

Water Resources Data Hawaii and other Pacific Areas Water Year 1984

Volume 2. Guam, Northern Mariana Islands,
Federated States of Micronesia,
Palau, and American Samoa

NORTHERN MARIANA ISLANDS

FEDERATED STATES OF MICRONESIA

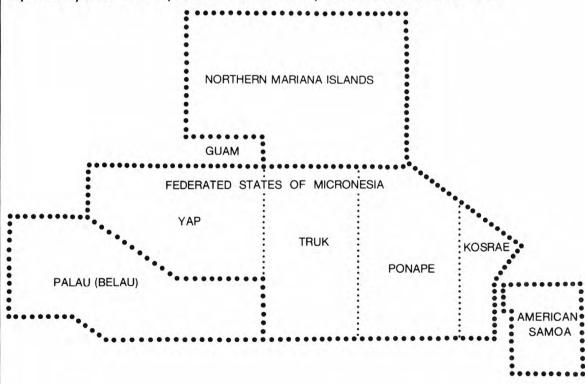
YAP

TRUK
PALAU (BELAU)

AMERICAN
SAMOA

U.S. GEOLOGICAL SURVEY WATER-DATA REPORT HI-84-2 Prepared in cooperation with the Governments of Guam, Northern Mariana Islands, Federated States of Micronesia, Palau, American Samoa, and with other agencies

CALENDAR FOR WATER YEAR 1984


	1983	
OCTOBER	NOVEMBER	DECEMBER
S M T W T F S	S M T W T F S	S M T W T F S
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
	1984	
JANUARY	FEBRUARY	MARCH
S M T W T F S	S M T W T F S	S M T W T F S
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
APRIL	MAY	JUNE
S M T W T F S	S M T W T F S	S M T W T F S
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 21 23 24 25 26 27 28 29 30
JULY	AUGUST	SEPTEMBER
S M T W T F S	S M T W T F S	S M T W T F S
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Water Resources Data Hawaii and other Pacific Areas Water Year 1984

Volume 2. Guam, Northern Mariana Islands, Federated States of Micronesia, Palau, and American Samoa

by Salwyn S. Chinn, Grace A. Tateishi, and Johnson J.S. Yee

U.S. GEOLOGICAL SURVEY WATER-DATA REPORT HI-84-2 Prepared in cooperation with the Governments of Guam, Northern Mariana Islands, Federated States of Micronesia, Palau, American Samoa, and with other agencies

UNITED STATES DEPARTMENT OF THE INTERIOR DONALD PAUL HODEL, Secretary

Dallas L. Peck, Director

GEOLOGICAL SURVEY

For information on the water program in Hawaii and other Pacific Areas write to District Chief, Water Resources Division U.S. Geological Survey 300 Ala Moana Boulevard, Rm. 6110
P.O. Box 50166
Honolulu, Hawaii 96850

1985

PREFACE

This volume of the annual hydrologic data report of Hawaii and other Pacific Areas is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface—and ground—water data—collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground—water levels, and quality of water provide the hydrologic information needed by State, local, and Federal agencies, and the private sector for developing and managing our Nation's land and water resources. Hydrologic data for Hawaii and other Pacific Areas are contained in two volumes:

Volume 1. Hawaii

Volume 2. Guam, Northern Mariana Islands, Federated States of Micronesia, Palau, and American Samoa.

This report is the culmination of a concerted effort by dedicated personnel of the U.S. Geological Survey who collected, compiled, analyzed, verified, and organized the data, and who typed, edited, and assembled the report. In addition to the authors, who had primary responsibility for assuring that the information contained herein is accurate, complete, and adheres to Geological Survey policy and established guidelines, the following individuals contributed significantly to the collection, processing, and tabulation of the data:

David A. Beck Isao Yamashiro Gregg N. Ikehara Rose M. Maruoka Lodie T. Piniol Leonora K. Onaga

This report was prepared in cooperation with the Governments of Guam, Northern Mariana Islands, Federated States of Micronesia, Palau, American Samoa, and with other agencies under the general supervision of Stanley F. Kapustka, District Chief, Hawaii.

50272 -101

REPORT DOCUMENTATION PAGE	1. REPORT NO. USGS/WRD/HD-85/269	2.	3. Recipient's Accession No.
4. Title and Subtitle Water Resources Dat	5. Report Date September 1985		
	açe A. Tateishi, and John	son J. S. Yee	8. Performing Organization Rept. No. USGS-WDR-HI-84-02
9. Performing Organization Name and Address U.S. Geological Survey, Water Resources Division 300 Ala Moana Blvd., Room 6110 Honolulu, Hawaii 96850			10. Project/Task/Work Unit No. 11. Contract(C) or Grant(G) No. (C) (G)
12. Sponsoring Organization Name and Address U.S. Geological Survey, Water Resources Division 300 Ala Moana Blvd., Room 6110 Honolulu, Hawaii 96850			13. Type of Report & Period Covered Annual - Oct. 1, 1983 to Sept. 30, 1984 14.

15. Supplementary Notes

Prepared in cooperation with the Governments of Guam, Northern Mariana Islands, Federated States of Micronesia, Palau Islands, American Samoa, and with other agencies.

16. Abstract (Limit: 200 words)

Volume 2 of water resources data for the 1984 water year for other Pacific areas consists of records of stage, discharge, and water quality of streams and springs; stage of 2 lakes and a reservoir; and water levels and water quality in wells. This report contains discharge records for 32 gaging stations; stage only record for 3 gaging stations; water quality for 14 gaging stations; 14 partial-record stations; water temperature for 32 gaging stations; and water levels for 37 observation wells and water quality for 113 ground-water sites. Also included are 19 low-flow partial-record stations. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Governments and Federal agencies in other Pacific areas.

17. Document Analysis a. Descriptors

*Pacific area, *Hydrologic data, *Surface water, *Ground water, *Water quality, Flow rate, Gaging stations, Chemical analyses, Sediments, Reservoirs, Water temperatures, Sampling sites, Water levels.

b. Identifiers/Open-Ended Terms

c. COSATI Field/Group

18. Availability Statement No restriction on distribution.

This report may be purchased from:

National Technical Information Service

Springfield, VA 22161

19. Security Class (This Report)

UNCLASSIFIED

21. No. of Pages

UNCLASSIFIED

22. Price

UNCLASSIFIED

CONTENTS

D			Page
		**************************************	III
		ing stations, in downstream order, for which records are publishedund-water stations for which water-level and water-quality records	VI
DISC O	re nu	blished	VII
Introd	ictio	N	1
		······································	ī
Summar	y of	hydrologic conditionshydrologic conditions	2
Defini	tion	of terms	2
Downst	ream	order and station number	11
Number.	ing s	ystem for wells and miscellaneous sites	11
Explan	ation	of stage and water-discharge records	24
		n and computation of data	24
Accu	racy	of field data and computed results f discharge collected by agencies other than the Geological Survey	25
		a available	26 26
		ons	26
Explan	ation	of water-quality records	26
Colle	ection	n and examination of data	26
Wate	r ana	lysis	27
Wate	r tem	perature	27
			27
Publ	icati	ons	27
Explan	ation	of ground-water level records	28
		n of the data	28
Access	to W	ATSTORE datas of water-resources investigationss	28
Cagina	ation	ion and water-quality records	29 30
Discha	stat	t partial-record stations and miscellaneous sites	77
		partial-record stations	77
		nts at miscellaneous sites	79
Analys	es of	samples collected at water-quality partial-record stations	80
Analys	es of	samples collected at miscellaneous sites	84
Period	ic de	terminations of water temperature at gaging stations	87
Ground	-wate	r records	92
Groun	nd-wa	ter levels and quality of water listed by island	92
Index.			151
		ILLUSTRATIONS	
		ILLUSTRATIONS	
Figure	1.	Map showing locations of Pacific Islands	3
	2.	Discharge during 1984 water year compared with median discharge for	
		representative streams on Guam and Babelthuap	4
	3.	Discharge during 1984 water year compared with median discharge for	
		representative streams on Yap and Ponape	5
	4.	Discharge during 1984 water year compared with median discharge for	- 12
	-	representative streams on Kosrae and Tutuila	6
	5.	Map of Saipan, Mariana Islands, showing locations of gaging stations, observation	10
	6	wells, and water-quality sites Map of Guam, Mariana Islands, showing locations of gaging stations	12 13
	6. 7.	Map of Guam, Mariana Islands, showing locations of daging stations	13
	′•	quality sites	14
	8.	Map of Babelthuap, Palau Islands, showing locations of gaging stations and	
	3.5	water-quality sites	15
	9.	Map of Koror, Palau Islands, showing locations of low-flow partial-record	
		stations and water-quality sites	16
	10.	Map of Yap Islands, showing locations of gaging, low-flow partial-record	
	32.1	stations, observation wells, and water-quality sites	17
	11.	Map of Moen, Truk Islands, showing locations of gaging stations, wells, and	
	12	water-quality sites	18
	12.	Map of Dublon, Truk Islands, showing location of water-quality site	19
	13.	Map of Ponape, showing locations of gaging, low-flow partial-record stations and water-quality sites	20
	14.	Map of Kosrae, showing locations of gaging stations	21
	15.	Map of Tutuila, Samoa Islands, showing locations of gaging, low-flow partial-	2.1
		record stations, observation wells, and water-quality sites	22
	16.	Sketch showing system for numbering wells and miscellaneous sites	23
	17.	Sketch showing local well numbering system	23

Letters after station name designate type of data: (d) discharge, (e) stage or gage height, (c) chemical, (t) temperature

	Page
MARIANA ISLANDS	
ISLAND OF SAIPAN	
South Fork Talofofo Stream (dt)	30
Lake Susupe (ect)	31
ISLAND OF GUAM	
La Sa Fua River near Umatac (dt)	32
Tinaga River near Inarajan (dt)	33
Tolaeyuus River (head of Talofofo River):	
Imong River (head of Fena River) near Agat (dt)	34
Almagosa River near Agat (dt)	35
Maulap River near Agat (dt)	36
Fena Dam spillway near Agat (e)	37
Ugum River above Talofofo Falls, near Talofofo (dt)	38
Yliq River near Yona (dt)	39
CAROLÍNE ISLANDS	
PALAU ISLANDS	
Diongradid River, Babelthuap (dct)	40
Tabecheding River, Babelthuap (dct)	42
Kmekumel River, Babelthuap (dct)	44
Ngerdorch River:	
South Fork Ngerdorch River, Babelthuap (dct)	46
YAP ISLANDS	
Qatliw Stream, Yap (dct)	48
Qaringeel Stream, Yap (dct)	50
Airport Pond, Yap (ect)	52
Burong Stream, Yap (dt)	53
Mukong Stream, Gagil-Tamil (dct)	54
Eyeb Stream, Gagil-Tamil (dct)	56
TRUK ISLANDS	-
Wichen River at altitude 18 m, Moen (dt)	58
ISLAND OF PONAPE	50
Kiepw River:	
Nanpil River (dct)	59
Lewi River (dct)	61
Luhpwor River (dct)	63
Lehn Mesi River (dct)	65
ISLAND OF KOSRAE	03
Melo River (dt)	67
Malem River (dt)	68
Tofol River (dt)	69
SAMOA ISLANDS	09
ISLAND OF TUTUILA	
Pago Stream at Afono (dt)	70
Aasu Stream at Aasu (dt)	71
Adauloma Stream at Afao (dt)	72
Asili Stream at altitude 330 ft near Asili (dt)	73
Leafu Stream at altitude 370 ft near Leone (dt)	74
Afuelo Stream at Matuu (dt)	75
Leafu Stream near Auasi (dt)	
DECLE STREET DECLEMENTS TO DELL'ARREST DE L'ARREST DE	/ 0

Letters after well number designate type of data: (c) chemical, (t) water temperature, (w) water level

			Page
MARIANA ISLANDS			- 490
ISLAND OF SAIPAN			
(14-0742-06)	150723145431170	(c)	94
(14-0742-07)	150737145431070	(c)	94
(14-0742-08)	150744145430370	(c)	94
(14-0742-11)	150731145430870	(c)	94
(14-0742-13) (14-0743-09)	150736145425370 150732145432070	(c)	94
(14-0743-10)	150728145431470	(c)(c)	94
(14-0743-10)	150730145431370	(c)	94
(14-0743-17)	150730145435270	(ct)	94
(14-0743-18)	150737145440670	(ct)	94
(14-0743-19)	150749145434170	(ct)	94
(14-0743-22)	150731145440370	(ct)	94
(14-0743-23)	150738145435870	(ct)	94
(14-0743-24)	150743145435470	(ct)	94
(14-0743-25) (14-0743-26)	150740145435570 150733145435970	(ct)	94 94
(14-0743-26)	150733145433970	(ct)(ct)	94
(14-0743-27)	150843145434770	(c)	94
(14-0943-01)	150905145435670	(c)	94
(14-0944-03)	150919145441170	(c)	94
(14-1045-08)	151026145454970	(ct)	94
(14-1045-09)	151032145460370	(w)	92
(14-1046-03)	151021145460870	(c)	94
(14-1143-02)	151127145434270	(ct)	95
(14-1143-05)	151127145434070	(ct)	95
(14-1144-07)	151130145445970	(w)	93
(14-1244-05)	151248145443470 151239145441870	(ct)	95 95
(14-1244-07) (14-1244-08)	151239145441870	(ct)(ct)	95
(14-1244-08)	151250145444170	(ct)	95
(14-1244-10)	151250145443370	(ct)	95
(14-1244-13)	151251145443070	(c)	95
(14-1244-14)	151258145443770	(c)	95
(14-1244-16)	151255145443770	(c)	95
(14-1244-17)	151219145440770	(c)	95
(14-1344-14)	151312145441570	(ct)	95
(14-1344-15) (14-1344-17)	151314145441570 151312145443970	(ct)	95 95
(14-1344-17)	151312145443970	(ct)(ct)	95
(14-1344-19)	151309145443370	(ct)	95
(14-1344-20)	151310145443970	(c)	95
(14-1344-21)	151302145443870	(c)	95
ISLAND OF GUAM			
(18-2645-07)	132624144452771	(w)	96
(18-2647-01)	132615144470571	(w)	104
(18-2647-12)	132626144471771	(ctw)	104
(18-2648-02) (18-2745-03)	132644144480871 132758144450571	(w)	97 105
(18-2745-07)	132742144452971	(w)	105
(18-2746-06)	132736144461671	(ctw)	106
(18-2846-01)	132824144464271	(w)	98
(18-2847-12)	132813144472771	(w)	99
(18-2848-03)	132806144481871	(ctw)	107
(18-3049-03)	133032144491871	(w)	100
(18-3049-05)	133047144500171	(w)	101
(18-3050-05)	133034144500871	(ctw)	108 109
(18-3148-02) (18-3149-05)	133115144484971 133119144491771	(w)(ctw)	102
(18-3150-10)	133120144505471	(ctw)	110
(18-3249-02)	133224144495271	(ctw)	103
(18-3453-02)	133451144534071	(ct)	111
(18-3651-05)	133628144513271	(ctw)	111
CAROLINE ISLAND	S		
YAP ISLANDS	000000000000000000000000000000000000000		100
(25-2704-01)	092703138041170	(c)	122 113
(25-2904-01) (25-2904-02)	092919138045670 092918138045470	(ctw)(ctw)	113
(25-2905-01)	092915138050270	(w)	115
(25-2905-01)	092920138050270	(ctw)	116
(25-2905-03)	092616138050670	(ctw)	117
(25-2905-04)	092903138051170	(ct)	122
(25-2905-05)	092920138043570	(ct)	123
(25-2905-06)	092926138050470	(w)	118

Page

CAROLINE ISLAND	SContinued		
YAP ISLANDSCo			
그리고 일이라면 모든 그 그리아 얼마를 그리고 있다면 그리아 없다.		7	
(25-3105-01)	093144138054670	(ct)	123
(25-3109-01)	093159138095870	(w)	118
(25-3109-02)	093159138095870	(w)	119
(25-3109-03)	093157138095670	(w)	119
(25-3109-04)	093154138095370	(w)	120
(25-3209-01)	093204138095970	(w)	112
(25-3210-01)	093217138101270	(ctw)	121
TRUK ISLANDS			200
(30-2550-01)	072517151505770	(ct)	124
	그리아 맛을 하면 뭐 하지만 하면 어떻게 했다.		
(30-2650-01)	072658151511970	(ct)	124
(30-2650-02)	072654151511870	(ct)	124
(30-2650-05)	072704151511070	(ct)	124
(30-2651-01)	072702151512570	(ct)	124
			124
(30-2651-03)	072706151512470	(ct)	
(30-2651-04)	072705151512670	(ct)	124
(30-2750-03)	072708151512170	(ct)	124
(30-2751-01)	072710151512570	(ct)	124
(31-2544-02)	082522151444070	(ct)	125
(31-3353-06)	083325151535670	(ct)	125
(31-3614-04)	083618152144070	(ct)	126
(31-4120-14)	084111152203770	(ct)	126
(32-3524-05)	083503150242070	(ct)	127
(32-3539-01)	083504149392070		
		(ct)	127
(33-2111-32)	072130149115970	(ct)	128
(33-3224-02)	073240149241470	(ct)	128
(33-3825-11)	073834149250470	(ct)	129
	064148149184070		129
(33-4118-07)		(ct)	
(35-2727-21)	052701153272970	(ct)	130
(35-2727-28)	052655153272970	(ct)	130
(35-2932-18)	052918153321470	(ct)	131
(35-3434-20)	053446153344270	(ct)	131
(35-5506-28)	055525153065570	(ct)	132
MARSHALL ISLAND)S		
MAJURO ATOLL			
(50-0802-01)	070841171011801	(ct)	133
			133
(50-0802-02)	070850171021901	(ct)	
(50-0802-03)	070849171011001	(ct)	134
(50-0802-04)	070854171011201	(ct)	134
(50-0802-05)	070835171021501	(ct)	135
(50-0802-06)	070856171021401	(ct)	135
			136
(50-0802-07)	070856171021402	(ct)	
(50-0802-08)	070856171021403	(ct)	136
(50-0802-09)	070854171020801	(ct)	137
(50-0802-10)	070854171020802	(ct)	137
(50-0802-11)	070854171020803	(ct)	138
(50-0802-12)	070854171020001	(ct)	138
(50-0802-13)	070854171020002	(ct)	139
(50-0802-14)	070854171020003	(ct)	139
(50-0802-15)	070843171021001	(ct)	140
(50-0802-17)	070843171021003	(ct)	140
121 2112 711			1000000
(50-0802-18)	070843171021004	(ct)	141
(50-0902-01)	070917171021101	(ct)	141
(50-0902-02)	070917171021102	(ct)	142
(50-0902-03)	070917171021103	(ct)	142
SAMOA ISLANDS	0/051/1/1021105	1007	
ISLAND OF TUTUI			
(90-1639-08)	141623170393801	(c)	145
(90-1943-06)	141945170435301	(c)	145
(90-1943-20)	141928170435201	(c)	146
1	141945170435401		143
(90-1943-24)		(w)	
(90-1943-28)	141948170435701	(w)	143
(90-1944-11)	141952170440201	(c)	146
(90-1944-12)	141951170440101	(c)	147
(90-1944-13)	141929170441401	(c)	147
			148
(90-1944-14)	141924170440401	(c)	
(90-2044-02)	142100170441701	(c)	148
(90-2046-02)	142057170461501	(w)	144
(90-2046-03)	142042170463001	(c)	149
(90-2144-05)	142110170444601	(c)	149
			144
(90-2144-12)	142102170445601	(w)	
(90-2145-03)	142102170455801	(c)	150

WATER RESOURCES DATA FOR HAWAII AND OTHER PACIFIC AREAS, 1984

Volume 2

INTRODUCTION

Water resources data for the 1984 water year for Hawaii and other Pacific areas consist of records of stage, discharge, and water quality of streams, springs, and reservoir; and water-levels and water quality of wells. This report contains discharge records for 32 gaging stations; stage only records for 3 gaging stations; water quality for 14 gaging stations, 14 partial-record stations, water temperature for 32 stations; and water levels for 37 observation wells and water quality for 113 ground-water sites. Also included are data for 19 low-flow partial-record stations. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State, Territorial, and Federal agencies in the Pacific areas.

Records of discharge and stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological Survey water-supply papers entitled, "Surface Water Supply of the United States." Through September 30, 1960 (June 30, 1960, for Hawaii and other Pacific Areas), these water-supply papers were in an annual series and then in a 5-year series for 1961-65 and 1966-70. The records for other Pacific areas were contained in one volume entitled "Surface Water Supply of Mariana, Caroline, and Samoa Islands." Records of chemical quality, water temperatures, and suspended sediment were published from 1941 to 1970 in an annual series of water-supply papers entitled "Quality of Surface Waters of the United States." Records of groundwater levels were published from 1935 to 1974 in a series of water-supply papers entitled "Ground Water Levels in the United States." Water-supply papers are available in the libraries of the principal cities in the United States or may be purchased from the Branch of Distribution, U.S. Geological Survey, 1200 South Eads Street, Arlington, Virginia, 22202.

For water years 1961 through 1970, streamflow data were released by the Geological Survey in annual reports on a State-boundary basis. Water-quality records for water years 1964 through 1970 were similarly released either in separate reports or in conjunction with streamflow records.

Beginning with the 1971 water year, water data for streamflow, water quality, and ground water are published in official Survey reports on a State-boundary basis. These official Survey reports carry an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report HI-84-2."

In this volume, the spelling of names, drainage areas, and locations for most stations in Palau, Yap, Truk, Ponape, and Kosrae differ from those used in "Water Resources Data for Hawaii and other Pacific Areas", 1968 to 1980. These had been based on 1954 U.S. Army Map Service series W 856 maps with a scale of 1:25,000 and 10-meter contours (International spheroid). The revised names and figures were based on the 1981 USGS maps with 1:10,000 scale and 5-meter contours (Clarke spheroid of 1866).

