         |                                              | 1,000                                |                                      |                                      |
|----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|------|--------------------------------------|----------------------------------------------|----------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| DAY                              | MAX                                  | MIN                                  | MEAN                                 | MAX                                          | MIN                                          | MEAN                                         |      | MAX                                  | MIN                                          | MEAN                                         | MAX                                  | MIN                                  | MEAN                                 |
|                                  |                                      | JUNE                                 |                                      |                                              | JULY                                         |                                              |      |                                      | AUGUST                                       | r                                            |                                      | SEPTEMB                              | BER                                  |
| 1<br>2<br>3<br>4<br>5            | 17.0<br>17.5<br>18.0<br>18.5<br>19.5 | 15.5<br>15.5<br>16.5<br>17.5<br>18.0 | 16.5<br>16.5<br>17.5<br>18.0<br>19.0 | 24.0<br>25.5<br>27.5<br>28.5<br>28.0         | 23.0<br>23.0<br>24.5<br>26.0<br>27.0         | 23.5<br>24.5<br>26.0<br>27.5<br>27.5         |      | 30.0<br>30.5<br>30.5<br>30.0<br>29.0 | 27.0<br>26.5<br>26.5<br>27.5<br>27.0         |                                              | 28.0<br>28.0<br>28.0<br>27.5<br>29.0 | 24.5<br>25.0<br>24.0<br>24.5<br>24.5 | 26.0<br>26.0<br>26.0<br>26.0<br>26.5 |
| 6<br>7<br>8<br>9                 | 20.0<br>21.0<br>20.5<br>20.5<br>20.5 | 18.5<br>19.5<br>19.5<br>19.0<br>18.5 | 19.5<br>20.5<br>20.0<br>19.5<br>19.5 | 28.0<br>27.0<br>27.5<br>27.5<br>27.5         | 25.5<br>24.0<br>24.0<br>24.5<br>23.5         | 27.0<br>25.5<br>25.5<br>26.0<br>25.0         |      | 31.5                                 | 27.0<br>27.5<br>28.0<br>28.5<br>26.5         | 28.5<br>29.5<br>29.5<br>29.5<br>28.0         | 29.5<br>29.0<br>28.5<br>28.0<br>28.5 | 26.0<br>26.0<br>24.5<br>24.0<br>24.5 | 27.5<br>27.5<br>26.5<br>26.0<br>26.5 |
| 11<br>12<br>13<br>14<br>15       | 21.0<br>22.0<br>23.5<br>24.5<br>25.5 | 19.0<br>20.0<br>21.5<br>22.5<br>23.5 | 20.0<br>21.0<br>22.5<br>23.5<br>24.5 | 27.0<br>28.5<br>29.5<br>29.5<br>30.0         | 23.0<br>23.5<br>25.5<br>25.5<br>26.0         | 25.0<br>26.0<br>27.0<br>27.5<br>28.0         |      | 28.5<br>27.5<br>25.0<br>25.0<br>26.0 | 25.0<br>25.0<br>23.0<br>22.0<br>22.5         | 27.0<br>26.0<br>24.0<br>23.5<br>24.0         | 29.0<br>28.0<br>25.0<br>24.5<br>24.0 |                                      | 27.0<br>26.5<br>24.5<br>23.0<br>22.0 |
| 16<br>17<br>18<br>19<br>20       | 27.0<br>27.0<br>26.5<br>26.5<br>25.0 | 24.5<br>25.5<br>25.0<br>25.0<br>23.5 | 25.5<br>26.0<br>25.5<br>25.5<br>24.5 | 30.5<br>31.0<br>31.0<br>30.0<br>30.0         | 27.0<br>27.5<br>27.5<br>27.5<br>27.5         | 28.5<br>29.0<br>29.5<br>28.5<br>28.0         |      | 26.5<br>27.5<br>27.5<br>29.5<br>29.5 | 23.0<br>23.5<br>24.5<br>25.5<br>26.0         | 24.5<br>25.5<br>26.0<br>27.0<br>28.0         | 25.5                                 | 22.0                                 | 23.5                                 |
| 21<br>22<br>23<br>24<br>25       | 23.5<br>24.0<br>25.0<br>26.0<br>26.5 | 22.0<br>21.0<br>22.0<br>23.5<br>24.5 | 22.5<br>22.5<br>23.5<br>25.0<br>25.5 | 30.5<br>28.5<br>28.0<br>28.0<br>27.5         | 27.0<br>25.5<br>24.5<br>25.0<br>25.5         | 28.5<br>27.0<br>26.0<br>26.5<br>26.0         |      | 29.0<br>29.0<br>29.0<br>29.0<br>28.0 | 25.5<br>25.0<br>25.5<br>25.5<br>25.0         | 27.5<br>27.0<br>27.0<br>27.0<br>26.5         | 23.5<br>22.0<br>20.5<br>20.0<br>20.0 | 21.5<br>19.5<br>18.5<br>17.0<br>16.5 | 23.0<br>21.0<br>19.5<br>18.5<br>18.0 |
| 26<br>27<br>28<br>29<br>30<br>31 | 26.0<br>27.5<br>26.5<br>25.5<br>24.5 | 23.5<br>24.0<br>24.0<br>23.0<br>23.0 | 25.0<br>25.5<br>25.5<br>24.0<br>24.0 | 28.0<br>29.0<br>29.5<br>29.5<br>30.5<br>30.0 | 24.5<br>24.5<br>26.0<br>26.0<br>26.5<br>27.0 | 26.5<br>26.5<br>27.5<br>27.5<br>28.0<br>28.5 |      | 28.5<br>29.0<br>28.5<br>28.5<br>28.5 | 24.5<br>25.0<br>26.0<br>26.0<br>25.5<br>25.5 | 26.0<br>26.5<br>27.0<br>27.0<br>27.0<br>26.5 | 19.5<br>21.0<br>21.0<br>19.5<br>18.0 | 16.5<br>16.5<br>18.0<br>17.5         | 18.0<br>18.5<br>19.5<br>18.5<br>17.5 |
| MONTH                            | 27.5                                 | 15.5                                 | 22.5                                 | 31.0                                         | 23.0                                         | 27.0                                         |      | 31.5                                 | 22.0                                         | 27.0                                         | 29.5                                 | 16.5                                 | 23.0                                 |
| YEAR                             | 31.5                                 | .0                                   | 14.5                                 |                                              |                                              |                                              |      |                                      |                                              |                                              |                                      |                                      |                                      |

### OXYGEN, DISSOLVED (DO), MG/L, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

|                                  |                                              |                                  | onidan,                                     | DISCOULTE                            | (50),                        | ,                                    | 10. | IN COLODEN                           | 1902 10                                     | 0011011                                      |    | ,05                                     |                                      |                                         |
|----------------------------------|----------------------------------------------|----------------------------------|---------------------------------------------|--------------------------------------|------------------------------|--------------------------------------|-----|--------------------------------------|---------------------------------------------|----------------------------------------------|----|-----------------------------------------|--------------------------------------|-----------------------------------------|
| DAY                              | MAX                                          | MIN                              | MEAN                                        | MA X                                 | MIN                          | MEAN                                 |     | MAX                                  | MIN                                         | MEAN                                         |    | MAX                                     | MIN                                  | MEAN                                    |
|                                  |                                              | OCTOBER                          | ?                                           |                                      | NOVEMBER                     |                                      |     |                                      | DECEMBER                                    |                                              |    |                                         | JA NUA RY                            |                                         |
| 1<br>2<br>3<br>4<br>5            | 11.4<br>11.7<br>11.8<br>12.0                 | 8.1<br>8.3<br>8.4<br>8.5<br>8.4  | 9.5<br>9.6<br>9.7<br>9.8<br>9.9             | 12.5<br>12.7<br>11.8<br>10.6<br>9.4  | 8.2<br>8.0<br>7.5            | 9.9<br>10.0<br>9.3<br>8.5<br>8.0     |     | 12.0<br>11.2<br>10.6<br>11.6<br>11.2 | 10.6<br>10.2<br>9.8<br>9.6<br>9.0           | 11.0<br>10.7<br>10.2<br>10.2<br>9.9          |    | 11.6<br>12.4<br>13.1<br>11.2<br>10.7    | 10.7<br>11.1<br>11.0<br>10.5<br>10.4 | 11.1<br>11.7<br>11.9<br>10.8<br>10.5    |
| 6<br>7<br>8<br>9                 | 12.0<br>12.0<br>12.0<br>11.8<br>11.7         | 8.3<br>8.3<br>8.0<br>7.9<br>8.0  | 9.8<br>9.7<br>9.6<br>9.5<br>9.6             | 8.8<br>9.6<br>10.1<br>11.1           | 7.9<br>8.8<br>9.1            | 8.2<br>8.7<br>9.3<br>9.9<br>10.1     |     | 11.1<br>11.7<br>12.7<br>12.7<br>13.3 | 8.7<br>8.6<br>9.2<br>9.5                    | 9.5<br>9.9<br>10.5<br>10.8<br>11.6           |    | 11.3<br>11.0<br>11.0<br>10.9<br>10.9    | 10.3<br>10.2<br>10.2<br>10.2<br>10.1 | 10.6<br>10.5<br>10.5<br>10.5<br>10.3    |
| 11<br>12<br>13<br>14<br>15       | 12.1<br>10.8<br>10.6<br>11.6<br>10.9         | 8.6<br>8.7<br>8.5<br>8.4<br>8.4  | 10.0<br>9.5<br>9.2<br>9.7<br>9.4            | 11.7<br>11.3<br>10.2<br>10.1<br>10.9 | 9.1<br>8.6<br>9.1            | 10.3<br>9.9<br>9.2<br>9.5<br>10.1    |     | 12.8<br>13.8<br>14.7<br>15.4<br>15.5 | 10.7<br>10.9<br>11.7<br>12.4<br>12.8        | 11.5<br>12.0<br>12.9<br>13.6<br>13.8         |    | ======================================= | ==                                   |                                         |
| 16<br>17<br>18<br>19<br>20       | 10.5<br>11.3<br>11.8<br>12.2<br>12.4         | 8.0<br>8.5<br>9.1<br>9.3<br>9.3  | 9.1<br>9.7<br>10.3<br>10.5                  | 11.8<br>11.9<br>12.5<br>11.9<br>12.6 | 10.6<br>10.7<br>10.6         | 10.8<br>11.1<br>11.4<br>11.1         |     | 12.9<br>11.3<br>11.7<br>11.4<br>11.7 | 11.2<br>10.7<br>10.5<br>10.4<br>10.9        | 12.1<br>11.0<br>11.0<br>10.8<br>11.3         | ** | ===                                     | ===                                  | ======================================= |
| 21<br>22<br>23<br>24<br>25       | 12.5<br>12.5<br>13.0<br>12.9<br>10.4         | 9.0<br>9.3<br>9.5<br>9.7<br>7.5  | 10.4<br>10.6<br>10.9<br>11.0<br>9.3         | 12.9<br>13.0<br>13.0<br>12.1<br>13.3 | 10.3<br>10.0<br>10.0         | 11.4<br>11.1<br>11.1<br>10.7<br>11.5 |     | 12.5<br>12.9<br>12.3<br>12.2<br>12.1 | 11.6<br>11.8<br>11.5<br>11.3                | 11.9<br>12.3<br>11.9<br>11.7                 |    |                                         | ===                                  | ===                                     |
| 26<br>27<br>28<br>29<br>30<br>31 | 13.5<br>14.4<br>12.0<br>12.2<br>12.2<br>11.8 | 7.4<br>10.4<br>9.1<br>8.7<br>8.7 | 10.0<br>11.8<br>10.4<br>10.1<br>10.0<br>9.8 | 13.8<br>14.1<br>14.6<br>14.2<br>13.7 | 11.1<br>11.9<br>11.1<br>10.7 | 11.8<br>12.4<br>12.9<br>12.3<br>11.4 |     | 11.5<br>11.9<br>11.9<br>10.7<br>10.9 | 10.6<br>10.4<br>10.0<br>9.9<br>10.4<br>10.5 | 11.0<br>11.1<br>11.0<br>10.2<br>10.7<br>10.8 |    | ===                                     |                                      | ======================================= |
| MONTH                            | 14.4                                         | 7.4                              | 10.0                                        | 14.6                                 | 7.1                          | 10.4                                 |     | 15.5                                 | 8.6                                         | 11.2                                         |    | 13.1                                    | 10.1                                 | 10.8                                    |

89

OXYGEN, DISSOLVED (DO), MG/L, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

| DAY                                                                                             | MAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MIN<br>FEBRUAF                                                           | MEAN                                                                                                         | MAX                                                                                                                                      | MIN<br>MARCH                                                          | MEAN                                                                                                                                     | MAX                                                                                                                                              | MIN<br>APRIL                                                                             | MEAN                                                    | MAX                                                                                                                 | MIN<br>MAY                                                                       | MEAN                                                                                    |
|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                          |                                                                                                              |                                                                                                                                          |                                                                       |                                                                                                                                          | ===                                                                                                                                              |                                                                                          | ===                                                     | 9.9<br>9.6<br>9.6<br>9.7<br>9.8                                                                                     | 9.4<br>9.4<br>9.4<br>9.5                                                         | 9.7<br>9.5<br>9.5<br>9.6<br>9.7                                                         |
| 6<br>7<br>8<br>9                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                          |                                                                                                              |                                                                                                                                          |                                                                       |                                                                                                                                          | 11.3<br>11.1<br>11.0<br>10.8<br>11.0                                                                                                             | 10.9<br>10.7<br>10.6<br>10.5<br>10.6                                                     | 11.1<br>10.9<br>10.8<br>10.6<br>10.8                    | 10.1<br>10.2<br>9.9<br>9.8<br>9.8                                                                                   | 9.8<br>9.9<br>9.4<br>9.4<br>9.3                                                  | 10.0<br>10.1<br>9.8<br>9.6<br>9.6                                                       |
| 11<br>12<br>13<br>14<br>15                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                          |                                                                                                              |                                                                                                                                          |                                                                       |                                                                                                                                          | 11.1<br>11.2<br>11.4<br>11.2<br>11.0                                                                                                             | 10.7<br>11.0<br>11.2<br>11.0<br>10.7                                                     | 10.9<br>11.1<br>11.3<br>11.1<br>10.9                    | 9.8<br>9.8<br>10.0<br>10.0                                                                                          | 9.3<br>9.3<br>9.3<br>9.0<br>8.5                                                  | 9.6<br>9.7<br>9.6<br>9.4<br>8.8                                                         |
| 16<br>17<br>18<br>19<br>20                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                          |                                                                                                              |                                                                                                                                          |                                                                       |                                                                                                                                          | 10.9<br>11.4<br>11.4<br>11.5<br>11.9                                                                                                             | 10.5<br>10.9<br>11.3<br>11.4<br>11.5                                                     | 10.7<br>11.1<br>11.4<br>11.4<br>11.7                    | 8.8<br>10.6<br>11.2<br>11.1                                                                                         | 8.2<br>8.8<br>9.3<br>9.3                                                         | 8.5<br>9.7<br>10.2<br>10.1<br>10.0                                                      |
| 21<br>22<br>23<br>24<br>25                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                          |                                                                                                              |                                                                                                                                          |                                                                       |                                                                                                                                          | 12.0<br>11.8<br>11.5<br>11.2<br>11.0                                                                                                             | 11.8<br>11.5<br>11.2<br>10.7<br>10.5                                                     | 11.9<br>11.6<br>11.4<br>10.9<br>10.8                    | 10.8<br>8.9<br>8.8<br>9.3<br>10.1                                                                                   | 8.9<br>8.4<br>7.9<br>8.3<br>8.2                                                  | 9.6<br>8.6<br>8.4<br>8.7<br>9.1                                                         |
| 26<br>27<br>28<br>29<br>30<br>31                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                          |                                                                                                              |                                                                                                                                          |                                                                       |                                                                                                                                          | 11.3<br>11.4<br>11.3<br>10.8<br>10.3                                                                                                             | 11.0<br>11.3<br>10.8<br>10.3<br>9.9                                                      | 11.2<br>11.3<br>11.1<br>10.6<br>10.2                    | 10.4<br>8.9<br>9.5<br>9.4<br>9.4                                                                                    | 8.5<br>8.5<br>8.9<br>9.0<br>8.3                                                  | 9.2<br>8.7<br>9.0<br>9.1<br>9.1<br>8.8                                                  |
| MONTH                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                          |                                                                                                              |                                                                                                                                          |                                                                       |                                                                                                                                          | 12.0                                                                                                                                             | 9.9                                                                                      | 11.1                                                    | 11.3                                                                                                                | 7.9                                                                              | 9.4                                                                                     |
|                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                          |                                                                                                              |                                                                                                                                          |                                                                       |                                                                                                                                          |                                                                                                                                                  |                                                                                          |                                                         |                                                                                                                     |                                                                                  |                                                                                         |
| DA Y                                                                                            | MAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MIN                                                                      | MEAN                                                                                                         | MAX                                                                                                                                      | MIN                                                                   | MEAN                                                                                                                                     | MAX                                                                                                                                              | MIN                                                                                      | MEAN                                                    | MAX                                                                                                                 | MIN                                                                              | M EA N                                                                                  |
| DAY  1 2 3 4 5                                                                                  | MAX<br>8.5<br>8.9<br>8.6<br>8.5<br>8.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MIN<br>JUNE<br>8.2<br>8.3<br>8.1<br>7.7<br>7.6                           | MEAN  8.4  8.5  8.4  7.9                                                                                     | 7.7<br>8.8<br>9.9<br>10.9                                                                                                                | MIN<br>JULY<br>6.9<br>7.1<br>7.1<br>7.1<br>6.9                        | MEAN 7.3 7.8 8.4 8.9 8.6                                                                                                                 | 10.8<br>11.3<br>12.1<br>12.6<br>11.5                                                                                                             | MIN<br>AUGUST<br>7.3<br>6.3<br>6.7<br>6.9<br>6.6                                         |                                                         | 10.2<br>10.6<br>11.1<br>11.6<br>11.9                                                                                | MIN<br>SEPTEMB<br>5.9<br>6.4<br>6.5<br>6.6<br>6.5                                |                                                                                         |
| 1                                                                                               | 8.5<br>8.9<br>8.6<br>8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | JUNE<br>8.2<br>8.3<br>8.1<br>7.7                                         | 8.4<br>8.5<br>8.4<br>8.1                                                                                     | 7.7<br>8.8<br>9.9<br>10.9                                                                                                                | JULY 6.9 7.1 7.1 7.1                                                  | 7·3<br>7·8<br>8·4<br>8·9                                                                                                                 | 10.8<br>11.3<br>12.1<br>12.6                                                                                                                     | 7.3<br>6.3<br>6.7<br>6.9                                                                 | 8.8<br>8.6<br>9.2<br>9.3                                | 10.2<br>10.6<br>11.1<br>11.6                                                                                        | 5.9<br>6.4<br>6.5<br>6.6                                                         | 7.8<br>8.0<br>8.5<br>8.5                                                                |
| 1<br>2<br>3<br>4<br>5                                                                           | 8.5<br>8.9<br>8.6<br>8.5<br>8.3<br>8.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | JUNE 8.2 8.3 8.1 7.7 7.6 7.8 7.7                                         | 8.4<br>8.5<br>8.4<br>8.1<br>7.9<br>8.0<br>8.0                                                                | 7.7<br>8.8<br>9.9<br>10.9<br>10.4<br>11.0<br>11.0                                                                                        | JULY 6.9 7.1 7.1 6.9 7.0 7.3 7.4                                      | 7.3<br>7.8<br>8.4<br>8.9<br>8.6<br>8.9<br>9.1<br>9.1                                                                                     | 10.8<br>11.3<br>12.1<br>12.6<br>11.5<br>12.4<br>13.2<br>13.3                                                                                     | 7.3<br>6.3<br>6.7<br>6.9<br>6.6<br>6.7<br>6.9                                            | 8.8<br>8.6<br>9.3<br>8.6<br>9.6<br>9.6<br>9.7<br>9.8    | 10.2<br>10.6<br>11.1<br>11.6<br>11.9<br>11.8<br>11.7<br>12.4<br>12.5                                                | SEPTEMB 5.9 6.4 6.5 6.6 6.5 6.4 6.6 6.9                                          | 7.8<br>8.0<br>8.5<br>8.5<br>8.8<br>8.7<br>8.7                                           |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14                         | 8.5<br>8.9<br>8.65<br>8.2<br>8.4<br>7.9<br>8.4<br>7.9<br>8.4<br>9.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | JUNE 8.2 8.3 8.1 7.7 7.6 7.7 8.0 8.1 8.2 8.1 8.1                         | 8.4<br>8.5<br>8.4<br>8.1<br>7.9<br>8.0<br>7.7<br>8.1<br>8.4<br>8.7<br>8.8<br>9.0                             | 7.7<br>8.8<br>9.9<br>10.9<br>10.4<br>11.0<br>11.0<br>10.9<br>10.9<br>10.9                                                                | JULY 6.9 7.1 7.1 6.9 7.0 7.3 7.4 7.3 7.3 7.3 7.3                      | 7.3<br>7.8<br>8.4<br>8.9<br>8.6<br>8.9<br>9.1<br>9.1<br>9.1<br>9.1<br>9.5<br>9.3                                                         | 10.8<br>11.3<br>12.1<br>12.6<br>11.5<br>12.4<br>13.2<br>13.3<br>12.7<br>12.2<br>11.2<br>9.0<br>7.9<br>8.8                                        | 7.3<br>6.3<br>6.7<br>6.9<br>6.6<br>6.7<br>6.9<br>7.1<br>7.3<br>6.9<br>6.6                | 8.6.2.3.6<br>9.2.3.6<br>9.6.7.8.6<br>9.7.8.6<br>9.7.8.0 | 10.2<br>10.6<br>11.1<br>11.6<br>11.9<br>11.8<br>11.7<br>12.4<br>12.5<br>12.0<br>11.9                                | 5.9<br>6.4<br>6.5<br>6.5<br>6.4<br>6.6<br>6.9<br>7.2<br>6.9<br>6.7<br>7.1        | 7.8<br>8.0<br>8.55<br>8.8<br>8.7<br>9.1<br>9.3<br>9.2<br>8.9<br>8.4<br>7.6<br>8.8       |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18 | 8.5<br>8.9<br>8.65<br>8.2<br>8.4<br>7.9<br>8.4<br>9.2<br>9.7<br>10.4<br>11.1<br>11.5<br>11.5<br>11.7<br>11.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | JUNE 8.2 8.3 8.1 7.7 7.6 7.8 7.7 7.6 7.9 7.9 7.8                         | 8.4<br>8.5<br>8.4<br>8.7<br>9.0<br>7.7<br>8.0<br>7.7<br>8.1<br>8.7<br>8.9<br>9.1<br>9.4<br>9.5<br>9.4<br>9.5 | 7.7<br>8.8<br>9.9<br>10.9<br>10.4<br>11.0<br>11.0<br>10.9<br>10.9<br>11.2<br>12.1<br>12.1<br>11.4<br>11.5<br>9.5                         | JULY 6.9 7.1 7.11 6.9 7.0 7.3 7.4 7.3 7.3 7.0 6.6 6.6 6.6 6.5         | 7.8<br>8.4<br>8.6<br>8.9<br>9.1<br>9.1<br>9.1<br>9.1<br>9.2<br>8.8<br>8.7<br>8.8                                                         | 10.8<br>11.3<br>12.1<br>12.6<br>11.5<br>12.4<br>13.2<br>13.3<br>12.7<br>12.2<br>11.2<br>9.0<br>7.9<br>8.8<br>9.7                                 | 7.3<br>6.3<br>6.9<br>6.6<br>6.7<br>6.9<br>7.1<br>7.3<br>6.6<br>6.5<br>7.3<br>7.7         | 8.6236<br>8.6236<br>9.6786<br>9.778.6<br>8.753          | 10.2<br>10.6<br>11.1<br>11.6<br>11.9<br>11.8<br>11.7<br>12.4<br>12.5<br>12.0<br>11.9<br>11.5<br>8.9<br>11.1<br>13.1 | 5.9<br>6.4<br>6.5<br>6.6<br>6.5<br>6.4<br>6.6<br>6.9<br>7.2<br>6.7<br>7.1<br>8.1 | 7.8<br>8.0<br>8.5<br>8.5<br>8.8<br>8.7<br>9.1<br>9.3<br>9.2<br>8.9<br>8.4<br>7.6<br>8.8 |
| 1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24                                | 8.5<br>8.9<br>8.65<br>8.3<br>8.4<br>7.9<br>8.9<br>9.27<br>10.0<br>11.1<br>11.5<br>11.5<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6 | JUNE 8.2 8.3 8.1 7.7 7.6 7.8 7.7 8.0 8.1 8.0 7.9 7.9 7.8 7.1 7.6 7.9 7.9 | 8.4<br>8.5<br>8.4<br>7.9<br>8.0<br>7.7<br>8.4<br>8.7<br>8.0<br>9.1<br>9.4<br>9.5<br>9.2<br>9.5<br>9.6        | 7.7<br>8.8<br>9.9<br>10.9<br>10.4<br>11.0<br>11.0<br>10.9<br>10.9<br>10.9<br>12.1<br>12.0<br>11.2<br>12.1<br>11.3<br>11.5<br>9.5<br>10.3 | JULY 6.9 7.1 7.11 6.9 7.0 7.3 7.4 7.3 7.0 6.6 6.6 6.5 6.3 6.6 7.1 7.0 | 7.8<br>8.49<br>8.6<br>8.11<br>9.11<br>9.12<br>9.53<br>9.11<br>9.53<br>8.8<br>8.8<br>8.8<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6 | 10.8<br>11.3<br>12.1<br>12.6<br>11.5<br>12.4<br>13.2<br>13.3<br>12.7<br>12.2<br>11.2<br>9.0<br>7.9<br>8.8<br>9.7<br>10.8<br>10.7<br>12.4<br>12.0 | AUGUST 7.3 6.37 6.6 6.6 6.7 7.3 6.6 6.5 7.37 8.1 6.9 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 | 8.6236 26786 54206 87532 7345<br>8.778.6 88.532 7345    | 10.2<br>10.6<br>11.1<br>11.6<br>11.9<br>11.8<br>11.7<br>12.4<br>12.5<br>12.0<br>11.9<br>11.5<br>8.9<br>11.1<br>13.1 | 5.94<br>6.45<br>6.66<br>6.5<br>6.46<br>6.97<br>7.2<br>6.77<br>7.11<br>8.1        | 7.8<br>8.0<br>8.5<br>8.8<br>8.7<br>9.1<br>9.2<br>8.9<br>8.4<br>7.6<br>8.8<br>10.4       |

### 01463620 ASSUNPINK CREEK NEAR CLARKSVILLE, NJ

LOCATION.--Lat 40°16'11", long 74°40'20", Mercer County, Hydrologic Unit 02040105, on left bank 200 ft upstream from bridge on Quaker Bridge Road, 1.9 mi south of Clarksville, 2.0 mi upstream from Shipetaukin Creek, and 7.6 mi upstream of mouth.

DRAINAGE AREA. -- 34.3 mi2.

### WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1963, 1965, 1967, and 1979 to current year.

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Water Resources Division. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

| OCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DATE | TIME                    | FLO<br>INS:<br>TAN | EAM-<br>OW,<br>TAN-<br>EOUS               | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>JMHOS) | PH<br>(STAND-<br>ARD<br>UNITS) |                            | PER-<br>URE                     | DXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)         | OXYO<br>DEMA<br>BIO<br>CHE<br>ICA<br>5 I | ND,<br>CM-<br>L,<br>OAY | COLI-<br>FORM,<br>FECAL,<br>EC<br>BROTH<br>(MPN) |                 |                                 | HARD<br>NESS<br>(MG/<br>AS<br>CACO | L'L |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------------|--------------------|-------------------------------------------|--------------------------------------------------|--------------------------------|----------------------------|---------------------------------|---------------------------------------------|------------------------------------------|-------------------------|--------------------------------------------------|-----------------|---------------------------------|------------------------------------|-----|
| JAN 18 0930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | OCT  |                         |                    |                                           |                                                  |                                |                            |                                 |                                             |                                          |                         |                                                  |                 |                                 |                                    |     |
| 18 0930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | 1410                    |                    | 14                                        | 150                                              | 7.3                            | 2                          | 20.0                            | 10.6                                        | E                                        | 4.3                     | 20                                               |                 | 7                               | 1                                  | 39  |
| 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18   | 0930                    |                    | 46                                        | 160                                              | 6.0                            |                            | .0                              | 15.2                                        |                                          | E.8                     | 40                                               |                 | 240                             |                                    | 44  |
| 25   0900   65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24   | 1100                    |                    | 124                                       | 108                                              | 6.5                            |                            | 6.0                             | 11.6                                        | E                                        | 2.3                     | 170                                              |                 | 240                             |                                    | 31  |
| 26 1050 20 124 6.9 25.5 8.2 E2.0 <20 130 40 AUG 25 1350 17 116 7.3 27.0 9.3 3.9 <20 79 40  26 26 1350 17 116 7.3 27.0 9.3 3.9 <20 79 40  27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25   | 0900                    |                    | 65                                        | 120                                              | 6.5                            | 1                          | 18.0                            | 8.5                                         | E                                        | 3.9                     | 80                                               |                 | 79                              |                                    | 38  |
| CALCIUM   MAGNE-   SIUM, SODIUM, DIS-   SIUM, SOLVED    | 26   | 1050                    |                    | 20                                        | 124                                              | 6.9                            | 2                          | 25.5                            | 8.2                                         | E                                        | 2.0                     | <20                                              |                 | 130                             |                                    | 40  |
| CALCIUM   SIUM   SOFUM   SIUM   DIS-   DIS |      | 1350                    |                    | 17                                        | 116                                              | 7.3                            | 2                          | 27.0                            | 9.3                                         |                                          | 3.9                     | <20                                              |                 | 79                              |                                    | 40  |
| 05 8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DATE | DIS<br>SOL<br>(MG       | VED                | SIUM<br>DIS-<br>SOLVE<br>(MG/L            | , SODI<br>DIS<br>D SOLV<br>(MG                   | UM, S<br>- D<br>ED SO<br>/L (M | IUM,<br>IS-<br>LVED<br>G/L | LINITY<br>LAB<br>(MG/I<br>AS    | SULF<br>TOT<br>(MG                          | AL<br>/L                                 | DIS-<br>SOLVE<br>(MG/L  | E RID<br>DIS<br>D SOL<br>(MG                     | E,<br>VED<br>/L | RIDE,<br>DIS-<br>SOLVE<br>(MG/L | D                                  |     |
| JAN 18 9.7 4.8 6.8 3.3 7.0 23 12 .10  MAR 24 7.0 3.3 5.9 2.5 6.0 21 9.7 .10  MAY 25 8.4 4.2 5.1 2.3 12 <.5 15 .10  JUL 26 8.4 4.6 6.5 2.6 20 16 13 .20  AUG 25 8.8 4.3 4.6 2.7 15 19 11 .20  SOLIDS, SILICA, RESIDUE NITRO- GEN, GEN, GEN, MONIA HONIA ORGANIC GEN, AMMONIA ORGANIC GEN, HATE, ORGANIC (MG/L DIS- TOTAL                              |      |                         |                    |                                           |                                                  |                                |                            |                                 |                                             |                                          |                         |                                                  |                 |                                 |                                    |     |
| 18   9.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | 8                       | 3.5                | 4.4                                       | 4                                                | .9                             | 2.9                        | 15                              | <                                           | .5                                       | 15                      | 12                                               |                 | <.1                             | 0                                  |     |
| 24 7.0 3.3 5.9 2.5 6.0 21 9.7 .10  MAY  25 8.4 4.2 5.1 2.3 12 <.5 15 .10  JUL  26 8.4 4.6 6.5 2.6 20 16 13 .20  AUG  25 8.8 4.3 4.6 2.7 15 19 11 .20  SOLIDS,  SILICA, RESIDUE DEG. C. NITRITO GEN, MONTA + NITRO- MOGANIC GEN, MOTTA + NITRO-MOGANIC GEN, MOGANIC GEN, MOGANIC GEN, MOTTA + NITRO-MOGANIC GEN, MOGANIC GEN, MOGANIC GEN, MOGANIC GEN,                       |      | 9                       | 9.7                | 4.8                                       | 6                                                | . 8                            | 3.3                        | 7.0                             | )                                           |                                          | 23                      | 12                                               |                 | .1                              | 0                                  |     |
| 25 8.4 4.2 5.1 2.3 12 <.5 15 .10  JUL 26 8.4 4.6 6.5 2.6 20 16 13 .20  AUG 25 8.8 4.3 4.6 2.7 15 19 11 .20  SOLIDS, SILICA, RESIDUE NITRO- NITRO- NITRO- GEN, MONIA - NITRO- MITRO- M                 | 24.  | . 7                     | 7.0                | 3.3                                       | 5                                                | . 9                            | 2.5                        | 6.0                             | )                                           |                                          | 21                      | 9                                                | . 7             | . 1                             | 0                                  |     |
| 26 8.4 4.6 6.5 2.6 20 16 13 .20  AUG 25 8.8 4.3 4.6 2.7 15 19 11 .20  SOLIDS, SILICA, RESIDUE NITRO- NITRO- GEN, AM- DIS- AT 180 GEN, GEN, GEN, GEN, MONIA + NITRO- PHOS- CARBON, SOLVED DEG. C NITRITE NO2+NO3 AMMONIA ORGANIC GEN, PHATE, ORGANIC (MG/L DIS- TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL AS SOLVED (MG/L           | 25.  | 8                       | 3.4                | 4.2                                       | 5                                                | . 1                            | 2.3                        | 12                              | <                                           | • 5                                      |                         | 15                                               |                 | - 1                             | 0                                  |     |
| 25 8.8 4.3 4.6 2.7 15 19 11 .20    SOLIDS, SOLIDS, RESIDUE DIS- AT 180 GEN, GEN, GEN, GEN, MONIA + NITRO- GEN, AMBONIA ORGANIC GEN, PHATE, ORGANIC GEN, MONIA + NITRO- DIS- TOTAL TO     | 26.  | 8                       | 3.4                | 4.6                                       | 6                                                | .5                             | 2.6                        | 20                              |                                             |                                          | 16                      | 13                                               |                 | . 2                             | 20                                 |     |
| SILICA,   RESIDUÉ   NITRO-   NITRO-   GEN, AM-   GEN,   CENTON   GEN,   GEN,   CENTON   GEN,   CENTON   GEN,   CENTON   GEN,   CENTON   CENTON  |      | 8                       | 3.8                | 4.3                                       | 4                                                | . 6                            | 2.7                        | 15                              |                                             |                                          | 19                      | 11                                               |                 | . 2                             | 20                                 |     |
| 05 3.6 94 .010 .400 <.050 .51 .91 .15 2.8  JAN 18 6.9 98 .030 1.50 .140 .89 2.4 .34 4.6  MAR 24 4.7 88 .040 1.30 .140 1.5 2.8 E.52 6.6  MAY 25 3.0 82 .010 1.20 .090 .78 2.0 .24 4.7  JUL 26 2.0 99 E.030 E.700 E.160 .65 E.28 4.7  AUG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DATI | DIS<br>SOI<br>(MG<br>AS | S-<br>LVED<br>G/L  | RESIDU<br>AT 180<br>DEG.<br>DIS-<br>SOLVE | E NIT GE C NITE TOT D (MG                        | N, G<br>ITE NO2<br>CAL TO      | EN,<br>+NO3<br>TAL<br>G/L  | GEN<br>AMMONI<br>TOTAL<br>(MG/I | O- GEN,<br>MONI<br>IA ORGA<br>L TOT.<br>(MG | AM-<br>A +<br>NIC<br>AL<br>/L            | GEN,<br>TOTAL<br>(MG/L  | PHA<br>TOT<br>(MG                                | TE,<br>AL<br>/L | ORGANI<br>TOTAL<br>(MG/L        | Ċ                                  |     |
| 05 3.6 94 .010 .400 <.050 .51 .91 .15 2.8  JAN 18 6.9 98 .030 1.50 .140 .89 2.4 .34 4.6  MAR 24 4.7 88 .040 1.30 .140 1.5 2.8 E.52 6.6  MAY 25 3.0 82 .010 1.20 .090 .78 2.0 .24 4.7  JUL 26 2.0 99 E.030 E.700 E.160 .65 E.28 4.7  AUG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ОСТ  |                         |                    |                                           |                                                  |                                |                            |                                 |                                             |                                          |                         |                                                  |                 |                                 |                                    |     |
| 18 6.9 98 .030 1.50 .140 .89 2.4 .34 4.6  MAR 24 4.7 88 .040 1.30 .140 1.5 2.8 E.52 6.6  MAY 25 3.0 82 .010 1.20 .090 .78 2.0 .24 4.7  JUL 26 2.0 99 E.030 E.700 E.160 .65 E.28 4.7  AUG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 05.  |                         | 3.6                | 9                                         | 4.                                               | 010                            | . 400                      | <.05                            | 50                                          | .51                                      | .9                      | 1                                                | . 15            | 2.8                             | 3                                  |     |
| 24 4.7 88 .040 1.30 .140 1.5 2.8 E.52 6.6  MAY 25 3.0 82 .010 1.20 .090 .78 2.0 .24 4.7  JUL 26 2.0 99 E.030 E.700 E.160 .65 E.28 4.7  AUG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18   |                         | 6.9                | 9                                         | 8 .                                              | 030 1                          | .50                        | . 1                             | 40                                          | . 89                                     | 2.4                     |                                                  | . 34            | 4.6                             | 5                                  |     |
| 25 3.0 82 .010 1.20 .090 .78 2.0 .24 4.7<br>JUL<br>26 2.0 99 E.030 E.700 E.160 .65 E.28 4.7<br>AUG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24.  |                         | 4.7                | 8                                         | 8 .                                              | 040 1                          | .30                        | . 14                            | 40 1                                        | .5                                       | 2.8                     | E                                                | .52             | 6.6                             | 5                                  |     |
| 26 2.0 99 E.030 E.700 E.160 .65 E.28 4.7<br>AUG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25   |                         | 3.0                | 8                                         | 2 .                                              | 010 1                          | .20                        | . 09                            | 90                                          | . 78                                     | 2.0                     |                                                  | . 24            | 4.7                             | 7                                  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26.  |                         | 2.0                | 9                                         | 9 E.                                             | 030 E                          | .700                       | E. 16                           | 50                                          | . 65                                     | 11/1-                   | - E                                              | . 28            | 4.7                             |                                    |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                         | 3.5                | 7                                         | 7 .                                              | 020                            | . 400                      | . 08                            | 30                                          | . 87                                     | 1.3                     |                                                  | . 18            | 5.1                             | Tels.                              |     |

# 01463620 ASSUNPINK CREEK NEAR CLARKSVILLE, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

| DATE      | TIME                                                                | NITRO-<br>GEN, NH4<br>+ ORG.<br>TOT IN<br>BOT MAT<br>(MG/KG<br>AS N) | CARBON,<br>INOR-<br>GANIC,<br>TOT IN<br>BOT MAT<br>(G/KG<br>AS C)    | CARBON,<br>INORG +<br>ORGANIC<br>TOT. IN<br>BOT MAT<br>(G/KG<br>AS C) | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)                  | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)                               | ARSENIC<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS AS) | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE)      | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)              | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD)             | CADMIUM<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CD) |
|-----------|---------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|
| OCT       |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                   |                                                                     |                                                                      |                                                                    |                                                                     |                                                                      |
| 05<br>MAY | 1410                                                                | 560                                                                  | <.1                                                                  | 1.5                                                                   | 70                                                                   | 2                                                                 | <1                                                                  | <10                                                                  | 50                                                                 | 1                                                                   | <1                                                                   |
| 25        | 0900                                                                |                                                                      |                                                                      |                                                                       | <10                                                                  | 1                                                                 |                                                                     | <10                                                                  | 40                                                                 | 1                                                                   |                                                                      |
| DATE      | CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR)                          | CHRO-MIUM,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)       | COBALT,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CO) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU)               | COPPER,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CU) | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE)             | IRON,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS FE)  | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB)                | LEAD,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN)     | MANGA-<br>NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  |
| OCT       |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                   |                                                                     |                                                                      |                                                                    |                                                                     |                                                                      |
| 05<br>MAY | 10                                                                  | 3                                                                    | <10                                                                  | 56                                                                    | 0                                                                    | 450                                                               | 980                                                                 | 4                                                                    | 10                                                                 | 50                                                                  | 83                                                                   |
| 25        | 10                                                                  |                                                                      |                                                                      | 5                                                                     |                                                                      | 750                                                               |                                                                     | 5                                                                    | 60 mg                                                              | 50                                                                  |                                                                      |
| DATE      | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG)             | MERCURY<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/L<br>AS HG) | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI)              | NICKEL,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS NI)  | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE)                           | SELE-<br>NIUM,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN)               | ZINC,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS ZN)   | PHENOLS<br>TOTAL<br>(UG/L)                                         | PCB,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)            | PCN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             |
| OCT       |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                   |                                                                     |                                                                      |                                                                    |                                                                     |                                                                      |
| 05<br>MAY | <.1                                                                 | <.01                                                                 | 3                                                                    | <10                                                                   | <1                                                                   | <1                                                                | 20                                                                  | 6                                                                    | <1                                                                 | <1                                                                  | <1.0                                                                 |
| 25        | <.1                                                                 |                                                                      | 2                                                                    |                                                                       | <1                                                                   |                                                                   | 40                                                                  |                                                                      | <1                                                                 |                                                                     |                                                                      |
| DATE      | ALDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)         | CHLOR-DANE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)      | DDD,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DDE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)              | DDT,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)                  | DI-<br>ELDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | ENDO-<br>SULFAN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | ENDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)        | ETHION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)         | HEPTA-<br>CHLOR,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) |
| OCT       |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                   |                                                                     |                                                                      |                                                                    |                                                                     |                                                                      |
| 05<br>MAY | <.1                                                                 | <1.0                                                                 | 1.4                                                                  | 1.9                                                                   | 1.4                                                                  | <.1                                                               | <.1                                                                 | <.1                                                                  | <.1                                                                | <.1                                                                 | <.1                                                                  |
| 25        |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                   |                                                                     |                                                                      |                                                                    |                                                                     |                                                                      |
| DATE      | HEPTA-<br>CHLOR<br>EPOXIDE<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG) | LINDANE<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)          | MALA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | METH-<br>OXY-<br>CHLOR,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)      | METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)                     | METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)                   | MIREX,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)          | PARA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | PER-<br>THANE<br>IN<br>BOTTOM<br>MATERIL<br>(UG/KG)                | TOXA-<br>PHENE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)                     |
| OCT       |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                   |                                                                     |                                                                      |                                                                    |                                                                     |                                                                      |
| 05<br>MAY | <.1                                                                 | <.1                                                                  | <.1                                                                  | <.1                                                                   | <.1                                                                  | <.1                                                               | <.1                                                                 | <.1                                                                  | <1.00                                                              | <10                                                                 | <.1                                                                  |
| 25        |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                   |                                                                     |                                                                      |                                                                    |                                                                     |                                                                      |

### 01464000 ASSUNPINK CREEK AT TRENTON, NJ

LOCATION.--Lat 40°13'27", long 74°44'58", Mercer County, Hydrologic Unit 02040105, on left bank 20 ft upstream from Chambers Street Bridge in Trenton, and 1.5 mi upstream from mouth.

DRAINAGE AREA .-- 90.6 mi2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- August 1923 to current year.

REVISED RECORDS. -- WDR NJ-82-2: Drainage area.

GAGE.--Water-stage recorder. Concrete control since July 10, 1932. Datum of gage is 24.76 ft National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark).

REMARKS.--Water-discharge records good. Records include water diverted from outside the basin since February 1954 for municipal supply which returns to Assunpink Creek through Ewing-Lawrence Sewerage Authority Treatment Plant, 2.4 mi above station (records given herein). In addition there is an average inflow of about 2.0 ft<sup>3</sup>/s from industrial use of water that originates outside the basin. Some diversion for irrigation in headwater area during summer months. Flow regulated by several flood-control reservoirs upstream of gage since mid-1970's.

AVERAGE DISCHARGE. -- 60 years, 128 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,450 ft<sup>3</sup>/s July 21, 1975, gage height, 14.61 ft, from high-water mark in gage house; minimum, 1.0 ft<sup>3</sup>/s Aug. 21, Oct. 22, 1931, gage height, 0.25 ft; minimum daily, 4.0 ft<sup>3</sup>/s July 21, Aug. 8, Sept. 2, 1929.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 900 ft3/s and maximum (\*):

| Date    | Time | Discharge<br>(ft³/s) | Gage height (ft) | Date    | Time | Discharge<br>(ft³/s) | Gage height<br>(ft) |
|---------|------|----------------------|------------------|---------|------|----------------------|---------------------|
| Mar. 21 | 1545 | 1760                 | 8.16             | Apr. 16 | 1330 | *2470                | 9.93                |
| Mar. 28 | 0100 | 1070                 | 6.34             | Apr. 25 | 0800 | 1360                 | 7.14                |
| Apr. 3  | 1100 | 1110                 | 6.45             | Aug. 11 | 1900 | 1070                 | 6.34                |
| Apr. 10 | 1515 | 1700                 | 8.00             |         |      |                      |                     |

Minimum discharge, 29 ft3/s Oct. 17, gage height, 2.51 ft.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983 MEAN VALUES

| DA Y                               | OCT                               | NOV                               | DEC                               | JAN                                  | FEB                              | MAR                                    | APR                                 | MAY                                    | JUN                                   | JUL                               | AUG                                | SEP                               |
|------------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|--------------------------------------|----------------------------------|----------------------------------------|-------------------------------------|----------------------------------------|---------------------------------------|-----------------------------------|------------------------------------|-----------------------------------|
| 1<br>2<br>3<br>4<br>5              | 48<br>45<br>42<br>43              | 54<br>54<br>53<br>53<br>81        | 138<br>135<br>103<br>92<br>85     | 64<br>62<br>62<br>60<br>82           | 91<br>99<br>168<br>120<br>99     | 181<br>423<br>240<br>185<br>160        | 236<br>214<br>660<br>424<br>306     | 267<br>248<br>226<br>236<br>201        | 270<br>228<br>202<br>315<br>259       | 148<br>94<br>73<br>69<br>87       | 59<br>55<br>52<br>51<br>57         | 127<br>126<br>116<br>102<br>92    |
| 6<br>7<br>8<br>9                   | 42<br>42<br>42<br>43<br>39        | 56<br>51<br>52<br>51<br>50        | 92<br>82<br>77<br>73<br>70        | 138<br>86<br>78<br>73<br>102         | 91<br>105<br>100<br>91<br>85     | 144<br>193<br>345<br>410<br>463        | 264<br>241<br>312<br>450<br>994     | 181<br>165<br>153<br>150<br>134        | 1 97<br>171<br>1 53<br>1 3 6<br>1 2 5 | 87<br>82<br>92<br>133<br>111      | 62<br>50<br>50<br>48<br>45         | 87<br>81<br>76<br>71<br>67        |
| 11<br>12<br>13<br>14<br>15         | 39<br>39<br>42<br>44              | 49<br>49<br>367<br>122<br>90      | 69<br>68<br>67<br>64<br>65        | 346<br>161<br>127<br>114<br>214      | 80<br>79<br>80<br>81<br>84       | 343<br>527<br>347<br>266<br>232        | 661<br>429<br>355<br>309<br>285     | 121<br>120<br>116<br>110<br>110        | 115<br>106<br>102<br>96<br>91         | 94<br>84<br>77<br>71<br>66        | 254<br>239<br>127<br>96<br>87      | 59<br>121<br>104<br>65<br>59      |
| 16<br>17<br>18<br>19<br>20         | 37<br>35<br>38<br>38<br>39        | 78<br>72<br>69<br>68<br>65        | 234<br>129<br>99<br>89<br>95      | 193<br>144<br>123<br>105<br>93       | 99<br>123<br>164<br>172<br>159   | 209<br>198<br>360<br>636<br>341        | 1570<br>864<br>524<br>504<br>537    | 358<br>281<br>125<br>88<br>116         | 96<br>79<br>75<br>77<br>158           | 64<br>55<br>56<br>55<br>62        | 82<br>76<br>72<br>70<br>64         | 55<br>52<br>48<br>85<br>119       |
| 21<br>22<br>23<br>24<br>25         | 63<br>45<br>42<br>40<br>98        | 62<br>61<br>60<br>58<br>53        | 87<br>81<br>79<br>78<br>73        | 87<br>82<br>219<br>165<br>127        | 169<br>201<br>247<br>236<br>193  | 898<br>636<br>399<br>356<br>309        | 447<br>368<br>331<br>580<br>1040    | 191<br>229<br>360<br>250<br>191        | 315<br>162<br>127<br>115<br>105       | 69<br>84<br>55<br>66<br>74        | 58<br>57<br>55<br>51<br>50         | 92<br>75<br>66<br>60<br>57        |
| 26<br>27<br>28<br>29<br>30<br>31   | 177<br>72<br>62<br>58<br>55<br>52 | 52<br>51<br>55<br>266<br>111      | 72<br>71<br>69<br>75<br>70<br>66  | 115<br>107<br>101<br>94<br>95<br>102 | 165<br>145<br>135<br>            | 259<br>331<br>639<br>383<br>296<br>258 | 541<br>405<br>356<br>318<br>292     | 223<br>492<br>335<br>277<br>494<br>371 | 94<br>75<br>96<br>143<br>169          | 62<br>57<br>55<br>53<br>61<br>97  | 48<br>45<br>43<br>135<br>96<br>124 | 55<br>55<br>53<br>55<br>68        |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>(+) | 1584<br>51.1<br>177<br>35<br>11.0 | 2413<br>80.4<br>367<br>49<br>11.5 | 2747<br>88.6<br>234<br>64<br>12.5 | 3721<br>120<br>346<br>60<br>14.3     | 3661<br>131<br>247<br>79<br>16.2 | 10967<br>354<br>898<br>144<br>23.2     | 14817<br>494<br>1570<br>214<br>23•8 | 6919<br>223<br>494<br>88<br>19•2       | 4452<br>148<br>315<br>75<br>16.4      | 2393<br>77.2<br>148<br>53<br>12.3 | 2458<br>79.3<br>254<br>43<br>11.1  | 2348<br>78.3<br>127<br>48<br>11.1 |

CAL YR 1982 TOTAL 46208 MEAN 127 MAX 1280 MIN 35 + 13.9 WTR YR 1983 TOTAL 58480 MEAN 160 MAX 1570 MIN 35 + 15.2

<sup>†</sup> Inflow from outside the basin, 2.4 mi upstream of station through plant of Ewing-Lawrence Sewerage Authority, in cubic feet per second.

93

#### 01464500 CROSSWICKS CREEK AT EXTONVILLE, NJ

LOCATION.--Lat 40°08'15", long 74°36'02", Mercer County, Hydrologic Unit 02040201, on right bank upstream from highway bridge in Extonville, 0.5 mi upstream from Pleasant Run, and 0.7 mi downstream from Mercer-Monmouth County line.

DRAINAGE AREA .-- 81.5 mi2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- August 1940 to October 1951, October 1952 to current year.

REVISED RECORDS. -- WDR NJ-79-2: 1971(M). WDR NJ-82-2: Drainage area.

GAGE. -- Water-stage recorder and concrete control. Datum of gage is 24.94 ft National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good. Flow regulated occasionally by lakes above station.

AVERAGE DISCHARGE. -- 42 years (water years 1941-51, 1953-83), 135 ft3/s, 22.49 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,860 ft<sup>3</sup>/s Sept. 1, 1978, gage height, 14.18 ft; minimum, 13.1 ft<sup>3</sup>/s Feb. 14, 1942 (result of freezeup); minimum daily, 16 ft<sup>3</sup>/s Aug. 30 to Sept. 3, Sept. 12, 1966.

EXTREMES FOR CURRENT YEAR.--Peak discharge above base of 750 ft $^3$ /s and maximum (\*):

| Date    | Time | Discharge<br>(ft³/s) | Gage height (ft) | Date    | Time | Discharge<br>(ft³/s) | Gage height (ft) |
|---------|------|----------------------|------------------|---------|------|----------------------|------------------|
| Mar. 22 | 1000 | 922                  | 7.56             | Apr. 17 | 1000 | *1430                | 9.06             |
| Mar. 28 | 2300 | 760                  | 6.83             | Apr. 25 | 1600 | 858                  | 7.29             |
| Apr. 4  | 0700 | 814                  | 7.09             | May 23  | 2300 | 756                  | 6.81             |
| Apr. 11 | 1200 | 1230                 | 8.54             |         |      |                      |                  |

Minimum discharge, 37 ft3/s Aug. 9, gage height, 2.39 ft.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983 MEAN VALUES

| DAY                                        | OCT                                | NOV                                       | DEC                                      | JAN                                      | FEB                                      | MAR                                       | APR                                         | MAY                                      | JUN                                      | JUL                                     | AUG                                      | SEP                                      |
|--------------------------------------------|------------------------------------|-------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|-------------------------------------------|---------------------------------------------|------------------------------------------|------------------------------------------|-----------------------------------------|------------------------------------------|------------------------------------------|
| 1<br>2<br>3<br>4<br>5                      | 52<br>51<br>49<br>45<br>49         | 62<br>60<br>59<br>58<br>66                | 143<br>156<br>129<br>113<br>102          | 72<br>70<br>67<br>65<br>66               | 92<br>89<br>115<br>119<br>92             | 109<br>229<br>209<br>147<br>127           | 157<br>140<br>370<br>688<br>341             | 142<br>136<br>131<br>152<br>173          | 209<br>157<br>135<br>155<br>167          | 102<br>91<br>81<br>70<br>64             | 47<br>45<br>44<br>42<br>44               | 246<br>127<br>96<br>81<br>67             |
| 6<br>7<br>8<br>9                           | 54<br>52<br>49<br>44<br>43         | 77<br>63<br>60<br>58<br>56                | 101<br>103<br>90<br>82<br>76             | 91<br>100<br>88<br>79<br>77              | 82<br>95<br>131<br>118<br>104            | 118<br>178<br>283<br>437<br>378           | 203<br>167<br>160<br>193<br>423             | 143<br>128<br>118<br>116<br>108          | 140<br>124<br>113<br>101<br>94           | 88<br>74<br>60<br>56<br>53              | 48<br>48<br>43<br>40                     | 60<br>54<br>50<br>48<br>48               |
| 11<br>12<br>13<br>14<br>15                 | 41<br>40<br>46<br>48<br>46         | 54<br>54<br>134<br>214<br>123             | 75<br>79<br>84<br>95<br>76               | 316<br>337<br>161<br>117<br>125          | 81<br>91<br>121<br>95<br>93              | 418<br>410<br>439<br>235<br>169           | 1150<br>573<br>290<br>198<br>169            | 101<br>98<br>95<br>97                    | 88<br>84<br>80<br>75<br>69               | 50<br>48<br>47<br>44<br>43              | 48<br>129<br>121<br>76<br>58             | 47<br>47<br>105<br>86<br>61              |
| 16<br>17<br>18<br>19<br>20                 | 43<br>40<br>39<br>40<br>42         | 104<br>88<br>79<br>73<br>69               | 135<br>260<br>145<br>116<br>109          | 175<br>134<br>111<br>113<br>121          | 101<br>118<br>160<br>219<br>181          | 141<br>128<br>156<br>505<br>500           | 473<br>1170<br>563<br>359<br>406            | 150<br>370<br>260<br>159<br>152          | 64<br>66<br>73<br>103<br>97              | 44<br>43<br>43<br>52<br>80              | 51<br>49<br>48<br>48                     | 54<br>52<br>60<br>60<br>52               |
| 21<br>22<br>23<br>24<br>25                 | 54<br>57<br>49<br>50<br>55         | 67<br>65<br>64<br>62<br>59                | 102<br>91<br>86<br>84<br>82              | 85<br>75<br>93<br>148<br>125             | 163<br>163<br>176<br>216<br>156          | 436<br>809<br>377<br>201<br>160           | 422<br>275<br>206<br>335<br>769             | 189<br>495<br>645<br>560<br>267          | 393<br>470<br>229<br>150<br>118          | 60<br>89<br>68<br>56<br>76              | 43<br>42<br>42<br>40<br>42               | 56<br>211<br>161<br>95<br>77             |
| 26<br>27<br>28<br>29<br>30<br>31           | 152<br>124<br>90<br>82<br>73<br>67 | 56<br>55<br>187<br>249                    | 79<br>75<br>75<br>77<br>79<br>74         | 112<br>102<br>93<br>87<br>83<br>93       | 127<br>111<br>104<br>                    | 140<br>141<br>552<br>552<br>281<br>190    | 598<br>308<br>209<br>173<br>156             | 172<br>355<br>427<br>208<br>198<br>287   | 95<br>82<br>76<br>152<br>134             | 63<br>53<br>48<br>45<br>42<br>46        | 40<br>39<br>54<br>283<br>234<br>238      | 67<br>61<br>56<br>52<br>88               |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 1766<br>57.0<br>152<br>39<br>.70   | 2531<br>84.4<br>249<br>54<br>1.04<br>1.16 | 3173<br>102<br>260<br>74<br>1.25<br>1.45 | 3581<br>116<br>337<br>65<br>1.42<br>1.63 | 3513<br>125<br>219<br>81<br>1.53<br>1.60 | 9155<br>295<br>809<br>109<br>3.62<br>4.18 | 11644<br>388<br>1170<br>140<br>4.76<br>5.31 | 6729<br>217<br>645<br>95<br>2.66<br>3.07 | 4093<br>136<br>470<br>64<br>1.67<br>1.87 | 1879<br>60.6<br>102<br>42<br>.74<br>.86 | 2211<br>71.3<br>283<br>39<br>.87<br>1.01 | 2425<br>80.8<br>246<br>47<br>.99<br>1.11 |

CAL YR 1982 TOTAL 42987 MEAN 118 MAX 1040 MIN 39 CFSM 1.45 IN. 19.62 WTR YR 1983 TOTAL 52700 MEAN 144 MAX 1170 MIN 39 CFSM 1.77 IN. 24.05

### 01464500 CROSSWICKS CREEK AT EXTONVILLE, NJ -- Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1965 to current year.

PERIOD OF DAILY RECORD.-WATER TEMPERATURES: October 1966 to June 1970.
SUSPENDED-SEDIMENT DISCHARGE: February 1965 to June 1970.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

| DATE      | TIME                                        | STREAM<br>FLOW,<br>INSTAN<br>TANEOU<br>(CFS) | CO<br>CO<br>DU<br>S AN                                    | CE                                                   | ARD                               | EMPER-<br>ATURE<br>DEG C)  | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)            | SOI<br>(PI<br>CI<br>SAT                            | IS- DE<br>LVED E<br>ER- C<br>ENT I<br>FUR- 5  | CYGEN<br>CMAND,<br>BIO-<br>CHEM-<br>CCAL,<br>DAY<br>MG/L) | COLI-<br>FORM,<br>FECAL,<br>EC<br>BROTH<br>(MPN) | STREP-<br>TOCOCCI<br>FECAL<br>(MPN) |
|-----------|---------------------------------------------|----------------------------------------------|-----------------------------------------------------------|------------------------------------------------------|-----------------------------------|----------------------------|------------------------------------------------|----------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------|--------------------------------------------------|-------------------------------------|
| FEB       |                                             |                                              |                                                           |                                                      |                                   |                            |                                                |                                                    |                                               |                                                           |                                                  |                                     |
| 08<br>MAR | 1230                                        | 38                                           | 5                                                         | 178                                                  | 7.1                               | 2.0                        | 12.2                                           |                                                    | 88                                            | 2.2                                                       | 280                                              | >2400                               |
| 14<br>JUN | 1200                                        | 50                                           | 8                                                         | 108                                                  | 6.8                               | 6.5                        | 10.2                                           |                                                    | 83                                            | 1.8                                                       | 70                                               | 790                                 |
| 16<br>JUL | 1030                                        | 15                                           | 2                                                         | 168                                                  | 7.0                               | 22.5                       | 6.0                                            |                                                    |                                               | 4.8                                                       | 500                                              | 3100                                |
| 27<br>AUG | 1345                                        | 5                                            | 2                                                         | 185                                                  | 7 • 3                             | 23.0                       | 6.4                                            |                                                    | 74                                            | 4.8                                                       | <2000                                            | 1400                                |
| 11        | 1020                                        | 3                                            | 8                                                         | 193                                                  | 7.0                               | 23.0                       | 5.7                                            |                                                    | 66                                            | 4.2                                                       | <200                                             | 200                                 |
| DATE      | HARI<br>NESS<br>(MG/<br>AS<br>CACO          | S D<br>/L S                                  | LCIUM<br>IS-<br>OLVED<br>MG/L<br>S CA)                    | MAGNE-<br>SIUM,<br>DIS-<br>SOLVEI<br>(MG/L<br>AS MG) | SODIUM<br>DIS-<br>SOLVED<br>(MG/L | DIS<br>SOL                 | UM, LIN<br>S- L<br>VED (M<br>/L A              | KA-<br>ITY<br>AB<br>G/L<br>S<br>CO3)               | SULFATE<br>DIS-<br>SOLVEI<br>(MG/L<br>AS SO4) | DIS-<br>SOLVI<br>(MG/I                                    | RII<br>DI<br>ED SOI<br>L (MC                     | DE,<br>CS-<br>VED                   |
| FEB<br>08 |                                             | 48                                           | 15                                                        | 2.6                                                  | 9.6                               | . 2                        | .6 19                                          |                                                    | 24                                            | 16                                                        |                                                  | .20                                 |
| 14<br>JUN | •                                           | 38                                           | 9.8                                                       | 3.3                                                  | 4.8                               | 2                          | .1 9                                           | .0                                                 | 22                                            | 8.                                                        | 5                                                | .20                                 |
| 16<br>JUL |                                             | 56                                           | 17                                                        | 3.2                                                  | 8.3                               | 3 2                        | .9 25                                          |                                                    | 25                                            | 14                                                        |                                                  | .30                                 |
| 27<br>AUG |                                             | 55                                           | 17                                                        | 3.1                                                  | 11                                | 3                          | . 3 28                                         |                                                    | 24                                            | 16                                                        |                                                  | .30                                 |
| 11        | •                                           | 63                                           | 20                                                        | 3.2                                                  | 13                                | 3                          | . 5 35                                         |                                                    | 24                                            | 17                                                        |                                                  | .40                                 |
| DATE      | SILIO<br>DIS-<br>SOL'<br>(MG,<br>AS<br>SIO2 | CA, RE<br>- AT<br>VED D<br>/L                | LIDS,<br>SIDUE<br>180<br>EG. C<br>DIS-<br>SOLVED<br>MG/L) | NITRO-<br>GEN,<br>NITRITE<br>TOTAL<br>(MG/L<br>AS N) | GEN,                              | GE<br>3 AMMO<br>TOT<br>(MG | RO- GEN<br>N, MON<br>NIA ORG<br>AL TO<br>/L (M | TRO-<br>, AM-<br>IA +<br>ANIC<br>TAL<br>IG/L<br>N) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)     | PHOS<br>PHAT<br>TOTA<br>(MG/I                             | E, ORGA<br>L TOT<br>L (MC                        | NIC<br>FAL<br>G/L                   |
| FEB<br>08 |                                             | 9.0                                          | 98                                                        | .020                                                 | .80                               | 00 .                       | 910                                            | 1.5                                                | 2.3                                           | 1.                                                        | 00 3                                             | 3.2                                 |
| 14<br>JUN |                                             | 7 • 3                                        | 71                                                        | .020                                                 | .70                               | . 00                       | 140                                            | • 97                                               | 1.7                                           |                                                           | 52 (                                             | 5.8                                 |
| 16<br>JUL | . 1                                         | 0                                            | 125                                                       | . 120                                                | 1.60                              |                            | 240 E                                          | 1.1                                                |                                               | 90                                                        | 98 8                                             | 3.1                                 |
| 27<br>AUG | . 1                                         | 0                                            | 112                                                       | . 130                                                | 1.60                              |                            | 360                                            | . 98                                               | 2.6                                           |                                                           | 61 6                                             | 5.7                                 |
| 11        | . 1                                         | 1                                            | 124                                                       | . 140                                                | 1.80                              |                            | 310                                            | 1.1                                                | 2.9                                           | 1.                                                        | 44 5                                             | 5.7                                 |

### 01464505 CROSSWICKS CREEK AT GROVEVILLE, NJ

LOCATION.--Lat 40°10'26", long 74°40'48", Mercer County, Hydrologic Unit 02040201, at bridge on U.S. Route 130 in Groveville, 0.3 mi upstream from Doctors Creek, and 0.6 mi southwest of Yardville.

DRAINAGE AREA .- - 98.2 mi2.

### WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to May 1983 (discontinued).

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

| DATE      | TIME                                     | SPE -<br>CIFIC<br>CON -<br>DUCT -<br>ANCE<br>(UMHOS)     | PH<br>(STAND-<br>ARD<br>UNITS)                       | TEMPER-<br>ATURE<br>(DEG C)                  | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)                 | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION) | OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)  | COLI-<br>FORM,<br>FECAL,<br>EC<br>BROTH<br>(MPN)    | STREP-<br>TOCOCCI<br>FECAL<br>(MPN)                |
|-----------|------------------------------------------|----------------------------------------------------------|------------------------------------------------------|----------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------|----------------------------------------------------|
| FEB       |                                          |                                                          |                                                      |                                              |                                                     |                                                                |                                               |                                                     |                                                    |
| 01<br>APR | 0845                                     | 184                                                      | 6.8                                                  | 3.0                                          | 13.0                                                | 96                                                             | 1.3                                           | 46                                                  | 49                                                 |
| 05<br>MAY | 0830                                     | 104                                                      |                                                      | 11.0                                         | 10.4                                                | 94                                                             | 2.1                                           | 20                                                  | 79                                                 |
| 31        | 0930                                     | 135                                                      |                                                      | 17.0                                         | 9.7                                                 | 102                                                            | 3.9                                           | 230                                                 | 4900                                               |
| DATE      | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3)   | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)             | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG) | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K) | ALKA-<br>LINITY<br>LAB<br>(MG/L<br>AS<br>CACO3)                | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F) |
| FEB       |                                          |                                                          |                                                      |                                              |                                                     |                                                                |                                               |                                                     |                                                    |
| 01<br>APR | 51                                       | 15                                                       | 3.4                                                  | 9.8                                          | 2.7                                                 | 17                                                             | 28                                            | 13                                                  | .20                                                |
| 05<br>MAY | 29                                       | 7.9                                                      | 2.2                                                  | 5.0                                          | 2.1                                                 | 7.0                                                            | 20                                            | 9.3                                                 | . 10                                               |
| 31        | 44                                       | 12                                                       | 3.4                                                  | 6.6                                          | 2.4                                                 | 15                                                             | 25                                            | 12                                                  | .20                                                |
|           | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED | NITRO-<br>GEN,<br>NITRITE<br>TOTAL<br>(MG/L          | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L  | NITRO-<br>GEN,<br>AMMONIA<br>TOTAL<br>(MG/L         | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L     | NITRO-<br>GEN,<br>TOTAL<br>(MG/L              | PHOS-<br>PHATE,<br>TOTAL<br>(MG/L                   | CARBON,<br>ORGANIC<br>TOTAL<br>(MG/L               |
| DATE      | SI02)                                    | (MG/L)                                                   | AS N)                                                | AS N)                                        | AS N)                                               | AS N)                                                          | AS N)                                         | AS PO4)                                             | AS C)                                              |
| FEB       |                                          |                                                          |                                                      |                                              |                                                     |                                                                |                                               |                                                     |                                                    |
| 01<br>APR | 10                                       | 103                                                      | .020                                                 | 1.20                                         | .580                                                | 1.8                                                            | 3.0                                           | • 58                                                | 3.7                                                |
| 05<br>MAY | 5.6                                      | 67                                                       | .020                                                 | .700                                         | . 140                                               | • 75                                                           | 1.5                                           | .76                                                 | 6.9                                                |
| 31        | 8.4                                      | 108                                                      | .030                                                 | 1.30                                         | . 150                                               | • 95                                                           | 2.3                                           | 1.20                                                | 8.9                                                |
|           |                                          |                                                          |                                                      |                                              |                                                     |                                                                |                                               |                                                     |                                                    |

### 01464515 DOCTORS CREEK AT ALLENTOWN, NJ

LOCATION.--Lat 40°10'37", long 74°35'57", Monmouth County, Hydrologic Unit 02040201, at bridge on Breza Road in Allentown, and 0.8 mi downstream from Conines Millpond dam.

DRAINAGE AREA . -- 17.4 mi2.

### WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

| DA T       | 'E        | TIME                            | FL<br>INS<br>TAN | EAM- COW, COTAN- DEOUS A                                           | NCE                                    | ARD                                      | TEMPER-<br>ATURE<br>(DEG C) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)                 | OXYGE<br>DIS<br>SOLV<br>(PER<br>CEN<br>SATU<br>ATIO | DEM ED BI CH T IC                           | AND, CO- FEM- FAL, DAY B                            | OLI-<br>ORM,<br>ECAL,<br>EC<br>ROTH<br>MPN) | STREP-<br>TOCOCCI<br>FECAL<br>(MPN) |
|------------|-----------|---------------------------------|------------------|--------------------------------------------------------------------|----------------------------------------|------------------------------------------|-----------------------------|-----------------------------------------------------|-----------------------------------------------------|---------------------------------------------|-----------------------------------------------------|---------------------------------------------|-------------------------------------|
| FEB        |           |                                 |                  |                                                                    |                                        |                                          |                             |                                                     |                                                     |                                             |                                                     |                                             |                                     |
| 08.        | ••        | 1000                            |                  | 29                                                                 | 165                                    | 7.2                                      | 1.5                         | 13.6                                                |                                                     | 97                                          | 1.0                                                 | 5400                                        | 9200                                |
| 14.<br>JUN | ••        | 1030                            |                  | 57                                                                 | 138                                    | 7.4                                      | 6.5                         | 10.5                                                |                                                     | 85                                          | 0.9                                                 | 50                                          | 230                                 |
| 13.<br>JUL | ••        | 1430                            |                  | 16                                                                 | 162                                    | 7.2                                      | 24.5                        | 7.7                                                 |                                                     |                                             | 2.4                                                 | 1700                                        | 200                                 |
| 28.<br>AUG | ••        | 1345                            |                  | 12                                                                 | 160                                    | 7.4                                      | 24.5                        | 6.9                                                 |                                                     | 82                                          | 1.6                                                 | 50                                          | 200                                 |
| 11.        |           | 1215                            |                  | 7.5                                                                | 195                                    | 7.0                                      | 23.5                        | 4.2                                                 |                                                     | 49                                          | 6.0                                                 | <200                                        | <200                                |
|            | DA TE     | HAR<br>NES<br>(MG<br>AS<br>CAC  | S<br>/L          | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)                       | MAGNI<br>SIUI<br>DIS<br>SOLVI<br>(MG/I | M, SODIU<br>- DIS-<br>ED SOLVE<br>L (MG/ | DI SOL                      | UM, LINI<br>S- LA<br>VED (MC<br>/L AS               | TY S<br>AB<br>G/L<br>S                              | ULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>S SO4) | CHLO-<br>RIDE,<br>DIS-<br>SOLVEI<br>(MG/L<br>AS CL) | (MG                                         | E,<br>S-<br>VED<br>/L               |
|            | FEB<br>08 |                                 | 51               | 12                                                                 | 5.                                     | 0 5.                                     | 8 3                         | .1 17                                               |                                                     | 30                                          | 16                                                  |                                             | .20                                 |
|            | 14<br>JUN |                                 | 41               | 9.6                                                                | 4.                                     | 2 4.                                     | 6 3                         | .1 11                                               |                                                     | 24                                          | 13                                                  |                                             | .20                                 |
|            | 13<br>JUL |                                 | 63               | 14                                                                 | 6.                                     | 7 7.                                     | 2 2                         | .6 24                                               |                                                     | 23                                          | 14                                                  |                                             | .20                                 |
|            | 28<br>AUG |                                 | 56               | 13                                                                 | 5.                                     | 7 5.                                     | 5 3                         | .3 33                                               |                                                     | 19                                          | 17                                                  |                                             | . 30                                |
|            | 11        |                                 | 62               | 15                                                                 | 6.                                     | 0 9.                                     | 0 4                         | • 3 32                                              |                                                     | 16                                          | 17                                                  |                                             | . 30                                |
|            | DATE      | SILI<br>DIS<br>SOL<br>(MG<br>AS | VE D             | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L) | GEN<br>NITRI<br>TOTA                   | GENTE NO2+N<br>L TOTA<br>L (MG/          | GE O3 AMMO L TOT L (MG      | RO- GEN,<br>N, MONI<br>NIA ORGA<br>AL TOI<br>/L (MO | IA +<br>ANIC<br>TAL                                 | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)   | PHOS-<br>PHATE,<br>TOTAL<br>(MG/L<br>AS PO4)        | TOT<br>(MG                                  | NIĆ<br>Al<br>/L                     |
|            | FEB<br>08 |                                 | 7.7              | 98                                                                 | .0                                     | 20 1.3                                   | 30 .                        | 400                                                 | .62                                                 | 1.9                                         | . 39                                                | ) 1                                         | . 8                                 |
|            | 14<br>JUN |                                 | 6.2              | 83                                                                 | .0                                     | 20 1.5                                   |                             | 390                                                 | . 82                                                | 2.3                                         | • 33                                                | 3 7                                         | • 3                                 |
|            | 13<br>JUL |                                 | 3.7              | 95                                                                 | .0                                     | 40 .9                                    | . 000                       | 890                                                 | 1.1                                                 | 2.0                                         | 1.20                                                | )                                           |                                     |
|            | 28<br>AUG |                                 | 9.2              | 101                                                                | .0                                     | 60 .5                                    | . 00                        | 640 E                                               | 1.6                                                 |                                             | .61                                                 | 5                                           | . 4                                 |
|            | 11        | . 1                             | 0                | 111                                                                | . 1                                    | 90 .7                                    | 700 2.                      | 30 3                                                | 3.0                                                 | 3.7                                         | 2.2                                                 | 5                                           | . 4                                 |

### 01464522 DOCTORS CREEK AT ROUTE 130 NEAR YARDVILLE, NJ

LOCATION.--Lat 40°10'31", long 74°40'33", Mercer County, Hydrologic Unit 02040201, at bridge on U.S. Route 130, 0.3 mi upstream from mouth, 0.4 mi northwest of Groveville, 0.6 mi southwest of Yardville, and 2.5 mi southwest of Haines Corner.

DRAINAGE AREA. -- 25.8 mi2.

### WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1976 to May 1983 (discontinued).

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

| DATE       | CI<br>CC<br>DU<br>TIME AM                        | JCT- (ST                                                           | RD A                                                 | IPER- I                                              | GEN,<br>DIS-<br>DLVED                                | DIS- DE SOLVED B (PER- C CENT I SATUR- 5 | IO- FO<br>HEM- FI<br>CAL, I<br>DAY BI         | EC TOC                                              | REP- N<br>COCCI (<br>ECAL                          | IARD-<br>IESS<br>MG/L<br>AS<br>ACO3) |
|------------|--------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------|-----------------------------------------------|-----------------------------------------------------|----------------------------------------------------|--------------------------------------|
| FEB        |                                                  |                                                                    |                                                      |                                                      |                                                      |                                          |                                               |                                                     |                                                    |                                      |
| 01<br>APR  | 1015                                             | 205                                                                | 6.7                                                  | 3.0                                                  | 13.6                                                 | 100                                      | • 5                                           | 280                                                 | 46                                                 | 60                                   |
| 05<br>MAY  | 1015                                             | 151                                                                | 6.4                                                  | 11.0                                                 | 10.8                                                 | 98                                       | 2.7                                           | 50                                                  | 49                                                 | 43                                   |
| 31         | 1030                                             | 157                                                                |                                                      | 17.5                                                 | 9.2                                                  | 98                                       | 3.9                                           | 1300                                                | 1100                                               | 54                                   |
| DA TE      | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)     | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)               | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)         | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)  | ALKA-<br>LINITY<br>LAB<br>(MG/L<br>AS<br>CACO3       | SULFIDE<br>TOTAL<br>(MG/L                | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL) | FLUO-<br>RIDE,<br>DIS-<br>SOLVEI<br>(MG/L<br>AS F) | )                                    |
| FEB        |                                                  |                                                                    |                                                      |                                                      |                                                      |                                          |                                               |                                                     |                                                    |                                      |
| 01<br>A PR | . 14                                             | 6.1                                                                | 10                                                   | 2.8                                                  | 14                                                   |                                          | 29                                            | 20                                                  | . 20                                               | )                                    |
| 05<br>MAY  | 9.8                                              | 4.6                                                                | 6.0                                                  | 2.9                                                  | 9.0                                                  |                                          | 25                                            | 14                                                  | . 20                                               | )                                    |
| 31         | . 12                                             | 5.9                                                                | 6.7                                                  | 2.5                                                  | 18                                                   | <.5                                      | 25                                            | 15                                                  | . 20                                               | )                                    |
| DATE       | SILICA<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2) | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L) | NITRO-<br>GEN,<br>NITRITE<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>AMMONIA<br>TOTAL<br>(MG/L<br>AS N) | MONÍA +<br>A ORGANIC<br>TOTAL<br>(MG/L   | NITRO-                                        | PHOS-<br>PHATE,<br>TOTAL<br>(MG/L<br>AS PO4)        | CARBON,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS C)      |                                      |
| FEB 01     | 7.9                                              | 110                                                                | .020                                                 | 2.00                                                 | . 37                                                 | 0 .51                                    | 2.5                                           | . 28                                                | 2.3                                                |                                      |
| APR        |                                                  |                                                                    |                                                      |                                                      |                                                      |                                          |                                               |                                                     |                                                    |                                      |
| 05<br>MAY  | 6.3                                              | 79                                                                 | .030                                                 | 1.80                                                 | . 12                                                 | 0 .60                                    | 2.4                                           | . 52                                                | 3.6                                                |                                      |
| 31         | 6.5                                              | 130                                                                | .030                                                 | 1.60                                                 | . 05                                                 | 0 .74                                    | 2.3                                           | . 44                                                | 6.4                                                |                                      |

01464522 DOCTORS CREEK AT ROUTE 130 NEAR YARDVILLE, NJ--Continued
WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

|     | DA TE | TIME                     | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL) | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS) | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE) | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B) | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD) | CHRO-MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU) |
|-----|-------|--------------------------|-----------------------------------------------------|-------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------|
|     | MAY   |                          |                                                     |                                     |                                                                 |                                                       |                                                         |                                                            |                                                         |
|     | 31    | 1030                     | 150                                                 | 2                                   | <10                                                             | 60                                                    | 100 100                                                 | 10                                                         | 8                                                       |
|     |       |                          |                                                     | MANGA-                              |                                                                 |                                                       |                                                         |                                                            |                                                         |
|     |       | IRON,<br>TOTAL<br>RECOV- | LEAD,<br>TOTAL<br>RECOV-                            | NESE,<br>TOTAL<br>RECOV-            | MERCURY<br>TOTAL<br>RECOV-                                      | NICKEL,<br>TOTAL<br>RECOV-                            | SELE-<br>NIUM,                                          | ZINC,<br>TOTAL<br>RECOV-                                   |                                                         |
| 11. |       | ERABLE<br>(UG/L          | ERABLE<br>(UG/L                                     | ERABLE<br>(UG/L                     | ERABLE<br>(UG/L                                                 | ERABLE<br>(UG/L                                       | TOTAL<br>(UG/L                                          | ERABLE<br>(UG/L                                            | PHENOLS<br>TOTAL                                        |
|     | DATE  | AS FE)                   | AS PB)                                              | AS MN)                              | AS HG)                                                          | AS NI)                                                | AS SE)                                                  | AS ZN)                                                     | (UG/L)                                                  |
| 114 | MAY   |                          |                                                     |                                     |                                                                 |                                                       | - 1 12.39                                               |                                                            |                                                         |
|     | 31    | 1900                     | 16                                                  | 90                                  | <.1                                                             | 7                                                     | <1                                                      | 30                                                         | <1                                                      |

## 01464590 ASSISCUNK CREEK NEAR BURLINGTON, NJ

LOCATION.--Lat 40°04'19", long 74°47'57", Burlington County, Hydrologic Unit 02040201, at bridge on Old York Road, 1.4 mi southwest of Bustleton, 2.8 mi northeast of Deacons, 3.2 mi east of Burlington, and 4.2 mi upstream from mouth.