The water-data reports are for sale, in paper copy or in microfiche, by the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia, 22161. Additional information, including current prices, for ordering specific reports may be obtained from the District Chief at the address given on the back of the title page or by telephone (808) 546-8331.

COOPERATION

The U.S. Geological Survey has had cooperative agreements for the systematic collection of streamflow records with the Government of Guam since 1953, with the Government of American Samoa since 1957, and with the other Pacific Islands since 1968. Organizations that supplied data are acknowledged in station descriptions. Organizations that assisted in collecting data through cooperative agreement with the Survey are:

Government of Guam, R. J. Bordallo, Governor.
Government of Northern Mariana Islands, P. P. Tenorio, Governor.
Federated States of Micronesia, T. Nakayama, President.
State of Yap, J. A. Mangefel, Governor.
State of Truk, Erhart Aten, Governor.
State of Ponape, Resio Moses, Governor.
State of Kosrae, Yosiwo George, Governor.
Republic of Palau, A. R. Oiterong, President.
Government of American Samoa, A. P. Lutali, Governor.

Assistance in the form of funds or services was given by the Public Works, U.S. Navy, and the Corps of Engineers, U.S. Army.

SUMMARY OF HYDROLOGIC CONDITIONS

Based on the records at six index streams in the area covered by this volume, as shown in figure 1; the annual mean runoff for 1984 water year was in the normal range at the index stations on Guam, Babelthuap, and Kosrae, and in the deficient range (flow in the lower 25 percent of record) at the stations on Yap, Ponape and Tutuila.

Streamflow at the Ylig River near Yona, Guam (fig. 2) was normal for November through March and June through September; and deficient for the October, April, and May. Annual mean runoff was 81 percent of the median.

At the Diongradid River (fig. 2) on the island of Babelthuap, Palau Islands, monthly mean was excessive (flow in the upper 25 percent of record) for November, December, and September; normal for October and January through June; and deficient July and August. Annual mean runoff was 105 percent of the annual median.

On the island of Yap, Caroline Islands, streamflow at the Qaringeel Stream (fig. 3) was excessive for November and February; normal for October, January, March, April, and August; and deficient for December, May through July, and September. Annual mean runoff was 66 percent of the annual median.

Streamflow at the Nanpil River in Ponape (fig. 3) was excessive for January; normal for October through December, February, March, June, August, and September; and deficient for April, May, and July. Annual mean discharge was 80 percent of the annual median.

On the island of Kosrae, streamflow at the Melo River (fig. 4) was excessive for October, November, January, February, and June; normal for December, March, and August; and deficient for April, May, July, and September. Annual mean discharge was 102 percent of the annual median.

At Tutuila, American Samoa, streamflow at Aasu (fig. 4) was excessive for March; normal for October, December through February, April through June, and September; and deficient for November, July and August. Annual mean runoff was 84 percent of the annual median.

DEFINITION OF TERMS

Definition of terms related to streamflow, water-quality, and other hydrologic data are defined as follows:

Acre-foot (AC-FT, acre-ft) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to 43,560 cubic feet or 325,851 gallons or 1,233 cubic meters.

Algas are mostly aquatic single-celled, colonial, or multi-celled plants, containing chlorophyll and lacking roots, stems, and leaves.

Aquifer is a geologic formation, group of formations, or part of a formation that contains sufficient saturated permeable material to yield significant quantities of water to wells and springs.

Artesian means confined and is used to describe a well in which the water level stands above the top of the aquifer tapped by the well. A flowing artesian well is one in which the water level is above the land surface.

<u>Bacteria</u> are microscopic unicellular organisms, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants.

Total coliform bacteria are a particular group of bacteria that are used as indicators of possible sewage pollution. They are characterized as aerobic or facultative anaerobic, gram-negative, nonspore-forming, rod-shaped bacteria which ferment lactose with gas formation within 48 hours at 35°C. In the laboratory these bacteria are defined as all the organisms which produce colonies withing 24 hours when incubated at 35°C + 0.5°C on M-Endoagar (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

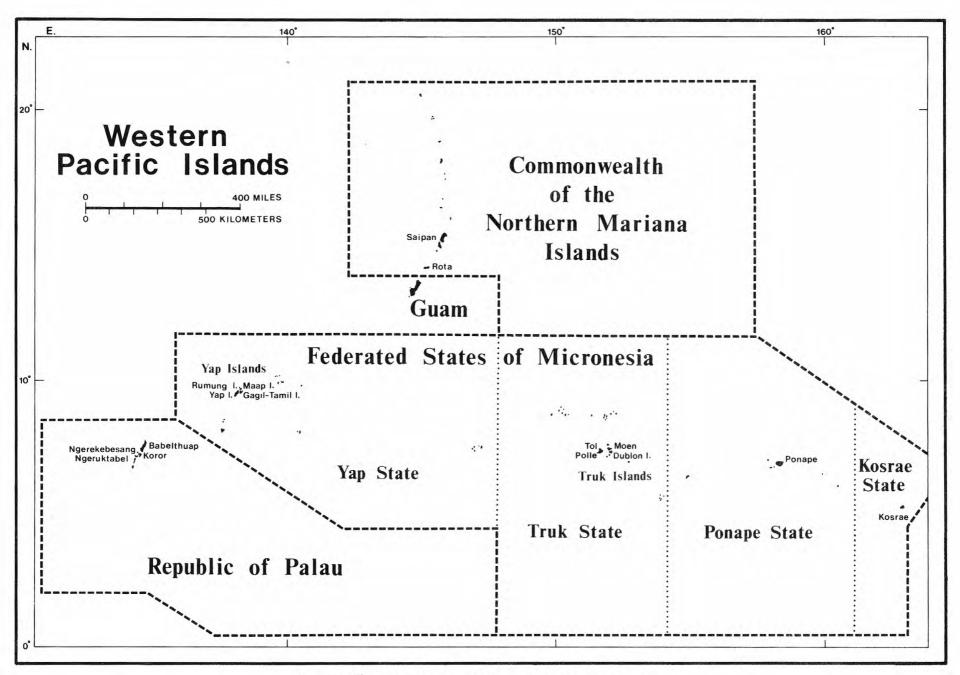
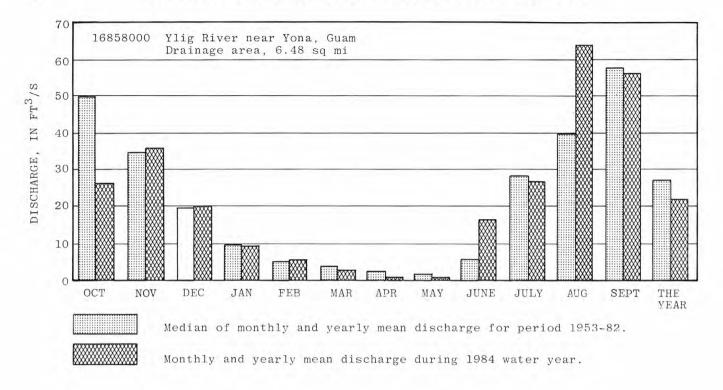



FIGURE 1.--LOCATIONS OF WESTERN PACIFIC ISLANDS.

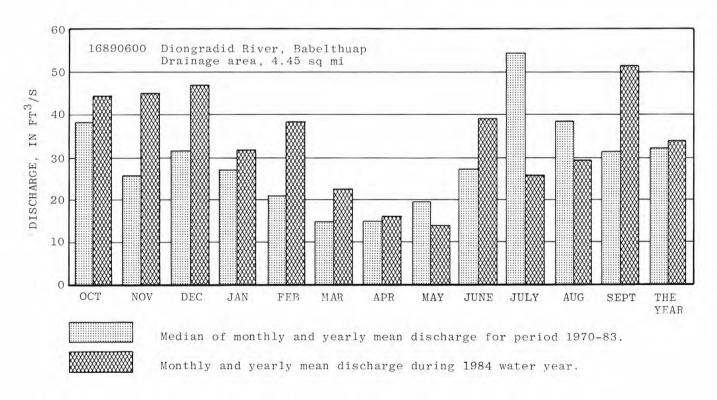
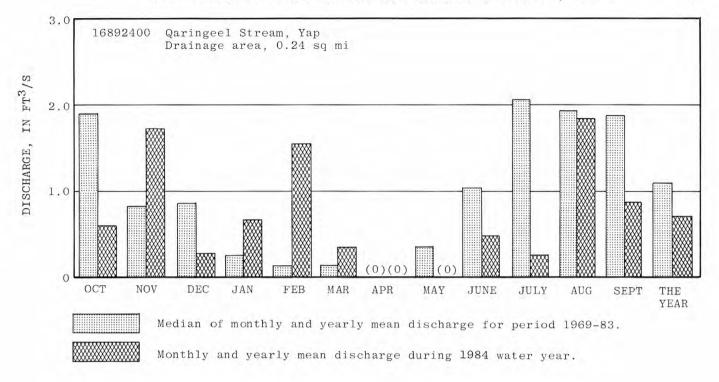



Figure 2.--Discharge during 1984 water year compared with median discharge for representative streams on Guam and Babelthuap.

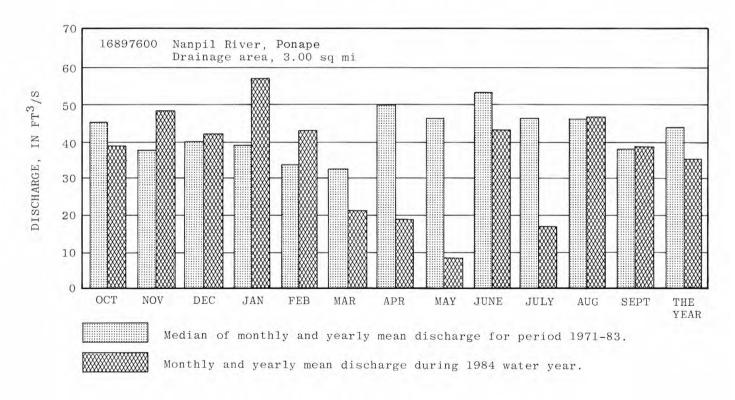
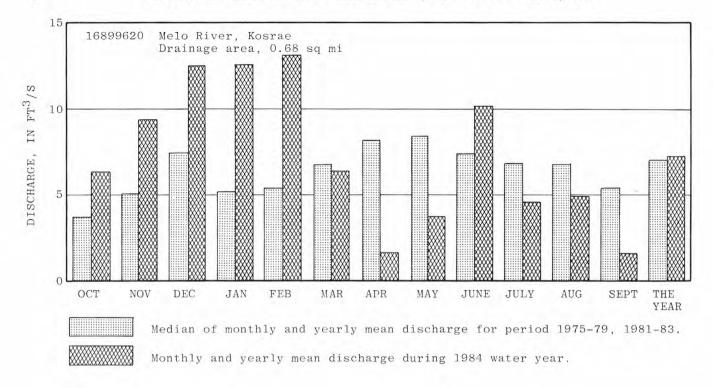



Figure 3.--Discharge during 1984 water year compared with median discharge for representative streams on Yap and Ponape.

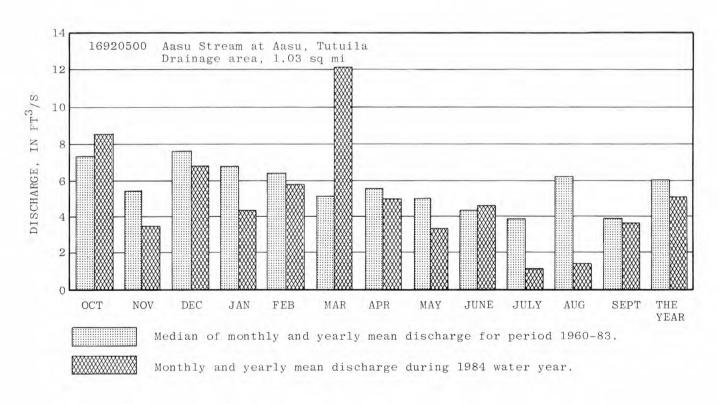


Figure 4.--Discharge during 1984 water year compared with median discharge for representative streams on Kosrae and Tutuila.

<u>Fecal coliform bacteria</u> are bacteria that are present in the intestine or feces of warm-blooded animals. They are often used as indicators of the sanitary quality of the water. In the laboratory they are defined as all organisms which produce blue colonies within 24 hours when incubated at $44.5^{\circ}\text{C}_{+} + 0.2^{\circ}\text{C}$ on M-FC agar (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 milliliter of sample.

<u>Fegal streptocoggal bacteria</u> are bacteria found also in the intestine of warm-blooded animals. Their presence in water is considered to verify fecal pollution. They are characterized as gram-positive, cocci bacteria which are capable of growth in brain-heart infusion broth. In the laboratory they are defined as all the organisms which produce red or pink colonies within 48 hours at $35^{\circ}\text{C} \pm 0.5^{\circ}\text{C}$ on KF streptococcus agar (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

<u>Biochemical oxygen demand</u> (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, necessary for the decomposition of organic matter by microorganisms, such as bacteria.

Biomass is the amount of living matter present at any time, expressed as the weight per unit area or volume of habitat.

Ash mass is the mass or amount of residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of $500\,^{\circ}$ C for 1 hour. The ash mass values of zooplankton and phytoplankton are expressed in g/m³ (grams per cubic meter), and periphyton and benthic organisms in g/m² (grams per square meter).

<u>Dry mass</u> refers to the mass of residue present after drying in an oven at 60°C for zoo-plankton and 105°C for periphyton, until the mass remains unchanged. This mass represents the total organic matter, ash, and sediment, in the sample. Dry mass values are expressed in the same units as ash mass.

 $\underline{Qrqanic}$ mass or volatile mass of the living substance is the difference between the dry mass and the ash mass, and represents the actual mass of the living matter. The organic mass is expressed in the same units as for ash and dry mass.

Wet mass is the mass of living matter plus contained water.

Bottom material is the unconsolidated material of which a streambed, lake, pond, reservoir, or estuary bottom is composed.

Recoverable from bottom material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of only readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Total in bottom material is the total amount of a given constituent in a representative sample of bottom material. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total in bottom material."

<u>Cells/volume</u> refers to the number of cells of any organism which is counted by using a microscope and grid or counting cell. Many planktonic organisms are multicelled and are counted according to the number of contained cells per sample, usually milliliters of liters (L).

GES-day is the volume of water represented by a flow of 1 cubic foot per second for 24 hours.
It is equivalent to 86,400 cubic feet, 1.9835 acre-feet, or 646,317 gallons or 2,447 cubic meters.

Chlorophyll refers to the green pigments of plants. Chlorophyll a and b are the two most common pigments in plants.

<u>Coliform organisms</u> are a group of bacteria used as an indicator of the sanitary quality of the water. The number of coliform colonies per 100 milliliters is determined by the immediate or delayed incubation membrane filter method.

<u>Color unit</u> is produced by one milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale.

Contents is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage.

Continuing record station is a specified site which meets one or all conditions listed:

- When chemical samples are collected daily or monthly for 10 or more months during the water year.
- 2. When water temperature records include observations taken one or more times daily.
- 3. When sediment discharge records include those periods for which sediment loads are computed and are considered to be representative of the runoff for the water year.

Control designates a feature downstream from the gage that determines the stage-discharge relation at the gage. This feature may be a natural constriction of the channel, an artificial structure, or a uniform cross section over a long reach of the channel.

<u>Control structure</u> as used in this report is a structure on a stream or canal that is used to regulate the flow or stage of the stream or to prevent the intrusion of salt water.

Cubic foot per second (FT³/s, ft³/s) is the rate of discharge representing a volume of 1 cubic foot passing a given point during 1 second and is equivalent to 7.48 gallons per second or 448.8 gallons per minute or 0.02832 cubic meters per second.

<u>Discharge</u> is the volume of water (or more broadly, volume of fluid plus suspended sediment), that passes a given point within a given period of time.

Mean discharge (MEAN) is the arithmetic average of individual daily mean discharges during a specified period.

<u>Instantaneous discharge</u> is the discharge at a particular instant of time. If this discharge is reported instead of the daily mean, the heading of the discharge column in the table is "DISCHARGE (CFS)."

<u>Dissolved</u> is that material in a representative water sample which passes through a 0.45 micrometer membrane filter. This is a convenient operational definition used by Federal agencies that collect water data. Determinations of "dissolved" constituents are made on subsamples of the filtrate.

<u>Qrainage area</u> of a stream at a specific location is that area, measured in a horizontal plane, enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into the river above the specified point. Figures of drainage area given herein include all closed basins, or noncontributing areas, within the area unless otherwise noted.

<u>Drainage basin</u> is a part of the surface of the earth that is occupied by a drainage system, which consists of a surface stream or a body of impounded surface water together with all tributary surface streams and bodies of impounded water.

<u>Gage height</u> (G.H.) is the water-surface elevation referred to some arbitrary gage datum. Gage height is often used interchangeably with the more general term "stage," although gage height is more appropriate when used with a reading on a gage.

 $\underline{\text{Gaging station}}$ is a particular site on a stream, canal, lake, or reservoir where systematic observations of hydrologic data are obtained.

<u>Hardness</u> of water is a physical-chemical characteristic that is commonly recognized by the increased quantity of soap required to produce lather. It is attributable to the presence of alkaline earths (principally calcium and magnesium) and is expressed as equivalent calcium carbonate (CaCO).

Hydrologic unit is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as delineated by the Office of Water Data Coordination on the State Hydrologic Unit Maps; each hydrologic unit is identified by an 8-digit number.

Microgram per gram ($\mu g/g$) is a unit expressing the concentration of a chemical element as the mass (micrograms) of the element sorbed per unit mass (gram) of sediment.

Microgram per liter (UG/L, μ g/L) is a unit expressing the concentration of chemical constituents in solution as mass (micrograms) of solute per unit volume (liter) of water. One thousand micrograms per liter is equivalent to one milligram per liter.

Milligram per liter (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in solution. Milligrams per liter represent the mass of solute per unit volume (liter) of water. Concentration of suspended sediment also is expressed in mg/L, and is based on the mass of sediment per liter of water-sediment mixture.

Partial-record station is a particular site where limited streamflow and/or water-quality data are collected systematically over a period of years for use in hydrologic analyses.

<u>Particle size</u> is the diameter, in millimeters (mm), of suspended sediment or bed material determined by either sieve or sedimentation methods. Sedimentation methods (pipet, bottom-with-drawal tube, visual-accumulation tube) determine fall diameter of particles in either distilled water (chemically dispersed) or in native water (the river water at the time and point of sampling).

<u>Particle-size classification</u> used in this report agrees with recommendations made by the American Geophysical Union Subcommittee on Sediment Terminology. The classification is as follows:

Classification	Size	(mm)	Method of analysis
Clay	0.00024	- 0.004	Sedimentation.
Silt	.004	062	Sedimentation.
Sand	.062	- 2.0	Sedimentation or sieve.
Gravel	2.0	- 64.0	Sieve.

The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. Most of the organic material is removed and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native-water analysis.

<u>Percent composition</u> is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, mass, or volume.

<u>Pesticides</u> are chemical compounds used to control the growth of undesirable plants and animals. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides.

<u>Picocurie</u> (Pc,pCi) is one trillionth (1×10^{-12}) of the amount of radioactivity represented by a curie (Ci). A curie is the amount of radioactivity that yields 3.7 x 10^{10} radio active disintegrations per second. A picocurie yields 2.22 dpm (disintegrations per minute).

<u>Polychlorinated biphenyls</u> (PCBs) are industrial chemicals that are mixtures of chlorinated biphenyl compounds having various percentages of chlorine. They are similar in structure to organochlorine insecticides.

<u>Sediment</u> is solid material that originates mostly from disintegrated rocks and is transported by, suspended in, or deposited from water; it includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are influenced by environmental factors. Some major factors are degree of slope, length of slope, soil characteristics, land usage, and quantity and intensity of precipitation.

<u>Suspended sediment</u> is the sediment that at any given time is maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid.

Suspended-sediment concentration is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 ft above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L).

<u>Suspended-sediment discharge</u> (tons/day) is the rate at which dry weight of sediment passes a section of a stream or is the quantity of sediment, as measured by dry weight or volume, that passes a section in a given time. It is computed by multiplying discharge times milligrams per liter times 0.0027.

<u>Suspended-sediment_load</u> is quantity of suspended sediment passing a section in a specified period.

<u>Total-sediment discharge</u> (tons/day) is the sum of the suspended-sediment discharge and the bedload discharge. It is the total quantity of sediment, as measured by dry weight or volume, that passes a section during a given time.

 $\underline{\text{Mean concentration}}$ is the time-weight concentration of suspended sediment passing a stream section during a 24-hour day.

 $\underline{\underline{Sqlute}}$ is any substance derived from the atmosphere, vegetation, soil, or rocks that is dissolved in water.

Specific conductance is a measure of the ability of a water to conduct an electrical current. It is expressed in micromhos per centimeter at 25°C. Specific conductance is related to the type and concentration of ions in solution and can be used for approximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is about 65 percent of the specific conductance (in micromhos). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water.

Stage-discharge relation is the relation between gage height (stage) and volume of water per unit of time, flowing in a channel.

Streamflow is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

Suspended (as used in tables of chemical analyses) refers to the amount (concentration) of the total concentration in a water-sediment mixture. The water-sediment mixture is associated with (or sorbed on) that material retained on a 0.45 micrometer filter.

Suspended recoverable is the amount of a given constituent that is in solution after the part of a respresentative water-suspended sediment sample that is retained on a 0.45 micrometer membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Determinations of "suspended, recoverable" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total recoverable concentrations of the constituent.

Suspended total is the total amount of a given constituent in the part of a representative water-suspended sediment sample that is retained on a 0.45 micrometer membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total."

Determinations of "suspended, total" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total concentrations of the constituents.

Total recoverable is the amount of a given constituent that is in solution after a representative water-suspended sediment sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Total is the total amount of a given constituent in a representative water-suspended sediment sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total." (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determines all of the constituent in the sample.)

Time-weighted average is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water that would be contained in a vessel or reservoir that had received equal quantities of water from the stream each day for the year.