DRAINAGE AREA . -- 37.4 mi2.

## WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1976 to May 1983 (discontinued).

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

| DATE             | CO<br>CO<br>DI<br>TIME AN                         | JCT- (ST<br>NCE A                                                  | RD A                                                 | MPER- I                                              | YGEN, ( DIS- DLVED S                                 |                                   | BIO-<br>CHEM-<br>ICAL,<br>5 DAY | EC TO<br>BROTH F          | STREP-<br>DCOCCI<br>FECAL<br>(MPN) | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3) |
|------------------|---------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-----------------------------------|---------------------------------|---------------------------|------------------------------------|----------------------------------------|
| JAN              |                                                   |                                                                    |                                                      |                                                      |                                                      |                                   |                                 |                           |                                    |                                        |
| 31<br>APR        | 1300                                              | 190                                                                |                                                      | 3.0                                                  | 13.2                                                 | 98                                | 1.5                             | 23                        | 170                                | 58                                     |
| 04<br>MAY        | 1345                                              | 97                                                                 | 6.6                                                  | 12.0                                                 | 8.4                                                  | 78                                | 3.9                             | 490                       | 1600                               | 32                                     |
| 31               | 0800                                              | 149                                                                |                                                      | 17.5                                                 | 7.7                                                  | 82                                | 3.9                             | 1300                      | 2300                               | 53                                     |
| DATE             | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)      | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)               | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)         | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)  | ALKA-<br>LINITY<br>LAB<br>(MG/L<br>AS<br>CACO3)      | SULFIC<br>TOTAL<br>(MG/L<br>AS S) | SOLVE<br>(MG/L                  | DIS-<br>D SOLVEI<br>(MG/L | (MG/                               | ED<br>L                                |
| JAN<br>31<br>APR | 14                                                | 5.5                                                                | 6.3                                                  | 3.5                                                  | 7.0                                                  |                                   | - 37                            | 17                        |                                    | 20                                     |
| 04<br>MAY        | 7.6                                               | 3.2                                                                | 3.4                                                  | 3.3                                                  | 9.0                                                  | -                                 | - 23                            | 6.6                       |                                    | 20                                     |
| 31               | 12                                                | 5.5                                                                | 5.0                                                  | 3.2                                                  | 15                                                   | <.                                | 5 31                            | 12                        |                                    | 20                                     |
| DATE             | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2) | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L) | NITRO-<br>GEN,<br>NITRITE<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>AMMONIA<br>TOTAL<br>(MG/L<br>AS N) | MONIA                             | + NITRO C GEN, TOTAL (MG/L      | PHATE,<br>TOTAL<br>(MG/L  | TOTA                               | IIĊ<br>L<br>L                          |
| JAN<br>31<br>APR | 15                                                | 117                                                                | <.010                                                | 1.30                                                 | . 250                                                | .5                                | 1.9                             | . 25                      | 5 1.                               | 8                                      |
| 04<br>MAY        | 7.0                                               | 72                                                                 | .030                                                 | .600                                                 | E.090                                                | 1.1                               | 1.7                             | . 79                      | 7.                                 | 0                                      |
| 31               | 12                                                | 127                                                                | .020                                                 | 1.00                                                 | .130                                                 | . 8                               | 10 1.8                          | .67                       | 9.                                 | 0                                      |

# 01464590 ASSISCUNK CREEK NEAR BURLINGTON, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

| DA TE  | TIME                     | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL) | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS) | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE) | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B) | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD) | CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU) |
|--------|--------------------------|-----------------------------------------------------|-------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|----------------------------------------------|---------------------------------------------------------|
| MAY    |                          |                                                     |                                     |                                                                 |                                                       |                                                         | To report                                    | NO. 41                                                  |
| 31     | 0800                     | 130                                                 | 1                                   | <10                                                             | 70                                                    | 1                                                       | 10                                           | - 6                                                     |
|        |                          |                                                     | MANGA-                              |                                                                 |                                                       |                                                         |                                              |                                                         |
|        | IRON,<br>TOTAL<br>RECOV- | LEAD,<br>TOTAL<br>RECOV-                            | NESE,<br>TOTAL<br>RECOV-            | MERCURY<br>TOTAL<br>RECOV-                                      | NICKEL,<br>TOTAL<br>RECOV-                            | SELE-<br>NIUM,                                          | ZINC,<br>TOTAL<br>RECOV-                     |                                                         |
| 41.3.1 | ERABLE                   | ERABLE                                              | ERABLE                              | ERABLE                                                          | ERABLE                                                | TOTAL                                                   | ERABLE                                       | PHENOLS                                                 |
|        | (UG/L                    | (UG/L                                               | (UG/L                               | (UG/L                                                           | (UG/L                                                 | (UG/L                                                   | (UG/L                                        | TOTAL                                                   |
| DATE   | AS FE)                   | AS PB)                                              | AS MN)                              | AS HG')                                                         | AS NI)                                                | AS SE)                                                  | AS ZN)                                       | (UG/L)                                                  |
| MAY    |                          |                                                     |                                     |                                                                 |                                                       | VE CONTRA                                               |                                              |                                                         |
| 31     | 3700                     | 12                                                  | 120                                 | . 1                                                             | 7                                                     | <1                                                      | 30                                           | <1                                                      |

### 01464598 DELAWARE RIVER AT BURLINGTON, NJ

LOCATION.--Lat 40°04'42", long 74°52'28", Burlington County, Hydrologic Unit 02040201, on left bank at the intake canal of the Public Service Electric and Gas Company, 0.3 mi downstream from Burlington-Bristol Bridge, 1.4 mi downstream from Assiscunk Creek, and at mile 117.54.

#### TIDE ELEVATION DATA

DRAINAGE AREA. -- 7,160 mi2.

PERIOD OF RECORD.--July 1964 to current year. March 1921 to July 1926, January 1931 to November 1939, August 1951 to June 1954, July 1957 to June 1964, in files of Philadelphia District Corps of Engineers.

REVISED RECORDS .-- WDR NJ-76-1: 1973(m) .

GAGE.--Water-stage recorder. Datum of gage is -12.90 ft National Geodetic Vertical Datum of 1929. Prior to May 20, 1971, water-stage recorder at site 0.7 mi upstream at same datum. Gage-height record converted to elevation above or below (-) National Geodetic Vertical Datum of 1929 for publication.

REMARKS.--Elevation records good. Summaries for months with short periods of no gage-height record have been estimated with little or no loss of accuracy unless otherwise noted. Some periods cannot be estimated and are noted by dash (--) lines. Missing or doubtful record on Dec. 26-31, Jan. 1-5, Feb. 1-Apr. 4, July 19-31, Sept. 11-31.

EXTREMES FOR PERIOD OF RECORD.--Maximum elevation, 8.74 ft Oct. 25, 1980; minimum, -6.60 ft Feb. 26, 1967.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum elevation known, 10.8 ft Aug. 20, 1955, from high-water mark at site 1.4 mi upstream; minimum, -9.1 ft Dec. 31, 1962, at present site.

EXTREMES FOR CURRENT YEAR. -- Maximum elevation recorded, 7.33 ft Apr. 17; minimum recorded, -3.72 ft Jan. 20.

Summaries of tide elevations during current year are as follows:

#### TIDE ELEVATIONS, IN FEET, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

|             |           | OCT   | NOV   | DEC   | JAN   | FEB | MAR | APR   | MAY   | JUN   | JUL   | A UG  | SEP  |
|-------------|-----------|-------|-------|-------|-------|-----|-----|-------|-------|-------|-------|-------|------|
| Maximum     | Elevation | 6.85  | 6.34  | 6.40  | 6.63  |     |     | 7.33  | 6.85  | 6.63  | 6.03  | 6.42  | 6.11 |
| high tide   | Date      | 10    | 4     | 19    | 29    |     |     | 17    | 27    | 11    | 11    | 11    | 7    |
| Minimum     | Elevation | -3.40 | -3.65 | -3.64 | -3.72 |     |     | -2.07 | -3.24 | -3.19 | -3.31 | -2.75 |      |
| low tide    | Date      | 17    | 13    | 9     | 20    |     |     | 7     | 9     | 24    | 9     | 2,3   |      |
| Mean high t | ide       | 5.18  | 4.64  | 4.80  | 4.49  |     |     | 6.01  | 5.51  | 5.45  |       | 5.13  |      |
| Mean water  | level     | 1.71  | 1.14  | 1.37  | 1.17  |     |     | 2.63  | 1.86  | 1.70  |       | 1.61  |      |
| Mean low ti | .de       | -2.05 | -2.56 | -2.33 | -2.50 |     |     | -0.92 | -1.97 | -2.31 |       | -2.35 |      |

## 01465850 SOUTH BRANCH RANCOCAS CREEK AT VINCENTOWN, NJ

LOCATION.--Lat 39°56'22", long 74°45'50", Burlington County, Hydrologic Unit 02040202, at bridge on Lumberton-Vincentown Road at Vincentown, 2.9 mi southeast of Lumberton, and 3.1 mi upstream from Southwest Branch.

DRAINAGE AREA .-- 64.5 mi2.

## WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1925, 1959-62, 1975 to current year.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

| DA T              | î E        | TIME                                   | STRE.<br>FLOI<br>INST.<br>TANE<br>(CF: | AM- CO<br>W, CO<br>AN- DO<br>OUS AI                                | NCE                                                | PH<br>STAND-<br>ARD<br>NITS)   | TEMPER-<br>ATURE<br>(DEG C)                         | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)              | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION) | OXYGEN DEMAND, BIO- CHEM- ICAL, DAY (MG/L)    | COLI-<br>FORM,<br>FECAL,<br>EC<br>BROTH<br>(MPN)    | STREP-<br>TOCOCCI<br>FECAL<br>(MPN)                |
|-------------------|------------|----------------------------------------|----------------------------------------|--------------------------------------------------------------------|----------------------------------------------------|--------------------------------|-----------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------|----------------------------------------------------|
| FEB<br>02.<br>MAR |            | 1230                                   |                                        | 64                                                                 | 98                                                 | 5.8                            | 7.0                                                 | 11.7                                             | 97                                                             |                                               | 49                                                  | 15                                                 |
| 17.               |            | 1000                                   |                                        | 112                                                                | 73                                                 | 4.9                            | 9.0                                                 | 10.1                                             | 85                                                             | 1.1                                           | 79                                                  | 220                                                |
| JUN<br>06.<br>JUL |            | 0900                                   |                                        | 102                                                                | 59                                                 |                                | 20.5                                                | 6.6                                              | 7.4                                                            | 6.9                                           | 40                                                  |                                                    |
| 26.<br>AUG        |            | 1315                                   |                                        | 31                                                                 | 86                                                 | 6.5                            | 24.0                                                | 6.3                                              | 75                                                             | 1.1                                           | 330                                                 | 1100                                               |
| 04.<br>SEP        | ••         | 0945                                   |                                        | 16                                                                 | 85                                                 | 6.4                            | 25.5                                                | 5.7                                              | 70                                                             | 1.1                                           | 50                                                  | 110                                                |
| 20.               | •••        | 0845                                   |                                        | 22                                                                 |                                                    | 6.3                            | 21.0                                                | 7.2                                              | 81                                                             | • 9                                           | 14                                                  | 460                                                |
| DA 7              | rr         | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3) | CALC<br>DIS<br>SOL<br>(MG<br>AS        | IUM :<br>- I<br>VED SO<br>/L ()                                    | DIS-<br>OLVED S                                    | ODIUM, DIS- OLVED (MG/L AS NA) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K) | ALKA-<br>LINITY<br>LAB<br>(MG/L<br>AS<br>CACO3)  | SULFIDE<br>TOTAL<br>(MG/L<br>AS S)                             | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F) |
| FEB               | L          | CACCS                                  | A.S                                    | CA) A                                                              | S MG)                                              | AS NA)                         | AS K)                                               | CHCOS                                            | AS 3)                                                          | AS 304)                                       | AS CL)                                              | NO 17                                              |
| O2.               |            | 25                                     | 6                                      | • 9                                                                | 1.8                                                | 4.3                            | 1.4                                                 | 3.0                                              |                                                                | 19                                            | 8.0                                                 | .20                                                |
| 17.<br>JUN        |            | 19                                     | . 5                                    | . 0                                                                | 1.5                                                | 3.3                            | 1.0                                                 | 1.0                                              |                                                                | 21                                            | 6.2                                                 | <.10                                               |
| 06.<br>JUL        | •••        | 17                                     | 5                                      | .0                                                                 | 1.1                                                | 3.1                            | 1.0                                                 | 4.0                                              | <.5                                                            | 14                                            | 6.4                                                 | .10                                                |
| 26.<br>AUG        |            | 22                                     | 1                                      | . 4                                                                | 5.0                                                | 1.7                            | 6.0                                                 | 6.0                                              |                                                                | 18                                            | 7.6                                                 | .10                                                |
| 04.               |            | 24                                     | 7                                      | • 3                                                                | 1.4                                                | 5.3                            | 1.6                                                 | 7.0                                              |                                                                | 18                                            | 7.8                                                 | <.10                                               |
| SEP<br>20.        |            | 21                                     | 5                                      | . 9                                                                | 1.6                                                | 4.5                            | 1.9                                                 | 8.0                                              | <.5                                                            | 18                                            | 7.1                                                 | .10                                                |
|                   | DAT        | DI:<br>SO:<br>(MC<br>A                 | ICA,<br>S-<br>LVED<br>G/L              | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L) | NITRO<br>GEN,<br>NITRIT<br>TOTAL<br>(MG/L<br>AS N) | GE<br>E NO2+<br>TOT<br>(MG     | N, GE<br>NO3 AMMO<br>AL TOT                         | RO- GEN,<br>N, MONI<br>NIA ORGA<br>TOI<br>KL (MO | IA + NIT<br>INIC GE<br>TAL TOT<br>G/L (MC                      | J/L (MG/                                      | TE, ORGAL<br>L TOTA<br>L (MG/                       | NIC<br>AL<br>'L                                    |
|                   | FEB<br>02. |                                        | 5.5                                    | 63                                                                 | <.01                                               | 0.                             | 300                                                 | 130                                              | .54                                                            | .84                                           | 15 5                                                | . 3                                                |
|                   | MAR<br>17. |                                        | 4.0                                    | 64                                                                 | <.01                                               | 0.                             | 300 <.                                              | 050                                              | .50                                                            | .80                                           | 12 11                                               |                                                    |
|                   | JUN<br>06. |                                        | 5.2                                    | 72                                                                 | <.01                                               | 0.                             | 300 .                                               | 090                                              | .95 1                                                          | .3                                            | 98 15                                               |                                                    |
|                   | JUL<br>26. |                                        | 4.1                                    | 72                                                                 | .02                                                | 0.                             | 400 .                                               | 100                                              | .84 1                                                          | .1 .                                          | 40 11                                               |                                                    |
|                   | AUG<br>04. |                                        | 4.7                                    | 59                                                                 | . 02                                               | 0.                             | 600 .                                               | 120                                              | .87 1                                                          | .5                                            | 13                                                  |                                                    |
|                   | SEP<br>20. |                                        | 4.8                                    | 61                                                                 | <.01                                               | 0.                             | 400 .                                               | 110                                              | .72 1                                                          | .1 .                                          | 52 2                                                | . 8                                                |

# 01465850 SOUTH BRANCH RANCOCAS CREEK AT VINCENTOWN, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

| DA TE            | TIME                                                                | NITRO-<br>GEN, NH4<br>+ ORG.<br>TOT IN<br>BOT MAT<br>(MG/KG<br>AS N) | CARBON,<br>INOR-<br>GANIC,<br>TOT IN<br>BOT MAT<br>(G/KG<br>AS C)    | CARBON,<br>INORG +<br>ORGANIC<br>TOT. IN<br>BOT MAT<br>(G/KG<br>AS C) | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)                  | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)                               | ARSENIC<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS AS) | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE)      | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)              | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD)             | CADMIUM<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CD) |
|------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|
| JUN<br>06<br>SEP | 0900                                                                |                                                                      | -                                                                    |                                                                       | 340                                                                  | 2                                                                 |                                                                     | <10                                                                  | 140                                                                | <1<1                                                                | 10<br>1 + 12 1                                                       |
| 20               | 0845                                                                | 820                                                                  | . 4                                                                  | 6.1                                                                   | 40                                                                   | 2                                                                 | <1                                                                  | <10                                                                  | 30                                                                 | <1                                                                  | 2                                                                    |
| DATE             | CHRO-MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR)          | CHRO-MIUM,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)       | COBALT,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CO) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU)               | COPPER,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CU) | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE)             | IRON,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS FE)  | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB)                | LEAD,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN)     | MANGA-<br>NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  |
| JUN<br>06<br>SEP | 20                                                                  |                                                                      |                                                                      | 5                                                                     |                                                                      | 2100                                                              |                                                                     | 1                                                                    |                                                                    | 20                                                                  |                                                                      |
| 20               | 10                                                                  | 3                                                                    | 10                                                                   | 7                                                                     | 0                                                                    | 1900                                                              | 1300                                                                | 4                                                                    | 10                                                                 | 50                                                                  | 6                                                                    |
| DATE             | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG)             | MERCURY<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/L<br>AS HG) | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI)              | NICKEL,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS NI)  | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE)                           | SELE-<br>NIUM,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN)               | ZINC,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS ZN)   | PHENOLS<br>TOTAL<br>(UG/L)                                         | PCB,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)            | PCN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             |
| JUN 06           | 2                                                                   |                                                                      |                                                                      |                                                                       |                                                                      |                                                                   |                                                                     |                                                                      |                                                                    |                                                                     |                                                                      |
| SEP              | • 3                                                                 |                                                                      | 6                                                                    |                                                                       | <1                                                                   |                                                                   | 30                                                                  |                                                                      | 2                                                                  |                                                                     |                                                                      |
| 20               | <.1                                                                 | <.01                                                                 | 1                                                                    | <10                                                                   | <1                                                                   | <1                                                                | 60                                                                  | 20                                                                   | 3                                                                  | <1                                                                  | <1.0                                                                 |
| DATE             | ALDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)         | CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)                     | DDD,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DDE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)              | DDT,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)                  | DI-<br>ELDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | ENDO-<br>SULFAN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | ENDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)        | ETHION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)         | HEPTA-<br>CHLOR,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) |
| JUN<br>06<br>SEP |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                   |                                                                     |                                                                      |                                                                    |                                                                     |                                                                      |
| 20               | <.1                                                                 | <1.0                                                                 | 2.3                                                                  | .2                                                                    | <.1                                                                  | <.1                                                               | <.1                                                                 | <.1                                                                  | <.1                                                                | <.1                                                                 | <.1                                                                  |
| DATE             | HEPTA-<br>CHLOR<br>EPOXIDE<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG) | LINDANE<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)          | MALA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | METH-<br>OXY-<br>CHLOR,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)      | METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)                     | METHYL<br>TRI-<br>THION,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG) | MIREX,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)          | PARA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | PER-<br>THANE<br>IN<br>BOTTOM<br>MATERIL<br>(UG/KG)                | TOXA-<br>PHENE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)                     |
| JUN<br>06        |                                                                     | 7                                                                    |                                                                      |                                                                       |                                                                      |                                                                   |                                                                     | 4                                                                    |                                                                    |                                                                     | 22-1                                                                 |
| SEP              |                                                                     |                                                                      |                                                                      | 7.                                                                    |                                                                      |                                                                   |                                                                     |                                                                      | 44 00                                                              |                                                                     |                                                                      |
| 20               | <.1                                                                 | <.1                                                                  | <.1                                                                  | <.1                                                                   | <.1                                                                  | <.1                                                               | <.1                                                                 | <.1                                                                  | <1.00                                                              | <10                                                                 | <.1                                                                  |

## 01465970 NORTH BRANCH RANCOCAS CREEK AT BROWNS MILLS, NJ

LOCATION.--Lat 39°58'04", long 74°34'48", Burlington County, Hydrologic Unit 02040202, at bridge on Lakehurst Road at outflow of Mirror Lake in Browns Mills, 1.5 mi north of Browns Mills Junction, and 2.0 mi northwest of outflow of Country Lake.

DRAINAGE AREA. -- 27.4 mi2.

## WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1975 to current year.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

|                   | TIME                         | STREAM-<br>FLOW,<br>INSTAN-<br>TANEOUS | SPE -<br>CIFIC<br>CON -<br>DUCT-<br>ANCE           | PH<br>(STAND-<br>ARD               | ATURE                                | SOL                                    | GEN, (IS-                                                  | DIS- DI<br>OLVED I<br>PER- C<br>CENT<br>ATUR- 5 | XYGEN<br>EMAND,<br>BIO-<br>CHEM-<br>ICAL,<br>5 DAY | COLI-<br>FORM,<br>FECAL,<br>EC<br>BROTH   | STREP-<br>TOCOCCI<br>FECAL                |
|-------------------|------------------------------|----------------------------------------|----------------------------------------------------|------------------------------------|--------------------------------------|----------------------------------------|------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------|-------------------------------------------|-------------------------------------------|
| DATE              |                              | (CFS)                                  | (UMHOS)                                            | UNITS)                             | (DEG C                               | ) (M                                   | G/L) A                                                     | TION)                                           | (MG/L)                                             | (MPN)                                     | (MPN)                                     |
| JAN               |                              |                                        |                                                    |                                    |                                      |                                        |                                                            |                                                 |                                                    |                                           |                                           |
| 24<br>APR         | 1030                         | 36                                     | 47                                                 | 4.7                                | 7 3.                                 | 0 '                                    | 12.7                                                       | 94                                              | .6                                                 | <2                                        | 6                                         |
| 04                | 1130                         | 160                                    | 49                                                 | 4.1                                | 10.                                  | 0                                      | 10.9                                                       | 96                                              | 3.0                                                | <20                                       | 110                                       |
| MAY<br>24         | 1030                         | 58                                     | 40                                                 |                                    | - 18.                                | 0                                      | 8.4                                                        | 90                                              | 1.8                                                | 240                                       | 350                                       |
| JUL               |                              |                                        |                                                    |                                    |                                      |                                        |                                                            |                                                 | 1.0                                                | 7 × × =                                   |                                           |
| 26<br>AUG         | 1100                         | 26                                     | 45                                                 | 5.1                                | 7 25.                                | 0                                      | 6.2                                                        | 75                                              | 1.1                                                | 5                                         | 48                                        |
| 11                | 1330                         | 14                                     | 54                                                 | 6.0                                | 26.                                  | 0                                      | 5.9                                                        | 73                                              | 1.6                                                | 5                                         | 8                                         |
| SEP 20            | 1115                         | 24                                     | 11.4                                               | -                                  |                                      |                                        |                                                            |                                                 |                                                    |                                           | 250                                       |
| 20                | 1115                         | 21                                     | 41                                                 | 5.9                                | 9 22.                                | 0                                      | 8.0                                                        | 92                                              |                                                    | 79                                        | 350                                       |
| DATE              | HARD-<br>NESS<br>(MG/L<br>AS | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L     | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L         | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L | DIS-<br>SOLVE<br>(MG/L               | , LINI<br>D (MC<br>AS                  | AB SUI                                                     | LFIDE I<br>OTAL :                               | ULFATE DIS- SOLVED                                 | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L |
| DATE              | CACO3)                       | AS CA)                                 | AS MG)                                             | AS NA                              | AS K)                                | CAC                                    | CO3) A                                                     | S S) A                                          | S SO4)                                             | AS CL)                                    | AS F)                                     |
| JAN<br>24<br>APR  | 10                           | 2.2                                    | 1.1                                                | 2.9                                | . 8                                  | 0 1.                                   | .0                                                         |                                                 | 12                                                 | 4.9                                       | <.10                                      |
| 04<br>MAY         | 8                            | 2.0                                    | . 84                                               | 2.4                                | . 6                                  | 0 <1.                                  | . 0                                                        |                                                 | 13                                                 | 4.0                                       | <.10                                      |
| 24                | 11                           | 2.7                                    | 1.1                                                | 2.2                                | .8                                   | 0 2.                                   | . 0                                                        |                                                 | 10                                                 | 3.2                                       | <.10                                      |
| JUL<br>26         | 9                            | 2.1                                    | .90                                                | 3.3                                | . 8                                  | 0 3.                                   | . 0                                                        |                                                 | 10                                                 | 4.8                                       | <.10                                      |
| AUG<br>11         | 11                           | 2.5                                    | 1.1                                                | 3.4                                | . 9                                  | 0 4.                                   | . 0                                                        |                                                 | 9.1                                                | 5.4                                       | <.10                                      |
| SEP<br>20         | 9                            | 2.1                                    | 1.0                                                | 2.7                                | . 9                                  | 0 6.                                   | 0                                                          | <.5                                             | 10                                                 | 4.7                                       | <.10                                      |
|                   | DIS<br>SOL<br>(MG<br>AS      | VED DEC                                | IDUÉ NI<br>180 GI<br>G. C NIT<br>IS- TO<br>LVED (M | EN, CRITE NO TAL TO                | GEN,<br>2+NO3 AM<br>DTAL T<br>MG/L ( | ITRO-<br>GEN,<br>MONIA<br>OTAL<br>MG/L | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L | NITRO-<br>GEN,<br>TOTAL<br>(MG/L                | PHATI<br>TOTAL<br>(MG/I                            | E, ORGA<br>L TOTA<br>L (MG                | NIC<br>AL<br>/L                           |
| DAT               | E SIO                        | 2) (MC                                 | G/L) AS                                            | N) AS                              | 3 N) A                               | S N)                                   | AS N)                                                      | AS N)                                           | AS PO                                              | 4) AS                                     | ()                                        |
| JAN<br>24.<br>APR |                              | 5.1                                    | 36 <                                               | .010                               | (.100                                | .090                                   | . 20                                                       | _                                               |                                                    | 12 4                                      | . 8                                       |
| O4.               |                              | 2.6                                    | 38 <                                               | .010                               | .060                                 | E.050                                  | . 25                                                       | .3                                              | 1 .                                                | 09 7                                      | . 6                                       |
| 24.<br>JUL        |                              | 3.1                                    | 41 <                                               | .010                               | .200                                 | . 100                                  | E.50                                                       | -                                               |                                                    | 24                                        |                                           |
| 26.<br>AUG        |                              | 4.2                                    | 30                                                 | .020                               | . 100                                | . 150                                  | . 80                                                       | . 9                                             | 0 .:                                               | 25 14                                     |                                           |
| 11.<br>SEP        |                              | 4.3                                    | 51                                                 | .010                               | . 100                                | . 150                                  | . 94                                                       | 1.0                                             |                                                    | 25 11                                     |                                           |
| 20.               |                              | 3.5                                    | 40 <                                               | .010                               | .100                                 | <.050                                  | . 48                                                       | . 5                                             | 8 .:                                               | 21 2                                      | . 8                                       |

105

# 01465970 NORTH BRANCH RANCOCAS CREEK AT BROWNS MILLS, NJ--Continued

| DA TE  | TIME                                                  | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)   | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)                             | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE) | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)   | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD) | CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR)            | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU) |
|--------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|
| SEP 20 | 1115                                                  | 30                                                    | 1                                                               | <10                                                             | 20                                                      | <1                                                      | 10                                                    | 16                                                      |
| DATE   | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG)         | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE)              | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | PHENOLS<br>TOTAL<br>(UG/L)                              |
| SEP 20 | 3100                                                  | 15                                                    | 50                                                              | <.1                                                             | 2                                                       | <1                                                      | 70                                                    | 5                                                       |

# 01466500 MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ (Hydrologic bench-mark station)

LOCATION.--Lat 39°53'05", long 74°30'20", Burlington County, Hydrologic Unit 02040202, on right bank in Lebanon State Forest, 25 ft upstream from Butterworth Road Bridge, 3.4 mi upstream from confluence with Cooper Branch, and 7.0 mi southeast of Browns Mills.

DRAINAGE AREA .-- 2.35 mi2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. --October 1953 to current year. Prior to October 1962, published as "McDonald Branch in Lebanon State Forest".

REVISED RECORDS. -- WDR NJ-82-2: Drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 117.73 ft National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark).

REMARKS.--Water-discharge records good. Gage-height record is collected above concrete control and discharge record, which includes leakage around control, is at site 785 ft downstream.

AVERAGE DISCHARGE. -- 30 years, 2.29 ft3/s, 13.46 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 35 ft<sup>3</sup>/s Aug. 25, 1958, gage height, 2.33 ft; minimum daily, 0.8 ft<sup>3</sup>/s July 6, 19, 1967.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 7.0 ft3/s and maximum(\*):

| Date               | Time         | Discharge<br>(ft³/s) | Gage height (ft) | Date   | Time | Discharge<br>(ft³/s) | Gage height (ft) |
|--------------------|--------------|----------------------|------------------|--------|------|----------------------|------------------|
| Apr. 11<br>Apr. 17 | 0645<br>0500 | 9.7<br>*10.0         | 1.82             | May 22 | 1030 | 9.4                  | 1.81             |

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

Minimum discharge, 0.93 ft3/s many days in October and November.

|                                    |                                                                    |                                                                                                                                                                                                                                                                                                                                                                       |                                   |                                   | MEÁN VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LUES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OCT                                | NOV                                                                | DEC                                                                                                                                                                                                                                                                                                                                                                   | JAN                               | FEB                               | MAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | APR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | JUN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | JUL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AUG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.1<br>1.1<br>1.1<br>1.1           | .99<br>.99<br>.98<br>.99                                           | 1.4<br>1.4<br>1.4<br>1.3                                                                                                                                                                                                                                                                                                                                              | 1.2<br>1.2<br>1.2<br>1.2<br>1.2   | 1.4<br>1.4<br>1.4<br>1.4          | 1.6<br>1.9<br>1.7<br>1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.9<br>2.6<br>4.1<br>5.2<br>4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.6<br>3.5<br>3.4<br>4.2<br>3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.7<br>3.6<br>3.4<br>3.7<br>3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.0<br>2.9<br>2.8<br>2.6<br>2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.7<br>1.7<br>1.6<br>1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.4<br>1.4<br>1.4<br>1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.0<br>1.0<br>1.0<br>1.0<br>.99    | .99<br>.98<br>.98<br>.97                                           | 1.4<br>1.4<br>1.3<br>1.3                                                                                                                                                                                                                                                                                                                                              | 1.4<br>1.3<br>1.2<br>1.2          | 1.4<br>1.6<br>1.5<br>1.5          | 1.6<br>2.3<br>2.4<br>2.9<br>2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.9<br>3.3<br>3.1<br>5.2<br>7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.5<br>3.3<br>3.2<br>3.1<br>3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.4<br>3.3<br>3.1<br>2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.7<br>2.6<br>2.5<br>2.4<br>2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.6<br>1.6<br>1.6<br>1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.4<br>1.4<br>1.3<br>1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| .99<br>1.0<br>1.0<br>1.1           | .98<br>.98<br>1.4<br>1.2                                           | 1.2<br>1.2<br>1.2<br>1.2<br>1.2                                                                                                                                                                                                                                                                                                                                       | 1.7<br>1.5<br>1.4<br>1.4          | 1.4<br>1.4<br>1.4<br>1.4          | 3.1<br>3.5<br>2.9<br>2.6<br>2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.0<br>7.5<br>5.2<br>4.6<br>4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.0<br>3.0<br>2.9<br>2.9<br>3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.9<br>2.9<br>2.9<br>2.8<br>2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.3<br>2.2<br>2.2<br>2.1<br>2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.7<br>1.9<br>1.9<br>1.8<br>1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.2<br>1.3<br>1.5<br>1.4<br>1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| .99<br>.97<br>.98<br>.98           | 1.2<br>1.1<br>1.1<br>1.1                                           | 1.6<br>1.6<br>1.5<br>1.4                                                                                                                                                                                                                                                                                                                                              | 1.4<br>1.4<br>1.3<br>1.3          | 1.4<br>1.4<br>1.5<br>1.5          | 2.2<br>2.1<br>2.7<br>3.6<br>4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.8<br>8.4<br>5.6<br>5.0<br>5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.3<br>4.8<br>4.0<br>3.5<br>3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.7<br>2.8<br>3.3<br>4.0<br>4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.0<br>1.8<br>1.8<br>1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.6<br>1.6<br>1.6<br>1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.3<br>1.4<br>1.4<br>1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.0<br>.98<br>.97<br>.97           | 1.1<br>1.1<br>1.1<br>1.1                                           | 1.3<br>1.3<br>1.3<br>1.3                                                                                                                                                                                                                                                                                                                                              | 1.3<br>1.4<br>1.4<br>1.4          | 1.5<br>1.7<br>1.9<br>2.0<br>1.8   | 5.1<br>4.2<br>3.5<br>3.1<br>2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.9<br>4.4<br>4.1<br>5.1<br>5.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.3<br>8.3<br>7.9<br>6.5<br>5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.6<br>4.7<br>3.9<br>3.5<br>3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.0<br>2.6<br>2.3<br>2.2<br>2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.5<br>1.5<br>1.5<br>1.4<br>1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.4<br>1.9<br>1.6<br>1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.4<br>1.2<br>1.1<br>1.1<br>1.1    | 1.0<br>1.0<br>1.1<br>1.7<br>1.4                                    | 1.3<br>1.3<br>1.3<br>1.3<br>1.3                                                                                                                                                                                                                                                                                                                                       | 1.4<br>1.4<br>1.4<br>1.4<br>1.4   | 1.8<br>1.7<br>1.6<br>             | 2.4<br>2.9<br>5.1<br>4.5<br>3.8<br>3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.8<br>4.2<br>3.9<br>3.8<br>3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.4<br>4.1<br>4.1<br>4.0<br>3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.0<br>2.9<br>3.0<br>4.1<br>3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.0<br>1.9<br>1.9<br>1.8<br>1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.4<br>1.8<br>1.6<br>1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.4<br>1.4<br>1.4<br>1.3<br>1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 32.38<br>1.04<br>1.4<br>.97<br>.44 | 32.89<br>1.10<br>1.7<br>.96<br>.47                                 | 41.2<br>1.33<br>1.6<br>1.2<br>.57                                                                                                                                                                                                                                                                                                                                     | 41.9<br>1.35<br>1.7<br>1.2<br>.57 | 42.7<br>1.52<br>2.0<br>1.4<br>.65 | 90.8<br>2.93<br>5.1<br>1.6<br>1.25<br>1.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 146.6<br>4.89<br>8.4<br>2.6<br>2.08<br>2.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 126.4<br>4.08<br>8.3<br>2.9<br>1.74<br>2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 102.8<br>3.43<br>5.6<br>2.7<br>1.46<br>1.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 69.0<br>2.23<br>3.0<br>1.8<br>.95<br>1.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 49.5<br>1.60<br>1.9<br>1.4<br>.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 41.9<br>1.40<br>1.9<br>1.2<br>.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                    | 1.1<br>1.1<br>1.1<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0 | 1.1 .99 1.1 .99 1.1 .98 1.1 .99 1.0 1.1 1.0 .98 1.0 .98 1.0 .98 1.0 .97 .99 .96 .99 .98 1.0 .98 1.0 1.4 1.1 1.2 .99 1.2 .99 1.2 .99 1.1 1.1 1.2 .99 1.2 .97 1.1 1.98 1.1 .98 1.1 .98 1.1 .97 1.1 1.0 1.1 .98 1.1 .97 1.1 1.0 1.1 1.1 1.2 1.0 1.4 1.0 1.2 1.0 1.4 1.0 1.2 1.0 1.4 1.0 1.2 1.0 1.4 1.0 1.7 .97 1.1 1.1 1.1 1.4 1.0 32.38 32.89 1.04 1.7 .97 .96 .44 .47 | 1.1                               | 1.1                               | 1.1       .99       1.4       1.2       1.4         1.1       .98       1.4       1.2       1.4         1.1       .98       1.4       1.2       1.4         1.1       .99       1.3       1.2       1.4         1.0       .99       1.4       1.4       1.4         1.0       .98       1.4       1.3       1.6         1.0       .98       1.3       1.2       1.5         1.0       .97       1.3       1.2       1.5         1.0       .97       1.3       1.2       1.5         1.0       .97       1.3       1.2       1.5         1.99       .96       1.2       1.3       1.4         1.0       .98       1.2       1.7       1.4         1.0       .98       1.2       1.5       1.4         1.0       .98       1.2       1.5       1.4         1.1       1.2       1.2       1.4       1.4         1.99       1.2       1.6       1.4       1.4         1.99       1.2       1.6       1.4       1.4         1.99       1.1       1.6       1.4       < | OCT         NOV         DEC         JAN         FEB         MAR           1.1         .99         1.4         1.2         1.4         1.6           1.1         .99         1.4         1.2         1.4         1.9           1.1         .98         1.4         1.2         1.4         1.7           1.1         .99         1.3         1.2         1.4         1.7           1.0         .91         1.4         1.4         1.4         1.7           1.0         .99         1.4         1.4         1.4         1.6           1.0         .98         1.3         1.2         1.5         2.4           1.0         .98         1.3         1.2         1.5         2.9           .99         .96         1.2         1.3         1.4         2.9           .99         .96         1.2         1.7         1.4         3.1           1.0         .98         1.2         1.7         1.4         3.1           1.0         .98         1.2         1.7         1.4         3.5           1.0         1.4         1.2         1.4         1.4         2.9 | 1.1       .99       1.4       1.2       1.4       1.6       2.9         1.1       .99       1.4       1.2       1.4       1.9       2.6         1.1       .98       1.4       1.2       1.4       1.7       4.1         1.1       .99       1.3       1.2       1.4       1.7       5.2         1.0       .11       1.3       1.2       1.4       1.7       4.6         1.0       .98       1.4       1.3       1.6       2.3       3.3         1.0       .98       1.4       1.3       1.6       2.3       3.3         1.0       .98       1.3       1.2       1.5       2.4       3.1         1.0       .98       1.3       1.2       1.5       2.4       3.1         1.0       .98       1.2       1.7       1.4       3.1       8.0         .99       .96       1.2       1.3       1.4       2.9       7.7         .99       .98       1.2       1.7       1.4       3.1       8.0         1.0       1.4       1.2       1.4       1.4       2.9       5.2         1.1       1.2       1 | OCT         NOV         DEC         JAN         FEB         MAR         APR         MAY           1.1         .99         1.4         1.2         1.4         1.6         2.9         3.6           1.1         .99         1.4         1.2         1.4         1.9         2.6         3.5           1.1         .98         1.4         1.2         1.4         1.7         4.1         3.4           1.1         .99         1.3         1.2         1.4         1.7         4.6         3.5           1.0         .11         1.3         1.2         1.4         1.7         4.6         3.8           1.0         .99         1.4         1.4         1.4         1.6         3.9         3.5           1.0         .98         1.3         1.2         1.5         2.4         3.1         3.2           1.0         .98         1.3         1.2         1.5         2.9         5.2         3.1           .99         .96         1.2         1.3         1.4         3.1         8.0         3.0           1.0         .98         1.2         1.7         1.4         3.1         8.0         3.0 <td>OCT         NOV         DEC         JAN         FEB         MAR         APR         MAY         JUN           1.1         .99         1.4         1.2         1.4         1.6         2.9         3.6         3.7           1.1         .99         1.4         1.2         1.4         1.9         2.6         3.5         3.6           1.1         .98         1.4         1.2         1.4         1.7         4.1         3.4         3.4           1.1         .99         1.3         1.2         1.4         1.7         4.6         3.8         3.8           1.0         1.1         1.3         1.2         1.4         1.7         4.6         3.8         3.8           1.0         .98         1.4         1.3         1.6         2.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         <t< td=""><td>OCT NOV DEC JAN FEB MAR APR MAY JUN JUL  1.1 .99 1.4 1.2 1.4 1.6 2.9 3.6 3.7 3.0 1.1 .99 1.4 1.2 1.4 1.9 2.6 3.5 3.6 2.9 1.1 .98 1.4 1.2 1.4 1.7 4.1 3.4 3.4 2.8 1.1 .99 1.3 1.2 1.4 1.7 4.1 3.4 3.4 2.8 1.0 .99 1.3 1.2 1.4 1.7 4.6 3.8 3.8 2.6 1.0 .99 1.4 1.4 1.4 1.6 3.9 3.5 3.4 2.7 1.0 .98 1.4 1.3 1.6 2.3 3.3 3.3 3.3 3.2 2.6 1.0 .98 1.3 1.2 1.5 2.4 3.1 3.2 3.3 2.5 1.0 .98 1.3 1.2 1.5 2.4 3.1 3.2 3.3 2.5 1.0 .97 1.3 1.2 1.5 2.9 5.2 2.9 2.9 2.3 .99 .96 1.2 1.3 1.4 2.9 7.7 3.0 2.9 2.3 1.99 .98 1.2 1.7 1.4 3.1 8.0 3.0 2.9 2.3 1.0 1.4 1.2 1.4 1.4 2.9 5.2 2.9 2.9 2.2 1.1 1.2 1.2 1.4 1.4 2.6 4.6 2.9 2.8 2.1 1.9 1.2 1.2 1.4 1.4 2.6 4.6 2.9 2.8 2.1 1.9 1.2 1.2 1.4 1.4 2.9 5.2 2.9 2.9 2.2 1.1 1.2 1.2 1.4 1.4 2.4 4.1 3.0 2.7 2.0 1.99 1.2 1.6 1.4 1.4 2.4 4.1 3.5 7.5 3.0 2.9 2.8 2.1 1.99 1.2 1.6 1.4 1.4 2.4 4.1 3.0 2.7 2.0 1.99 1.2 1.6 1.4 1.4 2.4 4.1 3.0 2.7 2.0 1.99 1.2 1.6 1.4 1.4 2.4 4.1 3.0 2.7 2.0 1.99 1.2 1.6 1.4 1.4 2.4 4.1 3.0 2.7 2.0 1.99 1.2 1.6 1.4 1.4 2.9 5.2 5.8 4.3 2.7 2.0 1.99 1.2 1.6 1.4 1.4 2.4 4.1 3.0 2.7 2.0 1.99 1.2 1.6 1.4 1.4 2.4 4.1 3.0 2.7 2.0 1.99 1.2 1.6 1.4 1.4 2.9 5.2 3.5 4.0 3.3 1.8 1.8 1.1 1.4 1.3 1.5 3.6 5.0 3.5 4.0 1.8 1.98 1.1 1.4 1.3 1.5 3.6 5.0 3.5 4.0 1.8 1.99 1.1 1.4 1.3 1.5 3.6 5.0 3.5 4.0 1.8 1.99 1.1 1.4 1.3 1.5 3.6 5.0 3.5 4.0 1.8 1.99 1.1 1.4 1.3 1.3 1.5 3.6 5.0 3.5 4.0 1.8 1.99 1.1 1.2 1.3 1.4 1.9 3.5 5.2 3.5 4.3 2.0 1.0 1.1 1.3 1.4 1.9 3.5 5.1 4.9 4.8 4.4 8.3 4.7 2.6 1.99 1.1 1.3 1.4 1.9 3.5 5.1 4.9 4.9 4.3 5.6 2.0 1.91 1.1 1.3 1.4 1.9 3.5 5.1 4.9 4.9 4.3 5.6 2.0 1.92 1.1 1.3 1.4 1.9 3.5 3.6 5.0 3.5 4.0 1.8 1.1 1.2 1.2 1.2 1.4 1.4 1.8 2.6 4.6 5.7 5.0 3.2 2.1 1.1 1.2 1.3 1.4 1.9 3.5 3.6 5.0 3.5 4.0 3.9 4.1 1.8 1.1 1.1 1.3 1.4 1.9 3.1 1.4 1.6 2.6 4.6 8.9 4.0 3.4 1.8 1.1 1.1 1.3 1.4 1.9 3.5 3.6 5.0 3.5 4.0 3.9 4.1 1.1 1.8 1.1 1.1 1.3 1.4 1.9 3.5 5.1 4.9 4.9 4.9 4.9 3.9 4.0 3.9 4.1 3.0 1.9 1.1 1.1 1.3 1.4 1.6 1.6 5.1 3.9 4.1 1.9 3.9 4.1 3.0 1.9 1.1 1.1 1.3 1.4 1.6 2.6 5.7 5.0 3.2 2.1 1.1 1.1 1.2 1.2 1.2 1.4 1.9 42.7 90.8 146.6 126.4 102.8 69.0 1.4 1.0 1.3 3 1.3 1.4 1.6 2.6 2.0 2.9 2.7</td><td>OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG  1.1 .99 1.4 1.2 1.4 1.6 2.9 3.6 3.7 3.0 1.7  1.1 .99 1.4 1.2 1.4 1.9 2.6 3.5 3.6 2.9 1.7  1.1 .98 1.4 1.2 1.4 1.7 4.1 3.4 3.4 2.8 1.6  1.1 .99 1.3 1.2 1.4 1.7 4.1 3.4 2.3 3.7 2.6 1.6  1.0 .99 1.4 1.3 1.2 1.4 1.7 4.6 3.8 3.8 2.6 1.6  1.0 .98 1.4 1.3 1.6 2.3 3.3 3.3 3.3 3.2 2.6 1.6  1.0 .98 1.4 1.3 1.6 2.3 3.3 3.3 3.3 3.2 2.5 1.6  1.0 .98 1.3 1.2 1.5 2.4 3.1 3.2 3.3 2.5 1.6  1.0 .98 1.3 1.2 1.5 2.4 3.1 3.2 3.3 2.5 1.6  1.0 .98 1.3 1.2 1.5 2.9 3.1 3.2 3.3 2.5 1.6  1.0 .99 .96 1.2 1.3 1.4 2.9 7.7 3.0 2.9 2.3 1.7  1.0 .99 .98 1.2 1.5 1.4 3.1 8.0 3.0 2.9 2.3 1.7  1.0 .99 .98 1.2 1.5 1.4 3.1 8.0 3.0 2.9 2.3 1.7  1.0 .99 .98 1.2 1.5 1.4 2.9 5.2 2.9 2.2 1.9  1.1 1.2 1.2 1.4 1.4 2.6 4.6 2.9 2.8 2.1 1.8  1.99 1.2 1.6 1.4 1.4 2.6 4.6 2.9 2.8 2.1 1.8  1.99 1.2 1.6 1.4 1.4 2.1 4.1 3.0 2.7 2.0 1.7  1.99 1.2 1.6 1.4 1.4 2.1 4.1 3.0 2.7 2.0 1.7  1.99 1.2 1.6 1.4 1.4 2.1 8.4 4.8 2.8 1.8 1.6  1.98 1.1 1.5 1.4 1.3 1.5 3.6 5.0 3.5 4.0 1.8 1.5  1.97 1.1 1.6 1.4 1.3 1.5 2.7 5.6 4.0 3.3 1.8 1.6  1.98 1.1 1.4 1.3 1.5 3.6 5.0 3.5 4.0 1.8 1.5  1.97 1.1 1.4 1.3 1.5 1.4 1.7 9 4.2 4.4 8.3 4.7 2.6 1.6  1.99 1.1 1.2 1.2 1.2 1.5 1.4 1.7 2.9 4.2 4.4 8.3 4.7 2.6 1.6  1.99 1.1 1.2 1.2 1.5 1.4 1.4 2.1 8.4 4.8 2.8 1.8 1.6  1.91 1.1 1.3 1.3 1.5 3.6 5.0 3.5 4.0 1.8 1.5  1.97 1.1 1.4 1.3 1.5 3.6 5.0 3.5 4.0 1.8 1.5  1.99 1.1 1.1 1.3 1.3 1.5 3.6 5.0 3.5 4.0 1.8 1.5  1.99 1.1 1.2 1.3 1.4 1.9 3.5 5.1 4.9 4.8 3.4 4.7 2.6 1.5  1.99 1.1 1.1 1.3 1.3 1.4 1.9 3.5 5.1 4.9 4.8 3.4 4.7 2.6 1.5  1.99 1.1 1.1 1.3 1.3 1.4 1.9 3.5 5.1 4.9 4.8 3.4 4.7 2.6 1.5  1.99 1.1 1.1 1.3 1.3 1.4 1.8 2.6 5.7 5.0 3.2 2.1 1.4  1.4 1.0 1.3 1.3 1.4 1.9 3.5 5.1 4.9 4.8 3.4 4.7 2.6 1.5  1.99 1.1 1.1 1.3 1.3 1.4 1.8 2.0 4.8 4.8 3.4 4.7 2.6 1.5  1.0 1.1 1.1 1.3 1.3 1.4 1.8 2.6 5.7 5.0 3.2 2.1 1.4  1.1 1.1 1.1 1.3 1.3 1.4 1.8 2.6 5.7 5.0 3.2 2.1 1.4  1.2 1.0 1.3 1.4 1.8 2.0 3.1 5.1 6.9 3.9 4.1 3.0 1.9 9.9 1.9  1.4 1.1 1.1 1.3 1.4 1.8 2.0 3.1 1.8 3.7 3.9 2.3 3.9 2.3 3.5 3.5  1.0 1.1 1.1 1.3 1.4 1.6 5.1 3.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4</td><td>OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP  1.1 .99 1.4 1.2 1.4 1.6 2.9 3.6 3.7 3.0 1.7 1.4  1.1 .99 1.4 1.2 1.4 1.9 2.6 3.5 3.6 2.9 1.7 1.4  1.1 .99 1.3 1.2 1.4 1.7 4.1 3.4 3.4 2.8 1.6 1.4  1.1 .99 1.3 1.2 1.4 1.7 4.1 3.4 3.4 2.8 1.6 1.4  1.1 .99 1.3 1.2 1.4 1.7 4.1 3.4 3.4 2.8 1.6 1.4  1.0 .99 1.3 1.2 1.4 1.7 4.6 3.8 3.8 2.6 1.6 1.3  1.0 1.1 1.3 1.2 1.4 1.7 4.6 3.8 3.8 2.6 1.6 1.4  1.0 .99 1.4 1.4 1.3 1.6 2.3 3.3 3.3 3.3 2.6 1.6 1.4  1.0 .98 1.4 1.3 1.6 2.3 3.3 3.3 3.3 2.5 1.6 1.4  1.0 .98 1.3 1.2 1.5 2.4 3.1 3.2 3.3 2.5 1.6 1.3  1.0 .97 1.3 1.2 1.5 2.9 5.2 3.1 3.1 2.4 1.6 1.3  1.99 .98 1.2 1.7 1.4 2.9 7.7 3.0 2.9 2.3 1.6 1.3  1.99 .98 1.2 1.5 1.4 2.9 7.7 3.0 2.9 2.3 1.6 1.3  1.0 .98 1.2 1.5 1.4 2.9 7.5 3.0 2.9 2.2 1.9 1.3  1.0 1.4 1.2 1.4 1.4 2.9 5.2 2.9 5.2 2.9 2.9 2.2 1.9 1.5  1.1 1.2 1.2 1.4 1.4 2.6 4.6 2.9 2.8 2.1 1.8 1.4  1.99 1.2 1.5 1.4 2.4 4.1 3.0 2.7 2.0 1.6 1.3  1.99 1.2 1.6 1.4 1.4 2.1 8.4 8.8 8.8 2.8 2.7 2.0 1.6 1.9  1.99 1.2 1.6 1.4 1.4 2.1 8.4 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8</td></t<></td> | OCT         NOV         DEC         JAN         FEB         MAR         APR         MAY         JUN           1.1         .99         1.4         1.2         1.4         1.6         2.9         3.6         3.7           1.1         .99         1.4         1.2         1.4         1.9         2.6         3.5         3.6           1.1         .98         1.4         1.2         1.4         1.7         4.1         3.4         3.4           1.1         .99         1.3         1.2         1.4         1.7         4.6         3.8         3.8           1.0         1.1         1.3         1.2         1.4         1.7         4.6         3.8         3.8           1.0         .98         1.4         1.3         1.6         2.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3 <t< td=""><td>OCT NOV DEC JAN FEB MAR APR MAY JUN JUL  1.1 .99 1.4 1.2 1.4 1.6 2.9 3.6 3.7 3.0 1.1 .99 1.4 1.2 1.4 1.9 2.6 3.5 3.6 2.9 1.1 .98 1.4 1.2 1.4 1.7 4.1 3.4 3.4 2.8 1.1 .99 1.3 1.2 1.4 1.7 4.1 3.4 3.4 2.8 1.0 .99 1.3 1.2 1.4 1.7 4.6 3.8 3.8 2.6 1.0 .99 1.4 1.4 1.4 1.6 3.9 3.5 3.4 2.7 1.0 .98 1.4 1.3 1.6 2.3 3.3 3.3 3.3 3.2 2.6 1.0 .98 1.3 1.2 1.5 2.4 3.1 3.2 3.3 2.5 1.0 .98 1.3 1.2 1.5 2.4 3.1 3.2 3.3 2.5 1.0 .97 1.3 1.2 1.5 2.9 5.2 2.9 2.9 2.3 .99 .96 1.2 1.3 1.4 2.9 7.7 3.0 2.9 2.3 1.99 .98 1.2 1.7 1.4 3.1 8.0 3.0 2.9 2.3 1.0 1.4 1.2 1.4 1.4 2.9 5.2 2.9 2.9 2.2 1.1 1.2 1.2 1.4 1.4 2.6 4.6 2.9 2.8 2.1 1.9 1.2 1.2 1.4 1.4 2.6 4.6 2.9 2.8 2.1 1.9 1.2 1.2 1.4 1.4 2.9 5.2 2.9 2.9 2.2 1.1 1.2 1.2 1.4 1.4 2.4 4.1 3.0 2.7 2.0 1.99 1.2 1.6 1.4 1.4 2.4 4.1 3.5 7.5 3.0 2.9 2.8 2.1 1.99 1.2 1.6 1.4 1.4 2.4 4.1 3.0 2.7 2.0 1.99 1.2 1.6 1.4 1.4 2.4 4.1 3.0 2.7 2.0 1.99 1.2 1.6 1.4 1.4 2.4 4.1 3.0 2.7 2.0 1.99 1.2 1.6 1.4 1.4 2.4 4.1 3.0 2.7 2.0 1.99 1.2 1.6 1.4 1.4 2.9 5.2 5.8 4.3 2.7 2.0 1.99 1.2 1.6 1.4 1.4 2.4 4.1 3.0 2.7 2.0 1.99 1.2 1.6 1.4 1.4 2.4 4.1 3.0 2.7 2.0 1.99 1.2 1.6 1.4 1.4 2.9 5.2 3.5 4.0 3.3 1.8 1.8 1.1 1.4 1.3 1.5 3.6 5.0 3.5 4.0 1.8 1.98 1.1 1.4 1.3 1.5 3.6 5.0 3.5 4.0 1.8 1.99 1.1 1.4 1.3 1.5 3.6 5.0 3.5 4.0 1.8 1.99 1.1 1.4 1.3 1.5 3.6 5.0 3.5 4.0 1.8 1.99 1.1 1.4 1.3 1.3 1.5 3.6 5.0 3.5 4.0 1.8 1.99 1.1 1.2 1.3 1.4 1.9 3.5 5.2 3.5 4.3 2.0 1.0 1.1 1.3 1.4 1.9 3.5 5.1 4.9 4.8 4.4 8.3 4.7 2.6 1.99 1.1 1.3 1.4 1.9 3.5 5.1 4.9 4.9 4.3 5.6 2.0 1.91 1.1 1.3 1.4 1.9 3.5 5.1 4.9 4.9 4.3 5.6 2.0 1.92 1.1 1.3 1.4 1.9 3.5 3.6 5.0 3.5 4.0 1.8 1.1 1.2 1.2 1.2 1.4 1.4 1.8 2.6 4.6 5.7 5.0 3.2 2.1 1.1 1.2 1.3 1.4 1.9 3.5 3.6 5.0 3.5 4.0 3.9 4.1 1.8 1.1 1.1 1.3 1.4 1.9 3.1 1.4 1.6 2.6 4.6 8.9 4.0 3.4 1.8 1.1 1.1 1.3 1.4 1.9 3.5 3.6 5.0 3.5 4.0 3.9 4.1 1.1 1.8 1.1 1.1 1.3 1.4 1.9 3.5 5.1 4.9 4.9 4.9 4.9 3.9 4.0 3.9 4.1 3.0 1.9 1.1 1.1 1.3 1.4 1.6 1.6 5.1 3.9 4.1 1.9 3.9 4.1 3.0 1.9 1.1 1.1 1.3 1.4 1.6 2.6 5.7 5.0 3.2 2.1 1.1 1.1 1.2 1.2 1.2 1.4 1.9 42.7 90.8 146.6 126.4 102.8 69.0 1.4 1.0 1.3 3 1.3 1.4 1.6 2.6 2.0 2.9 2.7</td><td>OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG  1.1 .99 1.4 1.2 1.4 1.6 2.9 3.6 3.7 3.0 1.7  1.1 .99 1.4 1.2 1.4 1.9 2.6 3.5 3.6 2.9 1.7  1.1 .98 1.4 1.2 1.4 1.7 4.1 3.4 3.4 2.8 1.6  1.1 .99 1.3 1.2 1.4 1.7 4.1 3.4 2.3 3.7 2.6 1.6  1.0 .99 1.4 1.3 1.2 1.4 1.7 4.6 3.8 3.8 2.6 1.6  1.0 .98 1.4 1.3 1.6 2.3 3.3 3.3 3.3 3.2 2.6 1.6  1.0 .98 1.4 1.3 1.6 2.3 3.3 3.3 3.3 3.2 2.5 1.6  1.0 .98 1.3 1.2 1.5 2.4 3.1 3.2 3.3 2.5 1.6  1.0 .98 1.3 1.2 1.5 2.4 3.1 3.2 3.3 2.5 1.6  1.0 .98 1.3 1.2 1.5 2.9 3.1 3.2 3.3 2.5 1.6  1.0 .99 .96 1.2 1.3 1.4 2.9 7.7 3.0 2.9 2.3 1.7  1.0 .99 .98 1.2 1.5 1.4 3.1 8.0 3.0 2.9 2.3 1.7  1.0 .99 .98 1.2 1.5 1.4 3.1 8.0 3.0 2.9 2.3 1.7  1.0 .99 .98 1.2 1.5 1.4 2.9 5.2 2.9 2.2 1.9  1.1 1.2 1.2 1.4 1.4 2.6 4.6 2.9 2.8 2.1 1.8  1.99 1.2 1.6 1.4 1.4 2.6 4.6 2.9 2.8 2.1 1.8  1.99 1.2 1.6 1.4 1.4 2.1 4.1 3.0 2.7 2.0 1.7  1.99 1.2 1.6 1.4 1.4 2.1 4.1 3.0 2.7 2.0 1.7  1.99 1.2 1.6 1.4 1.4 2.1 8.4 4.8 2.8 1.8 1.6  1.98 1.1 1.5 1.4 1.3 1.5 3.6 5.0 3.5 4.0 1.8 1.5  1.97 1.1 1.6 1.4 1.3 1.5 2.7 5.6 4.0 3.3 1.8 1.6  1.98 1.1 1.4 1.3 1.5 3.6 5.0 3.5 4.0 1.8 1.5  1.97 1.1 1.4 1.3 1.5 1.4 1.7 9 4.2 4.4 8.3 4.7 2.6 1.6  1.99 1.1 1.2 1.2 1.2 1.5 1.4 1.7 2.9 4.2 4.4 8.3 4.7 2.6 1.6  1.99 1.1 1.2 1.2 1.5 1.4 1.4 2.1 8.4 4.8 2.8 1.8 1.6  1.91 1.1 1.3 1.3 1.5 3.6 5.0 3.5 4.0 1.8 1.5  1.97 1.1 1.4 1.3 1.5 3.6 5.0 3.5 4.0 1.8 1.5  1.99 1.1 1.1 1.3 1.3 1.5 3.6 5.0 3.5 4.0 1.8 1.5  1.99 1.1 1.2 1.3 1.4 1.9 3.5 5.1 4.9 4.8 3.4 4.7 2.6 1.5  1.99 1.1 1.1 1.3 1.3 1.4 1.9 3.5 5.1 4.9 4.8 3.4 4.7 2.6 1.5  1.99 1.1 1.1 1.3 1.3 1.4 1.9 3.5 5.1 4.9 4.8 3.4 4.7 2.6 1.5  1.99 1.1 1.1 1.3 1.3 1.4 1.8 2.6 5.7 5.0 3.2 2.1 1.4  1.4 1.0 1.3 1.3 1.4 1.9 3.5 5.1 4.9 4.8 3.4 4.7 2.6 1.5  1.99 1.1 1.1 1.3 1.3 1.4 1.8 2.0 4.8 4.8 3.4 4.7 2.6 1.5  1.0 1.1 1.1 1.3 1.3 1.4 1.8 2.6 5.7 5.0 3.2 2.1 1.4  1.1 1.1 1.1 1.3 1.3 1.4 1.8 2.6 5.7 5.0 3.2 2.1 1.4  1.2 1.0 1.3 1.4 1.8 2.0 3.1 5.1 6.9 3.9 4.1 3.0 1.9 9.9 1.9  1.4 1.1 1.1 1.3 1.4 1.8 2.0 3.1 1.8 3.7 3.9 2.3 3.9 2.3 3.5 3.5  1.0 1.1 1.1 1.3 1.4 1.6 5.1 3.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4</td><td>OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP  1.1 .99 1.4 1.2 1.4 1.6 2.9 3.6 3.7 3.0 1.7 1.4  1.1 .99 1.4 1.2 1.4 1.9 2.6 3.5 3.6 2.9 1.7 1.4  1.1 .99 1.3 1.2 1.4 1.7 4.1 3.4 3.4 2.8 1.6 1.4  1.1 .99 1.3 1.2 1.4 1.7 4.1 3.4 3.4 2.8 1.6 1.4  1.1 .99 1.3 1.2 1.4 1.7 4.1 3.4 3.4 2.8 1.6 1.4  1.0 .99 1.3 1.2 1.4 1.7 4.6 3.8 3.8 2.6 1.6 1.3  1.0 1.1 1.3 1.2 1.4 1.7 4.6 3.8 3.8 2.6 1.6 1.4  1.0 .99 1.4 1.4 1.3 1.6 2.3 3.3 3.3 3.3 2.6 1.6 1.4  1.0 .98 1.4 1.3 1.6 2.3 3.3 3.3 3.3 2.5 1.6 1.4  1.0 .98 1.3 1.2 1.5 2.4 3.1 3.2 3.3 2.5 1.6 1.3  1.0 .97 1.3 1.2 1.5 2.9 5.2 3.1 3.1 2.4 1.6 1.3  1.99 .98 1.2 1.7 1.4 2.9 7.7 3.0 2.9 2.3 1.6 1.3  1.99 .98 1.2 1.5 1.4 2.9 7.7 3.0 2.9 2.3 1.6 1.3  1.0 .98 1.2 1.5 1.4 2.9 7.5 3.0 2.9 2.2 1.9 1.3  1.0 1.4 1.2 1.4 1.4 2.9 5.2 2.9 5.2 2.9 2.9 2.2 1.9 1.5  1.1 1.2 1.2 1.4 1.4 2.6 4.6 2.9 2.8 2.1 1.8 1.4  1.99 1.2 1.5 1.4 2.4 4.1 3.0 2.7 2.0 1.6 1.3  1.99 1.2 1.6 1.4 1.4 2.1 8.4 8.8 8.8 2.8 2.7 2.0 1.6 1.9  1.99 1.2 1.6 1.4 1.4 2.1 8.4 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8</td></t<> | OCT NOV DEC JAN FEB MAR APR MAY JUN JUL  1.1 .99 1.4 1.2 1.4 1.6 2.9 3.6 3.7 3.0 1.1 .99 1.4 1.2 1.4 1.9 2.6 3.5 3.6 2.9 1.1 .98 1.4 1.2 1.4 1.7 4.1 3.4 3.4 2.8 1.1 .99 1.3 1.2 1.4 1.7 4.1 3.4 3.4 2.8 1.0 .99 1.3 1.2 1.4 1.7 4.6 3.8 3.8 2.6 1.0 .99 1.4 1.4 1.4 1.6 3.9 3.5 3.4 2.7 1.0 .98 1.4 1.3 1.6 2.3 3.3 3.3 3.3 3.2 2.6 1.0 .98 1.3 1.2 1.5 2.4 3.1 3.2 3.3 2.5 1.0 .98 1.3 1.2 1.5 2.4 3.1 3.2 3.3 2.5 1.0 .97 1.3 1.2 1.5 2.9 5.2 2.9 2.9 2.3 .99 .96 1.2 1.3 1.4 2.9 7.7 3.0 2.9 2.3 1.99 .98 1.2 1.7 1.4 3.1 8.0 3.0 2.9 2.3 1.0 1.4 1.2 1.4 1.4 2.9 5.2 2.9 2.9 2.2 1.1 1.2 1.2 1.4 1.4 2.6 4.6 2.9 2.8 2.1 1.9 1.2 1.2 1.4 1.4 2.6 4.6 2.9 2.8 2.1 1.9 1.2 1.2 1.4 1.4 2.9 5.2 2.9 2.9 2.2 1.1 1.2 1.2 1.4 1.4 2.4 4.1 3.0 2.7 2.0 1.99 1.2 1.6 1.4 1.4 2.4 4.1 3.5 7.5 3.0 2.9 2.8 2.1 1.99 1.2 1.6 1.4 1.4 2.4 4.1 3.0 2.7 2.0 1.99 1.2 1.6 1.4 1.4 2.4 4.1 3.0 2.7 2.0 1.99 1.2 1.6 1.4 1.4 2.4 4.1 3.0 2.7 2.0 1.99 1.2 1.6 1.4 1.4 2.4 4.1 3.0 2.7 2.0 1.99 1.2 1.6 1.4 1.4 2.9 5.2 5.8 4.3 2.7 2.0 1.99 1.2 1.6 1.4 1.4 2.4 4.1 3.0 2.7 2.0 1.99 1.2 1.6 1.4 1.4 2.4 4.1 3.0 2.7 2.0 1.99 1.2 1.6 1.4 1.4 2.9 5.2 3.5 4.0 3.3 1.8 1.8 1.1 1.4 1.3 1.5 3.6 5.0 3.5 4.0 1.8 1.98 1.1 1.4 1.3 1.5 3.6 5.0 3.5 4.0 1.8 1.99 1.1 1.4 1.3 1.5 3.6 5.0 3.5 4.0 1.8 1.99 1.1 1.4 1.3 1.5 3.6 5.0 3.5 4.0 1.8 1.99 1.1 1.4 1.3 1.3 1.5 3.6 5.0 3.5 4.0 1.8 1.99 1.1 1.2 1.3 1.4 1.9 3.5 5.2 3.5 4.3 2.0 1.0 1.1 1.3 1.4 1.9 3.5 5.1 4.9 4.8 4.4 8.3 4.7 2.6 1.99 1.1 1.3 1.4 1.9 3.5 5.1 4.9 4.9 4.3 5.6 2.0 1.91 1.1 1.3 1.4 1.9 3.5 5.1 4.9 4.9 4.3 5.6 2.0 1.92 1.1 1.3 1.4 1.9 3.5 3.6 5.0 3.5 4.0 1.8 1.1 1.2 1.2 1.2 1.4 1.4 1.8 2.6 4.6 5.7 5.0 3.2 2.1 1.1 1.2 1.3 1.4 1.9 3.5 3.6 5.0 3.5 4.0 3.9 4.1 1.8 1.1 1.1 1.3 1.4 1.9 3.1 1.4 1.6 2.6 4.6 8.9 4.0 3.4 1.8 1.1 1.1 1.3 1.4 1.9 3.5 3.6 5.0 3.5 4.0 3.9 4.1 1.1 1.8 1.1 1.1 1.3 1.4 1.9 3.5 5.1 4.9 4.9 4.9 4.9 3.9 4.0 3.9 4.1 3.0 1.9 1.1 1.1 1.3 1.4 1.6 1.6 5.1 3.9 4.1 1.9 3.9 4.1 3.0 1.9 1.1 1.1 1.3 1.4 1.6 2.6 5.7 5.0 3.2 2.1 1.1 1.1 1.2 1.2 1.2 1.4 1.9 42.7 90.8 146.6 126.4 102.8 69.0 1.4 1.0 1.3 3 1.3 1.4 1.6 2.6 2.0 2.9 2.7 | OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG  1.1 .99 1.4 1.2 1.4 1.6 2.9 3.6 3.7 3.0 1.7  1.1 .99 1.4 1.2 1.4 1.9 2.6 3.5 3.6 2.9 1.7  1.1 .98 1.4 1.2 1.4 1.7 4.1 3.4 3.4 2.8 1.6  1.1 .99 1.3 1.2 1.4 1.7 4.1 3.4 2.3 3.7 2.6 1.6  1.0 .99 1.4 1.3 1.2 1.4 1.7 4.6 3.8 3.8 2.6 1.6  1.0 .98 1.4 1.3 1.6 2.3 3.3 3.3 3.3 3.2 2.6 1.6  1.0 .98 1.4 1.3 1.6 2.3 3.3 3.3 3.3 3.2 2.5 1.6  1.0 .98 1.3 1.2 1.5 2.4 3.1 3.2 3.3 2.5 1.6  1.0 .98 1.3 1.2 1.5 2.4 3.1 3.2 3.3 2.5 1.6  1.0 .98 1.3 1.2 1.5 2.9 3.1 3.2 3.3 2.5 1.6  1.0 .99 .96 1.2 1.3 1.4 2.9 7.7 3.0 2.9 2.3 1.7  1.0 .99 .98 1.2 1.5 1.4 3.1 8.0 3.0 2.9 2.3 1.7  1.0 .99 .98 1.2 1.5 1.4 3.1 8.0 3.0 2.9 2.3 1.7  1.0 .99 .98 1.2 1.5 1.4 2.9 5.2 2.9 2.2 1.9  1.1 1.2 1.2 1.4 1.4 2.6 4.6 2.9 2.8 2.1 1.8  1.99 1.2 1.6 1.4 1.4 2.6 4.6 2.9 2.8 2.1 1.8  1.99 1.2 1.6 1.4 1.4 2.1 4.1 3.0 2.7 2.0 1.7  1.99 1.2 1.6 1.4 1.4 2.1 4.1 3.0 2.7 2.0 1.7  1.99 1.2 1.6 1.4 1.4 2.1 8.4 4.8 2.8 1.8 1.6  1.98 1.1 1.5 1.4 1.3 1.5 3.6 5.0 3.5 4.0 1.8 1.5  1.97 1.1 1.6 1.4 1.3 1.5 2.7 5.6 4.0 3.3 1.8 1.6  1.98 1.1 1.4 1.3 1.5 3.6 5.0 3.5 4.0 1.8 1.5  1.97 1.1 1.4 1.3 1.5 1.4 1.7 9 4.2 4.4 8.3 4.7 2.6 1.6  1.99 1.1 1.2 1.2 1.2 1.5 1.4 1.7 2.9 4.2 4.4 8.3 4.7 2.6 1.6  1.99 1.1 1.2 1.2 1.5 1.4 1.4 2.1 8.4 4.8 2.8 1.8 1.6  1.91 1.1 1.3 1.3 1.5 3.6 5.0 3.5 4.0 1.8 1.5  1.97 1.1 1.4 1.3 1.5 3.6 5.0 3.5 4.0 1.8 1.5  1.99 1.1 1.1 1.3 1.3 1.5 3.6 5.0 3.5 4.0 1.8 1.5  1.99 1.1 1.2 1.3 1.4 1.9 3.5 5.1 4.9 4.8 3.4 4.7 2.6 1.5  1.99 1.1 1.1 1.3 1.3 1.4 1.9 3.5 5.1 4.9 4.8 3.4 4.7 2.6 1.5  1.99 1.1 1.1 1.3 1.3 1.4 1.9 3.5 5.1 4.9 4.8 3.4 4.7 2.6 1.5  1.99 1.1 1.1 1.3 1.3 1.4 1.8 2.6 5.7 5.0 3.2 2.1 1.4  1.4 1.0 1.3 1.3 1.4 1.9 3.5 5.1 4.9 4.8 3.4 4.7 2.6 1.5  1.99 1.1 1.1 1.3 1.3 1.4 1.8 2.0 4.8 4.8 3.4 4.7 2.6 1.5  1.0 1.1 1.1 1.3 1.3 1.4 1.8 2.6 5.7 5.0 3.2 2.1 1.4  1.1 1.1 1.1 1.3 1.3 1.4 1.8 2.6 5.7 5.0 3.2 2.1 1.4  1.2 1.0 1.3 1.4 1.8 2.0 3.1 5.1 6.9 3.9 4.1 3.0 1.9 9.9 1.9  1.4 1.1 1.1 1.3 1.4 1.8 2.0 3.1 1.8 3.7 3.9 2.3 3.9 2.3 3.5 3.5  1.0 1.1 1.1 1.3 1.4 1.6 5.1 3.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4 | OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP  1.1 .99 1.4 1.2 1.4 1.6 2.9 3.6 3.7 3.0 1.7 1.4  1.1 .99 1.4 1.2 1.4 1.9 2.6 3.5 3.6 2.9 1.7 1.4  1.1 .99 1.3 1.2 1.4 1.7 4.1 3.4 3.4 2.8 1.6 1.4  1.1 .99 1.3 1.2 1.4 1.7 4.1 3.4 3.4 2.8 1.6 1.4  1.1 .99 1.3 1.2 1.4 1.7 4.1 3.4 3.4 2.8 1.6 1.4  1.0 .99 1.3 1.2 1.4 1.7 4.6 3.8 3.8 2.6 1.6 1.3  1.0 1.1 1.3 1.2 1.4 1.7 4.6 3.8 3.8 2.6 1.6 1.4  1.0 .99 1.4 1.4 1.3 1.6 2.3 3.3 3.3 3.3 2.6 1.6 1.4  1.0 .98 1.4 1.3 1.6 2.3 3.3 3.3 3.3 2.5 1.6 1.4  1.0 .98 1.3 1.2 1.5 2.4 3.1 3.2 3.3 2.5 1.6 1.3  1.0 .97 1.3 1.2 1.5 2.9 5.2 3.1 3.1 2.4 1.6 1.3  1.99 .98 1.2 1.7 1.4 2.9 7.7 3.0 2.9 2.3 1.6 1.3  1.99 .98 1.2 1.5 1.4 2.9 7.7 3.0 2.9 2.3 1.6 1.3  1.0 .98 1.2 1.5 1.4 2.9 7.5 3.0 2.9 2.2 1.9 1.3  1.0 1.4 1.2 1.4 1.4 2.9 5.2 2.9 5.2 2.9 2.9 2.2 1.9 1.5  1.1 1.2 1.2 1.4 1.4 2.6 4.6 2.9 2.8 2.1 1.8 1.4  1.99 1.2 1.5 1.4 2.4 4.1 3.0 2.7 2.0 1.6 1.3  1.99 1.2 1.6 1.4 1.4 2.1 8.4 8.8 8.8 2.8 2.7 2.0 1.6 1.9  1.99 1.2 1.6 1.4 1.4 2.1 8.4 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 |

CAL YR 1982 TOTAL 585.33 MEAN 1.60 MAX 5.2 MIN .96 CFSM .68 IN. 9.27 WTR YR 1983 TOTAL 818.07 MEAN 2.24 MAX 8.4 MIN .96 CFSM .95 IN. 12.95

DELAWARE RIVER BASIN 107 01466500 MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ--Continued

### WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1963 to current year.

PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: October 1968 to current year.
WATER TEMPERATURES: October 1960 to current year.