Tons per acre-foot indicates the dry mass of dissolved solids in 1 acre-foot of water. It is computed by multiplying the concentration in milligrams per liter by 0.00136.

Tons per day is the quantity of substance in solution or suspension that passes a stream section during a 24-hour day.

Total load (tons) is the total quantity of any individual constituent, as measured by dry mass or volume, that is dissolved in a specific amount of water (discharge) during a given time. It is computed by multiplying the total discharge, times the mg/L of the constituent, times the factor 0.0027, times the number of days.

<u>Turbidity</u> of a sample is the reduction of transparency due to the presence of particulate matter. In this report it is expressed Nephelometric turbidity units (NTU).

WDR is used as an abbreviation for "Water-Data Reports" in the summary REVISIONS paragraph to refer to previously published State annual basic-data reports.

Weighted average is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir.

 $\underline{\mathtt{WRD}}$ is used as an abbreviation for "Water-Resources Data" in the REVISED RECORDS paragraph to refer to State annual basic-data reports published before 1975.

WSP is used as an abbreviation for "Water-Supply Paper" in references to previously published reports.

DOWNSTREAM ORDER AND STATION NUMBER

Records are listed in a downstream direction along the main stream, and stations on tributaries are listed between stations on the main stream in the order in which those tributaries enter the main stream. Stations on tributaries entering above all main-stream stations are listed before the first main-stream station. Stations on tributaries to tributaries are listed in a similar manner. In the lists of gaging stations and water-quality stations in the front of this report the rank of tributaries is indicated by indention, each indention representing one rank.

As an added means of identification, each gaging station, partial-record station, and water-quality station has been assigned a station number. These are in the same downstream order used in this report. In assigning station numbers, no distinction is made between partial-record stations and continuous-record gaging stations; therefore, the station number for a partial-record station indicates downstream order position in a list made up of both types of stations. Water-quality stations located at or near gaging stations or partial-record stations have the same number as the gaging or partial-record station. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The complete 8-digit number for each station, such as 16858000 which appears just to the left of the station name includes the 2-digit number "16" plus the 6-digit downstream order number "858000." In this report, the records are listed in downstream order by islands. Locations of the stations are shown in figures 5-15.

NUMBERING SYSTEM FOR WELLS AND MISCELLANEOUS SITES

The 8-digit downstream order station numbers are not assigned to wells and miscellaneous sites where only random water-quality samples or discharge measurements are taken.

The well and miscellaneous site numbering system of the U.S. Geological Survey is based on the grid system of latitude and longitude. The system provides the geographic location of the well or miscellaneous site and a unique number for each site. The number consists of 15 digits. The first 6 digits denote the degrees, minutes, and seconds of latitude, the next 7 digits denote degrees, minutes, and seconds of longitude, and the last 2 digits (assigned sequentially) identify the wells or other sites within a 1-second grid. See figure 16.

The local well-numbering system for Pacific Areas was restructured to contain eight digits based on a non-arbitrary, unique one-minute grid system. One-minute parallel lines for both latitude and longitude are drawn on the map resulting in one-minute grids. Each grid is designated by a four-digit number. The first two digits represent minutes of latitude for the grid and the second two digits represent minutes of longitude for that grid.

To distinguish wells within a minute grid, two digits are added following the 4-digit minute-grid numbers with a dash separator. These two-digit numbers are assigned with the oldest well dug within the grid as 01 and increase chronologically, with few exceptions, to the latest dug.

Since it is possible to have a same 6-digit number for wells on different islands, a 2-digit number distinguishing each of the islands or geographic areas is added in front of the 6-digit number with a dash separator. For example, in the number 18-2647-01, the first two digits designate an island of geographic area, then the 4-digit minute-grid numbers followed by a 2-digit sequential number. See figure 17.

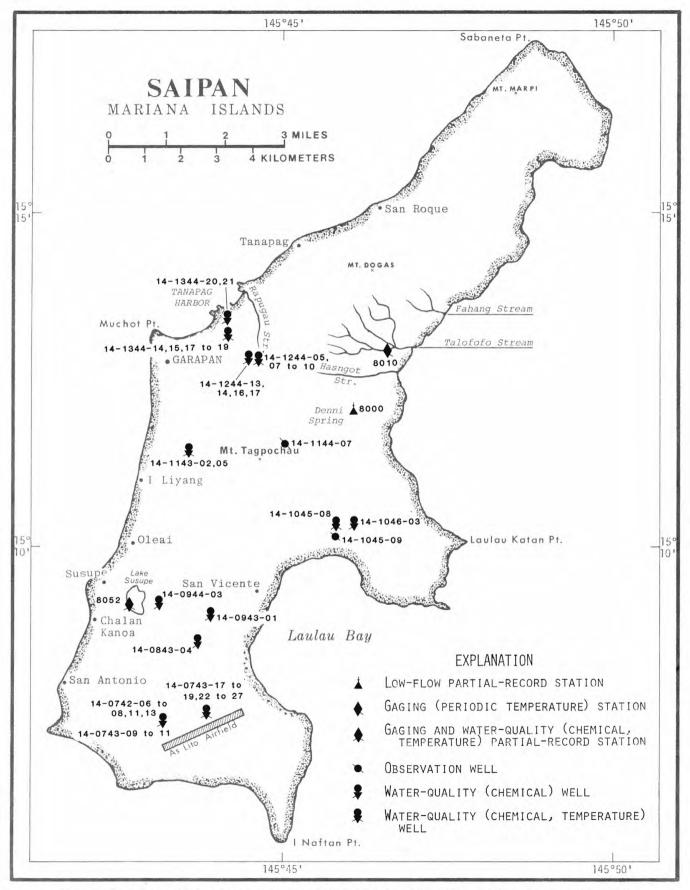


Figure 5.--Locations of gaging stations, observation wells, and water-quality on Saipan.

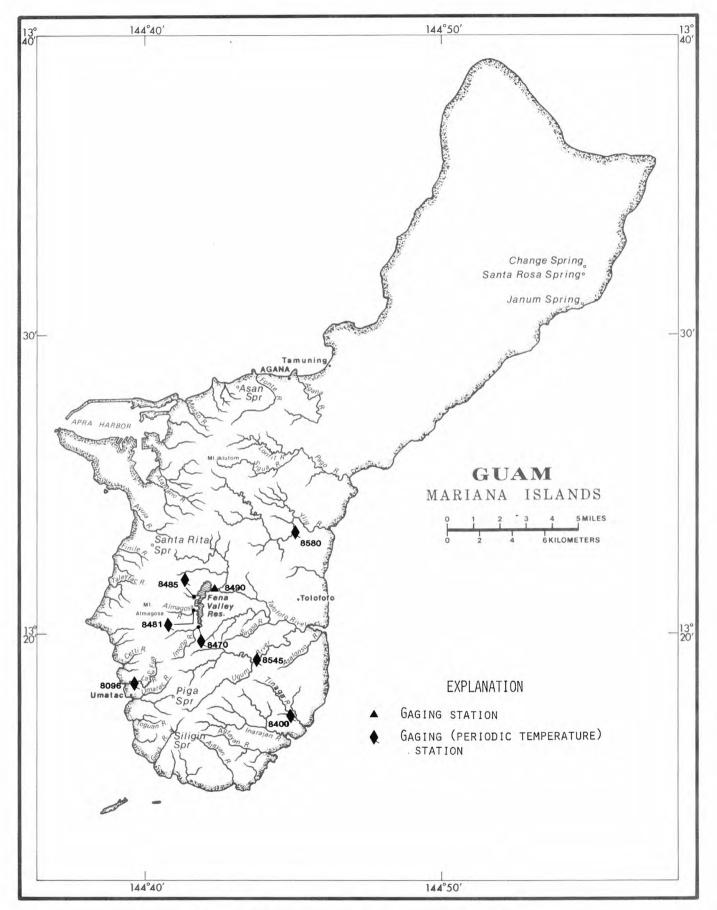


FIGURE 6.--LOCATIONS OF GAGING STATIONS ON GUAM.

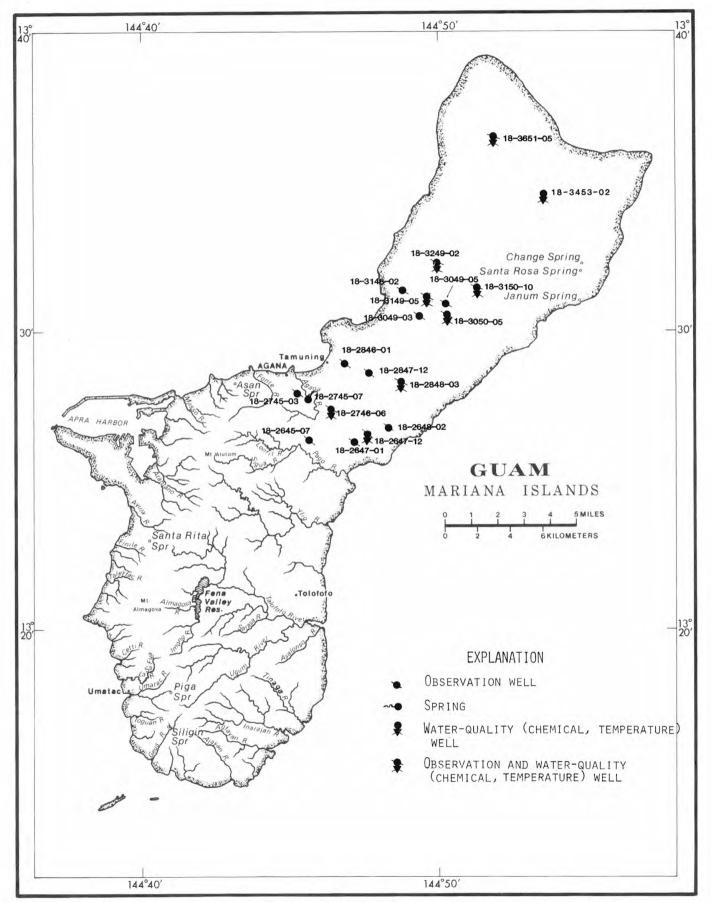


FIGURE 7.--LOCATIONS OF OBSERVATION WELLS AND WATER-QUALITY SITES ON GUAM.

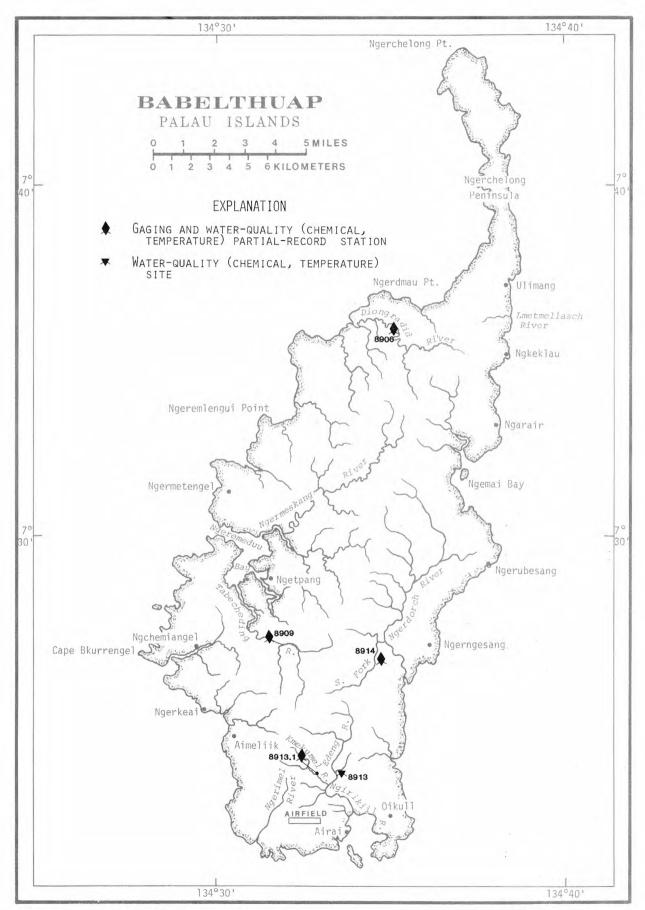


Figure 8.--Locations of gaging stations and water-quality sites on Babelthuap.

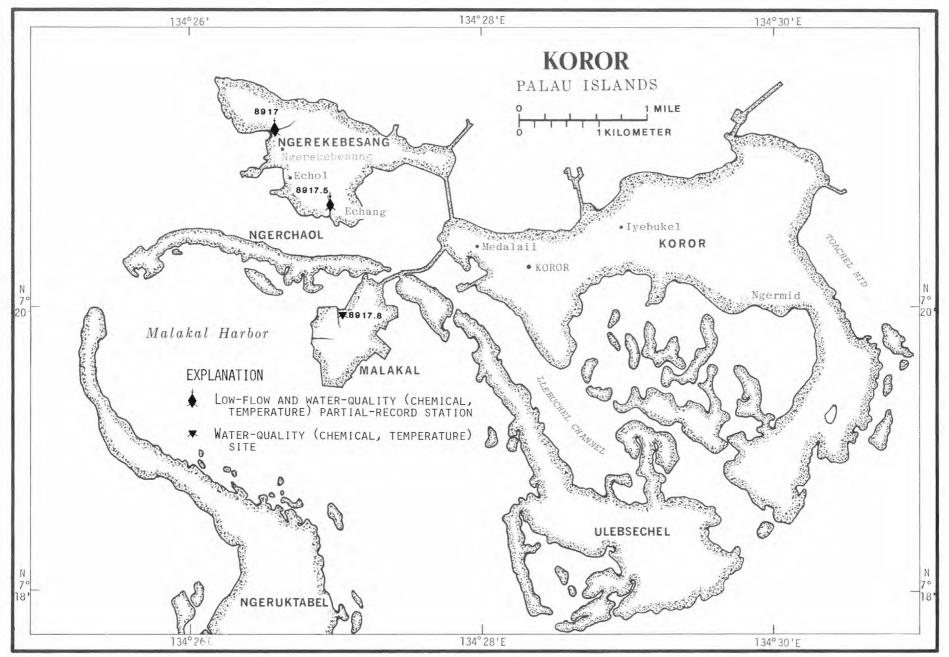


FIGURE 9.--LOCATIONS OF LOW-FLOW PARTIAL-RECORD STATIONS AND WATER-QUALITY SITES ON KOROR.

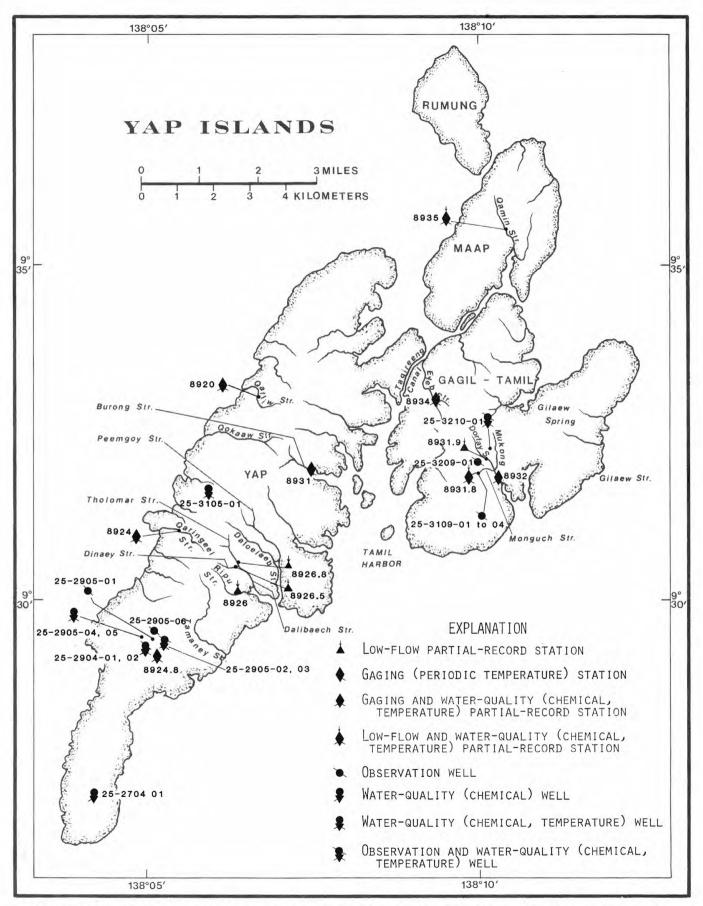


Figure 10.--Locations of gaging, Low-flow partial-record stations, observation wells and water-quality sites on Yap Islands.

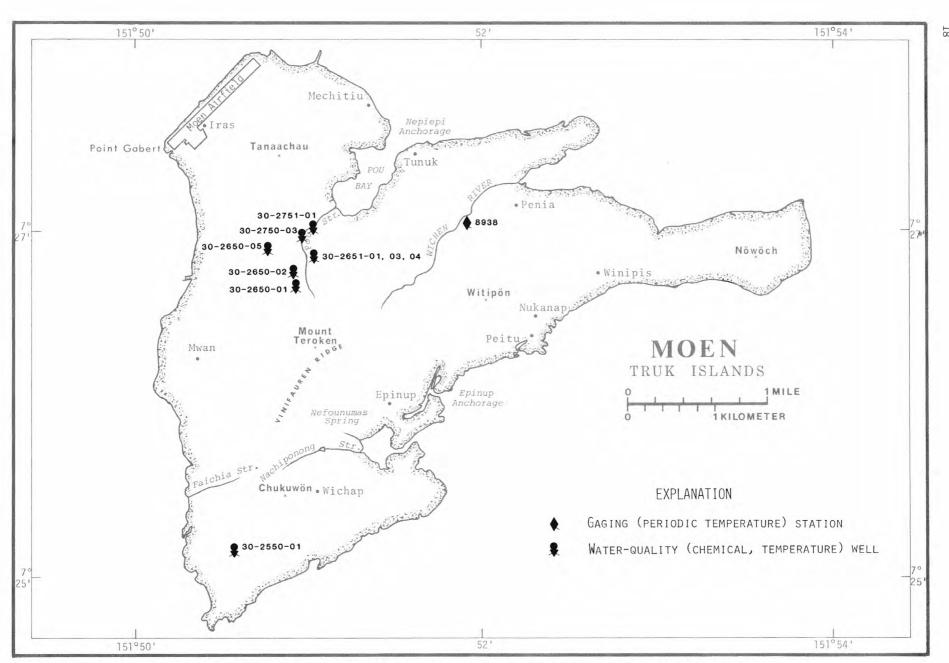


FIGURE 11.--LOCATIONS OF GAGING STATION, WELLS, AND WATER-QUALITY SITES ON MOEN.

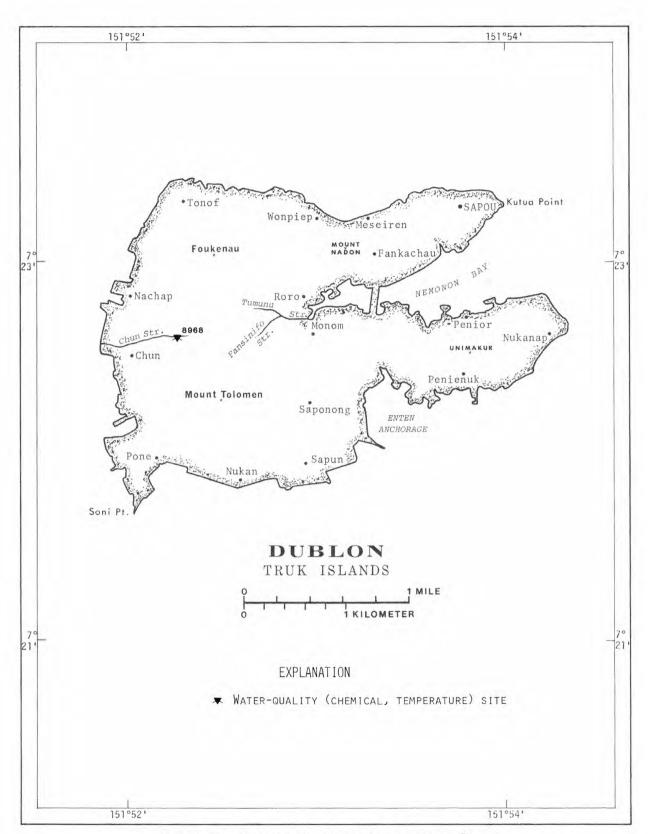


FIGURE 12.--LOCATION OF WATER-QUALITY SITE ON DUBLON.

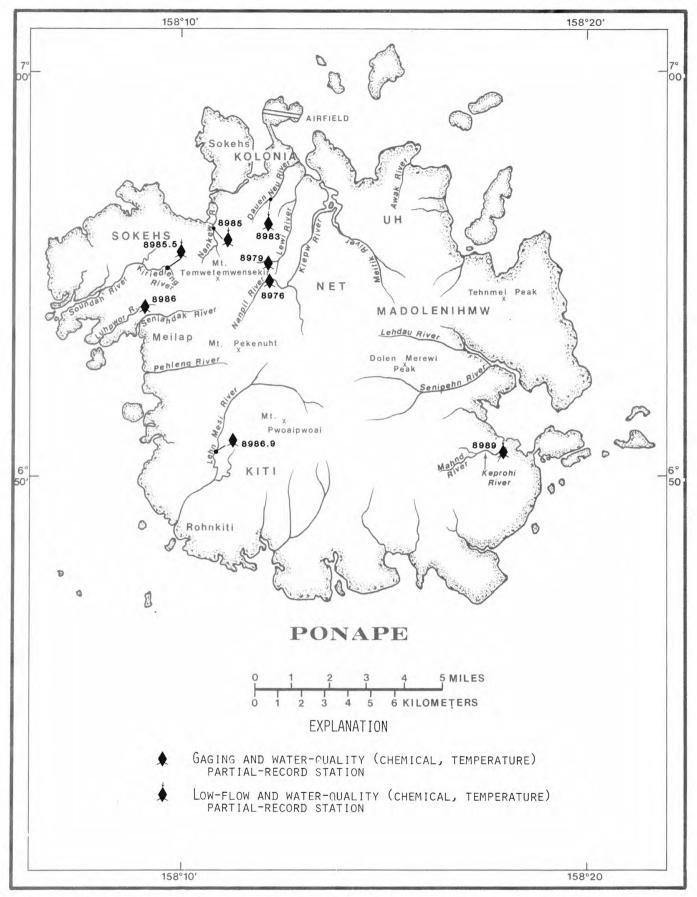


Figure 13.--Locations of gaging, Low-flow partial-record stations, and water-quality sites on Ponape.

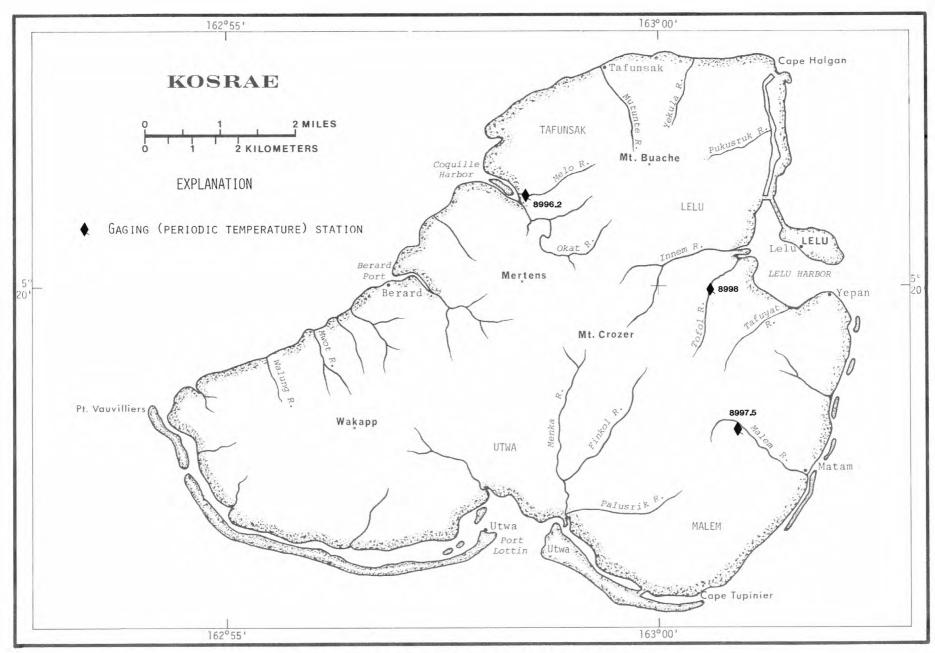


FIGURE 14.--LOCATIONS OF GAGING STATIONS ON KOSRAE.

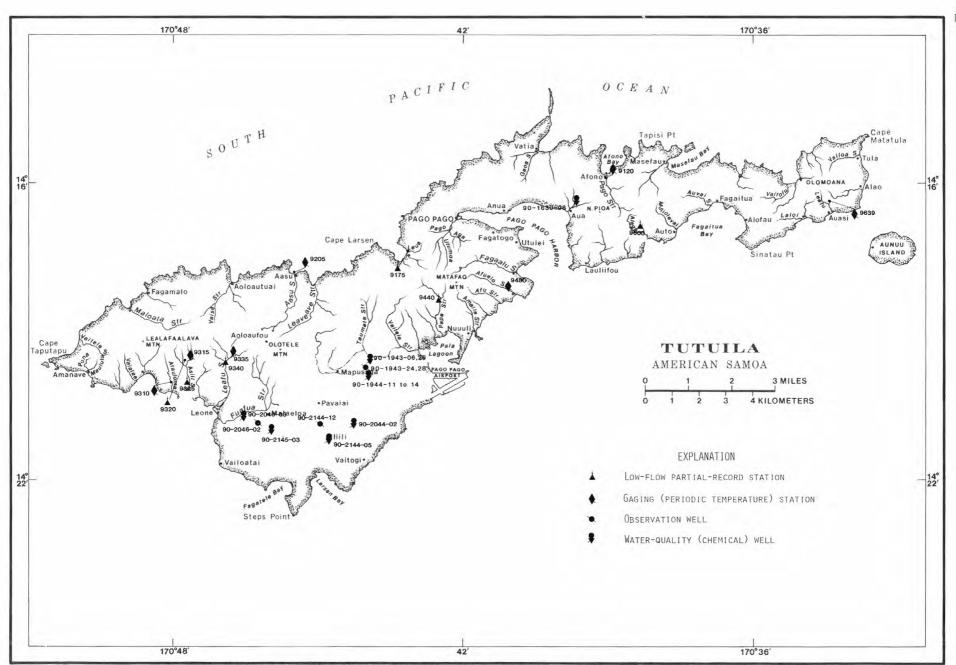


FIGURE 15.--LOCATIONS OF GAGING, LOW-FLOW PARTIAL-RECORD STATIONS, OBSERVATION WELLS, AND WATER-QUALITY SITES ON TUTUILA.

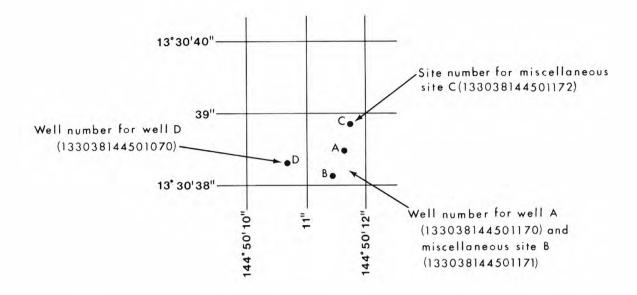


FIGURE 16.--SKETCH SHOWING SYSTEM FOR NUMBERING WELLS AND MISCELLANEOUS SITES.

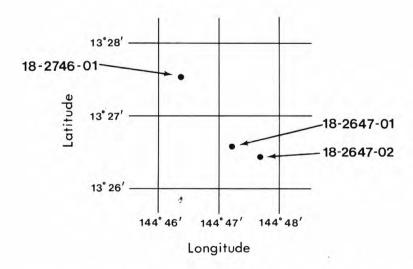


Figure 17.--Sketch showing Local well numbering system.

EXPLANATION OF STAGE AND WATER-DISCHARGE RECORDS

Collection and computation of data

The base data collected at gaging stations consist of records of stage and measurements of discharge of streams or canals, and stage, surface area, and contents of lakes or reservoirs. In addition, observations of factors affecting the stage-discharge relation or the stage-capacity relation, weather records and other information are used to supplement base data in determining the daily flow or volume of water in storage. Records of stage are obtained from either direct readings on a nonrecording gage or from a water-stage recorder that gives either a continuous graph of the fluctuations or a tape punched at selected time intervals. Measurements of discharge are made with a current meter, using the general methods adopted by the Geological Survey. These methods are described in standard text books, in Water-Supply Paper 888, and in U.S. Geological Survey Techniques of Water Resources Investigations, book 3, chapter A6.

For stream-gaging stations, rating tables giving the discharge for any stage are prepared from stage-discharge relation curves. If extensions to the rating curves are necessary to express discharge greater than measured, they are made on the basis of indirect measurements of peak discharge (such as slope-area or contracted-opening measurements, computation of flow over dams or weirs), step-backwater techniques, velocity-area studies, and logarithmic plotting. The daily mean discharge is computed from gage heights and rating tables, then the monthly and yearly mean discharges are computed from the daily figures. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the daily mean discharge is computed by the shifting-control method, in which correction factors based on individual discharge measurements and notes by engineers and observers are used in applying the gage heights to the rating tables. If the stage-discharge relation for a station is temporarily changed by the presence of aquatic growth or debris on the control, the daily mean discharge is computed by what is basically the shifting-control method.

At some stream-gaging stations, the stage-discharge relation is affected by the backwater from reservoirs, tributary streams, or other sources. This necessitates the use of the slope method in which the slope or fall in a reach of the stream is a factor in computing discharge. The slope or fall is obtained by means of an auxiliary gage set at some distance from the base gage. At some stations the stage-discharge relation is affected by changing stage; at these stations the rate of change in stage is used as a factor in computing discharge.

For some gaging stations there are periods when no gage-height record is obtained or the recorded gage height is so faulty that it cannot be used to computed daily discharge or contents. This happens when the recorder stops or otherwise fails to operate properly, intakes are plugged, the float is frozen in the well, or for various other reasons. For such periods the daily discharges are estimated on the basis of recorded range in stage, prior and subsequent records, discharge measurements, weather records, and comparison with records for other stations, in the same or nearby basins. Likewise daily contents may be estimated on the basis of operator's log, prior and subsequent records, inflow-outflow studies, and other information.

The data in this report generally comprise a description of the station and tabulations of daily and monthly figures. For gaging stations on streams or canals, a table showing the daily discharge and monthly and yearly discharge is given. For gaging station on lakes and reservoirs, a monthly summary table of stage and contents or a table showing the daily contents is given. Tables of daily mean gage heights are included for some streamflow stations and for some reservoir stations. Records are published for the water year, which begins on October 1 and ends on September 30.

The description of the gaging station gives the location, drainage area, period of record, notations of revisions of previously published records, type and history of gages, general remarks, average discharge, and extremes of discharge or contents. The location of the gaging station and the drainage area are obtained from the most accurate maps available. River mileage, given under "LOCATION" for some stations, is that determined and used by the Corps of Engineers or other agencies. Periods for which there are published records for the present station or for stations generally equivalent to the present one are given under "PERIOD OF RECORD."

Previously published streamflow records of some stations have been found to be in error on the basis of data or information later obtained. Revisions of such records are usually published along with the current records in one of the annual or compilation reports. In order to make it easier to find such revised records, a paragraph headed "REVISED RECORDS" has been added to the description of all stations for which revised records have been published. Listed therein are all the reports in which revisions have been published, each followed by the water years for which figures are revised in that report. In listing the water years only one number is given; for instance, 1965 stands for the water year October 1, 1964, to September 30, 1965. If no daily, monthly, or annual figures of discharge are affected by the revision, the fact is brought out by notations after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; "(m)" that only the instantaneous minimum was revised; and "(P)" that only peak discharge were revised. If the drainage area has been revised, the report in which the revised figures was first published is given.

The type of gage currently in use, the datum of the present gage above mean sea level, and a condensed history of the types, locations, and datums of previous gages used during the period of record are given under "GAGE." In references to datum of gage, the phrase "mean sea level" denotes "Sea Level Datum of 1929" as used by the Topographic Division of the Geological Survey unless otherwise qualified.

Information pertaining to the accuracy of the discharge records and to conditions which affect the natural flow of the gaging station is given under "REMARKS." For reservoir stations information on the dam forming the reservoir, the capacity, outlet works and spillway, and purpose and use of the reservoir is given under "REMARKS."

The average discharge for the number of years indicated is given under "AVERAGE DISCHARGE", it is not given for stations having fewer than 5 complete years of record or for stations where changes in water development during the period of record cause the figure to have little significance. In addition, the median of yearly mean discharges is given for stream-gaging stations having 10 or more complete years of record if the median differs from the average by more than 10 percent. Under "EXTREMES" are given first, the extremes for the period of record, second, information available outside the period of record, and last, those for the current year. Unless otherwise qualified, the maximum discharge (or contents) is the instantaneous maximum corresponding to the crest stage obtained by use of a water-stage recorder (graphic or digital), a crest-stage gage, or a nonrecording gage read at the time of the crest. If the maximum gage height did not occur on the same day as the maximum discharge (or contents), it is given separately. Similarly, the minimum is the instantaneous minimum unless otherwise qualified. For some stations, peak discharges are listed with EXTREMES FOR THE CURRENT YEAR; if they are, all independent peaks, including the maximum for the year, above the selected base with time of occurrence and corresponding gage heights are published in tabular format. The base discharge, which is given in the table heading, is selected so that an average of about three peaks a year will be presented. Peak discharges are not published for any canals, ditches, drains, or for any stream for which the peaks are subject to substantial control by man. Time of day is expressed in 24-hour local standard time; for example, 12:30 a.m. is 0030, 1:30 p.m. is 1330. The minimums for these stations are published in a separate paragraph following the table of peaks.

The daily table for stream-gaging stations gives the mean discharge for each day and is followed by monthly and yearly summaries. In the monthly summary below the daily table, the line headed "TOTAL" gives the sum of the daily figures. The line headed "MEAN" gives the average flow in cubic feet per second during the month. The lines headed "MAX" and "MIN" give the maximum and minimum daily discharges, respectively, for the month. Discharge for the month also may be expressed in cubic feet per second per square mile (line headed "CFSM"), or in inches (line headed "IN"), or in acre-feet (line headed "AC-FT"). Figures for cubic feet per second per square mile and runoff in inches are omitted if there is extensive regulation or diversion, if the drainage area includes large noncontributing areas, or if the average annual rainfall over the drainage basin is usually less than 20 inches. In the yearly summary below the monthly summary, the figures shown are the appropriate daily discharges for the calendar and water years.

Footnotes to the table of daily discharge are introduced by the word "NOTE." Footnotes are used to indicate periods for which the discharge is computed or estimated by special methods because of no gage-height record, backwater from various sources, or other unusual conditions. Periods of no gage-height record are indicated if the period is continuous for a month or more or includes the maximum discharge for the year. Periods of backwater from an unusual source, of indefinite stage relation, or of any other unusual condition at the gage site are indicated only if they are a month or more in length and the accuracy of the records is affected.

For most gaging station on lakes and reservoirs, the data presented comprise a description of the station and a monthly summary table of stage and contents. For some reservoirs a table showing daily contents or stage is given. A skeleton table of capacity at given stages is published for all reservoirs for which records are published on a daily basis, but is not published for reservoirs for which only monthly data are given.

Data collected at partial-record stations follow the information for continuous-record sites. Data for partial-record discharge stations are presented in two tables. The first is a table of discharge measurements at low-flow partial-record stations, and the second is a table of annual maximum stage and discharge at crest-stage stations. The tables of partial-record stations are followed by a listing of discharge measurements made at sites other than continuous-record or partial-record stations. Occasionally, a series of discharge measurements are made within a short time period to investigate the seepage gains or losses along a reach of a stream or to determine the low-flow characteristics of an area. Such measurements are also given in special tables following the tables of partial-record stations.

Accuracy of field data and computed results

The accuracy of streamflow data depends primarily on (1) the stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements and (2) the accuracy of observations of stage, measurements of discharge, and interpretations of records.

The station description under "REMARKS" states the degree of accuracy of the records. "Excellent" means that about 95 percent of the daily discharges are within 5 percent; "good", within 10 percent; and "fair" within 15 percent. "Poor" means that daily discharges have less than "fair" accuracy.

Figures of daily mean discharge in this report are shown to the nearest hundredth of a cubic foot per second for discharges of less than 1 cfs; to tenths between 1.0 and 10 cfs; to whole numbers between 10 and 1,000 cfs; and to 3 significant figures above 1,000 cfs. The number of significant figures used is based solely on the magnitude of the figure.

Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. For such stations, figures of cubic feet per second per square mile and of runoff in inches are not published unless satisfactory adjustments can be made for diversions, for changes in contents of reservoirs, or for other changes incident to use and control. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents, unless it is so stated. Even at those stations where adjustments are made, large errors in computed runoff may occur if adjustments or losses are large in comparison with the observed discharge.

Records of discharge collected by agencies other than the Geological Survey

The National Water Data Exchange, Water Resources Division, U.S. Geological Survey, National Center, Reston, VA 22092, maintains an index of water-data sites not published by the Geological Survey. Information on records available at specific sites can be obtained upon request.

Other data available

Information of a more detailed nature than that published for most of the gaging stations such as observations of water temperatures, discharge measurements, gage-height records, and rating tables is on file in the district office. Also most gaging-station records are available in computer-usable form and many statistical analyses have been made.

Information on the availability of unpublished data or statistical analyses may be obtained from the district office.

Publications

In each water-supply paper entitled, "Surface Water Supply of the United States" there is a list of numbers of preceding water-supply papers containing streamflow information for the area covered by that report. In addition, there is a list of numbers of water-supply papers containing detailed information on major floods in the area. Records for stations in Hawaii and other Pacific areas for the period October 1959 to September 1965, are in Water-Supply Paper 1937.

Two series of summary reports entitled, "Compilation of Records of Surface Waters of the United States" have been published; the first series covers the entire period of record through september 1950 (June 1950, for Hawaii), and the second series covers the period October 1950 to September 1960 (July 1950 to June 1960, for Hawaii and other Pacific areas). These reports contain summaries of monthly and annual discharge and monthend storage for all previously published records, as well as some records not contained in the annual series of water-supply papers. All records were reexamined and revised where warranted. Estimates of discharge were made to fill short gaps whenever practical. The yearly summary table for each gaging station lists the numbers of the water-supply papers in which daily records were published for that station. Records for stations in Hawaii and other Pacific areas are compiled in Water-Supply Paper 1319 through June 1950, in 1739 and 1751 for July 1950 to June 1960, in 1937 for October 1959 to September 1965, and 2137 for October 1966 to September 1970.

Special reports on major floods or droughts or of other hydrologic studies for the area have been issued in publications other than water-supply papers. Information relative to these reports may be obtained from the district office.

EXPLANATION OF WATER-OUALITY RECORDS

Collection and examination of data

Surface water samples for analyses usually are collected at or near gaging stations. The water-quality records are given immediately following the discharge records at these stations.

The descriptive heading for water-quality records gives periods of record for the various types of water-quality data (chemical, specific conductance, biological determination, water temperatures, sediment discharge), period of record, and extremes of pertinent data, and general remarks.

For ground-water records, no descriptive statements are given; however, the well number, depth of well, date of sampling and/or other pertinent data are given in the table containing the chemical analyses of the ground water.

Water analysis

Most methods for collecting and analyzing water samples are described in the U.S. Geological Survey Techniques of Water-Resources Investigations listed on a following page.

One sample can define adequately the water-quality at a given time if the mixture of solutes throughout the stream cross section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled through several vertical sections to obtain a representative sample needed for an accurate mean concentration and for use in calculating load.

Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis.

For chemical-quality stations equipped with digital monitors, the records consist of daily maximum, minimum, and mean values for each constituent measured and are based upon hourly punches beginning at 0100 hours and ending at 2400 hours for the day of record. More detailed records (hourly values) may be obtained from the district office.

Water temperature

Water temperatures are measured at most of the water-quality stations. In addition, water temperatures are taken at time of discharge measurements for water-discharge stations. Large streams have a small diel temperature change; shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams may be affected by waste-heat discharges.

At stations where recording instruments are used, either mean temperatures or maximum and minimum temperatures for each day are published.

Sediment

Suspended-sediment concentrations are determined from samples collected by using depth-integrating samplers. Samples usually are obtained at several verticals in the cross section, or a single or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross sections.

During periods of rapidly changing flow or rapidly changing concentration, samples may have been collected more frequently (twice daily or, in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided day method (time-discharge weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration time 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided day method. For periods when no samples were collected, daily loads of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspended-sediment loads for other periods of similar discharge.

At other stations, suspended-sediment samples were collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observations, such data are useful in establishing seasonal relations between quality and streamflow in predicting long-term sediment-discharge characteristics of the stream.

In addition to the records of the quantities of suspended sediment, records of the periodic measurements of the particle-size distribution of the suspended sediment and bed material are included.

Publications

The annual series of water-supply papers that contain information on quality of surface waters in Hawaii and other Pacific areas are listed below.

Water year	WSP No.	Water year	WSP No.	Water <u>Year</u>	WSP Ng.
1964	1966	1967	2016	1970	2160
1965	1966	1968	2016		
1966	1996	1969	2150		

EXPLANATION OF GROUND-WATER LEVEL RECORDS

Collection of the data

Only ground-water level data from a basic network of observation wells are published herein. This basic network contains observation wells so located that the most significant data are obtained from the fewest wells in the most important aquifers.

Each well is identified by means of (1) a 15-digit number that is based on latitude and longitude and (2) a local number that is provided for local needs. See figures 16 and 17.

Measurements are made in many types of wells, under varying conditions of access and at different temperatures, hence, neither the method of measurement nor the equipment can be standardized. At each observation well, however, the equipment and techniques used are those that will ensure that measurements at each well are consistent.

Water-level measurements in this report are given in feet with reference to either mean sea level (msl) or land-surface datum (lsd). Mean sea level is the datum plane on which the national network of precise levels is based; land-surface datum is a datum plane that is approximately at land surface at each well. If known, the altitude of the land-surface datum above mean sea level is given in the well description. The height of the measuring point (MP) above or below land-surface datum is given in each well description. Water levels in wells equipped with recording gages are reported for every fifth day and the end of each month (eom). To show the intraday variation in the ground-water levels caused by local pumping and tidal fluctuations, instantaneous maximum and minimum water levels are given with the mean water levels for the day.

Water levels are reported to as many significant figures as can be justified by the local conditions. For example, in a measurement of a depth to water of several hundred feet, the error in determining the absolute value of the total depth to water may be a few tenths of a foot, whereas the error in determining the net change of water level between successive measurements may be only a hundredth or a few hundredths of a foot. For lesser depths to water, the accuracy is greater. Accordingly, most measurements are reported to a hundredth of a foot, but some are given only to a tenth of a foot or a larger unit.

ACCESS TO WATSTORE DATA

The National WATer Data STOrage and REtrieval System (WATSTORE) was established for handling water data collected through the activities of the U.S. Geological Survey and to provide for more effective and efficient means of releasing the data to the public. The system is operated and maintained on the central computer facilities of the Survey at its National Center in Reston, Virginia.

WATSTORE can provide a variety of useful products ranging from simple data tables to complex statistical analyses. A minimal fee, plus the actual computer cost incurred in producing a desired product, is charged to the requester. Information about the availability of specific types of data, the acquisition of data or products, and user charges can be obtained locally from each of the Water Resources Division's district offices (see address given on the back of the title page).