INSTRUMENTATION. -- Temperature recorder since October 1960, water-quality monitor since October 1968.

REMARKS. -- Interruptions in the record were due to malfunctions of the instrument.

EXTREMES FOR PERIOD OF DAILY RECORDS.-SPECIFIC CONDUCTANCE: Maximum, 182 micromhos June 16, 1969; minimum, 19 micromhos Aug. 25, 1979.
WATER TEMEPRATURES: Maximum, 22.0°C Aug. 1, 1970; minimum, 0.0°C on many days during winter months.

EXTREMES FOR CURRENT YEAR .--

SPECIFIC CONDUCTANCE: Maximum, 90 micromhos March 20; minimum, 26 micromhos on several days in October. WATER TEMPERATURES: Maximum, 18.0°C July 4, 5, and 6; minimum, 4.0°C Feb. 11.

| DA.       |                   | TIME | STREA<br>FLOW<br>INSTA                       | M, CON<br>AN- DUC<br>DUS ANC                                   | TIC<br> - PH<br>  T- (STA<br>  E AF                           | ND- TE                                                     | MPER-<br>TURE                             | DXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)            | OXYGE<br>DIS<br>SOLV<br>(PER<br>CEN<br>SATU            | S- DEMA VED BIO R- CHE NT ICA JR- 5 D               | ND, FOR<br>- FEC<br>M- 0.7<br>L, UM-<br>AY (COL      | AL, FEC<br>KF A<br>MF (COL<br>S./ PE                            | AL, HARD-<br>GAR NESS<br>S. (MG/L<br>R AS                          |   |
|-----------|-------------------|------|----------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------|------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------|---|
|           |                   | 1100 |                                              | 1.1                                                            | 38                                                            | 4.4                                                        | 9.0                                       | 4.5                                            |                                                        | 38                                                  | 1.0                                                  | К4                                                              |                                                                    | 3 |
| FEB<br>23 |                   | 1110 | ) :                                          | 2.0                                                            | 51                                                            | 4.2                                                        | 6.0                                       | 7.8                                            |                                                        | 63                                                  |                                                      | <4                                                              | <4                                                                 | 5 |
|           |                   | 1100 |                                              | 4.0                                                            |                                                               | 4.0                                                        | 16.0                                      |                                                |                                                        |                                                     |                                                      | 18                                                              | 290                                                                | 3 |
| AUG<br>17 |                   | 0950 | 1                                            | 1.6                                                            | 34                                                            | 4.5                                                        | 14.0                                      | 2.4                                            |                                                        | 23                                                  | • 3                                                  | к8                                                              | 84                                                                 | 2 |
|           | DAT               | E    | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA) | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)           |                                                               | POTA<br>SIU<br>DIS<br>SOLVE<br>(MG/L<br>AS K)              | M, LIN:<br>- L.<br>D (MG/<br>AS           | AB I                                           | ULFATE<br>DIS-<br>DLVED<br>IG/L<br>SO4)                | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)   | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2)               | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L) |   |
|           | NOV<br>16.<br>FEB |      | .52                                          | .48                                                            | 2.1                                                           | . 4                                                        | 0 <1.0                                    | 0                                              | 7.0                                                    | 3 - 3                                               | <.10                                                 | 4.6                                                             | 22                                                                 |   |
|           | 23.<br>JUN        |      | .91                                          | - 74                                                           | 2.0                                                           | • 5                                                        | 0 <1.                                     | 0                                              | 11                                                     | 3.6                                                 | <.10                                                 | 4.1                                                             | 24                                                                 |   |
|           | AUG               | • •  | .57                                          | . 29                                                           | 1.8                                                           | <.1                                                        | 0 <1.                                     | 0                                              | 14                                                     | 3.2                                                 | <.10                                                 | 2.7                                                             | 32                                                                 |   |
|           | 17.               | • •  | . 31                                         | . 34                                                           | 1.7                                                           | . 1                                                        | 0 <1.                                     | 0                                              | 5.9                                                    | 3.6                                                 | <.10                                                 | 4.2                                                             | 22                                                                 |   |
|           | DAT               |      | SEDI-<br>MENT,<br>SUS-<br>PENDED<br>(MG/L)   | SEDI-<br>MENT,<br>DIS-<br>CHARGE,<br>SUS-<br>PENDED<br>(T/DAY) | SED.<br>SUSP.<br>SIEVE<br>DIAM.<br>% FINER<br>THAN<br>.062 MM | NITRO<br>GEN,<br>NO2+NO<br>DIS-<br>SOLVE<br>(MG/L<br>AS N) | GEI<br>3 AMMOI<br>D DIS<br>D SOL'<br>(MG/ | N, GEN<br>NIA MON<br>S- ORC<br>VED TO<br>/L (M | TRO-<br>I, AM-<br>IIA +<br>GANIC<br>TAL<br>IG/L<br>IN) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)         | PHOS-<br>PHORUS,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P) | PHOS-<br>PHORUS,<br>ORTHO,<br>DIS-<br>SOL VED<br>(MG/L<br>AS P) | CARBON,<br>ORGANIC<br>DIS-<br>SOLVED<br>(MG/L<br>AS C)             |   |
|           | NOV               |      | 2,792.00                                     |                                                                |                                                               |                                                            |                                           |                                                |                                                        |                                                     |                                                      |                                                                 |                                                                    |   |
|           | 16.<br>FEB        |      | 4                                            | .01                                                            | 57                                                            | <.10                                                       | 0 .                                       | 010                                            | <.10                                                   | .030                                                | .030                                                 | .030                                                            |                                                                    |   |
|           | 23.<br>JUN        |      | 1                                            | .00                                                            | 100                                                           | <.10                                                       |                                           | 010                                            | . 20                                                   | <.010                                               | <.010                                                | <.010                                                           | 6.0                                                                |   |
|           | AUG               |      | 3                                            | .03                                                            | 40                                                            | <.10                                                       | 0 <                                       | 010                                            | . 30                                                   | .020                                                | .020                                                 | <.010                                                           |                                                                    |   |
|           | 17.               |      | 1                                            | .00                                                            | 67                                                            | <.10                                                       | 0 <.                                      | 010                                            | . 10                                                   | <.010                                               |                                                      | <.010                                                           | 3 - 3                                                              |   |

# 01466500 MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

| DATE      | TIME                             | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL) | ARSENIC<br>DIS-<br>SOLVED<br>(UG/L<br>AS AS)     | BARIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS BA)      | BERYL-<br>LIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS BE) | CADMIUM<br>DIS-<br>SOLVED<br>(UG/L<br>AS CD)     | CHRO-<br>MIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CR)  | COBALT,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CO)         | COPPER,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CU)         | IRON,<br>DIS-<br>SOLVED<br>(UG/L<br>AS FE)    |
|-----------|----------------------------------|-----------------------------------------------------|--------------------------------------------------|---------------------------------------------------|------------------------------------------------------|--------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-----------------------------------------------|
| NOV       |                                  |                                                     |                                                  |                                                   |                                                      |                                                  |                                                      |                                                      |                                                      |                                               |
| 16<br>JUN | 1100                             | 120                                                 | . <1                                             | 16                                                | <1                                                   | <1                                               | <1                                                   | <3                                                   | 5                                                    | 54                                            |
| 23        | 1100                             | 340                                                 | 1                                                | 30                                                | <0                                                   | 3                                                | 3                                                    | <3                                                   | 2                                                    | 320                                           |
|           | LEAD,<br>DIS-                    | LITHIUM<br>DIS-                                     | MANGA-<br>NESE,<br>DIS-                          | MERCURY<br>DIS-                                   | MOLYB-<br>DENUM,<br>DIS-                             | NICKEL,<br>DIS-                                  | SELE-<br>NIUM,<br>DIS-                               | SILVER,<br>DIS-                                      | STRON-<br>TIUM,<br>DIS-                              | VANA-<br>DIUM,<br>DIS-                        |
| DATE      | SOLVED<br>(UG/L<br>AS PB)        | SOLVED<br>(UG/L<br>AS LI)                           | SOLVED<br>(UG/L<br>AS MN)                        | SOLVED<br>(UG/L<br>AS HG)                         | SOLVED<br>(UG/L<br>AS MO)                            | SOLVED<br>(UG/L<br>AS NI)                        | SOLVED<br>(UG/L<br>AS SE)                            | SOLVED<br>(UG/L<br>AS AG)                            | SOLVED<br>(UG/L<br>AS SR)                            | SOLVED<br>(UG/L<br>AS V)                      |
| NOV       |                                  |                                                     |                                                  |                                                   |                                                      |                                                  |                                                      |                                                      |                                                      |                                               |
| 16<br>JUN | 7                                | <4                                                  | 10                                               | <.1                                               | <10                                                  | <1                                               | <1                                                   | <1                                                   | 7                                                    | <6                                            |
| 23        | 4                                | <4                                                  | . 1 . 11                                         | <.1                                               | <10                                                  | 2                                                | <1                                                   | <1                                                   | 7                                                    | <6                                            |
|           | ZINC,<br>DIS-<br>SOLVED<br>(UG/L | GROSS<br>ALPHA,<br>DIS-<br>SOLVED<br>(UG/L<br>AS    | GROSS<br>ALPHA,<br>SUSP.<br>TOTAL<br>(UG/L<br>AS | GROSS<br>ALPHA,<br>DIS-<br>SOLVED<br>(PCI/L<br>AS | GROSS<br>BETA,<br>DIS-<br>SOLVED<br>(PCI/L<br>AS     | GROSS<br>BETA,<br>SUSP.<br>TOTAL<br>(PCI/L<br>AS | GROSS<br>BETA,<br>DIS-<br>SOLVED<br>(PCI/L<br>AS SR/ | GROSS<br>BETA,<br>SUSP.<br>TOTAL<br>(PCI/L<br>AS SR/ | RADIUM<br>226,<br>DIS-<br>SOLVED,<br>RADON<br>METHOD | URANIUM<br>NATURAL<br>DIS-<br>SOLVED<br>(UG/L |
| DATE      | AS ZN)                           | U-NAT)                                              | U-NAT)                                           | U-NAT)                                            | CS-137)                                              | CS-137)                                          | YT-90)                                               | YT-90)                                               | (PCI/L)                                              | AS U)                                         |
| NOV<br>16 | 16                               | 2.2                                                 | <.4                                              | 1.5                                               | 1.0                                                  | 2 h                                              | 1.0                                                  | 11                                                   | . 21                                                 | 1.6                                           |
| JUN       |                                  | 2.2                                                 | (.4                                              | 1.5                                               | 1.9                                                  | <.4                                              | 1.9                                                  | <.4                                                  | .21                                                  | 1.0                                           |
| 23        | 22                               |                                                     |                                                  |                                                   |                                                      |                                                  |                                                      |                                                      |                                                      |                                               |

01466500 MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ--Continued SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

| 6 27 26 27 32 29 31 42 40 41 36 35 7 7 27 26 27 31 30 30 31 41 40 41 36 35 35 35 36 35 10 27 26 27 31 30 30 31 40 41 38 39 36 35 10 27 26 27 31 30 30 30 30 37 38 42 35 11 27 26 27 26 27 31 30 30 30 38 39 37 38 42 35 11 27 26 27 26 27 31 30 30 30 38 39 37 38 42 35 11 27 26 27 26 27 31 30 30 30 38 39 37 36 36 51 49 11 27 26 27 26 27 31 30 30 30 38 39 37 36 36 51 49 11 27 26 27 26 27 31 30 30 30 38 39 37 36 36 51 49 11 27 26 27 26 27 31 30 30 30 38 39 37 36 36 51 49 11 27 26 27 26 27 28 48 48 30 42 37 36 36 51 49 11 28 28 27 28 48 40 39 39 39 35 35 35 36 50 48 45 15 28 27 28 40 39 39 39 35 35 34 35 45 48 45 17 28 28 27 28 39 38 38 39 50 35 34 35 45 44 41 28 28 27 28 38 38 38 38 51 49 50 44 41 28 28 27 28 36 36 35 37 50 48 45 41 28 28 27 28 38 38 38 38 51 49 50 44 41 41 28 28 27 28 36 36 35 35 46 44 41 41 28 28 27 28 36 35 35 36 35 45 45 44 41 28 28 27 28 36 36 35 35 36 35 36 36 37 36 36 37 36 36 37 36 36 37 36 36 37 36 36 37 36 36 37 36 36 37 36 36 37 36 36 37 36 36 37 36 36 37 36 36 37 36 36 37 36 36 37 36 37 36 36 37 36 36 37 36 36 37 36 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 37 36 37 37 36 37 36 37 37 36 37 37 36 37 37 36 37 37 36 37 37 36 37 37 36 37 37 36 37 37 36 37 37 36 37 37 36 37 37 36 37 37 36 37 37 36 37 38 37 38 38 38 38 38 38 38 38 38 38 38 38 38                                                                      | DAY                        | MAX                        | MIN                  | MEAN                 | MAX            | MIN            | MEAN                       | O), WAI | MAX                        | MIN                  | MEAN                       | MAX                                     | MIN                  | MEAN                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------|----------------------|----------------------|----------------|----------------|----------------------------|---------|----------------------------|----------------------|----------------------------|-----------------------------------------|----------------------|-----------------------------------------|
| 2 28 27 27 31 30 30 46 44 45 36 35 35 4 27 27 31 29 30 46 44 45 36 35 34 35 5 27 27 27 27 32 30 31 43 41 42 43 36 34 5 5 27 27 27 27 32 30 31 43 41 42 43 36 34 5 5 27 27 27 27 32 30 31 43 41 42 43 36 35 34 5 5 27 27 27 27 26 27 31 30 31 41 40 41 36 35 35 8 27 26 27 31 30 31 41 40 41 36 35 35 9 27 26 27 31 30 31 41 40 41 36 35 35 10 27 26 27 31 30 31 41 40 41 36 35 35 10 27 26 27 31 30 31 41 39 40 36 35 10 27 26 27 31 30 30 31 41 39 40 36 35 10 27 26 27 31 30 30 30 38 36 37 50 45 35 10 27 26 27 31 30 30 30 38 36 37 50 45 35 10 27 26 27 31 30 30 30 38 36 36 37 50 45 35 12 27 28 28 46 30 42 37 36 36 55 14 9 11 22 27 26 27 28 46 30 42 37 35 36 50 47 11 28 27 28 46 30 42 37 35 36 50 47 11 28 27 28 46 30 42 37 35 36 50 47 11 28 27 28 46 30 42 37 35 36 50 47 11 28 27 28 46 30 42 37 35 36 50 47 11 28 27 28 46 30 42 37 35 36 50 47 11 28 27 28 46 30 42 37 35 36 50 47 11 28 27 28 46 30 42 37 35 36 50 47 11 28 27 28 46 30 32 35 35 35 34 35 45 44 11 28 28 27 28 39 38 39 36 51 49 50 44 42 20 20 28 27 28 39 38 39 36 51 49 50 44 42 20 20 28 27 28 39 38 39 38 39 50 35 43 45 44 42 20 20 28 27 28 37 36 35 35 35 45 46 44 42 20 20 28 27 28 37 37 36 35 35 35 46 44 42 20 20 28 27 28 37 33 37 36 37 50 50 47 40 20 20 28 27 28 37 37 36 37 50 50 47 40 20 20 28 27 28 37 37 38 38 38 51 40 39 39 39 37 37 38 40 39 39 37 37 38 40 39 39 37 37 38 40 39 39 37 37 38 40 39 39 39 30 30 30 30 30 30 30 30 30 30 30 30 30 |                            |                            | OCTOBER              |                      |                | NOVEMBER       |                            |         |                            | DECEMBER             |                            | 17                                      | JANUARY              |                                         |
| 9 27 26 26 31 30 31 40 38 39 36 35 35 11 27 26 27 31 30 30 39 37 36 35 35 11 27 26 27 31 30 30 30 38 36 37 38 42 35 11 27 26 27 31 29 30 30 37 36 36 50 47 49 13 28 27 28 48 30 42 37 35 36 50 47 14 28 27 28 46 40 43 36 35 35 35 36 50 47 15 28 27 28 46 40 43 36 35 35 35 36 50 47 15 28 27 28 46 40 43 36 35 35 35 46 48 45 15 28 27 28 30 39 39 35 34 35 45 44 15 16 28 27 28 39 38 38 39 50 35 34 35 45 44 11 16 28 27 28 39 38 38 39 50 35 34 35 45 44 11 2 20 20 28 27 28 36 36 35 35 48 45 40 20 20 28 27 28 36 36 35 35 48 45 40 20 20 28 27 28 36 36 35 35 48 45 46 40 40 42 42 43 44 45 42 43 44 42 43 44 42 43 44 42 44 45 44 45 44 45 44 45 44 45 44 45 44 45 44 45 44 45 44 45 44 45 44 45 44 45 44 45 44 45 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2<br>3<br>4                | 28<br>28<br>27             | 27<br>27<br>26       | 27<br>27<br>27       | 31<br>31<br>30 | 30<br>29<br>29 | 30<br>30<br>30             |         | 47<br>46<br>44             | 46<br>44<br>42       | 47<br>45<br>43             | 36<br>36<br>36                          | 35<br>35<br>34       | 36<br>35<br>35<br>35<br>35              |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7<br>8<br>9                | 27<br>27<br>27             | 26<br>26<br>26       | 27<br>27<br>26       | 31<br>31       | 30<br>30<br>30 | 31<br>31<br>31             |         | 41<br>41<br>40             | 40<br>39<br>38       | 41                         | 36<br>36<br>36                          | 35<br>35             | 36<br>36<br>35<br>36                    |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12<br>13<br>14             | 27<br>28<br>28             | 26<br>27<br>27       | 27<br>28<br>28       | 31<br>48<br>46 | 29<br>30<br>40 | 30<br>42<br>43             |         | 37<br>37<br>36             | 36<br>35<br>35       | 36<br>35                   | 51<br>50<br>48                          | 47<br>45             | 48<br>50<br>49<br>46<br>44              |
| 222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17<br>18<br>19             | 28<br>28<br>29             | 27<br>27<br>27       | 28<br>28<br>28       | 38<br>37       | 38<br>37       | 38<br>37                   |         | 52<br>50                   | 49<br>50<br>47       | 50<br>51                   | 44<br>43                                | 42<br>42             | 44<br>43<br>                            |
| 27 39 35 36 32 31 32 38 37 38 40 39 38 29 33 31 32 38 36 37 39 38 30 33 31 32 49 45 46 37 37 36 37 39 38 37 38 37 38 30 33 31 32 49 45 46 37 36 37 39 38 37 37 36 37 39 38 37 38 37 38 37 38 37 38 38 37 38 38 38 38 38 38 38 38 38 37 38 38 38 38 37 38 38 37 38 38 38 37 38 38 38 37 38 38 37 38 38 37 38 38 37 38 38 37 38 38 37 38 38 37 38 38 37 38 38 37 38 38 37 38 38 37 38 38 37 38 38 37 38 38 37 38 38 37 38 38 37 38 38 37 38 38 37 38 38 37 38 38 37 38 38 37 38 38 37 38 38 37 38 38 37 38 38 37 38 38 37 38 38 37 38 38 37 38 38 37 38 38 37 38 38 37 38 38 37 38 38 37 38 38 37 38 38 38 37 38 38 38 37 38 38 38 38 37 38 38 38 38 38 38 38 38 38 38 38 38 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22<br>23<br>24             | 29<br>29                   | 28<br>28<br>27       | 28                   | 35<br>34       | 33<br>33<br>32 | 35<br>34<br>33<br>33<br>33 |         | 44<br>42<br>41             | 42<br>41<br>40       | 43<br>41<br>40             | ======================================= |                      | ======================================= |
| DAY         MAX         MIN         MEAN         MAX         <                                                                                                                                                                                                                                        | 27<br>28<br>29<br>30       | 39<br>35<br>33<br>33       | 35<br>33<br>32<br>31 | 36<br>34<br>33<br>32 | 33<br>52<br>49 | 31<br>31<br>33 | 32<br>32<br>47<br>46       |         | 38<br>38<br>37<br>37       | 37<br>36<br>36<br>36 | 38<br>37<br>37<br>37       | 40<br>39<br>39<br>39                    | 39<br>38<br>38<br>37 | 39<br>39<br>38<br>38<br>38              |
| FEBRUARY  MARCH  APRIL  MAY  1 38 37 37 58 51 53 77 71 71 73 70 69 2 36 35 36 64 58 61 73 70 71 70 68 3 37 36 36 62 60 61 83 70 77 70 67 4 37 36 37 64 60 61 83 80 82 75 68 5 37 36 37 64 62 63 80 75 78 76 69  6 37 36 37 64 62 63 80 75 78 76 69  6 37 36 37 63 60 61 77 73 74 70 68 7 42 36 40 76 60 70 73 71 72 71 67 8 42 41 42 85 74 78 74 70 71 70 66 9 42 41 42 89 85 87 75 71 72 69 66 10 44 40 42 89 86 88 77 75 71 72 69 66 11 41 39 40 88 84 85 80 76 78 69 66 11 41 39 40 88 84 85 80 76 78 69 66 12 40 38 39 87 85 86 76 76 78 69 66 13 39 37 38 87 85 86 76 76 72 74 70 67 13 39 37 38 87 85 86 76 76 72 74 70 67 14 38 37 37 84 78 81 70 68 69 68 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MONTH                      | 42                         | 26                   | 29                   | 52             | 29             | 34                         |         | 52                         | . 34                 | 41                         | 51                                      | 34                   | 40                                      |
| 1       38       37       37       58       51       53       77       71       73       70       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       68       69       68       69       68       69       68       69       69       60       61       83       70       77       70       67       67       67       68       69       67       68       69       68       69       68       69       68       69       68       69       69       68       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69                                                                                                                                                                                                                                                                                                                                                                                                                    | DAY                        | MAX                        | MIN                  | MEAN                 | MAX            | MIN            | MEAN                       |         | MAX                        | MIN                  | MEAN                       | MAX                                     | MIN                  | MEAN                                    |
| 4       37       36       37       64       60       61       83       80       82       75       68         5       37       36       37       64       62       63       80       75       78       76       69         6       37       36       37       63       60       61       77       73       74       70       68       67         7       42       36       40       76       60       70       73       71       72       71       67       68         8       42       41       42       85       74       78       74       70       71       70       66       66       69       66       69       66       69       66       69       66       69       66       69       66       69       66       66       69       66       69       66       69       66       66       69       66       66       69       66       66       69       66       66       69       66       66       69       66       66       69       66       66       66       69       66       66       66                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                            | FEBRUAR              | r                    |                | MARCH          |                            |         |                            | APRIL                |                            |                                         |                      |                                         |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2<br>3<br>4                | 36<br>37<br>37             | 35<br>36<br>36       | 36<br>37             | 62<br>64       | 58<br>60<br>60 | 61<br>61                   |         | 73<br>83<br>83             | 70<br>70<br>80       | 77<br>82                   | 70                                      | 68<br>67<br>68       | 69<br>69<br>71<br>71                    |
| 15 37 36 37 79 74 76 69 67 68 69 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7<br>8<br>9                | 42<br>42<br>42             | 36<br>41<br>41       | 40<br>42<br>42       | 76<br>85<br>89 | 60<br>74<br>85 | 70<br>78<br>87             |         | 73<br>74<br>75             | 71<br>70<br>71       | 72<br>71<br>72             | 71<br>70<br>69                          | 67<br>66<br>66       | 69<br>68<br>68<br>67<br>67              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11<br>12<br>13<br>14       | 39                         | 38<br>37<br>37       | 39<br>38<br>37       | 87<br>87<br>84 | 85<br>83<br>78 | 81                         |         | 76<br>73<br>70             | 72<br>69<br>68       | 69                         | 70<br>67<br>68                          | 67<br>65<br>66       | 67<br>68<br>67<br>66<br>66              |
| 16     36     35     35     73     69     71     76     68     73     75     67       17     37     35     36     70     66     68     79     75     77     75     72       18     38     36     37     77     66     70     76     72     74     74     71       19     40     38     39     88     78     82     73     71     72     74     69       20     40     39     40     90     84     86     74     72     73     70     68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18<br>19                   | 36<br>37<br>38<br>40<br>40 | 38                   | 37<br>39             | 77<br>88       | 66<br>78       | 70<br>82                   |         | 76<br>79<br>76<br>73<br>74 | 72<br>71             | 74<br>72                   | 74                                      | 71                   | 70<br>73<br>73<br>71<br>69              |
| 21     42     40     40     84     81     83     74     72     73     72     67       22     54     41     47     83     80     81     73     71     72     76     73       23     60     54     57     81     77     79     72     70     71     75     73       24     63     60     62     77     74     76     74     70     72     74     70       25     63     60     61     75     71     73     76     73     75     70     67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21<br>22<br>23<br>24<br>25 | 54<br>60<br>63             | 41<br>54<br>60       | 47<br>57<br>62       | 77             | 80<br>77<br>74 | 79<br>76                   |         | 72<br>74                   | 71<br>70             | 73<br>72<br>71<br>72<br>75 | 75<br>74                                | 73<br>70             | 70<br>75<br>74<br>71<br>69              |
| 27 58 55 56 74 68 69 74 71 72 68 66 6<br>28 55 53 54 81 75 78 72 70 71 68 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27<br>28<br>29             | 58<br>55                   | 55<br>53             | 56<br>54             | 81<br>82<br>79 | 68<br>75       | 69<br>78<br>80             |         | 72<br>72<br>71             | 71<br>70<br>70<br>69 | 72<br>71<br>70<br>70       | 68<br>68<br>69                          | 66<br>65<br>66<br>66 | 67<br>67<br>67<br>67<br>67<br>66        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            | 63                         | 35                   | 43                   |                |                |                            |         |                            |                      |                            |                                         |                      | 69                                      |

O1466500 MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ--Continued

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

| DAY                              | MAX                        | MIN                        | MEAN                       |    | MAX                              | MIN                              | MEAN                             |   | MAX                              | MIN                              | MEAN                             |          | MAX                        | MIN                        | MEAN                       |
|----------------------------------|----------------------------|----------------------------|----------------------------|----|----------------------------------|----------------------------------|----------------------------------|---|----------------------------------|----------------------------------|----------------------------------|----------|----------------------------|----------------------------|----------------------------|
|                                  |                            | JUNE                       |                            |    |                                  | JULY                             |                                  |   |                                  | AUGUST                           |                                  |          |                            | SEPTEMBE                   | ER                         |
| 1<br>2<br>3<br>4<br>5            | 69<br>68<br>68<br>69<br>70 | 66<br>67<br>66<br>67<br>68 | 67<br>67<br>68<br>69       |    | 63<br>59<br>58<br>56<br>55       | 60<br>57<br>56<br>55<br>54       | 61<br>58<br>57<br>55<br>55       |   | 35<br>35<br>34<br>34<br>33       | 33<br>34<br>33<br>33<br>32       | 34<br>34<br>33<br>33             |          | 36<br>34<br>33<br>32<br>31 | 33<br>32<br>31<br>31<br>30 | 35<br>33<br>32<br>32<br>31 |
| 6<br>7<br>8<br>9                 | 69<br>68<br>67<br>66<br>66 | 67<br>66<br>66<br>64<br>64 | 68<br>67<br>66<br>65<br>65 |    | 55<br>54<br>52<br>51<br>50       | 54<br>52<br>50<br>49<br>48       | 54<br>53<br>51<br>50<br>49       |   | 33<br>33<br>32<br>32<br>32       | 32<br>32<br>31<br>31<br>31       | 33<br>32<br>32<br>31<br>31       |          | 31<br>31<br>31<br>31<br>30 | 30<br>30<br>29<br>29       | 31<br>30<br>30<br>30<br>29 |
| 11<br>12<br>13<br>14<br>15       | 65<br>65<br>64<br>63<br>63 | 63<br>63<br>62<br>62<br>61 | 64<br>64<br>63<br>63<br>62 | ** | 49<br>48<br>47<br>46<br>45       | 47<br>47<br>45<br>44<br>43       | 48<br>48<br>46<br>45<br>44       | 4 | 36<br>40<br>41<br>40<br>37       | 30<br>36<br>39<br>37<br>35       | 32<br>38<br>40<br>38<br>36       |          | 30<br>35<br>34<br>32<br>31 | 29<br>29<br>31<br>30<br>30 | 29<br>30<br>33<br>31<br>30 |
| 16<br>17<br>18<br>19<br>20       | 62<br>64<br>77<br>78<br>78 | 60<br>63<br>72<br>69       | 61<br>62<br>68<br>75<br>73 |    | 44<br>43<br>41<br>41<br>40       | 43<br>42<br>40<br>40<br>39       | 43<br>40<br>40<br>40             |   | 35<br>34<br>34<br>33<br>32       | 34<br>33<br>32<br>32<br>31       | 34<br>33<br>33<br>32<br>32       |          | 30<br>31<br>30<br>30<br>30 | 29<br>29<br>29<br>29       | 30<br>30<br>29<br>29<br>29 |
| 21<br>22<br>23<br>24<br>25       | 78<br>75<br>73<br>69<br>67 | 74<br>72<br>69<br>66       | 76<br>73<br>71<br>68<br>65 |    | 52<br>53<br>50<br>44<br>43       | 38<br>50<br>45<br>43<br>41       | 41<br>51<br>47<br>44<br>42       |   | 32<br>32<br>31<br>31<br>31       | 31<br>30<br>30<br>30<br>30       | 31<br>31<br>31<br>30<br>30       | S 100 PM | 45<br>51<br>43<br>40<br>37 | 28<br>43<br>40<br>37<br>34 | 30<br>47<br>42<br>39<br>36 |
| 26<br>27<br>28<br>29<br>30<br>31 | 63<br>63<br>65<br>64       | 61<br>60<br>59<br>63<br>61 | 62<br>61<br>60<br>64<br>62 |    | 42<br>40<br>38<br>37<br>35<br>34 | 39<br>38<br>37<br>36<br>34<br>33 | 40<br>39<br>38<br>37<br>35<br>34 |   | 31<br>31<br>47<br>40<br>39<br>37 | 29<br>29<br>29<br>38<br>36<br>35 | 30<br>30<br>41<br>39<br>38<br>36 |          | 35<br>34<br>33<br>32<br>37 | 33<br>32<br>31<br>31<br>31 | 34<br>33<br>32<br>31<br>35 |
| MONTH                            | 78                         | 59                         | 66                         |    | 63                               | 33                               | 46                               |   | 47                               | 29                               | 34                               |          | 51                         | 28                         | 32 /                       |
| YEAR                             | 90                         | 26                         | 49                         |    | at.                              |                                  |                                  |   |                                  |                                  |                                  |          |                            |                            |                            |

|                                  |                                      |                                      | TEMPERATURE,                         | WATER                                | (DEG. C),                            | WATER YE                            | AR OCTOBER                                | 1982 TO                           | SEPTEMBE                                 | R 1983                          |                                         |                                 |
|----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------------|-----------------------------------|------------------------------------------|---------------------------------|-----------------------------------------|---------------------------------|
| DAY                              | MAX                                  | MIN                                  | MEAN                                 | MAX                                  | MIN                                  | MEAN                                | MA X                                      | MIN                               | MEAN                                     | MAX                             | MIN                                     | MEAN                            |
|                                  |                                      | OCTOBER                              |                                      |                                      | NOVEMBER                             |                                     | I                                         | ECEMBER                           |                                          |                                 | JA NUA RY                               |                                 |
| 1<br>2<br>3<br>4<br>5            | 13.5<br>13.5<br>13.0<br>13.5<br>13.5 | 13.0<br>12.5<br>12.0<br>12.5<br>12.5 | 13.0<br>13.0<br>12.5<br>13.0<br>12.5 | 11.5<br>12.0<br>12.5<br>13.0<br>13.0 | 11.0<br>11.0<br>12.0<br>12.0<br>11.0 | 11.5<br><br>12.5<br>12.0            | 9.5<br>10.0<br>10.5<br>11.0               | 9.0<br>9.5<br>10.0<br>10.5        | 9.5<br>10.0<br>10.0<br>10.5<br>11.0      | 9.0<br>8.5<br>8.5<br>7.5<br>8.0 | 8.0<br>8.0<br>7.5<br>6.5<br>7.0         | 8.5<br>8.5<br>8.0<br>7.0<br>8.0 |
| 6<br>7<br>8<br>9                 | 13.5<br>13.5<br>13.5<br>13.5<br>13.0 | 12.5<br>12.5<br>13.0<br>13.0         | 13.0<br>13.0<br>13.0<br>13.0         | 11.0<br>10.5<br>11.0<br>11.0         | 10.5<br>10.0<br>10.0<br>10.0         | 10.5<br>10.5<br>10.5<br>10.5        | 11.5<br>11.0<br>10.0<br>9.5<br>8.5        | 11.0<br>10.0<br>9.5<br>8.5<br>8.0 | 11.5<br>10.5<br>10.0<br>9.5<br>8.5       | 8.5<br>8.5<br>8.5<br>9.5        | 8.0<br>7.5<br>8.0<br>8.0<br>8.5         | 8.0<br>8.0<br>8.0<br>8.0        |
| 11<br>12<br>13<br>14<br>15       | 12.5<br>12.0<br>12.0<br>12.5<br>12.5 | 11.5<br>11.5<br>11.5<br>11.5<br>12.0 | 12.0<br>12.0<br>12.0<br>12.0<br>12.0 | 10.5<br>11.0<br>10.0<br>10.5<br>10.0 | 9.5<br>10.0<br>7.5<br>9.5<br>9.5     | 10.0<br>10.5<br>8.5<br>10.0         | 8.5<br>8.5<br>7.0<br>7.0<br>8.0           | 8.5<br>6.5<br>6.5<br>6.0<br>7.0   | 8.5<br>7.5<br>6.5<br>6.5<br>7.5          | 9.0<br>8.5<br>8.0<br>7.5<br>7.5 | 8.5<br>8.0<br>7.0<br>6.5<br>7.0         | 9.0<br>8.5<br>7.5<br>7.0<br>7.0 |
| 16<br>17<br>18<br>19<br>20       | 12.0<br>11.5<br><br>11.0<br>11.5     | 11.0<br>10.0<br><br>9.5<br>10.5      | 11.5                                 | 9.5<br>9.0<br>9.5<br>9.5             | 8.5<br>8.5<br>8.5<br>9.5<br>9.5      | 9.0<br>8.5<br>9.0<br>9.5            | 8.5<br>8.0<br>7.5<br>7.5<br>7.5           | 8.0<br>7.5<br>7.0<br>7.0<br>7.0   | 8.0<br>8.0<br>7.0<br>7.0                 | 7.0<br>6.5<br>                  | 6.0                                     | 6.5                             |
| 21<br>22<br>23<br>24<br>25       | 10.0<br>10.5<br>10.5                 | 9.0<br>9.5<br>10.0                   | 9.5<br>10.0<br>10.0                  | 10.5<br>11.0<br>11.0<br>11.0         | 10.0<br>10.5<br>10.5<br>10.0<br>9.0  | 10.5<br>10.5<br>11.0<br>10.5<br>9.5 | 7.5<br>7.5<br>8.0<br>8.5<br>9.5           | 7.5<br>7.0<br>7.5<br>8.0<br>8.5   | 7.5<br>7.5<br>7.5<br>8.0<br>9.0          |                                 | ======================================= | ===                             |
| 26<br>27<br>28<br>29<br>30<br>31 | 10.5<br>10.5<br>11.0<br>11.0<br>11.0 | 9.5<br>9.5<br>9.5<br>9.5<br>10.5     | 10.0<br>10.0<br>10.0<br>10.5<br>10.5 | 10.0<br>9.5<br>9.0<br>9.0            | 9.0<br>8.5<br>8.0<br>8.5<br>9.0      | 9.5<br>9.0<br>8.5<br>9.0<br>9.0     | 10.0<br>9.5<br>10.0<br>10.5<br>9.5<br>9.0 | 9.0<br>9.5<br>9.5<br>9.0<br>8.5   | 9.5<br>9.0<br>10.0<br>10.0<br>9.0<br>8.5 | 6.5<br>6.5<br>6.5<br>7.0<br>7.0 | 6.0<br>6.0<br>6.0<br>6.0<br>6.5         | 6.5<br>6.5<br>6.5<br>6.5        |
| MONTH                            | 13.5                                 | 9.0                                  | 11.5                                 | 13.0                                 | 7.5                                  | 10.0                                | 11.5                                      | 6.0                               | 8.5                                      | 9.5                             | 6.0                                     | 7.5                             |

01466500 MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ--Continued
TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

| DA Y                                                                                            | MAX                                                                                                                                                          | MIN                                                                                                                                | MEAN                                                                                                                                                                 | <br>MAX                                                                                                                                                                                                                                                                          | MIN                                                                                                                                                                                                                                                                                                                                                                                                                     | MEAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MEAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MAX                                                                                                                                                                          | MIN                                                                                                                                   | MEAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -                                                                                               |                                                                                                                                                              | FEBRUARY                                                                                                                           |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                  | MARCH                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | APRIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                              | MAY                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1<br>2<br>3<br>4<br>5                                                                           | 7.0<br>8.0<br>8.0<br>8.0<br>7.0                                                                                                                              | 6.5<br>6.5<br>8.0<br>7.0<br>6.5                                                                                                    | 6.5<br>7.0<br>8.0<br>7.5<br>6.5                                                                                                                                      | 5.5<br>6.0<br>6.0<br>6.5<br>6.5                                                                                                                                                                                                                                                  | 5.0<br>5.5<br>5.5<br>5.5<br>6.0                                                                                                                                                                                                                                                                                                                                                                                         | 5.5<br>5.5<br>6.0<br>6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.0<br>6.0<br>7.5<br>8.0<br>8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.5<br>5.5<br>6.5<br>7.5<br>7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.0<br>6.0<br>7.0<br>8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14.0<br>14.5<br>15.5<br>15.0<br>14.0                                                                                                                                         |                                                                                                                                       | 13.5<br>14.0<br>15.0<br>15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 6<br>7<br>8<br>9                                                                                | 6.5<br>6.5<br>6.0<br>6.0                                                                                                                                     | 6.0<br>6.0<br>6.0<br>5.5<br>5.5                                                                                                    | 6.5<br>6.5<br>6.0<br>6.0                                                                                                                                             | <br>6.5<br>6.0<br>5.5<br>5.5                                                                                                                                                                                                                                                     | 6.0<br>6.0<br>5.5<br>5.5                                                                                                                                                                                                                                                                                                                                                                                                | 6.5<br>6.5<br>6.0<br>5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.5<br>9.0<br>9.5<br>9.5<br>9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.0<br>8.5<br>9.0<br>9.5<br>9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.0<br>8.5<br>9.0<br>9.5<br>9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13.0<br>12.5<br>13.0<br>13.0                                                                                                                                                 | 12.5<br>12.0<br>12.0<br>11.5<br>10.5                                                                                                  | 12.5<br>12.5<br>12.5<br>12.5<br>11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 11<br>12<br>13<br>14<br>15                                                                      | 5.5<br>5.5<br>6.0<br>6.5                                                                                                                                     | 4.0<br>4.5<br>4.5<br>5.0<br>5.5                                                                                                    | 5.0<br>5.0<br>5.5<br>6.0                                                                                                                                             | 5.5<br>5.5<br>5.0<br>5.5<br>6.5                                                                                                                                                                                                                                                  | 5.5<br>5.0<br>4.5<br>5.0<br>5.5                                                                                                                                                                                                                                                                                                                                                                                         | 5.5<br>5.0<br>5.0<br>5.5<br>6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.0<br>9.0<br>8.5<br>8.0<br>9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.0<br>8.0<br>8.0<br>7.5<br>8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.0<br>8.5<br>8.5<br>8.0<br>9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.0<br>10.5<br>11.0<br>11.5<br>12.5                                                                                                                                         | 10.5<br>10.0<br>10.0<br>10.5<br>11.5                                                                                                  | 10.5<br>10.5<br>10.5<br>11.0<br>12.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 16<br>17<br>18<br>19<br>20                                                                      | 6.5<br>6.5<br>7.0<br>6.5<br>6.5                                                                                                                              | 6.0<br>6.0<br>6.0<br>6.0                                                                                                           | 6.0<br>6.5<br>6.5<br>6.5                                                                                                                                             | 7.0<br>6.5<br>7.0<br>8.0                                                                                                                                                                                                                                                         | 6.0<br>6.5<br>6.5<br>7.0<br>8.0                                                                                                                                                                                                                                                                                                                                                                                         | 6.5<br>6.5<br>7.0<br>7.5<br>8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.5<br>8.5<br>8.0<br>7.5<br>5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.0<br>7.0<br>7.5<br>5.5<br>5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.0<br>8.0<br>7.5<br>6.5<br>5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.5<br>11.0<br>11.0<br>11.0                                                                                                                                                 | 11.5<br>10.5<br>10.0<br>10.5<br>11.0                                                                                                  | 12.0<br>11.0<br>10.5<br>11.0<br>11.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 21<br>22<br>23<br>24<br>25                                                                      | 6.5<br>6.5<br>6.0<br>5.5<br>5.0                                                                                                                              | 5.5<br>6.0<br>5.5<br>5.0<br>4.5                                                                                                    | 6.0<br>6.5<br>5.5<br>5.0<br>5.0                                                                                                                                      | 8.5<br>8.5<br>6.5<br>5.5                                                                                                                                                                                                                                                         | 8.0<br>7.0<br>6.0<br>5.0<br>5.0                                                                                                                                                                                                                                                                                                                                                                                         | 8.0<br>7.5<br>6.0<br>5.5<br>5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.5<br>7.5<br>8.5<br>9.0<br>9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.0<br>6.0<br>7.0<br>8.5<br>8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.0<br>7.0<br>7.5<br>8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13.5<br>14.5<br>15.5<br>15.5                                                                                                                                                 | 12.0<br>13.5<br>14.5<br>15.0<br>14.0                                                                                                  | 12.5<br>14.0<br>15.0<br>15.5<br>14.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 26<br>27<br>28<br>29<br>30<br>31                                                                | 5.0<br>5.0<br>5.0                                                                                                                                            | 4.5<br>4.5<br>4.5                                                                                                                  | 4.5<br>5.0                                                                                                                                                           | 5.5<br>5.5<br>6.0<br>6.5<br>5.5                                                                                                                                                                                                                                                  | 4.5<br>5.0<br>5.5<br>5.5<br>5.0                                                                                                                                                                                                                                                                                                                                                                                         | 5.0<br>6.0<br>6.0<br>5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.0<br>10.0<br>11.5<br>12.5<br>13.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.0<br>8.5<br>10.0<br>11.5<br>12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.5<br>9.0<br>10.5<br>12.0<br>13.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14.5<br>14.0<br>13.5<br>13.5<br>14.5                                                                                                                                         | 14.0<br>14.0<br>13.0<br>13.5<br>13.5                                                                                                  | 14.0<br>14.0<br>13.5<br>13.5<br>14.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| MONTH                                                                                           | 8.0                                                                                                                                                          | 4.0                                                                                                                                | 6.0                                                                                                                                                                  | 8.5                                                                                                                                                                                                                                                                              | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15.5                                                                                                                                                                         | 10.0                                                                                                                                  | 13.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                 |                                                                                                                                                              |                                                                                                                                    |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                              |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| DAY                                                                                             | MAX                                                                                                                                                          | MIN                                                                                                                                | MEAN                                                                                                                                                                 | MAX                                                                                                                                                                                                                                                                              | MIN                                                                                                                                                                                                                                                                                                                                                                                                                     | MEAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MEAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MAX                                                                                                                                                                          | MIN                                                                                                                                   | MEAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| DA Y                                                                                            | MAX                                                                                                                                                          | MIN                                                                                                                                | M EA N                                                                                                                                                               | MAX                                                                                                                                                                                                                                                                              | MIN<br>JULY                                                                                                                                                                                                                                                                                                                                                                                                             | M EA N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MIN<br>AUGUST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MAX                                                                                                                                                                          | MIN<br>SEPTEME                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| DAY 1 2 3 4 5                                                                                   |                                                                                                                                                              | JUNE<br>14.0<br>13.5<br>13.5<br>14.0                                                                                               | MEAN 14.0 14.0 14.0 14.5 15.0                                                                                                                                        | MAX<br>16.5<br>17.0<br>17.5<br>18.0<br>18.0                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                         | 16.0<br>16.5<br>17.5<br>17.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16.5<br>16.5<br>16.0<br>16.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15.5<br>15.0<br>15.0<br>15.0                                                                                                                                                 |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1 2 3                                                                                           | 14.0<br>14.0<br>14.5<br>15.5<br>15.5                                                                                                                         | JUNE 14.0 13.5 13.5 14.0 14.5                                                                                                      | 14.0<br>14.0<br>14.0<br>14.5<br>15.0                                                                                                                                 | 16.5<br>17.0<br>17.5<br>18.0<br>18.0<br>18.0                                                                                                                                                                                                                                     | JULY 16.0 16.5 17.0 17.5 17.5 17.5 16.5 16.5                                                                                                                                                                                                                                                                                                                                                                            | 16.0<br>16.5<br>17.5<br>17.5<br>17.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16.5<br>16.5<br>16.0<br>16.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AUGUST<br>15.5<br>15.5<br>15.5<br>15.5<br>15.0<br>15.0<br>15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16.0<br>16.0<br>15.5<br>15.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15.5<br>15.0<br>15.0<br>15.0<br>15.0                                                                                                                                         | 14.5<br>14.5<br>14.0<br>14.0                                                                                                          | 15.0<br>14.5<br>14.5<br>14.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                                       | 14.0<br>14.0<br>14.5<br>15.5<br>15.5<br>16.0<br>15.5<br>14.5<br>15.5<br>16.0                                                                                 | JUNE 14.0 13.5 13.5 14.0 14.5                                                                                                      | 14.0<br>14.0<br>14.0<br>14.5<br>15.0                                                                                                                                 | 16.5<br>17.0<br>17.5<br>18.0<br>18.0<br>18.0                                                                                                                                                                                                                                     | JULY 16.0 16.5 17.0 17.5 17.5 17.6                                                                                                                                                                                                                                                                                                                                                                                      | 16.0<br>16.5<br>17.5<br>17.5<br>17.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16.5<br>16.5<br>16.0<br>16.0<br>16.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AUGUST<br>15.5<br>15.5<br>15.5<br>15.5<br>15.0<br>15.0<br>15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16.0<br>16.0<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15.5<br>15.0<br>15.0<br>15.0<br>15.0<br>15.5<br>15.5                                                                                                                         | SEPTEME<br>14.5<br>14.5<br>14.0<br>14.0<br>14.0<br>14.0<br>14.5<br>14.5<br>14.5                                                       | 15.0<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14                         | 14.0<br>14.0<br>14.5<br>15.5<br>15.5<br>16.0<br>15.5<br>14.5<br>15.5<br>16.0                                                                                 | JUNE  14.0  13.5  13.5  14.0  14.5  15.5  14.0  14.5  14.5  15.5  14.5                                                             | 14.0<br>14.0<br>14.5<br>15.0<br>15.5<br>16.0<br>15.5<br>15.0<br>14.5                                                                                                 | 16.5<br>17.0<br>17.5<br>18.0<br>18.0<br>17.5<br>16.5<br>16.5                                                                                                                                                                                                                     | JULY 16.0 16.5 17.0 17.5 17.5 17.5 16.5 16.5 16.5 15.5 15.5                                                                                                                                                                                                                                                                                                                                                             | 16.0<br>16.5<br>17.5<br>17.5<br>17.5<br>17.5<br>16.5<br>16.5<br>16.0<br>15.5<br>16.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16.5<br>16.0<br>16.0<br>16.0<br>15.5<br>15.5<br>15.5<br>15.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AUGUST<br>15.5<br>15.5<br>15.5<br>15.5<br>15.0<br>15.0<br>15.0<br>15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16.0<br>16.0<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.5<br>15.0<br>15.0<br>15.0<br>15.5<br>15.5<br>15.5<br>14.5<br>14.5<br>14.5                                                                                                 | SEPTEME  14.5 14.5 14.0 14.0 14.0 14.0 13.5 14.0 14.0 14.0 14.0 13.5                                                                  | 15.0<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.6<br>14.0<br>14.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18 | 14.0<br>14.0<br>14.0<br>15.5<br>15.5<br>16.0<br>15.5<br>15.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>17.5                                                 | JUNE  14.0  13.5  13.5  14.5  15.0  14.5  15.5  14.0  14.5  15.5  16.0  16.5  17.0                                                 | 14.0<br>14.0<br>14.5<br>15.0<br>15.5<br>16.0<br>15.5<br>14.5<br>15.5<br>16.0<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5                                                 | 16.5<br>17.0<br>18.0<br>18.0<br>18.0<br>16.5<br>16.5<br>16.5<br>17.0<br>16.5<br>17.0<br>17.0<br>16.5<br>17.0<br>17.0<br>17.0<br>16.5                                                                                                                                             | JULY 16.0 16.5 17.5 17.5 17.5 16.5 16.5 15.5 15.5 16.0 16.0 16.0 16.5                                                                                                                                                                                                                                                                                                                                                   | 16.0<br>16.5<br>17.5<br>17.5<br>17.5<br>17.5<br>16.5<br>16.0<br>15.5<br>16.0<br>16.5<br>16.5<br>16.5<br>16.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16.5<br>16.0<br>16.0<br>16.0<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AUGUST 15.55 15.55 15.50 15.00 15.00 15.00 15.00 14.00 14.00 14.00 14.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16.0<br>16.0<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.5<br>15.0<br>15.0<br>15.0<br>15.0<br>15.5<br>15.5<br>15.5                                                                                                                 | SEPTEME  14.5 14.5 14.0 14.0 14.0 14.0 13.5 14.0 13.5 14.0 13.5 12.5 13.0 12.5 13.0                                                   | 15.0<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.6<br>14.0<br>14.0<br>14.0<br>14.0<br>13.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1 2 3 4 5 6 7 8 9 10 11 2 13 14 5 16 17 8 19 2 0 2 1 2 2 3 4 5 2 6 2 7 8 9 3 0                  | 14.0<br>14.0<br>14.0<br>15.5<br>15.0<br>16.0<br>15.5<br>15.0<br>16.5<br>16.5<br>17.5<br>17.5<br>17.0<br>17.0<br>17.0<br>17.0<br>17.0<br>17.0<br>17.0<br>17.0 | JUNE  14.0 13.5 13.5 14.5 15.0 14.5 15.5 15.5 16.0 17.0 17.0 17.0 17.0 16.5 16.0 16.5 16.0 16.5 16.0                               | 14.0<br>14.0<br>14.5<br>15.0<br>15.5<br>16.0<br>15.5<br>15.0<br>14.5<br>15.5<br>16.0<br>16.5<br>17.5<br>17.5<br>17.5<br>17.5<br>17.0<br>16.5<br>17.0<br>16.5<br>17.0 | <br>16.5<br>17.0<br>18.0<br>18.0<br>18.5<br>16.5<br>16.5<br>16.5<br>17.0<br>16.5<br>17.0<br>16.5<br>17.0<br>16.5<br>17.0<br>16.5<br>17.0<br>16.5<br>17.0<br>16.5<br>17.0<br>16.5<br>17.0<br>16.5<br>17.0<br>16.5<br>17.0<br>17.0<br>17.0<br>17.0<br>17.0<br>17.0<br>17.0<br>17.0 | JULY 16.0 5.0 17.5 17.5 17.5 16.5 5.5 15.5 16.0 16.5 16.0 16.5 16.0 16.5 16.0 16.5 16.0 16.5 16.0 16.5 16.0 16.5 16.0 16.5 16.0 16.5 16.0 16.5 16.0 16.5 16.0 16.5 16.0 16.5 16.0 16.5 16.0 17.5 16.0 16.5 16.0 16.5 16.0 16.5 16.0 16.5 16.0 16.5 16.0 16.5 16.0 16.5 16.0 16.5 16.0 16.5 16.0 16.5 16.0 16.5 16.0 16.5 16.0 16.5 16.0 16.5 16.0 16.5 16.0 16.5 16.0 16.0 16.5 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 | 16.0<br>16.5<br>17.5<br>17.5<br>17.5<br>17.5<br>16.5<br>16.0<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5 | 16.50<br>16.00<br>16.00<br>15.05<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55 | AUGUST 15.55.55 15.0000 15.55.55 15.0000 15.000 15.000 15.000 15.000 14.0005 14.000 14.000 14.000 14.000 14.000 14.000 14.000 14.000 14.000 15.000 15.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16.005555 55550 05505 555550 05505 14.5555 14.5550 05505 14.5550 05505 14.55500 05500 05505 14.55500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 05500 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15.5<br>15.0<br>15.0<br>15.0<br>15.0<br>15.5<br>15.5<br>15.5                                                                                                                 | SEPTEME  14.5 14.5 14.0 14.0 14.0 14.5 14.0 14.5 14.0 14.5 14.0 13.5 14.0 13.5 13.6 13.6 13.6 13.6 13.6 13.6 13.6 13.6                | 14.55<br>14.55<br>14.55<br>14.55<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50 |
| 1 2 3 4 5 6 7 8 9 10 11 123 134 15 16 177 18 19 20 21 223 24 25 26 7 28 29                      | 14.0<br>14.0<br>14.0<br>15.5<br>15.0<br>16.0<br>15.5<br>15.0<br>16.5<br>16.5<br>17.0<br>17.0<br>17.0<br>17.0<br>17.0                                         | JUNE  14.0  13.5  13.5  14.5  15.5  14.5  14.0  14.5  15.5  14.0  14.0  14.5  15.5  16.0  16.0  17.0  17.0  16.5  16.0  16.5  16.5 | 14.0<br>14.0<br>14.5<br>15.0<br>15.5<br>16.0<br>15.5<br>15.0<br>14.5<br>15.5<br>16.0<br>16.5<br>17.5<br>17.5<br>17.5<br>17.0<br>16.5<br>17.0                         | 16.5<br>17.0<br>18.0<br>18.0<br>17.0<br>16.5<br>16.5<br>16.5<br>17.0<br>17.0<br>16.5<br>17.0<br>17.0<br>17.0<br>17.0<br>17.0<br>17.0<br>16.5<br>16.5<br>17.0<br>17.0<br>17.0<br>16.5<br>16.5<br>16.5<br>17.0<br>17.0<br>17.0<br>17.0<br>17.0<br>17.0<br>17.0<br>17.0             | JULY 16.0 16.5 17.5 17.5 17.5 16.5 16.0 15.5 15.5 16.0 16.0 16.0 16.0 16.5 16.0 16.5 16.0 16.5 16.0                                                                                                                                                                                                                                                                                                                     | 16.0<br>16.5<br>17.5<br>17.5<br>17.5<br>16.5<br>16.5<br>16.0<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16.5<br>16.0<br>16.0<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5                                                                                                                                                                                                                                                                                                                                                      | AUGUST 15.55 15.55 15.00 15.00 15.00 15.00 15.00 15.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 | 16.00<br>16.00<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>15.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55 | 15.5<br>15.0<br>15.0<br>15.0<br>15.0<br>15.5<br>15.0<br>14.5<br>14.0<br>14.0<br>14.5<br>14.0<br>14.5<br>14.0<br>14.5<br>13.5<br>14.0<br>14.5<br>13.5<br>14.0<br>14.5<br>15.0 | SEPTEME  14.5 14.0 14.0 14.0 14.0 14.0 13.5 14.0 13.5 14.0 13.5 13.0 13.5 13.0 13.5 13.0 13.5 12.5 13.0 13.5 12.5 13.0 13.5 12.5 13.0 | 14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.00<br>14.00<br>14.00<br>14.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00 |

### 01467000 NORTH BRANCH RANCOCAS CREEK AT PEMBERTON, NJ

LOCATION. -- Lat 39°58'10", long 74°41'05", Burlington County, Hydrologic Unit 02040202, on right bank at downstream side of bridge on Hanover Street at Pemberton, 12 mi upstream from confluence with South Branch Rancocas Creek.

DRAINAGE AREA .-- 118 mi2.

## WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- September 1921 to current year.

REVISED RECORDS.--WSP 1302: 1922-23. WSP 1382: 1933. WDR NJ-82-2: Drainage area.

GAGE.--Water-stage recorder above concrete dams. Datum of gage is 31.19 ft National Geodetic Vertical Datum of 1929.
Prior to June 9, 1923, nonrecording gage and June 9, 1923 to Aug. 9, 1951, water-stage recorder at site 600 ft downstream at datum 6.54 ft lower.

REMARKS.--Water-discharge records good. Flow regulated occasionally by operation of gate in dam and by ponds above station.

AVERAGE DISCHARGE. -- 62 years, 171 ft3/s, 19.68 in/yr.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 1,730 ft<sup>3</sup>/s Aug. 31, 1939, gage height, 10.77 ft, from high-water mark, site and datum then in use; minimum daily, 9.0 ft<sup>3</sup>/s Sept. 29, 1932.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 600 ft3/s and maximum(\*):

| Date    | Time | Discharge (ft³/s) | Gage height (ft) | Date    | Time | Discharge<br>(ft³/s) | Gage height (ft) |
|---------|------|-------------------|------------------|---------|------|----------------------|------------------|
| Mar. 22 | 0230 | 614               | 2.45             | Apr. 17 | 1145 | *775                 | 2.68             |
| Apr. 11 | 1415 | 741               | 2.63             | Apr. 25 | 1245 | 600                  |                  |

Minimum discharge, 47 ft3/s Oct. 5, 6, 7.

|                                  |                                         | DISCHA                                  | RGE, IN                                  | CUBIC FEET                               | PER                                       | SECOND, WATER<br>MEAN VALU | YEAR<br>ES                                 | OCTOBER 1982                              | TO SEPT                                   | EMBER 1983                              |                                         |                                  |
|----------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------------|------------------------------------------|-------------------------------------------|----------------------------|--------------------------------------------|-------------------------------------------|-------------------------------------------|-----------------------------------------|-----------------------------------------|----------------------------------|
| DA Y                             | OCT                                     | NOV                                     | DEC                                      | JAN                                      | FEB                                       | MAR                        | APR                                        | MAY                                       | JUN                                       | JUL                                     | AUG                                     | SEP                              |
| 1<br>2<br>3<br>4<br>5            | 62<br>60<br>57<br>50<br>48              | 75<br>67<br>67<br>65<br>81              | 171<br>169<br>154<br>141<br>127          | 99<br>93<br>95<br>122<br>123             | 105<br>104<br>111<br>118<br>115           | 154<br>164<br>160          | 267<br>248<br>376<br>494<br>508            | 287<br>270<br>242<br>259<br>274           | 302<br>266<br>228<br>235<br>295           | 242<br>195<br>170<br>154<br>146         | 75<br>72<br>69<br>67<br>65              | 104<br>86<br>75<br>69<br>66      |
| 6<br>7<br>8<br>9                 | 47<br>48<br>53<br>53                    | 89<br>79<br>72<br>74<br>72              | 120<br>121<br>119<br>104<br>92           | 128<br>107<br>103<br>105<br>109          | 110<br>116<br>132<br>141<br>140           | 174<br>243<br>323          | 419<br>331<br>329<br>348<br>507            | 270<br>246<br>213<br>178<br>161           | 254<br>243<br>206<br>186<br>169           | 142<br>129<br>117<br>109<br>101         | 66<br>63<br>58<br>58                    | 63<br>60<br>57<br>55<br>53       |
| 11<br>12<br>13<br>14<br>15       | 49<br>49<br>50<br>52                    | 67<br>66<br>122<br>145<br>141           | 88<br>87<br>88<br>84<br>81               | 179<br>238<br>241<br>223<br>169          | 133<br>132<br>137<br>133<br>127           | 437<br>416<br>361          | 717<br>644<br>513<br>462<br>413            | 153<br>158<br>151<br>145<br>149           | 159<br>147<br>130<br>122<br>115           | 94<br>93<br>88<br>85<br>82              | 65<br>96<br>112<br>96<br>75             | 52<br>60<br>76<br>72<br>67       |
| 16<br>17<br>18<br>19<br>20       | 54<br>52<br>52<br>55<br>66              | 123<br>109<br>97<br>89<br>84            | 118<br>177<br>191<br>194<br>171          | 162<br>159<br>156<br>137<br>119          | 130<br>184<br>208<br>190<br>178           | 218<br>234<br>397          | 583<br>761<br>683<br>575<br>545            | 221<br>366<br>413<br>341<br>320           | 108<br>109<br>107<br>124<br>214           | 79<br>74<br>70<br>77<br>73              | 71<br>66<br>64<br>64<br>63              | 62<br>62<br>78<br>75<br>68       |
| 21<br>22<br>23<br>24<br>25       | 71<br>65<br>60<br>58<br>69              | 80<br>80<br>80<br>77<br>74              | 139<br>112<br>103<br>101<br>100          | 108<br>103<br>105<br>123<br>171          | 173<br>164<br>137<br>136<br>136           | 580<br>441<br>361          | 518<br>463<br>407<br>480<br>585            | 345<br>447<br>536<br>535<br>486           | 403<br>503<br>473<br>367<br>288           | 81<br>124<br>113<br>102<br>104          | 61<br>59<br>58<br>57<br>57              | 69<br>130<br>137<br>111<br>86    |
| 26<br>27<br>28<br>29<br>30<br>31 | 99<br>102<br>98<br>79<br>73             | 71<br>70<br>70<br>136<br>161            | 95<br>95<br>92<br>93<br>101              | 156<br>144<br>135<br>115<br>106<br>105   | 133<br>131<br>129                         | 260<br>476<br>460<br>401   | 550<br>453<br>378<br>319<br>301            | 358<br>420<br>398<br>342<br>328<br>315    | 229<br>191<br>176<br>302<br>295           | 97<br>89<br>83<br>78<br>73<br>75        | 54<br>52<br>84<br>79<br>72<br>100       | 74<br>72<br>73<br>69<br>80       |
| TOTAL MEAN MAX MIN CFSM IN.      | 1906<br>61.5<br>102<br>47<br>.52<br>.60 | 2683<br>89.4<br>161<br>65<br>.76<br>.85 | 3729<br>120<br>194<br>81<br>1.02<br>1.18 | 4238<br>137<br>241<br>93<br>1.16<br>1.34 | 3883<br>139<br>208<br>104<br>1.18<br>1.22 | 318<br>580<br>128<br>2.69  | 14177<br>473<br>761<br>248<br>4.01<br>4.47 | 9327<br>301<br>536<br>145<br>2.55<br>2.94 | 6946<br>232<br>503<br>107<br>1.97<br>2.19 | 3339<br>108<br>242<br>70<br>.92<br>1.05 | 2164<br>69.8<br>112<br>52<br>.59<br>.68 | 2261<br>75.4<br>137<br>52<br>.64 |

CAL YR 1982 TOTAL 47269 MEAN 130 MAX 463 MIN 47 CFSM 1.10 IN. 14.90 WTR YR 1983 TOTAL 64505 MEAN 177 MAX 761 MIN 47 CFSM 1.50 IN. 20.34

01467000 NORTH BRANCH RANCOCAS CREEK AT PEMBERTON, NJ--Continued

## WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1923-24, 1958, 1962-69, 1975 to current year.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

| DAT               | E.         | TI                | ME                        | FL<br>INS<br>TAN | EAM-<br>OW,<br>TAN-<br>EOUS<br>FS)              | CI<br>CO<br>DU<br>AN           | E-<br>FIC<br>N-<br>CT-<br>CE<br>HOS)      | (ST                   | H<br>AND-<br>RD<br>TS)             | AT                                      | PER-<br>TURE<br>G C)                            | SOI            | GEN,<br>IS-<br>LVED<br>G/L)               | SOI<br>(PE<br>CE<br>SAT | S-<br>VED               | DEM/<br>BIG<br>CHI<br>IC/<br>5 I | ND,<br>D-<br>EM-<br>AL,           | FO<br>FE<br>BR       | LI-<br>RM,<br>CAL,<br>C<br>OTH<br>PN)  | TOC                     | REP-<br>OCCI<br>CAL<br>PN)             |  |
|-------------------|------------|-------------------|---------------------------|------------------|-------------------------------------------------|--------------------------------|-------------------------------------------|-----------------------|------------------------------------|-----------------------------------------|-------------------------------------------------|----------------|-------------------------------------------|-------------------------|-------------------------|----------------------------------|-----------------------------------|----------------------|----------------------------------------|-------------------------|----------------------------------------|--|
| JAN               |            |                   |                           |                  |                                                 |                                |                                           |                       |                                    |                                         |                                                 |                |                                           |                         |                         |                                  |                                   |                      |                                        |                         |                                        |  |
| APR               | ••         | 12                | 230                       |                  | 122                                             |                                | 59                                        |                       | 4.6                                |                                         | 4.0                                             |                | 11.6                                      |                         | 88                      |                                  | -5                                |                      | 11                                     |                         | 270                                    |  |
| 06.<br>MAY        | ••         | 09                | 915                       |                  | 433                                             |                                | 51                                        |                       |                                    |                                         | 11.0                                            |                | 9.9                                       |                         | 90                      |                                  | .6                                |                      | 23                                     |                         | 21                                     |  |
| 24.<br>JUL        |            | 08                | 330                       |                  | 531                                             |                                | 47                                        |                       |                                    |                                         | 18.0                                            |                | 7.2                                       |                         | 77                      |                                  | 1.6                               |                      | 280                                    |                         | 200                                    |  |
| 11.<br>AUG        | ••         | 12                | 230                       |                  | 54                                              |                                | 40                                        |                       |                                    |                                         | 23.0                                            |                | 7.5                                       |                         | 88                      |                                  | 1.3                               |                      | 130                                    |                         | 200                                    |  |
| 04.<br>SEP        | ••         | 08                | 330                       |                  | 67                                              |                                | 45                                        |                       | 5.4                                |                                         | 23.0                                            |                | 6.7                                       |                         | 78                      |                                  | .7                                |                      | 80                                     |                         | 130                                    |  |
| 21.               |            | 09                | 900                       |                  | 64                                              |                                | 45                                        |                       | 5.4                                |                                         | 20.0                                            |                | 7.8                                       |                         | 85                      |                                  | .9                                |                      | 40                                     |                         | 80                                     |  |
| DAT               | 'E         | HAF<br>NES<br>(MC | SS<br>G/L                 | DI<br>SO         | CIUM<br>S-<br>LVED<br>G/L<br>CA)                | SC<br>(M                       | GNE-<br>IUM,<br>IS-<br>LVED<br>G/L<br>MG) | DI<br>SOL<br>(M       | OIUM,<br>S-<br>VED<br>G/L<br>S NA) | S ( M                                   | OTAS-<br>SIUM,<br>OIS-<br>OLVED<br>IG/L<br>S K) | LIN<br>L<br>(M | AB<br>G/L                                 | SULF<br>TOT<br>(MC      | AL<br>/L                | DIS<br>SOI<br>(MC                | FATE<br>S-<br>LVED<br>G/L<br>SO4) | RI<br>DI<br>SO<br>(M | LO-<br>DE,<br>S-<br>LVED<br>G/L<br>CL) | RII<br>Di<br>SOI<br>(MC | UO-<br>DE,<br>IS-<br>LVED<br>G/L<br>F) |  |
|                   |            |                   |                           |                  |                                                 |                                | ,                                         |                       | ,                                  |                                         | ,                                               | • • •          | ,                                         |                         | ~,                      |                                  | ,                                 |                      |                                        |                         |                                        |  |
| JAN<br>24.        |            |                   | 11                        |                  | 2.4                                             |                                | 1.1                                       |                       | 3.3                                |                                         | . 90                                            | 1              | . 0                                       |                         |                         |                                  | 12                                |                      | 5.7                                    |                         | <.10                                   |  |
| APR<br>06.<br>MAY |            |                   | 8                         |                  | 1.7                                             |                                | .80                                       |                       | 2.3                                |                                         | .50                                             | <1             | .0                                        |                         |                         |                                  | 13                                |                      | 4.7                                    |                         | <.10                                   |  |
| 24.<br>JUL        | ••         |                   | 8                         |                  | 1.9                                             |                                | .77                                       |                       | 2.0                                |                                         | .70                                             | <1             | .0                                        |                         | <.5                     |                                  | 13                                |                      | 3.5                                    |                         | <.10                                   |  |
| 11.               |            |                   | 8                         |                  | 1.8                                             |                                | .77                                       |                       | 2.9                                |                                         | .70                                             | 1              | .0                                        |                         |                         |                                  | 8.4                               |                      | 5.0                                    |                         | <.10                                   |  |
| 04.<br>SEP        |            |                   | 9                         |                  | 2.3                                             |                                | .80                                       |                       | 3.3                                |                                         | .80                                             | 2              | . 0                                       |                         |                         |                                  | 10                                |                      | 5.1                                    |                         | <.10                                   |  |
| 21.               |            |                   | 9                         |                  | 2.1                                             |                                | • 93                                      |                       | 3.1                                |                                         | .90                                             | 5              | . 0                                       |                         |                         |                                  | 10                                |                      | 5.2                                    |                         | <.10                                   |  |
|                   | DAT        | E                 | SILI<br>DIS<br>SOL<br>(MG | VED              | SOLI<br>RESI<br>AT 1<br>DEG<br>DI<br>SOL<br>(MG | DUÉ<br>80<br>. C<br>S-<br>VE D | NIT<br>GE<br>NITR<br>TOT<br>(MG<br>AS     | N,<br>ITE<br>AL<br>/L | 01<br>NO2-<br>TO'<br>(M            | TRO-<br>EN,<br>+NO3<br>TAL<br>G/L<br>N) |                                                 | AL<br>JL       | MIT<br>GEN,<br>MONI<br>ORGA<br>TOT<br>(MC | A +<br>NIC<br>AL        | NIT<br>GE<br>TOT<br>(MG | N,<br>AL<br>/L                   | PHOS<br>PHAT<br>TOTA<br>(MG/      | TE,<br>AL<br>/L      | CARB<br>ORGA<br>TOT<br>(MG             | NIC<br>AL<br>/L         |                                        |  |
| 12                | JAN        | _                 | -                         | - /              | (                                               | ٠,                             |                                           | .,                    |                                    | ,                                       |                                                 | ,              |                                           | ,                       |                         |                                  |                                   |                      |                                        |                         |                                        |  |
|                   | 24.<br>APR | • •               |                           | 5.7              |                                                 | 38                             | <.                                        | 010                   |                                    | . 100                                   |                                                 | 070            |                                           | . 22                    |                         | . 32                             |                                   | . 21                 | 6                                      | . 4                     |                                        |  |
|                   | 06.<br>MAY | • •               |                           | 2.7              |                                                 | 42                             | <.                                        | 010                   | <                                  | . 100                                   |                                                 | 160            |                                           | . 36                    |                         |                                  |                                   | . 12                 | 11                                     |                         |                                        |  |
|                   | 24.<br>JUL |                   |                           | 3.2              |                                                 | 43                             | <.                                        | 010                   |                                    | . 170                                   |                                                 | 170            | E                                         | .51                     |                         |                                  |                                   | . 21                 | 10                                     | i                       |                                        |  |
|                   | 11.<br>AUG | ••,               |                           | 4.8              |                                                 | 4.3                            |                                           | 010                   |                                    |                                         |                                                 |                |                                           |                         |                         |                                  |                                   |                      | 12                                     | 1                       |                                        |  |
|                   | 04.<br>SEP | ••                |                           | 5.3              |                                                 | 32                             |                                           | 010                   |                                    | . 200                                   |                                                 | 130            |                                           | . 49                    |                         | .69                              |                                   |                      | 10                                     | ,                       |                                        |  |
|                   | 21.        | ••                |                           | 5.0              |                                                 | 33                             | <.                                        | 010                   |                                    | . 100                                   |                                                 | 070            |                                           | . 31                    |                         | . 41                             |                                   |                      | 6                                      | . 4                     |                                        |  |

## 01467000 NORTH BRANCH RANCOCAS CREEK AT PEMBERTON, NJ--Continued

| DA TE            | TIME                                                                | NITRO-<br>GEN, NH4<br>+ ORG.<br>TOT IN<br>BOT MAT<br>(MG/KG<br>AS N) | CARBON,<br>INOR-<br>GANIC,<br>TOT IN<br>BOT MAT<br>(G/KG<br>AS C)    | CARBON,<br>INORG +<br>ORGANIC<br>TOT. IN<br>BOT MAT<br>(G/KG<br>AS C) | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)                  | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)                               | ARSENIC<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS AS) | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE)      | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)              | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD)             | CADMIUM<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CD) |
|------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|
| MAY<br>24<br>SEP | 0830                                                                |                                                                      |                                                                      |                                                                       | 230                                                                  | 1                                                                 |                                                                     | <10                                                                  | 80                                                                 | 1                                                                   |                                                                      |
| 21               | 0900                                                                | 620                                                                  | .5                                                                   | 9.1                                                                   |                                                                      |                                                                   | <1                                                                  | -                                                                    |                                                                    |                                                                     | <1                                                                   |
| DATE             | CHRO-MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR)          | CHRO-MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)                      | COBALT,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CO) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU)               | COPPER,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CU) | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE)             | IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)                    | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB)                | LEAD,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN)     | MANGA-<br>NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  |
| MAY              |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                   |                                                                     |                                                                      |                                                                    |                                                                     |                                                                      |
| 24<br>SEP        | <10                                                                 |                                                                      |                                                                      | 5                                                                     |                                                                      | 1600                                                              |                                                                     | 52                                                                   |                                                                    | 30                                                                  |                                                                      |
| 21               |                                                                     | 9                                                                    | <10                                                                  |                                                                       | 40                                                                   |                                                                   | 2800                                                                |                                                                      | 160                                                                | 100                                                                 | 20                                                                   |
| DATE             | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG)             | MERCURY<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/L<br>AS HG) | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI)              | NICKEL,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS NI)  | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE)                           | SELE-<br>NIUM,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN)               | ZINC,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS ZN)   | PHENOLS<br>TOTAL<br>(UG/L)                                         | PCB,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)            | PCN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             |
| MAY              |                                                                     |                                                                      | , 2 Y                                                                |                                                                       |                                                                      |                                                                   |                                                                     |                                                                      |                                                                    |                                                                     |                                                                      |
| SEP              | <.1                                                                 |                                                                      | 1                                                                    |                                                                       | <1                                                                   |                                                                   | 30                                                                  |                                                                      | 4                                                                  |                                                                     |                                                                      |
| 21               |                                                                     | .02                                                                  |                                                                      | 20                                                                    |                                                                      | <1                                                                |                                                                     | 140                                                                  |                                                                    | 40                                                                  | <1.0                                                                 |
| DATE             | ALDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)         | CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)                    | DDD,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DDE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)              | DDT,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)                  | DI-<br>ELDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | ENDO-<br>SULFAN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | ENDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)        | ETHION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)         | HEPTA-<br>CHLOR,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) |
| MAY 24           |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                   |                                                                     |                                                                      |                                                                    |                                                                     |                                                                      |
| SEP              |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                   |                                                                     | 77                                                                   | Ar I                                                               |                                                                     |                                                                      |
| 21               | <.1                                                                 | 130                                                                  | 26                                                                   | 12                                                                    | 11                                                                   | <.1                                                               | 1.1                                                                 | <.1                                                                  | <.1                                                                | <.1                                                                 | <.1                                                                  |
| DATE             | HEPTA-<br>CHLOR<br>EPOXIDE<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG) | LINDANE<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)          | MALA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | METH-<br>OXY-<br>CHLOR,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)      | METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)                     | METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)                   | MIREX,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)          | PARA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | PER-<br>THANE<br>IN<br>BOTTOM<br>MATERIL<br>(UG/KG)                | TOXA-<br>PHENE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)                     |
| MAY 24           |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                   | 022                                                                 |                                                                      |                                                                    | 11.2                                                                |                                                                      |
| SEP 21           | <.1                                                                 | <.1                                                                  | <.1                                                                  | <.1                                                                   | <.1                                                                  | <.1                                                               | . <.1                                                               | <.1                                                                  | <1.00                                                              | <10                                                                 | <.1                                                                  |

### 01467060 DELAWARE RIVER AT PALMYRA, NJ

LOCATION.--Lat 40°01'05", long 75°02'16", Philadelphia County, PA, Hydrologic Unit 02040202, on right bank opposite Palmyra, 0.5 mi upstream from Tacony-Palmyra Bridge, 3.5 mi downstream from Rancocas Creek, and at mile 107.55.

DRAINAGE AREA. -- 7,850 mi2.

### TIDE ELEVATION DATA

PERIOD OF RECORD. -- December 1962 to current year. Tidal volumes published from December 1962 to September 1970.

GAGE.--Water-stage recorder. Datum of gage is -10.00 ft National Geodetic Vertical Datum of 1929. Gage-height record converted to elevation above or below (-) National Geodetic Vertical Datum of 1929 for publication.

REMARKS.--Elevation records good. Some periods of low tide are affected by sluggish or plugged intake and the record is estimated with negligible loss in accuracy. Some periods cannot be estimated and are noted by dash (--) lines. Missing or doubtful record on Oct. 19, 23-31, Nov. 1-16, Dec. 1-30, Jan. 1-9, 29-31, Feb. 1-29, Mar. 1-2, 14-31, Apr. 1-5, July 23-31, Aug. 1-6.

EXTREMES FOR PERIOD OF RECORD.--Maximum elevation, 8.23 ft Oct. 25, 1980; minimum, -8.6 ft (-2.6 m) Dec. 31, 1962.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum elevation known since 1899, 8.9 ft Aug. 24, 1933, from profile furnished by Corps of Engineers, U.S. Army.

EXTREMES FOR CURRENT YEAR.--Maximum elevation, 6.73 ft Apr. 24; minimum, -3.46 ft Jan. 20.

Summaries of tide elevations during current year are as follows:

### TIDE ELEVATIONS, IN FEET, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

| 0.0         |           | OCT   | NO V  | DEC | JAN   | FEB | MAR | APR   | MA Y  | JUN   | JUL   | AUG   | SEP   |
|-------------|-----------|-------|-------|-----|-------|-----|-----|-------|-------|-------|-------|-------|-------|
| Maximum     | Elevation | 6.37  | 5.06  |     | 5.40  |     |     | 6.73  | 6.31  | 6.10  | 5.79  | 5.88  | 5.61  |
| high tide   | Date      | 10    | 20    |     | 11    |     |     | 24    | 27    | 11    | 24    | 12    | 7     |
| Minimum     | Elevation | -3.23 | -3.35 |     | -3.46 |     |     | -2.01 | -3.21 | -2.66 | -3.13 | -2,80 | -2.93 |
| low tide    | Date      | 17    | 25    |     | 20    |     |     | 20    | 9     | 12    | 9     | 9     | 24    |
| Mean high t | ide       |       |       |     |       |     |     | 5.52  | 5.06  | 5.06  | 4.76  | 4.78  | 4.64  |
| Mean water  | level     |       |       |     |       |     |     | 2.36  | 1.71  | 1.69  | 1.44  | 1.53  | 1.46  |
| Mean low ti | de        |       |       |     |       |     |     | -0.93 | -1.88 | -1.97 | -2.34 | -2.11 | -2.10 |

## 01467069 NORTH BRANCH PENNSAUKEN CREEK NEAR MOORESTOWN, NJ

LOCATION.--Lat 39°57'07", long 74°58'10", Burlington County, Hydrologic Unit 02040202, at bridge on Kings Highway, 200 ft downstream from outlet of Strawbridge Lake, 0.6 mi northwest of Moorestown Mall, 0.8 mi southeast of Lenola, and 1.8 mi southwest of Moorestown.

DRAINAGE AREA. -- 12.8 mi2.

## WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1976 to current year.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

|                  |                   |                              | Mr 61                           |                                                                    | 1                                          |                                |                                                      |                                         | .,,,,      |                                           | OXYG                    | EN.                           | OXYO                     | EN                       |                         |                                  |                    | 1                         |  |
|------------------|-------------------|------------------------------|---------------------------------|--------------------------------------------------------------------|--------------------------------------------|--------------------------------|------------------------------------------------------|-----------------------------------------|------------|-------------------------------------------|-------------------------|-------------------------------|--------------------------|--------------------------|-------------------------|----------------------------------|--------------------|---------------------------|--|
| DATE             |                   | TIME                         | STREA<br>FLOW<br>INSTA<br>TANEO | AM- CI<br>V, CO<br>AN- DU<br>DUS AN                                | PE-<br>IFIC<br>ON-<br>ICT-<br>ICE<br>IHOS) | PH<br>(STAN<br>ARD<br>UNITS    | A                                                    | MPER-<br>FURE<br>EG C)                  | SOL        | GEN,<br>S-<br>VED                         | SOL<br>(PE<br>CE<br>SAT | S-<br>VED                     | BIC<br>CHE<br>ICA<br>5 I | IND,<br>D-<br>EM-<br>IL, | FOR<br>FEC<br>EC<br>BRC | M,<br>CAL,<br>OTH                | STF<br>TOCO<br>FEO | AL                        |  |
| JAN              |                   |                              |                                 |                                                                    |                                            |                                |                                                      |                                         |            |                                           |                         |                               |                          |                          |                         |                                  |                    |                           |  |
| 31.<br>APR       |                   | 1030                         | 2                               | 2.7                                                                | 321                                        | 6                              | . 4                                                  | 5.0                                     | 1          | 1.0                                       |                         | 86                            |                          | 2.7                      |                         | 23                               |                    | 140                       |  |
| 11.<br>MAY       |                   | 0915                         | 35                              | 5                                                                  | 130                                        |                                |                                                      | 10.0                                    | 1          | 0.0                                       |                         | 88                            |                          | 2.3                      | 9                       | 200                              |                    | 240                       |  |
| 26.<br>JUL       |                   | 0915                         | 6                               | 5.6                                                                | 196                                        | 6                              | .2                                                   | 19.0                                    |            | 6.6                                       |                         | 71                            |                          | 3.0                      |                         | 1600                             | >2                 | 2400                      |  |
| 20.<br>AUG       |                   | 0945                         |                                 |                                                                    | 302                                        | 7                              | . 1                                                  | 27.0                                    |            | 5.2                                       |                         | 66                            |                          | 4.6                      |                         | 140                              | 2                  | 2400                      |  |
| 02<br>SEP        |                   | 0945                         |                                 |                                                                    | 315                                        | 7                              | • 5                                                  | 28.0                                    |            | 7.6                                       |                         | 98                            |                          | 9.3                      |                         | 330                              |                    | 110                       |  |
|                  |                   | 0845                         |                                 |                                                                    | 273                                        | 7                              | . 1                                                  | 22.0                                    |            | 6.4                                       |                         | 73                            |                          | 4.4                      |                         | 230                              |                    | 170                       |  |
|                  |                   | HARD-<br>NESS<br>(MG/L<br>AS | CALCI<br>DIS-<br>SOLV           | IUM S<br>- I<br>VED SC<br>/L (M                                    | GNE-<br>SIUM,<br>DIS-<br>DLVED             | SODIU<br>DIS-<br>SOLVE<br>(MG/ | M, 1<br>D SC<br>L (1                                 | OTAS-<br>SIUM,<br>DIS-<br>OLVED<br>MG/L | (MC        | TY<br>AB<br>G/L                           | SULF<br>TOT<br>(MG      | AL<br>/L                      | DIS<br>SOI<br>(MC        | VED<br>J/L               | (MC                     | DE,<br>S-<br>LVED<br>G/L         | SOI<br>(MC         | DE,<br>IS-<br>LVED<br>G/L |  |
| DA               | ΓE                | CACO3)                       | AS (                            | CA) AS                                                             | MG)                                        | AS N                           | A) A:                                                | S K)                                    | CAC        | :03)                                      | AS                      | S)                            | AS S                     | 304)                     | AS                      | CL)                              | AS                 | F)                        |  |
| JAN<br>31<br>APR |                   | 85                           | 24                              |                                                                    | 6.1                                        | 17                             |                                                      | 5.1                                     | 14         |                                           | ÷                       |                               |                          | 58                       | 33                      | 3                                |                    | .20                       |  |
| 11               |                   | 39                           | 11                              |                                                                    | 2.8                                        | 5.                             | 5                                                    | 2.7                                     | 9.         | . 0                                       |                         |                               |                          | 30                       | 10                      | 0                                |                    | . 10                      |  |
| MA Y<br>26       |                   | 64                           | 18                              |                                                                    | 4.7                                        | 8.                             | 2                                                    | 4.2                                     | 11         |                                           |                         | <.5                           | 1                        | 46                       | 15                      | 5                                |                    | .20                       |  |
| JUL<br>20        |                   | 94                           | 25                              |                                                                    | 7.6                                        | 19                             |                                                      | 7.4                                     | 15         |                                           |                         |                               |                          | 70                       | 30                      | 0                                |                    | .40                       |  |
|                  |                   | 84                           | 22                              |                                                                    | 7.0                                        | 19                             |                                                      | 7.1                                     | 20         |                                           |                         |                               |                          | 55                       | 3                       | 2                                |                    | .40                       |  |
| SEP<br>19        |                   | 74                           | 20                              |                                                                    | 5.9                                        | 16                             |                                                      | 6.4                                     | 16         |                                           |                         | <.5                           |                          | 55                       | 2'                      | 7                                |                    | .30                       |  |
|                  | DAT               | (MG<br>AS                    | VED                             | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L) |                                            | AL<br>L                        | NITRO-<br>GEN,<br>IO2+NO3<br>TOTAL<br>(MG/L<br>AS N) | GI<br>AMM                               | TAL<br>G/L | NIT<br>GEN,<br>MONI<br>ORGA<br>TOT<br>(MG | A +<br>NIC<br>AL        | NIT<br>GE<br>TOT<br>(MG<br>AS | N,<br>AL<br>/L           | PHO<br>PHA<br>TOT<br>(MC | TE,<br>TAL              | CARB<br>ORGA<br>TOT<br>(MG<br>AS | NIC<br>AL<br>/L    |                           |  |
|                  | JAN<br>31.<br>APR | 1                            | 2                               | 183                                                                |                                            | 020                            | .900                                                 | 1.                                      | . 40       | 1                                         | . 8                     | 2                             | .7                       |                          | .18                     | 2                                | .7                 |                           |  |
|                  | 11.               |                              | 5.9                             | 86                                                                 |                                            | 020                            | .500                                                 |                                         | 170        | 1                                         | . 1                     | 1                             | .6                       | 1                        | .00                     | 7                                | .9                 |                           |  |
|                  | 26.<br>JUL        | 1                            | 0                               | 147                                                                |                                            | 030                            | .800                                                 |                                         | 690        | 1                                         | .5                      | 2                             | .3                       | 1                        | . 10                    | 6                                | • 7                |                           |  |
|                  | 20.               | 1                            | 1                               | 215                                                                |                                            | 110                            | .600                                                 | 2.                                      | . 10       | 2                                         | . 4                     | 3                             | .0                       | 1                        | . 19                    | 11                               |                    |                           |  |
|                  | 02.<br>SEP        |                              | 8.0                             | 214                                                                |                                            | 050                            | .400                                                 |                                         | 560        | 2                                         | .7                      | 3                             | . 1                      | 1                        | .32                     | 7                                | . 8                |                           |  |
|                  | 19.               |                              | 7.9                             | 158                                                                |                                            | 070                            | .500                                                 | 1                                       | 90         | 3                                         | .2                      | 3                             | .7                       |                          | . 49                    | 6                                | .6                 |                           |  |

01467069 NORTH BRANCH PENNSAUKEN CREEK NEAR MOORESTOWN, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

| DATE      | TIME                                                  | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)   | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)                             | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE) | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)   | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD) | CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR)            | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU) |
|-----------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|
| MAY       |                                                       |                                                       |                                                                 |                                                                 |                                                         |                                                         |                                                       |                                                         |
| 26<br>SEP | 0915                                                  | 130                                                   | 4                                                               | <10                                                             | 90                                                      | 1.                                                      | 10                                                    | 6                                                       |
| 19        | 0845                                                  | 10                                                    | 2                                                               | <10                                                             | 60                                                      | 2                                                       | 10                                                    |                                                         |
| DATE      | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG)         | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE)              | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | PHENOLS<br>TOTAL<br>(UG/L)                              |
| MAY       |                                                       |                                                       |                                                                 |                                                                 |                                                         |                                                         |                                                       |                                                         |
| 26<br>SEP | 5700                                                  | 15                                                    | 170                                                             | . 1                                                             | 19                                                      | <1                                                      | 30                                                    | 3                                                       |
| 19        | 4400                                                  | 7                                                     | 180                                                             | <.1                                                             | .10                                                     | <1                                                      | 20                                                    | <1                                                      |

## 01467081 SOUTH BRANCH PENNSAUKEN CREEK AT CHERRY HILL, NJ

LOCATION.--Lat 39°56'30", long 75°00'05", Camden County, Hydrologic Unit 02040202, on left bank on downstream wingwall of bridge on Mill Road in Cherry Hill, 1.1 mi south of Maple Shade and 3.8 mi upstream from confluence with the North Branch Pennsauken Creek.

DRAINAGE AREA. -- 8.98 mi2.

### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1967 to September 1976, October 1977 to current year.

REVISED RECORDS.--WDR NJ-82-2: Drainage area.

GAGE. -- Water-stage recorder and crest-stage gage. Datum of gage is 8.12 ft National Geodetic Vertical Datum of 1929.

REMARKS .- - Water-discharge records fair and crest-stage gage. Diurnal fluctuations from unknown source.

AVERAGE DISCHARGE.--15 years, (water years 1968-76, 1978-83) 18.4 ft3/s, 27.82 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 868 ft<sup>3</sup>/s Aug. 28, 1978, gage height, 10.19 ft; maximum gage height, 11.34 ft Aug. 28, 1971; minimum discharge, 2.6 ft<sup>3</sup>/s Oct. 6, 9, 10, 11, 1970, gage height, 1.71 ft.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 300 ft3/s and maximum (\*):

| Date               | Time         | Discharge<br>(ft³/s) | Gage height (ft) | Date              | Time         | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft) |
|--------------------|--------------|----------------------|------------------|-------------------|--------------|-----------------------------------|------------------|
| Mar. 21<br>Apr. 10 | 1230<br>1200 | 373<br>355           | 6.90<br>6.74     | Apr. 24<br>May 21 | 2245<br>2130 | 311<br>319                        | 6.34             |
| Apr. 16            | 1315         | *601                 | 8.62             | May 21            | 2130         | 319                               |                  |

Minimum discharge, 3.4 ft<sup>3</sup>/s Nov. 6.

|                                            |                                           | DISC                                       | HARGE, IN                                  | CUBIC FE                                   | ET PER SEC                                 | COND, WATER                               |                                           | CTOBER 19                                   | 82 TO SEP                                  | TEMBER 19                                 | 83                                       |                                            |
|--------------------------------------------|-------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|-------------------------------------------|-------------------------------------------|---------------------------------------------|--------------------------------------------|-------------------------------------------|------------------------------------------|--------------------------------------------|
| DA Y                                       | OCT                                       | NOV                                        | DEC                                        | JAN                                        | FEB                                        | MAR                                       | APR                                       | MAY                                         | JUN                                        | JUL                                       | A UG                                     | SEP                                        |
| 1<br>2<br>3<br>4<br>5                      | 5.0<br>4.9<br>4.6<br>4.7<br>4.5           | 7.0<br>7.5<br>9.5<br>10                    | 19<br>16<br>9.6<br>8.7<br>8.4              | 7.6<br>7.5<br>7.4<br>7.2                   | 7.4<br>11<br>35<br>11<br>8.7               | 31<br>67<br>17<br>13                      | 14<br>13<br>118<br>26<br>17               | 12<br>12<br>11<br>18<br>11                  | 15<br>13<br>12<br>21<br>12                 | 10<br>9.5<br>8.7<br>8.3                   | 6.9<br>7.0<br>6.8<br>7.0<br>7.2          | 5.8<br>5.4<br>5.4<br>4.9<br>5.2            |
| 6<br>7<br>8<br>9                           | 5.0<br>4.7<br>4.3<br>4.4<br>4.5           | 4.4<br>4.8<br>5.9<br>5.7<br>6.0            | 9.8<br>8.0<br>7.8<br>7.8                   | 9.4<br>8.1<br>7.6<br>30                    | 8.5<br>22<br>16<br>11<br>9.2               | 11<br>31<br>57<br>51<br>51                | 15<br>15<br>21<br>21<br>194               | 10<br>9.8<br>10<br>11<br>9.3                | 11<br>11<br>9.9<br>9.8<br>9.1              | 27<br>9.1<br>8.4<br>7.6<br>7.2            | 6.9<br>6.6<br>6.6<br>6.7<br>6.5          | 5.5<br>5.6<br>5.4<br>5.2<br>5.1            |
| 11<br>12<br>13<br>14<br>15                 | 4.6<br>4.8<br>5.5<br>6.6<br>5.5           | 6.3<br>7.2<br>87<br>13<br>9.5              | 8.6<br>9.1<br>9.3<br>9.0                   | 72<br>14<br>9.7<br>8.7                     | 12<br>22<br>10<br>8.8<br>11                | 22<br>50<br>17<br>13<br>11                | 41<br>20<br>16<br>15                      | 9.0<br>9.0<br>8.7<br>8.5                    | 8.6<br>8.7<br>8.6<br>8.0<br>7.7            | 7.2<br>7.2<br>7.0<br>6.9<br>7.0           | 29<br>18<br>6.7<br>6.1<br>5.9            | 5.0<br>22<br>28<br>7.4<br>5.9              |
| 16<br>17<br>18<br>19<br>20                 | 6.3<br>5.3<br>5.6<br>5.5<br>6.5           | 7.3<br>6.9<br>6.7<br>6.8<br>6.7            | 49<br>17<br>10<br>9.6                      | 8.5<br>7.5<br>6.7<br>9.4                   | 17<br>24<br>35<br>25<br>19                 | 11<br>10<br>55<br>150<br>26               | 370<br>44<br>25<br>36<br>40               | 93<br>45<br>14<br>12                        | 7.7<br>7.6<br>9.3<br>34<br>28              | 7.0<br>6.4<br>6.9<br>6.7<br>6.8           | 5.7<br>5.4<br>5.6<br>5.7<br>5.7          | 5.5<br>5.6<br>5.8<br>6.0<br>5.9            |
| 21<br>22<br>23<br>24<br>25                 | 14<br>6.6<br>6.3<br>7.3                   | 7.1<br>7.1<br>6.9<br>7.2<br>7.1            | 8.8<br>8.1<br>8.0<br>8.1<br>7.8            | 6.5<br>6.8<br>33<br>15                     | 18<br>18<br>36<br>19                       | 189<br>44<br>20<br>15<br>14               | 23<br>18<br>16<br>127<br>144              | 73<br>103<br>108<br>56<br>21                | 77<br>17<br>11<br>9.6<br>8.7               | 9.2<br>11<br>6.9<br>9.0<br>7.0            | 5.9<br>5.2<br>5.1<br>5.4<br>5.0          | 36<br>39<br>6.9<br>5.5<br>5.2              |
| 26<br>27<br>28<br>29<br>30<br>31           | 48<br>8.0<br>5.6<br>7.0<br>9.8<br>9.8     | 7.1<br>7.1<br>9.5<br>76<br>14              | 8.0<br>7.8<br>8.2<br>11<br>8.7<br>8.0      | 9.0<br>8.4<br>8.2<br>7.8<br>8.7<br>9.2     | 11<br>9.5<br>9.6<br>                       | 12<br>42<br>84<br>22<br>16<br>15          | 29<br>19<br>16<br>14<br>13                | 26<br>142<br>25<br>24<br>28<br>21           | 8.0<br>8.1<br>8.6<br>91<br>14              | 6.8<br>6.8<br>7.1<br>7.0<br>6.6<br>6.6    | 4.4<br>4.8<br>17<br>8.3<br>5.6           | 5.6<br>4.9<br>4.6<br>4.6<br>6.4            |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 267.2<br>8.62<br>48<br>4.3<br>.96<br>1.11 | 380.3<br>12.7<br>87<br>4.4<br>1.41<br>1.58 | 352.2<br>11.4<br>49<br>7.8<br>1.27<br>1.46 | 404.9<br>13.1<br>72<br>6.5<br>1.46<br>1.68 | 457.7<br>16.3<br>36<br>7.4<br>1.82<br>1.90 | 1178<br>38.0<br>189<br>10<br>4.23<br>4.88 | 1495<br>49.8<br>370<br>13<br>5.55<br>6.19 | 971.3<br>31.3<br>142<br>8.5<br>3.49<br>4.02 | 505.0<br>16.8<br>91<br>7.6<br>1.87<br>2.09 | 260.9<br>8.42<br>27<br>6.4<br>.94<br>1.08 | 238.7<br>7.70<br>29<br>4.4<br>.86<br>.99 | 269.3<br>8.98<br>39<br>4.6<br>1.00<br>1.12 |

CAL YR 1982 TOTAL 6131.3 MEAN 16.8 MAX 425 MIN 2.9 CFSM 1.87 IN. 25.40 WTR YR 1983 TOTAL 6780.5 MEAN 18.6 MAX 370 MIN 4.3 CFSM 2.07 IN. 28.09

DELAWARE RIVER BASIN 119 01467081 SOUTH BRANCH PENNSAUKEN CREEK AT CHERRY HILL, NJ--Continued

## WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1970-73, 1975 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

| DA TE             | TIME                         | FL<br>INS<br>TAN                           | EAM-<br>OW,<br>TAN-<br>EOUS<br>FS)                     | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(UMHOS) | PH<br>(STAND-<br>ARD<br>UNITS)        | TEMPER-<br>ATURE<br>(DEG C)                | . Di                                  | GEN,<br>IS-<br>LVED<br>G/L)                     | SOL<br>(PE<br>CE<br>SAT | S-<br>VED | DEMA<br>BIO<br>CHE<br>ICA<br>5 D<br>(MG | ND,<br>-<br>M-<br>L,<br>AY       | COLI-<br>FORM,<br>FECAL,<br>EC<br>BROTH<br>(MPN) | STREP-<br>TOCOCCI<br>FECAL<br>(MPN)       |
|-------------------|------------------------------|--------------------------------------------|--------------------------------------------------------|---------------------------------------------------|---------------------------------------|--------------------------------------------|---------------------------------------|-------------------------------------------------|-------------------------|-----------|-----------------------------------------|----------------------------------|--------------------------------------------------|-------------------------------------------|
| OCT               | 4.011.5                      |                                            |                                                        |                                                   |                                       |                                            |                                       |                                                 |                         |           |                                         |                                  | 4400                                             | 222                                       |
| 19<br>JAN         | 1245                         |                                            | 5.6                                                    | 442                                               | 7.3                                   | 13.0                                       | )                                     | 6.4                                             |                         | 60        |                                         | 9.0                              | 1100                                             | 200                                       |
| 19<br>APR         | 1100                         |                                            | 6.7                                                    | 400                                               |                                       | . (                                        | )                                     |                                                 |                         |           | 1                                       | 0                                | >2400                                            | 920                                       |
| 12<br>JUN         | 0900                         |                                            | 20                                                     | 252                                               | 6.9                                   | 10.0                                       | )                                     | 10.0                                            |                         | 89        |                                         | 3.1                              | 330                                              | 33                                        |
| 01                | 1200                         |                                            | 6.7                                                    | 289                                               | 6.7                                   | 17.5                                       | ;                                     | 8.8                                             |                         | 93        |                                         | 4.7                              | 1400                                             | 2300                                      |
| JUL<br>20         | 1130                         |                                            | 6.1                                                    | 400                                               | 7.5                                   | 24.0                                       | )                                     | 4.4                                             |                         | 53        |                                         | 5.0                              | 22000                                            | 24000                                     |
| AUG<br>02         | 1040                         |                                            | 5.6                                                    | 435                                               | 7.4                                   | 25.0                                       | )                                     | 5.3                                             |                         | 64        |                                         | 7.2                              | 17000                                            | 3100                                      |
| SEP<br>19         | 1115                         |                                            | 14                                                     | 403                                               | 7.5                                   |                                            |                                       | 5.1                                             |                         | 57        |                                         | 5.7                              | 2400                                             | 230                                       |
| 19                | 1115                         |                                            | 14                                                     |                                                   | 1.5                                   |                                            |                                       |                                                 |                         | 51        |                                         | 0.1                              |                                                  |                                           |
| DA TE             | HARD-<br>NESS<br>(MG/L<br>AS | DIS<br>SOI<br>(MC                          | LVED<br>G/L                                            | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L        | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L    | POTAS-<br>SIUM,<br>DIS-<br>SOLVEI<br>(MG/L | LIN:<br>L:<br>(MC                     | AB<br>G/L<br>S                                  | SULF<br>TOT<br>(MG      | AL<br>/L  | SULF<br>DIS<br>SOL<br>(MG               | VED<br>/L                        | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L        | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L |
|                   | CAC03                        | ) AS                                       | CA)                                                    | AS MG)                                            | AS NA)                                | AS K)                                      | CA                                    | CO3)                                            | AS                      | 5)        | AS S                                    | 04)                              | AS CL)                                           | AS F)                                     |
| OCT<br>19         | 8                            | 8 2                                        | 4                                                      | 6.7                                               | 36                                    | 11                                         | 48                                    |                                                 |                         |           | 4                                       | 6                                | 33                                               | .20                                       |
| JAN<br>19         | . 9                          | 4 2                                        | 5                                                      | 7.6                                               | 27                                    | 8.4                                        | 19                                    |                                                 |                         |           | 6                                       | 6                                | 33                                               | .20                                       |
| A PR<br>12        | 7                            |                                            |                                                        | 6.2                                               | 15                                    |                                            |                                       |                                                 |                         |           | 5                                       |                                  | 20                                               | .20                                       |
| JUN               |                              |                                            |                                                        |                                                   |                                       | 4.1                                        | 19                                    |                                                 |                         |           |                                         |                                  |                                                  |                                           |
| 01<br>JUL         | 8                            |                                            |                                                        | 7.0                                               | 17                                    | 5.7                                        | 27                                    |                                                 |                         |           | 5                                       |                                  | 26                                               | .20                                       |
| 20<br>AUG         | 9                            | 0 2                                        | 4                                                      | 7.3                                               | 31                                    | 9.6                                        | 47                                    |                                                 |                         |           | 5                                       | 0                                | 36                                               | .30                                       |
| 02<br>SEP         | 8                            | 7 2                                        | 3                                                      | 7.3                                               | 36                                    | 9.8                                        | 48                                    |                                                 |                         |           | 5                                       | 3                                | 39                                               | .30                                       |
| 19                | 8                            | 8 2                                        | 4                                                      | 6.8                                               | 32                                    | 10                                         | 49                                    |                                                 |                         | <.5       | 4                                       | 8                                | 34                                               | .30                                       |
| DAT               | D<br>S<br>(1                 | LICA,<br>IS-<br>OLVED<br>MG/L<br>AS<br>02) | SOLID<br>RESID<br>AT 18<br>DEG.<br>DIS<br>SOLV<br>(MG/ | OUE NI<br>O G<br>C NIT<br>- TO<br>ED (M           | EN, G<br>RITE NO2<br>TAL TO<br>G/L (M | EN, C<br>+NO3 AMM<br>TAL TO                | TRO-<br>GEN,<br>MONIA<br>OTAL<br>MG/L | NIT<br>GEN,<br>MONI<br>ORGA<br>TOT<br>(MG<br>AS | AM-<br>A +<br>NIC<br>AL | NIT       | N,<br>AL<br>/L                          | PHOS-<br>PHATE<br>TOTAL<br>(MG/I | E, ORGA<br>L TOT<br>L (MC                        | NIC<br>TAL<br>G/L                         |
| OCT               |                              | 02,                                        | (                                                      |                                                   | ,                                     |                                            | ,                                     |                                                 |                         |           | . ,                                     |                                  |                                                  |                                           |
| 19.<br>JAN        |                              | 14                                         | 2                                                      | 48                                                | . 360 1                               | .90                                        | 8.60                                  | 6                                               | .0                      | 7         | . 9                                     | 6.0                              | 00 4                                             | 1.1                                       |
| 19.               |                              | 15                                         | 2                                                      | 09                                                | . 100 1                               | .70                                        | .70                                   | 6                                               | .0                      | 7         | . 7                                     | 3.0                              | 00 10                                            | )                                         |
| APR<br>12.<br>JUN |                              | 12                                         | 1                                                      | 61                                                | .060 1                                | .00                                        | .40                                   | E2                                              | .0                      |           |                                         | 1.5                              | 50 5                                             | 5.8                                       |
| 01.               |                              | 13                                         | 1                                                      | 83                                                | . 180 1                               | .40 E                                      | 1.90                                  | 2                                               | . 8                     | 4         | . 2                                     | 2.                               | 50 5                                             | 5.8                                       |
| JUL<br>20.        |                              | 13                                         | 2                                                      | 60                                                | .630 1                                | .10                                        | 3.10                                  | E3                                              | . 6                     |           |                                         | 4.                               | 91 9                                             | .8                                        |
| AUG<br>02.        |                              | 14                                         | 2                                                      | 38                                                | . 190                                 | .740                                       | . 20                                  | E3                                              | .0                      |           |                                         | 5.2                              | 21 6                                             | 5.4                                       |
| SEP<br>19.        |                              | 14                                         | 2                                                      | 30                                                | . 140                                 | .730                                       | . 80                                  | 5                                               | . 8                     | 6         | .5                                      |                                  | 6                                                | .0                                        |
|                   |                              |                                            |                                                        |                                                   |                                       |                                            |                                       |                                                 |                         |           |                                         |                                  |                                                  |                                           |

## 01467081 SOUTH BRANCH PENNSAUKEN CREEK AT CHERRY HILL, NJ--Continued

| DATE<br>SEP | TIME                                                                | NITRO-<br>GEN, NH 4<br>+ ORG.<br>TOT IN<br>BOT MAT<br>(MG/KG<br>AS N) | CARBON,<br>INOR-<br>GANIC,<br>TOT IN<br>BOT MAT<br>(G/KG<br>AS C)    | CARBON,<br>INORG +<br>ORGANIC<br>TOT. IN<br>BOT MAT<br>(G/KG<br>AS C) | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)                  | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)                                   | ARSENIC<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS AS) | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE)      | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)              | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD)        | CADMIUM<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CD) |
|-------------|---------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------|
| 19          | 1115                                                                | 1100                                                                  | • 3                                                                  | 3.2                                                                   | <10                                                                  | 3                                                                     | <1                                                                  | <10                                                                  | 250                                                                | 2                                                              | 1                                                                    |
| DATE        | CHRO-MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR)          | CHRO-<br>MIUM,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)    | COBALT,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CO) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU)               | COPPER,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CU) | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE)                 | IRON,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS FE)  | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB)                | LEAD,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERALE<br>(UG/L<br>AS MN) | MANGA-<br>NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  |
| SEP         |                                                                     |                                                                       |                                                                      |                                                                       |                                                                      |                                                                       |                                                                     |                                                                      |                                                                    |                                                                |                                                                      |
| 19          | 10                                                                  | 2                                                                     | <10                                                                  | 8                                                                     | 0                                                                    | 1600                                                                  | 920                                                                 | 4                                                                    | <10                                                                | 60                                                             | 4                                                                    |
| DATE        | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG)             | MERCURY<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/L<br>AS HG)  | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI)              | NICKEL,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS NI)  | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE)                           | SELE-<br>NIUM,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)     | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN)               | ZINC,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS ZN)   | PHENOLS<br>TOTAL<br>(UG/L)                                         | PCB,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)       | PCN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             |
| SEP         |                                                                     |                                                                       |                                                                      |                                                                       |                                                                      |                                                                       |                                                                     |                                                                      |                                                                    |                                                                |                                                                      |
| 19          | <.1                                                                 | . 01                                                                  | 3                                                                    | <10                                                                   | <1                                                                   | <1                                                                    | 30                                                                  | 10                                                                   | 2                                                                  | 9                                                              | <1.0                                                                 |
| DATE        | ALDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)         | CHLOR - DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)                    | DDD,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DDE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)              | DDT,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DI -<br>AZINON,<br>TOTAL<br>IN BOT -<br>TOM MA -<br>TERIAL<br>(UG/KG) | DI -<br>ELDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | ENDO-<br>SULFAN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | ENDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)        | ETHION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)    | HEPTA-<br>CHLOR,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) |
| SEP         |                                                                     |                                                                       |                                                                      |                                                                       |                                                                      |                                                                       |                                                                     |                                                                      |                                                                    |                                                                |                                                                      |
| 19          | <.1                                                                 | 32                                                                    | 15                                                                   | 8.6                                                                   | 14                                                                   | <.1                                                                   | 1.9                                                                 | <.1                                                                  | <.1                                                                | <.1                                                            | <.1                                                                  |
| DATE        | HEPTA-<br>CHLOR<br>EPOXIDE<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG) | LINDANE<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)           | MALA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | METH-<br>OXY-<br>CHLOR,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)      | METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)                     | METHYL<br>TRI-<br>THION,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)     | MIREX,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)          | PARA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | PER-<br>THANE<br>IN<br>BOTTOM<br>MATERIL<br>(UG/KG)                | TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)              | TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)                     |
| SEP<br>19   | <.1                                                                 | <.1                                                                   | <.1                                                                  | <.1                                                                   | <.1                                                                  | <.1                                                                   | <.1                                                                 | <.1                                                                  | <1.00                                                              | <10                                                            | <.1                                                                  |

### 01467120 COOPER RIVER AT NORCROSS ROAD AT LINDENWOLD, NJ

LOCATION.--Lat 39°49'43", long 74°58'55", Camden County, Hydrologic Unit 02040202, at bridge on Norcross Road in Lindenwold, 50 ft downstream from outflow of Linden Lake, 1.1 mi southwest of Gibbstown, and 1.7 mi south of Glendale.

DRAINAGE AREA. -- 1.13 mi2.

## WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

| OCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    | DA TE    | CODI                          | JCT- (ST                                      | RD A                              | MPER-<br>FURE S                  | XYGEN,<br>DIS-<br>SOLVED<br>(MG/L) | DXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION) | OXYGENDEMAND<br>BIO-<br>CHEMICAL<br>5 DAY<br>(MG/I | D, CO<br>F<br>F<br>Y B  | OLI -<br>ORM,<br>ECAL,<br>EC<br>ROTH<br>MPN) | STREP-<br>TOCOCCI<br>FECAL<br>(MPN) | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3) |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----------|-------------------------------|-----------------------------------------------|-----------------------------------|----------------------------------|------------------------------------|----------------------------------------------------------------|----------------------------------------------------|-------------------------|----------------------------------------------|-------------------------------------|----------------------------------------|
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |          |                               |                                               |                                   |                                  |                                    |                                                                |                                                    |                         |                                              |                                     |                                        |
| MAR 16 1000 79 9.0 10.7 93 1.0 <2 2 2 20  MAY 23 1115 81 19.0 6.2 68 6.4 >2400 >2400 18  JUL 13 1015 71 6.6 24.0 4.8 57 2.1 79 90 21  AUG 35 1015 68 6.6 25.0 4.6 56 3.6 1300 22000 20  E22 1030 79 6.7 20.0 7.0 77 1.4 130 130 2240  EALCIUM DIS- SIUM, SODIUM, DIS- DIS- DIS- SOLVED (MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | J. | 18<br>AN | 1115                          | 81                                            | 6.7                               | 12.0                             | 8.5                                | 78                                                             | 2                                                  | . 4                     | <2                                           | 2                                   | 23                                     |
| 16   1000   79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |          | 1215                          | 93                                            |                                   |                                  |                                    |                                                                |                                                    | . 7                     | 4                                            | 350                                 | 24                                     |
| 115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    | 16       | 1000                          | 79                                            |                                   | 9.0                              | 10.7                               | 93                                                             | 1                                                  | . 0                     | <2                                           | 2                                   | 20                                     |
| 13 1015 71 6.6 24.0 4.8 57 2.1 79 90 21 AUG 03 1015 68 6.6 25.0 4.6 56 3.6 1300 22000 20 SEP 22 1030 79 6.7 20.0 7.0 77 1.4 130 130 22    CALCIUM DIS- SOLVED CHOOLE OF CALCIUM CHOOLE         |    | 23       | 1115                          | 81                                            |                                   | 19.0                             | 6.2                                | 68                                                             | 6                                                  | . 4                     | >2400                                        | >2400                               | 18                                     |
| OST   OST  |    | 13       | 1015                          | 71                                            | 6.6                               | 24.0                             | 4.8                                | 57                                                             | 2                                                  | . 1                     | 79                                           | 90                                  | 21                                     |
| Potal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    | 03       | 1015                          | 68                                            | 6.6                               | 25.0                             | 4.6                                | 56                                                             | 3                                                  | . 6                     | 1300                                         | 22000                               | 20                                     |
| CALCIUM   STUM, SOLVED   DIS-   DIS |    |          | 1030                          | 79                                            | 6.7                               | 20.0                             | 7.0                                | 77                                                             | 1                                                  | . 4                     | 130                                          | 130                                 | 24                                     |
| 18   7.2   1.3   4.4   1.6   15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    | DATE     | DIS-<br>SOLVED<br>(MG/L       | SIUM,<br>DIS-<br>SOLVED<br>(MG/L              | DIS-<br>SOLVED<br>(MG/L           | SIUM<br>DIS-<br>SOLVE:<br>(MG/L  | , LINITY<br>LAB<br>D (MG/I<br>AS   | SULF<br>TOT<br>(MG                                             | IDE<br>AL<br>/L                                    | DIS-<br>SOLVED<br>(MG/L | RIDE<br>DIS-<br>SOLV<br>(MG/                 | E, RII                              | DE,<br>IS-<br>LVED<br>G/L              |
| JAN 18 7.4 1.3 6.5 1.5 12 11 9.8 <.10 MAR 16 6.1 1.1 5.6 1.3 9.0 14 8.8 <.10 MAY 23 5.7 1.0 5.4 1.5 8.0 <.5 10 6.7 <.10 JUL 13 6.5 1.1 5.2 1.0 14 8.1 8.4 .10 AUG 03 6.3 1.0 4.0 1.1 14 8.8 7.8 <.10 SEP 22 7.7 1.1 4.1 1.6 14 11 7.9 <.10  SOLIDS, SILICA, DIS- AT 180 GEN, SOLVED DEC C NITRITE NOTAL AS SOLVED DEC C NITRITE NOTAL AS SOLVED MG/L (MG/L (MG/                                |    | OCT      |                               |                                               |                                   |                                  |                                    |                                                                |                                                    |                         |                                              |                                     |                                        |
| 18   7.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |          | 7.2                           | 1.3                                           | 4.4                               | 1.6                              | 15                                 |                                                                | <.5                                                | 8.0                     | 8.                                           | 5                                   | <.10                                   |
| 16.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    | 18       | 7.4                           | 1.3                                           | 6.5                               | 1.5                              | 12                                 |                                                                |                                                    | 11                      | 9.                                           | 8                                   | <,10                                   |
| 23   5.7   1.0   5.4   1.5   8.0   <.5   10   6.7   <.10     13   6.5   1.1   5.2   1.0   14     8.1   8.4   .10     13   6.5   1.1   5.2   1.0   14     8.8   7.8   <.10     30   6.3   1.0   4.0   1.1   14     8.8   7.8   <.10     SEP   22   7.7   1.1   4.1   1.6   14     11   7.9   <.10     SOLIDS, SILICA, RESIDUE NITRO- NITRO- OF A MANONIA ORGANIC OF A M                            |    | 16       | 6.1                           | 1.1                                           | 5.6                               | 1.3                              | 9.0                                |                                                                |                                                    | 14                      | 8.                                           | 8                                   | <.10                                   |
| 13 6.5 1.1 5.2 1.0 14 8.1 8.4 .10  AUG 03 6.3 1.0 4.0 1.1 14 8.8 7.8 <.10  SEP 22 7.7 1.1 4.1 1.6 14 11 7.9 <.10  SOLIDS, SILICA, RESIDUE DIS- NITRO- OF NITRO                 |    | 23       | 5.7                           | 1.0                                           | 5.4                               | 1.5                              | 8.0                                |                                                                | <.5                                                | 10                      | 6.                                           | 7                                   | <.10                                   |
| 03 6.3 1.0 4.0 1.1 14 8.8 7.8 <.10 SEP 22 7.7 1.1 4.1 1.6 14 11 7.9 <.10  SOLIDS, SILICA, RESIDUE NITRO- NITRO- GEN, AMDIS- AT 180 GEN, GEN, GEN, GEN, MONIA + NITRO- ORGANIC GEN, PHATE, ORGANIC GEN, MONIA + NITRO- GEN, MONIA + NITRO- GEN, CARBON, ORGANIC GEN, PHATE, ORGANIC GEN, MONIA + NITRO- MOZ-NO3 AMMONIA ORGANIC GEN, PHATE, ORGANIC MG/L (MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    | 13       | 6.5                           | 1.1                                           | 5.2                               | 1.0                              | 14                                 |                                                                |                                                    | 8.1                     | 8.                                           | 4                                   | .10                                    |
| 22 7.7 1.1 4.1 1.6 14 11 7.9 <.10  SOLIDS, SILICA, RESIDUE NITRO- NITRO- GEN, AM- DIS- AT 180 GEN, GEN, GEN, GEN, MONIA + NITRO- PHOS- CARBON, SOLVED DEG. C NITRITE NO2+NO3 AMMONIA ORGANIC GEN, PHATE, ORGANIC (MG/L DIS- TOTAL AS SOLVED (MG/L (MG/L (MG/L (MG/L (MG/L (MG/L (MG/L (MG/L MG/L MG/L (MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    | 03       | 6.3                           | 1.0                                           | 4.0                               | 1.1                              | 14                                 |                                                                |                                                    | 8.8                     | 7.                                           | . 8                                 | <.10                                   |
| SILICA,   RESIDUÉ   NITRO-   NITRO-   GEN,   AT 180   GEN,   GEN,   GEN,   GEN,   GEN,   MONIA +   NITRO-   PHOS-   ORGANIC   GEN,   GEN,   MONIA +   NITRO-   PHOS-   ORGANIC   GEN,   CIN   CIN   ORGANIC   GEN,   CIN   CIN   ORGANIC   TOTAL   T |    |          | 7.7                           | 1.1                                           | 4.1                               | 1.6                              | 14                                 |                                                                |                                                    | 11                      | 7.                                           | 9                                   | <.10                                   |
| OCT 18 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    | DATE     | DIS-<br>SOLVED<br>(MG/L<br>AS | RESIDUÉ<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED | GEN,<br>NITRITE<br>TOTAL<br>(MG/L | GEN,<br>NO2+NO<br>TOTAL<br>(MG/L | GEN<br>3 AMMONI<br>TOTAL<br>(MG/I  | O- GEN,<br>MONI<br>IA ORGA<br>L TOT<br>(MG                     | AM-<br>A +<br>NIC<br>AL                            | GEN,<br>TOTAL<br>(MG/L  | PHAT<br>TOTA<br>(MG/                         | TE, ORGAL TO                        | ANIĆ<br>TAL<br>G/L                     |
| 18 2.5 48 .010 <.100 .170 .1709 4.0  18 4.0 64 <.010 <.100 .070 .3709 5.6  MAR  16 2.5 59 <.010 .200 .420 .59 .79 .15 7.1  MAY  23 2.8 62 .010 E.100 .900 E1.444 11  JUL  13 9 59 <.010 <.100 .090 .5840 8.7  AUG  03 1.1 46 .010 .100 .130 .98 1.1 .61 7.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |          | DIOL                          | (110/2)                                       | 110 117                           |                                  |                                    | ,                                                              | ,                                                  |                         |                                              |                                     |                                        |
| 18 4.0 64 <.010 <.100 .070 .3709 5.6  MAR  16 2.5 59 <.010 .200 .420 .59 .79 .15 7.1  MAY  23 2.8 62 .010 E.100 .900 E1.444 11  JUL  139 59 <.010 <.100 .090 .5840 8.7  AUG  03 1.1 46 .010 .100 .130 .98 1.1 .61 7.4  SEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    | 18       | 2.5                           | 48                                            | .010                              | <.10                             | 0 .1                               | 70                                                             | . 17                                               |                         | - 5.                                         | .09                                 | 4.0                                    |
| MAY 23 2.8 62 .010 E.100 .900 E1.444 11 JUL 139 59 <.010 <.100 .090 .5840 8.7 AUG 03 1.1 46 .010 .100 .130 .98 1.1 .61 7.4 SEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    | 18       | 4.0                           | 64                                            | <.010                             | <.10                             | 0 .0'                              | 70                                                             | . 37                                               |                         |                                              | .09                                 | 5.6                                    |
| 23 2.8 62 .010 E.100 .900 E1.444 11  JUL  139 59 <.010 <.100 .090 .5840 8.7  AUG  03 1.1 46 .010 .100 .130 .98 1.1 .61 7.4  SEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |          | 2.5                           | 59                                            | <.010                             | . 20                             | 0 . 42                             | 20                                                             | • 59                                               | .79                     |                                              | 15                                  | 7.1                                    |
| 139 59 <.010 <.100 .090 .5840 8.7  AUG  03 1.1 46 .010 .100 .130 .98 1.1 .61 7.4  SEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    | 23       | 2.8                           | 62                                            | .010                              | E. 10                            | 0 .90                              | 00 E 1                                                         | . 4                                                |                         |                                              | 44 1                                | 1                                      |
| 03 1.1 46 .010 .100 .130 .98 1.1 .61 7.4<br>SEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    | 13       | . 9                           | 59                                            | <.010                             | <.10                             | 0 .09                              | 90                                                             | .58                                                |                         |                                              | .40                                 | 8.7                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    | 03       | 1.1                           | 46                                            | .010                              | . 10                             | 0 .1:                              | 30                                                             | .98                                                | 1.1                     |                                              | 61                                  | 7.4                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |          | 1.4                           | 57                                            | <.010                             | <.10                             | 0 .2                               | 40                                                             | .58                                                |                         |                                              | . 24                                | 5.8                                    |

# 01467120 COOPER RIVER AT NORCROSS ROAD AT LINDENWOLD, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

|                  | TIME                                                  | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)   | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)                             | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE) | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)   | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD) | CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR)            | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU) |
|------------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|
| OCT              |                                                       |                                                       |                                                                 |                                                                 |                                                         |                                                         |                                                       |                                                         |
| 18<br>MAY        | 1115                                                  | 20                                                    | 1                                                               | <10                                                             | 30                                                      | <1                                                      | 10                                                    | 3                                                       |
| 23               | 1115                                                  | 170                                                   | 1                                                               | <10                                                             | 80                                                      | 1 .                                                     | <10                                                   | 4                                                       |
| DATE             | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG)         | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE)              | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | PHENOLS<br>TOTAL<br>(UG/L)                              |
| OCT<br>18<br>MAY | 1500                                                  | 4                                                     | 20                                                              | <.1                                                             | 2                                                       | <1                                                      | 20                                                    | 3                                                       |
| 23               | 1300                                                  | 7                                                     | 70                                                              | <.1                                                             | 4                                                       | <1                                                      | 50                                                    | <1                                                      |

### 01467140 COOPER RIVER AT LAWNSIDE, NJ

LOCATION.--Lat 39°52'14", long 75°00'59", Camden County, Hydrologic Unit 02040202, at bridge on Woodcrest Road in Lawnside, 0.2 mi upstream from the New Jersey Turnpike, and 1.7 mi upstream from Tindale Run.

DRAINAGE AREA. -- 12.7 mi2.

## WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1964-65, 1976 to current year.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

| DATE             | TIME                                              | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(UMHOS)                  | PH<br>(STAND-<br>ARD<br>UNITS)                       | TEMPER -<br>ATURE<br>(DEG C)       | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)                  | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION)      | OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) | COLI-<br>FORM,<br>FECAL,<br>EC<br>BROTH<br>(MPN) | STREP-<br>TOCOCCI<br>FECAL<br>(MPN)           |
|------------------|---------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------|------------------------------------|------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------|-----------------------------------------------|
| JAN              |                                                   |                                                                    |                                                      |                                    |                                                      |                                                                     |                                              |                                                  |                                               |
| 24<br>MAR        | 1015                                              | 362                                                                | 6.6                                                  | 6.0                                | 8.6                                                  | 69                                                                  | 8.2                                          | 80                                               | 20                                            |
| 17<br>MAY        | 0900                                              | 303                                                                | 6.6                                                  | 10.0                               | 8.1                                                  | 71                                                                  | 8.9                                          | 9200                                             | 630                                           |
| 19               | 1000                                              | 219                                                                |                                                      | 16.0                               | 6.6                                                  | 66                                                                  | 6.6                                          | <200                                             | <200                                          |
| JUL<br>27        | 1100                                              | 354                                                                | 7.4                                                  | 23.0                               | 4.0                                                  | 47                                                                  | 9.9                                          | 35000                                            | 7000                                          |
| AUG<br>15        | 1100                                              | 345                                                                | 7.1                                                  | 21.5                               | 4.5                                                  | 51                                                                  | 9.6                                          | 3400                                             | 800                                           |
| 13               | HARD-<br>NESS<br>(MG/L<br>AS                      | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L                                 | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L           | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L           | ALKA-<br>LINITY<br>LAB<br>(MG/L<br>AS                               | SULFATE<br>DIS-<br>SOLVED<br>(MG/L           | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L        | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L     |
| DATE             | CACO3)                                            | AS CA)                                                             | AS MG)                                               | AS NA)                             | AS K)                                                | CACO3)                                                              | AS SO4)                                      | AS CL)                                           | AS F)                                         |
| JAN<br>24<br>MAR | 52                                                | 15                                                                 | 3.5                                                  | 27                                 | 7.5                                                  | 15                                                                  | 27                                           | 37                                               | .20                                           |
| 17               | 54                                                | 15                                                                 | 3.9                                                  | 24                                 | 6.6                                                  | 1.3                                                                 | 34                                           | 29                                               | .20                                           |
| MAY<br>19        | 49                                                | 14                                                                 | 3.3                                                  | 17                                 | 5.1                                                  | 17                                                                  | 25                                           | 23                                               | .20                                           |
| JUL<br>27        | 62                                                | 18                                                                 | 4.1                                                  | 30                                 | 9.4                                                  | 30                                                                  | 23                                           | 35                                               | .40                                           |
| AUG<br>15        | 64                                                | 19                                                                 | 4.0                                                  | 29                                 | 9.4                                                  | 20                                                                  | 30                                           | 38                                               | .20                                           |
| DATE             | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2) | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L) | NITRO-<br>GEN,<br>NITRITE<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,                     | NITRO-<br>GEN,<br>AMMONIA<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)    | PHOS-<br>PHATE,<br>TOTAL<br>(MG/L<br>AS PO4)     | CARBON,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS C) |
| JAN              |                                                   |                                                                    |                                                      |                                    |                                                      |                                                                     |                                              |                                                  |                                               |
| 24<br>MAR        | 11                                                | 148                                                                | .070                                                 | •500                               | 8.60                                                 | E9.4                                                                |                                              | 3.50                                             | 15                                            |
| 17<br>MAY        | 11                                                | 187                                                                | .090                                                 | .600                               | 5.80                                                 | 6.6                                                                 | 7.2                                          | 4.50                                             | 13                                            |
| 19<br>JUL        | 9.8                                               | 115                                                                | . 130                                                | .800                               | 4.30                                                 | 4.6                                                                 | 5.4                                          | 2.60                                             | 8.6                                           |
| 27               | 14                                                | 236                                                                | . 350                                                | .800                               | 7.70                                                 | E6.4                                                                |                                              | 5.21                                             | 11                                            |
| AUG<br>15        | 13                                                | 190                                                                | .230                                                 | .900                               | 8.40                                                 | 8.9                                                                 | 9.8                                          | 6.44                                             | 9.4                                           |

### 01467150 COOPER RIVER AT HADDONFIELD, NJ

LOCATION.--Lat 39°54'11", long 75°01'19", Camden County, Hydrologic Unit 02040202, on right bank of Wallworth Lake in Pennypacker Park, 200 ft upstream from bridge on State Highway 41 (Kings Highway) in Haddonfield, 0.6 mi upstream from North Branch Cooper River, and 7.7 mi upstream from mouth.

DRAINAGE AREA .-- 17.0 mi2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1963 to current year.

REVISED RECORDS. -- WRD-NJ 1969: 1967(M). WDR NJ-82-82: Drainage area.

GAGE .-- Water-stage recorder above concrete dam. Datum of gage is 9.29 ft National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good except those below 70 ft<sup>3</sup>/s, which are fair. Occasional regulation at low flow from Kirkwood Lake, other small lakes and wastewater treatment plants.

AVERAGE DISCHARGE. -- 20 years, 35.7 ft3/s, 28.52 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,300 ft<sup>3</sup>/s Aug. 28, 1971, gage height, 5.46 ft; minimum, 0.8 ft<sup>3</sup>/s Nov. 13, 1972, gage height, 1.07 ft regulation from unknown source; minimum daily, 1.2 ft<sup>3</sup>/s June 27, 1964.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 500 ft3/s and maximum (\*):

| Date               | Time         | Discharge (ft³/s) | Gage height (ft) | Date    | Time | Discharge<br>(ft³/s) | Gage height (ft) |
|--------------------|--------------|-------------------|------------------|---------|------|----------------------|------------------|
| Mar. 21<br>Apr. 10 | 1515<br>1445 | 548<br>593        | 2.79             | Apr. 16 | 0830 | *983                 | 3.39             |

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

Minimum discharge, 13 ft3/s Aug. 27.

|                                            | * 65                                    | DISON                                    | ande, in                                | CODIC TEE                                | I IER DEC                               | MEAN VAL                                  | UES                                       | TOPEK 190                                 | 2 10 5511                                 | ENDER 190                               | ,                                       |                                         |
|--------------------------------------------|-----------------------------------------|------------------------------------------|-----------------------------------------|------------------------------------------|-----------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|
| DAY                                        | OCT                                     | NOV                                      | DEC                                     | JAN                                      | FEB                                     | MAR                                       | APR                                       | MAY                                       | JUN                                       | JUL                                     | A UG                                    | SEP                                     |
| 1<br>2<br>3<br>4<br>5                      | 16<br>15<br>15<br>15                    | 17<br>17<br>17<br>17<br>17<br>30         | 40<br>37<br>26<br>24<br>23              | 21<br>19<br>20<br>19<br>29               | 23<br>28<br>69<br>28<br>22              | 52<br>121<br>37<br>29<br>26               | 30<br>30<br>205<br>62<br>39               | 41<br>41<br>39<br>56<br>43                | 40<br>35<br>33<br>46<br>37                | 27<br>25<br>19<br>22<br>27              | 22<br>21<br>21<br>21<br>20              | 18<br>17<br>16<br>15<br>15              |
| 6<br>7<br>8<br>9                           | 15<br>15<br>16<br>16<br>15              | 19<br>17<br>17<br>17<br>18               | 41<br>24<br>21<br>19                    | 41<br>25<br>22<br>21<br>44               | 21<br>40<br>33<br>24<br>22              | 26<br>54<br>89<br>91<br>88                | 42<br>48<br>67<br>63<br>361               | 40<br>40<br>38<br>42<br>36                | 33<br>33<br>30<br>28<br>29                | 27<br>23<br>20<br>20<br>18              | 17<br>19<br>18<br>19                    | 17<br>18<br>17<br>17<br>17              |
| 11<br>12<br>13<br>14<br>15                 | 15<br>16<br>16<br>18<br>17              | 18<br>17<br>145<br>35<br>25              | 20<br>22<br>23<br>21<br>23              | 149<br>42<br>30<br>29<br>45              | 20<br>23<br>24<br>23<br>23              | 50<br>105<br>44<br>34<br>32               | 108<br>47<br>37<br>34<br>33               | 29<br>29<br>26<br>25<br>35                | 28<br>27<br>26<br>26<br>26                | 19<br>19<br>19<br>18<br>18              | 46<br>46<br>23<br>20<br>18              | 16<br>37<br>50<br>24<br>19              |
| 16<br>17<br>18<br>19<br>20                 | 18<br>18<br>19<br>20<br>20              | 20<br>20<br>20<br>20<br>20               | 83<br>38<br>25<br>23<br>25              | 34<br>30<br>27<br>22<br>17               | 30<br>38<br>56<br>48<br>39              | 29<br>28<br>95<br>278<br>53               | 589<br>108<br>49<br>59<br>70              | 164<br>110<br>36<br>31<br>37              | 27<br>28<br>38<br>60<br>69                | 18<br>17<br>18<br>19                    | 17<br>17<br>17<br>18<br>17              | 17<br>17<br>17<br>17<br>17              |
| 21<br>22<br>23<br>24<br>25                 | 27<br>18<br>16<br>16<br>66              | 20<br>21<br>21<br>20<br>20               | 22<br>21<br>20<br>21<br>20              | 18<br>18<br>48<br>32<br>25               | 37<br>39<br>67<br>43<br>29              | 271<br>96<br>40<br>33<br>30               | 48<br>37<br>35<br>213<br>300              | 86<br>222<br>124<br>75<br>41              | 134<br>48<br>33<br>30<br>27               | 20<br>21<br>17<br>21<br>20              | 17<br>17<br>17<br>16<br>15              | 51<br>91<br>24<br>18<br>18              |
| 26<br>27<br>28<br>29<br>30<br>31           | 98<br>27<br>20<br>18<br>16<br>16        | 20<br>21<br>25<br>135<br>37              | 20<br>20<br>22<br>24<br>22<br>19        | 22<br>22<br>23<br>22<br>24<br>26         | 26<br>25<br>25<br>                      | 28<br>71<br>172<br>47<br>34<br>32         | 77<br>56<br>48<br>45<br>43                | 47<br>310<br>62<br>50<br>60<br>53         | 25<br>26<br>41<br>108<br>32               | 19<br>18<br>19<br>19<br>22<br>21        | 15<br>14<br>26<br>23<br>19              | 19<br>18<br>17<br>16<br>18              |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 668<br>21.5<br>98<br>15<br>1.26<br>1.46 | 865<br>28.8<br>145<br>17<br>1.69<br>1.89 | 808<br>26.1<br>83<br>19<br>1.54<br>1.77 | 966<br>31.2<br>149<br>17<br>1.84<br>2.11 | 925<br>33.0<br>69<br>20<br>1.94<br>2.02 | 2215<br>71.5<br>278<br>26<br>4.21<br>4.85 | 2983<br>99.4<br>589<br>30<br>5.85<br>6.53 | 2068<br>66.7<br>310<br>25<br>3.92<br>4.53 | 1203<br>40.1<br>134<br>25<br>2.36<br>2.63 | 629<br>20.3<br>27<br>17<br>1.19<br>1.38 | 634<br>20.5<br>46<br>14<br>1.21<br>1.39 | 690<br>23.0<br>91<br>15<br>1.35<br>1.51 |

CAL YR 1982 TOTAL 12306 MEAN 33.7 MAX 379 MIN 15 CFSM 1.98 IN. 26.93 WTR YR 1983 TOTAL 14654 MEAN 40.1 MAX 589 MIN 14 CFSM 2.36 IN. 32.07

## 01467190 COOPER RIVER AT CAMDEN, NJ

LOCATION.--Lat 39°55'35", long 75°05'03", Camden County, Hydrologic Unit 02040202, at bridge on U.S. Routes 130 and 30 in Camden, 3.4 mi upstream from mouth, 3.5 mi northwest of Haddonfield, and 3.7 mi downstream from North Branch Cooper River.

DRAINAGE AREA. -- 35.2 mi<sup>2</sup>.

## WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1970-71, 1976 to June 1983 (discontinued).

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

| DATE             | TIME                                            | ANCE                  | PH<br>(STAND-<br>ARD<br>UNITS)                  | TEMPER-<br>ATURE<br>(DEG C)           | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L) | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION) | DEM<br>BI<br>CH<br>IC                         | O- FO<br>EM- FO<br>AL, DAY B                  | EC TOO<br>ROTH FI                            | TREP-<br>COCCI<br>ECAL<br>MPN)                    | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3) |
|------------------|-------------------------------------------------|-----------------------|-------------------------------------------------|---------------------------------------|-------------------------------------|----------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|----------------------------------------------|---------------------------------------------------|----------------------------------------|
| ОСТ              |                                                 |                       |                                                 |                                       |                                     |                                                                |                                               |                                               |                                              |                                                   |                                        |
| 19<br>JAN        | 1100                                            | 400                   | 8.5                                             | 13.0                                  | 17.0                                | 160                                                            | >                                             | 26                                            | >2400                                        | 240                                               | 74                                     |
|                  | 0900                                            | 309                   | 7.0                                             | .0                                    |                                     |                                                                |                                               |                                               | 790                                          | 330                                               | 64                                     |
|                  | 0945                                            | 185                   | 6.5                                             | 12.0                                  | 6.6                                 | 61                                                             |                                               | 3.8                                           | 330                                          | 20                                                | 46                                     |
|                  | 0945                                            | 187                   | 6.6                                             | 19.0                                  | 4.6                                 | 50                                                             |                                               | 3.5                                           | 50                                           | 70                                                | 54                                     |
| DATE             | CALCIUI<br>DIS-<br>SOLVE<br>(MG/L<br>AS CA      | DIS<br>D SOLV<br>(MG/ | M, SODIU<br>- DIS-<br>ED SOLVI<br>L (MG/        | JM, SI<br>- DI<br>ED SOL<br>/L (MG    |                                     | TY B SULI                                                      | FIDE<br>TAL<br>G/L<br>S)                      | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4) | (MG/L                                        | FLUO-<br>RIDE,<br>DIS-<br>SOLVE<br>(MG/I<br>AS F) | D                                      |
| DATE             | AS CA                                           | ) AS M                | G) AS                                           | NA) AS                                | K) CAC                              | (03) AS                                                        | 3)                                            | AS 304)                                       | AS CL)                                       | AS F                                              |                                        |
| OCT<br>19<br>JAN | 21                                              | 5.                    | 2 37                                            | 10                                    | 38                                  |                                                                |                                               | 35                                            | 38                                           |                                                   | 10                                     |
| 19<br>APR        | 18                                              | 4.                    | 6 25                                            | 6                                     | .6 23                               |                                                                |                                               | 63                                            | 31                                           | . 2                                               | 20                                     |
| 07<br>JUN        | 13                                              | 3.                    | 4 11                                            | 4                                     | .0 13                               |                                                                |                                               | 27                                            | 15                                           |                                                   | 20                                     |
| 01               | 15                                              | 4.                    | 1 12                                            | 4                                     | .0 21                               |                                                                | <.5                                           | 27                                            | 15                                           | . 2                                               | 20                                     |
| DATE             | SILICA<br>DIS-<br>SOLVE<br>(MG/L<br>AS<br>SIO2) | AT 18<br>D DEG.       | UÉ NITI<br>O GEI<br>C NITRI<br>- TOTA<br>ED (MG | N, GE<br>ITE NO2+<br>AL TOT<br>/L (MG | N, GE<br>NO3 AMMO<br>TAL TOT        | RO- GEN<br>N, MON<br>NIA ORG<br>TAL TO                         | TRO-, AM-<br>IA +<br>ANIC<br>TAL<br>G/L<br>N) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)     | PHOS-<br>PHATE,<br>TOTAL<br>(MG/L<br>AS PO4) | CARBON<br>ORGANI<br>TOTAL<br>(MG/I<br>AS C)       | ić                                     |
| OCT              |                                                 |                       |                                                 | *                                     |                                     |                                                                |                                               |                                               |                                              |                                                   |                                        |
| 19<br>JAN        | 4.                                              | 4 2                   | 21 .                                            | 760 1.                                | 20 4.                               | 40                                                             | 8.7                                           | 9.9                                           | 1.20                                         | 3.4                                               | 4                                      |
| 19<br>APR        | . 12                                            | . 1                   | 92 .                                            | 040 1.                                | 10 5.                               | 30                                                             | 5.9                                           | 7.0                                           | 2.10                                         | 9.0                                               | 5                                      |
| 07<br>JUN        | 7.                                              | 5 1                   | 02 .                                            | 700 .                                 | 700 2.                              | 50                                                             | 2.9                                           | 3.6                                           | 1.80                                         | 5.9                                               | 9                                      |
| 01               | 8.                                              | 6 1                   | 01                                              |                                       | 700 E2.                             | 20                                                             | 2.9                                           | 3.6                                           |                                              | 7 - 3                                             | 3                                      |

## 01467190 COOPER RIVER AT CAMDEN, NJ--Continued

| DATE             | TIME                                                  | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)   | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)                   | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE) | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)   | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD) | CHRO-MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU) |
|------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------|
| OCT              |                                                       |                                                       |                                                       |                                                                 |                                                         |                                                         |                                                            |                                                         |
| 19<br>JUN        | 1100                                                  | 40                                                    | 3                                                     | <10                                                             | 280                                                     | 1                                                       | 10                                                         | 8                                                       |
| 01               | 0945                                                  | 110                                                   | 4                                                     | 10                                                              | 110                                                     | 1                                                       | 20                                                         | 10                                                      |
|                  |                                                       | 141                                                   | MANGA-                                                |                                                                 |                                                         |                                                         |                                                            |                                                         |
| DATE             | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG)         | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE)              | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN)      | PHENOLS<br>TOTAL<br>(UG/L)                              |
| OCT<br>19<br>JUN | 780                                                   | 16                                                    | 50                                                    | .1                                                              | 6                                                       | <1                                                      | 20                                                         | 1                                                       |
| 01               | 2700                                                  | 39                                                    | 80                                                    | 1.1                                                             | 7                                                       | <1                                                      | 20                                                         | <1                                                      |

## 01467329 SOUTH BRANCH BIG TIMBER CREEK AT BLACKWOOD TERRACE, NJ

LOCATION.--Lat 39°48'05", long 75°04'27", Gloucester County, Hydrologic Unit 02040202, at bridge on Blackwood-Clementon Road at Blackwood Terrace, 1,000 ft upstream from Bull Run, and 2.0 mi northeast of Fairview.

DRAINAGE AREA .-- 19.1 mi2.

## WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1976 to current year.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

| DATE             | TIM                                 |                                 | STREAM<br>FLOW,<br>INSTAN<br>FANEOU<br>(CFS) | - C:<br>C:<br>- D!<br>S A!                      | PE-<br>IF IC<br>ON-<br>JCT-<br>NCE<br>MHOS)      |                 | AND-<br>RD                           |                       | PER-<br>URE<br>G C)                      | SOL                                   | GEN,<br>IS-<br>LVED<br>G/L)        | SOI<br>(PI<br>CI<br>SA' | GEN,<br>IS-<br>LVED<br>ER-<br>ENT<br>TUR-<br>ION) |                | ND,<br>D-<br>EM-             | COL<br>FOR<br>FEC<br>EC<br>BRO | M,<br>AL,<br>TH                | STRE<br>TOCOC<br>FECA<br>(MPN               | CI<br>L      |
|------------------|-------------------------------------|---------------------------------|----------------------------------------------|-------------------------------------------------|--------------------------------------------------|-----------------|--------------------------------------|-----------------------|------------------------------------------|---------------------------------------|------------------------------------|-------------------------|---------------------------------------------------|----------------|------------------------------|--------------------------------|--------------------------------|---------------------------------------------|--------------|
| OCT              |                                     |                                 |                                              |                                                 |                                                  |                 |                                      |                       |                                          |                                       |                                    |                         |                                                   |                |                              |                                |                                |                                             |              |
| 18               | 090                                 | 0                               | 2                                            | 2                                               | 124                                              |                 | 6.7                                  |                       | 9.0                                      |                                       | 5.2                                |                         | 45                                                |                | 4.8                          |                                | 79                             | 2                                           | 40           |
| JAN<br>18        | 083                                 | 2                               | 2                                            | 1                                               | 225                                              |                 |                                      |                       | •                                        |                                       |                                    |                         |                                                   |                | 2 0                          |                                | 11.0                           |                                             | 70           |
| MAR              | 003                                 | J                               | ~                                            | 1                                               | 225                                              |                 |                                      |                       | .0                                       |                                       |                                    |                         |                                                   |                | 3.9                          |                                | 40                             | - 1                                         | 70           |
| 16               | 080                                 | 0                               | 2                                            | 6                                               | 137                                              |                 |                                      |                       | 8.0                                      | 1                                     | 10.0                               |                         | 85                                                |                | 1.4                          |                                | 2                              | 4                                           | 90           |
| MAY<br>23        | 080                                 | 0                               | 22                                           | 1                                               | 121                                              |                 |                                      |                       | 17.0                                     |                                       | 8.3                                |                         | 87                                                |                | 9.0                          | 2                              | 400                            | 160                                         | 00           |
| JUL<br>13        | 080                                 | 0                               | 8                                            | 0                                               | 126                                              |                 | 7.0                                  | 2                     | 24.0                                     |                                       | 5.6                                |                         | 67                                                |                | 1.6                          |                                | 130                            |                                             | 20           |
| AUG<br>03<br>SEP | 083                                 | 0                               | 2                                            | 9                                               | 126                                              |                 | 7.1                                  | 2                     | 24.0                                     |                                       | 5.6                                |                         | 67                                                |                | 1.8                          |                                | 200                            | 13                                          | 00           |
| 22               | 084                                 | 5                               | 13                                           | 2                                               | 142                                              |                 | 6.8                                  | 2                     | 20.0                                     |                                       | 7.0                                |                         | 77                                                |                | 1.1                          | >2                             | 400                            | 3                                           | 50           |
| DATE             | HARD<br>NESS<br>(MG/I<br>AS<br>CACO | L                               | DIS-<br>SOLVE<br>(MG/L<br>AS CA              | M 3<br>D 50                                     | AGNE-<br>SIUM,<br>DIS-<br>DLVED<br>MG/L<br>S MG) | DIS<br>SOL      |                                      | D:<br>SOI             | TAS-<br>IUM,<br>IS-<br>LVED<br>G/L<br>K) | ALF<br>LINI<br>LA<br>(MC<br>AS<br>CAC | ITY<br>AB<br>G/L                   | TO'                     | FIDE<br>FAL<br>G/L<br>S)                          |                | S-<br>LVED<br>G/L            | (MG                            | E,<br>VED                      | FLUO<br>RIDE<br>DIS<br>SOLV<br>(MG/<br>AS F | ,<br>ED<br>L |
| OCT              |                                     |                                 | -                                            |                                                 |                                                  |                 |                                      |                       |                                          |                                       |                                    |                         |                                                   |                |                              |                                |                                |                                             |              |
| 18<br>JAN        |                                     | 37                              | 10                                           |                                                 | 3.0                                              |                 | 7.8                                  | 2                     | 2.6                                      | 23                                    |                                    |                         |                                                   |                | 10                           | 14                             |                                | <.                                          | 10           |
| 18<br>MAR        |                                     | 47                              | 14                                           |                                                 | 3.0                                              | 1               | 8                                    | 1                     | 4.6                                      | 25                                    |                                    |                         |                                                   | 2              | 25                           | 19                             |                                |                                             | 20           |
| 16<br>MAY        |                                     | 39                              | 11                                           |                                                 | 2.9                                              |                 | 7.2                                  | 2                     | 2.2                                      | 22                                    |                                    |                         |                                                   |                | 18                           | 11                             |                                | <.                                          | 10           |
| 23<br>JUL        |                                     | 37                              | 11                                           |                                                 | 2.4                                              |                 | 5.4                                  | 2                     | 2.3                                      | 21                                    |                                    |                         |                                                   |                | 13                           | 7                              | . 8                            |                                             | 10           |
| 13<br>AUG        |                                     | 39                              | 11                                           |                                                 | 2.9                                              |                 | 8.4                                  | 2                     | 2.4                                      | 23                                    |                                    |                         |                                                   |                | 12                           | 13                             |                                |                                             | 10           |
| 03<br>SEP        |                                     | 37                              | 10                                           |                                                 | 2.9                                              | -               | 7.9                                  | 2                     | 2.6                                      | 26                                    |                                    |                         |                                                   | 9              | 10                           | 12                             |                                |                                             | 10           |
| 22               |                                     | 40                              | 11                                           |                                                 | 3.0                                              | 1               | 8.2                                  |                       | 3.3                                      | 21                                    |                                    |                         | <.5                                               |                | 17                           | 14                             |                                | <.                                          | 10           |
|                  |                                     | ILICA<br>DIS-<br>SOLVA<br>(MG/I | A, RE<br>AT<br>ED D<br>L                     | LIDS,<br>SIDUE<br>180<br>EG. C<br>DIS-<br>OLVED | GE<br>NITR<br>TOT<br>(MG                         | ITE<br>AL<br>/L | NITE<br>GEN<br>NO2+N<br>TOTA<br>(MG/ | N,<br>103<br>AL<br>'L | AMMO<br>TOT<br>(MO                       | NIA<br>AL<br>/L                       | GEN,<br>MONI<br>ORGA<br>TOT<br>(MG | A +<br>NIC<br>AL        | NIT<br>GE<br>TOT<br>(MG                           | N,<br>AL<br>/L | PHOS<br>PHAT<br>TOTA<br>(MG/ | E,<br>L                        | CARBO<br>ORGAI<br>TOTA<br>(MG/ | NIC<br>AL<br>'L                             |              |
|                  |                                     | 3102                            | ) (                                          | MG/L)                                           | AS                                               | N)              | AS N                                 | 1)                    | AS                                       | N)                                    | AS                                 | N)                      | AS                                                | N)             | AS PO                        | 14)                            | AS (                           | .)                                          |              |
| OCT              | 3                                   | 4                               | . 8                                          | 73                                              |                                                  | 030             | 1.3                                  | 30                    |                                          | 050                                   |                                    | . 33                    | 1                                                 | . 6            |                              | 34                             | 3.                             | . 0                                         |              |
| JAN<br>18        | I<br>3                              | 9                               | . 6                                          | 120                                             |                                                  | 020             | 1.5                                  |                       |                                          | 210                                   |                                    | . 41                    | 1                                                 | . 9            |                              | 28                             | 6.                             | . 1                                         |              |
| MAR              |                                     |                                 | . 7                                          | 83                                              |                                                  | 030             | 1.1                                  |                       |                                          | 220                                   |                                    | .78                     |                                                   | . 9            |                              | 49                             | 4.                             | . 5                                         |              |
| MAY<br>23        | 3                                   |                                 | . 7                                          | 96                                              |                                                  | 040             | E.9                                  |                       |                                          | 380                                   | E                                  | .92                     |                                                   |                |                              | 55                             |                                | . 1                                         |              |
| JUL<br>13        | 3                                   |                                 | . 0                                          | 79                                              |                                                  | 040             | 1.2                                  |                       |                                          | 140                                   |                                    | .63                     | 1                                                 | . 8            |                              | 73                             | 4.                             | . 9                                         |              |
| AUG<br>03        | 3                                   | 3                               | . 9                                          | 76                                              |                                                  | 040             | 1.0                                  |                       |                                          | 110                                   |                                    |                         |                                                   |                |                              | 73                             | 2                              | . 9                                         |              |
| SEP<br>22        | 2                                   | 5                               | . 1                                          | 84                                              |                                                  | 040             | 1.1                                  | 10                    |                                          | 220                                   |                                    | . 95                    | 2                                                 | . 1            |                              | 73                             | 4                              | . 4                                         |              |

## 01467359 NORTH BRANCH BIG TIMBER CREEK AT GLENDORA, NJ

LOCATION.--Lat 39°50'04", long 75°04'02", Camden County, Hydrologic Unit 02040202, at bridge on State Route 168 in Glendora, 0.5 mi downstream from Otter Brook, 1.0 mi southeast of Clements Bridge, and 1.6 mi north of Mechanicsville.

DRAINAGE AREA. -- 18.8 mi2.

## WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to May 1983 (discontinued).

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

| DATE       | TIME                                        | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(UMHOS) | PH<br>(STAND-<br>ARD<br>UNITS)                  | TEMPER-<br>ATURE<br>(DEG C)           | SOLVE                              | SOL<br>(PE<br>CE<br>D SAT                      | S- 1                                                | DXYGEN DEMAND, BIO- CHEM- ICAL, DAY (MG/L) | COLI-<br>FORM,<br>FECAL,<br>EC<br>BROTH<br>(MPN) | STRE<br>TOCOO<br>FECA<br>(MPN          | EP- NE<br>CCI (M<br>AL A                           | RD-<br>SS<br>G/L<br>S<br>CO3) |
|------------|---------------------------------------------|---------------------------------------------------|-------------------------------------------------|---------------------------------------|------------------------------------|------------------------------------------------|-----------------------------------------------------|--------------------------------------------|--------------------------------------------------|----------------------------------------|----------------------------------------------------|-------------------------------|
| OCT<br>13  | 0945                                        | 208                                               | 6.8                                             |                                       |                                    |                                                |                                                     |                                            | 1600                                             |                                        | 540                                                | 50                            |
| JAN        |                                             |                                                   | 0.0                                             |                                       |                                    |                                                |                                                     |                                            |                                                  |                                        |                                                    |                               |
| 18<br>MAR  | 1000                                        | 142                                               |                                                 | .0                                    | -                                  | -                                              |                                                     | . 4                                        | 1600                                             |                                        | 190                                                | 41                            |
| 16<br>MAY  | 0900                                        | 204                                               | 6.7                                             | 7.0                                   | 8.                                 | 0                                              | 67                                                  | 6.6                                        | >2400                                            | >21                                    | 100                                                | 49                            |
| 23         | 0930                                        | 128                                               |                                                 | 17.5                                  | 4.                                 | 4                                              | 47                                                  | 9.3                                        | 3400                                             | 130                                    | 000                                                | 36                            |
| DATE       | CALCI<br>DIS-<br>SOLV<br>(MG/               | CUM SI<br>DI<br>ED SOL<br>L (MG                   | S- DIS<br>VED SOL                               | IUM, S<br>S- D<br>VED SC<br>G/L (M    | IUM, LI<br>IS-<br>LVED (<br>G/L    | LKA-<br>NITY<br>LAB<br>MG/L<br>AS<br>ACO3)     | SULFII<br>TOTAI<br>(MG/I                            | L SOL                                      | ATE RII                                          | LO-<br>DE,<br>S-<br>LVED<br>G/L<br>CL) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F) |                               |
| ОСТ        |                                             |                                                   |                                                 |                                       |                                    |                                                |                                                     |                                            |                                                  |                                        |                                                    |                               |
| 13<br>JAN  | . 15                                        | 3                                                 | 3.1 1                                           | 7                                     | 4.6 3                              | 8                                              |                                                     | 1                                          | 9 1                                              | 5                                      | .20                                                |                               |
| 18. MAR    | . 12                                        | 2                                                 | 2.7                                             | 7 • 4                                 | 2.6 2                              | 2                                              |                                                     | 1                                          | 4                                                | 9.8                                    | <.10                                               |                               |
| 16.        | . 15                                        | 2                                                 | .9 1                                            | 4                                     | 3.6 2                              | 8                                              |                                                     | 2                                          | 6 1                                              | 6                                      | .20                                                |                               |
| 23.        | . 11                                        | . 2                                               | 2.1                                             | 7.0                                   | 2.8 2                              | 2                                              | <                                                   | .5 1                                       | 7                                                | 7.6                                    | .20                                                |                               |
| DATI       | SILIO<br>DIS-<br>SOLV<br>(MG/<br>AS<br>SIO2 | AT 1<br>ZED DEG<br>L DI<br>SOL                    | DUÉ NI<br>80 GI<br>6. C NITI<br>S- TO<br>VED (M | EN, G<br>RITE NO2<br>TAL TO<br>G/L (M | EN,<br>2+NO3 AM<br>TAL T<br>IG/L ( | ITRO-<br>GEN,<br>MONIA<br>OTAL<br>MG/L<br>S N) | NITRO<br>GEN, AI<br>MONIA<br>ORGAN<br>TOTA<br>(MG/1 | H- + NIT IC GE L TOT L (MG                 | N, PH.<br>AL TO<br>/L (M                         |                                        | CARBON,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS C)      |                               |
| OCT        |                                             |                                                   |                                                 | ,                                     |                                    |                                                |                                                     |                                            |                                                  | 2                                      |                                                    |                               |
| 13.<br>JAN |                                             | 3.8                                               | 131 E                                           | .130 1                                | .80                                | .890                                           | E1.                                                 | 7                                          |                                                  | .06                                    | 3.6                                                |                               |
| 18.<br>MAR | 6                                           | 5.4                                               | 84                                              | .030 1                                | .20                                | 2.30                                           | 2.                                                  | 8 4                                        | .0                                               | 1.60                                   | 7.2                                                |                               |
| 16.<br>MAY | 8                                           | 3.7                                               | 115                                             | . 050 1                               | .20                                | 1.40                                           | 2.                                                  | 3 3                                        | .5                                               | 3.60                                   | 5.4                                                |                               |
| 23.        | 76                                          | 5.1                                               | 80                                              | .060 E                                | .100                               | .530                                           | E1.                                                 | 6                                          | -                                                | •33                                    | 6.7                                                |                               |

## 01467359 NORTH BRANCH BIG TIMBER CREEK AT GLENDORA, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

|      |                |                                  |                  | BERYL-                             |                                     |                                      | CHRO-                              |                                      |
|------|----------------|----------------------------------|------------------|------------------------------------|-------------------------------------|--------------------------------------|------------------------------------|--------------------------------------|
|      |                | ALUM-<br>INUM,<br>DIS-<br>SOLVED | ARSENIC<br>TOTAL | LIUM,<br>TOTAL<br>RECOV-<br>ERABLE | BORON,<br>TOTAL<br>RECOV-<br>ERABLE | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE | MIUM,<br>TOTAL<br>RECOV-<br>ERABLE | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE |
| DATE | TIME           | (UG/L<br>AS AL)                  | (UG/L<br>AS AS)  | (UG/L<br>AS BE)                    | (UG/L<br>AS B)                      | (UG/L<br>AS CD)                      | (UG/L<br>AS CR)                    | (UG/L<br>AS CU)                      |
| MAY  |                |                                  |                  |                                    |                                     |                                      |                                    |                                      |
| 23   | 0930           | <10                              | 3                | <10                                | 170                                 | 1                                    | <10                                | 11                                   |
|      |                |                                  | MANGA-           |                                    |                                     |                                      |                                    |                                      |
|      | IRON,<br>TOTAL | LEAD,<br>TOTAL                   | NESE,<br>TOTAL   | MERCURY                            | NICKEL,<br>TOTAL                    | SELE-                                | ZINC,<br>TOTAL                     |                                      |
|      | RECOV-         | RECOV-                           | RECOV-           | RECOV-                             | RECOV-                              | NIUM,                                | RECOV-                             |                                      |
|      | ERABLE (UG/L   | ERABLE<br>(UG/L                  | ERABLE<br>(UG/L  | ERABLE<br>(UG/L                    | ERABLE<br>(UG/L                     | TOTAL<br>(UG/L                       | ERABLE<br>(UG/L                    | PHENOLS<br>TOTAL                     |
| DATE | AS FE)         | AS PB)                           | AS MN)           | AS HG)                             | AS NI)                              | AS SE)                               | AS ZN)                             | (UG/L)                               |
| MAY  |                |                                  |                  |                                    |                                     |                                      |                                    |                                      |
| 23   | 4500           | 20                               | 70               | <.1                                | 11                                  | <1                                   | 50                                 | <1                                   |

### SCHUYLKILL RIVER BASIN

# 01474500 SCHUYLKILL RIVER AT PHILADELPHIA, PA (National stream-quality accounting network station)

LOCATION.--Lat 39°58'00", long 75°11'20", Philadelphia County, Hydrologic Unit 02040203, on right bank 150 ft upstream from Fairmount Dam, 1,500 ft upstream from Spring Garden Street Bridge, in Philadelphia, and 8.7 mi upstream from mouth. Water-quality sampling site 1.6 mi upstream.

DRAINAGE AREA .-- 1,893 mi2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- September 1931 to current year. Records for January 1898 to December 1912, published in WSP 35, 48, 65, 82, 97, 125, 166, 202, 241, 261, 301, 381 have been found to be unreliable and should not be used.

REVISED RECORDS. -- WSP 756: Drainage area. WSP 1302: 1936(M). WSP 1432: 1945. See also PERIOD OF RECORD.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 5.74 ft National Geodetic Vertical Datum of 1929. Prior to November 25, 1956, water-stage recorder at site on right bank just upstream from Fairmount Dam at same datum. November 26, 1956, to October 6, 1966, water-stage recorder at site on left bank 40 ft upstream from Fairmount Dam at same datum.

REMARKS.--Records good. Flow regulated by Still Creek Reservoir (sta 01469200) since February 1933, Blue Marsh Reservoir (sta 01470870) since April 1979, Green Lane Reservoir (sta 01472200) since December 1956 and to some extent by Lake Ontelaunee, capacity 518,600,000 ft<sup>3</sup>. Records of discharge do not include diversion above station by City of Philadelphia for municipal water supply.

AVERAGE DISCHARGE. -- 52 years, 2,937 ft3/s, 21.07 in/yr, adjusted for diversion from October 1931 to September 1982.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 103,000 ft<sup>3</sup>/s June 23, 1972, gage height, 14.65 ft; no flow over dam at times; minimum daily, 0.6 ft<sup>3</sup>/s Sept. 2, 1966.

EXTREMS OUTSIDE PERIOD OF RECORD.--Flood of October 4, 1869, reached a stage of 17.0 ft, discharge, 135,000 ft<sup>3</sup>/s, from rating extended above 46,000 ft<sup>3</sup>/s. Flood of March 1, 1902, reached a stage of 14.8 ft, discharge, 98,000 ft<sup>3</sup>/s.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 50,400 ft<sup>3</sup>/s, Apr. 16, gage height, 11.42 ft; minimum, 142 ft<sup>3</sup>/s Sept. 8, gage height 5.59 ft.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

|       |       |       | ,     |       |        | IEAN VALUES |        | ooroban 10 | 02 10 021 | 111111111111111111111111111111111111111 | -     |       |
|-------|-------|-------|-------|-------|--------|-------------|--------|------------|-----------|-----------------------------------------|-------|-------|
| DAY   | OCT   | NOV   | DEC   | JAN   | FEB    | MAR         | APR    | MAY        | JUN       | JUL                                     | AUG   | SEP   |
| 1     | 863   | 650   | 2500  | 1350  | 2720   | 3850        | 4620   | 5600       | 3860      | 3070                                    | 586   | 694   |
| 2     | 769   | 619   | 2990  | 1270  | 2630   | 6990        | 4200   | 5070       | 3340      | 2260                                    | 564   | 444   |
| 3     | 769   | 619   | 2460  | 1240  | 9010   | 5880        | 9280   | 4650       | 2970      | 1880                                    | 581   | 376   |
| 4     | 109   | 709   | 2120  | 1200  | 11800  | 4990        | 8310   | 4530       | 3160      | 1610                                    | 590   | 357   |
| 5     | 679   | 3180  | 1920  | 1240  | 7910   | 4260        | 5810   | 4410       | 5900      | 1520                                    | 568   | 325   |
| 6     | 927   | 2370  | 1840  | 1610  | 5650   | 3700        | 4950   | 3850       | 4540      | 1510                                    | 596   | 307   |
| 7     | 927   | 1650  | 1690  | 1690  | 4780   | 3700        | 4520   | 3450       | 3840      | 1370                                    | 632   | 269   |
| 8     | 927   | 1350  | 1540  | 1420  | 4200   | 4150        | 4910   | 3300       | 3800      | 1220                                    | 561   | 254   |
| 9     | 927   | 1200  | 1420  | 1310  | 3610   | 5050        | 8970   | 3420       | 3360      | 1110                                    | 452   | 274   |
| 10    | 927   | 1130  | 1270  | 1460  | 3130   | 5260        | 22200  | 3320       | 3000      | 1010                                    | 410   | 230   |
| 11    | 927   | 1130  | 1200  | 4200  | 2770   | 5770        | 20000  | 2990       | 2610      | 973                                     | 619   | 246   |
| 12    | 895   | 1100  | 1200  | 2900  | 1960   | 5650        | 12500  | 2770       | 2290      | 932                                     | 1150  | 608   |
| 13    | 895   | 2330  | 1170  | 2160  | 2370   | 5600        | 9430   | 2610       | 2220      | 865                                     | 1680  | 1090  |
| 14    | 993   | 2370  | 1060  | 1760  | 2720   | 4510        | 7760   | 2480       | 2180      | 819                                     | 1020  | 500   |
| 15    | 1350  | 1650  | 993   | 1730  | 2500   | 3900        | 7100   | 2490       | 2020      | 758                                     | 793   | 492   |
| 16    | 1200  | 1350  | 2160  | 1880  | 2590   | 3510        | 34200  | 3700       | 1760      | 673                                     | 649   | 398   |
| 17    | 769   | 1240  | 4410  | 1730  | 2590   | 3130        | 33000  | 4860       | 1600      | 635                                     | 507   | 350   |
| 18    | 679   | 1200  | 3270  | 1500  | 2630   | 3320        | 18000  | 3550       | 1670      | 711                                     | 494   | 329   |
| 19    | 619   | 1100  | 2500  | 1240  | 3130   | 9490        | 14500  | 2800       | 2210      | 1070                                    | 529   | 319   |
| 20    | 588   | 1060  | 2330  | 1060  | 3220   | 7410        | 13300  | 2630       | 2590      | 1110                                    | 457   | 296   |
| 21    | 739   | 1060  | 2160  | 1100  | 3180   | 15900       | 12900  | 3090       | 4000      | 941                                     | 381   | 907   |
| 22    | 650   | 1100  | 2000  | 1130  | 3750   | 13600       | 8420   | 3770       | 4440      | 971                                     | 380   | 1570  |
| 23    | 709   | 1060  | 1800  | 2680  | 4830   | 8410        | 6590   | 8120       | 2900      | 816                                     | 345   | 847   |
| 24    | 650   | 1100  | 1730  | 7230  | 5710   | 6570        | 7750   | 6300       | 2230      | 865                                     | 372   | 596   |
| 25    | 895   | 993   | 1690  | 6340  | 5210   | 5540        | 19900  | 4700       | 1860      | 835                                     | 329   | 468   |
| 26    | 1240  | 993   | 1650  | 4730  | 4890   | 4670        | 13500  | 4440       | 1700      | 876                                     | 315   | 419   |
| 27    | 1130  | 863   | 1570  | 3850  | 3950   | 4890        | 10500  | 6470       | 1540      | 725                                     | 263   | 376   |
| 28    | 927   | 927   | 1500  | 3270  | 3700   | 15000       | 8360   | 4360       | 1460      | 647                                     | 303   | 343   |
| 29    | 769   | 3370  | 1570  | 2770  |        | 8480        | 7030   | 3820       | 3720      | 595                                     | 483   | 346   |
| 30    | 650   | 3560  | 1540  | 2500  |        | 6400        | 6090   | 5480       | 4460      | 486                                     | 459   | 324   |
| 31    | 650   |       | 1420  | 2810  |        | 5260        |        | 5010       |           | 491                                     | 656   |       |
| TOTAL | 26348 | 43033 | 58673 | 72360 | 117140 | 194840      | 348600 | 128040     | 87230     | 33354                                   | 17724 | 14354 |
| MEAN  | 850   | 1434  | 1893  | 2334  | 4184   | 6285        | 11620  | 4130       | 2908      | 1076                                    | 572   | 478   |
| MAX   | 1350  | 3560  | 4410  | 7230  | 11800  | 15900       | 34200  | 8120       | 5900      | 3070                                    | 1680  | 1570  |
| MIN   | 588   | 619   | 993   | 1060  | 1960   | 3130        | 4200   | 2480       | 1460      | 486<br>314                              | 263   | 230   |
| †     | 240   | 229   | 217   | 206   | 206    | 222         | 249    | 263        | 286       | 314                                     | 289   | 265   |

CAL YR 1982 TOTAL 942429 MEAN 2582 MAX 24200 MIN 558 WTR YR 1983 TOTAL 1141696 MEAN 3128 MAX 34200 MIN 230

<sup>†</sup> Diversion, equivalent in cubic feet per second, for municipal water supply, furnished by City of Philadelphia.

## .01475045 MANTUA CREEK AT MANTUA, NJ

LOCATION. -- Lat 39°47'42", long 75°10'21", Gloucester County, Hydrologic Unit 02040202, at bridge on State Route 45 in Mantua, 0.9 mi downstream from Chestnut Branch, 1.3 mi east of Gates of Heaven Memorial Park, and 2.4 mi northwest of Barnsboro.

DRAINAGE AREA. -- 31.1 mi2.

## WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1975 to May 1983 (discontinued).

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

| DATE             | TIME                                              | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(UMHOS)                  | PH<br>(STAND-<br>ARD<br>UNITS)                       | TEMPER-<br>ATURE<br>(DEG C)                          | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)                  | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION)      | OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)  | COLI-<br>FORM,<br>FECAL,<br>EC<br>BROTH<br>(MPN)    | STREP-<br>TOCOCCI<br>FECAL<br>(MPN)                |
|------------------|---------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------|----------------------------------------------------|
| JAN              |                                                   | . F                                                                |                                                      |                                                      |                                                      |                                                                     |                                               |                                                     |                                                    |
| 17<br>APR        | 1,000                                             | 173                                                                | 7.3                                                  | 1.0                                                  | 13.8                                                 | 96                                                                  | . 8                                           | 110                                                 | 33                                                 |
| 04               | 0930                                              | 134                                                                | 6.3                                                  | 11.0                                                 | 9.4                                                  | 85                                                                  | 1.5                                           | 140                                                 | 170                                                |
| MAY<br>19        | 0830                                              | 144                                                                |                                                      | 15.0                                                 | 6.8                                                  | 67                                                                  | 3.0                                           | 1700                                                | 500                                                |
| DATE             | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3)            | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)                       | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG) | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)         | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)  | ALKA-<br>LINITY<br>LAB<br>(MG/L<br>AS<br>CACO3)                     | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F) |
| JAN<br>17<br>APR | 54                                                | 15                                                                 | 4.0                                                  | 8.8                                                  | 3.0                                                  | 26                                                                  | 33                                            | 9.6                                                 | .20                                                |
| 04<br>MAY        | 43                                                | 12                                                                 | 3.2                                                  | 6.1                                                  | 2.7                                                  | 18                                                                  | 25                                            | 9.1                                                 | .10                                                |
| 19               | 50                                                | 14                                                                 | 3.6                                                  | 8.3                                                  | 2.6                                                  | 24                                                                  | 27                                            | 12                                                  | .20                                                |
| DATE             | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2) | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L) | NITRO-<br>GEN,<br>NITRITE<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>AMMONIA<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)     | PHOS-<br>PHATE,<br>TOTAL<br>(MG/L<br>AS PO4)        | CARBON,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS C)      |
| JAN              |                                                   |                                                                    |                                                      |                                                      |                                                      |                                                                     |                                               |                                                     |                                                    |
| 17<br>APR        | 9.9                                               | 124                                                                | .010                                                 | 1.30                                                 | .050                                                 | .38                                                                 | 1.7                                           | .31                                                 | 2.8                                                |
| 04<br>MAY        | 6.7                                               | 86,                                                                | .020                                                 | 1.00                                                 | E.170                                                | .69                                                                 | 1.7                                           | .34                                                 | 5.1                                                |
| 19               | 8.2                                               | 116                                                                | .010                                                 | .800                                                 | . 180                                                | .71                                                                 | 1.5                                           | .36                                                 | 4.6                                                |

## 01477120 RACCOON CREEK NEAR SWEDESBORO, NJ

LOCATION.--Lat 39°44'28", long 75°15'33", Gloucester County, Hydrologic Unit 02040202, on right bank 25 ft downstream from county bridge No. 5-F-3 on Harrisonville-Gibbstown Road, 1.8 mi west of Mullica Hill, and 2.8 mi east of Swedesboro.

DRAINAGE AREA .-- 26.9 mi2.

## WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- May 1966 to current year.

REVISED RECORDS. -- WDR NJ-82-82: Drainage area.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is National Geodetic Vertical Datum of 1929. Prior to July 28, 1969, at datum 7.96 ft higher. July 28, 1969 to Sept. 30, 1969, at datum 5.96 ft higher.

REMARKS. -- Water-discharge records fair.

AVERAGE DISCHARGE .-- 17 years, 41.6 ft3/s, 18.89 in/yr.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 3,530 ft<sup>3</sup>/s Aug. 10, 1967, elevation, 17.44 ft, present datum; minimum daily, 2.9 ft<sup>3</sup>/s July 14, Aug. 27, 28, Sept. 10, 1966.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 300 ft3/s and maximum (\*):

| Date    | Time | Discharge<br>(ft³/s) | Elevation (ft) | Date    | Time | Discharge<br>(ft³/s) | Elevation (ft) |
|---------|------|----------------------|----------------|---------|------|----------------------|----------------|
| Mar. 19 | 1015 | 323                  | 10.57          | Apr. 16 | 1030 | *1410                | 14.40          |
| Mar. 21 | 2000 | 447                  | 11.35          | Apr. 25 | 0745 | 626                  | 12.18          |
| Mar. 28 | 0700 | 365                  | 10.85          | May 27  | 1115 | 445                  | 11.34          |
| Apr. 10 | 1745 | 669                  | 12.35          | June 21 | 0045 | 608                  | 12.14          |

Minimum discharge, 13 ft $^3$ /s part or all of Oct. 2-6, Oct. 8-12, Aug. 10.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983 MEAN VALUES

| DA Y                                       | OCT                              | NOA                            | DEC                              | JAN                              | FEB                                      | MAR                                       | APR                                      | MAY                                       | JUN                                       | JUL                            | AUG                            | SEP                            |
|--------------------------------------------|----------------------------------|--------------------------------|----------------------------------|----------------------------------|------------------------------------------|-------------------------------------------|------------------------------------------|-------------------------------------------|-------------------------------------------|--------------------------------|--------------------------------|--------------------------------|
| 1<br>2<br>3<br>4<br>5                      | 14<br>14<br>13<br>13             | 25<br>24<br>23<br>23<br>28     | 29<br>31<br>25<br>22<br>21       | 19<br>19<br>19<br>18<br>22       | 21<br>23<br>38<br>30<br>24               | 35<br>95<br>49<br>37<br>33                | 45<br>41<br>153<br>83<br>55              | 52<br>50<br>47<br>48<br>35                | 57<br>51<br>47<br>57<br>72                | 38<br>37<br>34<br>32<br>32     | 16<br>16<br>16<br>16           | 18<br>17<br>16<br>16<br>16     |
| 6<br>7<br>8<br>9                           | 14<br>14<br>14<br>13             | 27<br>25<br>25<br>24<br>23     | 25<br>23<br>21<br>20<br>20       | 33<br>25<br>22<br>20<br>29       | 23<br>30<br>31<br>27<br>25               | 31<br>43<br>81<br>73<br>68                | 48<br>47<br>50<br>54<br>377              | 35<br>40<br>40<br>41<br>38                | 47<br>47<br>43<br>39<br>36                | 32<br>30<br>29<br>28<br>26     | 16<br>16<br>15<br>14<br>14     | 16<br>15<br>15<br>14<br>14     |
| 11<br>12<br>13<br>14<br>15                 | 13<br>13<br>14<br>16<br>16       | 23<br>24<br>62<br>39<br>25     | 21<br>22<br>22<br>21<br>21       | 76<br>37<br>27<br>24<br>29       | 34<br>74<br>49<br>35<br>26               | 58<br>77<br>53<br>41<br>37                | 214<br>82<br>58<br>52<br>57              | 37<br>37<br>36<br>35<br>37                | 36<br>35<br>34<br>33<br>31                | 25<br>25<br>24<br>23<br>21     | 22<br>32<br>22<br>19<br>17     | 14<br>16<br>21<br>18<br>17     |
| 16<br>17<br>18<br>19<br>20                 | 16<br>15<br>15<br>16<br>16       | 21<br>19<br>18<br>18           | 47<br>40<br>27<br>23<br>23       | 29<br>24<br>22<br>20<br>19       | 29<br>32<br>39<br>47<br>44               | 35<br>33<br>59<br>245<br>83               | 861<br>225<br>104<br>86<br>98            | 103<br>150<br>64<br>49<br>52              | 29<br>29<br>29<br>34<br>155               | 20<br>19<br>30<br>29<br>39     | 16<br>16<br>16<br>16           | 16<br>16<br>16<br>16           |
| 21<br>22<br>23<br>24<br>25                 | 17<br>16<br>16<br>16<br>26       | 18<br>18<br>18<br>18           | 22<br>21<br>20<br>20<br>19       | 19<br>19<br>36<br>35<br>28       | 44<br>44<br>57<br>52<br>38               | 244<br>160<br>63<br>50<br>45              | 91<br>75<br>65<br>160<br>429             | 59<br>96<br>177<br>88<br>60               | 466<br>139<br>64<br>49<br>41              | 28<br>25<br>22<br>23<br>23     | 15<br>15<br>15<br>14<br>14     | 25<br>49<br>22<br>19<br>18     |
| 26<br>27<br>28<br>29<br>30<br>31           | 56<br>40<br>32<br>28<br>27<br>26 | 18<br>17<br>18<br>73<br>42     | 20<br>20<br>20<br>21<br>21<br>19 | 25<br>23<br>22<br>21<br>21<br>23 | 32<br>29<br>28<br>                       | 41<br>63<br>242<br>78<br>54<br>48         | 123<br>82<br>72<br>63<br>57              | 57<br>324<br>103<br>76<br>80<br>67        | 36<br>35<br>38<br>89<br>45                | 22<br>20<br>18<br>17<br>17     | 14<br>14<br>15<br>33<br>32     | 17<br>17<br>17<br>17<br>17     |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 585<br>18.9<br>56<br>13<br>.70   | 772<br>25.7<br>73<br>17<br>.96 | 727<br>23.5<br>47<br>19<br>.87   | 805<br>26.0<br>76<br>18<br>.97   | 1005<br>35.9<br>74<br>21<br>1.33<br>1.39 | 2354<br>75.9<br>245<br>31<br>2.82<br>3.26 | 4007<br>134<br>861<br>41<br>4.98<br>5.54 | 2213<br>71.4<br>324<br>35<br>2.65<br>3.06 | 1943<br>64.8<br>466<br>29<br>2.41<br>2.69 | 804<br>25.9<br>39<br>16<br>.96 | 547<br>17.6<br>33<br>14<br>.65 | 540<br>18.0<br>49<br>14<br>.67 |

CAL YR 1982 TOTAL 12217 MEAN 33.5 MAX 355 MIN 11 CFSM 1.25 IN. 16.89 WTR YR 1983 TOTAL 16302 MEAN 44.7 MAX 861 MIN 13 CFSM 1.66 IN. 22.54

## 01477120 RACCOON CREEK NEAR SWEDESBORO, NJ -- Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1965 to current year.

PERIOD OF DAILY RECORD. -WATER TEMPERATURES: May 1966 to September 1973.
SUSPENDED-SEDIMENT DISCHARGE: June 1966 to September 1969.

COOPERATION.--Field data and samples for Laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

| DATE       | TIME                                        | STREAM-<br>FLOW,<br>INSTAN-<br>TANEOUS<br>(CFS) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(UMHOS)    | PH<br>(STAND-<br>ARD<br>UNITS)               | TEMPER-<br>ATURE<br>(DEG C)                         | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)                |                                    | BIO-<br>CHEM-<br>ICAL,             | COLI-<br>FORM,<br>FECAL,<br>EC<br>BROTH<br>(MPN)    | STREP-<br>TOCOCCI<br>FECAL<br>(MPN)                |
|------------|---------------------------------------------|-------------------------------------------------|------------------------------------------------------|----------------------------------------------|-----------------------------------------------------|----------------------------------------------------|------------------------------------|------------------------------------|-----------------------------------------------------|----------------------------------------------------|
| OCT<br>05  | 1015                                        | 13                                              | 188                                                  | 7.5                                          | 16.5                                                | 9.0                                                | 92                                 | 1.7                                | 79                                                  | 240                                                |
| JAN<br>25  | 0745                                        | 27                                              | 180                                                  | 6.8                                          | 3.0                                                 | 11.8                                               | 88                                 | .9                                 | 50                                                  | 94                                                 |
| MAR<br>15  |                                             |                                                 |                                                      |                                              |                                                     |                                                    |                                    |                                    |                                                     |                                                    |
| MAY        | 0830                                        | 38                                              | 171                                                  |                                              | 8.0                                                 | 11.8                                               |                                    | • 3                                | 110                                                 | 11                                                 |
| 17<br>JUL  | 0945                                        | 167                                             | 118                                                  |                                              | 12.0                                                | 9.2                                                | 85                                 | 1.8                                | 3500                                                | 3500                                               |
| 12<br>AUG  | 0845                                        | 26                                              | 170                                                  | 7.3                                          | 22.0                                                | 8.4                                                | 96                                 | 1.1                                | 330                                                 | 1100                                               |
| 04         | 1000                                        | 16                                              | 180                                                  | 7.3                                          | 23.5                                                | 7.7                                                |                                    | E2.1                               | 70                                                  | 920                                                |
| SEP 26     | 1300                                        | 18                                              | 233                                                  | 7.6                                          | 14.0                                                | 9.7                                                |                                    | E1.7                               | 130                                                 | 350                                                |
| DA TE      | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3)      | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)    | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG) | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K) | ALKA-<br>LINITY<br>LAB<br>(MG/L<br>AS<br>CACO3)    | SULFIDE<br>TOTAL<br>(MG/L<br>AS S) | SULFATE<br>DIS-<br>SOLVED<br>(MG/L | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F) |
| OCT        |                                             |                                                 |                                                      |                                              |                                                     |                                                    |                                    |                                    |                                                     |                                                    |
| 05<br>JAN  | 72                                          | 22                                              | 4.1                                                  | 5.0                                          | 4.1                                                 | 37                                                 |                                    | 22                                 | 13                                                  | .20                                                |
| 25<br>MAR  | 56                                          | 16                                              | 3.8                                                  | 4.5                                          | 3.4                                                 | 21                                                 |                                    | 28                                 | 12                                                  | .20                                                |
| 15         | 57                                          | 17                                              | 3.5                                                  | 3.0                                          | 3.0                                                 | 18                                                 |                                    | 33                                 | 11                                                  | .20                                                |
| MAY<br>17  | 48                                          | 14                                              | 3.2                                                  | 4.3                                          | 2.7                                                 | 11                                                 | <.5                                | 28                                 | 8.7                                                 | .20                                                |
| JUL<br>12  | 63                                          | 19                                              | 3.7                                                  | 4.3                                          | 3.3                                                 | 29                                                 |                                    | 26                                 | 12                                                  | .20                                                |
| AUG<br>04  | 67                                          | 20                                              | 4.1                                                  | 6.6                                          | 3.6                                                 | 36                                                 |                                    | 25                                 | 14                                                  | .20                                                |
| SEP        |                                             |                                                 |                                                      |                                              |                                                     |                                                    |                                    |                                    |                                                     |                                                    |
| 26         | 71                                          | 22                                              | 3.8                                                  | 12                                           | 4.1                                                 | 40                                                 | <.5                                | 26                                 | 18                                                  | .20                                                |
| DATE       | SILI<br>DIS<br>SOLVE<br>(MG/L<br>AS<br>SIO2 | - AT 1<br>D DEC<br>DI<br>SOI                    | DUE NI<br>80 G<br>G. C NIT<br>IS- TO<br>VED (M       |                                              | IN, GE<br>NO3 AMMO<br>TAL TOT<br>G/L (MO            | RO- GEN<br>IN, MON<br>INIA ORG<br>TAL TO<br>G/L (M | TRO - , AM -                       | raĹ TOTAL<br>G/L (MG/L             | ORGAL<br>TOTA<br>(MG                                | NIC<br>AL<br>/L                                    |
| OCT<br>O5. | 1                                           | 1                                               | 137                                                  | .010 1.                                      | 50 <.                                               | .050                                               | .22 1                              | .7 .2                              | 28 2                                                | . 2                                                |
| JAN<br>25. |                                             | 9.3                                             | 113 <                                                | .010 2.                                      | 30 .                                                | 120                                                | . 35                               | 2.7 .2                             | 28 2                                                | . 7                                                |
| MAR<br>15. |                                             | 8.8                                             | 103                                                  | .010 1.                                      | 70 <.                                               | 050                                                | .40 2                              | 2.1 .2                             | 24 3.                                               | . 5                                                |
| MAY<br>17. |                                             | 6.3                                             | 95                                                   | .010 1.                                      | 30 .                                                | 100                                                | .89 2                              | 2.2 .5                             | 8 6                                                 | . 9                                                |
| JUL<br>12. |                                             | 9.4                                             | 120                                                  |                                              | _                                                   |                                                    |                                    |                                    | - 4.                                                | . 0                                                |
| AUG<br>04. |                                             |                                                 |                                                      |                                              | 30 .                                                | 050                                                | .34 1                              | .6 -                               | - 3.                                                | . 6                                                |
| SEP<br>26  | 1                                           |                                                 |                                                      |                                              |                                                     | 050                                                |                                    |                                    |                                                     | . 1                                                |
| 20         | - 1                                         | _                                               | 120                                                  | .010 1.                                      | 10                                                  | 050                                                | . 43                               | • •                                | - 5                                                 |                                                    |

# 01477120 RACCOON CREEK NEAR SWEDESBORO, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

|                  | TIME                                                        | NITRO-<br>GEN, NH 4<br>+ ORG.<br>TOT IN<br>BOT MAT<br>(MG/KG         | CARBON,<br>INOR -<br>GANIC,<br>TOT IN<br>BOT MAT<br>(G/KG            | CARBON,<br>INORG +<br>ORGANIC<br>TOT. IN<br>BOT MAT<br>(G/KG         | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L                            | ARSENIC<br>TOTAL<br>(UG/L                                         | ARSENIC<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G           | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L                | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L                       | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L                       | CADMIUM<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G           |
|------------------|-------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|
| DATE             |                                                             | AS N)                                                                | AS C)                                                                | AS C)                                                                | AS AL)                                                               | AS AS)                                                            | AS AS)                                                              | AS BE)                                                               | AS B)                                                              | AS CD)                                                              | AS CD)                                                               |
| OCT<br>O5<br>MAY | 1015                                                        | 640                                                                  | .2                                                                   | 4.3                                                                  |                                                                      |                                                                   | <1                                                                  |                                                                      | -                                                                  |                                                                     | <1                                                                   |
| 17               | 0945                                                        |                                                                      |                                                                      |                                                                      | 110                                                                  | 2                                                                 |                                                                     | <10                                                                  | 40                                                                 | 1                                                                   |                                                                      |
| SEP 26           | 1300                                                        |                                                                      |                                                                      |                                                                      | 10                                                                   | 3                                                                 |                                                                     | <10                                                                  | 120                                                                | <1                                                                  |                                                                      |
| DATE             | CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR)                  | CHRO-<br>MIUM,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)   | COBALT,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CO) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU)              | COPPER,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CU) | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE)             | IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)                    | LEAD,                                                                | LEAD,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ABLE<br>(UG/L<br>AS MN)       | MANGA-<br>NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  |
| OCT              |                                                             |                                                                      |                                                                      | ,                                                                    | ,                                                                    | ,                                                                 | ,                                                                   |                                                                      | 1 10                                                               |                                                                     |                                                                      |
| 05<br>MAY        |                                                             | 4                                                                    | 10                                                                   |                                                                      | 0                                                                    |                                                                   | 9400                                                                |                                                                      | 10                                                                 | -                                                                   | 110                                                                  |
| 17<br>SEP        | 10                                                          |                                                                      |                                                                      | 3                                                                    |                                                                      | 2000                                                              |                                                                     | 12                                                                   | 6                                                                  | 50                                                                  |                                                                      |
| 26               | 20                                                          |                                                                      |                                                                      | 3                                                                    |                                                                      | 1000                                                              |                                                                     | 8                                                                    |                                                                    | 30                                                                  | 4                                                                    |
| DATE             | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG)     | MERCURY<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/L<br>AS HG) | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI)              | NICKEL,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS NI) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE)                           | SELE-<br>NIUM,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN)               | ZINC,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS ZN)   | PHENOLS<br>TOTAL<br>(UG/L)                                         | PCB,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)            | PCN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             |
| OCT<br>05        |                                                             | <.01                                                                 |                                                                      | <10                                                                  |                                                                      | <1                                                                |                                                                     | 30                                                                   | 11 No.                                                             | <1                                                                  | <1.0                                                                 |
| MAY<br>17        | <.1                                                         |                                                                      | 7                                                                    |                                                                      | 1                                                                    |                                                                   | .50                                                                 |                                                                      | <1                                                                 |                                                                     |                                                                      |
| SEP 26           | <.1                                                         |                                                                      | <1                                                                   |                                                                      | <1                                                                   |                                                                   | 30                                                                  |                                                                      | 3                                                                  | 7                                                                   |                                                                      |
| DATE             | ALDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | CHLOR - DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)                   | DDD,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DDE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DDT,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)                  | DI -<br>ELDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | ENDO-<br>SULFAN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | ENDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)        | ETHION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)         | HEPTA-<br>CHLOR,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) |
| OCT<br>05        | <.1                                                         | <1.0                                                                 | 2.8                                                                  | 2.3                                                                  | 2.8                                                                  | <.1                                                               | <.1                                                                 | <.1                                                                  | ۲.1                                                                | ۲.1                                                                 | <.1                                                                  |
| MAY              |                                                             | 11.0                                                                 | 2.0                                                                  | 2.3                                                                  | 2.0                                                                  |                                                                   | ,.,                                                                 |                                                                      | ``'                                                                | 130                                                                 |                                                                      |
| 17<br>SEP        |                                                             |                                                                      |                                                                      |                                                                      |                                                                      |                                                                   |                                                                     |                                                                      |                                                                    |                                                                     |                                                                      |
| 26               |                                                             |                                                                      |                                                                      |                                                                      |                                                                      |                                                                   | 7.197                                                               |                                                                      |                                                                    | The second                                                          |                                                                      |
| DATE             | HEPTA - CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)          | LINDANE<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)          | MALA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | METH-<br>OXY-<br>CHLOR,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)     | METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)                     | METHYL<br>TRI-<br>THION,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG) | MIREX,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)          | PARA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | PER-<br>THANE<br>IN<br>BOTTOM<br>MATERIL<br>(UG/KG)                | TOXA-<br>PHENE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)                     |
| ост<br>05        | <.1                                                         | <.1                                                                  | <.1                                                                  | <.1                                                                  | <.1                                                                  | <.1                                                               | <.1                                                                 | <.1                                                                  | <1.00                                                              | <10                                                                 | <.1                                                                  |
| MAY<br>17        |                                                             |                                                                      |                                                                      |                                                                      |                                                                      |                                                                   |                                                                     |                                                                      |                                                                    |                                                                     | TENNOT IN                                                            |
| SEP<br>26        |                                                             |                                                                      |                                                                      |                                                                      |                                                                      |                                                                   |                                                                     |                                                                      | -                                                                  |                                                                     | 1                                                                    |

## 01477510 OLDMANS CREEK AT PORCHES MILL, NJ

LOCATION.--Lat 39°41'57", long 75°20'01", Salem County, Hydrologic Unit 02040206, at bridge on Kings Highway in Porches Mill, 150 ft downstream of tributary from outflow of lake at Porches Mill, 1.0 mi north of Seven Stars, and 2.1 mi southeast of Auburn.

DRAINAGE AREA .-- 21.0 mi2.

## WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1975 to current year.

COOPERATION. -- Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

| DATE              | TIME                                   | STREAM-<br>FLOW,<br>INSTAN-<br>TANEOUS<br>(CFS) | SPE -<br>CIFIC<br>CON -<br>DUCT-<br>ANCE<br>(UMHOS)  | PH<br>(STAND-<br>ARD<br>UNITS)          | TEMPER-<br>ATURE<br>(DEG C)                         | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)             | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION) | OXYGEN DEMAND, BIO- CHEM- ICAL, DAY (MG/L)    | COLI-<br>FORM,<br>FECAL,<br>EC<br>BROTH<br>(MPN)    | STREP-<br>TOCOCCI<br>FECAL<br>(MPN)                |
|-------------------|----------------------------------------|-------------------------------------------------|------------------------------------------------------|-----------------------------------------|-----------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------|----------------------------------------------------|
| OCT               |                                        |                                                 |                                                      |                                         |                                                     |                                                 |                                                                |                                               |                                                     |                                                    |
| 07<br>JAN         | 0930                                   |                                                 | 218                                                  | 7.2                                     | 17.0                                                | 8.0                                             | 82                                                             | 1.5                                           | 330                                                 | 460                                                |
| 25<br>MAR         | 0945                                   | 22                                              | 216                                                  | 6.8                                     | 4.0                                                 | 12.4                                            | 95                                                             | 1.0                                           | 22                                                  | 170                                                |
| 15<br>MAY         | 1000                                   | 26                                              | 185                                                  |                                         | 8.0                                                 | 11.9                                            | 102                                                            | . 4                                           | 33                                                  | 5                                                  |
| 17                | 1200                                   | 123                                             | 138                                                  |                                         | 14.0                                                | 10.1                                            | 98                                                             | 2.7                                           | 16000                                               | 2800                                               |
| JUL<br>18         | 1015                                   | 13                                              | 197                                                  | 7.1                                     | 25.0                                                | 6.7                                             | 81                                                             | 3.8                                           | 1700                                                | 2400                                               |
| AUG<br>04         | 1200                                   |                                                 | 210                                                  | 7.3                                     | 24.0                                                | 7.6                                             |                                                                | E2.2                                          | 230                                                 | 350                                                |
| SEP 26            | 1100                                   |                                                 | 216                                                  | 7.5                                     | 14.5                                                | 9.4                                             |                                                                | 2.8                                           | 230                                                 | 79                                                 |
| DATE              | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3) | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)    | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG) | SODIUM, DIS- SOLVED (MG/L AS NA)        | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K) | ALKA-<br>LINITY<br>LAB<br>(MG/L<br>AS<br>CACO3) | SULFIDE<br>TOTAL<br>(MG/L<br>AS S)                             | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F) |
| OCT               |                                        |                                                 |                                                      |                                         |                                                     |                                                 |                                                                |                                               |                                                     |                                                    |
| 07<br>JAN         | 84                                     | 25                                              | 5.3                                                  | 4.6                                     | 3.6                                                 | 43                                              |                                                                | 24                                            | 16                                                  | .30                                                |
| 25<br>MAR         | 73                                     | 21                                              | 5.0                                                  | 4.5                                     | 3.5                                                 | 21                                              |                                                                | 33                                            | 15                                                  | .20                                                |
| 15<br>MAY         | 56                                     | 16                                              | 4.0                                                  | 3.9                                     | 3.1                                                 | 17                                              |                                                                | 30                                            | 13                                                  | .20                                                |
| 17                | 58                                     | 16                                              | 4.3                                                  | 4.5                                     | 3.1                                                 | 15                                              |                                                                | 28                                            | 12                                                  | .20                                                |
| JUL<br>18         | 80                                     | 23                                              | 5.4                                                  | 4.9                                     | 4.2                                                 | 36                                              |                                                                | 22                                            | 14                                                  | .20                                                |
| AUG<br>04         | 82                                     | 24                                              | 5.4                                                  | 4.6                                     | 3.6                                                 | 43                                              |                                                                | 24                                            | 16                                                  | .30                                                |
| SEP 26            | 79                                     | 23                                              | 5.3                                                  | 4.6                                     | 4.0                                                 | 38                                              | <.5                                                            | 26                                            | 17                                                  | .20                                                |
| DAT               | SILI<br>DIS<br>SOL<br>(MG<br>AS        | CA, RES<br>- AT<br>VED DE<br>/L D<br>SO         | 180 G<br>G. C NIT<br>IS- TO<br>LVED (M               | EN, GI<br>RITE NO2-<br>TAL TO<br>G/L (M | EN, GE<br>+NO3 AMMO<br>TAL TOT<br>G/L (MO           | RO- GEN<br>N, MON<br>ONIA ORGA<br>TAL TO:       | IA + NIT<br>ANIC GE<br>TAL TOT<br>G/L (MG                      | AL TOTA                                       | TE, ORGA<br>L TOT<br>L (MG                          | NIĆ<br>AL<br>/L                                    |
| DAT               | E SIO                                  | 2) (M                                           | G/L) AS                                              | N) AS                                   | N) AS                                               | N) AS                                           | N) AS                                                          | N) AS PO                                      | 4) AS                                               | C)                                                 |
| OCT<br>O7.<br>JAN | 1                                      | 4                                               | 141 E                                                | .020 1                                  | .70 .                                               | 060                                             | .54 2                                                          | .2 .                                          | 21 2                                                | . 6                                                |
| 25.<br>MAR        | 1                                      | 1                                               | 143                                                  | .010 3                                  | . 10 .                                              | 120                                             | . 37                                                           | .5 .                                          | 21 3                                                | • 3                                                |
| 15.<br>MAY        |                                        | 8.6                                             | 119                                                  | .020 2                                  | .40 <.                                              | 050                                             | .61 3                                                          | .0                                            | 21 3                                                | . 9                                                |
| 17.               |                                        | 6.1                                             | 106                                                  | .020 1                                  | .80 .                                               | 080                                             | 1.0 2                                                          | .8 .                                          | 36 7                                                | .0                                                 |
| JUL<br>18.        | 1                                      | 1                                               | 208                                                  | .020 1                                  | .60 .                                               | 050                                             | .62 2                                                          | .2                                            | 40 7                                                | . 1                                                |
| AUG<br>04.        |                                        | 9.4                                             | 133                                                  | .020 1                                  | .40 .                                               | 080                                             | .56 2                                                          | .0 .                                          | 43 4                                                | . 9                                                |
| SEP<br>26.        | 1                                      | 3                                               | 132                                                  | .010 1                                  | .60 .                                               | 050                                             | .51 2                                                          | .1 .                                          | 40 2                                                | .7                                                 |

# 01481602 DELAWARE RIVER BELOW CHRISTINA RIVER AT WILMINGTON, DE

LOCATION.--Lat 39°43'00", long 75°31'03", New Castle County, DE, Hydrologic Unit 02040206, on right bank, 1,000 ft from Mouth of Christina River at the Wilmington Marine Terminal at Wilmington, 2.0 mi upstream of Delaware Memorial Bridge, and at mile 69.70.

DRAINAGE AREA . -- 11,030 mi2.

#### TIDE ELEVATION DATA

- PERIOD OF RECORD. -- December 1982 to September 1983. July 1967 to May 1983 published as Delaware River at Delaware Memorial Bridge, at Wilmington, DE. Tidal volumes published from July 1967 to September 1973.
- GAGE.--Water-stage recorder. Datum of gage is -10.00 ft National Geodetic Vertical Datum of 1929. Prior to Dec.
  1982, water-stage recorder at Delaware River at Delaware Memorial Bridge 2.0 mi downstream at same datum. Gageheight record converted to elevation above or below (-) National Geodetic Vertical Datum 1929 for publication.
- REMARKS.--Elevation records good. Record at this site is considered compatible with that at station 01482100.

  Summaries for months with short periods of no gage-height record have been estimated with negligible or no loss of accuracy unless otherwise noted. Some periods cannot be estimated and are noted by dash (--) lines. Missing or doubtful record on June 28-30, July 1-31.
- EXTREMES FOR PERIOD OF RECORD .-- Maximum elevation, 7.88 ft Oct. 25, 1980; minimum, -5.86 ft Apr. 4, 1975.
- EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum elevation known, 8.4 ft Nov. 23, 1950, furnished by Corps of Engineers, U.S. Army; minimum, -9.1 ft Dec. 31, 1962.

EXTREMES FOR CURRENT YEAR .-- Maximum elevation, 6.46 ft Apr. 3; minimum -3.67 ft Feb. 5.

Summaries of tide elevations during current year are as follows:

## TIDE ELEVATIONS, IN FEET, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

|              |           | OCT | NOV | DEC   | JAN   | FEB   | MAR   | APR   | MAY   | JUN   | JUL | A UG  | SEP   |
|--------------|-----------|-----|-----|-------|-------|-------|-------|-------|-------|-------|-----|-------|-------|
| Maximum      | Elevation |     |     | 5.43  | 5.58  | 5.14  | 6.33  | 6.46  | 5.61  | 5.46  |     | 5.55  | 5.27  |
| high tide    | Date      |     |     | 19    | 29    | 25    | 27    | 3     | 25    | 10    |     | 11    | 6     |
| Minimum      | Elevation |     |     | -2.77 | -3.56 | -3.67 | -2.79 | -2.38 | -2.68 | -2.15 |     | -2.02 | -2.01 |
| low tide     | Date      |     |     | 9     | 19    | 5     | 23    | 20    | 9     | 12    | 14  | 9     | 24    |
| Mean high ti | .de       |     |     | 3.76  | 3.46  | 3.77  | 4.20  | 4.43. | 4.25  | 4.38  |     | 4.32  | 4.21  |
| Mean water 1 | evel      |     |     | 1.24  | 0.95  | 1.32  | 1.64  | 1.77  | 1.51  | 1.53  |     | 1.61  | 1.58  |
| Mean low tid | le        |     |     | -1.44 | -1.72 | -1.44 | -1.13 | -1.07 | -1.37 | -1.46 |     | -1.27 | -1.24 |

# 01482100 DELAWARE RIVER AT DELAWARE MEMORIAL BRIDGE, AT WILMINGTON, DE

LOCATION.--Lat 39°41'21", long 75°31'19", New Castle County, DE, Hydrologic Unit 02040205, on pier of right tower of downstream bridge of dual bridges at Wilmington, 2.0 mi downstream from Christina River and at mile 67.70.

DRAINAGE AREA. -- 11,030 mi2.

## TIDE ELEVATION DATA

PERIOD OF RECORD. -- July 1967 to May 1983 (discontinued). Tidal volumes published from July 1967 to September 1973.

GAGE.--Water-stage recorder. Datum of gage is -10.00 ft National Geodetic Vertical Datum of 1929. Gage-height record converted to elevation above or below (-) National Geodetic Vertical Datum 1929 for publication.

REMARKS .-- Elevation records good .

EXTREMES FOR PERIOD OF RECORD .-- Maximum elevation, 7.88 ft Oct. 25, 1980; minimum, -5.86 ft Apr. 4, 1975.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum elevation known, 8.4 ft Nov. 23, 1950, furnished by Corps of Engineers, U.S. Army; minimum, -9.1 ft Dec. 31, 1962.

EXTREMES FOR CURRENT YEAR .-- Maximum elevation, 6.28 ft Apr. 3; minimum, -3.75 ft Feb. 5.

Summaries of tide elevations during current year are as follows:

| TIDE | ELEVATIONS. | IN | FEET. | WATER | YEAR | OCTOBER | 1982 | TO | SEPTEMBER | 1983 |  |
|------|-------------|----|-------|-------|------|---------|------|----|-----------|------|--|
|------|-------------|----|-------|-------|------|---------|------|----|-----------|------|--|

|             |           | OCT   | NOV   | DEC   | JAN   | FEB   | MAR    | APR   | MAY   | JUN | JUL | AUG | SEP |
|-------------|-----------|-------|-------|-------|-------|-------|--------|-------|-------|-----|-----|-----|-----|
| Maximum     | Elevation | 5.71  | 5.19  | 5.12  | 5.45  | 5.13  | 6.00   | 6.28  | 5.44  |     |     |     |     |
| high tide   | Date      | 10    | 4     | 19    | 29    | 25    | 19,27  | 3     | 25    |     |     |     |     |
| Minimum     | Elevation | -2.54 | -3.37 | -2.97 | -3.51 | -3.75 | -3.09  | -2.52 | -2.72 |     |     |     |     |
| low tide    | Date      | 17    | 13    | 9     | 19    | 5     | 23     | 20    | 9     |     |     |     |     |
| Mean high t | ide       | 4.01  | 3.38  | 3.52  | 3.35  | 3.67  | 3.99   | 4.27  | 4.13  |     |     |     |     |
| Mean water  | level     | 1.50  | 0.87  | 1.02  | 0.86  | 1.19  | 1 - 43 | 1.60  | 1.38  |     |     |     |     |
| Mean low ti | d e       | -1.17 | -1.75 | -1.64 | -1.77 | -1.48 | -1.32  | -1.24 | -1.50 |     |     |     |     |

# 01482500 SALEM RIVER AT WOODSTOWN, NJ

LOCATION.--Lat 39°38'36", long 75°19'52", Salem County, Hydrologic Unit 02040206, on right end of Memorial Lake Dam at Woodstown, 0.2 mi upstream from small brook, and 0.3 mi downstream from Pennsylvania-Reading Seashore Lines bridge.

DRAINAGE AREA .-- 14.6 mi2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- March to September 1940, December 1941 to current year. Prior to October 1952, published as "Salem Creek at Woodstown".

REVISED RECORDS. -- WSP 1432: 1951(M). WSP 1702: 1959.

GAGE.--Water-stage recorder above concrete dam. Datum of gage is 19.49 ft National Geodetic Vertical Datum of 1929. Prior to Oct. 1, 1977 at datum 10.00 ft higher.

REMARKS.--Water-discharge records fair except those below 5 ft3/s, which are poor.

AVERAGE DISCHARGE.--41 years (water years 1943-83), 19.0 ft3/s, 17.67 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 22,000 ft3/s Sept. 1, 1940, gage height, 17.98 ft, present datum, from floodmark, from rating curve extended above 220 ft3/s on basis of slope-area measurement of peak flow at site 0.5 mi downstream; no flow for short periods during many years just after waste gate was closed and water was below spillway.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 350 ft3/s and maximum (\*):

|                   | -    | Discharge            | Gage height    |         |      | Discharge            | Gage height |
|-------------------|------|----------------------|----------------|---------|------|----------------------|-------------|
| Date              | Time | (ft <sup>3</sup> /s) | (ft)           | Date    | Time | (ft <sup>3</sup> /s) | (ft)        |
| Apr. 16<br>May 27 | 0900 | 1300<br>378          | 12.62<br>11.85 | June 20 | 2400 | *2090                | 13.07       |

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

Minimum discharge, 2.1 ft3/s Oct. 2, gage height 11.08 ft.

| MEAN VALUES                                |                                          |                                          |                                          |                                          |                                            |                                           |                                           |                                           |                                           |                                          |                                   |                                          |
|--------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|--------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------|-----------------------------------|------------------------------------------|
| DA Y                                       | OCT                                      | NOV                                      | DEC                                      | JAN                                      | FEB                                        | MAR                                       | APR                                       | MAY                                       | JUN                                       | JUL                                      | AUG                               | SEP                                      |
| 1<br>2<br>3<br>4<br>5                      | 3.2<br>2.7<br>3.0<br>3.6<br>4.3          | 6.9<br>7.4<br>9.5<br>9.7                 | 16<br>19<br>13<br>12                     | 6.9<br>6.9<br>5.9<br>5.0<br>7.4          | 7.8<br>9.5<br>29<br>17                     | 18<br>55<br>26<br>19                      | 20<br>19<br>97<br>38<br>26                | 23<br>21<br>21<br>24<br>24                | 27<br>24<br>21<br>23<br>20                | 12<br>14<br>13<br>12                     | 6.7<br>5.5<br>5.0<br>5.2<br>7.5   | 9.3<br>8.6<br>8.6<br>9.5                 |
| 6<br>7<br>8<br>9                           | 5.2<br>6.4<br>6.4<br>5.4<br>5.2          | 11<br>8.0<br>6.9<br>7.5<br>7.6           | 9.6<br>8.6<br>7.6<br>6.9                 | 19<br>13<br>10<br>8.7                    | 10<br>15<br>17<br>15<br>13                 | 14<br>25<br>58<br>45<br>49                | 22<br>21<br>23<br>31<br>204               | 21<br>19<br>18<br>16<br>14                | 19<br>21<br>19<br>17<br>16                | 12<br>11<br>10<br>10<br>8.8              | 8.0<br>5.3<br>4.3<br>4.2<br>3.2   | 10<br>10<br>9.3<br>8.6<br>8.6            |
| 11<br>12<br>13<br>14<br>15                 | 5.2<br>5.2<br>5.2<br>6.2<br>7.4          | 8.4<br>8.5<br>36<br>21                   | 6.9<br>8.5<br>8.6<br>7.4<br>6.5          | 65<br>22<br>14<br>11                     | 13<br>11<br>12<br>11                       | 35<br>54<br>30<br>22<br>19                | 77<br>37<br>28<br>26<br>24                | 14<br>14<br>14<br>14<br>15                | 16<br>16<br>16<br>16                      | 8.6<br>8.4<br>6.7<br>6.7                 | 4.6<br>7.3<br>5.8<br>4.2<br>4.1   | 9.0<br>9.6<br>13<br>14                   |
| 16<br>17<br>18<br>19<br>20                 | 7.4<br>7.4<br>7.2<br>7.2<br>7.4          | 9.8<br>8.6<br>8.1<br>6.9<br>6.9          | 31<br>27<br>14<br>10<br>9.7              | 16<br>11<br>9.3<br>7.6<br>6.9            | 14<br>21<br>33<br>41<br>30                 | 16<br>15<br>44<br>124<br>38               | 550<br>73<br>38<br>35<br>43               | 51<br>71<br>25<br>21<br>20                | 16<br>16<br>16<br>14<br>184               | 6.0<br>5.5<br>7.5<br>5.5<br>5.6          | 6.5<br>6.9<br>6.2<br>5.0          | 10<br>10<br>11<br>12<br>11               |
| 21<br>22<br>23<br>24<br>25                 | 7.9<br>8.2<br>8.2<br>8.2<br>13           | 6.9<br>7.5<br>8.6<br>7.9<br>6.9          | 7.9<br>6.9<br>6.9<br>6.9                 | 6.9<br>6.9<br>16<br>21                   | 27<br>25<br>32<br>29                       | 152<br>68<br>29<br>23<br>20               | 40<br>29<br>26<br>82<br>198               | 35<br>88<br>146<br>41<br>27               | 609<br>79<br>36<br>21<br>15               | 6.8<br>6.4<br>6.7<br>13<br>9.5           | 4.3<br>4.1<br>4.6<br>5.0<br>5.5   | 16<br>28<br>12<br>8.8<br>7.5             |
| 26<br>27<br>28<br>29<br>30<br>31           | 20<br>11<br>7.6<br>5.9<br>6.2<br>6.9     | 6.8<br>6.9<br>8.3<br>52<br>25            | 6.9<br>6.9<br>7.6<br>7.6                 | 10<br>9.0<br>8.5<br>7.0<br>7.4<br>8.6    | 15<br>14<br>14<br>                         | 17<br>38<br>137<br>36<br>25<br>23         | 50<br>34<br>29<br>26<br>24                | 33<br>215<br>47<br>33<br>38<br>31         | 13<br>12<br>13<br>22<br>15                | 8.6<br>8.6<br>8.0<br>8.0<br>7.8          | 5.8<br>6.9<br>9.4<br>12<br>18     | 6.9<br>6.3<br>4.4<br>3.2<br>3.5          |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 214.3<br>6.91<br>20<br>2.7<br>.47<br>.55 | 350.5<br>11.7<br>52<br>6.8<br>.80<br>.89 | 322.6<br>10.4<br>31<br>6.5<br>.71<br>.82 | 389.9<br>12.6<br>65<br>5.0<br>.86<br>.99 | 515.3<br>18.4<br>41<br>7.8<br>1.26<br>1.31 | 1289<br>41.6<br>152<br>14<br>2.85<br>3.28 | 1970<br>65.7<br>550<br>19<br>4.50<br>5.02 | 1194<br>38.5<br>215<br>14<br>2.64<br>3.04 | 1368<br>45.6<br>609<br>12<br>3.12<br>3.49 | 274.2<br>8.85<br>14<br>5.5<br>.61<br>.70 | 197.1<br>6.36<br>18<br>3.2<br>.44 | 299.7<br>9.99<br>28<br>3.2<br>.68<br>.76 |

CAL YR 1982 TOTAL 5242.9 MEAN 14.4 MAX 203 MIN 1.3 CFSM .99 IN. 13.36 WTR YR 1983 TOTAL 8384.6 MEAN 23.0 MAX 609 MIN 2.7 CFSM 1.58 IN. 21.36

# 01482500 SALEM RIVER AT WOODSTOWN, NJ -- Continued

# WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1973 to current year.

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

| D <b>A</b> T | E          | TIME                                   | STRE<br>FLO<br>INST<br>TANE<br>(CF | AM- CI<br>W, CO<br>AN- DU<br>OUS AN                                | ICE                                          | PH<br>(STAND-<br>ARD<br>UNITS)               | AT                                       | PER-<br>URE<br>G C)                             | SOL                            | EN,<br>S-<br>VED                                | OXYGI<br>DIS<br>SOL'<br>(PEI<br>CEI<br>SATI | S-<br>VED<br>R-<br>NT<br>UR-        | OXYGE<br>DEMAN<br>BIO-<br>CHEM<br>ICAL<br>5 DA<br>(MG/ | D, C<br>F<br>F<br>Y E                       | OLI-<br>ORM,<br>ECAL,<br>EC<br>ROTH<br>MPN)        | STF<br>TOCO<br>FEO | AL                       |
|--------------|------------|----------------------------------------|------------------------------------|--------------------------------------------------------------------|----------------------------------------------|----------------------------------------------|------------------------------------------|-------------------------------------------------|--------------------------------|-------------------------------------------------|---------------------------------------------|-------------------------------------|--------------------------------------------------------|---------------------------------------------|----------------------------------------------------|--------------------|--------------------------|
| OCT          |            |                                        |                                    |                                                                    |                                              |                                              |                                          |                                                 |                                |                                                 |                                             |                                     |                                                        |                                             |                                                    |                    | 433                      |
| JAN          | ••         | 1015                                   | Е                                  | 5.2                                                                | 239                                          | 8.1                                          |                                          | 17.0                                            |                                | 8.4                                             |                                             | 87                                  | 15                                                     |                                             | 60                                                 | <                  | 200                      |
| 20.<br>MAR   |            | 0815                                   |                                    | 6.9                                                                | 254                                          | 7.0                                          |                                          | .0                                              | 1                              | 4.4                                             |                                             | 96                                  | 2                                                      | . 1                                         | 130                                                |                    | 40                       |
| 14.<br>MAY   | ••         | 0700                                   | 2                                  | 3                                                                  | 214                                          | 6.8                                          |                                          | 6.0                                             | 1                              | 1.8                                             |                                             | 96                                  | 2                                                      | • 3                                         | >2400                                              |                    | 350                      |
| 16.          |            | 1010                                   | 2                                  | 6                                                                  | 199                                          | 7.8                                          |                                          | 20.0                                            |                                | 8.4                                             |                                             | 93                                  | 5                                                      | . 8                                         | 170                                                |                    | 230                      |
| JUL<br>19.   |            | 0930                                   |                                    | 5.0                                                                | 232                                          | 7.9                                          |                                          | 30.0                                            |                                | 7.2                                             |                                             | 96                                  | 4                                                      | .0                                          | 80                                                 |                    | 70                       |
| AUG<br>09.   |            | 1100                                   |                                    | 5.0                                                                | 232                                          | 8.1                                          |                                          | 29.5                                            |                                | 7.2                                             |                                             |                                     | 5                                                      | . 0                                         | 50                                                 |                    | 240                      |
| SEP<br>20.   |            | 1030                                   |                                    | 5.0                                                                | 260                                          | 7.8                                          |                                          | 23.0                                            |                                | 9.9                                             |                                             |                                     | 5                                                      | . 9                                         | 50                                                 |                    | 23                       |
| DA 1         |            | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3) | CALC<br>DIS<br>SOL<br>(MG<br>AS    | IUM S<br>IUM S<br>VED SO                                           | GNE-<br>SIUM,<br>DIS-                        | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA) | PC<br>S<br>I<br>SC<br>(M                 | OTAS-<br>BIUM,<br>DIS-<br>DLVED<br>IG/L<br>B K) | ALK<br>LINI<br>LA<br>(MC<br>AS | A-<br>TY<br>B<br>G/L                            | SULF<br>TOT<br>(MG,                         | IDE<br>AL<br>/L                     | SULFA<br>DIS-<br>SOLV<br>(MG/<br>AS SO                 | TE F                                        | CHLO-<br>RIDE,<br>DIS-<br>BOLVED<br>MG/L<br>AS CL) |                    | IO-<br>DE,<br>IS-<br>VED |
| OCT          |            |                                        |                                    |                                                                    |                                              |                                              |                                          |                                                 |                                |                                                 |                                             |                                     |                                                        |                                             |                                                    |                    |                          |
| JAN          | •••        | 88                                     | 19                                 |                                                                    | 9.8                                          | 6.8                                          |                                          | 4.9                                             | 45                             |                                                 |                                             | <.5                                 | 28                                                     |                                             | 22                                                 |                    | . 20                     |
| MAR          | •••        | 86                                     | 18                                 |                                                                    | 10                                           | 8.6                                          |                                          | 6.0                                             | 22                             |                                                 |                                             |                                     | 33                                                     |                                             | 23                                                 |                    | .20                      |
| 14.          | •••        | 65                                     | 14                                 |                                                                    | 7.4                                          | 5.8                                          |                                          | 5.8                                             | 26                             |                                                 |                                             |                                     | 34                                                     |                                             | 16                                                 |                    | .20                      |
| 16.<br>JUL   |            | 81                                     | 18                                 |                                                                    | 8.8                                          | 7.3                                          |                                          | 3.8                                             | 24                             |                                                 | 100                                         | <.5                                 | 36                                                     |                                             | 18                                                 |                    | .20                      |
| 19.          |            | 88                                     | 19                                 |                                                                    | 9.9                                          | 7.9                                          |                                          | 5.9                                             | 47                             |                                                 |                                             |                                     | 30                                                     |                                             | 21                                                 |                    | .30                      |
| AUG<br>09    |            | 85                                     | 19                                 |                                                                    | 9.2                                          | 7.4                                          |                                          | 5.5                                             | 49                             |                                                 |                                             |                                     | 30                                                     |                                             | 23                                                 |                    | .20                      |
| SEP<br>20.   |            | 88                                     | 19                                 |                                                                    | 9.9                                          | 7.9                                          |                                          | 5.2                                             | 42                             |                                                 |                                             |                                     | 32                                                     |                                             | 23                                                 |                    | .20                      |
|              | DATE       | (MC                                    | CA,<br>S-<br>VED<br>S/L            | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L) | NITR<br>GEN<br>NITRI<br>TOTA<br>(MG/<br>AS N | , G<br>TE NO2<br>L TO<br>L (M                | TRO-<br>EN,<br>+NO3<br>TAL<br>IG/L<br>N) | NIT<br>GE<br>AMMO<br>TOT<br>(MG                 | NIA<br>AL<br>/L                | NIT<br>GEN,<br>MONI<br>ORGA<br>TOT<br>(MG<br>AS | AM-<br>A +<br>NIC<br>AL<br>/L               | NITR<br>GEN<br>TOTA<br>(MG/<br>AS N | Ľ<br>L                                                 | PHOS-<br>PHATE,<br>TOTAL<br>(MG/L<br>S PO4) | TOT (MC                                            | NIC<br>AL<br>/L    |                          |
|              |            | . 510                                  | ,                                  | (MG/L)                                                             | N CH                                         | ) но                                         | N)                                       | но                                              | N)                             | AS                                              | N)                                          | AD N                                | , n                                                    | 5 104                                       | , AS                                               | 0,                 |                          |
| *2           | OCT.       |                                        | 6.0                                | 147                                                                | <.0                                          | 10 <                                         | . 100                                    |                                                 | 130                            | E                                               | . 75                                        |                                     |                                                        | 4.00                                        | ) 5                                                | .0                 |                          |
|              | JAN 20     |                                        | 9.7                                | 154                                                                | . 0                                          | 40 3                                         | . 20                                     |                                                 | 190                            | 1                                               | . 1                                         | 4.                                  | 4                                                      | . 4                                         | 5 5                                                | . 7                |                          |
|              | MAR<br>14  |                                        | 7.0                                | 130                                                                | .0                                           | 30 2                                         | . 30                                     |                                                 | 140                            | 1                                               | . 8                                         | 4.                                  | 1                                                      | .70                                         | ) 7                                                | . 9                |                          |
|              | MAY 16     |                                        | 2.3                                | 129                                                                |                                              |                                              | .00                                      |                                                 | 170                            |                                                 | . 4                                         | 3.                                  |                                                        | . 7                                         | 7 7                                                | .0                 |                          |
|              | JUL<br>19  |                                        | 1.8                                | 135                                                                |                                              | 30                                           | . 400                                    |                                                 | 080                            |                                                 | . 1                                         | 1.                                  |                                                        |                                             |                                                    | .5                 |                          |
|              | AUG<br>09. |                                        | 1.5                                | 142                                                                |                                              | 20                                           | .200                                     |                                                 | 110                            | E1                                              |                                             | 1 1                                 |                                                        |                                             |                                                    | .2                 |                          |
|              | SEP        |                                        |                                    |                                                                    |                                              |                                              |                                          |                                                 |                                |                                                 |                                             |                                     | 70                                                     |                                             |                                                    | .6                 |                          |
|              | 20         | •                                      | 7.1                                | 167                                                                | . 0                                          | 40                                           | . 400                                    |                                                 | 080                            |                                                 | . 38                                        | •                                   | 78                                                     | -                                           | - 0                                                | .0                 |                          |

# 01482500 SALEM RIVER AT WOODSTOWN, NJ--Continued

# WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

| DATE      | TIME                                                                | NITRO-<br>GEN, NH4<br>+ ORG.<br>TOT IN<br>BOT MAT<br>(MG/KG<br>AS N) | CARBON,<br>INOR-<br>GANIC,<br>TOT IN<br>BOT MAT<br>(G/KG<br>AS C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CARBON,<br>INORG +<br>ORGANIC<br>TOT. IN<br>BOT MAT<br>(G/KG<br>AS C) | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)              | ARSENI<br>TOTAL<br>(UG/L<br>AS AS                              | IN I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ENIC<br>TAL<br>BOT-<br>MA-<br>RIAL<br>G/G<br>AS) | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE)    | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)           | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD)              | CADMIUM<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CD) |
|-----------|---------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|
| OCT       |                                                                     |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                  |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                                    |                                                                 |                                                                      |                                                                      |
| 12<br>MAY | 1015                                                                |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       | 80                                                               | 3                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | 10                                                                 | 40                                                              | <1                                                                   |                                                                      |
| 16<br>SEP | 1010                                                                |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       | 50                                                               | 2                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | <10                                                                | 30                                                              | 1                                                                    |                                                                      |
| 20        | 1030                                                                | 1 400                                                                | • 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.9                                                                   |                                                                  |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1                                               |                                                                    | -2                                                              |                                                                      | 1                                                                    |
| DATE      | CHRO-MIUM,<br>TOTAL<br>RECOV-ERABLE<br>(UG/L<br>AS CR)              | COBALT,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CO) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | COPPER,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CU)  | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE)            | IRON,<br>RECOVE<br>FM BOT<br>TOM MA<br>TERIA<br>(UG/O<br>AS FE | LEATON LE |                                                  | LEAD,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MANGA-<br>NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG)              |
| OCT       |                                                                     |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                  |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                                    |                                                                 |                                                                      |                                                                      |
| 12<br>MAY | 10                                                                  |                                                                      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                       | 1700                                                             |                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                |                                                                    | 130                                                             |                                                                      | .1                                                                   |
| 16<br>SEP | <10                                                                 |                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                       | 1600                                                             | -                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13                                               |                                                                    | 80                                                              |                                                                      | <.1                                                                  |
| 20        |                                                                     | <10                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0                                                                    |                                                                  | 4 5                                                            | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  | <10                                                                |                                                                 | 38                                                                   |                                                                      |
| DATE      | MERCURY<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/L<br>AS H  | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI)              | NICKEL,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS NI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SELE-<br>NIUM,<br>TOTALE<br>(UG/L<br>AS SE)                           | SELE-<br>NIUM,<br>TOTAL<br>IN BOT-<br>TERIAL<br>TERIAL<br>(UG/G) | ZINC<br>TOTAL<br>RECOV<br>PHENOI<br>(UG/I<br>AS ZI             | FM TOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MA-<br>G/G                                       | PHENOLS<br>TOTAL<br>(UG/L)                                         | PCB,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)        |                                                                      | ALDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)          |
| OCT       |                                                                     |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                  |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                                    |                                                                 |                                                                      |                                                                      |
| 12<br>MAY |                                                                     | 3                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1                                                                    |                                                                  | 2                                                              | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  | <1                                                                 |                                                                 |                                                                      |                                                                      |
| 16<br>SEP |                                                                     | 9                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1                                                                    | 122                                                              |                                                                | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  |                                                                    |                                                                 |                                                                      |                                                                      |
| 20        | .01                                                                 |                                                                      | <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                       | <1                                                               |                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                |                                                                    | 15                                                              | <1.0                                                                 | <.1                                                                  |
| DATE      | CHLOR-<br>DANE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | DDD,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DDE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DDT,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)              | DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)                 | DI-<br>ELDRII<br>TOTAI<br>IN BO<br>TOM MA<br>TERIA             | I, SULI<br>TO<br>I- IN<br>A- TOM<br>AL TE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TAL<br>BOT-<br>MA-<br>RIAL                       | ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)                       | ETHION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)     | HEPTA-<br>CHLOR,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | HEPTA-<br>CHLOR<br>EPOXIDE<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)  |
| OCT       |                                                                     |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                  |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                                    |                                                                 |                                                                      |                                                                      |
| 12<br>MAY |                                                                     |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                  |                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |                                                                    | T                                                               |                                                                      |                                                                      |
| 16<br>SEP |                                                                     |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                  |                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |                                                                    |                                                                 |                                                                      |                                                                      |
| 20        | 1.0                                                                 | .7                                                                   | <.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . 1                                                                   | <.1                                                              | <                                                              | . 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <.1                                              | <.1                                                                | <.1                                                             | <.1                                                                  | <.1                                                                  |
| 1         | TO<br>IN<br>TO                                                      | NDANE THOMAL TO BOT- IN M MA- TONERIAL TH                            | HION, ON DITAL CHE BOT - TOTAL CHE MA - BOTAL MA - BOTA | KY- PA HLOR, TH I. IN TOT OTTOM BO MATL. M                            | RA-<br>ION, TH<br>. IN TOT<br>TTOM BO<br>ATL.                    | MATL.                                                          | MIREX,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TOM                                              | ON, PER AL THA OT- IN MA- BOT IAL MAT                              | PH<br>NE TO<br>IN<br>TOM TOM<br>ERIL TE                         | ENE, TH<br>TAL TO<br>BOT- IN<br>MA- TOM<br>RIAL TE                   | RI-<br>ION,<br>TAL<br>BOT-<br>MA-<br>RIAL<br>/KG)                    |
|           | CT                                                                  |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                  |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                                    |                                                                 |                                                                      |                                                                      |
| M.        | 12<br>AY                                                            |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                  |                                                                | 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  |                                                                    |                                                                 |                                                                      |                                                                      |
|           | 16<br>EP                                                            |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                  |                                                                | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |                                                                    |                                                                 |                                                                      |                                                                      |
|           | 20                                                                  | <.1                                                                  | <.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <.1                                                                   | <.1                                                              | <.1                                                            | <.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  | <.1 <                                                              | 1.00                                                            | <10                                                                  | <.1                                                                  |

#### RESERVOIRS IN DELAWARE RIVER BASIN

01416900 PEPACTON RESERVOIR.--Lat 42°04'38", long 74°58'04", Delaware County, NY, Hydrologic Unit 02040102, near release chamber at Downsville Dam on East Branch Delaware River, and 1.6 mi east of Downsville, NY. DRAINAGE AREA, 371 mi². PERIOD OF RECORD, September 1954 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Board of Water Supply, City of New York).

Reservoir is formed by an earthfill rockfaced dam. Storage began Sept. 15, 1954. Usable capacity 140,190 mil gal between minimum operating level, elevation, 1,152.0 ft, and crest of spillway, elevation, 1,280.0 ft. Capacity, at crest of spillway 149,700 mil gal; at minimum operating level, 9,609 mil gal; at still of diversion tunnel, elevation, 1,143.0 ft, 6,098 mil gal; in dead storage below release outlet, elevation, 1,126.50 ft, 1,898 mil gal. Figures given herein represent total contents. Reservoir impounds water for diversion through East Delaware Tunnel to Rondout Reservoir on Rondout Creek, in Hudson River basin (see Delaware River Basin, diversions), for water supply to City of New York; for release during periods of low flow in the lower Delaware River basin, as directed by the Delaware River Master; and for conservation release. No diversion prior to Jan. 6, 1955. Records furnished by Bureau of Water Resources Development and Department of Environmental Protection, City of New York.

EXTREMES FOR PERIOD OF RECORD: Maximum contents observed, 154,027 mil gal Apr. 5, 1960, elevation, 1,282.27 ft; minimum observed (after first filling), 9,575 mil gal Dec. 26, 1964, elevation, 1,151.92 ft.

EXTREMES FOR CURRENT YEAR: Maximum contents observed, 154,027 mil gal Apr. 5, elevation, 1,282.27 ft; minimum,

70,424 mil gal Dec. 16, elevation, 1,227.42 ft.

01424997 CANNONSVILLE RESERVOIR.--Lat 42°03'46", long 75°22'29", Delaware County, NY, Hydrologic Unit 02040101, in emergency gate tower at Cannonsville Dam on West Branch Delaware River, and 1.8 mi southeast of Stilesville, NY. DRAINAGE AREA, 454 mi². PERIOD OF RECORD, October 1963 to current year. REVISED RECORDS, WRD-NY 1972: 1966. GAW water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Board of Water Supply, GAGE. City of New York).

Reservoir is formed by an earthfill rockfaced dam; storage began Sept. 30, 1963, usable capacity 95,706 mil gal between minimum operating level, elevation, 1,040.0 ft and crest of spillway, elevation, 1,150.0 ft. Capacity, at crest of spillway, 98,618 mil gal; at minimum operating level, 2,912 mil gal; at mouth of inlet channel to diversion tunnel, elevation, 1,035.0 ft, 1,892 mil gal; in dead storage below release outlet elevation, 1,020.5 ft, 328 mil gal. Figures given herein represent total contents. Impounded water is diverted for New York City water supply via West Delaware Tunnel to Rondout Reservoir in Hudson River basin (see Delaware River Basin, diversion); is released in Delaware River for downstream low flow augmentation as directed by Delaware River Master; and is released for conservation flow in the Delaware River. No diversion prior to Jan. 29. 1964. Records furnished by Bureau of Water

Resources Development, City of New York.

EXTREMES FOR PERIOD OF RECORD: Maximum contents observed, 108,116 mil gal Mar. 15, 1977, elevation, 1,155.85 ft; minimum observed (after first filling), 11,901 mil gal Nov. 7, 1968, elevation, 1,066.24 ft.

EXTREMES FOR CURRENT YEAR: Maximum contents, 105,539 mil gal Apr. 26, elevation, 1,154.30 ft; minimum, 18,060 mil gal Nov. 22, elevation, 1,077,13 ft.

01428900 PROMPTON RESERVOIR. --Lat 41°35'18", long 75°19'39", Wayne County, PA, Hydrologic Unit 02040103, at dam on West Branch Lackawaxen River, 0.3 mi north of Prompton, PA, 0.4 mi upstream from highway bridge and 0.5 mi upstream from Van Auken Creek. DRAINAGE AREA, 59.6 mi². PERIOD OF RECORD, December 1960 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers).

Reservoir formed by an earth and rockfill dam with ungaged bedrock spillway at elevation 1,205.00 ft; storage

began July 1960. Capacity at elevation 1,205.00 ft is 51,700 acre-ft. Ordinary minimum (conservation) pool elevation, 1,125.00 ft capacity, 3,420 acre-ft. Reservoir is used for flood control and recreation. Figures given herein represent total contents. Regulation is accomplished by discharge through an ungated tunnel. Records

repeal represent total contents. Regulation is accomplished by discharge through an angulation and accomplished by Corps of Engineers.

EXTREMES FOR PERIOD OF RECORD: Maximum contents, 8,170 acre-ft June 29, 1973, elevation, 1,138.40 ft; minimum (after first filling), 2,920 acre-ft Sept. 27, 1964, elevation, 1,123.20 ft.

EXTREMES FOR CURRENT YEAR: Maximum contents, 5,020 acre-ft Apr. 17, elevation, 1,130.28 ft; minimum,

3,000 acre-ft Sept. 21, elevation, 1,123.21 ft.