General inquiries about WATSTORE may be directed to:

Chief Hydrologist U.S. Geological Survey 437 National Center Reston, Virginia 22092

Thirty-seven manuals by the U.S. Geological Survey have been published to date in the series on techniques describing procedures for planning and executing specialized work in water-resources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, Section A of Book 3 (Applications of Hydraulics) is on surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises. The reports listed below are for sale by the U.S. Geological Survey, Branch of Distribution, 604 South Pickett St., Alexandria, VA 22304 (authorized agent of the Superintendent of Documents, Government Printing Office).

- NOTE: When ordering any of these publications, please give the title, book number, chapter number, and "U.S. Geological Survey Techniques of Water-Resources Investigations".
- Water temperature—influential factors, field measurement, and data presentation, by H. H. Stevens, Jr., J. F. Ficke, and G. F. Smoot: USGS--TWRI Book 1, Chapter D1. 1975. 65 pages.

 Guidelines for collection and field analysis of ground-water samples for selected unstable constituents, by W. W. Wood:

 USGS TWDI Book 1, Chapter 22, 1976. 24 1-D1.
- 1-D2. USGS--TWRÍ Book 1, Chapter D2. 1976. 24 pages.
- Application of surface geophysics to ground-water investigations, by A. A. R. Zohdy, G. P. Eaton, and D. R. Mabey: USGS--TWRI Book 2, Chapter Dl. 1974. 116 pages. 2-D1.
- Application of borehole geophysics to water-resources investigations, by W. S. Keys and L. M. MacCary: USGS--TWRI Book 2, Chapter El. 1971. 126 pages. 2-E1.
- General field and office procedures for indirect discharge measurements, by M. A. Benson and Tate Dalrymple: USGS--TWRI Book 3, Chapter Al. 1967. 30 pages. 3-A1.
- Measurement of peak discharge by the slope-area method, by Tate Dalrymple and M. A. Benson: USGS--TWRI Book 3-A2. 3, Chapter A2. 1967. 12 pages.
- 3-A3. Measurement of peak discharge at culverts by indirect methods, by G. L. Bodhaine: USGS--TWRI Book 3, Chapter A3. 1968. 60 pages.
- 3-A4. Measurement of peak discharge at width contractions by indirect methods, by H. F. Matthai: USGS--TWRI Book 3, Chapter A4. 1967. 44 pages.
- 3-A5. Measurement of peak discharge at dams by indirect methods, by Harry Hulsing: USGS--TWRI Book 3, Chapter A5,
- 3-A6. General procedure for gaging streams, by R. W. Carter and Jacob Davidian: USGS--TWRI Book 3, Chapter A6. 1968. 13 pages.
- 3-A7. Stage measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3, Chapter A7. 1968. 28 pages.
- 3-A8. Discharge measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3, Chapter A8. 1969. 65 pages.
- Measurement of time of travel and dispersion in streams by dye tracing, by E. F. Hubbard, F. A. Kilpatrick, L. A. Martens, and J. F. Wilson, Jr.: USGS--TWRI Book 3, Chapter A9. 1982. 44 pages.

 Measurement of discharge by moving-boat method, by G. F. Smoot and C. E. Novak: USGS--TWRI Book 3, Chapter 3-A9.
- 3-A11. All. 1969. 22 pages.
- 3-B1. Aquifer-test design, observation, and data analysis, by R. W. Stallman: USGS--TWRI Book 3, Chapter Bl. 1971. 26 pages.
- 3-B2. Introduction to ground-water hydraulics, a programmed text for self-instruction, by G. D. Bennett: USGS--TWRI Book 3, Chapter B2, 1976, 172 pages.
- 3-B3. Type curves for selected problems of flow to wells in confined aquifers, by J. E. Reed: USGS--TWRI Book 3, Chapter B3. 1980. 106 pages.
- 3-C1. Fluvial sediment concepts, by H. P. Guy: USGS--TWRI Book 3, Chapter C1. 1970. 55 pages.
- Field methods for measurement of fluvial sediment, by H. P. Guy and V. W. Norman: USGS--TWRI Book 3, Chapter 3-C2. C2. 1970. 59 pages.
- 3-C3. Computation of fluvial-sediment discharge, by George Porterfield: USGS--TWRI Book 3, Chapter C3. 1972. 66
- Some statistical tools in hydrology, by H. C. Riggs: USGS--TWRI Book 4, Chapter Al. 1968. 39 pages. Frequency curves, by H. C. Riggs: USGS--TWRI Book 4, Chapter A2. 1968. 15 pages. Low-flow investigations, by H. C. Riggs: USGS--TWRI Book 4, Chapter Bl. 1972. 18 pages. 4-A1.
- 4-A2.
- 4-B1.
- Storage analyses for water supply, by H. C. Riggs and C. H. Hardison: USGS--TWRI Book 4, Chapter B2. 1973. 4-B2.
- 4-B3. Regional analyses of streamflow characteristics, by H. C. Riggs: USGS--TWRI Book 4, Chapter B3. 1973. 15
- Computation of rate and volume of stream depletion by wells, by C. T. Jenkins: USGS--TWRI Book 4, Chapter 4-D1. D1. 1970. 17 pages.
- 5-A1. Methods for determination of inorganic substances in water and fluvial sediments, by M. W. Skougstad and others, editors: USGS--TWRI Book 5, Chapter Al. 1979. 626 pages.
- Determination of minor elements in water by emission spectroscopy, by P. R. Barnett and E. C. Mallory, Jr.: 5-A2.
- USGS--TWRI Book 5, Chapter A2. 1971. 31 pages.

 Methods for analysis of organic substances in water, by D. F. Goerlitz and Eugene Brown: USGS--TWRI Book 5, 5-A3. Chapter A3. 1972. 40 pages.
- Methods for collection and analysis of aquatic biological and microbiological samples, edited by P. E. Greeson, T. A. Ehlke, G. A. Irwin, B. W. Lium, and K. V. Slack: USGS--TWRI Book 5, Chapter A4. 1977. 332 pages. Methods for determination of radioactive substances in water and fluvial sediments, by L. L. Thatcher, V. J. 5-A4. 5-A5.
- Janzer, and K. W. Edwards: USGS--TWRI Book 5, Chapter A5. 1977. 95 pages.

 Laboratory theory and methods for sediment analysis, by H. P. Guy: USGS--TWRI Book 5, Chapter C1. 1969. 58 5-C1.
- pages. 7-C1. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by
- P. C. Trescott, G. F. Pinder, and S. P. Larson: USGS-TWRI Book 7, Chapter C1. 1976. 116 pages.

 Computer model of two-dimensional solute transport and dispersion in ground water, by L. F. Konikow and J. 7-C2.
- D. Bredehoeft: USGS--TWRI Book 7, Chapter C2. 1978. 90 pages. 7-C3. A model for simulation of flow in singular and interconnected channels, by R. W. Schaffranek, R. A. Baltzer,
- and D. E. Goldberg: USGS--TWRI Book 7, Chapter C3. 1981. 110 pages.

 Methods of measuring water levels in deep wells, by M. S. Garber and F. C. Koopman: USGS--TWRI Book 8, Chap-8-A1.
- ter Al. 1968. 23 pages. Calibration and maintenance of vertical-axis type current meters, by G. F. Smoot and C. E. Novak: USGS--TWRI 8-B2. Book 8, Chapter B2. 1968. 15 pages.

GAGING-STATION RECORDS

MARIANA ISLANDS, ISLAND OF SAIPAN

16801000 SOUTH FORK TALOFOFO STREAM

LOCATION.--Lat 15°12'48" N., long 145°46'17" E., Hydrologic Unit 20100006, on left bank 0.4 mi upstream from confluence with Middle and North Forks, 1.4 mi south of Ogso Dogas, and 2.2 mi southeast of Tanapag.

DRAINAGE AREA.--0.64 mi2. Area at site used prior to Mar. 31, 1971, 0.73 mi2.

PERIOD OF RECORD. -- October 1968 to current year. Low-flow records not equivalent prior to Mar. 31, 1971, due to undetermined amount of underflow between sites.

REVISED RECORDS.--WDR HI-78-2: 1976-77(M), WDR HI-82-2: Drainage area.

GAGE.--Water-stage recorder. Concrete control since Mar. 31, 1971. Altitude of gage is 60 ft, from topographic map. Prior to Mar. 31, 1971, at site 0.2 mi downstream at different datum.

REMARKS.--Records fair. No diversion above station. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE.--13 years (water years 1972-84), 1.35 ft3/s (978 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,100 ft³/s, Aug. 4, 1976, gage height, 8.15 ft, from rating curve extended above 59 ft³/s on basis of slope-area measurements at gage heights 7.30 and 8.15 ft; no flow at times.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 404 ft³/s Sept. 24, gage height, 4.51 ft, no other peak above base of 400 ft³/s; no flow for many days.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 MEAN VALUES

DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.65	.30	.53	.06	.04	.04	.05	.13	.00	.23	6.5	1.4
2	1.2	.30	.34	.11	.08	.02	.01	.03	.00	.24	2.3	2.0
3	.42	.24	.20	.07	.06	.02	.01	.35	.00	.38	1.8	1.2
4	.30	.20	.22	.06	.04	.02	.01	.07	.00	1.3	1.2	1.0
5	.30	.18	.27	.06	.03	.02	.01	.51	.00	.66	.76	.88
	.30										•	
6	1.1	.18	.18	.05	.04	.02	.01	.12	.00	.42	.70	2.7
7	1.6	.16	.16	.05	.04	.02	.01	.07	.00	.30	.58	1.6
8	1.1	.14	.14	.04	.03	.02	.01	.04	.00	.22	.50	1.1
9	.76	.12	.14	.04	.04	.01	.01	.02	.00	.22	.46	.94
10	1.3	.12	.12	.04	.03	.02	.01	.02	.00	.14	.38	. 82
11	.76	.12	.11	.05	.02	.02	.08	.02	.00	1.1	2.2	.70
12	.62	.14	.11	.05	.02	.01	.03	.02	.00	.88	1.0	.66
13	.76	.12	.10	.04	.02	.02	.01	.01	.00	.50	.88	.66
14	1.2	.18	.11	.04	.03	.01	.01	.01	.00	.34	15	.62
15	.76	.22	.26	.06	.04	.02	.01	.01	.62	.24	8.1	.54
16	.54	.18	.18	.04	.04	.01	.00	.01	.07	.22	2.9	.50
17	.58	.24	.14	.04	.02	.01	.00	.01	.08	.18	1.8	.50
18	.50	.18	.12	.04	.02	.02	.00	.01	.08	.14	9.1	.70
19	. 42	.16	.12	.04	.04	.02	.00	.01	.45	.11	2.9	.54
20	.46	.14	.11	.05	.06	.01	.00	.01	.24	.17	9.8	.50
			10	10	10	0.7	0.0	0.0	2.7	.38	5.4	3.8
21	2.1	.24	.12	.10	.10	.01	.00	.00				
22	1.8	. 46	.11	.04	.04	.01	.00	.00	. 46	.11	4.1	1.2
23	1.4	.27	.11	.04	.03	.04	.00	.01	.27	.10	3.0	.82
24	1.3	.22	.11	.03	.04	.02	.00	.01	.16	.11	2.3	31
25	1.2	.20	.11	.06	.04	.02	.00	.01	.18	.08	3.9	12
26	. 82	.16	.11	.04	.04	.02	.00	.01	.18	.08	5.6	6.9
27	.62	.16	.10	.04	.04	.01	.00	.01	.38	1.2	5.4	3.3
28	.62	.14	.08	.04	.06	.01	.03	.01	.18	.38	3.7	3.0
29	. 46	.12	.07	.04	.04	.01	.06	.00	.12	.18	3.0	4.0
30	.38	.11	.07	.03		.01	.02	.00	.10	11	2.1	2.0
31	.30		.06	.03		.01		.00		4.8	1.7	
31	.30		.00	.03		.01		.00		4.0	1.7	
TOTAL	26.33	5.70	4.71	1.52	1.17	.53	.39	1.54	6.27	26.41	109.06	87.58
MEAN	. 85	.19	.15	.049	.040	.017	.013	.050	.21	. 85	3.52	2.92
MAX	2.1	.46	.53	.11	.10	.04	.08	.51	2.7	11	15	31
MIN	.30	.11	.06	.03	.02	.01	.00	.00	.00	.08	.38	.50
AC-FT	52	11	9.3	3.0	2.3	1.1	. 8	3.1	12	52	216	174
arr 110	1002	moma r	60.41	MEAN	.166	MAX	2.1	MIN	.01	AC-FT	120	
CAL YR		TOTAL		MEAN	.740	MAX	31	MIN	.00	AC-FT	538	
WTR YR	1984	TOTAL	271.21	MEAN	. /40	MAA	31	MIN	.00	AC-FT	220	

16805200 LAKE SUSUPE

LOCATION.--Lat 15°09'15" N., long 145°42'42" E., Hydrologic Unit 20100006, on west shore, at the end of Sugar Mill Road, 0.5 mi southeast from the Administration building, Northern Marianas Government.

PERIOD OF RECORD. -- February 1981 to current year.

GAGE. -- Water-stage recorder. Datum of gage is at mean sea level.

REMARKS. -- Water-level records good.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 4.61 ft Oct. 19, 1982; lowest, 0.70 ft, June 13, 1983.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood of Aug. 12, 1978, reached a stage of 7.6 ft, from floodmarks.

EXTREMES FOR CURRENT YEAR.--Highest water level, 3.57 ft, Aug. 29; lowest, 1.76 ft Mar. 31.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 MEAN VALUES

					PIEA	N VALUES						
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2.24	2.60	2.37	2.14	1.98	1.99	1.97	1.98	2.12	2.52	3.11	3.38
2	2.32	2.61	2.36	2.13	2.04	2.01	2.01	1.97	2.11	2.54	3.07	3.34
3	2.31	2.58	2.34	2.12	2.10	2.00	2.01	1.97	2.10	2.57	3.03	3.30
4	2.31				2.10	1.99		1.98	2.09	2.73	2.98	3.21
5		2.55	2.33	2.11			2.00					
5	2.30	2.53	2.34	2.09	2.09	1.98	2.00	1.99	2.08	2.81	2.95	3.13
6	2.33	2.51	2.32	2.07	2.08	1.96	1.99	2.04	2.08	2.78	2.93	3.08
7	2.43	2.55	2.29	2.06	2.08	1.94	1.99	2.05	2.10	2.75	2.90	3.02
8	2.44	2.53	2.28	2.04	2.07	1.94	1.98	2.09	2.11	2.72	2.87	3.03
9	2.42	2.52	2.25	2.03	2.05	1.93	1.97	2.09	2.11	2.72	2.86	3.09
10	2.53	2.49	2.23	2.02	2.05	1.91	1.96	2.08	2.12	2.71	2.86	3.05
11	2.54	2.49	2.21	2.00	2.02	1.90	1.98	2.09	2.13	2.72	2.97	2.99
12	2.53	2.49	2.19	1.99	2.00	1.89	1.98	2.12	2.16	2.75	3.07	2.97
13	2.52	2.48	2.17	1.98	1.99	1.88	1.97	2.11	2.19	2.74	3.12	2.97
14	2.49	2.48	2.15	1.97	2.00	1.87	1.96	2.10	2.20	2.71	3.16	2.95
15	2.46	2.49	2.16	1.98	1.99	1.86	1.95	2.11	2.28	2.69	3.25	2.95
16	2.44	2.47	2.19	1.97	1.97	1.85	1.99	2.11	2.52	2.67	3.27	2.97
17	2.45	2.45	2.18	1.99	1.94	1.84	2.00	2.12	2.65	2.65	3.23	2.93
18	2.47	2.43	2.17	1.99	1.93	1.84	2.00	2.11	2.67	2.64	3.25	2.90
19	2.46	2.40	2.15	1.98	1.92	1.83	1.99	2.11	2.69	2.63	3.27	2.88
20	2.43	2.38	2.20	1.98	1.92	1.80	1.98	2.11	2.72	2.62	3.23	2.87
21	2.46	2.40	2.27	2.03	1.94	1.79	1.97	2.10	2.71	2.62	2 22	2.88
											3.32	
22	2.46	2.53	2.27	2.05	1.96	1.79	1.96	2.10	2.68	2.61	3.38	2.93
23	2.47	2.52	2.27	2.04	1.98	1.81	1.94	2.10	2.64	2.60	3.38	2.94
24	2.53	2.50	2.25	2.03	2.03	1.82	1.94	2.14	2.62	2.61	3.35	3.06
25	2.66	2.47	2.23	2.03	2.02	1.81	1.92	2.15	2.59	2.61	3.36	3.37
26	2.65	2.44	2.23	2.03	2.01	1.81	1.90	2.17	2.57	2.61	3.49	3.49
27	2.63	2.41	2.20	2.03	2.00	1.80	1.89	2.17	2.54	2.65	3.54	3.45
28	2.64	2.39	2.19	2.02	2.00	1.79	1.95	2.16	2.54	2.67	3.53	3.38
29	2.63	2.40	2.17	2.00	1.99	1.78	1.99	2.13	2.53	2.80	3.56	3.34
			2.15	1.99		1.77	1.98	2.13	2.52	2.90	3.52	3.25
30	2.60	2.38										
31	2.57		2.15	1.98		1.77		2.12		3.09	3.44	
MEAN	2.47	2.48	2.23	2.03	2.01	1.87	1.97	2.09	2.37	2.69	3.20	3.10
MAX	2.66	2.61	2.37	2.14	2.10	2.01	2.01	2.17	2.72	3.09	3.56	3.49
MIN	2.24	2.38	2.15	1.97	1.92	1.77	1.89	1.97	2.08	2.52	2.86	2.87
CAL YR	1983 ME	AN 1.5	3 MAX	2.66	MIN	.71						
	1984 ME			3.56	MIN	1.77						
MIK IL	TOO4 ME	2.3	O MAA	3.30	HIN	1.11						

		SPE-		CHLO-
		CIFIC		RIDE,
		CON-		DIS-
		DUCT-	TEMPER-	SOLVED
	TIME	ANCE	ATURE	(MG/L
DATE		(UMHOS)	(DEG C)	AS CL)
MAR				
29	0840	12900	29.0	4000
MAY				
01	1255	13100	32.0	4100

16809600 LA SA FUA RIVER NEAR UMATAC

LOCATION.--Lat 13°18'23" N., long 144°39'45" E., Hydrologic Unit 20100003, on left bank 0.6 mi north of Sanchez School in Umatac and 0.8 mi upstream from mouth.

DRAINAGE AREA .-- 1.06 mi2.

PERIOD OF RECORD.--April 1953 to July 1960, October 1976 to April 1984 (discontinued). Prior to October 1976, published as Fouha River near Umatac.

GAGE .-- Water-stage recorder. Altitude of gage is 120 ft, from topographic map.

REMARKS.--Records fair. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE.--13 years (water years 1954-59, 1977-83), 4.38 ft3/s (3,170 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,440 ft³/s Sept. 27, 1978, gage height, 6.05 ft, from rating curve extended above 109 ft³/s by test on model of station site; minimum, 0.12 ft³/s June 13, 1979, during short regulation of flow at diversion upstream.

EXTREMES FOR CURRENT YEAR.--Maximum discharge during period October 1983 to April 1984, 512 ft³/s Oct. 22, gage height, 4.32 ft, no other peak above base of 650 ft³/s; minimum, 0.45 ft³/s, Apr. 28.

DISCHARGE, IN CUBIC FEET PER SECOND, OCTOBER 1983 TO APRIL 1984

MEAN VALUES OCT NOV JUN JUL AUG SEP DAY DEC JAN FEB MAR APR MAY 3.7 25 11 1.5 .92 .78 .76 7.2 2 3.5 10 1.3 2.1 .70 .77 ---. 87 . 85 3 36 8.7 1.0 .67 4.8 3.0 1.0 .74 .75 6 1.9 3.7 2.7 .96 .73 .72 . 67 3.0 2.5 .95 1.0 .70 .89 ---1.8 2.6 2.2 .92 .69 .70 1.6 2.3 2.0 .96 .70 .69 .76 ---10 1.4 2.0 2.0 1.1 . 83 .69 .67 ---2.2 12 .70 .64 12 1.2 2.4 1.8 .96 1.7 .68 .61 ---. 89 13 14 1.5 1.9 1.6 1.1 .63 .61 ---___ - 86 1.1 -65 -64 15 1.0 5.4 1.5 1.1 .94 .61 .61 . 83 16 .95 26 3.5 .88 .62 .61 4.54 2.3 5.1 3.0 2.7 17 . 85 .62 .58 ---12 18 3.4 ---. 85 .62 1.9 3.2 .61 20 4.0 2.4 2.1 1.1 .83 .58 21 12 12 1.8 .97 .79 .58 .61 ---37 22 3.4 1.9 .92 .78 .61 .61 23 8.5 13 1.6 .98 .80 .58 .61 ---. 85 .70 24 5.0 41 1.4 . 85 .55 25 20 8.9 1.4 .82 .83 .89 .52 ---8.9 26 4.8 . 80 .52 1.1 27 17 4.2 1.3 .78 .76 1.1 .52 ___ 7.8 .74 28 1.2 3.6 .77 .93 .52 ---___ 29 4.4 5.7 .78 .85 .55 3.3 30 5.4 1.1 .73 .76 .55 ---89.0 32.79 22.54 TOTAL 178.35 254.4 37.58 20.41 2.87 8.48 ---MEAN 5.75 1.06 1.30 .73 .68 37 41 11 2.7 1.9 MAX 12 ---MIN AC-FT 354 505 65 75 45 40

42

MIN

.23

1930

AC-FT

974.51

MEAN

2.67

MAX

CAL YR 1983 TOTAL

⁺ Result of discharge measurement.

16840000 TINAGA RIVER NEAR INARAJAN

LOCATION.--Lat 13°17'10" N., long 144°45'04" E., Hydrologic Unit 20100003, on right bank 0.3 mi upstream from mouth, 0.9 mi northeast of Inarajan, and 4.5 mi south of Talofofo.