01429400 GENERAL EDGAR JADWIN RESERVOIR.--Lat 41°36'44", long 75°15,55", Wayne County, PA, Hydrologic Unit 02040103, at dam on Dyberry Creek, 0.45 mi upstream from unnamed tributary, 2.4 mi north of Honesdale, PA, and 2.9 mi upstream from mouth. DRAINAGE AREA, 64.5 mi². PERIOD OF RECORD, October 1959 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers).

Reservoir formed by an earth and rockfill dam with ungated, concrete spillway at elevation, 1,053.00 ft; storage began in October 1959. Capacity at elevation 1,053.00 ft is 24,500 acre-ft. Reservoir is used for flood control. Figures given herein represent total contents. Regulation is accomplished by discharge through an ungated tunnel. Records furnished by Corps of Engineers.

EXTREMES FOR PERIOD OF RECORD: Maximum contents, 6,520 acre-ft June 19, 1973, elevation 1,017.40 ft; no storage many times.

EXTREMES FOR CURRENT YEAR: Maximum contents, 1,460 acre-ft Apr. 17, elevation, 996.85 ft; no storage Sept. 9-10, minimum elevation, 975.71 ft.

01431700 LAKE WALLENPAUPACK.--Lat 41°27'35", long 75°11'10", Wayne County, PA, Hydrologic Unit 02040103, at dam on Wallenpaupack Creek at Wilsonville, PA, 1.2 mi south of and 1.5 mi upstream from mouth. DRAINAGE AREA, 228 mi². PERIOD OF RECORD, January 1926 to current year. GAGE, vertical staff. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Pennsylvania Power and Light Co.).

Datum of 1929 (levels by Pennsylvania Power and Light Co.).

Reservoir formed by concrete gravity-type and earthfill dam with concrete spillway at elevation 1,176.00 ft in two sections. Spillway equipped with roller gate, 14 ft high on each section. Storage began Nov. 3, 1925; water in reservoir first reached minimum pool elevation in January 1926. Total capacity at elevation 1,190.00 ft, top of gates, is 209,300 acre-ft of which 157,800 acre-ft is controlled storage above elevation 1,160.00 ft, minimum pool. Reservoir is used for generation of hydrolelectric power. Figures given herein represent usable contents. Records furnished by Pennsylvania Power and Light Co.

EXTREMES FOR PERIOD OF RECORD: Maximum contents, 178,200 acre-ft Aug. 19-21, 1955, elevation, 1,193.45 ft; minimum (after first filling), 12,280 acre-ft Mar. 28, 1958, elevation, 1,162.60 ft.

EXTREMES FOR CURRENT YEAR: Maximum contents, 147,940 acre-ft Apr. 25, elevation, 1,188.3 ft; minimum, 93,500 acre-ft Sept. 24-30, elevation, 1,178.5 ft.

## RESERVOIRS IN DELAWARE RIVER BASIN -- Continued

01433000 SWINGING BRIDGE RESERVOIR.--Lat 41°34'25", long 74°47'00", Sullivan County, NY, Hydrologic Unit 02040104, at dam on Mongaup River, and 1.8 mi northwest of Fowlersville, NY. DRAINAGE AREA, 118 mi² excluding Cliff Lake, Lebanon Lake, and Toronto Reservoir. PERIOD OF RECORD, January 1930 to current year. REVISED RECORDS, WSP 1552: 1951-54. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Orange and Rockland Utilities, Inc.). All capacity figures given herein are based on zero storage at minimum operating pool level, 1,010 ft.

Reservoir is formed by an earthfill dam. Storage began Jan. 19, 1930. Usable capacity, 1,436.6 mil ft³ between elevations 1,010.0 ft, minimum operating pool, and 1,071.2 ft, top of flashboards. Capacity below elevation 1,010.0 ft, minimum operating pool, about 212.7 mil ft³. Reservoir is used for storage of water for power. Figures given herein represent contents above 1,010.0 ft. Water is received from Cliff Lake, Lebanon Lake, and Toronto Reservoir. Records furnished by Orange and Rockland Utilities, Inc.

EXTREMES FOR PERIOD OF RECORD: Maximum contents, 1,461.6 mil ft³ Mar. 14, 1977, elevation, 1,071.8 ft; minimum (after first filling), -141.4 mil ft³ Dec. 2, 1938, elevation, 987.5 ft.

EXTREMES FOR CURRENT YEAR: Maximum contents, 1,2084 mil ft³ Mar. 31, Apr. 1, elevation, 1,067.4 ft; minimum, 461.7 mil ft³ Sept. 29, elevation, 1,041.1 ft.

01433100 TORONTO RESERVOIR. --Lat 41°37'15", long 74°49'55", Sullivan County, NY, Hydrologic Unit 02040104, at dam on Black Lake Creek, and 2.5 mi southeast of village of Black Lake, NY. DRAINAGE AREA, 23.2 mi². PERIOD OF RECORD, January 1926 to current year. REVISED RECORDS, WSP 1552: 1951-54. WSP 1702: 1959(M). Nonrecording gage. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Orange and Rockland Utilities, Inc.). All capacity figures given herein are based on zero storage at minimum operating pool level, 1,165.0 ft.

Reservoir is formed by an earthfill dam completed July 24, 1926. Storage began Jan. 13, 1926. Usable capacity, 1,098.2 mil ft³ between elevations 1,165.0 ft, minimum operating pool, and operating pool, about 26.8 mil ft³.

Reservoir is used for storage of water for power. Figures given herein represent contents above 1,165.0 ft. Records furnished by Orange and Rockland Utilities, Inc.

EXTREMES FOR PERIOD OF RECORD: Maximum contents observed, 1,171.2 mil ft³ July 20, 1945, elevation, 1,222.0 ft. minimum observed (after first filling), -26.8 mil ft³ Nov. 15, 1928, elevation, 1,144.5 ft.

EXTREMES FOR CURRENT YEAR: Maximum contents observed, 1,116 mil ft³ May 31, June 1, elevation, 1,220.5 ft; minimum observed, 214.7 mil ft³ Oct. 1, elevation, 1,185.2 ft.

01433200 CLIFF LAKE.--Lat 41°35'00", long 74°47'40", Sullivan County, NY, Hydrologic Unit 02040104, at dam on Black Lake Creek, and 2.5 mi northwest of Fowlersville, NY. DRAINAGE AREA, 6.46 mi² excluding area above Toronto Reservoir. PERIOD OF RECORD, January 1939 to current year. REVISED RECORDS, WSP 1552: 1951-54. WRD NY-75-1: 1974(m). Nonrecording gage. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Orange and Rockland Utilities, Inc.). All capacity figures given herein are based on zero storage at minimum operating pool level, 1,043.3 ft.

Reservoir is formed by a concrete gravity-type dam. Storage began Jan. 6, 1939. Usable capacity, 136.06 mil ft<sup>3</sup> between elevations 1,043.3 ft, minimum operating pool, and 1,072.0 ft, top of permanent flashboards. Capacity below elevation 1,043.3 ft, minimum operating pool, about 6.54 mil ft<sup>3</sup>. Reservoir is used for storage of water for power. Water is received from Toronto and Lebanon Lake reservoirs and is discharged through a tunnel into Swinging Bridge Reservoir. Figures given herein represent contents above 1,043.3 ft. Records furnished by Orange and Rockland Utilities, Inc.

EXTREMES FOR PERIOD OF RECORD: Maximum contents observed, 145.44 mil ft³ July 30, 31, 1945, elevation, 1,073.1 ft; minimum observed (after first filling), about -6.54 mil ft³ Mar. 16, 1963, elevation, 1,038.0 ft. EXTREMES FOR CURRENT YEAR: Maximum contents observed, 116.5 mil ft³ June 30, July 1, elevation, 1,038.0 ft, minimum observed, 9.76 mil ft³ Sept. 29, elevation, 1,048.0 ft.

01435900 NEVERSINK RESERVOIR.--Lat 41°49'40", long 74°38'21", Sullivan County, NY, Hydrologic Unit 02040104, at a gate-house at Neversink Dam on Neversink River, and 2 mi southwest of Neversink, NY. DRAINAGE AREA, 91.8 mi². PERIOD OF RECORD, June 1953 to current year. Nonrecording gage read daily at 0900. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Board of Water Supply, City of New York).

Reservoir is formed by an earthfill rockfaced dam. Storage began June 2, 1953. Usable capacity 34,941 mil gal between minimum operating level, elevation, 1,319.0 ft and crest of spillway, elevation, 1,440.0 ft. Capacity at crest of spillway, 37,146 mil gal; at minimum operating level, 2,205 mil gal; dead storage belowand outlet sill at elevation 1,314.0 ft, 1,680 mil gal. Figures given herein represent total contents. Reservoir impounds water for diversion through Neversink-Grapmsville Tunnel to Rondout Reservoir on Rondout Creek, in Hudson River basin. for elevation 1,314.0 ft, 1,680 mil gal. Figures given herein represent total contents. Reservoir impounds water for diversion through Neversink-Grahamsville Tunnel to Rondout Reservoir on Rondout Creek, in Hudson River basin, for water supply of City of New York (see Delaware River basin, diversions); for release during periods of low flow in the lower Delaware River basin, as directed by the Delaware River Master; and for conservation release. No diversion prior to Dec. 3, 1953. Records furnished by Bureau of Water Resources Development and Department of Environmental Protection, City of New York.

EXTREMES FOR PERIOD OF RECORD: Maximum contents observed, 37,978 mil gal Apr. 25, 1961, elevation, 1,441.67 ft; minimum observed (after first filling), 1,985 mil gal Nov. 25, 1964, elevation, 1,316.98 ft.

EXTREMES FOR CURRENT YEAR: Maximum contents observed, 37,514 mil gal Apr. 26, elevation, 1,440.74 ft; minimum observed. 13.522 mil gal Dec. 16. elevation. 1.378.16 ft. No diversion

observed, 13,522 mil gal Dec. 16, elevation, 1,378.16 ft.

01447780 FRANCIS E. WALTER RESERVOIR (formerly published as Bear Creek Reservoir).--Lat 41°06'45", long 75°43'15", Luzerne County, PA, Hydrologic Unit 02040106, at dam on Lehigh River, 2,200 ft downstream from Bear Creek and 5 mi northwest of White Haven, PA. DRAINAGE AREA, 289 mi². PERIOD OF RECORD, February 1961 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers). Reservoir formed by an earthfill embankment covered with a rock shell, with concrete spillway at elevation 1,450.0 ft; storage began Feb. 17, 1961; water in reservoir first reached conservation pool elevation in June 1961. Total capacity at elevation 1,450.0 ft is 110,700 acre-ft of which 108,700 acre-ft is controlled storage above elevation 1,300.0 ft or (conservation pool). Dead storage is 2,000 acre-ft. Reservoir is used for flood control and recreation. Figures given herein represent total contents. Flow regulated by three gates and low flow by-pass system. Records furnished by Corps of Engineers.

EXTREMES FOR PERIOD OF RECORD: Maximum contents. H2 600 acre-ft lune 26, 1072 elevation.

EXTREMES FOR PERIOD OF RECORD: Maximum contents, 42,600 acre-ft June 26, 1972, elevation, 1,398.20 ft; minimum (after establishment of conservation pool), 981 acre-ft July 6, 1982, elevation, 1,287.70 ft.

EXTREMES FOR CURRENT YEAR: Maximum contents, 34,890 acre-ft Apr. 17, elevation, 1,389.14 ft; minimum, 1,450 acre-ft June 6, elevation, 1,294.44 ft.

#### RESERVOIRS IN DELAWARE RIVER BASIN -- Continued

01449400 PENN FOREST RESERVOIR.--Lat 40°55'45", long 75°33'45", Carbon County, PA, Hydrologic Unit 02040106, at dam on Wild Creek near Hatchery, PA, 0.7 mi upstream from Hatchery, 2.6 mi upstream from Wild Creek Dam, 4.4 mi upstream from mouth, and 10 mi northeast of Palmerton, PA. DRAINAGE AREA, 16.5 mi<sup>2</sup>. PERIOD OF RECORD, October 1958 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by city of Bethlehem).

Reservoir formed by an earthfill dam, with ungated concrete spillway at elevation 1,000.00 ft; storage began in October 1958. Capacity at elevation 1,000.00 ft is 19,980 acre-ft. Reservoir is used for municipal water supply. Figures given herein represent total contents. Regulation is done by valves on pipe through dam. Records furnished by city of Bethlehem. Figures given herein include diversion, since October 1969, from Tunkhannock Creek basin into

EXTREMES FOR PERIOD OF RECORD: Maximum contents, 20,520 acre-ft Mar. 28, 1978, elevation, 1,000.92 ft; minimum, 176 acre-ft Oct. 6, 1965, elevation, 902.40 ft.

EXTREMES FOR CURRENT YEAR: Maximum contents, 20,800 acre-ft Apr. 16, elevation, 1,001.69 ft; minimum,

16,460 acre-ft Dec. 7, elevation, 991.96 ft.

01449700 WILD CREEK RESERVOIR.--Lat 40°53'50", long 75°33'50", Carbon County, PA, Hydrologic Unit 02040106, at dam on Wild Creek near Hatchery, PA, 1.6 mi upstream from mouth, 2.4 mi south of Hatchery, and 7.5 mi northeast of Palmerton, PA. DRAINAGE AREA, 22.2 mi². PERIOD OF RECORD, January 1941 to current year. Nonrecording gage. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by city of Bethlehem).

Reservoir formed by earthfill dam, with concrete ungated spillway at elevation 820.00 ft; storage began January 27, 1941; water in reservoir first reached minimum pool elevation in February 1941. Total capacity at elevation 820.00 ft is 12,500 acre-ft of which 12,000 acre-ft is controlled storage. Reservoir is used for municipal water supply. Figures given herein represent usable contents. Regulation is accomplished by valves on pipe through dam. Records furnished by city of Bethlehem. Since October 1969 the basin upstream has received diversion from Tunkhannock Creek basin.

EXTREMES FOR PERIOD OF RECORD: Maximum contents, 12,880 acre-ft May 23, 1942, elevation, 822.93 ft; minimum (after first filling), 2,680 acre-ft Nov. 15, 1966, elevation, 774.10 ft.

EXTREMES FOR CURRENT YEAR: Maximum contents, 12,520 acre-ft Apr. 16, elevation, 821.75 ft; minimum, 9,860 acre-ft Oct. 1, elevation, 811.96 ft.

01449790 BELTZVILLE LAKE.--Lat 40°50'56", long 75°38'19", Carbon County, PA, Hydrologic Unit 02040106, at dam on Pohopoco Creek, 0.45 mi upstream from gaging station on Pohopoco Creek, 0.55 mi upstream from Sawmill Run and 2.3 mi northeast of Parryville, PA. DRAINAGE AREA, 96.3 mi². PERIOD OF RECORD, February 1971 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers).

Reservoir formed by an earth and rockfill dam with ungated, partially lined spillway at elevation 651.00 ft; storage began Feb. 8, 1971. Capacity at elevation 651.00 ft is 68,300 acre-ft. Ordinary minimum (conservation) pool elevation, 628.00 ft, capacity, 41,250 acre-ft. Dead storage is 1,390 acre-ft. Reservoir is used for recreation, flood control, low flow augmentation and water supply. Figures given herein represent total contents. Regulation is accomplished by a multi-level water-quality outlet system and two flood-control gates. Records furnished by Corps of accomplished by a multi-level water-quality outlet system and two flood-control gates. Records furnished by Corps of Engineers.

EXTREMES FOR PERIOD OF RECORD: Maximum contents 49,730 acre-ft Jan. 29, 1976, elevation, 636.30 ft; minimum, 16,343 acre-ft Jan. 31, Feb 1, 1981, elevation, 591.41 ft.

EXTREMES FOR CURRENT YEAR: Maximum contents 43,030 acre-ft Apr. 26, elevation, 629.83 ft; minimum,

15,110 acre-ft Mar. 31, elevation, 588.79 ft.

01455400 LAKE HOPATCONG.--Lat 40°55'00", long 74°39'50", Morris County, Hydrologic Unit 02040105, in gatehouse of Lake Hopatcong Dam on Musconetcong River at Landing. DRAINAGE AREA, 25.3 mi². PERIOD OF RECORD, February 1887 to current year. Monthend contents only prior to October 1950, published in WSP 1302. REVISED RECORDS, WDR NJ-82-2: Drainage area. GACE, water-stage recorder. Prior to June 24, 1928, daily readings obtained by measuring from high-water mark to water surface converted to gage height, present datum. Datum of gage is 914.57 ft National Geodetic Vertical Datum of 1929.

Lake is formed by concrete spillway and earthfill dam completed about 1828. Crest of spillway was lowered 0.11 ft in 1925. Usable capacity, 7,459,000,000 gal between (gage height -2.6 ft, sills of gates and 9.00 ft, crest of spillway). Flow regulated by four gates (3 by 5 ft, also by one 24-inch pipe with gate valve to recreation fountain 250 ft downstream from dam. Dead storage, about 8,117,000,000 gal. Figures given herein represent usable Lake used for recreation.

CORRECTIONS.——Corrected date of the maximum contents and elevation for the period of record are published herein. The extremes for water year 1981 are maximum contents, 8,271,000,000 gal May 16, gage height, 9.96 ft; minimum contents, 4,416,000,000 gal Dec. 30, gage height, 5.14 ft; the previously published figures were for water year 1980. EXTREMES FOR PERIOD OF RECORD: Maximum contents, 8,777,000,000 gal August 19, 1955 correction, gage height, 10.55 ft; minimum, 1,525,000,000 gal Dec. 29, 1960, gage height, 0.65 ft.

EXTREMES FOR CURRENT YEAR: Maximum contents, 8,510,000,000 gal Apr. 17, gage height, 10.24 ft; minimum contents, 3,479,000,000 gal Oct. 18, gage height, 3,82 ft.

3,479,000,000 gal Oct. 18, gage height, 3.82 ft.

01469200 STILL CREEK RESERVOIR.--Lat 40°51'25", long 75°59'30". Schuylkill County, PA, Hydrologic Unit 02040106, at dam on Still Creek, 1 mi upstream from mouth and 2.3 mi north of Hometown, PA. DRAINAGE AREA, 8.5 mi². PERIOD OF RECORD, January 1933 to current year. Nonrecording gage. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Panther Valley Water Co.).

Reservoir formed by earth fill dam, with ungated concrete spillway at elevation 1,182.00 ft; storage began in February 1933. Capacity at elevation, 1,182.00 ft is 8,290 acre-ft. Reservoir is used for municipal water supply. Figures given herein represent total contents. Regulation is accomplished by valves on pipe through dam. Records furnished by Panther Valley Water Co.

EXTREMES FOR PERIOD OF RECORD: Maximum contents, 8,570 acre-ft Oct. 15, 1955, elevation, 1,182.92 ft, but may have been greater during 1950 and 1951 water years; minimum (after initial filling), 588 acre-ft Dec. 8, 1944,

elevation, 1,136.70 ft.

EXTREMES FOR CURRENT YEAR: Maximum contents, 8,560 acre-ft Apr. 16, elevation, 1,182.40 ft; minimum, 7,430 acre-ft Sept. 30, elevation, 1,179.00 ft.

01470870 BLUE MARSH LAKE.--Lat 40°22'45", long 76°01'59", Berks County, PA, Hydrologic Unit 02040203, at dam on Tulpehocken Creek, 0.8 mi upstream from gaging station on Tulpehocken Creek, 1.0 mi northeast of Blue Marsh, PA, 1.9 mi upstream from Reber's Bridge, and 5.1 mi southeast of Bernville, PA. DRAINAGE AREA, 175 mi<sup>2</sup>. PERIOD OF RECORD, April 1979 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers).

April 23, 1979. Capacity at elevation, 307.00 ft is 50,000 acre-ft. Dead storage is 3,000 acre-ft. Reservoir is used for flood control, water supply, and recreation. Figures herein represent total contents. Records furnished by Corps of Engineers. Reservoir formed by earthfill dam, with concrete ungated spillway at elevation 307.00 ft. Storage began

EXTREMES FOR PERIOD OF RECORD: Maximum contents, 39,480 acre-ft Apr. 16, 1983, elevation, 301.65 ft; minimum, 17,440 acre-ft Nov. 28, 1983 elevation, 284.49 ft.

EXTREMES FOR CURRENT YEAR: Maximum contents, 39,480 acre-ft Apr. 16, elevation, 301.65 ft; minimum,

17,440 acre-ft Nov. 28, elevation, 284.49 ft.

# RESERVOIRS IN DELAWARE RIVER BASIN -- Continued

01472200 GREEN LANE RESERVOIR.--Lat 40°20'30", long 75°28'45", Montgomery County, PA, Hydrologic Unit 02040203, at dam on Perkiomen Creek at Green Lane, PA, 0.4 mi west of Green Lane and 2.1 mi upstream from Unami Creek. DRAINAGE AREA, 70.9 mi². PERIOD OF RECORD, December 1956 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Philadelphia Suburban Water Co.).

Reservoir formed by concrete, gravity-type dam, with ungated spillway at elevation 286.00 ft; storage began December 21, 1956. Capacity at spillway level, elevation 286.00 ft, 13,430 acre-ft. Reservoir is used for municipal water supply. Figures given herein represent total contents. Regulation is accomplished by valves on pipe through dam. Records furnished by Philadelphia Suburban Water Co.

EXTREMES FOR PERIOD OF RECORD: Maximum contents, 17,030 acre-ft June 23, 1972, elevation, 290.05 ft; minimum (after first filling), 1,270 acre-ft Aug. 25, 1957, elevation, 251.60 ft.

EXTREMES FOR CURRENT YEAR: Maximum contents, 14,720 acre-ft Apr. 15, elevation, 287.46 ft; minimum, 10,760 acre-ft Sept. 30, elevation, 282.60 ft.

## MONTHEND ELEVATION AND CONTENTS, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

| Date  |       | Elevation (feet) | Contents<br>(million<br>gallons) | Change in contents (equivalent in ft3/s) | Elevation (feet)    | Contents (million gallons)  | Change in<br>contents<br>(equivalent<br>in ft <sup>3</sup> /s) | Elevation (feet) | Contents<br>(acre-<br>feet) | Change in<br>contents<br>(equivalent<br>in ft3/s)     |
|-------|-------|------------------|----------------------------------|------------------------------------------|---------------------|-----------------------------|----------------------------------------------------------------|------------------|-----------------------------|-------------------------------------------------------|
|       |       | 01416900 PE      | PACTON RE                        | SERVOIR #                                | 01424997 CAN        | INONSVILLE                  | RESERVIOR #                                                    | 01428900 P       | ROMPTON RE                  | SERVOIR +                                             |
| Sept. |       | 1,257.39         | 111,335                          |                                          | 1,109.29            | 45,642                      | -                                                              | 1,125.24         | 3,570                       |                                                       |
| Oct.  | 31    | 1,243.07         | 90,332                           | -1,049                                   | 1,085.96            | 24,166                      | -1,072                                                         | 1,125.22         | 3,560                       | 2                                                     |
| Nov.  | 30    | 1,229.78         | 73,226                           | -882                                     | 1,079.72            | 19,728                      | -229                                                           | 1,125.49         | 3,690                       | +1.3                                                  |
| Dec.  | 31    | 1,229.58         | 72,986                           | -12.0                                    | 1,094.27            | 30,924                      | +559                                                           | 1,125.75         | 3,710                       | +1.1                                                  |
| CAL Y | 198   | 2 -              | -                                | -40.9                                    | -                   | -                           | -100                                                           | -                |                             | -4.8                                                  |
| Jan.  | 31    | 1,230.80         | 74,458                           | +73.5                                    | 1,101.73            | 37,896                      | +348                                                           | 1,125.23         | 3,560                       | -2.4                                                  |
| Feb.  | 29    | 1,240.77         | 87, 197                          | +704                                     | 1,116.02            | 53, 139                     | +842                                                           | 1,125.39         | 3,610                       | +.9                                                   |
| Mar.  | 31    | 1,260.20         | 115,773                          | +1,426                                   | 1,132.76            | 73,912                      | +1,037                                                         | 1,124.93         | 3,760                       | +2.4                                                  |
| Apr.  | 30    | 1,281.16         | 151,950                          | +1,866                                   | 1,153.15            | 103,688                     | +1,536                                                         | 1,127.40         | 4,170                       | +6.9                                                  |
| May   | 31    | 1,279.53         | 148,935                          | -150                                     | 1,151.21            | 100,565                     | -156                                                           | 1,126.01         | 3,780                       | -6.3                                                  |
| June  | 30    | 1,277.69         | 145,573                          | -173                                     | 1,149.22            | 97,431                      | -162                                                           | 1,126.24         | 3,850                       | +1.2                                                  |
| July  | 31    | 1,269.90         | 131,833                          | -686                                     | 1,140.99            | 85,216                      | -610                                                           | 1,124.33         | 3,310                       | -8.8                                                  |
| Aug.  | 31    | 1,261.42         | 117,729                          | -704                                     | 1,124.20            | 62,911                      | -1,113                                                         | 1,123.43         | 3,060                       | -4.1                                                  |
| Sept. | 30    | 1,252.33         | 103,600                          | -729                                     | 1,111.61            | 48,179                      | -760                                                           | 1,123.34         | 3,040                       | 3                                                     |
| WTR Y | R 198 | 3 -              | -                                | -32.8                                    | -                   |                             | +10.8                                                          | -                | -                           | 7                                                     |
| Date  |       | Elevation (feet) | Contents<br>(acre-<br>feet)      | Change in contents (equivalent in ft3/s) | Elevation<br>(feet) | Contents<br>(acre-<br>feet) | Change in<br>contents<br>(equivalent<br>in ft <sup>3</sup> /s) | Elevation (feet) | Contents (million cu ft)    | Change in contents (equivalent in ft <sup>3</sup> /s) |
| 01429 | 9400  | GENERAL EDGA     | R JADWIN                         | RESERVOIR +                              | 01431700 I          | LAKE WALLEN                 | PAUPACK +                                                      | 01433000 SWIN    | GING BRDIG                  | E RESERVOIR                                           |
| Sept. | 30    | 989.46           | 550                              | _                                        | 1,180.90            | 106,500                     | _                                                              | 1,060.8          | 1,038                       | 200                                                   |
| Oct.  | 31    | 989.46           | 550                              | 0                                        | 1,179.60            | 99,440                      | -114.8                                                         | 1,059.8          | 1,003                       | -13.0                                                 |
| Nov.  | 30    | 989.46           | 550                              | 0                                        | 1,180.40            | 103,760                     | +72.6                                                          | 1,061.8          | 1,074                       | +27.2                                                 |
| Dec.  | 31    | 989.46           | 550                              | 0                                        | 1,181.10            | 107,550                     | +61.6                                                          | 1,061.5          | 1,063                       | -4.0                                                  |
| CAL Y | R 198 | 2 -              | _                                | 0                                        | _                   | _                           | +38.7                                                          | _                | 2                           | +2.0                                                  |
| Jan.  | 31    | 989.46           | 550                              | 0                                        | 1,180.60            | 104,840                     | -44.1                                                          | 1,062.5          | 1,099                       | +13.4                                                 |
| Feb.  | 29    | 989.46           | 550                              | 0                                        | 1,181.90            | 111,950                     | +128.0                                                         | 1,056.8          | 902                         | -81.2                                                 |
| Mar.  | 31    | 989.46           | 550                              | 0                                        | 1,183.30            | 119,680                     | +125.7                                                         | 1.067.4          | 1,284                       | +142                                                  |
| Apr.  | 30    | 989.46           | 550                              | 0                                        | 1.187.40            | 142,780                     | +388.4                                                         | 1,066.0          | 1,229                       | -24.8                                                 |
| May.  | 31    | 989.46           | 550                              | 0                                        | 1,187.10            | 141,070                     | -27.8                                                          | 1,065.4          | 1,206                       | -8.5                                                  |
| June  | 30    | 989.46           | 550                              | Ö                                        | 1,185.70            | 133, 120                    | -133.6                                                         | 1,065.0          | 1,191                       | -5.9                                                  |
| July  | 31    | 989.46           | 550                              | 0                                        | 1,181.40            | 109,200                     | -389.0                                                         | 1,062.4          | 1,095                       | -35.8                                                 |
| Aug.  | 31    | 975.99           | 0                                | -8.9                                     | 1,180.50            | 104,300                     | -79.7                                                          | 1,060.8          | 1,038                       | -21.3                                                 |
| Sept. |       | 975.85           | Ö                                | 0                                        | 1,178.50            | 93,500                      | -181.5                                                         | 1,041.1          | 462                         | -222                                                  |
| WTR Y | R 198 | 3 -              | _                                | 8                                        | _                   | _                           | -17.9                                                          | 2                | - 1 L                       | -18.3                                                 |
|       |       |                  |                                  |                                          |                     |                             |                                                                |                  |                             |                                                       |

MONTHEND ELEVATION AND CONTENTS, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

RESERVOIRS IN DELAWARE RIVER BASIN--Continued

| Elevat<br>Date (feet                                                                                                                   | ion (million                                                                            | Change in<br>contents<br>(equivalent<br>in ft <sup>3</sup> /s)             | Elevation (feet)                                                                                 |                                                                                        | Change in contents (equivalent in ft3/s)                                    | Elevation (feet)                                                                                         |                                                                                        | Change in<br>contents<br>(equivalent<br>in ft3/s)                      |
|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| 014331                                                                                                                                 | 00 TORONTO RES                                                                          | ERVOIR +                                                                   | 01433200                                                                                         | CLIFF LAKE                                                                             | RESERVOIR +                                                                 | 01435900                                                                                                 | NEVERSINK                                                                              | RESERVOIR #                                                            |
| Sept. 30 1,185.<br>Oct. 31 1,185.<br>Nov. 30 1,185.<br>Dec. 31 1,187.                                                                  | 3 216<br>8 225                                                                          | +.6<br>+3.2<br>+10.8                                                       | 1,060.9<br>1,059.8<br>1,061.7<br>1,061.6                                                         | 58.8<br>52.9<br>63.4<br>62.8                                                           | -2.2<br>+4.0<br>2                                                           | 1,411.56<br>1,399.09<br>1,383.48<br>1,381.77                                                             | 24,628<br>20,024<br>15,026<br>14,531                                                   | -230<br>-258<br>-24.7                                                  |
| CAL YR 1982 -                                                                                                                          | -                                                                                       | -2.1                                                                       | -                                                                                                | _                                                                                      | +.3                                                                         | -                                                                                                        | -                                                                                      | -20.6                                                                  |
| Jan. 31 1,191. Feb. 29 1,197. Mar. 31 1,205. Apr. 30 1,218. May 31 1,220. June 30 1,217. July 31 1,209. Aug. 31 1,196. Sept. 30 1,196. | 1 447<br>8 666<br>0 1,029<br>5 1,116<br>0 995<br>4 764<br>3 429                         | +27.4<br>+49.6<br>+81.6<br>+140<br>+32.7<br>-46.9<br>-86.1<br>-125<br>-2.6 | 1,062.4<br>1,056.8<br>1,067.8<br>1,067.2<br>1,066.3<br>1,065.3<br>1,066.3<br>1,048.0             | 67.5<br>38.9<br>103<br>98.6<br>92.3<br>116<br>85.6<br>92.3<br>9.8                      | +1.8<br>-11.8<br>+23.9<br>-1.7<br>-2.4<br>+9.3<br>-11.5<br>+2.5<br>-31.8    | 1,387.03<br>1,397.23<br>1,421.78<br>1,440.42<br>1,439.69<br>1,430.67<br>1,419.70<br>1,410.65<br>1,401.87 | 16,088<br>19,383<br>28,792<br>37,355<br>36,993<br>32,706<br>27,917<br>24,279<br>21,005 | +77.7<br>+182<br>+470<br>+442<br>-18.1<br>-221<br>-239<br>-182<br>-169 |
| WTR YR 1983 -                                                                                                                          | _                                                                                       | +6.6                                                                       | -                                                                                                |                                                                                        | -1.6                                                                        | -                                                                                                        | -                                                                                      | -15.4                                                                  |
| Elevat<br>Date (feet                                                                                                                   |                                                                                         | Change in<br>contents<br>(equivalent<br>in ft <sup>3</sup> /s)             | Elevation<br>(feet)                                                                              | Contents<br>(acre-<br>feet)                                                            | Change in<br>contents<br>(equivalent<br>in ft <sup>3</sup> /s)              | Elevation (feet)                                                                                         | Contents<br>(acre-<br>feet)                                                            |                                                                        |
| 01447780                                                                                                                               | FRANCIS E. WAL                                                                          | TER LAKE #                                                                 | 01449400                                                                                         | PENN FOREST                                                                            | RESERVOIR +                                                                 | 01449700                                                                                                 | WILD CREEK                                                                             | RESERVOIR +                                                            |
| Sept. 30 1,304.<br>Oct. 31 1,299.<br>Nov. 30 1,301.<br>Dec. 31 1,300.                                                                  | 97 2,000<br>57 2,160                                                                    | -6.7<br>+2.7<br>-1.0                                                       | 999.58<br>994.02<br>992.12<br>992.52                                                             | 19,790<br>17,320<br>16,530<br>16,690                                                   | -40.2<br>-13.3<br>+2.6                                                      | 811.69<br>815.29<br>815.29<br>814.09                                                                     | 9,790<br>10,780<br>10,780<br>10,450                                                    | +16.1<br>0<br>-5.4                                                     |
| CAL YR 1982 -                                                                                                                          | -                                                                                       | -26.9                                                                      | ÷                                                                                                | -                                                                                      | +5.6                                                                        | -                                                                                                        | -                                                                                      | 4                                                                      |
| Jan. 31 1,299 Feb. 29 1,299 Mar. 31 1,303 Apr. 30 1,331 May 31 1,301 June 30 1,318 July 31 1,301 Aug. 31 1,299 Sept. 30 1,300          | 19 1,910<br>50 2,350<br>18 6,650<br>09 2,110<br>83 4,320<br>90 2,190<br>73 1,970        | -2.6<br>5<br>+7.2<br>+72.3<br>-73.8<br>+37.1<br>-34.6<br>-3.6<br>+.8       | 993.00<br>1,000.12<br>1,000.39<br>1,000.48<br>1,000.27<br>1,000.28<br>999.72<br>999.52<br>993.60 | 16,890<br>20,050<br>20,210<br>20,260<br>20,140<br>20,140<br>19,850<br>19,760<br>17,140 | +3.3<br>+56.9<br>2.6<br>+.8<br>-2.0<br>0<br>-4.7<br>-1.5                    | 815.55<br>816.40<br>820.37<br>820.57<br>820.26<br>820.15<br>817.11<br>815.26<br>815.27                   | 10,860<br>11,090<br>12,110<br>12,170<br>12,080<br>12,040<br>11,280<br>10,770           | +6.7<br>+4.1<br>+16.6<br>+1.0<br>-1.5<br>7<br>-12.4<br>-8.3            |
| WTR YR 1983 -                                                                                                                          | -                                                                                       | 5                                                                          | _                                                                                                | -                                                                                      | -3.7                                                                        | -                                                                                                        | -                                                                                      | +1.4                                                                   |
| Elevat<br>Date (feet                                                                                                                   |                                                                                         | Change in<br>contents<br>(equivalent<br>in ft <sup>3</sup> /s)             | Gage<br>Height<br>(feet)                                                                         |                                                                                        | Change in<br>contents<br>(equivalent<br>in ft <sup>3</sup> /s)              | Elevation<br>(feet)                                                                                      | Contents<br>(acre-<br>feet)                                                            | Change in<br>contents<br>(equivalent<br>in ft <sup>3</sup> /s)         |
| 0144979                                                                                                                                | O BELTZVILLE LA                                                                         | KE +                                                                       | 01455400                                                                                         | LAKE HOPATO                                                                            | CONG +                                                                      | 01469200                                                                                                 | STILL CREEK                                                                            | RESERVOIR +                                                            |
| Sept. 30 623.<br>Oct. 31 589.<br>Nov. 30 590.<br>Dec. 31 589.                                                                          | .99 15,660<br>.06 15,680                                                                | -342.7<br>+.5<br>-1.3                                                      | 6.60<br>a4.06<br>3.95<br>a4.96                                                                   | 5,521<br>3,644<br>3,658<br>3,568                                                       | -93.7<br>+.7<br>-4.5                                                        | 1,181.40<br>1,180.60<br>1,180.30<br>1,181.30                                                             | 8,110<br>7,880<br>7,790<br>8,080                                                       | -1.5<br>+4.7                                                           |
| CAL YR 1982 -                                                                                                                          | -                                                                                       | -35.6                                                                      | -                                                                                                | -                                                                                      | -12.1                                                                       | -                                                                                                        |                                                                                        | +.6                                                                    |
| Jan. 31 589. Feb. 29 589. Mar. 31 588. Apr. 30 628. May 31 628. June 30 628. July 31 628. Aug. 31 627. Sept. 30 625.                   | 24 15,310<br>97 15,190<br>35 41,580<br>18 41,420<br>25 41,490<br>07 41,320<br>67 40,940 | -2.6<br>-2.5<br>-2.0<br>+443.5<br>-2.6<br>+1.2<br>-2.8<br>-6.2<br>-32.8    | a4.96<br>a6.36<br>a9.60<br>a9.66<br>9.61<br>9.26<br>a8.98<br>9.04<br>8.77                        | 4,284<br>5,334<br>7,964<br>8,015<br>7,972<br>7,677<br>7,442<br>7,493<br>7,268          | +35.7<br>+58.0<br>+131.2<br>+2.6<br>-2.2<br>-15.2<br>-11.7<br>+2.5<br>-11.6 | 1,181.90<br>1,182.10<br>1,182.20<br>1,182.90<br>1,182.20<br>1,182.50<br>1,182.20<br>1,180.10<br>1,179.00 | 8,260<br>8,320<br>8,350<br>8,560<br>8,350<br>8,440<br>8,350<br>7,730<br>7,430          | +2.9<br>+1.1<br>+.5<br>+3.5<br>-3.4<br>+1.5<br>-1.5<br>-10.1<br>-5.0   |
| WTR YR 1983 -                                                                                                                          | -                                                                                       | -13.1                                                                      | -                                                                                                | -                                                                                      | +7.4                                                                        | -                                                                                                        | -                                                                                      | 9                                                                      |

# RESERVOIRS IN DELAWARE RIVER BASIN -- Continued

# MONTHEND ELEVATION AND CONTENTS, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

| Date                                                                                            | Elevation (feet)                                                                       | Contents<br>(acre-<br>feet)                                                            | Change in contents (equivalent in ft3/s)                      | Elevation<br>(feet)                                                                    | Contents<br>(area-<br>feet)                                                            | Change in<br>contents<br>(equivalent<br>in ft <sup>3</sup> /s)    |
|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| A 45 54                                                                                         | 01470870                                                                               | BLUE MAR                                                                               | SH LAKE +                                                     | 01472200                                                                               | GREEN LANE                                                                             | RESERVOIR +                                                       |
| Sept. 30<br>Oct. 31<br>Nov. 30<br>Dec. 31                                                       | 289.96<br>284.92<br>285.08<br>284.96                                                   | 22,850<br>17,550<br>17,700<br>17,580                                                   | -86.2<br>+2.5<br>-2.0                                         | 285.25<br>284.33<br>285.99<br>285.90                                                   | 12,770<br>12,000<br>13,420<br>13,340                                                   | -12.5<br>+23.9<br>-1.3                                            |
| CAL YR 1982                                                                                     | -                                                                                      | -                                                                                      | -7.6                                                          | -                                                                                      | -                                                                                      | +.8                                                               |
| Jan. 31<br>Feb. 29<br>Mar. 31<br>Apr. 30<br>May 31<br>June 30<br>July 31<br>Aug. 31<br>Sept. 30 | 285.23<br>285.00<br>284.88<br>290.07<br>289.87<br>290.20<br>290.03<br>290.20<br>290.16 | 17,850<br>17,620<br>17,510<br>22,980<br>22,750<br>23,130<br>22,930<br>23,130<br>23,080 | +4.4<br>-4.1<br>-1.8<br>+91.9<br>-3.7<br>+6.4<br>-3.3<br>+3.3 | 286.04<br>286.06<br>286.12<br>286.16<br>286.10<br>285.97<br>285.23<br>284.19<br>282.60 | 13,470<br>13,490<br>13,540<br>13,570<br>13,520<br>13,410<br>12,750<br>11,900<br>10,760 | +2.1<br>+.4<br>+.8<br>+.5<br>8<br>-1.8<br>-10.7<br>-13.8<br>-19.2 |
| WTR YR 1983                                                                                     | 3 -                                                                                    | -                                                                                      | +.3                                                           | -                                                                                      | -                                                                                      | -2.8                                                              |

<sup>‡</sup> Elevation at 0900 hours on first day of following month.

<sup>+</sup> Elevation or gage height at 2400 hours.

a Observed.

e Estimated. \* Elevation at 0900 hours.

# DIVERSIONS AND WITHDRAWALS

#### WITHDRAWALS FROM THE DELAWARE RIVER BASIN

- 01415200 Diversion from Pepacton Reservoir, NY, on East Branch Delaware River to Rondout Reservoir on Rondout Creek, in Hudson River basin, for municipal supply of city of New York. No diversion prior to Jan. 6, 1955. Records furnished by Board of Water Supply and Department of Water Resources, city of New York. REVISIONS (Water Years).--WRD-NY 1972: 1970.
  REVISED RECORDS.--WRD NY-71: 1970. WRD NY-72: 1970. WDR NY-82: 1980.
- 01423900 Diversion from Cannonsville Reservoir, NY, on West Branch Delaware River to Rondout Reservoir on Rondout Creek, in Hudson River basin, for municipal supply of city of New York. No diversion prior to Jan. 29, 1964.

  Records furnished by Board of Water Supply, city of New York. REVISED RECORDS. -- WDR NJ-82-2: 1980.
- 01435800 Diversion from Neversink Reservoir, NY, on Neversink River to Rondout Reservoir on Rondout Creek, in Hudson River basin, for municipal supply of city of New York. No diversion prior to Dec. 3, 1953. Records furnished by Board of Water Supply and Department of Water Resources, city of New York.

  REVISED RECORDS.--WDR NJ-82-2: 1976, 1977.
- 01436520 Village of Woodridge, NY, diverts water from East Pond Reservoir, tributary to Neversink River, for municipal supply outside of basin. Records furnished by village of Woodridge.
- 01437360 Diversion from Bear Swamp Reservoir, NY, tributary to Neversink River, by the New York State Training School, Otisville, NY, for water supply outside of basin. Records furnished by Delaware River Basin Commission.
- 01447750 Diversion from Bear Creek, PA, tributary to Lehigh River, by Bear Creek Gas and Water Company for water supply outside of basin. Records furnished by Delaware River Basin Commission.
- 01448830 Diversion from Hazle Creek Watershed by Hazelton Joint Sewerage Authority for municipal water supply. Waste effluent from the municipal water system is released to the Susquehanna River. Records furnished by Delaware River Basin Commission.
- 01460500 Diversion by Delaware and Raritan Canal from Delaware River at Raven Rock, for municipal and industrial use. Water is discharged into the Raritan River at New Brunswick. Records of discharge are collected on the Delaware and Raritan Canal at Kingston, (see station 01460500).
  REVISED RECORDS.--WDR NJ-82-2: 1981.

## WITHDRAWALS BY CITY OF NEW YORK

## DIVERSION, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

| Month       | PEPACTON RESERVOIR<br>01415200 | CANNONSVILLE RESERVOIR<br>01423900 | NEVERSINK RESERVOIR<br>01435800 |
|-------------|--------------------------------|------------------------------------|---------------------------------|
| October     | 728                            | 181                                | 189                             |
| November    | 767                            | 299                                | 375                             |
| December    | 637                            | 9.53                               | 241                             |
| CAL YR 1982 | 479                            | 238                                | 184                             |
| January     | 497                            | 150                                | 149                             |
| February    | 176                            | 131                                | 141                             |
| March       | 0                              | 219                                | 30                              |
| April       | 0                              | 0.36                               | 104                             |
| May         | 489                            | 0.55                               | 338                             |
| June        | 432                            | 175                                | 449                             |
| July        | 690                            | 291                                | 261                             |
| August      | 697                            | 305                                | 176                             |
| September   | 697                            | 3.46                               | 149                             |
| WTR YR 1983 | 487                            | 147                                | 217                             |

Carrier Carrier Contract Contract

#### DELAWARE RIVER BASIN

#### DIVERSIONS AND WITHDRAWALS -- Continued

#### MISCELLANEOUS WITHDRAWALS FROM BASIN

| RESE          | POND BEAR SWAMP<br>RVOIR RESERVOIR<br>36520 #01437360 | BEAR<br>CREEK<br>01447750 | HAZLE<br>CREEK<br>‡01448830 | DELAWARE & RARITAN CANAL 01460500 |
|---------------|-------------------------------------------------------|---------------------------|-----------------------------|-----------------------------------|
| October       | DATA NOT                                              | 0                         | DATA NOT                    | 57.7                              |
| November      | AVAILABLE                                             | 0                         | AVAILABLE                   | 83.5                              |
| December      | 14                                                    | 0                         |                             | 101                               |
| CAL YR 1982   |                                                       | 1.7                       |                             | 50                                |
| January       |                                                       | 0                         |                             | 98.6                              |
| February      |                                                       | 0                         |                             | 97.0                              |
| FebruaryMarch |                                                       | 14.6                      |                             | 95.2                              |
| April         |                                                       | 7.93                      |                             | 91.6                              |
| May           |                                                       | 0                         |                             | 72.7                              |
| June          |                                                       | 0                         |                             | 62.2                              |
| July          | " " * V * V * V * V * V * V * V * V * V               | 0                         |                             | 18.7                              |
| August        |                                                       | 0                         |                             | 24.2                              |
| September     |                                                       | 0                         |                             | 26.3                              |
|               |                                                       |                           |                             | A SHARE                           |
| WTR YR 1983   |                                                       | 1.9                       |                             | 68.9                              |

- a Village of Woodridge has estimated that virtually all the withdrawal from East Pond Reservoir was returned to the Neversink River.
- \* Data not available this year but, from past records, monthly withdrawal is approximately 0.5 ft<sup>3</sup>/s.

  ‡ Data not available this year but, from past records, monthly withdrawal is approximately 4 ft<sup>3</sup>/s.
- badd not did in district on the past records, monthly within awar is approximately 4 to 75

## DIVERSIONS WITHIN THE DELAWARE RIVER BASIN

- 01463480 Diversion from the Delaware River at the Morrisville Filtration Plant for municipal supply, by the Borough of Morrisville, PA. The water withdrawn at this site is returned to the basin after treatment, only slightly diminished by consumptive uses and losses in transmission. Records furnished by the Borough of Morrisville, PA.
- 01463490 Diversion from the Delaware River just above the Trenton gaging station for municipal supply by the city of Trenton, NJ. The water being withdrawn is returned to the basin after treatment only slightly diminished by consumptive uses and losses in transmission. Records furnished by the City of Trenton.

  REVISED RECORDS.--WDR NJ-82-2: Station number.
- 01467030 Diversion from the Delaware River at the Torresdale Intake for municipal supply, by the City of Philadelphia, PA. The water being withdrawn at this intake is returned to the basin after treatment only slightly diminished by consumptive uses and losses in transmission. Records furnished by the Delaware River Basin Commission.
- 01474500 Diversion from the Schuylkill River at the Belmont and Queen Lanes Intakes for municipal supply, by the City of Philadelphia, PA. The water being withdrawn at these intakes is returned after treatment within the Delaware River basin only slightly diminished by consumptive uses and lossesmission. Records furnished by the Delaware River Basin Commission.

# DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

| 1 to                         | WITHDRAWAL<br>BOROUGH OF<br>MORRISVILLE<br>01463480                  | WITHDRAWAL<br>CITY OF<br>TRENTON<br>01463490                 | WITHDRAWAL<br>CITY OF<br>PHILADELPHIA                       |                                                           |                                                      |
|-----------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------|
| Month                                                           |                                                                      |                                                              | DELAWARE RIVER<br>TORRESDALE<br>01467030                    | SCHUYLK<br>BELMONT<br>0147                                | ILL RIVER<br>QUEEN LANE<br>4500                      |
| October                                                         | 5.07<br>5.05<br>5.95                                                 | 46.0<br>45.2<br>45.9                                         | 308<br>292<br>294                                           | 91.3<br>92.8<br>94.4                                      | 148<br>136<br>124                                    |
| CAL YR 1982                                                     | 5.86                                                                 | 50.9                                                         | 299                                                         | 95.5                                                      | 157                                                  |
| January. February March. April May. June. July August September | 4.96<br>5.74<br>6.36<br>5.54<br>5.15<br>7.06<br>5.27<br>5.83<br>7.45 | 46.8<br>47.1<br>46.0<br>45.2<br>46.6<br>77.4<br>57.6<br>55.7 | 297<br>297<br>278<br>240<br>252<br>295<br>351<br>337<br>337 | 92.8<br>91.3<br>91.3<br>89.7<br>95.9<br>104<br>114<br>111 | 114<br>114<br>133<br>158<br>167<br>184<br>200<br>178 |
| WTR YR 1983                                                     | 5.79                                                                 | 51.0                                                         | 298                                                         | 97.5                                                      | 152                                                  |

# DIVERSIONS AND WITHDRAWALS--Continued

## DIVERSIONS IMPORTED INTO BASIN

- 01367630 Water diverted from Morris Lake, tributary to the Wallkill River (Hudson River basin), by the Newton Water and Sewer Authority for municipal use. After use the water is released into the Paulins Kill (Delaware River basin). Records furnished by the Delaware River Basin Commission.
- 01578420 Water diverted from West Branch Octoraro Creek (Susquehanna River basin) at the McCray Plant of the Octoraro Water Co., for municipal use. After use the water is released into the Delaware River basin. Records furnished by the Delaware River Basin Commission.
- 01578450 Water divered from Octoraro Lake (Susquehanna River basin) by Chester Water Authority for municipal use.

  After use the water is released into the Delaware River basin. Records furnished by the Delaware River Basin
  Commission.

# DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

| Month                                                              | MORRIS LAKE<br>01367630                                      | OCTORARO CREEK                                       |                                                              |  |
|--------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------|--|
|                                                                    |                                                              | OCTORARO WATER CO.<br>01578420                       | CHESTER WATER AUTHORITY 01578450                             |  |
| October                                                            | 1.31<br>1.41<br>1.51                                         | 1.88<br>1.82<br>1.61                                 | 42.1<br>43.0<br>42.1                                         |  |
| CAL YR 1982                                                        | 1.4                                                          | 1.8                                                  | 43.1                                                         |  |
| January. February. March. April. May. June July. August. September | 1.51<br>1.58<br>1.51<br>1.38<br>1.39<br>1.56<br>1.50<br>1.46 | 1.61<br>1.69<br>1.79<br>1.60<br>1.80<br>1.92<br>1.90 | 41.5<br>39.2<br>37.0<br>37.4<br>37.9<br>40.7<br>42.6<br>45.3 |  |
| WTR YR 1983                                                        | 1.5                                                          | 1.8                                                  | 41.2                                                         |  |

As the number of streams on which streamflow information is likely to be desired far exceeds the number of stream-gaging stations feasible to operate at one time, the Geological Survey collects limited streamflow data at sites other than stream-gaging stations. When limited streamflow data are collected on a systematic basis over a period of years for use in hydrologic analyses, the site at which the data are collected is called a partial-record station. Data collected at these partial-record stations are usable in low-flow or floodflow analyses, depending on the type of data collected. In addition, discharge measurements are made at other sites not included in the partial-record program. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Records collected at partial-record stations are presented in two tables. The first is a table of discharge measurements at low-flow partial-record stations, and the second is a table of annual maximum stage and discharge at crest-stage stations. Discharge measurements made at miscellaneous sites for both low flow and high flow are given in a third table.

#### Low-flow partial-record stations

2000

Measurements of streamflow in New Jersey made at low-flow partial-record stations are given in the following table. Most of these measurements were made during periods of base flow when streamflow is primarily from ground-water storage. These measurements, when correlated with the simultaneous discharge of a nearby stream where continuous records are available, will give a picture of the low-flow potentiality of a stream. The column headed "Period of record" shows the water years in which measurements were made at the same, or practically the same, site.

# Discharge measurements made at low-flow partial-record stations during water year 1983

| Station  | Station name                                | Location                                                                                                                                                                                                                    | Drainage<br>area<br>(mi²) | Period<br>of<br>record | Measure<br>Date    | ments<br>Discharge<br>(ft³/s) |
|----------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------|--------------------|-------------------------------|
|          | 03.140.80                                   | Mounice Diver begin                                                                                                                                                                                                         | (1111 )                   | 7 0001 0               | Duve               | (10 /0/                       |
|          | ( ) E                                       | Maurice River basin                                                                                                                                                                                                         |                           |                        | 100                | reduced                       |
| 01411450 | Still Run at<br>Aura, NJ                    | Lat 39°40'23", long 75°07'50",<br>Gloucester County, at bridge on<br>Aura-Glassboro Road, 0.4 mi<br>east of Aura, 1.0 mi upstream<br>of Silver Lake, and 2.6 mi                                                             | 3.21                      | 1966,<br>1976-83       | 8-17-83            | .94                           |
|          | 6.28                                        | southeast of Glassboro.                                                                                                                                                                                                     |                           |                        |                    | a visit delice                |
| 01411456 | Little Ease Run<br>near Clayton,<br>NJ      | Lat 39°39'32", long 75°04'04",<br>Gloucester County, at bridge on<br>Academy Road, 0.9 mi west of<br>Fries Mill, 1.3 mi east of<br>Clayton, and 1.4 mi downstream<br>from Beaverdam Branch.                                 | 9.77                      | 1966,<br>1976-83       | 6-17-83<br>8-17-83 | 5.0<br>1.3                    |
| 01411462 | Scotland Run<br>at Franklinville,<br>NJ     | Lat 39°37'05", long 75°03'36",<br>Gloucester County, at bridge on<br>State Route 538, 0.9 mi east of<br>Franklinville, 2.7 mi upstream<br>of Malaga Lake, and 2.8 mi<br>southeast of Clayton.                               | 14.8                      | 1976 <b>-</b> 83       | 6-17-83<br>8-17-83 | 17<br>7.4                     |
| 01411700 | Muddy Run at<br>Centerton, NJ               | Lat 39°31'28", long 75°10'09",<br>Salem County, 180 ft downstream<br>of unnamed right bank tributary,<br>200 ft downstream of bridge on<br>State Routes 540 and 553 in<br>Centerton, and 4.7 mi south of<br>Elmer.          | 36.5                      | 1976-83                | 6-17-83<br>8-17-83 | 31<br>18                      |
| 01411950 | Buckshutem Creek<br>near Laurel<br>Lake, NJ | Lat 39°20'51", long 75°03'47",<br>Cumberland County, at bridge<br>on State Route 555 (Dividing<br>Creek Road), 1.3 mi upstream<br>of Gravelly Run, 1.8 mi west<br>of Laurel Lake, and 3.6 mi<br>southwest of Millville.     | 12.9                      | 1976-77,<br>1980-83    | 6-17-83<br>8-17-83 | 7.7<br>10                     |
| 01412120 | Muskee Creek near<br>Port Elizabeth,<br>NJ  | Lat 39°18'56", long 74°57'31",<br>Cumberland County, at bridge on<br>State Route 548, 1.3 mi east of<br>Port Elizabeth, 1.9 mi upstream<br>from mouth, and 2.8 mi northeast<br>of Mauricetown.                              | 13.1                      | 1969,<br>1976-83       | 6-16-83<br>8-16-83 | 36<br>16                      |
|          |                                             | Cohansey River basin                                                                                                                                                                                                        |                           |                        |                    |                               |
| 01412405 | Cohansey River<br>near Beals<br>Mill, NJ    | Lat 39°31'29", long 75°15'59",<br>Cumberland County, at bridge on<br>Beals Mill Road, 1,300 ft down-<br>stream of Beals Mill and Bostwick<br>Lake, and 1.6 mi west of Deerfield<br>Street.                                  | 9.44                      | 1976-83                | 6-16-83<br>8-16-83 | 7.6<br>4.7                    |
| 01413010 | Barrett Run near<br>Bridgeton, NJ           | Lat 39°26'58", long 75°15'42",<br>Cumberland County, at bridge on<br>Mary Elmer Drive, 1,800 ft<br>upstream from Mary Elmer Lake,<br>and 2.1 mi northwest of the<br>intersection of State Routes<br>49 and 77 in Bridgeton. | 7.02                      | 1966,<br>1976-83       | 8-16-83            | 3.2                           |
| 01413020 | Indian Fields<br>Branch at<br>Bridgeton, NJ | Lat 39°26'04", long 75°13'08",<br>Cumberland County, at bridge on<br>Manheim Avenue in Bridgeton,<br>1,300 ft upstream of East Lake.                                                                                        | 4.64                      | 1976-83                | 6-16-83<br>8-16-83 | 8.0<br>6.0                    |

Discharge measurements made at low-flow partial-record stations during water year 1983--Continued

| Station<br>number | Station name                                         | Location                                                                                                                                                                                                                         | Drainage<br>area<br>(mi²) | Period<br>of<br>record | Me a sur e          | ments<br>Discharge<br>(ft³/s) |
|-------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------|---------------------|-------------------------------|
|                   |                                                      | Stow Creek basin                                                                                                                                                                                                                 |                           |                        |                     |                               |
| 01413080          | Raccoon Ditch<br>at Davis Mill,<br>NJ                | Lat 39°25'26", long 75°22'01" Cumberland County, at bridge on County Highway 90 at Davis Mill, 2.8 mi upstream from mouth, and 4.3 mi southwest of Shiloh.                                                                       | 3 • 19                    | 1976-78,<br>1980-83    | 6-17-83             | 4.5                           |
|                   |                                                      | Delaware River basin                                                                                                                                                                                                             |                           |                        |                     |                               |
| 01443475          | Trout Brook near<br>Middleville,<br>NJ               | Lat 41°03'03", long 74°51'23",<br>Sussex County, at bridge on<br>County Highway 612, 0.4 mi<br>upstream from mouth, 0.5 mi<br>southeast of Middleville, and<br>5.1 mi west of Newton.                                            | 24.0                      | 1979-83                | 6-16-83<br>8-16-83  | 32<br>14                      |
| 01445800          | Honey Run near<br>Ramseyburg, NJ                     | Lat 40°53'44", long 75°01'04",<br>Warren County, at bridge on<br>Hope-Delaware Road, 2.3 mi<br>northeast of Ramseyburg,<br>2.8 mi southwest of Hope,<br>and 3.1 mi upstream from<br>mouth.                                       | 2.21                      | 1981-83                | 6-17-83<br>8-17-83  | 1.2                           |
| 01455230          | Merrill Creek at<br>Coopersville, NJ                 | Lat 40°42'25", long 75°06'54",<br>Warren County, at bridge on<br>Lows Hollow Road at Coopers-<br>ville, 0.9 mi north of<br>Stewartsville, 2.1 mi upstream<br>from mouth, and 3.3 mi east of<br>Phillipsburg.                     | 3.85                      | 1981-83                | 6-16-83<br>8-17-83  | 5.3                           |
| 01455300          | Pohatcong Creek at<br>Carpentersville,<br>NJ         | Lat 40°37'30", long 75°11'10",<br>Warren County, at bridge on<br>on Carpentersville-Riegels-<br>ville Road, 2,000 ft above<br>mouth, and 0.7 mi south<br>of Carpentersville.                                                     | 57.0<br>(Revised)         | 1978-81,<br>1983       | 12-23-82            | 28                            |
| 01455780          | Lubbers Run at<br>Lockwood, NJ                       | Lat 40°55'36", long 74°43'09",<br>Sussex County, at bridge on<br>U.S. Route 206 at Lockwood,<br>1.0 mi upstream from mouth,<br>and 1.5 mi northwest of Stanhope.                                                                 | 16.3                      | 1982-83                | 6-16-83<br>8-16-83  | 19<br>10                      |
| 01461300          | Wickecheoke Creek<br>at Stockton, NJ                 | Lat 40°24'41", long 74°58'13",<br>Hunterdon County, at bridge on<br>State Route 29 at Stockton,<br>and 900 ft upstream from mouth.                                                                                               | 26.6                      | 1977-83                | 1-07-83             | 29                            |
| *01464530         | Blacks Creek at<br>Mansfield<br>Square, NJ           | Lat 40°07'02", long 74°41'58",<br>Burlington County, at bridge<br>on Mansfield Square-Crosswicks<br>Road, 0.4 mi east of Mansfield<br>Square, and 3.4 mi upstream<br>from mouth.                                                 | 19.7                      | 1966-72,<br>1983       | 1-04-83             | 11                            |
| *01465880         | Southwest Branch<br>Rancocas Creek<br>at Medford, NJ | Lat 39°53'45", long 74°49'26",<br>Burlington County, at bridge on<br>State Route 541, 0.4 mi south<br>of Medford, and 0.7 mi down-<br>stream from Haynes Creek.                                                                  | 47.2<br>(Revised)         | 1961-66,<br>1973,1983  | 12-10-82<br>3-10-83 | 41<br>270                     |
| 01465884          | Sharps Run at<br>Route 541 at<br>Medford, NJ         | Lat 39°54'18", long 74°49'30",<br>Burlington County, at bridge on<br>Route 541 (Argonne Highway)<br>in Medford, 0.7 mi upstream<br>from mouth, 1.2 mi northeast<br>of Oliphants Mills, and 2.6 mi<br>northwest of Medford Lakes. | 4.41                      | 1982-83                | 6-17-83<br>8-17-83  | .73<br>.43                    |
| 01465898          | Little Creek near<br>Lumberton, NJ                   | Lat 39°56'16", long 74°47'38",<br>Burlington County, at bridge on<br>Eayrestown Road, 0.6 mi upstream<br>from mouth, 1.9 mi southeast of<br>Lumberton, and 3.0 mi northeast<br>of Medford.                                       | 19.2                      | 1982-83                | 6-17-83<br>8-17-83  | 4.9<br>2.7                    |

Discharge measurements made at low-flow partial-record stations during water year 1983--Continued

|                   |                                                                             |                                                                                                                                                                                                  | Drainage          | Period                          | Measure            | ments                |
|-------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------|--------------------|----------------------|
| Station<br>number | Station name                                                                | Location                                                                                                                                                                                         | area (mi²)        | of<br>record                    | Date               | Discharge<br>(ft³/s) |
|                   |                                                                             | Delaware River basinContinued                                                                                                                                                                    |                   |                                 |                    |                      |
| *01467057         | Pompeston Creek<br>at Cinnaminson,<br>NJ                                    | Lat 40°00'11", long 74°59'00",<br>Burlington County, at bridge<br>on U.S. Route 130, 0.7 mi<br>northwest of Cinnaminson,<br>1.7 mi upstream from, and<br>2.1 mi east of Palmyra.                 | 5.77<br>(Revised) | 1964-72,<br>1983                | 3-10-83<br>5-24-83 | 42<br>85             |
| *01467160         | North Branch<br>Cooper River<br>near Marlton,<br>NJ                         | Lat 39°53'20", long 74°58'08",<br>Camden County, at bridge on<br>blacktop road to Springdale,<br>2.5 mi west of Marlton, and<br>5.7 mi southwest of Moorestown.                                  | 5.34              | 1964-69,<br>1971-72,<br>1983    | 12-10-82           | 5.1                  |
| 01467317          | South Branch<br>Newton Creek<br>at 13th Avenue,<br>at Haddon Heights,<br>NJ | Lat 39°52'45", long 75°04'26",<br>Camden County, at bridge on<br>13th Avenue in Haddon Heights,<br>2.4 mi southwest of Haddonfield,<br>and 2.6 mi south of Collingswood.                         | 0.63              | 1964-68,<br>1971,77,<br>1982-83 | 12-13-82           | 2.7                  |
| 01483010          | Deep Run near<br>Alloway, NJ                                                | Lat 39°32'34", long 75°21'18",<br>Salem County, at bridge on<br>Telegraph Road, 0.8 mi upstream<br>from Elkinton Mill Pond, 1.3 mi<br>south of Alloway, and 2.5 mi<br>northwest of Pecks Corner. | 5.30              | 1979-83                         | 6-16-83<br>8-16-83 | 5.6<br>3.1           |

<sup>\*</sup> Also a crest-stage partial-record station.

FROTE !

58.00 f. 6

## CREST-STAGE PARTIAL-RECORD STATIONS

The following table contains annual maximum discharges for crest-stage stations. A crest-stage gage is a device which will register the peak stage occurring between inspections of the gage. A stage-discharge relation for each gage is developed from discharge measurements made by indirect measurements of peak flow or by current meter. The date of the maximum discharge is not always certain but is usually determined by comparison with nearby continuous-record stations, weather records, or local inquiry. Only the maximum discharge for each water year is given. Information on some lower stages may have been obtained, and discharge measurements may have been made for purposes of establishing the stage-discharge relation, but these are not published herein. The years given in the period of record represent water years for which the annual maximum has been determined. The gage heights are heights on the upstream side of the bridge, above the dam or at the discontinued continuous-record gaging station unless otherwise noted.

## ANNUAL MAXIMUM DISCHARGE AT CREST-STAGE PARTIAL-RECORD STATIONS

| Station   | Station name                                         | Location                                                                                                                                                                                                                                                                         | Drainage      | Period               | Annual  | l maximum                |                      |
|-----------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|---------|--------------------------|----------------------|
| No.       | Station name                                         | Location                                                                                                                                                                                                                                                                         | area (mi²)    | of<br>record         | Date    | Gage<br>height<br>(feet) | Discharge<br>(ft³/s) |
|           |                                                      | Cohansey River                                                                                                                                                                                                                                                                   | basin         |                      |         |                          |                      |
| 01412500  | West Branch<br>Cohansey<br>River<br>at Seeley,<br>NJ | Lat 39°29'06, long 75°15'33",<br>Cumberland County, on right<br>bank 15 ft upstream from count<br>bridge, Highway 31, at Seeley<br>450 ft upstream from mouth<br>and 4.1 mi northwest of<br>Bridgeton. Datum of gage is<br>42.23 ft National Geodetic<br>Vertical Datum of 1929. |               | 1952-67‡,<br>1968-83 | 6-20-83 | 11.17                    | 885                  |
|           |                                                      | Delaware River                                                                                                                                                                                                                                                                   | basin         |                      |         |                          |                      |
| *01445000 | Pequest River<br>at Huntsville,<br>NJ                | Lat 40°58'52", long 74°46'36",<br>Sussex County, on right bank,<br>20 ft upstream from highway<br>bridge in Huntsville, and<br>0.4 mi downstream from East<br>Branch. Datum of gage is<br>553.81 ft National Geodetic<br>Vertical Datum of 1929.                                 | 31.0          | 1940-62‡,<br>1963-83 | 4-16-83 | 4.78                     | 505                  |
| 01445430  | Pequest River<br>at Townsbury,<br>NJ                 | Lat 40°51'06", long 74°56'02",<br>Warren County, upstream of<br>highway bridge in Townsbury,<br>2.8 mi northeast of Pequest<br>and 8.7 mi west of Hackettstor<br>Altitude of gage is 480 ft,<br>from topographic map.                                                            | 92•5.<br>vn • | 1977-80‡,<br>1981-83 | 4-16-83 | 4.71                     | 2,100                |
| *01446000 | Beaver Brook<br>near<br>Belvidere,<br>NJ             | Lat 40°50'40", long 75°02'48,<br>Warren County, on right<br>bank, 2,000 ft upstream<br>from mouth, and 2 mi east<br>Belvidere. Datum of gage is<br>303.36 ft National Geodetic<br>Vertical Datum of 1929.                                                                        | 36.7          | 1922-61‡,<br>1963-83 | 4-16-83 | 4.83                     | 1,030                |
| *0145520  | Pohatcong Creek<br>at New Village,<br>NJ             | Lat 40°42'57", long 75°04'20",<br>Warren County, at bridge<br>on Edison Road, 0.4 mi<br>southeast of New Village,<br>and 4.3 mi upstream from<br>Merrill Creek. Datum of<br>gage is 308.32 ft National<br>Geodetic Vertical Datum of<br>1929.                                    | 33.3          | 1960-69‡,<br>1970-83 | 4-16-83 | 5.60                     | 1,300                |
| 01455500  | Musconetcong River at outlet of Lake Hopatcong, NJ   | Lat 40°55'00", long 74°39'55",<br>Morris County, on left bank<br>just upstream of highway<br>bridge 300 ft downstream<br>from Lake Hopatcong Dam in<br>Landing. Datum of gage is<br>904.99 ft National Geodetic<br>Vertical Datum of 1929.                                       | 25.3          | 1929-75‡,<br>1976-83 | 4-16-83 | 4.00                     | 330                  |

# CREST-STAGE PARTIAL-RECORD STATIONS

# ANNUAL MAXIMUM DISCHARGE AT CREST-STAGE PARTIAL-RECORD STATIONS--CONTINUED

| Station  | Station name                                      | Location                                                                                                                                                                                                                                                                                                       | Drainage    | Period               | Annua   | l maximum                |                      |
|----------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------|---------|--------------------------|----------------------|
| No.      | boation name                                      | bocavion                                                                                                                                                                                                                                                                                                       | area (mi²)  | of<br>record         | Date    | Gage<br>height<br>(feet) | Discharge<br>(ft³/s) |
|          |                                                   | Delaware River basin                                                                                                                                                                                                                                                                                           | Continue    | d                    |         |                          |                      |
| 01456000 | Musconetcong<br>River near<br>Hackettstown,<br>NJ | Lat 40°53'17", long 74°47'53"<br>Warren County, on right bank<br>75 ft upstream from Saxton<br>Falls Dam, 0.5 mi upstream<br>from Erie-Lackawanna Railway<br>bridge, and 3.0 mi northeast<br>of Hackettstown. Datum of<br>gage is 630.93 ft National<br>Geodetic Vertical Datum of<br>1929.                    | 68.9        | 1921-73‡,<br>1974-83 | 4-16-83 | 3.30                     | 1,500                |
| 01457500 | Delaware River<br>at Riegelsville,<br>NJ          | Lat 40°35'36", long 75°11'17", 6 Warren County, just upstream of suspension bridge at Riegel ville, 600 ft upstream from Musconetcong River (flow of which is included in the records for this station since Oct. 1, 1931). Datum of gage is 125.12 ft National Geodetic Vertical Datum of 1929.               |             | 1906-71‡,<br>1972-83 | 4-17-83 | 24.17                    | 137,000              |
| 01463610 | Assunpink Creek<br>at Edinburg, NJ                | Lat 40°15'28", long 74°37'05",<br>Mercer County, on left bank,<br>downstream side of bridge on<br>Old Trenton Road (Route 535),<br>0.1 mi west of Edinburg,<br>0.1 mi upstream from Bridegroo<br>Run and 3.0 mi north of Robbir<br>ville. Datum of gage is 63.40<br>National Geodetic Vertical Dat<br>of 1929. | ns-<br>5 ft | 1979-83              | 4-16-83 | e<6.35                   | f                    |
| 01464400 | Crosswicks Creek<br>at New Egypt,<br>NJ           | Lat 40°04'03", long 74°31'57",<br>Ocean County, at upstream<br>side of bridge on State<br>Route 528 in New Egypt,<br>and 300 ft downstream from<br>Oakford Lake Dam. Datum of<br>gage is 43.46 ft National<br>Geodetic Vertical Datum of<br>1929.                                                              | 41.2        | 1968-83              | 4-17-83 | 20.69                    | 880                  |
| 01464515 | Doctors Creek<br>at Allentown,<br>NJ              | Lat 40°10'37", long 74°35'57",<br>Monmouth County, at bridge<br>on Breza Road in Allentown,<br>and 0.8 mi downstream from<br>Conines Millpond dam. Datum<br>of gage is 50.98 National<br>Geodetic Vertical Datum of<br>1929.                                                                                   | 17.4        | 1968-83              | 6-21-83 | b6.02                    | 630                  |
| 01464530 | Blacks Creek at<br>Mansfield Square,<br>NJ        | Lat 40°07'02", long 74°41'58",<br>Burlington County, at bridge<br>on Mansfield Square-Crosswicks<br>Road, 0.4 mi east of Mansfield<br>Square, and 3.4 mi upstream<br>from mouth. Datum of gage is<br>12.44 ft National Geodetic<br>Vertical Datum of 1929.                                                     |             | 1978-83              | 4-17-83 | b8.65                    | 910                  |
| 01464538 | Crafts Creek at<br>Columbus, NJ                   | Lat 40°04'44", long 74°43'07",<br>Burlington County, at bridge<br>on Columbus-Mansfield road,<br>0.4 mi north of Columbus,<br>and 6.0 mi northeast of<br>Mount Holly. Datum of gage<br>is 33.71 ft National Geodetic<br>Vertical Datum of 1929.                                                                | 5.38        | 1978-83              | 4-17-83 | b7.31                    | 252                  |

# CREST-STAGE PARTIAL-RECORD STATIONS

# ANNUAL MAXIMUM DISCHARGE AT CREST-STAGE PARTIAL-RECORD STATIONS--Continued

| ALC: 100       |                                                            |                                                                                                                                                                                                                                                                                                             |                          |                        | Annua   | l maximum                |                      |
|----------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------|---------|--------------------------|----------------------|
| Station<br>No. | Station name                                               | Location                                                                                                                                                                                                                                                                                                    | rainage<br>area<br>(mi²) | Period<br>of<br>record | Date    | Gage<br>height<br>(feet) | Discharge<br>(ft³/s) |
|                |                                                            | Delaware River basin-                                                                                                                                                                                                                                                                                       | -Continue                | ed .                   |         |                          |                      |
| 01464582       | Assiscunk Creek<br>near Columbus,<br>NJ                    | Lat 40°03'13", long 74°44'34",<br>Burlington County, at bridge<br>on Petticoat Bridge Road,<br>1.7 mi southwest of Columbus,<br>4.0 mi northeast of Mount<br>Holly, and 0.1 mi downstream<br>from Assiscunk Branch.                                                                                         | 10.9                     | 1978-83                | 4-17-83 | b6.59                    | 370                  |
| 01465850       | South Branch<br>Rancocas<br>Creek at<br>Vincentown,<br>NJ  | Lat 39°56'22", long 74°45'50", Burlington County, on left bank 150 ft downstream from highway bridge on Lumberton-Vincentown road, 0.8 mi west of Vincentown, 2.9 mi southeast of Lumberton, and 3.1 mi upstream from Southwest Branch. Datum of gage is 13.17 ft National Geodetic Vertical Datum of 1929. | 64.5                     | 1962-75‡,<br>1976-83   | 4-17-83 | 6.98                     | 850                  |
| *01465880      | Southwest Branch<br>Rancocas Creek<br>at Medford, NJ       | Lat 39°53'43", long 74°49'26",<br>Burlington County, at bridge<br>on Argonne Highway (State<br>Route 541), 0.6 mi south of<br>intersection of Argonne<br>Highway and State Highway<br>70 at Medford, and 5.3 mi<br>upstream from mouth.                                                                     | 47.2                     | 1983                   | 4-17-83 | 12.05                    | 750<br>#             |
| 01467057       | Pompeston Creek<br>at Cinnaminson,<br>NJ                   | Lat 40°00'11", long 74°59'00",<br>Burlington County, at U.S.<br>Route 130 bridge, 0.7 mi<br>northwest of Cinnaminson,<br>1.7 mi upstream from mouth,<br>and 2.1 mi east of Palmyra.<br>Datum of gage is 11.36 ft<br>National Geodetic Vertical<br>Datum of 1929.                                            | 5•77                     | 1975-83                | 4-24-83 | b5.11                    | 758                  |
| 01467069       | North Branch<br>Pennsauken<br>Creek near<br>Moorestown, NJ | Lat 39°57'07", revised,<br>long 74°58'10", Burlington<br>County, at bridge on Route<br>41 (Kings Highway), and<br>1.7 mi southwest of Moores-<br>town. Datum of gage is<br>5.9 ft National Geodetic<br>Vertical Datum of 1929.                                                                              | 12.8                     | 1975-83                | 4-16-83 | 6.02                     | 950                  |
| *01467160      | North Branch<br>Cooper River<br>near Marlton,<br>NJ        | Lat 39°53'20", long 74°58'08",<br>Camden County, at bridge<br>on blacktop road to Spring-<br>dale, 2.5 mi west of Marlton.<br>Datum of gage is 36.36 ft<br>National Geodetic Vertical<br>Datum of 1929.                                                                                                     | 5.34                     | 1964-83                | 4-16-83 | b3.80                    | 480                  |
| *01467305      | Newton Creek at<br>Collingswood,<br>NJ                     | Lat 39°54'30", long 75°03'13",<br>Camden County, at bridge on<br>Park Avenue in Collingswood,<br>0.3 mi east of Cuthbert Avenue<br>Datum of gage is 18.74 ft<br>National Geodetic Vertical<br>Datum of 1929.                                                                                                | 1.33                     | 1964-83                | 4-24-83 | 2.98                     | 138                  |
| 01467317       | South Branch<br>Newton Creek<br>at Haddon<br>Heights, NJ   | Lat 39°52'45", long 75°04'26",<br>Camden County, at bridge on<br>Haddon Heights Park in Haddon<br>Heights, and 2.6 mi south of<br>Collingswood. Datum of gage<br>is 23.34 ft National Geodetic<br>Vertical Datum of 1929.                                                                                   | 0.63                     | 1964-83                | 6-21-83 | 2.65                     | 20                   |

# CREST-STAGE PARTIAL-RECORD STATIONS

# ANNUAL MAXIMUM DISCHARGE AT CREST-STAGE PARTIAL-RECORD STATIONS--Continued

| 04-44          | Object de la main d                                                            |                                                                                                                                                                                                                                                                         |                          | Danid and              | Annua   | l maximum                |                      |
|----------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------|---------|--------------------------|----------------------|
| Station<br>No. | Station name                                                                   | Location                                                                                                                                                                                                                                                                | rainage<br>area<br>(mi²) | Period<br>of<br>record | Date    | Gage<br>height<br>(feet) | Discharge<br>(ft³/s) |
|                |                                                                                | Delevers Bives bosis                                                                                                                                                                                                                                                    | Continua                 | 19 / 20                |         | (1660)                   | (10 /3)              |
|                |                                                                                | Delaware River basin-                                                                                                                                                                                                                                                   | -concinue                | ď                      |         |                          |                      |
| *01467330      | South Branch<br>Big Timber<br>Creek at<br>Blackwood, NJ                        | Lat 39°48'17", long 75°04'33",<br>Camden County, at bridge on<br>Lower Landing Road, in Black-<br>wood, and 3.0 mi upstream<br>from mouth. Datum of gage<br>is 8.41 ft National Geodetic<br>Vertical Datum of 1929.                                                     | 20.9                     | 1964-83                | 4-16-83 | b4.47                    | 440                  |
| 01467351       | North Branch Big<br>Timber Creek at<br>Laurel Road at<br>Laurel Springs,<br>NJ | Lat 39°49'07", long 75°00'56",<br>Camden County, at bridge on<br>Laurel Road in Laurel Springs,<br>and 2.5 mi upstream from conflu<br>ence with the South Branch.<br>Datum of gage is 26.89 ft<br>National Geodetic Vertical<br>Datum of 1929.                          | 7.17                     | 1975-83                | 4-16-83 | 1.79                     | 300                  |
| 01475000       | Mantua Creek<br>at Pitman,<br>NJ                                               | Lat 39°44'14", long 75°06'53<br>Gloucester County, on left<br>abutment of Wadsworth Dam,<br>0.9 mi east of Pitman, and<br>2.0 mi upstream from Porch<br>Branch. Datum of gage is<br>68.51 ft National Geodetic<br>Vertical Datum of 1929.                               | 6.05                     | 1940-76‡,<br>1977-83   | 4-16-83 | 1.92                     | 170                  |
| 01475019       | Mantua Creek at<br>Salina, NJ                                                  | Lat 39°46'13", long 75°07'59",<br>Gloucester County, at bridge<br>on Salina-Sewell Road, 0.2 mi<br>downstream of Bees Branch,<br>and 0.5 mi west of Salina.<br>Datum of gage is 11.67 ft<br>National Geodetic Vertical<br>Datum of 1929.                                | 14.1                     | 1975-83                | 4-16-83 | 6.75                     | 470                  |
| 01477110       | Raccoon Creek at<br>Mullica Hill,<br>NJ                                        | Lat 39°44'10", long 75°13'30",<br>Gloucester County, at bridge<br>on State Routes 45 and 77 in<br>Mullica Hill, 1,200 ft<br>downstream of Mullica Hill<br>Pond, and 5.5 mi west of<br>Pitman. Datum of gage is<br>21.91 ft National Geodetic<br>Vertical Datum of 1929. | 15.6                     | 1978-83                | 4-16-83 | b5.38                    | 1,560                |
| 01477480       | Oldmans Creek<br>near<br>Harrisonville,<br>NJ                                  | Lat 39°41'20", revised,<br>long 75°18'38", Salem<br>County, at bridge on<br>Harrisonville Station Road,<br>2.4 mi west of Harrisonville,<br>and 2.8 mi north of Woodstown.<br>Datum of gage is 16.58 ft<br>National Geodetic Vertical<br>Datum of 1929.                 | 13.8                     | 1975-83                | 4-16-83 | 6.28                     | 720                  |

Peak did not reach bottom of gage. Peak discharge for the period was less than the minimum recordable discharge.

<sup>\*\*</sup> 

Also a low-flow partial-record station.
Also a tidal crest-stage station.
Discharge not determined.
Operated as a continuous-record gaging station.

Estimated.
Downstream side of bridge.

Not previously published. Revised.

c d

# DISCHARGE MEASUREMENT AT MISCELLANEOUS SITES

Measurements of streamflow at points other than gaging stations are given in the following table. Those that are measurements of base flow are designated by an asterisk (\*); measurements of peak flow by a dagger (†).

# DISCHARGE MEASUREMENTS MADE AT MISCELLANEOUS SITES DURING WATER YEAR 1983

|                                   |                   |                                                                                                                                                                          | Ducinos                   | Measured<br>previously          | Meas                                                            | urements                                  |
|-----------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------------|-----------------------------------------------------------------|-------------------------------------------|
| Stream T                          | Tributary to      | ibutary to Location                                                                                                                                                      | Drainage<br>area<br>(mi²) | (water<br>years)                | Date                                                            | Discharge<br>(ft³/s)                      |
|                                   |                   | Delaware River basin                                                                                                                                                     | 1                         |                                 |                                                                 |                                           |
| 01446400<br>Pequest<br>River      | Delaware<br>River | Lat 40°49'45", long 75°04'44",<br>Warren County, at bridge on<br>State Route 519, in Belvidere,<br>1,400 ft upstream of mouth.                                           | 157                       | 1950,53,<br>1955,74,<br>1977-82 | 11-30-82<br>2-22-83<br>4-17-83<br>4-18-83<br>5-19-84<br>8-02-83 | 249<br>311<br>2,130<br>2,230<br>302<br>93 |
| 01455801<br>Musconetcong<br>River | Delaware<br>River | Lat 40°55'10", long 74°44'07",<br>Sussex County, at bridge at<br>Lockwood, 0.2 mi downstream<br>from Lubbers Run, and 1.5 mi<br>northwest of Stanhope.                   | 60.1                      | 1979-82                         | 1-05-83                                                         | *60                                       |
| 01456200<br>Musconetcong<br>River | Delaware<br>River | Lat 40°48'48", long 74°50'32",<br>Warren County, at bridge in<br>Beattystown, 2.1 mi northeast<br>of Stephensburg, and 3.0 mi<br>south of Hackettstown.                  | 90.3                      | -                               | 12-06-82<br>1-05-83                                             | *114<br>*81                               |
| 01457400<br>Musconetcong<br>River | Delaware<br>River | Lat 40°35'32", long 75°11'20",<br>Warren County, at bridge on<br>State Highway 13 at Riegels-<br>ville, 0.2 mi north of Mount<br>Joy, and 0.2 mi upstream from<br>mouth. | 156                       |                                 | 12-23-82                                                        | 176                                       |
| 01477510<br>Oldmans<br>Creek      | Delaware<br>River | Lat 39°41'57", long 75°20'01",<br>Salem County, at bridge on<br>Kings Highway in Porches Mill,<br>1.0 mi north of Seven Stars,<br>and 3.1 mi north of Woodstown.         | 21.0                      | 1979-82                         | 3-22-83                                                         | 133                                       |

Base flow.

Not previously published. Field estimate.

The following table contains annual maximum stages for tidal crest-stage stations. The information is obtained from a crest-stage gage or a water-stage recorder located at each site. A crest-stage gage is a device which will register the peak stage occurring between inspections of the gage. All stages are elevations above National Geodetic Vertical Datum of 1929 unless otherwise noted. Only the maximum stage is given. Information on some other high stages may have been obtained but is not published herein. The years given in the period of record represent water years for which the annual maximum has been determined.

## ANNUAL MAXIMUM STAGES AT TIDAL CREST-STAGE PARTIAL-RECORD STATIONS

| Station<br>No. | Station name                                               | Location                                                                                                                                                                                                                                                                                 | Period<br>of<br>record              | Date    | Annual maximum Elevation NGVD* (feet) |
|----------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------|---------------------------------------|
| 01411409       | Delaware Bay<br>at Reeds Beach,<br>NJ                      | Lat 39°06'32", long 074°53'39",<br>Cape May County, at boat ramp<br>in Cooks Beach, 0.2 mi south<br>of Reeds Beach, 4.8 mi north-<br>west of Cape May Court House,<br>and 5.8 mi north of Villas.                                                                                        | 1979-83                             | 4-03-83 | 6.26                                  |
| 01412150       | Maurice River<br>at Bivalve,<br>Nj                         | Lat 39°13'42", long 75°02'12",<br>Cumberland County, on right<br>bank on bulkhead piling on<br>the south side of Bivalve,<br>and 1.3 mi south of Port<br>Norris.                                                                                                                         | 1965-83                             | 4-03-83 | 6.54                                  |
| 01413038       | Cohansey River<br>at Greenwich,<br>NJ                      | Lat 39°23"02", long 075°20'58"<br>Cumberland County, at Green-<br>wich Pier, 0.7 mi southwest<br>of Greenwich, and 5.8 mi<br>southwest of Shiloh.                                                                                                                                        | 1979-83                             | 4-03-83 | 5.63                                  |
| 01464040       | Delaware River<br>at Marine<br>Terminal,<br>Trenton,<br>NJ | Lat 40°11'21", long 74°45'22",<br>Mercer County, on left bank<br>at downstream end of wharf<br>at Marine Terminal, Trenton,<br>1.6 mi downstream from toll<br>bridge on U.S. Route 1,<br>2.0 mi downstream from<br>Assunpink Creek, and at<br>mile 131.80.                               | 1921-46‡,<br>1951-54‡,<br>1957-83‡e | 4-17-83 | c14.04                                |
| 01477050       | Delaware River<br>at Chester, PA                           | Lat 39°49'52", long 75°19'58", Gloucester County, on left bank on floodgate at mouth of Repaupo Creek 2.2 mi northeast of Bridgeport, 5.5 mi north of Swedesboro, and at mile 84.00 mi, prior to October 1980 located at Reynolds Aluminum Company pier in Chester, PA at mile 82.30 mi. | 1972-77‡,<br>1979-83                | 4-03-83 | b6.35                                 |
| 01483050       | Alloway Creek<br>at Hancocks<br>Bridge, NJ                 | Lat 39°30'31" long 75°27'39",<br>Salem County, on left bank at<br>downstream side of Mill Street<br>bridge in Hancocks Bridge,<br>0.4 mi downstream from Lower<br>Alloway Creek, and 4.0 mi south<br>of Salem.                                                                           | 1980-83                             | 4-03-83 | 5.34                                  |

National Geodetic Vertical Datum of 1929.

Operated as a continuous-record gaging station.

a Revised.

Gage datum; not National Geodetic Vertical Datum of 1929 datum. Furnished by National Ocean Survey.

Not previously published.

Operated by National Ocean Survey since March 1975. b

C

d

395150074284201. Local I.D., Lebanon State Forest 23-D Obs. NJ-WRD Well Number, 05-0689.

LOCATION.--Lat 39°51'52", long 74°28'48", Hydrologic Unit 02040202, in Lebanon State Forest, Woodland Township.
Owner: U.S. Geological Survey.

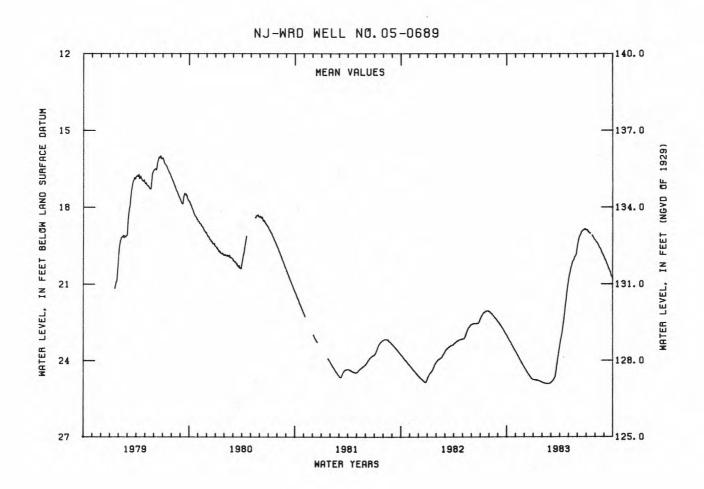
AQUIFER.--Kirkwood-Cohansey aquifer system of Miocene age.

WELL CHARACTERISTICS.--Drilled water-table observation well, diameter 8 in, depth 33 ft, open-end cement casing.
INSTRUMENTATION.--Water-level recorder.

DATUM.--Land-surface datum is 152.02 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Top of 8 inch casing, 0.70 ft above land-surface datum.

PERIOD OF RECORD.--September 1955 to April 1975, January 1979 to current year. Records for 1955 to 1975 are unpublished and are available in files of New Jersey District Office.


EXTREMES FOR PERIOD OF RECORD.--Highest water level, 14.37 ft below land-surface datum, Sept. 11, 1958; lowest, 25.80 ft below land-surface datum, Feb. 19-20, 1966.

EXTREMES FOR CURRENT YEAR.--Highest water level, 18.84 ft below land-surface datum, June 24-25, 27-28; lowest, 24.90 ft below land-surface datum, Feb. 13-22.

below land-surface datum, Feb. 13-22.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

|                                  |                                                    |                                                    |                                  |                                  |                                                    | MEAN VA                                            | LUES                                               |                                                    | ,02 -                                              |                                               | ,,,,,,                                    |                                                    |
|----------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------|----------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|-----------------------------------------------|-------------------------------------------|----------------------------------------------------|
| DA Y                             | OCT                                                | NOV                                                | DEC                              | JAN                              | FEB                                                | MAR                                                | APR                                                | MAY                                                | JUN                                                | JUL                                           | A UG                                      | SEP                                                |
| 5<br>10<br>15<br>20<br>25<br>EOM | 23.12<br>23.22<br>23.31<br>23.42<br>23.52<br>23.65 | 23.75<br>23.86<br>23.97<br>24.07<br>24.17<br>24.27 | 24.46<br>24.55<br>24.62<br>24.70 | 24.76<br>24.77<br>24.79<br>24.81 | 24.87<br>24.89<br>24.89<br>24.90<br>24.88<br>24.87 | 24.81<br>24.73<br>24.62<br>24.27<br>23.86<br>23.41 | 23.09<br>22.74<br>22.33<br>21.82<br>21.32<br>20.93 | 20.60<br>20.35<br>20.12<br>20.01<br>19.89<br>19.52 | 19.23<br>19.08<br>18.94<br>18.89<br>18.84<br>18.89 | 18.88<br>18.97<br>19.01<br><br>19.17<br>19.28 | 19.37<br>19.46<br>19.57<br>19.66<br>19.81 | 20.07<br>20.20<br>20.37<br>20.50<br>20.67<br>20.79 |
| MEAN                             | 23.34                                              | 23.97                                              | 24.55                            | 24.78                            | 24.88                                              | 24.36                                              | 22.21                                              | 20.17                                              | 19.02                                              | 19.05                                         | 19.59                                     | 20.37                                              |
| WTR YR                           | 1983                                               | MEAN                                               | 22.22                            | HIGH 1                           | 8.84 JUN                                           | 25 AND OTH                                         | IERS                                               | LOW                                                | 24.90 F                                            | EB 13 AND                                     | OTHERS                                    |                                                    |



395525074502601. Local I.D., Medford 4 Obs. NJ-WRD Well Number, 05-0262. LOCATION.--Lat 39°55'24", long 74°50'25", Hydrologic Unit 02040202, at Medford Public Shooting Grounds, Medford Township.

Owner: U.S. Geological Survey.

AQUIFER. --Lower aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.

WELL CHARACTERISTICS. --Drilled artesian observation well, diameter 6 in, depth 1,145 ft, screened 1,125 to 1,145 ft.

INSTRUMENTATION. --Water-level extremes recorder, February 1977 to current year. Water-level recorder, January 1968 to July 1975.

WATER-LEVEL EXTREMES

DATUM.--Land-surface datum is 72.32 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 2.56 ft above land-surface datum.

PERIOD OF RECORD.--January 1968 to July 1975, February 1977 to current year. Records for 1968 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 94.24 ft below land-surface datum, Mar. 13, 1968; lowest, 130.38 ft below land-surface datum, between July 12 and Sept. 30, 1983.

EXTREMES FOR CURRENT YEAR.--Highest water level, 120.54 ft below land-surface datum, between Apr. 15 and July 12; lowest, 130.38 ft below land-surface datum, between July 12 and Sept. 30.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

MEASURED WATER LEVEL

|      |     | PERIO  | D       |     |      | HIGHEST<br>WATER<br>LEVEL | LOWEST<br>WATER<br>LEVEL |       | DATE | - day | WATER<br>LEVEL |
|------|-----|--------|---------|-----|------|---------------------------|--------------------------|-------|------|-------|----------------|
| OCT. | 6,  | 1982 T | O DEC.  | 22, | 1982 | 122.57                    |                          | DEC.  | 22,  | 1982  | 122.77         |
| DEC. | 22, | 1982 T | O APR.  | 15, | 1983 | 120.62                    | 122.77                   | APR.  | 15,  | 1983  | 121.14         |
| APR. | 15, | 1983 T | O JULY  | 12, | 1983 | 120.54                    | 125.05                   | JULY  | 12,  | 1983  | 125.02         |
| JULY | 12, | 1983 T | O SEPT. | 30, | 1983 | 124.89                    | 130.38                   | SEPT. | 30,  | 1983  | 129.64         |



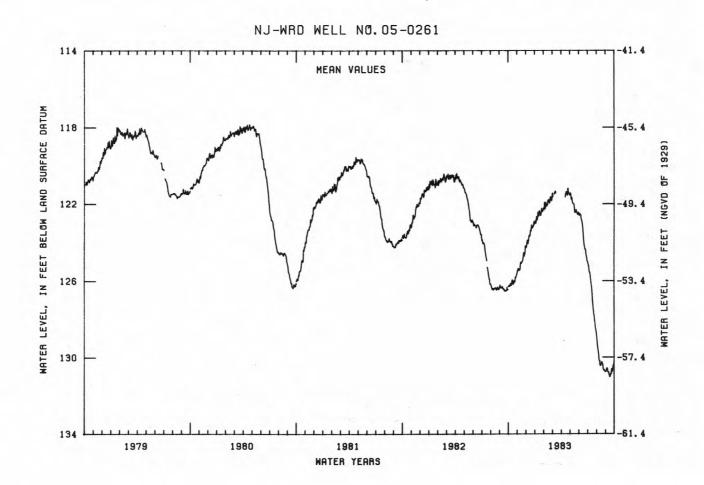
395525074502505. Local I.D., Medford 5 Obs. NJ-WRD Well Number, 05-0261. LOCATION.--Lat 39°55'25", long 74°50'25", Hydrologic Unit 02040202, at Medford Public Shooting Grounds, Medford Township.

Owner: U.S. Geological Survey.

AQUIFER.--Middle aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 750 ft, screened 740 to 750 ft.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 750 ft, screened 740 to 750 ft.
INSTRUMENTATION.--Water-level recorder.
DATUM.--Land-surface datum is 72.60 ft above National Geodetic Vertical Datum of 1929.


Measuring point: Top edge of recorder shelf, 3.60 ft above land-surface datum.
PERIOD OF RECORD.--January 1968 to March 1975, March 1977 to current year. Records for 1968 to 1977 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 94.46 ft below land-surface datum, Mar. 1, 1968; lowest, 131.05 ft below land-surface datum, Sept. 16, 1983.

EXTREMES FOR CURRENT YEAR.--Highest water level, 121.08 ft below land-surface datum, Apr. 25; lowest, 131.05 ft below land-surface datum, Sept. 16.

| WATER | LEVEL, | IN | FEET | BELOW | LAND | SURFACE | DATUM,  | WATER | YEAR | OCTOBER | 1982 | TO | SEPTEMBER | 1983 |  |
|-------|--------|----|------|-------|------|---------|---------|-------|------|---------|------|----|-----------|------|--|
|       |        |    |      |       |      | MI      | EAN VAL | UES   |      |         |      |    |           |      |  |

| DA Y   | OCT    | NOV    | V DEC    | JAN    | FEB       | MAR    | APR    | MAY        | JUN    | JUL    | A UG   | SEP    |
|--------|--------|--------|----------|--------|-----------|--------|--------|------------|--------|--------|--------|--------|
| 5      | 126.26 | 125.34 | 4 123.96 | 122.88 | 122.23    |        |        | 121.55     | 122.55 | 125.19 | 129.44 | 130.58 |
| 10     | 126.22 | 125.41 | 1 123.89 | 122.67 | 122.11    | 121.39 |        | 121.86     | 122.81 | 125.63 | 130.10 | 130.73 |
| 15     | 125.93 | 125.02 | 2 123.59 | 122.38 | 121.78    |        | 121.62 |            | 123.25 | 126.24 | 130.41 | 131.01 |
| 20     | 126.05 | 124.91 | 1 123.08 | 122.60 | 121.95    |        | 121.37 |            | 124.14 | 127.27 | 130.23 | 130.79 |
| 25     | 125.85 | 124.7  | 1 123.16 | 122.28 | 121.62    |        | 121.16 |            | 124.42 | 127.98 | 130.65 | 130.67 |
| E OM   | 125.62 | 124.28 | 123.01   | 122.22 | 121.74    |        | 121.52 | 122.43     | 124.95 | 128.65 | 130.72 | 130.24 |
| MEAN   | 126.04 | 125.00 | 123.53   | 122.53 | 121.91    |        |        | 122.07     | 123.52 | 126.64 | 130.12 | 130.68 |
| WTR YR | 1983   | MEAN   | 124.93   | HIGH 1 | 21.16 APR | 25     | LOW    | 131.01 SEP | 15     |        |        |        |



395524074502501. Local I.D., Medford 1 Obs. NJ-WRD Well Number, 05-0258.
LOCATION.--Lat 39°55'24", long 74°50'25", Hydrologic Unit 02040202, at Medford Public Shooting Grounds, Medford Township.

Owner: U.S. Geological Survey.

AQUIFER.--Upper aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 410 ft, screened 400 to 410 ft.

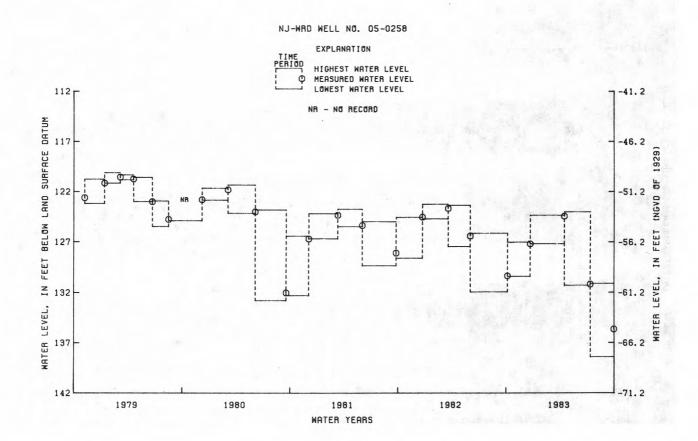
INSTRUMENTATION.--Water-level extremes recorder, February 1977 to current year. Water-level recorder, October 1963 to August 1975.

DATUM.--Land-surface datum is 70.77 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 2.87 ft above land-surface datum.

PERIOD OF RECORD.--October 1963 to August 1975, February 1977 to current year. Records for 1963 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 85.22 ft below land-surface datum, Feb. 16-19, 1964; lowest, 138.42 ft below land-surface datum, between July 12 and Sept. 30, 1983.


lowest, 138.42 ft below land-surface datum, between July 12 and Sept. 30.

EXTREMES FOR CURRENT YEAR. -- Highest water level, 123.99 ft below land-surface datum, between Apr. 15 and July 12;

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

#### WATER-LEVEL EXTREMES MEASURED WATER LEVEL

|      |     | PERIO  | o o    |     |      | HIGHEST<br>WATER<br>LEVEL | LOWEST<br>WATER<br>LEVEL | 148 S | DATI | Ē    | WATER<br>LEVEL |
|------|-----|--------|--------|-----|------|---------------------------|--------------------------|-------|------|------|----------------|
| OCT. | 6,  | 1982 T | DEC.   | 22, | 1982 | 127.01                    | 130.42                   | DEC.  | 22,  | 1982 | 127.19         |
| DEC. | 22, | 1982 T | O APR. | 15, | 1983 | 124.34                    | 127.19                   | APR.  | 15,  | 1983 | 124.43         |
| APR. | 15, | 1983 T | JULY   | 12, | 1983 | 123.99                    | 131.29                   | JULY  | 12,  | 1983 | 131.19         |
| JULY | 12, | 1983 T | SEPT.  | 30, | 1983 | 131.11                    | 138.42                   | SEPT. | 30,  | 1983 | 135.65         |



395524074502502. Local I.D., Medford 2 Obs. NJ-WRD Well Number, 05-0259. LOCATION.--Lat 39°55'24", long 74°50'25", Hydrologic Unit 02040202, at Medford Public Shooting Grounds, Medford Township.

Owner: U.S. Geological Survey.

AQUIFER. --Englishtown aquifer of Cretaceous age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 263 ft, screened 253 to 263 ft.

INSTRUMENTATION.--Water-level extremes recorder, February 1977 to current year. Water-level recorder, October 1963 to August 1975.

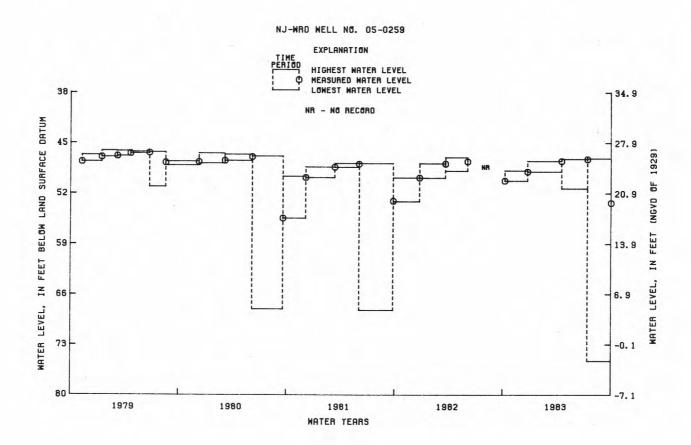
To August 1975.

DATUM.--Land-surface datum is 72.92 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 3.40 ft above land-surface datum.

REMARKS.--Water level affected by nearby pumping.

PERIOD OF RECORD.--October 1963 to August 1975, February 1977 to current year. Records for 1963 to 1975 are unpublished and are available in files of New Jersey District Office.


EXTREMES FOR PERIOD OF RECORD.--Highest water level, 45.42 ft below land-surface datum, Apr. 27, 1973; lowest, 111.96 ft below land-surface datum, July 9, 1964.

EXTREMES FOR CURRENT YEAR. --Highest water level, 47.12 ft below land-surface datum, between July 12 and Sept. 30; lowest, 75.27 ft below land-surface datum, between July 12 and Sept. 30.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

#### WATER-LEVEL EXTREMES MEASURED WATER LEVEL

|      |     | PERIOD  |       |     |      | HIGHEST<br>WATER<br>LEVEL | LOWEST<br>WATER<br>LEVEL |       | DATE     | WATER<br>LEVEL |
|------|-----|---------|-------|-----|------|---------------------------|--------------------------|-------|----------|----------------|
| OCT. | 6,  | 1982 TO | DEC.  | 22, | 1982 | 48.80                     | 50.25                    | DEC.  | 22, 1982 | 48.96          |
| DEC. | 22, | 1982 TO | APR.  | 15, | 1983 | 47.47                     | 48.96                    | APR.  | 15, 1983 | 47.49          |
| APR. | 15, | 1983 TO | JULY  | 12, | 1983 | 47.18                     | 51.31                    | JULY  | 12, 1983 | 47.23          |
| JULY | 12, | 1983 TO | SEPT. | 30, | 1983 | 47.12                     | 75.27                    | SEPT. | 30, 1983 | 53.30          |



400010074521601. Local I.D., Willingboro 2 Obs. NJ-WRD Well Number, 05-0645. LOCATION.--Lat 40°00'10", long 74°52'16", Hydrologic Unit 02040202, near intersection of Bridge Street and Tiffany Conner: Willingboro Municipal Utilities Authority.

AQUIFER.--Middle aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 441 ft, screened 431 to 441 ft.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 441 ft, screened 431 to 441 ft.

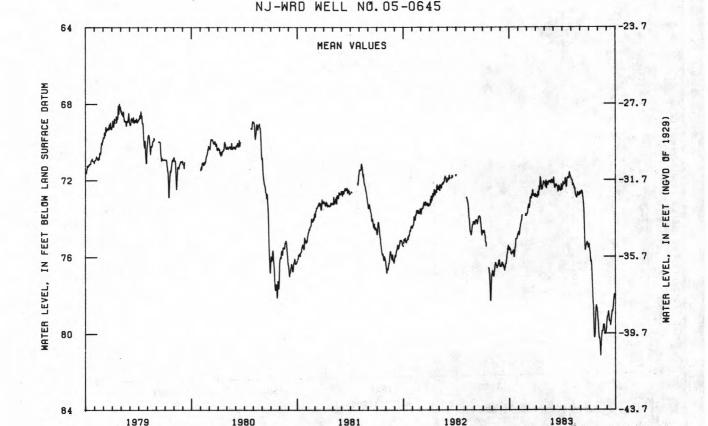
INSTRUMENTATION.--Water-level recorder.

DATUM.--Land-surface datum is 40.30 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Top edge of recorder shelf, 2.00 ft below land-surface datum.

REMARKS.--Water level affected by nearby pumping.

PERIOD OF RECORD.--March 1966 to September 1975, March 1977 to current year. Records for 1966 to 1975 are unpublished and are available in files of New Jersey District Office.


EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 49.79 ft below land-surface datum, June 21, 1967; lowest, 81.29 ft below land-surface datum, Aug. 10, 1983.

EXTREMES FOR CURRENT YEAR. -- Highest water level, 71.31 ft below land-surface datum, Apr. 25; lowest, 81.29 ft below

land-surface datum, Aug. 10.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983 MEAN VALUES

| DA Y   | OCT   | NOV   | DEC   | JAN    | FEB      | MAR   | APR   | MAY       | JUN   | JUL   | A UG  | SEP   |
|--------|-------|-------|-------|--------|----------|-------|-------|-----------|-------|-------|-------|-------|
| 5      | 75.64 | 74.65 | 73.36 | 72.85  | 72.42    | 72.35 | 72.23 | 72.12     | 72.58 | 75.75 | 80.25 | 78.93 |
| 10     | 75.78 | 74.16 | 73.20 | 72.61  | 72.24    | 72.21 | 71.94 | 72.30     | 72.93 | 76.42 | 81.15 | 79.37 |
| 15     | 75.66 |       | 72.94 | 71.83  | 72.04    | 72.37 | 72.27 | 72.67     | 74.26 | 78.39 | 79.86 | 79.25 |
| 20     | 75.50 |       | 72.50 | 72.50  | 72.16    | 72.51 | 71.88 | 72.87     | 75.43 | 80.20 | 79.53 | 78.86 |
| 25     | 75.05 | 73.84 | 72.75 |        | 71.97    | 72.45 | 71.57 | 72.80     | 75.22 | 78.64 | 80.04 | 78.13 |
| EOM    | 74.75 | 73.77 | 72.82 |        | 72.11    | 72.43 | 71.88 | 72.61     | 75.48 | 79.25 | 79.43 | 77.99 |
| MEAN   | 75.47 |       | 73.00 | 72.40  | 72.13    | 72.34 | 72.00 | 72.51     | 74.16 | 77.88 | 80.00 | 78.85 |
| WTR YR | 1983  | MEAN  | 74.61 | HIGH 7 | 1.57 APR | 25    | I.OW  | 81.15 AUG | 10    |       |       |       |



WATER YEARS

MEASURED WATER LEVEL

#### BURLINGTON COUNTY

WATER-LEVEL EXTREMES

400213074510801. Local I.D., Willingboro 1 Obs. NJ-WRD Well Number, 05-0063. LOCATION.--Lat 40°02'13", long 74°51'08", Hydrologic Unit 02040202, on the west side of Rancocas Road about 2 mi north of Rancocas.

Owner: Willingboro Municipal Utilities Authority.

AQUIFER.--Middle aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 294 ft, screened 284 to 294 ft.
INSTRUMENTATION.--Water-level extremes recorder, February 1977 to current year. Water-level recorder, March 1966 to

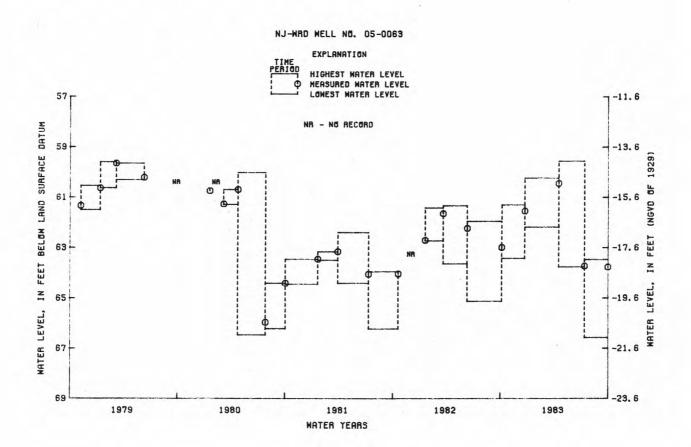
September 1975.

DATUM.--Land-surface datum is 45.45 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 0.76 ft above land-surface datum.

Measuring point: Front edge of cutout in recorder housing, 0.76 ft above land-surface datum.

REMARKS.--Water level affected by nearby pumping.


PERIOD OF RECORD.--March 1966 to September 1975, February 1977 to current year. Records for 1966 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 46.25 ft below land-surface datum, Mar. 19, 1966; lowest, 68.47 ft below land-surface datum, between July 12 and Sept. 22, 1977.

EXTREMES FOR CURRENT YEAR.--Highest water level, 59.57 ft below land-surface datum, between Apr. 15 and July 12; lowest, 66.59 ft below land-surface datum, between July 12 and Sept. 29.

# WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

#### HIGHEST LOWEST WATER WATER WATER PERIOD DATE LEVEL LEVEL LEVEL OCT. 61.56 5, 1982 TO DEC. 22, 1982 61.31 63.44 DEC. 22, 1982 60.46 APR. 15, 1983 DEC. 22, 1982 TO APR. 15, 1983 60.24 62.20 APR. 15, 1983 TO JULY 12, 1983 59.57 63.78 JULY 12, 1983 63.74 JULY 12, 1983 TO SEPT. 29, 1983 63.48 66.59 SEPT. 29, 1983 63.78



400242074422301. Local I.D., Rhodia Corp. 1 Obs. NJ-WRD Well Number, 05-0440. LOCATION.--Lat 40°02'42", long 74°42'23", Hydrologic Unit 02040201, on the lands of Rhodia Corporation near Jobstown. Owner: Rhodia Corporation.

Owner: Rhodia Corporation.

AQUIFER.--Middle aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 8 in, depth 615 ft, screened 603 to 613 ft.

INSTRUMENTATION.--Water-level extremes recorder, April 1977 to current year. Water-level recorder, December 1968 to

March 1975.

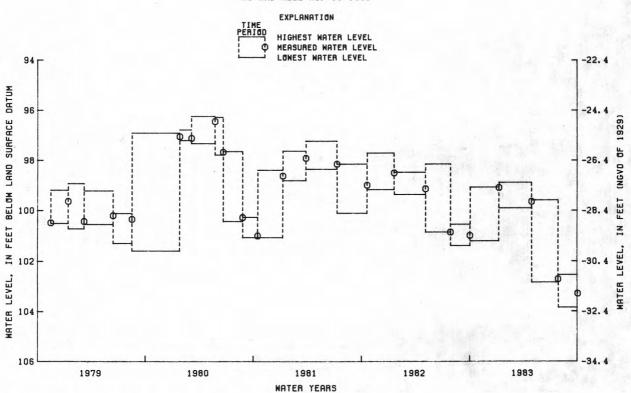
DATUM.--Land-surface datum is 71.65 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 2.22 ft above land-surface datum.

PERIOD OF RECORD.--December 1968 to March 1975, April 1977 to current year. Records for 1968 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 86.55 ft below land-surface datum, Dec. 31, 1969; lowest, 104.13 ft below land-surface datum, between Apr. 28 and Aug. 8, 1977.

EXTREMES FOR CURRENT YEAR.--Highest water level, 98.89 ft below land-surface datum, between Jan. 7 and Apr. 27; lowest, 103.86 ft below land-surface datum, between July 26 and Sept. 30.


WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

## WATER-LEVEL EXTREMES

#### MEASURED WATER LEVEL

|      |     | PERI | OD |       |     |      | HIGHEST<br>WATER<br>LEVEL | LOWEST<br>WATER<br>LEVEL |       | DATI |      | WATER<br>LEVEL |
|------|-----|------|----|-------|-----|------|---------------------------|--------------------------|-------|------|------|----------------|
| OCT. | 1,  | 1982 | то | JAN.  | 7,  | 1983 | 99.08                     | 101.21                   | JAN.  | 7,   | 1983 | 99.10          |
| JAN. | 7,  | 1983 | то | APR.  | 27, | 1983 | 98.89                     | 99.91                    | APR.  | 27,  | 1983 | 99.65          |
| APR. | 27, | 1983 | TO | JULY  | 26, | 1983 | 99.59                     | 102.85                   | JULY  | 26,  | 1983 | 102.72         |
| JULY | 26, | 1983 | то | SEPT. | 30, | 1983 | 102.55                    | 103.86                   | SEPT. | 30,  | 1983 | 103.30         |





## CAMDEN COUNTY

394922074563301. Local I.D., Elm Tree Farm 2 Obs. NJ-WRD Well Number, 07-0412. LOCATION.--Lat 39°49'22", long 74°56'30", Hydrologic Unit 02040202, about 200 ft northeast of Thomas Road and about 2 mi northwest of Berlin.

Owner: New Jersey Water Company.

AQUIFER. -- Lower aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age. WELL CHARACTERISTICS. -- Drilled artesian observation well, diameter 6 in, depth 1,092 ft, screened 1,082 to 1,092 ft. INSTRUMENTATION. -- Water-level extremes recorder, February 1977 to current year. Water-level recorder, January 1963 to June 1975.

DATUM.--Land-surface datum is 148.68 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 1.76 ft above land-surface datum.

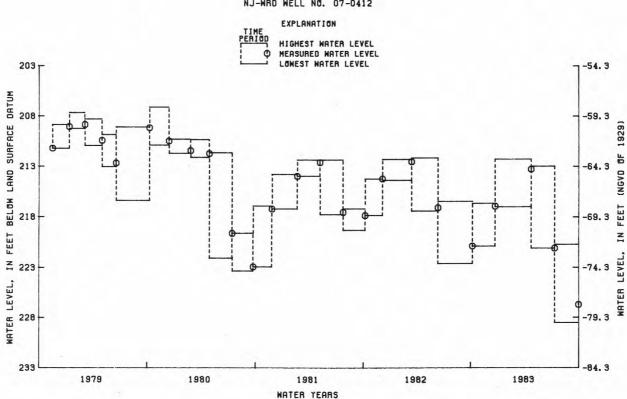
REMARKS.--Well was originally screened 1,217 to 1,227 ft; rehabilitated August 1969.

PERIOD OF RECORD.--January 1963 to June 1975, February 1977 to current year. Records for 1963 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 166.06 ft below land-surface datum, July 21, 1965; lowest, 228.51 ft below land-surface datum, between July 11 and Sept. 30, 1983.

EXTREMES FOR CURRENT YEAR.--Highest water level, 212.27 ft below land-surface datum, between Dec. 22 and Apr. 22; lowest, 228.51 ft below land-surface datum. between July 11 and Sept. 30.

lowest, 228.51 ft below land-surface datum, between July 11 and Sept. 30.


WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

#### WATER-LEVEL EXTREMES

#### MEASURED WATER LEVEL

|      |     | PERI | COD |       |     |      | HIGHEST<br>WATER<br>LEVEL | LOWEST<br>WATER<br>LEVEL |       | DATI | E    | WATER<br>LEVEL |
|------|-----|------|-----|-------|-----|------|---------------------------|--------------------------|-------|------|------|----------------|
| OCT. | 6,  | 1982 | то  | DEC.  | 22, | 1982 | 216.65                    | 220.88                   | DEC.  | 22,  | 1982 | 216.95         |
| DEC. | 22, | 1982 | TO  | APR.  | 22, | 1983 | 212.27                    | 217.00                   | APR.  | 22,  | 1983 | 213.28         |
| APR. | 22, | 1983 | TO  | JULY  | 11, | 1983 | 212.98                    | 221.09                   | JULY  | 11,  | 1983 | 221.09         |
| JULY | 11, | 1983 | то  | SEPT. | 30, | 1983 | 220.70                    | 228.51                   | SEPT. | 30,  | 1983 | 226.72         |

## NJ-WRD WELL NO. 07-0412



## CAMDEN COUNTY

394922074563302. Local I.D., Elm Tree Farm 3 Obs. NJ-WRD Well Number, 07-0413.
LOCATION.--Lat 39°49'22", long 74°56'30", Hydrologic Unit 02040202, about 200 ft northeast of Thomas Road and about 2 mi northwest of Berlin.
Owner: New Jersey Water Company.

AQUIFER. --Middle aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.
WELL CHARACTERISTICS. --Drilled artesian observation well, diameter 6 in, depth 717 ft, screened 706 to 717 ft.

INSTRUMENTATION .-- Water-level recorder .

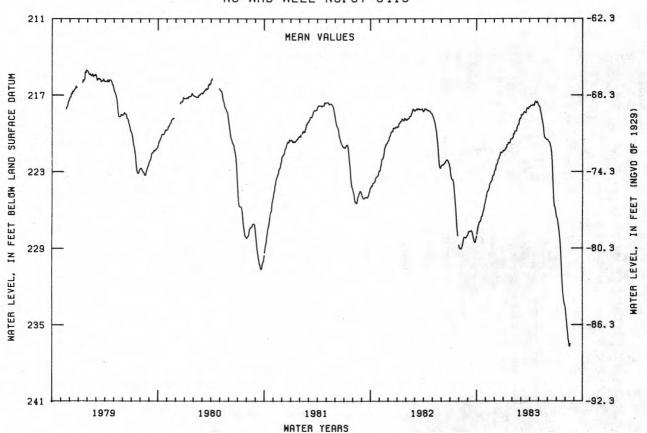
INSTRUMENTATION.--water-level recorder.

DATUM.--Land-surface datum is 148.73 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Top edge of recorder shelf, 0.60 ft above land-surface datum.

PERIOD OF RECORD.--December 1963 to April 1975, March 1977 to current year. Records for 1963 to 1977 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 174.21 ft below land-surface datum, Feb. 6, 1964; lowest, 236.70 ft below land-surface datum, Aug. 15, 1983.


EXTREMES FOR CURRENT YEAR.--Highest water level, 217.48 ft below land-surface datum, Apr. 20; lowest, 236.70 ft below land-surface datum, Aug. 15.

land-surface datum, Aug. 15.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983 MEAN VALUES

| DA Y   | OCT    | NOV    | DEC    | JAN     | FEB      | MAR    | APR    | MAY        | JUN    | JUL    | A UG   | SEP |
|--------|--------|--------|--------|---------|----------|--------|--------|------------|--------|--------|--------|-----|
| 5      | 227.28 | 224.57 | 222.60 | 221.31  | 220.02   | 218.55 | 217.81 | 217.96     | 220.64 | 226.79 | 234.76 |     |
| 10     | 226.91 | 224.37 | 222.33 | 221.13  | 219.83   | 218.40 | 217.81 | 218.57     | 220.94 | 227.54 | 235.94 |     |
| 15     | 226.64 | 223.89 | 221.98 | 220.83  | 219.59   | 218.34 | 217.82 | 219.18     | 221.78 | 228.74 | 236.70 |     |
| 20     | 226.36 | 223.71 | 221.56 | 220.74  | 219.31   | 218.15 | 217.48 | 220.17     | 224.45 | 231.15 |        |     |
| 25     | 225.86 | 223.28 | 221.50 | 220.44  | 218.86   | 218.03 | 217.51 | 220.38     | 225.74 | 232.89 |        |     |
| EOM    | 225.16 | 222.93 | 221.37 | 220.33  | 218.84   | 217.94 | 217.76 |            | 226.34 | 233.61 |        |     |
| MEAN   | 226.52 | 223.95 | 221.96 | 220.83  | 219.56   | 218.27 | 217.71 | 219.32     | 222.92 | 229.76 |        |     |
| WTR YR | 1983   | MEAN 2 | 22.82  | HIGH 21 | 7.48 APR | 20     | LOW    | 236.70 AUG | 15     |        |        |     |





MEASURED WATER LEVEL

## CAMDEN COUNTY

395229074571201. Local I.D., Hutton Hill 1 Obs. NJ-WRD Well Number, 07-0117.
LOCATION.--Lat 39°52129", long 74°57'12", Hydrologic Unit 02040202, about 800 ft northeast of intersection of Kresson and Cropwell Roads, Cherry Hill Township.
Owner: New Jersey Water Company.
AQUIFER.--Middle aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 562 ft, screened 552 to 562 ft.
INSTRUMENTATION.--Water-level extremes recorder. February 1077 to current year. Water-level recorder. August 1967 to

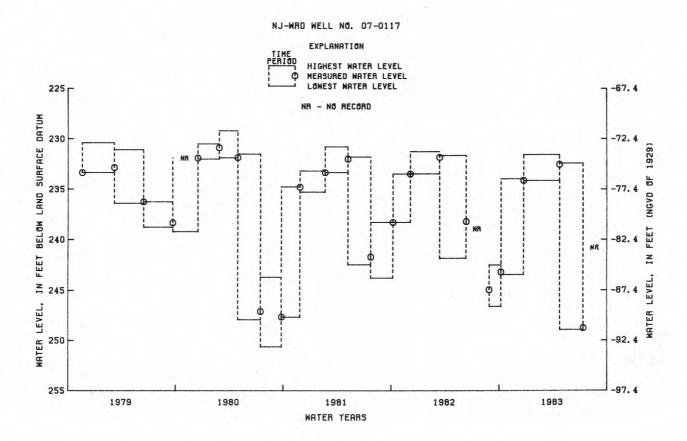
INSTRUMENTATION .-- Water-level extremes recorder, February 1977 to current year. Water-level recorder, August 1967 to April 1975.

WATER-LEVEL EXTREMES

April 1975.

DATUM.--Land-surface datum is 157.61 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 1.89 ft above land-surface datum.


PERIOD OF RECORD.--August 1967 to April 1975, February 1977 to current year. Records for 1967 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 200.77 ft below land-surface datum, Mar. 23, 1968; lowest, 250.65 ft below land-surface datum, between July 15 and Sept. 24, 1980.

EXTREMES FOR CURRENT YEAR.--Highest water level, 231.59 ft below land-surface datum, between Dec. 22 and Apr. 22; lowest, 248.97 ft below land-surface datum, between Apr. 22 and July 11.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

#### HIGHEST LOWEST WATER WATER WATER PERIOD LEVEL LEVEL DATE LEVEL OCT. 6, 1982 TO DEC. 22, 1982 233.98 243.47 DEC. 22, 1982 234.14 DEC. 22, 1982 TO APR. 22, 1983 234.17 APR. 22, 1983 232.56 231.59 APR. 22, 1983 TO JULY 11, 1983 248.80 232.43 248.97 JULY 11, 1983 JULY 11, 1983 TO SEPT. 30, 1983 SEPT. 30, 1983



## CAMDEN COUNTY

395246075043301. Local I.D., Egbert Station Obs. NJ-WRD Well Number, 07-0283. LOCATION.--Lat 39°52'46", long 75°04'34", Hydrologic Unit 02040202, in Camden County Park, about 400 ft south of the corner of Dallas and Sylvan Avenues, Haddon Heights.

Owner: New Jersey Water Company.

AQUIFER.--Lower aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 455 ft, screened 445 to 455 ft.

INSTRUMENTATION.--Water-level extremes recorder, February 1977 to current year. Water-level recorder, July 1963 to August 1975.

August 1975.

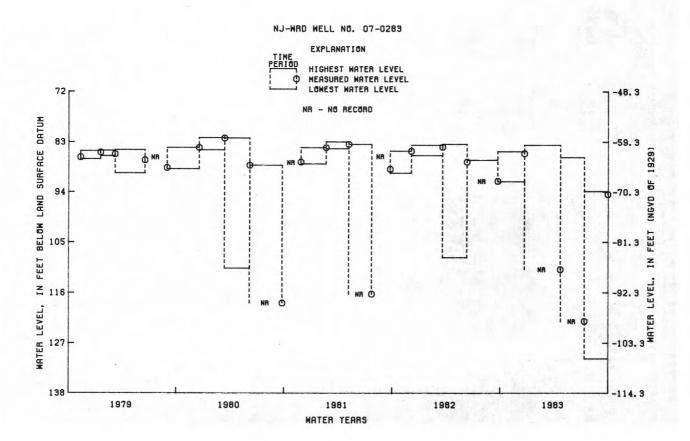
DATUM.--Land-surface datum is 23.66 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 3.16 ft above land-surface datum.

REMARKS.--Water level affected occasionally by nearby pumping.

PERIOD OF RECORD.--July 1963 to August 1975, February 1977 to current year. Periodic manual measurements, September 1975 to January 1977. Records for 1963 to 1982 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 61.93 ft below land-surface datum, Apr. 8, 1964; lowest, 130.41 ft below land-surface datum, between July 12 and Sept. 29, 1983.


EXTREMES FOR CURRENT YEAR. --Highest water level, 83.63 ft below land-surface datum, between Dec. 22 and Apr. 22;

lowest, 130.41 ft below land-surface datum, between July 12 and Sept. 29.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

#### MEASURED WATER LEVEL WATER-LEVEL EXTREMES

|       |     | PERIO   | )     |     |      | HIGHEST<br>WATER<br>LEVEL | LOWEST<br>WATER<br>LEVEL |       | DATI | E    | WATER OC<br>LEVEL |
|-------|-----|---------|-------|-----|------|---------------------------|--------------------------|-------|------|------|-------------------|
| SEPT. | 22, | 1982 TO | DEC.  | 22, | 1982 | 85.05                     | 91.68                    | DEC.  | 22,  | 1982 | 85.51             |
| DEC.  | 22, | 1982 TO | APR.  | 22, | 1983 | 83.63                     |                          | APR.  | 22,  | 1983 | 110.90            |
| APR.  | 22, | 1983 TO | JULY  | 12, | 1983 | 86.34                     |                          | JULY  | 12,  | 1983 | 122.23            |
| JULY  | 12, | 1983 TO | SEPT. | 29, | 1983 | 93.82                     | 130.41                   | SEPT. | 29,  | 1983 | 94.49             |



385616074580001. Local I.D., Traffic Circle Obs. NJ-WRD Well Number, 09-0020. LOCATION.--Lat 38°56'16", long 74°58'00", Hydrologic Unit 02040206, about 2,000 ft south of Sunset Boulevard at the traffic circle in Cape May Point.

Owner: U.S. Geological Survey. AQUIFER .-- Cape May Formation of Pleistocene age.

WELL CHARACTERISTICS. --Drilled water-table observation well, diameter 6 in, depth 20 ft, screened 15 to 20 ft. INSTRUMENTATION. --Water-level extremes recorder, May 1977 to current year. Water-level recorder, January 1967 to

April 1977.

DATUM.--Land-surface datum is 9.12 ft above National Geodetic Vertical Datum of 1929.

DATUM.--Land-surface datum is 9.12 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 3.17 ft above land-surface datum.

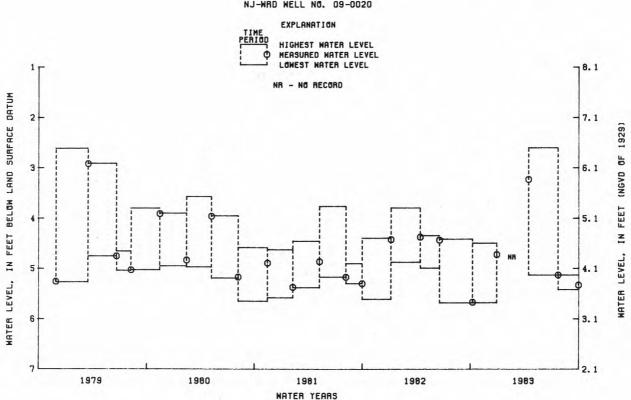
REMARKS.--Water level affected by stage of Lake Lilly.

PERIOD OF RECORD.--January 1967 to current year. Periodic manual measurements, January 1963 to December 1966.

Records for 1963 to 1982 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 2.45 ft below land-surface datum, between Nov. 11, 1977 and Feb. 21, 1978; lowest, 6.12 ft below land-surface datum, Nov. 5-6, 1968.

EXTREMES FOR CURRENT YEAR.--Highest water level, 2.60 ft below land-surface datum, between Apr. 13 and July 22; lowest, 5.68 ft below land-surface datum, between Oct. 7 and Dec. 28.


WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

#### WATER-LEVEL EXTREMES

#### MEASURED WATER LEVEL

| PERIOD OCT. 7, 1982 TO DEC. 28, 1982 |     |      |    |       |     |      | HIGHEST<br>WATER<br>LEVEL | LOWEST<br>WATER<br>LEVEL |       | DATI | E    | WATER<br>LEVEL |
|--------------------------------------|-----|------|----|-------|-----|------|---------------------------|--------------------------|-------|------|------|----------------|
| OCT.                                 | 7,  | 1982 | то | DEC.  | 28, | 1982 | 4.49                      | 5.68                     | DEC.  | 28,  | 1982 | 4.72           |
| DEC.                                 | 28, | 1982 | то | APR.  | 13, | 1983 |                           |                          | APR.  | 13,  | 1983 | 3.23           |
| APR.                                 | 13, | 1983 | то | JULY  | 22, | 1983 | 2.60                      | 5.13                     | JULY  | 22,  | 1983 | 5.13           |
| JULY                                 | 22, | 1983 | то | SEPT. | 29, | 1983 | 5.13                      | 5.42                     | SEPT. | 29,  | 1983 | 5.33           |





385607074555201. Local I.D., West Cape May 1 Obs. NJ-WRD Well Number, 09-0150. LOCATION.--Lat 38°56'07", long 74°55'56", Hydrologic Unit 02040206, on the north side of Sunset Boulevard, West Cape May.

Owner: U.S. Geological Survey.

AQUIFER.--Cohansey Sand of Miocene age.

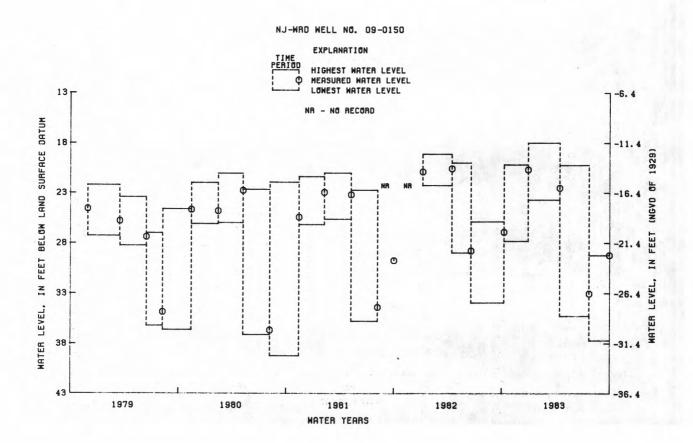
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 293 ft, screened 283 to 293 ft.

INSTRUMENTATION.--Water-level extremes recorder, May 1977 to current year. Water level recorder, July 1957 to December 1972. DATUM.--Land-surface datum is 6.60 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 2.88 ft above land-surface datum.

REMARKS.--Water level affected by tidal fluctuation and nearby pumping.

PERIOD OF RECORD.--July 1957 to December 1972, May 1977 to current year. Periodic manual measurements, February to September 1976. Records for 1957 to 1982 are unpublished and are available in files of New Jersey District Periodic manual measurements, February 1973 Office.


EXTREMES FOR PERIOD OF RECORD. --Highest water level, 16.18 ft below land-surface datum, Apr. 28, 1959; lowest, 41.30 ft below land-surface datum, Sept. 3, 1963.

EXTREMES FOR CURRENT YEAR. --Highest water level, 17.95 ft below land-surface datum, between Dec. 28 and Apr. 13;

lowest, 37.69 ft below land-surface datum, between July 22 and Sept. 29.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

|      |     |         | WAT   | ER-LI | EVEL EXTR | EMES                      |                          | MEASURED WATER LEVEL |          |                |  |  |
|------|-----|---------|-------|-------|-----------|---------------------------|--------------------------|----------------------|----------|----------------|--|--|
|      |     | PERIOD  |       |       |           | HIGHEST<br>WATER<br>LEVEL | LOWEST<br>WATER<br>LEVEL |                      | DATE     | WATER<br>LEVEL |  |  |
| OCT. | 7,  | 1982 TO | DEC.  | 28,   | 1982      | 20.16                     | 27.80                    | DEC.                 | 28, 1982 | 20.65          |  |  |
| DEC. | 28, | 1982 TO | APR.  | 13,   | 1983      | 17.95                     | 23.69                    | APR.                 | 13, 1983 | 22.49          |  |  |
| APR. | 13, | 1983 TO | JULY  | 22,   | 1983      | 20.22                     | 35.26                    | JULY                 | 22, 1983 | 33.03          |  |  |
| JULY | 22, | 1983 TO | SEPT. | 29.   | 1983      | 29.20                     | 37.69                    | SEPT.                | 29, 1983 | 29.20          |  |  |



385804074574201. Local I.D., Higbee Beach 3 Obs. NJ-WRD Well Number, 09-0049. LOCATION.--Lat 38°58'04", long 74°57'42", Hydrologic Unit 02040206, on the North bank of the west end of the Cape May Canal, Lower Township.

Canal, Lower Township.

OWNER: U.S. Geological Survey.

AQUIFER.--Cohansey Sand of Miocene age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 250 ft, screened 241 to 250 ft.

INSTRUMENTATION.--Water-level extremes recorder, May 1977 to current year. Water-level recorder, June 1965 to September 1975.

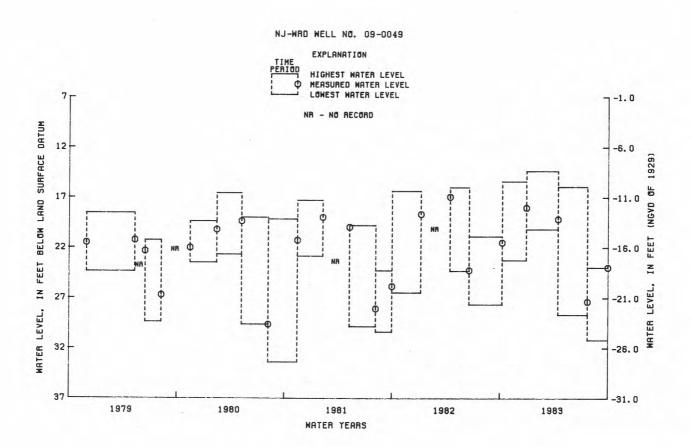
DATUM.--Land-surface datum is 6.00 ft above National Geodetic Vertical Datum of 1929.

Measuring Point: Front edge of cutout in recorder housing, 3.00 ft above land-surface datum.

REMARKS.--Water level affected by tidal fluctuation.

PERIOD OF RECORD.--June 1965 to September 1975, May 1977 to current year. Records for 1975 to 1980 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 13.16 ft below land-surface datum, Dec. 21, 1965; lowest, 34.22 ft below land-surface datum, July 31, 1974.


EXTREMES FOR CURRENT YEAR. --Highest water level, 14.36 ft below land-surface datum, between Dec. 28 and Apr. 13;

lowest, 31.19 ft below land-surface datum, between July 22 and Sept. 29.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

#### WATER-LEVEL EXTREMES MEASURED WATER LEVEL

|      |     | PERIOD  |       |     |      | HIGHEST<br>WATER<br>LEVEL | LOWEST<br>WATER<br>LEVEL |       | DATE     | WATER<br>LEVEL |
|------|-----|---------|-------|-----|------|---------------------------|--------------------------|-------|----------|----------------|
| OCT. | 7,  | 1982 TO | DEC.  | 28, | 1982 | 15.38                     | 23.25                    | DEC.  | 28, 1982 | 18.01          |
| DEC. | 28, | 1982 TO | APR.  | 13, | 1983 | 14.36                     | 20.17                    | APR.  | 13, 1983 | 19.15          |
| APR. | 13, | 1983 TO | JULY  | 22, | 1983 | 15.92                     | 28.68                    | JULY  | 22, 1983 | 27.37          |
| JULY | 22, | 1983 TO | SEPT. | 29, | 1983 | 23.96                     | 31.19                    | SEPT. | 29, 1983 | 23.97          |



WATER-LEVEL EXTREMES

390425074544601. Local I.D., Oyster Lab 4 Obs. NJ-WRD Well Number, 09-0089.
LOCATION.--Lat 39°04'25", long 74°54'46", Hydrologic Unit 02040206, at the Rutgers Oyster Laboratory near Green Creek, Middle Township.
Owner: U.S. Geological Survey.

AQUIFER. -- Cohansey Sand of Miocene age.
WELL CHARACTERISTICS. -- Drilled artesian observation well, diameter 6 in, depth 210 ft, screened 195 to 210 ft.
INSTRUMENTATION. -- Water-level extremes recorder, May 1977 to current year. Water-level recorder, August 1957 to August 1975.

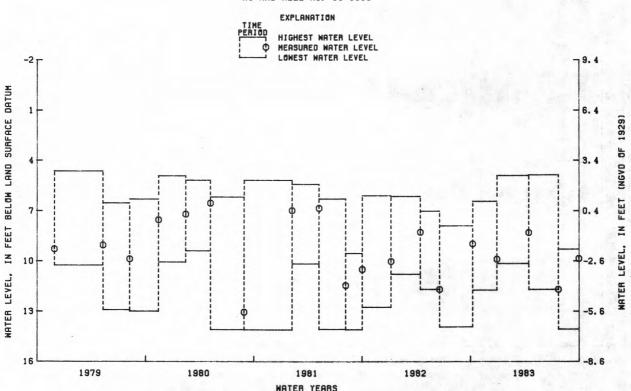
DATUM .-- Land-surface datum is 7.37 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 3.95 ft above land-surface datum.

REMARKS.--Water level affected by tidal fluctuation.

PERIOD OF RECORD.--August 1957 to August 1975, May 1977 to current year. Periodic manual measurements, September 1975 to April 1977. Records for 1957 to 1982 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 2.07 ft below land-surface datum, Apr. 3, 1958; lowest, 14.10 ft below land-surface datum, between Aug. 28, 1980 and Feb. 6, 1981.


EXTREMES FOR CURRENT YEAR. --Highest water level, 4.86 ft below land-surface datum, between Apr. 13 and July 22; lowest, 14.07 ft below land-surface datum, between July 22 and Sept. 29.

## WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

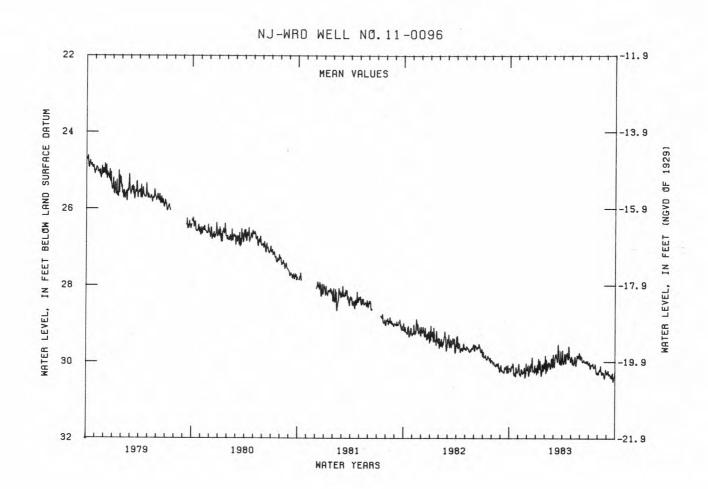
MEASURED WATER LEVEL

#### HIGHEST LOWEST WATER WATER WATER PERIOD LEVEL LEVEL DATE LEVEL OCT. 7, 1982 TO DEC. 28, 1982 6.43 11.74 DEC. 28, 1982 9.89 DEC. 28, 1982 TO APR. 13, 1983 4.90 10.15 APR. 13, 1983 8.30 APR. 13, 1983 TO JULY 22, 1983 4.86 11.70 JULY 22, 1983 11.70 JULY 22, 1983 TO SEPT. 29, 1983 14.07 SEPT. 29, 1983 9.85 9.29

# NJ-WRD WELL NO. 09-0089



## CUMBERLAND COUNTY


391828075120902. Local I.D., Jones Island 2 Obs. NJ-WRD Well Number, 11-0096.
LOCATION.--Lat 39°18'29", long 75°12'08", Hydrologic Unit 02040206, about 1.7 mi south of Cedarville at Jones Island, Lawrence Township.
Owner: Cumberland County.
AQUIFER.--Piney Point aquifer of Eocene age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 4 in, depth 375 ft, screened 365 to 375 ft.
INSTRUMENTATION.--Water-level recorder.
DATUM.--Land-surface datum is 10.10 ft above National Geodetic Vertical Datum of 1929.
Measuring point: Top edge of recorder shelf, 1.90 ft above land-surface datum.
PERIOD OF RECORD.--March 1977 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 19.99 ft below land-surface datum. Mar. 22, 1977: lowest.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 19.99 ft below land-surface datum, Mar. 22, 1977; lowest, 30.56 ft below land-surface datum, Sept. 24, 1983.

EXTREMES FOR CURRENT YEAR. -Highest water level, 29.36 ft below land-surface datum, Mar. 19; lowest, 30.56 ft below land-surface datum, Sept. 24.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983 MEAN VALUES

| DAY                       | OCT                                       | NOV                                       | DEC                              | JAN                              | FEB                                       | MAR                                       | APR                                       | MAY                                       | JUN                                       | JUL                                       | AUG                                       | SEP                                       |
|---------------------------|-------------------------------------------|-------------------------------------------|----------------------------------|----------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|
| 5<br>10<br>15<br>20<br>25 | 30.21<br>30.10<br>30.03<br>30.28<br>30.13 | 30.15<br>30.36<br>30.21<br>30.27<br>30.41 | 30.26<br>30.24<br>29.87<br>30.23 | 30.08<br>29.96<br>30.36<br>30.16 | 30.29<br>30.22<br>30.00<br>30.18<br>29.90 | 30.13<br>29.81<br>29.90<br>29.81<br>29.94 | 30.05<br>29.79<br>29.88<br>29.82<br>29.62 | 29.93<br>30.08<br>29.87<br>30.01<br>29.89 | 29.89<br>30.00<br>29.94<br>30.01<br>29.97 | 30.01<br>30.07<br>30.06<br>30.16<br>30.10 | 30.30<br>30.24<br>30.29<br>30.27<br>30.43 | 30.27<br>30.32<br>30.40<br>30.42<br>30.49 |
| EOM                       | 30.25                                     | 30.20                                     | 30.19                            | 30.08                            | 30.10                                     | 30.00                                     | 29.99                                     | 29.76                                     | 30.06                                     | 30.29                                     | 30.25                                     | 30.26                                     |
| MEAN                      | 30.21                                     | 30.24                                     | 30.17                            | 30.15                            | 30.07                                     | 29.91                                     | 29.88                                     | 29.94                                     | 29.96                                     | 30.12                                     | 30.28                                     | 30.35                                     |
| WTR YR                    | 1983                                      | MEAN                                      | 30.11                            | HIGH 29                          | .54 MAR 1                                 | 9                                         | LOW                                       | 30.51 SEP                                 | 24                                        |                                           |                                           |                                           |



## CUMBERLAND COUNTY

WATER-LEVEL EXTREMES

392219075011301. Local I.D., Orange Street Obs. NJ-WRD Well Number, 11-0141.
LOCATION.--Lat 39°22'19", long 75°01'13", Hydrologic Unit 02040206, about 0.2 mi northeast of Route 47 on Orange Street, Millville.
Owner: Millville City Water Department.
AQUIFER.--Kirkwood-Cohansey aquifer system of Miocene age.

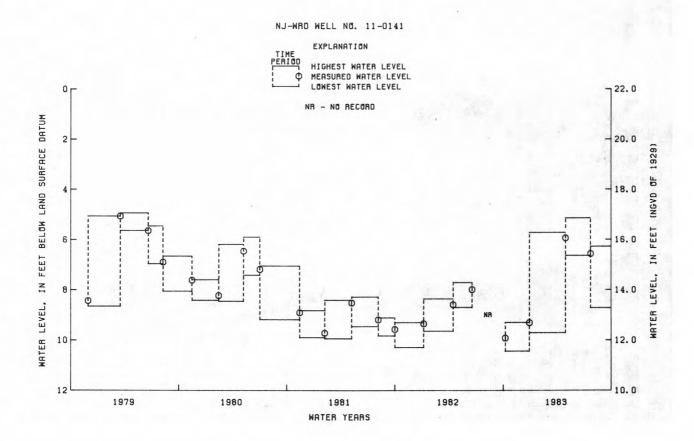
WELL CHARACTERISTICS. --Drilled water-table observation well, diameter 12 in, depth 149 ft, screened 114 to 149 ft. INSTRUMENTATION. --Water-level extremes recorder, March 1977 to current year. Water-level recorder, October 1962 to

INSTRUMENTATION. --Water-level extremes recorder, March 1977 to current year. Water-level recorder, October 1902 to September 1975.

DATUM. --Altitude of land-surface datum is 22 ft, from topographic map.

Measuring point: Front edge of cutout in recorder housing, 4.26 ft above land-surface datum.

PERIOD OF RECORD. --October 1962 to September 1975, March 1977 to current year. Records for 1962 to 1980 are unpublished and are availabe in files of New Jersey District Office.


EXTREMES FOR PERIOD OF RECORD. --Highest water level, 4.94 ft below land-surface datum, between Mar. 16 and June 19, 1979; lowest, 11.37 ft below land-surface datum, Feb. 10, 1966.

EXTREMES FOR CURRENT YEAR .-- Highest water level, 5.14 ft below land-surface datum, between Apr. 28 and July 22; lowest, 10.44 ft below land-surface datum, between Oct. 7 and Dec. 28.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

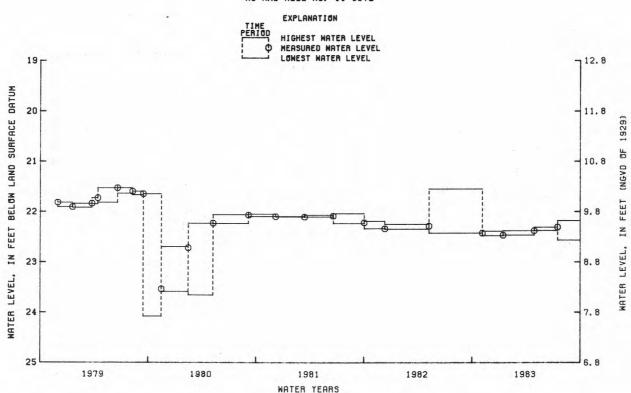
MEASURED WATER LEVEL

#### HIGHEST LOWEST WATER WATER WATER PERIOD DATE LEVEL LEVEL OCT. 7, 1982 TO DEC. 9.31 28, 1982 9.30 10.44 28, 1982 5.94 28, 1983 28, 1982 TO APR. 5.72 9.71 APR. 28, 1983 APR. 28, 1983 TO JULY 22, 1983 5.14 6.64 JULY 22, 1983 6.57 OCT. 5, 1983 8.62 JULY 22, 1983 TO OCT. 5, 1983 6.27 8.72



#### CUMBERLAND COUNTY

392442075191601. Local I.D., Sheppards 1 Obs. NJ-WRD Well Number, 11-0072. LOCATION.--Lat 39°24'42", long 75°19'16", Hydrologic Unit 02040206, near the south end of Sheppards Mill Pond, about 3.5 mi south of Shiloh.


3.5 mi south of Shiloh.
Owner: Cumberland County.
AQUIFER.--Wenonah-Mount Laurel aquifer of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 4 in, depth 638 ft, screened 603 to 623 ft.
INSTRUMENTATION.--Water-level extremes recorder, May 1977 to current year.
DATUM.--Land-surface datum is 31.80 ft above National Geodetic Vertical Datum of 1929.
Measuring point: Front edge of cutout in recorder housing, 1.75 ft above land-surface datum.
PERIOD OF RECORD.--May 1977 to current year. Periodic manual measurements, March 1973 to June 1975. Records for 1973 to 1981 are unpublished and are available in files of New Jersey District Office.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 21.44 ft below land-surface datum, between May 11 and Aug. 12, 1977; lowest, 24.08 ft below land-surface datum, between Sept. 13 and Nov. 14, 1979.
EXTREMES FOR CURRENT YEAR.--Highest water level, 22.18 ft below land-surface datum, between July 15 and Oct. 5, 1983; lowest, 22.57 ft below land-surface datum, between July 15 and Oct. 5, 1983.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

# MEASURED WATER LEVEL WATER-LEVEL EXTREMES

|      |     | PERIOD  |      |     |      | HIGHEST<br>WATER<br>LEVEL | LOWEST<br>WATER<br>LEVEL |      | DATI | Ε    | WATER<br>LEVEL |
|------|-----|---------|------|-----|------|---------------------------|--------------------------|------|------|------|----------------|
| NOV. | 3,  | 1982 TO | JAN. | 12, | 1983 | 22.39                     | 22.48                    | JAN. | 12,  | 1983 | 22.47          |
| JAN. | 12, | 1983 TO | APR. | 27, | 1983 | 22.38                     | 22.47                    | APR. | 27,  | 1983 | 22.38          |
| APR. | 27, | 1983 TO | JULY | 15, | 1983 | 22.31                     | 22.38                    | JULY | 15,  | 1983 | 22.31          |
| JULY | 15, | 1983 TO | OCT. | 5,  | 1983 | 22.18                     | 22.57                    | OCT. | 5,   | 1983 | 22.45          |





## GLOUCESTER COUNTY

394942075131701. Local I.D., Shell Chemical 5 Obs. NJ-WRD Well Number, 15-0296. LOCATION.--Lat 39°49'42", long 75°13'17", Hydrologic Unit 02040202, near the intersection of Mantua Grove Road and Route 295, West Deptford Township.

Owner: Shell Chemical Company.

AQUIFER.--Lower aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 327 ft, screened 321 to 326 ft. WELL CHARACTERISTICS. -- Drilled artesian observation well, diameter of in, department of instrumentation. -- Water-level recorder.

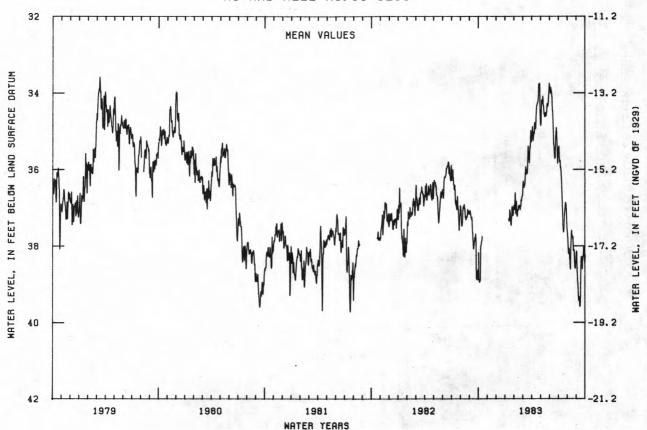
DATUM. -- Land - surface datum is 20.76 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Top edge of recorder shelf, 2.90 ft above land-surface datum.

REMARKS. -- Water level affected by nearby pumping.

PERIOD OF RECORD. - June 1962 to current year. Records for 1962 to 1977 are unpublished

Records for 1962 to 1977 are unpublished and are available in files of New Jersey District Office.


EXTREMES FOR PERIOD OF RECORD.--Highest water level, 27.75 ft below land-surface datum, Dec. 6, 1962; lowest, 40.63 ft below land-surface datum, July 21, 1977.

EXTREMES FOR CURRENT YEAR.--Highest water level, 33.32 ft below land-surface datum, Apr. 27; lowest, 39.93 ft below land-surface datum, Sept. 12.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983 MEAN VALUES

|                                  |                    |      |       |                                  |                                                    |                                                    | LOUD                                               |                                                    |                                                    |                                                    |                                                    |                                                    |
|----------------------------------|--------------------|------|-------|----------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| DAY                              | OCT                | NO   | DV DI | EC JAN                           | FEB                                                | MAR                                                | APR                                                | MAY                                                | JUN                                                | JUL                                                | A UG                                               | SEP                                                |
| 5<br>10<br>15<br>20<br>25<br>EOM | 38.91<br>37.94<br> |      |       | 37.04<br>37.45<br>37.11<br>36.97 | 37.15<br>37.22<br>36.94<br>37.04<br>36.72<br>36.65 | 36.45<br>36.02<br>35.99<br>35.73<br>35.41<br>35.10 | 35.25<br>34.78<br>34.55<br>34.24<br>33.83<br>34.80 | 34.20<br>34.33<br>34.62<br>34.52<br>34.32<br>33.78 | 33.94<br>34.46<br>35.38<br>35.39<br>35.23<br>35.48 | 35.75<br>36.17<br>37.15<br>37.36<br>36.85<br>37.60 | 38.20<br>38.53<br>37.58<br>37.91<br>38.43<br>38.14 | 38.98<br>39.32<br>38.76<br>38.59<br>38.03<br>38.23 |
| MEAN                             |                    |      |       |                                  | 36.93                                              | 35.85                                              | 34.58                                              | 34.34                                              | 34.90                                              | 36.69                                              | 38.11                                              | 38.69                                              |
| WTR YR                           | 1983               | MEAN | 36.42 | HIGH 3                           | 3.74 APR                                           | 27 AND OTH                                         | IERS                                               | I.OW                                               | 39.58 5                                            | SEP 12                                             |                                                    |                                                    |





#### GLOUCESTER COUNTY

395232075094201. Local I.D., Eagle Point 3 Obs. NJ-WRD Well Number, 15-0323. LOCATION.--Lat 39°52'35", long 75°09'50", Hydrologic Unit 02040202, at the Texaco Eagle Point Refinery, West Deptford Township.