DRAINAGE AREA .-- 1.89 mi2.

PERIOD OF RECORD.--October 1952 to current year. Prior to October 1969, published as Pauliluc River near Inarajan.

REVISED RECORDS. -- WSP 2137: Drainage area.

GAGE. -- Water-stage recorder and concrete control. Altitude of gage is 15 ft, from topographic map.

REMARKS.--Records good. No diversion above station. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 32 years, 5.59 ft 3/s (4,050 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,980 ft³/s Oct. 15, 1953, gage height, 13.11 ft, from rating curve extended above 210 ft³/s; minimum, 0.15 ft³/s May 16, 21-23, 29, 1966, June 13, 29, 30, 1973.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 470 ft³/s Sept. 25, gage height, 4.56 ft, no other peak above base of 400 ft³/s; minimum, 0.38 ft³/s June 8-10.

		DISCHARGE,	IN CUBIC	FEET PE		O, WATER YEAR EAN VALUES	OCTOBER	1983 TO	SEPTEMBE	R 1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	3.9	7.9	20	2.6	1.3	.93	.93	1.5	.46	.94	9.7	8.7
2	3.8	8.2	9.0	2.9	1.4	.93	. 83	1.2	. 45	. 83	41	5.5
3	3.5	51	7.8	2.9	1.4	.93	.74	.81	. 43	1.0	7.1	5.5 4.8
3	3.5	11	5.3	2.5	1.3	. 85	.69	.66	.42	1.7	4.3	4.5
5	3.7	6.1	4.5	2.3	1.3	.81	.69	.58	.41	1.4	3.0	4.2
6	3.3	5.3	4.3	2.2	1.3	.81	.65	.54	. 43	1.1	2.9	4.0
7	3.1	4.7	4.2	2.0	1.3	.81	.77	.62	.41	1.2	2.6	3.7
8	3.1	4.3	4.0	1.8	1.3	. 83	.65	.58	. 40	1.3	2.4	5.0
9	2.9	4.0	3.7	1.8	1.3	. 81	.62	.54	.40	1.2	3.9	33
10	2.7	3.8	3.4	1.8	1.3	.79	.62	1.2	.53	1.1	2.9	11
11	2.5	3.6	3.2	2.0	2.2	.76	.61	1.0	.51	1.0	2.7	6.6
12	2.4	4.0	3.2	2.0	2.2	.74	.60	. 81	.44	.88	2.8	4.5
13	2.9	3.8	3.2	2.0	1.8	.70	.58	.76	. 43	1.1	2.5	4.5
14	2.4	3.8	3.0	2.0	1.7	.70	.60	.66	.50	1.7	2.2	4.3
15	2.5	3.6	2.9	2.1	1.5	.69	.60	.64	.44	.94	4.7	4.3
16	2.4	18	3.7	2.0	1.5	.68	.58	.61	.69	. 81	6.7	16
17	2.5	6.9	4.0	2.0	1.4	.65	.57	.57	2.5	.79	8.3	6.9
18	9.0	4.5	4.2	2.3	1.3	.76	.56	.53	3.6	.74	35	15
19	4.1	4.3	3.8	2.3	1.2	.74	.54	.56	2.5	.69	6.7	11
20	3.9	4.2	3.3	2.2	1.2	.74	.59	.62	2.5	.70	4.3	7.2
21	4.5	3.8	2.9	2.1	1.1	.71	.52	.60	2.8	1.0	5.1	12
22	4.4	3.6	2.9	2.1	1.1	.71	.50	.52	2.0	1.2	32	25
23	4.1	4.2	2.6	2.1	1.1	.69	.49	.54	1.4	1.0	9.9	30
24	3.8	36	2.6	2.0	1.0	.91	.48	.52	1.2	. 83	6.4	33
25	5.1	8.2	2.6	1.8	1.0	. 80	.48	.51	1.1	1.5	6.3	102
26	5.6	5.3	2.5	1.7	1.0	.88	. 47	.53	.92	1.8	4.9	11
27	4.2	4.5	2.5	1.7	.93	1.1	. 47	.49	.89	1.3	18	8.5
28	4.2	4.8	2.9	1.6	. 93	1.2	. 46	. 47	. 85	1.0	6.2	7.0
29	3.9	4.6	2.6	1.5	. 93	1.1	.55	.51	. 85	6.5	4.7	6.7
30	3.4	4.9	2.5	1.4		1.1	.98	. 47	. 86	2.0	4.2	6.5
31	3.1		2.3	1.3		.95		. 47		18	26	
TOTAL	114.4	242.9	129.6	63.0	38.29	25.81 1	8.42	20.62	31.32	57.25	279.4	406.4
MEAN	3.69	8.10	4.18	2.03	1.32	. 83	.61	.67	1.04	1.85	9.01	13.5
MAX	9.0	51	20	2.9	2.2	1.2	.98	1.5	3.6	18	41	102
MIN	2.4	3.6	2.3	1.3	.93	.65	.46	. 47	.40	.69	2.2	3.7
AC-FT	227	482	257	125	76	51	37	41	62	114	554	806
CAL YR WTR YR		OTAL 879. OTAL 1427.		MEAN MEAN	2.41 3.90			IN IN		C-FT C-FT	1740 2830	

16847000 IMONG RIVER NEAR AGAT

LOCATION.--Lat 13°20'17" N., long 144°41'55" E., Hydrologic Unit 20100003, on left bank 500 ft upstream from Fena Valley Reservoir, 1.4 mi south of Fena Dam spillway, and 4.1 mi southeast of Agat School.

PERIOD OF RECORD. -- March 1960 to March 1971. October 1971 to current year.

REVISED RECORDS. -- WSP 2137: Drainage area.

GAGE. -- Water-stage recorder and concrete control. Altitude of gage is 120 ft, from topographic map.

REMARKS.--Records fair. No diversion above station. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE.--23 years (water years 1961-70, 1972-84), 9.91 ft3/s (7,180 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 6,100 ft³/s Sept. 27, 1978, gage height, 11.3 ft, from outside floodmarks, and from rating curve extended above 58 ft³/s on basis of slope-area measurement of peak flow; minimum, 0.37 ft³/s May 21, 22, 26, 1966.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,660 ft³/s Aug. 1, gage height, 5.91 ft, no other peak above base of 1,400 ft³/s; minimum, 1.6 ft³/s for many days.

		DISCHARGE,	IN CUBIC	FEET	PER SECOND,	WATER YEAR AN VALUES	OCTOBER	1983 T	O SEPTEMBE	R 1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	6.9	19	20	4.8	3.3	2.5	2.3	1.6	1.6	2.1	31	13
2	6.1	14	13	4.4	5.8	2.4	2.2	1.6	1.7	1.8	100	8.8
3	5.6	24	8.9	4.1	3.2	2.4	2.1	1.6	1.6	2.1	17	7.7
4	5.4	14	7.5	4.1	3.1	2.2	2.0	1.6	1.6	3.7	10	6.8
5	5.2	9.0	6.5	4.1	3.0	2.2	2.0	1.6	1.6	2.4	8.0	6.4
6	4.9	7.5	6.0	4.1	3.0	2.2	2.0	1.6	1.6	2.1	6.5	7.9
7	4.7	6.7	6.0	3.8	3.3	2.2	2.3	1.8	1.6	1.9	5.5	11
8	4.7	6.1	5.8	3.8	2.7	2.2	2.1	1.6	1.6	1.8	5.0	9.0
9	4.5	6.0	5.4	3.8	2.6	2.2	2.0	1.6	1.6	1.8	6.0	20
10	4.4	5.8	5.3	4.1	2.7	2.2	1.8	1.7	2.4	1.8	4.5	14
11	4.4	6.6	5.6	4.4	13	2.2	1.8	2.0	2.1	8.0	5.2	8.0
12	3.9	7.2	5.4	3.8	3.9	2.2	1.8	1.6	2.8	7.0	4.0	15
13	4.9	5.8	5.0	3.8	3.2	2.2	1.8	1.7	1.9	4.7	3.4	6.0
14	3.9	5.8	5.0	3.5	3.0	2.2	2.0	1.6	1.8	2.9	3.4	6.3
15	3.7	6.1	5.0	3.8	2.9	2.2	1.8	1.9	1.8	2.4	11	17
16	3.5	25	6.6	3.2	2.8	2.2	1.8	1.7	3.9	4.7	17	11
17	5.1	9.9	6.0	3.2	2.8	2.2	1.8	1.6	3.8	3.6	27	7.5
18	12	7.0	7.5	4.8	2.8	2.2	1.8	1.6	9.6	2.6	48	10
19	6.2	5.9	5.7	4.4	2.7	2.2	1.8	1.8	2.8	2.3	14	23
20	5.6	5.5	5.4	4.1	2.6	2.2	1.8	1.7	4.4	2.4	9.7	18
21	10	6.8	5.1	3.5	2.4	2.1	1.6	1.6	3.0	6.5	18	22
22	16	5.7	5.7	3.5	2.4	2.1	1.6	1.7	2.5	8.0	41	32
23	10	7.8	5.1	3.8	2.4	2.0	1.6	1.8	2.2	4.3	20	21
24	9.4	39	4.8	3.2	2.5	2.2	1.6	1.6	2.1	3.1	11	30
25	17	15	4.8	3.0	2.4	2.5	1.6	1.6	2.1	2.6	8.7	56
26	12	8.8	4.8	3.0	2.4	2.5	1.6	1.6	1.9	2.5	9.7	16
27	19	7.2	4.4	3.0	2.4	2.9	1.7	1.9	1.8	2.3	39	12
28	12	6.9	4.4	3.0	2.3	2.6	1.7	1.6	1.8	2.0	12	11
29	7.6	6.0	4.1	3.0	2.3	2.5	1.6	1.6	1.9	15	8.5	10
30	6.2	12	4.1	3.0		2.3	1.8	1.6	1.8	6.0	7.2	9.4
31	5.7		4.4	3.0		2.2		1.6		46	18	
TOTAL	230.5			115.1	93.9		55.4	51.7	72.9	160.4	529.3	445.8
MEAN	7.44	10.4	6.24	3.71	3.24		1.85	1.67	2.43	5.17	17.1	14.9
MAX	19	39	20	4.8	13	2.9	2.3	2.0	9.6	46	100	56
MIN	3.5	5.5	4.1	3.0	2.3	2.0	1.6	1.6	1.6	1.8	3.4	6.0
AC-FT	457	619	383	228	186	140	110	103	145	318	1050	884
CAL YR WTR YR	1983 TO	OTAL 1747 OTAL 2331		MEAN MEAN	4.79 6.37			IN IN		C-FT C-FT	3470 4620	

16848100 ALMAGOSA RIVER NEAR AGAT

LOCATION.--Lat 13°20'43" N., long 144°41'36" E., Hydrologic Unit 20100003, on right bank 400 ft upstream from Fena Valley Reservoir and 3.5 mi southeast of Agat.

DRAINAGE AREA. -- 1.32 mi2.

PERIOD OF RECORD .-- April 1972 to current year.

REVISED RECORD.--WDR HI-75-1: Drainage area. WDR HI-76-1: 1972(P), 1973(M), 1974-75(P).

GAGE. -- Water-stage recorder and concrete control. Altitude of gage is 155 ft, from topographic map.

REMARKS.--Records fair. Up to $3.9 \, \mathrm{ft}^3/\mathrm{s}$ diverted upstream for domestic use. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE.--12 years, 5.81 ft3/s (4,210 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,650 ft³/s Sept. 27, 1978, gage height, 7.78 ft, from rating curve extended above 46 ft³/s on basis of slope-area measurement at gage height 7.32 ft; minimum, 0.13 ft³/s June 27, July 11, 12, 14, 16, 17, 1979, June 3-9, 1984.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 632 ft³/s Sept. 24, gage height, 4.88 ft, no peak above base of 700 ft³/s; minimum, 0.13 ft³/s June 3-9.

DISCHARGE IN CHRIS BEEM DED SECOND WAMEN VEND OCHORED 1002 MO SEDMENDED 1004

		DISCHARGE,	IN CUBIC	FEET PER		WATER YEAR N VALUES	OCTOBER	1983 ТО	SEPTEMBE	R 1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	3.0	12	16	1.3	.84	.55	. 45	.27	.18	.39	18	7.2
2	2.4	9.3	10	1.2	1.2	.52	.39	.27	.18	.35	67	5.1
3	1.9	15	6.7	1.1	.79	.53	.36	.24	.15	.39		4.1
4	1.7	13	4.8	.98	.74	.51	.35	.24	.13	1.7	8.7	3.7
5	1.2	7.0	3.8	.93	.68	.50	.33	.24	.13	.89		2.8
6	1.1	4.7	3.1	. 87	.66	.49	.33	.24	.13	.63	4.4	2.7
7	1.0	3.4	2.9	. 87	.79	.49	.34	.24	.13	. 43	3.4	2.6
8	1.1	2.6	2.3	. 85	.66	. 49	.33	.24	.13	.35	3.0	2.0
9	1.2	2.0	1.9	. 87	.64	.49	.36	.21	.15	.31	3.6	6.8
10	1.3	1.6	1.7	1.0	.75	.48	.32	.24	.29	.24	2.6	6.4
11	1.2	2.8	1.6	1.0	3.2	.45	.31	.35	.31	3.8	3.0	3.9
12	1.1	3.9	1.3	.91	.92	. 44	.30	.27	.31	3.2	2.7	4.7
13	1.6	2.0	1.4	. 85	.77	. 43	.30	.31	.24	1.3	2.2	3.2
14	1.3	1.7	1.2	. 83	.75	.42	.49	.24	.27	.74	2.0	2.8
15	1.1	1.9	1.2	1.0	.68	.41	.34	.31	.21	.52	5.6	5.5
16	. 89	15	1.8	. 85	.66	. 41	.31	.31	. 47	1.1	5.2	3.0
17	1.3	7.8	1.5	.85	.65	.40	.30	.39	.52	.79	11	2.3
18	5.3	4.8	1.7	1.1	.62	. 40	.29	. 27	2.3	.58	38	6.4
19	2.5	3.5	1.3	.91	.62	.39	.29	.24	.43	.43	15	12
20	2.1	2.7	1.2	.82	.61	.39	.28	.21	.62	. 47	7.2	13
21	2.1	2.9	1.1	. 80	.61	.39	.28	.21	. 47	.95	10	16
22	4.2	2.3	1.6	.84	.60	.42	.28	.21	.35	.95	19	22
23	6.9	3.1	1.3	.93	.60	.39	.28	.27	.35	.84	17	17
24	4.2	26	1.3	.77	.60	.45	.28	.21	.39	.52	9.0	25
25	5.6	13	1.3	.76	.61							66
25	3.0	13	1.3	. 76	.01	.54	.30	.18	.52	- 47	6.1	00
26	6.5	7.0	1.3	.75	.56	.53	.29	.18	.35	. 43	8.3	21
27	9.4	4.9	1.3	.71	.56	.64	.39	.21	.27	.39	35	12
28	8.7	3.9	1.1	.73	.53	.53	.35	.18	.27	.39	14	10
29	5.3	3.5	1.1	.71	.52	.49	.35	.18	.39	1.6	8.2	7.0
30	3.7	5.6	1.0	.68		. 45	.31	.18	.35	.74	5.4	5.5
31	2.7		1.3	.66		.41		.15		25	10	
TOTAL	93.59	188.9	81.1	27.43	22.42	14.43	9.88	7.49	10.99	50.89	368.1	301.7
MEAN	3.02	6.30	2.62	.88	.77	. 47	.33	.24	.37	1.64	11.9	10.1
MAX	9.4	26	16	1.3	3.2	.64	.49	.39	2.3	25	67	66
MIN	.89	1.6	1.0	.66	.52	.39	.28	.15	.13	.24	2.0	2.0
AC-FT	186	375	161	54	44	29	20	15	22	101	730	598
							20	10		101	,50	330
CAL YR		TAL 707.4			1.94			IN .		C-FT	1400	
WTR YR	1984 TC	TAL 1176.9	92 N	MEAN	3.22	MAX	67 M	IN .	.13 A	C-FT	2330	

16848500 MAULAP RIVER NEAR AGAT

LOCATION.--Lat 13°21'14" N., long 144°41'44" E., Hydrologic Unit 20100003, on right bank 100 ft from Fena Valley Reservoir and 3.2 mi southeast of Agat.

DRAINAGE AREA. -- 1.15 mi2.

PERIOD OF RECORD .-- January 1972 to current year.

REVISED RECORDS. -- WRD Hawaii 1973: 1972. WRD HI-75-1: Drainage area.

GAGE. -- Water-stage recorder and concrete control. Altitude of gage is 130 ft, from topographic map.

REMARKS.--Records good. No diversion above station. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 12 years, 4.99 ft3/s (3,620 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,420 ft³/s Sept. 27, 1978, gage height, 9.2 ft, from rating curve extended above 23 ft³/s, on basis of slope-area measurements at gage heights 8.21 ft and 9.2 ft; minimum, 0.31 ft³/s June 28 to July 1, 1983.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,210 ft³/s Sept. 24, gage height, 6.96 ft, no other peak above base of 600 ft³/s; minimum, 0.40 ft³/s May 28, June 9, 10, 15, 16.

		DISCHARGE,	IN CUBIC	FEET PER		WATER YEAR N VALUES	OCTOBER	1983 TO	SEPTEMBE	R 1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	3.8	23	23	2.7	1.6	1.1	. 80	.69	.60	.75	14	6.9
2	3.6	11	6.6	2.4	2.3	1.0	.70	.63	.72	.68	39	5.1
3	3.5	14	5.5	2.1	1.6	1.1	.68	.59	.59	.75	8.2	4.3
4	3.2	7.5	4.3	1.8	1.4	.99	.68	.57	.56	8.1	4.9	4.4
5	2.7	5.8	3.7	1.7	1.3	.99	.68	.56	.56	1.8	3.7	3.6
6	3.1	5.0	3.5	1.7	1.2	.98	.68	.56	.70	1.9	3.1	6.3
7	2.8	4.3	3.7	1.6	1.4	.98	.68	.54	.58	1.5	2.6	6.1
8	2.7	3.8	3.3	1.6	1.2	.98	.68	.55	.59	1.1	2.7	3.9
9	2.4	3.5	2.9	1.6	1.2	1.0	.68	.54	.60	.91	4.4	5.0
10	2.5	3.2	3.3	1.8	1.3	1.0	.68	.55	.74	.82	2.4	4.8
11	2.4	8.1	3.3	2.2	5.8	.97	.61	.73	.67	6.3	2.6	3.6
12	2.4	7.9	3.1	1.8	1.7	.94	.61	.65	.57	4.3	2.3	7.1
13	5.7	3.8	2.7	1.7	1.4	.92	.61	.76	.51	2.8	1.8	3.7
14	2.6	3.7	2.7	1.7	1.4	.91	.96	.59	.52	1.7	1.6	3.4
15	2.3	4.4	2.7	1.8	1.3	.90	.68	.96	.51	1.2	9.7	6.8
16	2.2	17	3.7	1.6	1.2	. 89	.68	.66	1.3	3.1	7.0	3.7
17	4.1	5.4	2.9	1.6	1.2	. 85	.61	.59	1.6	2.1	12	3.3
18	10	4.9	2.9	2.0	1.2	. 87	.61	.58	5.3	1.6	40	4.0
19	4.8	4.2	2.7	1.7	1.1	. 85	.61	.57	.89	1.4	8.4	10
20	4.1	3.8	2.4	1.6	1.1	. 85	.54	.59	1.3	1.2	5.9	15
21	4.7	4.2	2.3	1.6	1.1	.86	.54	.61	1.0	2.1	13	14
22	5.6	3.8	2.4	1.5	1.1	. 89	.54	.58	1.0	2.1	15	18
23	4.7	5.1	2.4	1.6	1.1	.81	.54	.65	1.0	1.8	8.3	9.1
24	4.0	19	2.2	1.4	1.1	. 89	.54	.56	1.0	1.2	5.9	36
25	6.9	5.5	2.2	1.4	1.1	1.1	.54	.52	1.8	1.2	4.7	50
26	5.5	4.6	2.2	1.4	1.0	1.0	.54	.51	1.0	1.1	6.8	11
27	12	4.4	2.2	1.3	1.0	1.3	.54	.55	.75	1.3	27	7.4
28	5.8	4.0	2.0	1.3	.99	.96	.54	.53	.68	1.3	7.0	7.2
29	4.5	4.0	2.0	1.3	.98		1.0	.52	.68	2.5	5.3	5.9
30	4.4	7.1	1.9	1.3		. 80	.94	.53	.61	1.7	4.4	5.5
31	3.7		2.5	1.2		.75		.51		18	17	
TOTAL	132.7		113.2		41.37			18.53	28.93	78.31	290.7	275.1
MEAN	4.28	6.87	3.65	1.68	1.43	.94	.66	.60	.96	2.53	9.38	9.17
MAX	12	23	23	2.7	5.8	1.3	1.0	.96	5.3	18	40	50
MIN	2.2	3.2	1.9	1.2	.98	.75	.54	.51	.51	.68	1.6	3.3
AC-FT	263	409	225	103	82	58	39	37	57	155	577	546
CAL YR		OTAL 945.			2.59					C-FT	1880	
WTR YR	1984 TO	TAL 1285.	84 N	MEAN	3.51	MAX	50 M	IN	.51 A	C-FT	2550	

AUG

SEP

MARIANA ISLANDS, ISLAND OF GUAM

16849000 FENA DAM SPILLWAY NEAR AGAT

LOCATION.--Lat 13°21'28" N., long 144°42'12" E., Hydrologic Unit 20100003, on left bank 3.5 mi southeast of Agat and 5.8 mi southwest of Yona.

DRAINAGE AREA .-- 5.88 mi2.

PERIOD OF RECORD. -- September 1951 to July 1952, November 1952 to current year. Daily mean gage heights published since October 1973.

REVISED RECORDS. -- WSP 2137: Drainage area. WDR HI-78-2: 1977 (M, m).

GAGE.--Water-stage recorder and concrete-dam control. Datum of gage is 111.35 ft above mean sea level (from U.S. Navy construction plans).

REMARKS.--Gage-height records fair. About 10 ft³/s is diverted from Fena Valley Reservoir and tributary springs for military and civilian use. Discharge records represent flow over spillway only.

AVERAGE DISCHARGE. -- 20 years (1953-73), 17.9 ft3/s (12,970 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, not determined, occurred Oct. 15, 1953 (gage height, at least 4.5 ft); no flow for many days each year. Minimum recorded gage height, -21.86 ft, Aug. 4, 1983.

GAGE HEIGHT (FEET AT DATUM), WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

EXTREMES FOR CURRENT YEAR.--Maximum daily gage height, 0.65 ft, Sept. 25; minimum, -18.30 ft July 29.

DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL

1 -12.96 -9.75 -3.52 -2.19 -3.31 -4.78 -7.68 -11.17 -14.99 -17.23
2 -12.92 -9.25 -2.89 -2.15 -3.27 -4.87 -7.80 -11.30 -15.11 -17.33

1	-12.96	-9.75	-3.52	-2.19	-3.31	-4.78	-7.68	-11.17	-14.99	-17.23	-16.93	-4.09
2	-12.92	-9.25	-2.89	-2.15	-3.27	-4.87	-7.80	-11.30	-15.11	-17.33	-14.08	-3.92
3	-12.88	-8.85	-2.69	-2.16	-3.28	-4.94	-7.90	-11.43	-15.23	-17.42	-13.12	-3.81
4	-12.85	-8.30	-2.58	-2.19	-3.33	-5.01	-7.98	-11.57	-15.36	-17.37	-12.84	-3.71
5	-12.84	-8.07	-2.50	-2.21	-3.38	-5.10	-8.11	-11.69	-15.51	-17.35	-12.77	-3.63
6	-12.86	-7.93	-2.42	-2.25	-3.45	-5.22	-8.24	-11.32	-15.63	-17.41	-12.73	-3.55
7	-12.86	-7.84	-2.36	-2.29	-3.49	-5.30	-8.36	-11.96	-15.74	-17.50	-12.71	-3.40
8	-12.85	-7.81	-2.31	-2.34	-3.56	-5.40	-8.46	-12.08	-15.88	-17.60	-12.71	-3.27
9	-12.86	-7.79	-2.28	-2.40	-3.63	-5.49	-8.58	-12.21	-16.01	-17.70	-12.64	-3.12
10	-12.87	-7.79	-2.24	-2.41	-3.70	-5.56	-8.71	-12.35	-16.13	-17.82	-12.62	-2.81
11	-12.88	-7.70	-2.20	-2.39	-3.53	-5.65	-8.81	-12.45	-16.18	-17.73	-12.59	-2.67
12	-12.91	-7.45	-2.17	-2.41	-3.47	-5.76	-8.91	-12.57	-16.29	-17.41	-12.57	-2.57
13	-12.85	-7.42	-2.17	-2.46	-3.53	-5.89	-9.04	-12.68	-16.38	-17.37	-12.59	-2.44
14	-12.84	-7.39	-2.20	-2.50	-3.58	-6.00	-9.14	-12.81	-16.47	-17.40	-12.63	-2.33
15	-12.86	-7.34	-2.18	-2.53	-3.64	-6.10	-9.24	-12.90	-16.54	-17.48	-12.52	-2.22
16	-12.91	-6.80	-2.13	-2.58	-3.70	-6.20	-9.34	-13.02	-16.56	-17.55	-12.14	-1.98
17	-12.89	-6.44	-2.09	-2.64	-3.77	-6.31	-9.45	-13.18	-16.52	-17.55	-11.78	-1.91
18	-12.65	-6.30	-2.07	-2.64	-3.84	-6.42	-9.58	-13.30	-16.27	-17.62	-10.30	-1.65
19	-12.51	-6.20	-2.03	-2.65	-3.91	-6.53	-9.70	-13.43	-16.27	-17.71	-9.40	-1.15
20	-12.39	-6.16	-2.04	-2.69	-3.99	-6.64	-9.84	-13.54	-16.34	-17.77	-9.16	-0.95
21	-12.30	-6.09	-2.08	-2.72	-4.05	-6.75	-9.96	-13.66	-16.35	-17.80	-8.89	-0.30
22	-12.15	-6.02	-2.09	-2.75	-4.13	-6.85	-10.08	-13.78	-16.42	-17.77	-8.31	.30
23	-11.88	-5.94	-2.08	-2.79	-4.20	-6.95	-10.20	-13.86	-16.50	-17.81	-7.40	.40
24	-11.74	-5.22	-2.09	-2.84	-4.29	-7.05	-10.32	-13.96	-16.57	-17.88	-7.09	.40
25	-11.55	-4.64	-2.10	-2.88	-4.38	-7.11	-10.45	-14.08	-16.60	-17.97	-6.95	.65
26	-11.21	-4.44	-2.12	-2.93	-4.47	-7.19	-10.58	-14.21	-16.67	-18.05	-6.79	.50
27	-10.90	-4.32	-2.13	-2.99	-4.55	-7.23	-10.72	-14.34	-16.78	-18.16	-5.79	.40
28	-10.47	-4.19	-2.16	-3.06	-4.63	-7.32	-10.84	-14.47	-16.88	-18.25	-5.25	.40
29	-10.30	-4.13	-2.19	-3.13	-4.71	-7.39	-10.95	-14.59	-17.00	-18.21	-5.03	.40
30	-10.20	-3.92	-2.22	-3.20		-7.48	-11.05	-14.73	-17.14	-18.15	-4.90	.35
31	-10.13		-2.19	-3.27		-7.58		-14.88		-17.50	-4.51	
MEAN	-12.23	-6.72	-2.27	-2.60	-3.82	-6.20	-9.33	-13.02	-16.21	-17.67	-10.31	-1.72
MAX	-10.13	-3.92	-2.03	-2.15	-3.27	-4.78	-7.68	-11.17	-14.99	-17.23	-4.51	.65
MIN	-12.96	-9.75	-3.52	-3.27	-4.71	-7.58	-11.05	-14.88	-17.14	-18.25	-16.93	-4.09

CAL YR 1983 MEAN -10.69 MAX -.05 MIN -21.83 WTR YR 1984 MEAN -8.54 MAX .65 MIN -18.25

16854500 UGUM RIVER ABOVE TALOFOFO FALLS, NEAR TALOFOFO

LOCATION.--Lat 13°19'16" N., long 144°44'01" E., Hydrologic Unit 20100003, about 300 ft upstream from Talofofo Falls, 0.9 mi north of NASA Tracking Station, and 3.5 mi southwest of main intersection in Talofofo village.

DRAINAGE AREA .-- 5.76 mi2.

PERIOD OF RECORD. -- June 1977 to current year.

GAGE. -- Water-stage recorder. Altitude of gage is 130 ft, from topographic map.

REMARKS.--Records good. No diversion above station. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 7 years, 23.3 ft 3/s (16,880 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,890 ft³/s Feb. 26, 1980, gage height, 14.2 ft, from flood-marks, from rating curve extended above 350 ft³/s on basis of slope-area measurement at gage height 14.2 ft; minimum, 3.4 ft³/s, June 27, 1978, July 14, 18, 19, 1979.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 1,300 ft³/s and maximum (*):

Date		Time	Discharge (ft³/s)	Gage height (ft)
Aug.	2	0100	*1610	7.85
Sept.	25	0030	1480	7.57

Minimum discharge, 4.0 ft 3/s June 4-6, 8-10.

DISCHARGE,	TM	COBIC	FEET	PER	SECOND,	WATER	YEAR	OCLOBER	1983	TO	SEPTEMBER	1984	
					MEA	N VALUI	ES						

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1	20	59	57	16	9.8	7.5	6.7	5.2	4.2	6.7	23	33	
2	19	45	40	16	13	7.3	6.4	4.9	4.2	5.4	186	23	
2 3 4	17	124	40	14	9.8	7.8	6.1	4.9	4.2	5.3	31	20	
4	17	49	28	13	9.4	7.3	6.1	4.7	4.2	6.4	16	20	
5	16	32	23	13	9.2	7.3	5.9	4.7	4.0	5.4		18	
6 7 8 9	15	27	21	13	9.0	7.0	5.8	4.7	4.5	5.6	12	19	
7	15	24	21	12	11	6.8	6.2	4.9	4.3	6.0		39	
8	14	22	21	12	9.4	6.8	5.9	4.9	4.2	5.0		23	
9	14	21	20	12	8.9	6.6	5.9	4.8	4.0	4.8	23	105	
10	13	20	19	12	8.8	6.6	5.8	6.6	4.5	4.6	14	45	
11	13	22	20	14	31	6.4	5.7	5.3	6.3	4.6		27	
12	12	25	18	12	12	6.4	5.6	4.9	4.7	5.1		22	
13	16	20	17	12	9.9	6.6	5.4	5.0	4.6	5.0	11	24	
14	13	19	17	11	9.8	6.8	5.9	4.7	4.6	4.9	10	37	
15	12	20	17	12	9.4	6.8	5.7	5.1	5.0	4.4	23	33	
16	12	79	23	11	9.0	6.8	5.4	4.8	10	6.5		27	
17	14	33	21	11	8.7	6.6	5.4	4.7	14	6.2		21	
18	47	24	31	14	8.7	6.6	5.2	4.7	15	4.8		42	
19	20	22	19	14	8.7	6.5	5.2	4.8	7.6	4.5		49	
20	18	20	18	12	8.5	6.3	5.5	4.9	11	5.0	23	35	
21	32	33	17	11	8.2	6.3	5.2	4.7	7.9	7.2		48	
22	50	23	16	11	8.1	6.3	5.0	4.7	6.2	18	106	105	
23	34	33	16	12	8.0	6.3	5.0	5.3	5.4	6.9		73	
24	39	119	16	11	8.2	7.4	5.0	4.9	5.5	5.3		72	
25	56	46	15	9.8	8.2	7.8	5.0	4.4	6.4	4.9	24	217	
26	40	30	14	9.8	7.8	7.5	5.0	4.3	5.7	4.9		53	
27	53	25	22	9.5	7.5	9.1	5.0	4.4	5.1	4.7	69	41	
28	38	25	15	9.2	7.3	7.3	5.0	4.4	5.0	4.6	30	37	
29	24	22	14	9.0	7.0	7.4	4.9	4.4	4.9	43	22	35	
30	21	34	14	9.0		7.0	5.6	4.3	4.8	14	19	33	
31	19		15	8.8		6.5		4.3		71	62		
TOTAL	743	1097	665	366.1	284.3	215.7	166.5	149.3	182.0	290.7	1193	1376	
MEAN	24.0	36.6	21.5	11.8	9.80	6.96	5.55	4.82	6.07	9.38	38.5	45.9	
MAX	56	124	57	16	31	9.1	6.7	6.6	15	71	186	217	
MIN	12	19	14	8.8	7.0	6.3	4.9	4.3	4.0	4.4		18	
AC-FT	1470	2180	1320	726	564	428	330	296	361	577		2730	
CAL YR	1983 TO	TAL 51	60.5	MEAN	14.1	MAX	124	MIN	3.5	AC-FT	10240		
WTR YR			28.6	MEAN	18.4	MAX	217	MIN	4.0	AC-FT	13350		

16858000 YLIG RIVER NEAR YONA

LOCATION.--Lat 13°23'28" N., long 144°45'06" E., Hydrologic Unit 20100003, on right bank 2.2 mi upstream from mouth, 1.9 mi southwest of Yona, and 5.6 mi south of Agana.

DRAINAGE AREA . -- 6.48 mi2.

PERIOD OF RECORD .-- June 1952 to current year.

REVISED RECORDS.--WSP 1937: 1957-58. WSP 2137: Drainage area.

GAGE. -- Water-stage recorder and concrete control. Altitude of gage is 20 ft, from topographic map.

REMARKS.--Records fair. No diversion above station. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 32 years, 28.0 ft 3/s (20,290 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,900 ft³/s Sept. 9, 1963, gage height, 19.77 ft, from floodmarks, from rating curve extended above 830 ft³/s on basis of slope-area measurements at gage heights 11.24 ft and 15.87 ft, maximum gage height, 22.80 ft Feb. 26, 1980; minimum, 0.07 ft³/s May 20, 1973, but may have been less during period of diversion from gage pool May 15 to June 20, 1966.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,930 ft³/s Aug. 2, gage height, 13.00 ft, from rating curve extended above 155 ft³/s, no peak above base of 2,000 ft³/s; minimum, 0.26 ft³/s June 6.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

NOV DEC JAN FEB MAR APR MAY JUN JUL

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	21	56	69	29	5.7	4.0	1.9	1.2	.57	12	64	87
2	22	44	41	19	9.7	3.7	1.7	.91	.61	10	340	39
3	21	91	35	18	6.0	3.6	1.5	.81	.55	11	43	32
4	18		29	12	5.2					91	53	30
		40				3.4	1.4	.74	.42			30
5	16	33	25	11	4.8	3.1	1.4	.66	.33	23	36	26
6	18	34	23	9.8	4.5	3.0	1.3	.58	. 46	17	29	30
7	17	26	24	9.2	4.7	2.9	1.3	.67	.38	19	25	35
8	14	24	21	8.5	4.6	2.8	1.3	.74	.33	14	23	33
	13	22	18	8.2	4.2	2.7	1.1	.66	.30	12	22	75
9 10	31	20	17	9.1	4.1	2.9	1.2	.64	.41	9.8		39
10	31	20	17	9.1	4.1	2.9	1.2	.04	.41	3.0	19	33
11	17	26	19	10	21	2.7	1.0	.69	. 87	117	20	29
12	17	21	16	8.1	7.5	2.5	1.0	1.3	1.1	29	16	44
13	46	20	15	7.5	5.6	2.3	.97	.96	.93	30	15	31
14	20	23	14	7.2	6.6	2.2	1.5	.68	41	25	14	66
15	17	23	13	8.7	5.5	2.1	1.7	.59	18	19	18	60
16	17	100	53	6.9	4.8	2.1	1.1	.63	42	19	34	74
17	25	32	23	6.6	4.5	2.0	.99	.55	42	17	195	26
18	62	29	18	11	4.2	2.0	.91	.78	128	14	267	51
19	29	24	16	13	4.1	1.9	.84	.95	23	12	49	25
20	30	22	14	7.7	4.1	1.8	.78	1.0	55	12	36	35
			2.5	72.72					12.2	- 2	1.20	263
21	33	22	13	6.9	3.9	1.7	.77	.77	20	15	48	131
22	30	20	13	7.9	4.1	1.8	.72	.60	14	14	53	105
23	29	21	13	7.5	3.8	2.1	.73	. 82	12	11	38	54
24	42	129	12	6.4	3.8	1.8	.71	.76	11	9.4	35	73
25	36	31	11	5.9	17	2.2	.74	.66	19	20	31	273
26	32	25	11	5.7	5.4	2.3	.71	.62	14	19	59	52
27	32	26	11	5.4	4.5	4.5	.75	.61	22	14	146	39
27				5.4								
28	27	26	9.6	5.3	3.9	2.6	.77	.61	13	12	39	36
29	24	21	8.9	5.3	3.7	2.6	1.0	.61	11	16	32	32
30	22	50	8.8	5.0		2.2	1.8	. 57	10	14	28	28
31	21		11	4.7		2.0		.52		170	144	
TOTAL	799	1081	625.3	286.5	171.5	79.5	33.59	22.89	502.26	827.2	1971	1690
MEAN	25.8	36.0	20.2	9.24	5.91	2.56	1.12	.74	16.7	26.7		56.3
MAX	62	129	69	29	21	4.5	1.9	1.3	128	170		273
	13	20	8.8	4.7	3.7	1.7	.71	.52	.30	9.4		25
MIN												
AC-FT	15.80	2140	1240	568	340	158	67	45	996	1640	3910	3350
CAL YR	1983 TO	TAL 476	55.96	MEAN	13.1	MAX	296	MIN	.10	AC-FT	9450	
WTR YR		PAT. ROS	39.74	MEAN	22.1	MAX	340	MIN	.30	AC-FT	16050	
HTT TY	1004 10.			1111111	44.1	Liera	340				10000	

16890600 DIONGRADID RIVER, BABELTHUAP

LOCATION.--Lat 07°36'04" N., long 134°35'02" E., Hydrologic Unit 20100006, on right bank 0.3 mi upstream from left-bank tributary, 0.9 mi southeast of Ngetbong village school, and 2.4 mi upstream from confluence with Ngerchetang River.

DRAINAGE AREA .-- 4.45 mi2.

PERIOD OF RECORD. -- October 1969 to current year. Prior to October 1980, published as Adeiddo River.

REVISED RECORDS.--WDR HI-75-1: 1970(M), 1972-73(P). WDR HI-81-2: Drainage area.

GAGE.--Water-stage recorder. Altitude of gage is 15 ft, from topographic map.

REMARKS .-- Records poor. No diversion above station.

AVERAGE DISCHARGE. -- 15 years, 32.4 ft 3/s (23,470 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,310 ft³/s Jan. 22, 1975, gage height, 15.44 ft, from rating curve extended above 410 ft³/s on basis of field estimate at gage height 15.44 ft; minimum, 2.1 ft³/s Apr. 14-17, 1983.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 904 ft³/s Sept. 18, gage height, 8.82 ft, no other peak above base of 600 ft³/s; minimum, 9.7 ft³/s May 24, 25.

		DISCHARGE,	IN CUBIC	FEET :		WATER YEAR N VALUES	ОСТОВЕ	R 1983	TO SEPTEME	BER 1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	40	50	87	25	59	22	16	11	36	35	22	23
2	42	43	89	24	52	21	17	11	24	40		38
3	60	45	62	21	57	19	15	39	18	50		25
1 2 3 4	45	47	58	22	53	22	15	19	41	38		38
5	41	42	52	19	61	23	15	14	31	31		27
6	40	38	47	19	52	21	15	13	25	31		25
7 8	45	36	45	26	47	21	14	14	28	29		26
	77	35	47	19	43	26	13	12	30	29		26
9	58	40	41	18	42	26	15	12	35	26		28
10	50	54	47	16	42	29	27	11	30	25	45	25
11	48	45	40	16	42	26	23	11	38	24		22
12	48	48	36	20	39	24	25	11	30	27		23
13	55	42	34	19	47	24	22	11	25	23		22
14	45	38	64	14	40	21	18	11	23	24		33
15	43	40	73	16	38	21	16	11	27	23	23	36
16	40	54	53	22	34	20	21	10	25	20		65
17	38	50	51	18	32	24	18	12	24	18		54
18	40	45	56	55	30	19	17	10	32	20		200
19	45	42	55	42	29	19	15	10	28	19		140
20	36	50	47	40	33	21	16	10	38	21	50	100
21	34	45	43	32	29	18	18	10	50	22		80
22	32	42	41	30	26	17	16	20	70	21		70
23	30	40	38	41	26	19	15	11	54	20		60
24	28	45	36	42	23	19	13	9.9	60	21		56
25	35	50.	36	51	22	36	13	9.7	80	19	21	54
26	45	45	32	44	28	22	13	13	64	22		50
27	50	42	30	40	30	19	12	25	50	25		54
28	54	45	30	60	24	20	12	14	56	30		46
29	45	48	32	52	26	18	12	13	45	25		41
30	38	60	27	58		19	11	16	39	23		38
31	35		26	54		16		15		21	27	
TOTAL	1362	1346	1455	975	1106	672	488	419.6	1156	802		1525
MEAN	43.9	44.9	46.9	31.5	38.1		16.3	13.5	38.5	25.9		50.8
MAX	77	60	89	60	61	36	27	39	80	50		200
MIN	28	35	26	14	22	16	11	9.7	18	18		22
AC-FT	2700	2670	2890	1930	2190	1330	968	832	2290	1590	1800	3020
CAL YR WTR YR		OTAL 10893 OTAL 12211		MEAN MEAN	29.8 33.4			MIN MIN	2.1 9.7	AC-FT AC-FT	21610 24220	

CAROLINE ISLANDS, PALAU ISLANDS

16890600 DIONGRADID RIVER, BABELTHUAP--Continued

	DATE	TI		STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)		DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE,	TEMPER- ATURE (DEG C)	
	OCT 04	13	55	41	29.0	26.0		MAY 25 JUN	1425	9.4	28.0	26.0	
	30 FEB	13	15	52		26.0		29 AUG	1220	40	27.0	26.0	
	14 MAR	14	20	39	27.0	25.5		22 SEP	1300	25	29.0	26.0	
	14 27 APR		20	21 19	28.0 28.0	26.0 26.0		26	1305	52	29.0	26.0	
	24	12	15	13	29.0	26.0							
DATE	TIME	STRE FLO INSI TANE (CF	W, AN- OUS	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVEI (MG/L AS CA)	DIS- SOLVED (MG/L	SODIUM, DIS-	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO
MAR 27	1400		19	54	7.8	26.0	23	4	5.4	2.2	3.3	24	.3
DATE	SI DI SOI (MC	S- VED S/L	ALKA LINIT LAB (MG/ AS CACO	Y SULF DIS L SOL (MG	VED SOI	E, RIDE S- DIE VED SOLVED SOLVED	E, DIS S- SOI VED (MG	CA, SUM S- CONS LVED TUE S/L DI S SOI	STI- I NTS, SO IS- (T	LIDS, GOIS- NO2 DLVED DOINS SO PER (M	LVED SOI	MAN ON, NES IS- DI VED SOL' S/L (UG FE) AS	E, S- VED /L
MAR 27	,	.20	19		1.5 4	.3 <	.10 1	.5	43	.06	<.10	110	8

< Actual value is known to be less than the value shown.

16890900 TABECHEDING RIVER, BABELTHUAP

LOCATION.--Lat 07°27'03" N., long 134°31'29" E., Hydrologic Unit 20100006, on left bank 0.2 mi downstream from waterfall, 1.5 mi upstream from boat landing, and 1.6 mi east of forestry station.