Owner: Texaco Incorporated. AQUIFER.--Lower aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.

WELL CHARACTERISTICS. -- Drilled artesian observation well, diameter 8 in, depth 276 ft, screened 255 to 275 ft. INSTRUMENTATION .-- Water-level extremes recorder, April 1981 to current year. Water-level recorder, November 1949 to

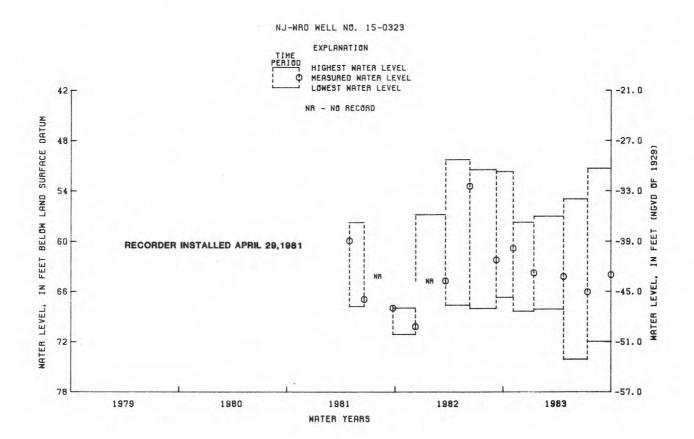
July 1975.

DATUM.--Land-surface datum is 20.96 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Top of casing, 3.00 ft above land-surface datum.

REMARKS.--Water level affected by tidal fluctuation and nearby pumping.

PERIOD OF RECORD.--November 1949 to July 1975, April 1981 to current year. Periodic manual measurements, October 1976 to March 1981. Records for 1975 to 1981 are unpublished and are available in files of New Jersey District Office.


EXTREMES FOR PERIOD OF RECORD. --Highest water level, 37.70 ft below land-surface datum, Nov. 25, 1950; lowest, 87.30 ft below land-surface datum, June 28, 1963.

EXTREMES FOR CURRENT YEAR. --Highest water level, 51.31 ft below land-surface datum, between July 12 and Sept. 29;

lowest, 74.09 ft below land-surface datum, between Apr. 22 and July 12.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

#### WATER-LEVEL EXTREMES MEASURED WATER LEVEL HIGHEST LOWEST WATER WATER WATER PERTOD LEVEL LEVEL DATE LEVEL NOV. 3, 1982 TO JAN. 12, 1983 57.74 JAN. 63.79 68.36 12, 1983 12, 1983 TO APR. 22, 1983 64.21 57.02 68.10 22, 1983 22, 1983 TO JULY 12, 1983 APR. 54.97 74.09 JULY 12, 1983 66.05 JULY 12, 1983 TO SEPT. 29, 1983 63.99 51.31 71.96 SEPT. 29, 1983



## HUNTERDON COUNTY

402644074563601. Local I.D., Bird Obs. NJ-WRD Well Number, 19-0002.
LOCATION.--Lat 40°26'44", long 74°56'36", Hydrologic Unit 02040105, near U.S. Post Office, Sergeantsville.
Owner: Phillip Fleming.
AQUIFER.--Stockton Formation of Triassic age.
WELL CHARACTERISTICS.--Dug water-table observation well, diameter 3 ft, depth 21 ft, lined with stone.

INSTRUMENTATION. -- Water-level recorder.

INSTRUMENTATION.--Water-level recorder.

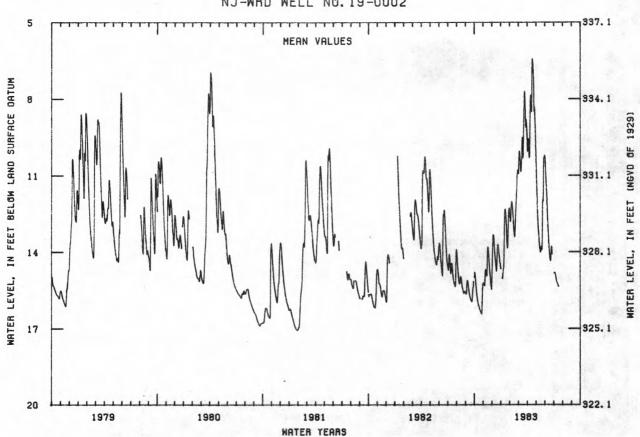
DATUM.--Land-surface datum is 342.08 ft, revised, above National Geodetic Vertical Datum of 1929.

Measuring point: Top edge of recorder shelf, 1.50 ft above land-surface datum.

REMARKS.--Water-quality records for 1983 are published elsewhere in this report.

PERIOD OF RECORD.--June 1965 to July 1970, May 1977 to current year. Periodic manual measurements, September 1970 to September 1976. Records for 1965 to 1976 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 6.37 ft below land-surface datum, Apr. 18, 1983; lowest, 17.04 ft below land-surface datum, Jan. 26-28, 1981.


EXTREMES FOR CURRENT YEAR.--Highest water level, 6.37 ft below land-surface datum, Apr. 18; lowest, 16.42 ft below land-surface datum. Oct. 25-27.

land-surface datum, Oct. 25-27.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983 MEAN VALUES

| DAY    | OCT   | NOV   | DEC   | JAN   | FEB        | MAR   | APR  | MAY       | JUN   | JUL       | A UG | SEP |
|--------|-------|-------|-------|-------|------------|-------|------|-----------|-------|-----------|------|-----|
| 5      | 15.13 | 15.32 | 13.31 | 15.01 | 12.10      | 10.03 | 9.57 | 11.99     | 11.26 | 14.80     |      |     |
| 10     | 15.74 | 14.72 | 14.01 | 14.59 | 12.42      | 10.84 | 9.16 | 13.22     | 12.62 | 15.07     |      |     |
| 15     | 16.08 | 14.01 | 14.66 |       | 13.23      | 9.50  | 8.45 | 13.94     | 13.74 | 15.27     |      |     |
| 20     | 16.26 | 14.28 | 13.72 |       |            | 8.98  | 6.62 | 13.80     | 14.36 |           |      |     |
| 25     | 16.41 | 15.03 | 14.11 |       | 10.97      | 8.56  | 8.30 | 11.94     | 13.91 | NO 100 00 |      |     |
| EOM    | 15.22 | 15.08 | 14.65 |       |            | 9.39  | 9.90 | 10.20     |       |           |      |     |
| MEAN   | 15.78 | 14.79 | 14.08 | 13.30 | 12.29      | 9.63  | 8.58 | 12.46     | 12.89 |           |      |     |
| WTR YR | 1983  | MEAN  | 12.78 | HIGH  | 6.42 APR 1 | 8     | LOW  | 16.42 OCT | 26    |           |      |     |





MEASURED WATER LEVEL

## SALEM COUNTY

393348075275701. Local I.D., Salem 1 Obs. NJ-WRD Well Number, 33-0251. LOCATION.--Lat 39°33'48", long 75°27'55", Hydrologic Unit 02040206, about 300 ft south of the intersection of Elm and Magnolia Streets, Salem.

Owner: U.S. Geological Survey.

AQUIFER.--Middle aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.

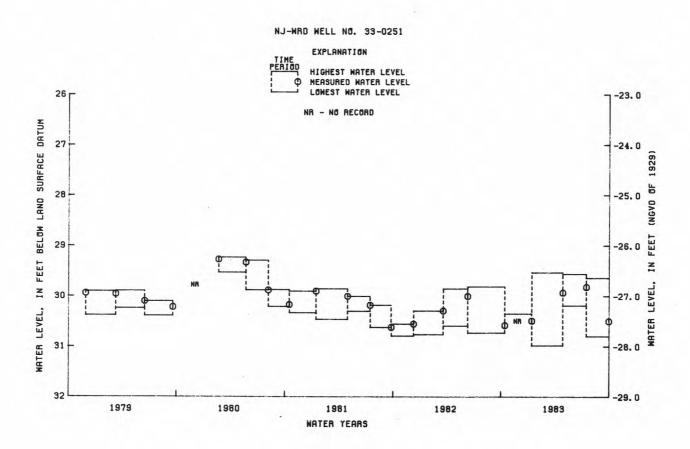
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 709 ft, screened 699 to 709 ft.

INSTRUMENTATION.--Water-level extremes recorder, May 1977 to current year. Water-level recorder, December 1965 to August 1975.

WATER-LEVEL EXTREMES

DATUM.--Land-surface datum is 3.00 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 2.87 ft above land-surface datum.


PERIOD OF RECORD.--December 1965 to August 1975, May 1977 to current year. Records for 1965 to 1980 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 14.97 ft below land-surface datum, Dec. 13, 1965; lowest, 30.98 ft below land-surface datum, between Jan. 12 and Apr. 27, 1983.

EXTREMES FOR CURRENT YEAR.—Highest water level, 29.53 ft below land-surface datum, between Jan. 12 and Apr. 27; lowest, 30.98 ft below land-surface datum, between Jan. 12 and Apr. 27.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

#### HIGHEST LOWEST WATER WATER WATER LEVEL PERIOD DATE LEVEL LEVEL. OCT. 13, 1982 TO JAN. 12, 1983 30.35 JAN. 30.49 12, 1983 27, 1983 29.93 JAN. 12, 1983 TO APR. 27, 1983 29.53 30.98 APR. 27, 1983 TO JULY 15, 1983 29.56 JULY 15, 1983 29.82 30.19 30.50 SEPT. 29, 1983 JULY 15, 1983 TO SEPT. 29, 1983 29.64 30.80



#### SALEM COUNTY

393348075275703. Local I.D., Salem 3 Obs. NJ-WRD Well Number, 33-0253.

LOCATION. -- Lat 39°33'48", long 75°27'55", Hydrologic Unit 02040206, about 300 ft south of the intersection of Elm and Magnolia Streets, Salem.

Owner: U.S. Geological Survey.

AQUIFER. -- Upper aquifer, Potomac-Haritan-Magothy aquifer system of Cretaceous age.
WELL CHARACTERISTICS. -- Drilled artesian observation well, diameter 6 in, depth 340 ft, screened 335 to 340 ft.
INSTRUMENTATION. -- Water-level extremes recorder, May 1977 to current year. Water-level recorder, November 1965 to August 1975.

August 1975.

DATUM.--Land-surface datum is 3.00 ft above National Geodetic Vertical Datum of 1929.

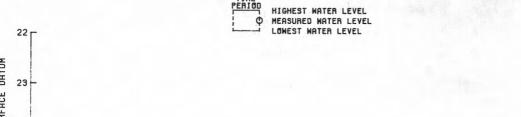
Measuring point: Front edge of cutout in recorder housing, 2.30 ft above land-surface datum.

PERIOD OF RECORD.--November 1965 to August 1975, May 1977 to current year. Records for 1965 to 1981 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 12.28 ft below land-surface datum, Feb. 13, 1966; lowest, 26.69 ft below land-surface datum, between Oct. 13, 1982 and Jan. 12, 1983.

EXTREMES FOR CURRENT YEAR.--Highest water level, 25.64 ft below land-surface datum, between Jan. 12 and Apr. 27;

lowest, 26.69 ft below land-surface datum, between Oct. 13 and Jan. 12.


WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

#### MEASURED WATER LEVEL WATER-LEVEL EXTREMES

| \$ 1.5<br>1.0 | PERIOD            |          | HIGHEST<br>WATER<br>LEVEL | LOWEST<br>WATER<br>LEVEL |       | DATE     | WATER<br>LEVEL |
|---------------|-------------------|----------|---------------------------|--------------------------|-------|----------|----------------|
| OCT.          | 13, 1982 TO JAN.  | 12, 1983 | 26.08                     | 26.69                    | JAN.  | 12, 1983 | 26.18          |
| JAN.          | 12, 1983 TO APR.  | 27, 1983 | 25.64                     | 26.61                    | APR.  | 27, 1983 | 25.95          |
| APR.          | 27, 1983 TO JULY  | 15, 1983 | 25.77                     | 26.21                    | JULY  | 15, 1983 | 25.95          |
| JULY          | 15, 1983 TO SEPT. | 29, 1983 | 25.82                     | 26.55                    | SEPT. | 29, 1983 | 26.31          |

NJ-WRD WELL NO. 33-0253 EXPLANATION

-19.0



SURFACE DATUM -20.0 19291 P 24 -21.0 LAND CNGVD BELOW FEET 25 -22.0 FEET Z LEVEL, Z 26 --23. 0 WATER LEVEL, WATER 27 -24. 0 28 -25. 0 1979 1980 1981 1982 1983 WATER YEARS

#### SALEM COUNTY

393348075275702. Local I.D., Salem 2 Obs. NJ-WRD Well Number, 33-0252. LOCATION.--Lat 39°33'48", long 75°27'55", Hydrologic Unit 02040206, about 300 ft south of the intersection of Elm and Magnolia Streets, Salem.

Magnolia Streets, Salem.
Owner: U.S. Geological Survey.

AQUIFER.--Wenonah-Mount Laurel aquifer of Cretaceous age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 4 in, depth 96 ft, screened 91 to 96 ft.

INSTRUMENTATION.--Water-level extremes recorder, May 1977 to current year. Water-level recorder, November 1965 to

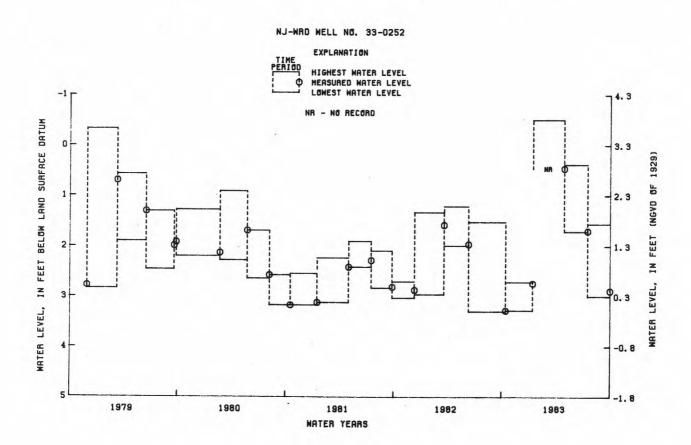
WATER-LEVEL EXTREMES

July 1975.

DATUM.--Land-surface datum is 3.25 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 2.77 ft above land-surface datum.

PERIOD OF RECORD.--November 1965 to July 1975, May 1977 to current year. Records for 1965 to 1981 are unpublished and are available in files of New Jersey District Office.


EXTREMES FOR PERIOD OF RECORD. --Highest water level, 0.51 ft above land-surface datum, between Jan. 12 and Apr. 27, 1983; lowest, 6.45 ft below land-surface datum, Sept. 9, 1966.

EXTREMES FOR CURRENT YEAR. -- Highest water level, 0.51 ft above land-surface datum, between Jan. 12 and Apr. 27; lowest, 3.28 ft below land-surface datum, between Oct. 13 and Jan. 12.

# WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983 MEASURED WATER LEVEL

|      |     | PER  | IOD |       |     |      | HIGHEST<br>WATER<br>LEVEL | LOWEST<br>WATER<br>LEVEL |       | DATI | Ξ    | WATER<br>LEVEL |
|------|-----|------|-----|-------|-----|------|---------------------------|--------------------------|-------|------|------|----------------|
| OCT. | 13, | 1982 | TO  | JAN.  | 12, | 1983 | 2.71                      | 3.28                     | JAN.  | 12,  | 1983 | 2.74           |
| JAN. | 12, | 1983 | TO  | APR.  | 27, | 1983 | -0.51*                    |                          | APR.  | 27,  | 1983 | 0.46           |
| APR. | 27, | 1983 | TO  | JULY  | 15, | 1983 | 0.38                      | 1.71                     | JULY  | 15,  | 1983 | 1.70           |
| JULY | 15, | 1983 | TO  | SEPT. | 29, | 1983 | 1.56                      | 3.00                     | SEPT. | 29,  | 1983 | 2.89           |

<sup>\*</sup>Water level above land surface.



## SALEM COUNTY

394037075191501. Local I.D., Point Airy Obs. NJ-WRD Well Number, 33-0187. LOCATION.--Lat 39°40'37", long 75°19'14", Hydrologic Unit 02040206, at intersection of Point Airy and Woodstown-Swedesboro Roads, 1 mi north of Woodstown Borough boundary.

Owner: U.S. Geological Survey.

AQUIFER.--Middle aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 672 ft, screened 664 to 672 ft.

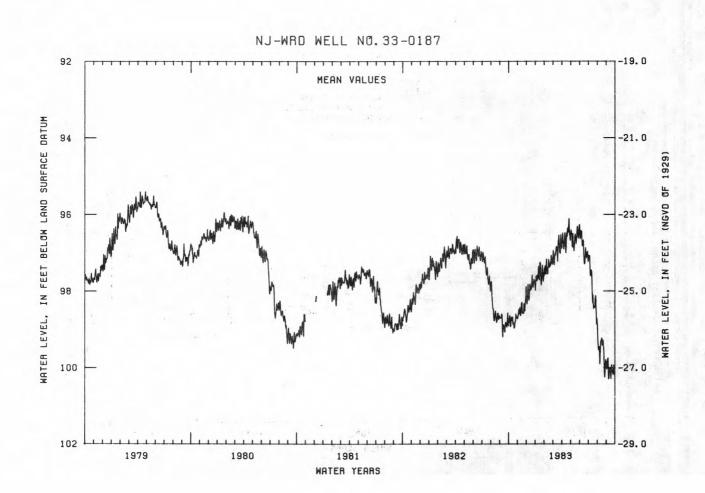
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 572 it, screened 504 to 572 it.

INSTRUMENTATION.--Water-level recorder.

DATUM.--Land-surface datum is 72.97 ft, revised, above National Geodetic Vertical Datum of 1929.

Measuring point: Top of 6 inch casing, 1.80 ft above land-surface datum.

REMARKS.--Water level affected by nearby pumping.


PERIOD OF RECORD.--February 1959 to August 1975, March 1977 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 78.55 ft below land-surface datum, Mar. 6, 1959; lowest, 100.52 ft below land-surface datum, Aug. 6-7, 1977.

EXTREMES FOR CURRENT YEAR.--Highest water level, 96.01 ft below land-surface datum, Apr. 24-25; lowest, 100.40 ft below land-surface datum, Aug. 26, Sept. 8, and Sept. 16.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

|                                  |                                                    |                                                    |                                           |                                           |                                                    | PIEAN V                                            | ALUED                                     |                         |                                                    |                                                    |                                                     |                                                         |
|----------------------------------|----------------------------------------------------|----------------------------------------------------|-------------------------------------------|-------------------------------------------|----------------------------------------------------|----------------------------------------------------|-------------------------------------------|-------------------------|----------------------------------------------------|----------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------|
| DAY                              | OCT                                                | NOV                                                | DEC                                       | JAN                                       | FEB                                                | MAR                                                | APR                                       | MAY                     | JUN                                                | JUL                                                | AUG                                                 | SEP                                                     |
| 5<br>10<br>15<br>20<br>25<br>EOM | 98.78<br>98.73<br>98.87<br>98.96<br>98.60<br>98.72 | 98.47<br>98.64<br>98.29<br>98.58<br>98.52<br>98.17 | 97.92<br>98.16<br>97.95<br>97.58<br>97.77 | 97.73<br>97.47<br>97.28<br>97.84<br>97.51 | 97.56<br>97.55<br>97.25<br>97.34<br>97.20<br>97.15 | 97.31<br>97.06<br>96.95<br>96.71<br>96.93<br>96.86 | 96.76<br>96.55<br>96.84<br>96.35<br>96.10 | 96.86<br>96.59<br>96.66 | 96.44<br>96.82<br>96.94<br>97.04<br>96.99<br>97.23 | 97.07<br>97.44<br>98.30<br>98.41<br>98.12<br>98.83 | 99.54<br>99.68<br>99.24<br>99.29<br>100.16<br>99.83 | 99.76<br>100.14<br>100.10<br>100.10<br>100.04<br>100.11 |
| MEAN                             | 98.77                                              | 98.45                                              | 97.92                                     | 97.56                                     | 97.33                                              | 96.93                                              | 96.58                                     | 96.57                   | 96.85                                              | 97.95                                              | 99.57                                               | 100.04                                                  |
| WTR YR                           | 1983                                               | MEAN                                               | 97.88                                     | HIGH 9                                    | 6.10 APR                                           | 25                                                 | LOW                                       | 100.29 SEP              | 8                                                  |                                                    |                                                     |                                                         |



## WARREN COUNTY

405050075033201. Local I.D., Hoffmann La Roche 4 Obs. NJ-WRD Well Number, 41-0013.
LOCATION.--Lat 40°50'50", long 75°03'32", Hydrologic Unit 02040105, 1 mi northeast of Belvidere on Route 46.
Owner: Hoffmann La Roche, Incorporated.
AQUIFER.--Stratified drift of Pleistocene age.

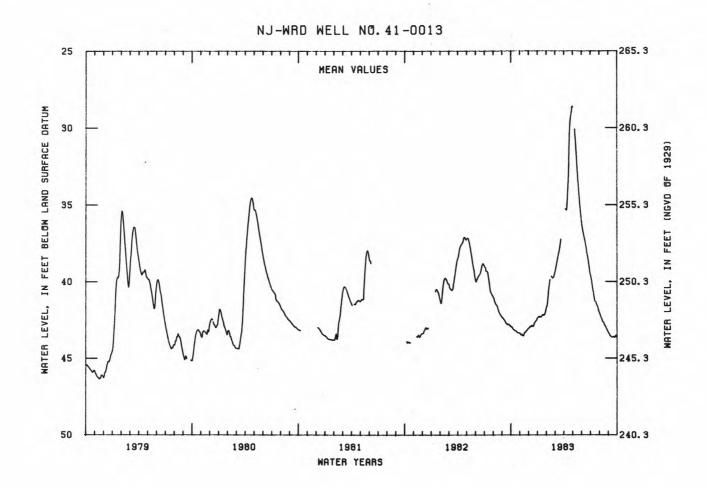
WELL CHARACTERISTICS .-- Drilled semi-artesian observation well, diameter 8 in, depth 87 ft, screened 67 to 87 ft. INSTRUMENTATION .-- Water-level recorder .

INSTRUMENTATION. -- water-level recorder.

DATUM. -- Land-surface datum is 290.30 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Top edge of recorder shelf, 2.20 ft above land-surface datum.

REMARKS. -- Water level affected by stage of Delaware River.


PERIOD OF RECORD. -- September 1960 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 28.59 ft below land-surface datum, Apr. 30, 1983; lowest, 46.59 ft below land-surface datum, Sept. 18, 1977.

EXTREMES FOR CURRENT YEAR. -- Highest water level, 28.59 ft below land-surface datum, Apr. 30; lowest, 43.65 ft below land-surface datum, Sept. 20-21.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

|                     |                                  |                                  |                                  |                                  |                             | MEAN VA                          | LUES                    |                         |                                  |                                  |                                  |                                  |
|---------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|-----------------------------|----------------------------------|-------------------------|-------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
| DAY                 | OCT                              | NOV                              | DEC                              | JAN                              | FEB                         | MAR                              | APR                     | MAY                     | JUN                              | JUL                              | A UG                             | SEP                              |
| 5<br>10<br>15<br>20 | 42.98<br>43.13<br>43.21<br>43.26 | 43.49<br>43.53<br>43.42<br>43.29 | 42.95<br>42.92<br>42.93<br>42.72 | 42.29<br>42.31<br>42.21<br>42.16 | 41.02<br>40.10<br><br>39.76 | 38.99<br>38.47<br>38.01<br>37.41 | 35.28<br>33.56<br>30.32 | 30.68<br>32.26<br>33.70 | 36.69<br>37.14<br>37.64<br>38.25 | 39.92<br>40.59<br>41.18<br>41.34 | 42.26<br>42.49<br>42.66<br>42.86 | 43.47<br>43.59<br>43.62<br>43.63 |
| 25<br>EOM           | 43.34<br>43.37                   | 43.17<br>43.04                   | 42.56<br>42.37                   | 42.11<br>41.64                   | 39.64<br>39.42              |                                  | 29.14<br>28.60          | 34.91<br>36.05          | 38.81<br>39.47                   | 41.59<br>42.00                   | 43.05<br>43.30                   | 43.53<br>43.63                   |
| MEAN<br>WTR YR      | 43.20<br>1983                    | 43.34<br>MEAN 40                 | 42.78<br>.31 HI                  | 42.16<br>GH 28.                  | 40.19<br>60 APR             | 38.37                            | 31.91<br>LOW 4          | 33.18<br>13.65 SEF      | 37.78                            | 40.97                            | 42.70                            | 43.56                            |



# WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

# BURLINGTON COUNTY

| WELL LOCAL<br>NUMBER IDENTIFIER | LATITUDE                                          | LONGITUE                                            | ELEV. LAND SURFAC DATUM ( ABOVE NGVD)                              | E<br>FT. SCRE                                                 | RVAL L                                                        | DLOGIC                                                             | SAMPLE          | TEMPER-<br>ATURE<br>(DEG C) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(UMHOS) |                                                    |
|---------------------------------|---------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------|-----------------|-----------------------------|---------------------------------------------------|----------------------------------------------------|
| 648 WILLINGBORO MUA 3 OBS       | 40 01 03                                          | 074 54 0                                            | 9 34.00                                                            | 306-                                                          | 316 211                                                       | MRPAM 8                                                            | 3-06-09         | 15.0                        | 230                                               |                                                    |
| LOCAL<br>IDENTIFIER             | PH<br>(STAND-<br>ARD<br>UNITS)                    | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3)              | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)                       | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)          | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)                  | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)                | FET-FLD         | RIDE,                       | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)     | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F) |
| WILLINGBORO MUA 3 OBS           | 7.0                                               | 89                                                  | 27                                                                 | 5.2                                                           | 7.3                                                           | 5.6                                                                | 130             | 2.2                         | 25                                                | <.10                                               |
| LOCAL<br>IDENTIFIER             | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2) | ALKA-<br>LINITY<br>LAB<br>(MG/L<br>AS<br>CACO3)     | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>NO2+NO3<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N) |                 | DIS-<br>SOLVED<br>(UG/L     | ARSENIC<br>DIS-<br>SOLVED<br>(UG/L<br>AS AS)      | CADMIUM<br>DIS-<br>SOLVED<br>(UG/L<br>AS CD)       |
| WILLINGBORO MUA 3 OBS           | 9.3                                               | 76                                                  | 121                                                                | <.010                                                         | .200                                                          | 20                                                                 | .18             | <10                         | <1                                                | 1                                                  |
| LOCAL<br>I DENTIFIE             | R                                                 | CHRO-<br>MIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CR) | COPPER,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CU)                       | IRON,<br>DIS-<br>SOLVED<br>(UG/L<br>AS FE)                    | LEAD,<br>DIS-<br>SOLVED<br>(UG/L<br>AS PB)                    | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(UG/L<br>AS MN)               | MERCURY<br>DIS- | DIS-                        | PHENOLS<br>TOTAL<br>(UG/L)                        |                                                    |
| WILLINGBORO MUA 3               | OBS                                               | <1                                                  | 6                                                                  | 7500                                                          | 7                                                             | 120                                                                | <.1             | 3                           | 4                                                 |                                                    |

Geologic unit (aquifer):

211MRPAM - Middle aquifer, Potomac-Raritan-Magothy aquifer system

# WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

# CUMBERLAND COUNTY

| WELL<br>NUMBE | LOCAL<br>R IDENTIFIER     | LATITUDE | LONGITUDE | ELEV. OF<br>LAND<br>SURFACE<br>DATUM (FT.<br>ABOVE<br>E NGVD) | SCREENED<br>INTERVAL<br>(FT) | GEOLOGIC<br>UNIT | DATE<br>OF<br>SAMPLE | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(UMHOS) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL) |
|---------------|---------------------------|----------|-----------|---------------------------------------------------------------|------------------------------|------------------|----------------------|---------------------------------------------------|-----------------------------------------------------|
| 52            | FORTESCUE REALTY 4        | 39 14 20 | 075 10 23 | 3 8                                                           | 283-303                      | 121CKKD          | 83-09-01             | 230                                               | 5.9                                                 |
| 326           | STANGER, GEORGE           | 39 16 17 | 075 13 55 | 5 5                                                           | 440*                         | 124PNPN          | 83-09-01             | 760+                                              | 300+                                                |
| 54            | GANDY, MILES-GANDYS BEACH | 39 16 18 | 075 13 54 |                                                               | 378-402                      | 124PNPN          | 83-09-01             | 3850‡                                             | 1100‡                                               |
| 256           | MYERS, H.                 | 39 16 19 | 075 13 57 |                                                               | 399-409                      | 124PNPN          | 83-09-01             | 1050+                                             | 200†                                                |
| 343           | NEIL, A.                  | 39 16 19 | 075 14 05 | 5 5                                                           | 459*                         | 124PNPN          | 83-09-01             | 620                                               | 55                                                  |
| 337           | COVE ROAD WATER ASSOC.    | 39 16 22 | 075 14 14 | 5                                                             | 373-393                      | 124PNPN          | 83-09-02             | 640                                               | 55                                                  |
| 338           | MAZZOLA, JOSEPH           | 39 16 23 | 075 14 18 | 3 5                                                           | 400*                         | 124PNPN          | 83-09-01             | 640                                               | 60                                                  |
| 56            | MONEY ISL MARINA 1        | 39 17 04 | 075 14 15 | 5 4                                                           | 350-370                      | 124PNPN          | 83-09-02             | 720                                               | 77                                                  |
| 92            | BAY PT ROD & GUN CLUB 2   | 39 17 46 | 075 15 10 | 5                                                             | 397-417                      | 124PNPN          | 83-09-02             | 760                                               | 79<br>70                                            |
| 61            | SEA BREEZE TAVERN 2       | 39 19 26 | 075 19 21 | 4                                                             | 281-354                      | 124PNPN          | 83-09-02             | 710                                               | 70                                                  |

Geologic unit (aquifer):

121CKKD - Kirkwood-Cohansey aquifer system 124PNPN - Piney Point aquifer

<sup>\*</sup> Total depth of well. ‡ Tests in January 1984 indicate casing break. † Data may reflect casing break in well no. 54.

# WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

# GLOUCESTER COUNTY

| WELL<br>NUMBE                  | LOCAL<br>R IDENTIFIER                                                                                                               | LATITUDE                                                 |                                                               | ELEV. OF<br>LAND<br>SURFACE<br>DATUM (FT.<br>ABOVE<br>NGVD) | SCREENED<br>INTERVAL<br>(FT)                        | GEOLOGIC<br>UNIT                                                   | DATE<br>OF<br>SAMPLE                                     | TEMPER-<br>ATURE<br>(DEG C)          | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(UMHOS) | PH (UNITS)                      | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL) |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------|---------------------------------------------------|---------------------------------|-----------------------------------------------------|
| 1<br>3<br>361<br>60<br>422     | CLAYTON BORO WD 3<br>CLAYTON BORO WD 4<br>GLASSBORO BORO WD 5<br>GLASSBORO BORO WD 3<br>PITMAN BORO WD P4                           | 39 39 12<br>39 40 15<br>39 41 41<br>39 42 06<br>39 43 45 | 075 05 22<br>075 05 58<br>075 07 10<br>075 07 58<br>075 08 04 | 133<br>140<br>140<br>150                                    | 746-800<br>670-740<br>600-657<br>562-612<br>498-568 | 211MRPAU<br>211MRPAU<br>211MRPAU<br>211MRPAU<br>211MRPAU           | 83-08-30<br>83-08-30<br>83-08-30<br>83-08-30<br>83-08-30 | 20.0<br>19.5<br>18.5<br>18.0<br>17.0 | 965<br>870<br>615<br>670<br>475                   | 8.4<br>8.4<br>8.4<br>8.3        | 140<br>110<br>60<br>66<br>44                        |
| 130<br>236<br>189<br>192       | SO JERSEY WS CO 3<br>SWEDESBORO BORO WD 3<br>MANTUA MUA 2 (SEWELL 1)<br>MANTUA MUA 5 (EDENWD 1)                                     | 39 44 08<br>39 44 34<br>39 46 02<br>39 46 41             | 075 13 30<br>075 18 43<br>075 08 23<br>075 11 09              | 35<br>75<br>80<br>88<br>88                                  | 234-265<br>241-312<br>352-377<br>315-337<br>315-337 | 21 1MRPAU<br>21 1MRPAU<br>21 1MRPAU<br>21 1MRPAU<br>21 1MRPAU      | 83-08-30<br>83-09-08<br>83-08-30<br>83-01-04<br>83-08-30 | 16.0<br>14.5<br>14.5<br>15.0         | 1000<br>377<br>425<br>450<br>498                  | 8.2<br>7.2<br>8.2<br>8.3<br>8.0 | 160<br>46<br>27<br>41<br>45                         |
| 193<br>194<br>158              | MANTUA MUA 3 (MANT WC2)<br>MANTUA MUA 4 (MANT WC3)<br>MONSANTO CHEM WEST 2                                                          | 39 47 12<br>39 47 32<br>39 47 33                         | 075 10 08<br>075 10 37<br>075 23 51                           | 65<br>10<br>10<br>11<br>11                                  | 295-317<br>233-265<br>233-265<br>57- 82<br>57- 82   | 211MRPAU<br>211MRPAU<br>211MRPAU<br>211MRPAM<br>211MRPAM           | 83-01-04<br>83-01-04<br>83-08-30<br>82-10-19<br>83-09-08 | 15.0<br>11.0<br><br>14.0<br>14.0     | 410<br>505<br>475<br>1030<br>990                  | 8.3<br>8.2<br>8.1<br>6.5<br>6.5 | 30<br>42<br>42<br>290<br>280                        |
| 159<br>161<br>163<br>275       | MONSANTO CHEM EAST 1 MONSANTO CHEM OBS 1 MONSANTO CHEM OBS 3 WENONAH BORO WD 2                                                      | 39 47 36<br>39 47 39<br>39 47 47<br>39 47 51             | 075 23 44<br>075 22 32<br>075 24 10<br>075 09 12              | 11<br>11<br>5<br>5                                          | 56- 81<br>56- 81<br>70- 90<br>95-100<br>268-310     | 21 1MR PAM<br>21 1MR PAM<br>21 1MR PAM<br>21 1MR PAM<br>21 1MR PAU | 82-10-19<br>83-09-08<br>82-10-20<br>82-10-28<br>83-09-08 | 13.5<br>14.0<br>13.5<br>14.5<br>15.0 | 1150<br>1100<br>127<br>980<br>335                 | 6.4<br>6.6<br>6.5<br>6.7<br>7.9 | 290<br>300<br>7.8<br>140<br>24                      |
| 166<br>167<br>380              | PENNS GROVE WC-BRIDGPT 2 MONSANTO CHEM 3 MONSANTO CHEM OBS 2                                                                        | 39 47 55<br>39 47 27<br>39 47 57                         | 075 21 08<br>075 23 19<br>075 23 46                           | 20<br>20<br>10<br>10<br>5                                   | 65- 85<br>65- 85<br>64- 94<br>64- 94<br>71- 76      | 211MRPAM<br>211MRPAM<br>211MRPAM<br>211MRPAM<br>211MRPAM           | 82-12-22<br>83-09-08<br>82-10-19<br>83-09-08<br>82-10-28 | 13.5<br>13.5<br>13.0<br>13.5<br>14.5 | 200<br>182<br>635<br>700<br>1370                  | 4.7<br>5.0<br>6.4<br>6.3<br>6.8 | 14<br>15<br>170<br>200<br>340                       |
| 276<br>355<br>16<br>283<br>284 | W DEPTFORD TWP WD 4<br>E GREENWICH TWP WD 3<br>DEPTFORD TWP MUA 1<br>SHELL CHEM CO 3<br>SHELL CHEM CO 4                             | 39 48 21<br>39 48 22<br>39 48 39<br>39 49 19<br>39 49 19 | 075 10 26<br>075 12 47<br>075 09 11<br>075 12 56<br>075 12 56 | 60<br>42<br>70<br>30<br>30                                  | 242-288<br>205-245<br>252-273<br>358-383<br>127-157 | 21 1MR PAU<br>21 1MR PAU<br>21 1MR PAU<br>21 1MR PAL<br>21 1MR PAU | 82-12-28<br>83-09-08<br>82-12-28<br>83-08-31<br>83-08-31 | 14.5<br>14.5<br>14.0<br>15.0         | 383<br>410<br>272<br>750<br>375                   | 7.9<br>7.9<br>7.7<br>7.7<br>7.3 | 30<br>58<br>7.2<br>150<br>22                        |
| 348<br>210<br>212<br>76        | GREENWICH TWP WD 6<br>PAULSBORO WD 6-73<br>PAULSBORO WD 4-51<br>HERCULES CHEM 4-1970                                                | 39 49 10<br>39 49 21<br>39 49 29<br>39 49 39             | 075 15 41<br>075 14 17<br>075 14 47<br>075 17 04              | 20<br>15<br>15<br>15<br>15                                  | 105-135<br>185-227<br>185-227<br>192-220<br>90-121  | 211MRPAU<br>211MRPAM<br>211MRPAM<br>211MRPAM<br>211MRPAM           | 82-12-22<br>82-11-30<br>83-08-31<br>82-11-30<br>82-11-18 | 14.0<br>14.5<br>14.0<br>14.5<br>14.0 | 134<br>251<br>265<br>249<br>645                   | 4.1<br>6.0<br>5.8<br>6.7<br>6.7 | 8.0<br>31<br>32<br>24<br>16                         |
| 331<br>357<br>96<br>97<br>98   | WOODBURY WD RAILROAD 5<br>EI DUPONT REPAUNO 7 OBS<br>HERCULES CHEM-GIBB OBS 2<br>HERCULES CHEM GIBB 8 OBS<br>MOBIL OIL-GREENWICH 45 | 39 49 55<br>39 49 57<br>39 49 59<br>39 50 00<br>39 50 05 | 075 09 08<br>075 17 37<br>075 16 50<br>075 16 36<br>075 15 23 | 35<br>4<br>10<br>6<br>3                                     | 405-457<br>105*<br>129-134<br>102-108<br>95-118     | 21 1MR PAL<br>21 1MR PAM<br>21 1MR PAM<br>21 1MR PAM<br>21 1MR PAM | 82-12-22<br>82-11-16<br>82-12-06<br>82-11-03<br>83-08-31 | 14.0<br>13.5<br>13.0<br>15.0<br>15.5 | 282<br>1290<br>580<br>450<br>2050                 | 7.3<br>5.4<br>4.5<br>6.1<br>5.1 | 24<br>110<br>79<br>120<br>110                       |
| 118<br>207<br>318<br>324       | MOBIL OIL-GREENWICH 47<br>NATIONAL PARK BORO WD 2<br>TEXACO EAGLE PT 2<br>TEXACO EAGLE PT 4-OBS                                     | 39 50 36<br>39 51 56<br>39 52 07<br>39 52 36             | 075 15 01<br>075 10 53<br>075 09 30<br>075 08 21              | 20<br>30<br>17<br>10                                        | 220-240<br>241-282<br>259-289<br>214-224            | 211MRPAL<br>211MRPAL<br>211MRPAL<br>211MRPAL                       | 83-08-31<br>83-08-31<br>83-08-31<br>82-11-19             | 15.0<br>14.0<br>14.0<br>13.5         | 460<br>318<br>422<br>467                          | 6.0<br>6.9<br>6.8<br>7.0        | 110<br>24<br>32<br>21                               |

<sup>\*</sup> Total depth of well.

Geologic unit (aquifer):

<sup>211</sup>MRPAU - Upper aquifer, Potomac-Raritan-Magothy aquifer system 211MRPAM - Middle aquifer, Potomac-Raritan-Magothy aquifer system 211MRPAL - Lower aquifer, Potomac-Raritan-Magothy aquifer system

# WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

# HUNTERDON COUNTY

| WELL LOCAL<br>NUMBER IDENTIFIER | LATITUDE                                          | LONGITUD                                        | ELEV<br>LA<br>SURF<br>DATUM<br>ABO<br>E NGV                        | ND TACE I (FT. VE V                                           | TOTAL<br>DEPTH<br>OF<br>VELL<br>FT)                           | GEOLOGIC<br>UNIT                                     | DATE<br>OF<br>SAMPLE                                   | TEMPER-<br>ATURE<br>(DEG C)                         | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(UMHOS) |                                              |
|---------------------------------|---------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------|----------------------------------------------|
| 2 BIRD OBS                      | 40 26 44                                          | 074 56 36                                       | 342                                                                | .08                                                           | 21                                                            | 231SCKN                                              | 83-06-27                                               | 13.0                                                | 276                                               |                                              |
| LOCAL<br>IDENTIFIER             | PH<br>(STAND-<br>ARD<br>UNITS)                    | HARD-<br>NESS<br>- (MG/L<br>AS<br>CACO3)        | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)                       | MAGNE-<br>SIUM,<br>DIS-<br>SOLVEI<br>(MG/L<br>AS MG)          | SODIUM<br>DIS-<br>SOLVED<br>(MG/L                             | DIS-<br>SOLVE<br>(MG/L                               | , BONATE<br>FET-FLD                                    | RIDE,                                               | (MG/L                                             | DIS-<br>SOLVED<br>(MG/L                      |
| BIRD OBS                        | 6.0                                               | 66                                              | 17                                                                 | 5.6                                                           | 24                                                            | 3.4                                                  | 38                                                     | 39                                                  | 28                                                | .10                                          |
| LOCAL<br>IDENTIFIER             | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2) | ALKA-<br>LINITY<br>LAB<br>(MG/L<br>AS<br>CACO3) | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>NO2+NO3<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | GEN, AM-                                             | PHOS-<br>PHORUS,<br>DIS-<br>SOLVED<br>(MG/L<br>AS PO4) | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL) | ARSENIC<br>DIS-<br>SOLVED<br>(UG/L<br>AS AS)      | CADMIUM<br>DIS-<br>SOLVED<br>(UG/L<br>AS CD) |
| BIRD OBS                        | 7.1                                               | 32                                              | 146                                                                | <.010                                                         | 2.10                                                          | <.05                                                 | •33                                                    | <10                                                 | 1                                                 | <1                                           |
| LOCAL<br>IDENTIFIER             |                                                   | DIS-<br>SOLVED                                  | DIS-<br>SOLVED                                                     | IRON,<br>DIS-<br>SOLVED<br>(UG/L<br>AS FE)                    | LEAD,<br>DIS-<br>SOLVED<br>(UG/L<br>AS PB)                    | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(UG/L<br>AS MN) | DIS-<br>SOLVED                                         | ZINC, C<br>DIS-<br>SOLVED S                         | (MG/L                                             | PHENOLS<br>TOTAL<br>(UG/L)                   |
| BIRD OBS                        |                                                   | <1                                              | 14                                                                 | 12                                                            | 4                                                             | 2                                                    | . 1                                                    | 76                                                  | 2.2                                               | <1                                           |

Geologic unit (aquifer):

231SCKN - Stockton Formation

# WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

# MERCER COUNTY

| WELL LOCAL<br>NUMBER IDENTIFIER | LATITU                                            | DE LONGI                                        | SU<br>DAT<br>A                                                     | EV. OF<br>LAND<br>RFACE<br>UM (FT.<br>BOVE<br>GVD)            | TOTAL<br>DEPTH<br>OF<br>WELL<br>(FT)                          | GEOLOGI<br>UNIT                                                    | DATE<br>C OF<br>SAMPLE                                 | TEMPER<br>ATURE<br>(DEG C                           | ANCE                                          | )                                                  |
|---------------------------------|---------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------|----------------------------------------------------|
| 28 NJ CIVIL DEFENSE OBS         | 1 40 15 5                                         | 2 074 50                                        | 18 1                                                               | 22.99                                                         | 330                                                           | 231SCKN                                                            | 83-07-0                                                | 5 13.0                                              | 470                                           |                                                    |
| LOCAL<br>IDENTIFIER             | PH<br>(STAND-<br>ARD<br>UNITS)                    | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3)          | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)                       | DIS-                                                          | SODIUM,<br>DIS-                                               | DIS-<br>SOLVE<br>(MG/L                                             | , BONATE<br>FET-FLD                                    | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL) | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F) |
| NJ CIVIL DEFENSE OBS 1          | 7.1                                               | 220                                             | 54                                                                 | 21                                                            | 12                                                            | 1.1                                                                | 150                                                    | 26                                                  | 62                                            | .20                                                |
| LOCAL<br>IDENTIFIER             | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2) | ALKA-<br>LINITY<br>LAB<br>(MG/L<br>AS<br>CACO3) | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>NO2+NO3<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N) | PHOS-<br>PHORUS,<br>DIS-<br>SOLVED<br>(MG/L<br>AS PO4) | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL) | ARSENIC<br>DIS-<br>SOLVED<br>(UG/L<br>AS AS)  | CADMIUM<br>DIS-<br>SOLVED<br>(UG/L<br>AS CD)       |
| NJ CIVIL DEFENSE OBS 1          | 15                                                | 117                                             | 273                                                                | .020                                                          | 7.60                                                          | E. 05                                                              | <.18                                                   | <10                                                 | . 1                                           | <1                                                 |
| LOCAL<br>I DE NTIFIER           |                                                   | DIS-<br>SOLVED<br>(UG/L                         | DIS-<br>SOLVED<br>(UG/L                                            | DIS-<br>SOLVED<br>(UG/L                                       | LEAD,<br>DIS-<br>SOLVED<br>(UG/L                              | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(UG/L<br>AS MN)               | DIS-<br>SOLVED<br>(UG/L                                | ZINC, OI<br>DIS- I<br>SOLVED SO<br>(UG/L            | MG/L                                          | HENOLS<br>FOTAL<br>UG/L)                           |
| NJ CIVIL DEFENSE OBS            | 1                                                 | <1                                              | 1                                                                  | 6                                                             | 2                                                             | 15                                                                 | .1                                                     | 7                                                   | 1.1                                           | <1                                                 |

Geologic unit (aquifer):

231SCKN - Stockton Formation

# QUALITY OF GROUND WATER WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

# OCEAN COUNTY

| WELL LOC<br>NUMBER IDEN | AL<br>IFIER         | LATITUDE                       | LONGITUDE                                           | ELEV. LAND SURFAC DATUM ( ABOVE NGVD)                         | E<br>FT. SCRE<br>INTE                                         | ENED GERVAL                                                      | EOLOGIC<br>UNIT                                | SAMPLE                                     | TEMPER -<br>A TURE<br>(DEG C)                          | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(UMHOS) |                                                     |
|-------------------------|---------------------|--------------------------------|-----------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------|--------------------------------------------|--------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------|
| 772 LEBAN SE            | GOOSE PD 1-83       | 39 54 51                       | 074 27 02                                           | 135.0                                                         | 0 32                                                          | - 42 12                                                          | 21CKKD                                         | 83-06-29                                   | 12.5                                                   | 21                                                |                                                     |
|                         | OCAL<br>IT IF I ER  | PH<br>(STAND-<br>ARD<br>UNITS) | BICAR-<br>BONATE<br>FET-FLD<br>(MG/L<br>AS<br>HCO3) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>NO2+NO3<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | NITRO-<br>GEN, AM-<br>MONIA -<br>ORGANI<br>DIS.<br>(MG/L<br>AS N | PHOS-<br>PHORUS,<br>IC DIS-<br>SOLVED<br>(MG/L | (UG/L                                      | (UG/L                                                  | DIS-<br>SOLVED<br>(UG/L                           | CHRO-<br>MIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CR) |
| LEBAN SF GOOS           | E POND 1-83         | 4.9                            | 3                                                   | <.010                                                         | <.100                                                         | <.05                                                             | .09                                            | <10                                        | <1                                                     | <1                                                | <1                                                  |
|                         | LOCAL<br>IDENTIFIER |                                | COPPER,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CU)        | IRON,<br>DIS-<br>SOLVED<br>(UG/L<br>AS FE)                    | LEAD,<br>DIS-<br>SOLVED<br>(UG/L<br>AS PB)                    | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(UG/L<br>AS MN)             | MERCURY<br>DIS-<br>SOLVED<br>(UG/L<br>AS HG)   | ZINC,<br>DIS-<br>SOLVED<br>(UG/L<br>AS ZN) | CARBON,<br>ORGANIC<br>DIS-<br>SOLVED<br>(MG/L<br>AS C) | PHENOLS<br>TOTAL<br>(UG/L)                        |                                                     |
| LEBA                    | N SF GOOSE PON      | D 1-83                         | 8                                                   | 270                                                           | 3                                                             | 11                                                               | <.1                                            | 21                                         | 1.6                                                    | 2                                                 |                                                     |

Geologic unit (aquifer):

121CKKD - Kirkwood-Cohansey aquifer system

# WATER QUALITY DATA, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983

# SALEM COUNTY

| WELL<br>Numbei                  | LOCAL<br>R IDENTIFIER                                                                                                            | LATITUDE                                                 | LONGITUDE                                                     | ELEV. OF<br>LAND<br>SURFACE<br>DATUM (FT.<br>ABOVE<br>NGVD) | SCREENED<br>INTERVAL<br>(FT)                        | GEOLOGIC<br>UNIT                                         | DATE<br>OF<br>SAMPLE                                     | TEMPER-<br>ATURE<br>(DEG C)          | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(UMHOS) | PH (UNITS)                      | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL) |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|--------------------------------------|---------------------------------------------------|---------------------------------|-----------------------------------------------------|
| 32<br>34<br>364<br>35<br>251    | PSEG-SALEM NUC GEN STA 3<br>PSEG-SALEM NUC GEN STA 1<br>PSEG-SALEM NUC GEN STA 5<br>PSEG-SALEM NUC GEN STA 2<br>USGS-SALEM 1 OBS | 39 27 40<br>39 27 42<br>39 27 43<br>39 27 44<br>39 33 48 | 075 32 02<br>075 32 00<br>075 31 58<br>075 32 05<br>075 27 55 | 17<br>17<br>20                                              | 242-293<br>248-298<br>765-840<br>230-281<br>699-709 | 211MLRW<br>211MLRW<br>211MRPAM<br>211MLRW<br>211MRPAM    | 82-10-22<br>82-10-22<br>82-10-22<br>82-10-07<br>82-11-22 | 15.5<br>15.5<br>19.5<br>15.5<br>16.5 | 775<br>605<br>355<br>1020<br>5820                 | 7.8<br>7.7<br>7.9<br>7.7<br>6.8 | 160<br>100<br>23<br>280<br>1900                     |
| 253<br>108<br>112<br>163<br>117 | USGS-SALEM 3 OBS US ARMY-FINNS PT CEM PENNSVILLE TWP WD 4 RICHMAN ICE CREAM 1 PENNSVILLE TWP WD 3                                | 39 33 48<br>39 36 41<br>39 37 54<br>39 39 28<br>39 39 54 | 075 27 55<br>075 33 22<br>075 31 48<br>075 21 47<br>075 30 13 | 7                                                           | 335-340<br>290-319<br>117-137<br>455-475<br>87-102  | 211MRPAU<br>211MRPAU<br>211MRPAU<br>211MRPAM<br>211MRPAU | 82-11-22<br>82-10-15<br>82-10-08<br>82-10-15<br>82-10-08 | 15.0<br>15.0<br>13.5<br>15.0<br>14.5 | 2480<br><br>178<br>367<br>183                     | 7.6<br>7.4<br>6.8<br>8.1<br>6.6 | 670<br>110<br>11<br>14<br>12                        |
| 118<br>119<br>122<br>125<br>127 | PENNSVILLE TWP WD 1 PENNSVILLE TWP WD 2 ATL CITY EL-DEEPWATER 3R ATL CITY EL-DEEPWATER 5 ATL CITY EL-DEEPWATER 6                 | 39 39 58<br>39 40 09<br>39 40 46<br>39 40 50<br>39 41 00 | 075 30 45<br>075 30 43<br>075 30 18<br>075 30 30<br>075 30 30 | 7<br>10<br>10                                               | 213-238<br>210-230<br>165-235<br>149-219<br>158-188 | 211MRPAM<br>211MRPAM<br>211MRPAM<br>211MRPAM<br>211MRPAM | 82-10-08<br>82-10-08<br>82-10-12<br>82-10-12<br>82-10-12 | 14.5<br><br>14.0<br>15.0<br>15.5     | 410<br>327<br>392<br>363<br>392                   | 7.0<br>7.4<br>7.0<br>7.0<br>7.0 | 62<br>33<br>52<br>50<br>53                          |
| 322<br>345<br>346<br>83<br>85   | EI DUPONT-CARNEY PT 2 PENNS GROVE WC 2B PENNS GROVE WC-LAYNE 1 BF GOODRICH CO 9 BF GOODRICH CO 6                                 | 39 41 49<br>39 42 47<br>39 42 56<br>39 45 47<br>39 45 56 | 075 29 16<br>075 27 14<br>075 27 18<br>075 25 35<br>075 25 30 | 19<br>19<br>10                                              | 169-219<br>45- 58<br>317-357<br>93-133<br>109-129   | 211MRPAM<br>211MRPAU<br>211MRPAL<br>211MRPAM<br>211MRPAM | 82-11-16<br>82-10-12<br>82-10-12<br>82-10-21<br>82-10-21 | 13.0<br>14.5<br>13.5<br>14.0         | 760<br>197<br>900<br>90<br>148                    | 6.8<br>5.1<br>7.5<br>6.1<br>6.1 | 58<br>13<br>220<br>8.7<br>20                        |
| 86                              | BF GOODRICH CO 4                                                                                                                 | 39 45 57                                                 | 075 25 23                                                     | 13                                                          | 169-189                                             | 211MRPAL                                                 | 82-10-21                                                 | 13.5                                 | 1190                                              | 7.1                             | 310                                                 |

# Geologic unit (aquifer):

211MLRW - Wenonah - Mount Laurel aquifer
211MRPAU - Upper aquifer, Potomac-Raritan-Magothy aquifer system
211MRPAM - Middle aquifer, Potomac-Raritan-Magothy aquifer system
211MRPAL - Lower aquifer, Potomac-Raritan-Magothy aquifer system

|                                                                                | PAGE           |                                                                                    | PAGE  |
|--------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------|-------|
| Accuracy of field data and computed results                                    | 11             | West Branch, at Seeley                                                             | 153   |
| Acknowledgments                                                                | 1              | Cohansey River basin                                                               | 37    |
| Acre-foot, definition of                                                       | 2              | Crest-stage partial-record stations in discharge measurements at low flow partial- | 153   |
| Algae, definition of                                                           | 2              | record stations in                                                                 | 150   |
| Algal growth potential (AGP), definition of Allentown, Doctors Creek at        | 96.154         | Collection and computation of data                                                 | 12    |
| Alloway Creek at Hancocks Bridge                                               | 158            | Collection and examination of data                                                 | 155   |
| Alloway, Deep Run near                                                         | 152            | Color unit, definition of                                                          |       |
| Aquifer code list and geologic names                                           | 3              | Columbia, Paulins Kill at Mouth at                                                 | 155   |
| Artesian, definition of                                                        | 3              | Crafts Creek at                                                                    | 154   |
| Artificial substrate                                                           | 7              | Computations, accuracy of results                                                  | 11    |
| Ash mass, definition of                                                        | 3<br>99        | Contents, definition of                                                            | 1     |
| near Columbus                                                                  | 155            | Control, definition of                                                             | 1     |
| at Edinburgat Trenton                                                          | 154<br>92      | Control structure, definition of                                                   | 125   |
| near Clarksville                                                               | 90             | at Haddonfield                                                                     | 121   |
| Aura, Still Run at                                                             | 150            | at Lawnside                                                                        | 123   |
| Bacteria, definition of                                                        | 3              | at Norcross Road at Lindenwold                                                     | 121   |
| Balesville, Paulins Kill at                                                    | 50             | Cooperation                                                                        |       |
| Barrett Run near Bridgeton                                                     | 150            | Coopersville, Merrill Creek at                                                     | 151   |
| Bear Creek, PA, diversions                                                     | 150<br>148     | Crest-stage partial-record stations                                                | 153   |
| Bear Swamp Reservoir, NY, diversions                                           | 148            | Crosswicks Creek at Extonville                                                     | 93    |
| Beattystown, Musconetcong River at Beaver Brook near Belvidere                 | 69<br>153      | at New Egyptat Groveville                                                          | 154   |
| Bedload, definition of                                                         | 3              | Cubic feet per second per square mile,                                             | ,     |
| Bed material, definition of                                                    | 3              | definition of                                                                      |       |
| Beltzville Lake1 Belvidere, Beaver Brook near                                  | 153            | Cubic foot per second, definition of                                               | 175   |
| Delaware River at                                                              | 58             | ground-water quality                                                               | 187   |
| Bethlehem, PA, Lehigh River at                                                 | 61             | Davis Will Passes Ditch at                                                         | 15    |
| North Branch at Laurel Road at Laurel Springs.                                 | 128<br>156     | Davis Mill, Raccoon Ditch at                                                       | 152   |
| South Branch, at Blackwood                                                     | 156            | Defintion of terms                                                                 | -     |
| South Branch, at Blackwood Terrace Biochemical oxygen demand, definition of    | 127<br>3       | Delaware and Raritan Canal at Kingston  Delaware and Raritan Canal, diversions     | 148   |
| Biomass, definition of                                                         | 3              | Delaware Bay at Reeds Beach                                                        | 158   |
| Bird observation well                                                          | 180            | Delaware Memorial Bridge, Wilmington, DE,                                          | 121   |
| Bivalve, Maurice River at                                                      | 158<br>151,154 | Delaware River at  Delaware River at Belvidere                                     | 131   |
| Blackwood, South Branch Big Timber Creek at                                    | 156            | at Burlington                                                                      | 10    |
| Blackwood Terrace, South Branch Big Timber Creek                               | 127            | at Chester, PA                                                                     | 158   |
| Blairstown, Paulins Kill at                                                    | 52             | at Lumberville                                                                     | 75    |
| Yards Creek near                                                               | 54             | at Marine Terminal, Trenton                                                        | 15    |
| Blue green algae, definition of                                                | 71<br>6        | at Montagueat Northampton Street at Easton, PA                                     | 59    |
| Blue Marsh Lake, PA                                                            |                | at Palmyra                                                                         | 115   |
| Bottom material                                                                | 150            | at Port Jervis, NYat Portland, PA                                                  | 4 9   |
| Cohansey River at                                                              | 39             | at Riegelsville                                                                    | 15    |
| Indians Fields Branch at                                                       | 150            | at Trenton                                                                         | 8     |
| Browns Mills, North Branch Rancocas Creek at Buckshutem Creek near Laurel Lake | 104<br>150     | at Washington Crossingbelow Christina River at Wilmington, DE                      | 136   |
| Burlington, Assiscunk Creek near                                               | 99             | below Tocks Island Damsite, near Delaware                                          |       |
| Delaware River at Burlington County, ground-water levels                       | 101<br>159     | Water Gap  Delaware River basin, crest-stage partial-record                        | 4     |
| ground-water quality                                                           | 186            | stations in                                                                        | 153   |
|                                                                                | Post of        | Discharge measurements at miscellaneous sites                                      | 451   |
| Camden County, ground-water levels                                             | 167<br>125     | in<br>Discharge measurements at low-flow partial-                                  | 15    |
| Cannonsville Reservoir                                                         | 141,144        | record stations in                                                                 | 150   |
| Cape May County, ground-water levels                                           | 171            | Diversions and withdrawals in                                                      | 14    |
| Cells/volume, definition of                                                    | 4              | Delaware Water Gap, PA, Delaware River below                                       |       |
| Centerton, Muddy Run at                                                        | 150            | Tocks Island Damsite, near                                                         | 4     |
| CFS-day, definition of                                                         | 4              | Diatoms, definition of                                                             |       |
| Cherry Hill, South Branch Pennsauken Creek at                                  | 118            | Discharge measurements at miscellaneous sites                                      | 15    |
| Chester, PA, Delaware River at                                                 | 158            | Dissolved, definition of                                                           | 14    |
| Cinnaminson, Pompeston Creek at                                                |                | Diversity index, definition of                                                     |       |
| Clarksville, Assunpink Creek near                                              | 90             | Doctors Creek at Allentown                                                         | 96,15 |
| Clayton, Little Ease Run at                                                    | 150<br>142,145 | at Route 130 near Yardville  Downstream order and station numbers                  | 9     |
| Cohansey River at Bridgeton                                                    | 39             | Drainage area, definition of                                                       |       |
| at Greenwichat Seeley                                                          | 158            | Drainage basin, definition of                                                      |       |
| near Beals Mills                                                               | 37<br>150      | DI y mass, detinition of                                                           |       |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PAGE       | PAGE                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------------------------------------|
| Eagle Point 3 observation well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 179        | Lawnside, Cooper River at                               |
| East Pond Reservoir, NY, diversions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 148        | Lebanon State Forest, McDonalds Branch in 106           |
| Easton, PA, Delaware River at Northampton Street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 140        | Lebanon State Forest 23D observation well 159           |
| at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 59         | Lehigh River at Bethlehem, PA                           |
| Edinburg, Assunpink Creek at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 154        | Lindenwold, Cooper River at Norcross Road at 121        |
| Egbert Station observation well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 170        | Little Ease Run near Clayton                            |
| Elm Tree Farm 2 observation well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 167        | Little Creek near Lumberton                             |
| Elm Tree Farm 3 observation well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 168        | Lockwood, Lubbers Run at                                |
| Extonville, Crosswicks Creek at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 93         | Musconetcong River at 67                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | Low-flow partial-record stations 150                    |
| Fecal coliform bacteria, definition of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3          | Low tide, defintion of                                  |
| Fecal streptococcal bacteria, definition of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3          | Lubbers Run at Lockwood                                 |
| Flat Brook near Flatbrookville                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 46         | Lumberton, Little Creek near                            |
| Franklinville, Scotland Run at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 150        | Lumberville, Delaware River at                          |
| Gage height, definition of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5          | Mansfield Square, Blacks Creek at151,154                |
| Gaging station, definition of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5          | Mantua Creek at Mantua                                  |
| Records                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30         | at Pitman131,156                                        |
| Glendora, North Branch Big Timber Creek at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 128        | at Salina                                               |
| Gloucester County, ground-water levels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 178        | Marlton, North Branch Cooper River near152,155          |
| ground-water quality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 188        | Maurice River basin                                     |
| Godeffroy, NY, Neversink River at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 44         | Discharge measurements at low-flow partial-             |
| Green algae, definition of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6          | record stations in                                      |
| Green Lane Reservoir, PA14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4,146      | Maurice River at Bivalve                                |
| Greenwich, Cohansey River at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 158        | at Norma                                                |
| Ground-water level records                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 159        | McDonalds Branch in Lebanon State Forest 106            |
| Collection of the data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14         | Mean discharge, definition of4                          |
| Explanation of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14         | Mean high or low tide, definition of                    |
| Ground-water quality records                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 186        | Medford, SW Branch Rancocas Creek at                    |
| Groveville, Crosswicks Creek at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 95         | Sharps Run at Route 541 at                              |
| Hardwith at a man Manager to a man District to the state of the state | 451        | Medford 1 observation well                              |
| Hackettstown, Musconetcong River near                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 154        | Medford 2 observation well                              |
| Haddon Heights, South Branch Newton Creek at15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | Medford 4 observation well                              |
| Haddonfield, Cooper River at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 124        | Medford 5 observation well                              |
| Hancocks Bridge, Alloway Creek at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 158        | Menantico Creek near Millville                          |
| Hardness, definition of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 156        | Mercer County, ground-water quality                     |
| Hazel Creek, PA, diversions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 156<br>148 | Metamorphic stage, definition of                        |
| Higbee Beach 3 observation well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 173        | Methylene blue active substance, definition of 5        |
| High tide, definition of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 173        | Micrograms per gram, definition of                      |
| Hoffman La Roche observation well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 185        | Micrograms per liter, definition of                     |
| Honey Run near Ramseyburg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 151        | Middleville, Trout Brook near                           |
| Hopatcong, Lake14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | Milligrams per liter, definition of                     |
| Hunterdon County, ground-water levels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180        | Millville, Menantico Creek near                         |
| ground-water quality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 189        | Montague, Delaware River at                             |
| Huntsville, Pequest River at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 153        | Moorestown, North Branch Pennsauken Creek near 116, 155 |
| Hutton Hill 1 observation well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 169        | Morrisville, PA, Borough of, diversions 148             |
| Hydrologic bench-mark station, definition of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9          | Muddy Run at Centerton                                  |
| Hydrologic conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2          | Mullica Hill, Raccoon Creek at                          |
| Hydrologic station records                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30         | Musconetcong River at Beattystown                       |
| Hydrologic unit, definition of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5          | at Lockwood                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | at outlet of Lake Hopatcong                             |
| Indian Fields Branch at Bridgeton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 150        | at Riegelsville                                         |
| Instantaneous discharge, definition of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4          | near Bloomsbury                                         |
| Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1          | near Hackettstown                                       |
| Todada Cananal Edgan Baganuain BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4 4 11 11  | Muskee Creek near Port Elizabeth 150                    |
| Jadwin, General Edgar, Reservoir, PA14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | Notional Condatio Nautical Datum of 1020                |
| Jones Island 2 observation well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 175        | National Geodetic Vertical Datum of 1929 (NGVD of 1929) |
| Kingston, Delaware and Raritan Canal at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 711        | National stream-quality accounting network              |
| Alligaton, belaware and haritan canal at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 74         | (NASQAN), definition of                                 |
| Lake Hopatcong, Musconetcong River at outlet of.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 65         | Natural substrate                                       |
| Lakes and reservoirs:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 05         | Neversink Reservoir, NY142,145                          |
| Beltzville Lake14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12 1/15    | Neversink River at Godeffroy, NY 44                     |
| Blue Marsh Lake, PA14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | New Egypt, Crosswicks Creek at                          |
| Cannonsville reservoir, NY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | Newton Creek at Collingswood                            |
| Cliff Lake, NY14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | South Branch, at Haddon Heights152,155                  |
| Green Lane Reservoir, PA14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | New Village, Pohatcong Creek at 62,153                  |
| Hopatcong, Lake14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | NJ-WRD well number 4                                    |
| Jadwin, General Edgar, Reservoir, PA14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | Norma, Maurice River at                                 |
| Neversink Reservoir, NY14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | Numbering system for wells and miscellaneous            |
| Penn Forest Reservoir, PA14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13, 145    | sites 9                                                 |
| Pepacton Reservoir, NY14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                                                         |
| Prompton Reservoir, PA14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | Ocean County, ground-water quality                      |
| Still Creek Reservoir, PA14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | Oldmans Creek at Porches Mill                           |
| Swinging Bridge Reservoir, NY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | near Harrisonville                                      |
| Toronto Reservoir, NY14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | Orange Street observation well                          |
| Wallenpaupack, Lake, PA14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | Organic mass, definition of 4                           |
| Walter, Francis E., Reservoir, PA14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | Organism, definition of                                 |
| Wild Creek Reservoir, PA14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                                                         |
| Land-surface datumLaurel Lake, Buckshutem Creek near                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 150        | Organism count/volume, definition of                    |
| Laurel Springs, North Branch Big Timber Creek at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 150<br>156 | Oyster Lab. 4 observation well                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                                         |

|                                                            | PAGE            |                                                                        | PAGE       |
|------------------------------------------------------------|-----------------|------------------------------------------------------------------------|------------|
| Palmyra, Delaware River at                                 | 115             | Sharps Run at Route 541 at Medford                                     | 151        |
| Partial-record stations, crest-stage                       | 153             | Shell Chemical 5 observation well                                      | 178        |
| Definition                                                 | 5               | Sheppards 1 observation well                                           | 177        |
| Low-flow Tidal crest-stage                                 | 150<br>158      | Solute, definition of                                                  | 0          |
| Particle size, definition of                               | 5               | Specific conductance, definition of                                    | 7          |
| Particle-size classification                               | 5               | Stage and water discharge records, explanation                         |            |
| Paulins Kill at Balesville                                 | 50              | of                                                                     | 9          |
| at Blairstownat Mouth at Columbia                          | 52              | Stage-discharge relation, definition of Still Creek Reservoir, PA      | 112 1115   |
| Pemberton, North Branch Rancocas Creek at                  | 55<br>112       | Still Run at Aura                                                      | 150        |
| Penn Forest Reservoir, PA                                  |                 | Stockton, Wickecheoke Creek at                                         |            |
| Pennsauken Creek, North Branch, near Moorestown.           | 116,155         | Stow Creek basin, discharge measurements at                            |            |
| South Branch at Cherry Hill                                | 118             | low-flow partial-record stations in                                    | 151        |
| Pepacton Reservoir, NY                                     | 153             | Streamflow, definition of                                              | 7          |
| at Pequest                                                 | 57              | Surface area, definition of                                            | 7          |
| at Townsbury                                               | 153             | Surficial bed material                                                 | 7          |
| Percent composition, definition of                         | 6               | Suspended recoverable, definition of Suspended sediment, definition of | 1          |
| Periphyton, definition of                                  | 6               | Suspended-sediment concentration, definition of.                       | 7          |
| Pesticides, definition of                                  | 6               | Suspended-sediment discharge, definition of                            | 7          |
| Philadelphia, PA, Schuylkill River at                      | 130             | Suspended-sediment load, definition of                                 | 7          |
| Phytoplankton, definition of                               | 6               | Suspended, total, definition of                                        | 127        |
| Picocurie, definition of                                   | 131 156         | Swedesboro, Raccoon Creek near                                         | 132        |
| Plankton, definition of                                    | 6               | Swinging bridge Reservoir, Missessian                                  | 12, 11     |
| Pohatcong Creek at Carpentersville                         | 64,151          | Taxonomy, definition of                                                | 8          |
| at New Village                                             |                 | Terms, definition of                                                   | 4          |
| Point Airy observation well                                | 184             | Thermograph, definition of                                             | 158        |
| Pompeston Creek at Cinnaminson                             |                 | Time-weighted average, definition of                                   | 8          |
| Porches Mill, Oldmans Creek at                             | 135             | Tocks Island damsite, Delaware River below,                            |            |
| Port Elizabeth, Muskee Creek near                          | 150             | near Delaware Water Gap, PA                                            | 47         |
| Port Jervis, NY, Delaware River at                         | 41<br>48        | Tons per acre-foot                                                     | 8          |
| Primary productivity, definition of                        | 6               | Toronto Reservoir, NY                                                  | 42, 145    |
| Prompton Reservoir, PA                                     |                 | Total, definition of                                                   | 8          |
| Publications, ground water                                 | 15              | Total coliform bacteria, definition of                                 | 3          |
| Surface water                                              | 12              | Total in bottom material, definition of                                |            |
| Water quality Techniques of water-resources investigations | 14<br>19        | Total load, definition of                                              | -          |
|                                                            | .,              | Total, recoverable, definition of                                      | 8          |
| Raccoon Creek at Mullica Hill                              | 156             | Total sediment discharge, definition of                                | 17         |
| near Swedesboro                                            | 132             | Townsbury, Pequest River at                                            | 153<br>171 |
| Radiochemical program, definition of                       | 151<br>9        | Trenton, Assunpink Creek at                                            | 92         |
| Radioisotopes, definition of                               | 6               | City of, diversions                                                    | 148        |
| Ramseyburg, Honey Run near                                 | 151             | Delaware River at                                                      | 81         |
| Rancocas Creek, North Branch, at Browns Mills              | 104             | Delaware River at Marine Terminal at                                   | 158<br>151 |
| at Pemberton                                               | 112<br>102, 155 | Trout Brook near Middleville                                           | 15         |
| Southwest Branch, at Medford                               |                 | Vincentown, South Branch Rancocas Creek at1                            | 02,155     |
| Records collected by other agencies                        | 12              |                                                                        |            |
| Recoverable from bottom material                           | 150             | Wallenpaupack, Lake, PA                                                | 112 111    |
| Reeds Beach, Delaware Bay at                               | 158<br>14       | Walter, Francis E., Reservoir, PA                                      | 185        |
| Reservoirs: See Lakes and reservoirs                       | 1.7             | Washington Crossing, Delaware River at                                 | 79         |
| Rhodia Corp. 1 observation well                            | 166             | Water Quality Records, explanation of                                  | 12         |
| Riegelsville, Delaware River at                            | 154             | Water temperature                                                      | 13         |
| Musconetcong River at                                      | 72<br>7         | WDR, definition of                                                     | 8          |
| Runoff in inches, definition of                            | 7               | West Cape May 1 observation well                                       | 172        |
|                                                            |                 | Wet mass, definition of                                                | 1          |
| Salem County, ground-water levels                          | 181             | Wickecheoke Creek at Stockton                                          | 77, 151    |
| ground-water quality                                       | 192             | Wild Creek Reservoir, PA                                               | 165        |
| Salem 2 observation well                                   | 181<br>183      | Willingboro 2 observation well                                         | 164        |
| Salem 3 observation well                                   | 182             | Wilmington, DE, Delaware River at Delaware                             |            |
| Salem River at Woodstown                                   | 138             | Memorial Bridge                                                        | 137        |
| Salina, Mantua Creek at                                    | 156             | Withdrawals from the Delaware River Basin                              | 147        |
| Schuylkill River at Philadelphia                           | 130<br>7        | Woodstown, Salem River at                                              | 136        |
| Scotland Run at Franklinville                              | 150             | WSP, definition of                                                     | 8          |
| Sediment                                                   | 13              |                                                                        | -1         |
| Sediment, definition of                                    | 7               | Yards Creek near Blairstown                                            | 51<br>97   |
| West Branch Cohansey River at                              | 37<br>153       | Tal dy Lile, Doctors of cer at house 130 hear                          | 91         |
| Selected references                                        | 15              | Zooplankton, definition of                                             | 6          |

# FACTORS FOR CONVERTING INCH-POUND UNITS TO INTERNATIONAL SYSTEM UNITS (SI)

The following factors may be used to convert the inch-pound units published herein to the International System of Units (SI). This report contains both the inch-pound and SI unit equivalents in the station manuscript descriptions.

| Multiply inch-pound units                  | Ву                     | To obtain SI units                               |
|--------------------------------------------|------------------------|--------------------------------------------------|
|                                            | Length                 |                                                  |
| inches (in)                                | 2.54x10 <sup>1</sup>   | millimeters (mm)                                 |
|                                            | 2.54x10 <sup>-2</sup>  | meters (m)                                       |
| feet (ft)                                  | 3.048x10 <sup>-1</sup> | meters (m)                                       |
| miles (mi)                                 | 1.609x10°              | kilometers (km)                                  |
|                                            | Area                   |                                                  |
| acres                                      | $4.047 \times 10^3$    | square meters (m <sup>2</sup> )                  |
|                                            | 4.047x10 <sup>-1</sup> | square hectometers (hm <sup>2</sup> )            |
|                                            | 4.047x10 <sup>-3</sup> | square kilometers (km <sup>2</sup> )             |
| square miles (mi <sup>2</sup> )            | 2.590x10°              | square kilometers (km²)                          |
|                                            | Volume                 |                                                  |
| gallons (gal)                              | 3.785x10°              | liters (L)                                       |
| S(8)                                       | 3.785x10°              | cubic decimeters (dm³)                           |
|                                            | 3.785x10 <sup>-3</sup> | cubic meters (m <sup>3</sup> )                   |
| million gallons                            | $3.785 \times 10^{3}$  | cubic meters (m <sup>3</sup> )                   |
| 3                                          | 3.785x10 <sup>-3</sup> | cubic hectometers (hm <sup>3</sup> )             |
| cubic feet (ft <sup>3</sup> )              | 2.832x101              | cubic decimeters (dm <sup>3</sup> )              |
| , , ,                                      | 2.832x10 <sup>-2</sup> | cubic meters (m <sup>3</sup> )                   |
| cfs-days                                   | $2.447 \times 10^{3}$  | cubic meters (m <sup>3</sup> )                   |
|                                            | 2.447x10 <sup>-3</sup> | cubic hectometers (hm³)                          |
| acre-feet (acre-ft)                        | $1.233 \times 10^{3}$  | cubic meters (m <sup>3</sup> )                   |
|                                            | 1.233x10 <sup>-3</sup> | cubic hectometers (hm³)                          |
|                                            | 1.233x10 <sup>-6</sup> | cubic kilometers (km³)                           |
|                                            | Flow                   |                                                  |
| cubic feet per second (ft <sup>3</sup> /s) | 2.832x10 <sup>1</sup>  | liters per second (L/s)                          |
|                                            | 2.832x10 <sup>1</sup>  | cubic decimeters per second (dm <sup>3</sup> /s) |
|                                            | 2.832x10 <sup>-2</sup> | cubic meters per second (m <sup>3</sup> /s)      |
| gallons per minute (gal/min)               | 6.309x10 <sup>-2</sup> | liters per second (L/s)                          |
|                                            | 6.309x10 <sup>-2</sup> | cubic decimeters per second (dm <sup>3</sup> /s) |
|                                            | 6.309x10 <sup>-5</sup> | cubic meters per second (m³/s)                   |
| million gallons per day                    | 4.381x101              | cubic decimeters per second (dm <sup>3</sup> /s) |
|                                            | 4.381x10 <sup>-2</sup> | cubic meters per second (m³/s)                   |
|                                            | Mass                   |                                                  |
| tons (short)                               | 9.072x10 <sup>-1</sup> | megagrams (Mg) or metric tons                    |

U.S. DEPARTMENT OF THE INTERIOR Geological Survey, 430 Federal Building 402 E. State Street Trenton, NJ 08608

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE \$300
SPECIAL 4TH CLASS BOOK RATE