DRAINAGE AREA. -- 6.07 mi2.

PERIOD OF RECORD. -- October 1970 to current year. Prior to OCtober 1980, published as Tabagaten River.

REVISED RECORDS. -- WDR HI-81-2: Drainage area.

GAGE .- - Water-stage recorder. Altitude of gage is 20 ft, from topographic map.

REMARKS.--Records fair except those above 500 ft³/s, which are poor.

AVERAGE DISCHARGE.--14 years, 48.4 ft 3/s (35,070 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,580 ft³/s Dec. 23, 1973, gage height, 8.79 ft, from rating curve extended above 290 ft³/s; minimum, 0.57 ft³/s Apr. 19, 1983.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,020 ft³/s Sept. 18, gage height, 6.12 ft, no other peak above base of 900 ft³/s; minimum, 9.2 ft³/s May 20, 21.

		DISCHARGE,	IN CUBIC	FEET PER		, WATER YEAR AN VALUES	CTOBER	1983 то	SEPTEMBE	R 1984		
DAY	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	48	118	167	24	91	23	22	14	28	36	26	35
2	45	181	158	24	71	20	22	13	22	37		44
3	88	68	76	21	82	19	20	25	20	112		34
3	52	59	59	42	62	24	18	16	88	48		80
5	74	51	48	28	85	22	19	14	48	40		41
6	85	42	44	22	58	20	18	12	36	38		36
7	100	36	95	50	47	54	18	13	33	54		66
8	110	32	114	28	42	95	15	12	67	33		45
9	65	33	77	48	43	97	17	11	37	30		49
10	55	50	106	33	42	88	143	12	33	27	56	55
11	50	36	76	27	90	57	64	11	62	27		44
12	50	42	60	108	46	93	45	12	55	25		45
13	80	63	50	74	55	57	37	12	37	24		36
14	67	35	85	45	87	46	31	16	38	24		36
15	48	31	101	44	107	39	28	16	53	21	30	42
16	47	46	134	99	71	34	26	12	38	19		182
17	47	76	85	47	54	46	26	15	43	17		83
18	39	90	72	165	47	33	25	12	101	20		250
19	34	70	62	97	43	31	21	11	74	17		350
20	30	83	51	109	42	42	20	10	70	18	200	90
21	28	62	47	68	37	28	20	12	57	16		75
22	27	49	41	54	36	24	22	133	115	15		60
23	24	43	36	75	39	24	22	23	198	20		50
24	23	50	33	112	30	24	18	15	114	16		45
25	25	76	30	128	26	116	16	16	125	28	29	40
26	52	50	28	110	27	38	18	17	95	27		36
27	45	44	25	80	32	30	18	88	70	19		32
28	36	47	38	214	25	28	16	34	56	24		30
29	33	50	33	114	27	25	16	25	47	21		29
30	30	44	29	145		32	15	24	42	22		27
31	35		24	97		25		24		17	48	
TOTAL	1572	1757	2084	2332	1544	1334	816	685	1902	892		2067
MEAN	50.7	58.6	67.2	75.2	53.2	43.0	27.2	22.1	63.4	28.8		68.9
MAX	110	181	167	214	107	116	143	133	198	112		350
MIN	23	31	24	21	25	19	15	10	20	15		27
AC-FT	3120	3490	4130	4630	3060	2650	1620	1360	3770	1770	3300	4100
CAL YR WTR YR		OTAL 14642.			40.1 50.9			IN IN		C-FT	29040 36990	

CAROLINE ISLANDS, PALAU ISLANDS

16890900 TABECHEDING RIVER, BABELTHUAP--Continued

	DATE	TI	F IN 4E TA	REAM- LOW, STAN- NEOUS CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)		DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)	
	OCT 11	113	30	51	26.0	25.5		APR 26 MAY	1045	19	28.0	26.0	
	16 FEB	115	50	31	27.0	25.5		26 AUG	1215	17		26.0	
	13 MAR	135	50	52	27.5	25.0		09 SEP	1155	79		26.0	
	13 28	133 110		54 30	28.0	26.0 26.0		19	1145	223	27.5	26.0	
DATE	TIME	STREA FLOW INSTA TANEO	AM- C V, C AN- D DUS A	PE- IFIC ON- UCT- NCE MHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	DIS-	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO
MAR 28	1100		30	57	7.4	26.0	23	0	4.3	2.9	3.8	26	.4
DATE	SI DI SOI (MG	S- VED	ALKA- LINITY LAB (MG/L AS CACO3)	SULFA DIS- SOL- (MG, AS SO	- DIS VED SOL /L (MG	E, RIDI - DIS VED SOLV	E, DIS S- SOI VED (MG /L AS	CONSIVED TUEN	OF SOLUTE, DOTS, SOUS- (TOUT)	IDS, GE IS- NO2- LVED DI ONS SOI	IS- DI LVED SOI G/L (UC	S- DI	E, S- VED /L
MAR 28	•	.30	23		1.7 3	.4 <	.10 1	8	48	.07	.10	140	10

< Actual value is known to be less than the value shown.

CAROLINE ISLANDS, PALAU ISLANDS

16891310 KMEKUMEL RIVER, BABELTHUAP

LOCATION.--Lat 07°23'14" N., long 134°32'42" E., Hydrologic Unit 20100006, 0.5 mi upstream from confluence with Edeng River and 1.1 mi north of Palau Mission Academy.

DRAINAGE AREA .-- 1.44 mi 2.

PERIOD OF RECORD. -- September 1978 to current year. Low-flow partial-record station operated "at mouth" 1970-78. Prior to October 1980, published as Kumekumeyel River.

REVISED RECORDS. -- WDR HI-81-2: Drainage area.

GAGE. -- Water-stage recorder. Altitude of gage is 96.44 ft, from stadia survey.

REMARKS .-- Records good. No diversion above gage.

AVERAGE DISCHARGE. -- 6 years, 9.21 ft3/s (6,670 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,560 ft³/s Apr. 13, 1979, gage height, 10.53 ft, from rating curve extended above 106 ft³/s on basis of slope-area measurement at gage height 10.53 ft; minimum, 0.18 ft³/s Apr. 14-17, 1983.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 463 ft³/s July 25, gage height, 6.37 ft, no other peak above base of 450 ft³/s; minimum, 2.1 ft³/s May 20.

DISCHARGE. IN CURIC PEET DER SECOND. WATER VEAR OCTOBER 1983 TO SEPTEMBER 1984

		DISCHARGE,	IN CUBIC	FEET P		WATER YEAR N VALUES	ROCTOBER	1983 TO	SEPTEMBE	R 1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	9.2	6.6	38	5.9	15	5.2	8.6	2.7	11	7.7	15	7.5
2	9.0	9.7	24	5.2	15	4.6	6.8	2.6	7.0	8.1	55	11
3	13	6.8	14	4.8	15	4.4	6.1	9.6	6.2	21	22	7.9
4	11	8.8	11	5.5	12	4.8	5.5	4.3	30	10	21	20
5	10	7.3	9.2	4.8	14	6.9	6.8	3.5	18	9.2	20	9.5
6	21	6.1	8.1	4.4	11	6.6	5.7	3.2	14	9.0	15	8.4
7	23	5.5	21	5.5	9.5	8.4	5.2	3.2	11	8.8	13	7.9
8	22	5.2	16	4.3	8.8	15	4.6	2.9	23	6.8	40	8.1
9	16	5.5	14	5.5	9.2	9.5	5.3	2.9	14	6.1	18	8.8
10	14	7.7	12	4.4	8.8	9.5	22	2.7	12	5.7	20	7.9
11	12	6.4	17	4.1	9.2	11	15	2.6	25	5.8	19	6.8
12	9.9	10	12	13	8.4	15	11	3.9	21	7.0	15	6.1
13	28	12	10	8.6	12	11	11	2.7	22	5.5	13	5.5
14	18	8.4	12	6.4	16	9.5	9.2	2.9	19	8.2	11	5.3
15	13	7.5	13	9.9	15	7.9	8.1	2.6	21	5.7	9.7	5.7
16	11	8.1	12	23	13	7.3	7.3	2.4	15	5.0	8.6	9.9
17	10	12	10	11	10	11	6.6	2.7	13	5.0	7.9	7.0
18	9.2	15	9.7	24	9.2	7.3	6.1	2.4	40	9.1	7.3	29
19	8.4	14	11	17	8.4	7.3	5.5	3.0	22	5.2	7.5	38
20	7.5	14	9.0	24	8.8	8.1	5.3	2.4	17	4.6	29	14
21	6.8	10	7.7	14	7.9	6.1	5.0	3.2	14	4.4	12	11
22	6.4	9.0	7.0	12	7.0	5.7	5.2	17	14	4.6	9.2	9.5
23	6.1	8.1	6.2	15	9.0	5.9	5.0	5.3	24	7.6	8.1	8.1
24	5.5	9.0	6.1	24	6.4	5.5	4.3	4.1	17	4.8	7.0	7.7
25	8.0	9.9	6.2	20	5.9	30	3.9	3.7	15	33	6.2	6.6
26	8.4	7.9	5.3	21	6.4	11	3.9	4.6	13	20	5.9	6.1
27	9.0	7.0	5.2	16	6.8	8.8	3.5	35	12	14	7.4	5.5
28	7.9	6.4	7.9	28	5.3	9.7	3.2	11	9.9	12	5.7	5.2
29	6.8	9.1	6.4	18	6.1	7.7	3.2	7.9	9.2	11	5.0	4.6
30	5.9	7.3	5.3	18		11	2.7	7.3	8.8	9.7	15	4.4
31	6.1		5.0	16		7.7		6.8		8.4	9.9	
TOTAL	352.1			393.3	289.1			171.1	498.1	283.0	458.4	293.0
MEAN	11.4	8.68	11.3	12.7	9.97	9.01	6.72	5.52	16.6	9.13	14.8	9.77
XAM	28	15	38	28	16	30	22	35	40	33	55	38
MIN	5.5	5.2	5.0	4.1	5.3	4.4	2.7	2.4	6.2	4.4	5.0	4.4
AC-FT	698	516	697	780	573	554	400	339	988	561	909	581
CAL YR WTR YR		OTAL 2341.9 OTAL 3830.		MEAN MEAN	6.42	MAX 1		IN IN		C-FT C-FT	4650 7600	

CAROLINE ISLANDS, PALAU ISLANDS 16891310 KMEKUMEL RIVER, BABELTHUAP--Continued

	DATE	TI	II ME TA	TREAM- FLOW, NSTAN- ANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)		DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)	
	OCT 05	15	A.E.	12	26.5	25.5		MAY 16	1320	2.7	30.0	26.5	
	25	15		5.4	27.5	26.0		JUN			30.0	20.3	
	DEC	10	40	7.0	20.0	25.0		19	1230	20	28.0	26.0	
	22 MAR	12	40	7.0	28.0	26.0		JUL 24	1305	4.8	27.5	26.0	
	06	11	50	8.2	27.5	25.5		SEP					
	APR 16	13	55	7.2	27.5	26.0		17	1320	6.7	28.0	26.0	
	-4				2,,,,	2010							
DATE	TIME	STRE. FLO INST. TANE	AM- C W, C AN- I OUS A	SPE- CIFIC CON- DUCT- ANCE JMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	DIS- SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO
MAR 25	1545		17	59	7.3	26.0	26	4	6.5	2.4	3.1	20	.3
DATI	SI DI SOL (MG	S- VED /L	ALKA- LINITY LAB (MG/L AS CACO3)	SULFA DIS SOL (MG AS SO	- DIS VED SOL /L (MG	E, RIDE - DIS VED SOLV	E, DIS S- SOL /ED (MG /L AS	- CONS VED TUEN /L DI SOI	OF SOLUTE, SOL	IDS, GI IS- NO2- LVED DI ONS SOI	LVED SOL	S- DIS	E, S- VED /L
MAR 25.		.30	22		2.8 4	.1 <.	.10 1	5	47	.06	.10	97	11

< Actual value is known to be less than the value shown.

CAROLINE ISLANDS, PALAU ISLANDS

16891400 SOUTH FORK NGERDORCH RIVER, BABELTHUAP

LOCATION.--Lat 07°26'19" N., long 134°34'28" E., Hydrologic Unit 20100006, on right bank 0.3 mi from left-bank tributary, 1.3 mi west of Rrai village, and 1.5 mi upstream from confluence with North Fork Ngerdorch River.

DRAINAGE AREA . -- 2.44 mi2.

PERIOD OF RECORD.--March 1971 to current year. Prior to October 1980, published as South Fork Ngardok River.

REVISED RECORDS.--WDR HI-75-1: 1971(M), 1972, 1973(P), 1974. WDR HI-81-2: Drainage area.

GAGE.--Water-stage recorder. Altitude of gage is 25 ft, revised, from topographic map.

REMARKS. -- Records fair. No diversion above station.

AVERAGE DISCHARGE.--13 years, 19.1 ft3/s (13,840 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,750 ft³/s Dec. 13, 1974, gage height, 9.19 ft, from rating curve extended above 65 ft³/s on basis of field estimate at gage height 7.57 ft; minimum, 0.48 ft³/s Apr. 16-17, 1983.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 750 ft3/s and maximum (*):

Date		Time	Discharge (ft³/s)	Gage height (ft)
Jan.	12	1830	982	4.37
July	25	1830	*1540	*5.23
Sept.	18	1630	1300	4.89

Minimum discharge, 3.4 ft 3/s May 16, 19, 20.

DISCHARGE,	IN	CUBIC	FEET	PER	SECOND,	WATER	YEAR	OCTOBER	1983	TO	SEPTEMBER	1984
					MEA	N VALU	ES					

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	21	16	80	8.1	32	8.1	8.7	5.0	10	12	8.7	9.9
2	20	33	46	9.3	25	7.1	8.7	5.0	8.0	14	44	20
3	30	16	27	8.3	24	7.1	7.5	9.3	7.0	40	19	12
4	23	21	22	12	22	7.5	7.1	6.7	30	19	29	21
5	21	16	19	9.9	30	6.7	7.5	5.4	17	15	29	13
6	35	14	17	7.5	21	7.1	7.1	5.0	13	15	21	10
7	40	12	49	9.9	18	29	6.7	5.9	12	18	18	9.3
8	43	12	52	9.9	16	36	6.3	5.0	25	12	61	11
9	27	11	33	8.3	17	39	7.5	4.6	13	10	29	10
10	23	10	28	7.1	17	32	56	4.6	12	9.9		9.3
11	23	9.9	24	6.3	47	20	21	4.6	23	9.3	22	8.7
12	20	11	21	95	20	30	17	5.0	20	9.3		8.1
13	78	34	18	26	25	20	15	4.6	14	8.1		7.1
14	35	14	26	16	32	16	12	4.6	17	7.5		9.3
15	24	12	30	17	37	14	11	5.0	23	7.5		11
16	22	10	21	47	28	14	10	4.2	16	6.3	11	39
17	20	20	20	20	22	20	11	6.3	15	6.3		20
18	16	23	28	104	20	13	9.3	4.6	43	8.1		107
				34	17	13	8.7	3.8	27	6.3		120
19 20	15 13	20 23	22 17	43	18	19	8.1	3.8	23	5.9	90	34
21	12	18	16	26	16	12	7.5	5.4	20	5.4	20	24
22	11	15	14	22	14	9.9	8.1	29	18	5.4		22
23	9.9	14	12	30	15	10	7.1	6.7	23	6.3	14	18
		17		51	12	9.9	6.7	5.9	19	5.4		16
24	9.9		11								12	14
25	10	62	10	56	10	56	6.3	5.0	43	92	12	14
26	14	24	9.9	44	12	17	6.7	6.0	25	22	10	12
27	15	20	8.7	31	13	13	6.3	30	20	14	12	11
28	23	18	15	79	9.9	12	6.3	12	16	11	9.9	11
29	20	17	12	35	10	10	6.3	9.0	15	9.9	8.1	10
30	13	16	9.3	38		14	5.4	8.5	13	8.7	13	9.9
31	12		8.1	32		9.9		8.5		8.1	13	
TOTAL	698.8	558.9	726.0	942.6	599.9	532.3	312.9	229.0	580.0	427.7		637.6
MEAN	22.5	18.6	23.4	30.4	20.7	17.2	10.4	7.39	19.3	13.8	20.5	21.3
MAX	78	62	80	104	47	56	56	30	43	92		120
MIN	9.9	9.9	8.1	6.3	9.9	6.7	5.4	3.8	7.0	5.4	8.1	7.1
AC-FT	1390	1110	1440	1870	1190	1060	621	454	1150	848	1260	1260
CAL YR WTR YR			72.20 882.5	MEAN MEAN	13.3	MAX MAX	177 120	MIN MIN	.60 3.8	AC-FT AC-FT	9660 13650	
MIT IV	T 204 TC	TUT 0	002.5	LIETIN	TO.0	LIMA	120	F.1 T TA	3.0	110 11	13030	

CAROLINE ISLANDS, PALAU ISLANDS

16891400 SOUTH FORK NGERDORCH RIVER, BABELTHUAP--Continued

	DATE	TIM	IN E TA	PREAM- FLOW, NSTAN- ANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)		D <i>I</i>	ATE	TIM	F IN E TA	REAM- LOW, STAN- NEOUS CFS)	TEMPE ATUR AIR (DEG	RE,	TEMPER- ATURE (DEG C)	
	OCT 06	132	0	27		25.5		JU1 12 JUI	2	112	5	17	28	3.0	26.0	
	01 FEB	124	5	48	28.0	26.0				120	0	9.7	29	.5	27.0	
	15 MAR	132	5	32	28.0	26.0				132	5	14	30	0.0	27.0	
	15 26	122 161		14 15	28.0 28.0	26.0 27.0			• • • •	121	0	11	30	.0	26.5	
	MAY 01	114	5	4.7	30.0	27.0										
DATE	TIME	STREA FLOW INSTA TANEO (CFS	M- C N- D US A	SPE- CIFIC CON- OUCT- NCE UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	NONG BONA (MC	SS, CAR-	CALCI DIS- SOLV (MG/ AS C	UM ED S	AGNE- SIUM, DIS- OLVED MG/L S MG)	SODIU DIS- SOLVE (MG/ AS N	D L	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO
MAR 26	1615		15	48	7.3	27.0	20		3	4.	7	2.1	3.	3	26	.3
DAT	SI DI SOI (MC	UM, L S- LVED G/L	ALKA- INITY LAB (MG/L AS CACO3)	SULF. DIS SOL (MG AS S	- DIS VED SOI /L (MC	E, RID - DI VED SOL	E, DI S- SC VED (M	ICA, S- LVED G/L S	SOLI SUM CONS TUEN DI SOL (MG	OF S TI- TS, S- VED	OLIDS, DIS- SOLVED (TONS PER AC-FT)	NO2+	N, NO3 S- VED /L	IRON DIS SOLV (UG/ AS F	S- DI /ED SOL /L (UG	E, S- VED /L
MAR 26.		.20	17		1.6 3	.8 <	.10	15		41	.06	<	.10	1	100	5

< Actual value is known to be less than the value shown.

CAROLINE ISLANDS, YAP ISLANDS

16892000 QATLIW STREAM, YAP

LOCATION.--Lat 09°32'58" N., long 138°06'41" E., Hydrologic Unit 20100006, on right bank 90 ft below confluence with major tributary, 0.5 mi upstream from mouth, and 2.6 mi northwest of Colonia.

DRAINAGE AREA . -- 0.31 mi2.

CAL YR 1983 TOTAL WTR YR 1984 TOTAL

273.26

310.04

MEAN

MEAN

.75

. 85

PERIOD OF RECORD .-- January 1982 to current year.

GAGE.--Water-stage recorder and concrete control. Altitude of gage is 40 ft, from topographic map.

REMARKS .-- Records fair. No diversion above station.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 874 ft³/s June 21, 1982, gage height, 5.96 ft, from rating curve extended above 10 ft³/s; no flow at times each year.

EXTREMES FOR CURRENT YEAR. -- Maximum discharge, 348 ft 3/s Nov. 17, gage height, 4.14, no other peak above base of 200 ft3/s; no flow for many days.

> DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 MEAN VALUES

> > SEP

.30

.10

.81

.19

5.4

DAY OCT NOV DEC FEB JUL. JAN MAR APR JUN AUG MAY 1 2 3 .20 .10 .03 2.2 .13 .00 .00 .00 .10 .08 .13 7.5 1.5 2.0 1.2 .34 .11 .02 1.9 .00 .00 .19 1.3 .06 .00 .75 -07 .00 5.7 5.5 .02 .66 .00 .00 .00 .92 5 .20 .88 .06 .01 .08 .00 .00 .00 .50 .88 .04 6 .01 .03 .00 1.0 .15 . 27 .00 -00 .70 .16 .20 .02 5.0 .00 .10 -01 -02 .10 -00 -00 2.0 .08 .02 .01 .01 . 82 .00 .00 1.2 .00 .70 .70 .19 .04 .01 .01 .39 .00 .00 .00 1.0

10	.30	.08	.13	.01	6.3	.39	.00	.00	.00	.70	.70	.11
11	.20	.05	.06	.01	2.9	1.0	.00	.00	.00	.50	2.7	.10
12	. 40	.05	. 40	11	2.2	.16	.00	.00	.00	1.5	2.9	.27
13	.62	.05	. 45	3.1	.82	.06	.00	.00	.00	1.0	1.4	.16
14	1.0	.04	.40	.34	1.1	.04	.00	.00	.00	1.7	.63	1.3
15	.19	.03	1.8	.51	.39	.04	.00	.00	.55	.57	2.3	4.5
16	.10	.05	.45	.39	.11	.04	.00	.00	.30	2.5	.70	1.3
17	.06	15	.23	.11	.05	.03	.00	.00	1.8	.88	.70	2.0
18	2.1	1.2	.11	.11	.06	.02	.00	.00	.39	.19	.19	2.7
19	1.1	.30	.08	6.9	.04	.02	.00	.00	.62	.10	.13	4.6
20	. 27	.08	.08	1.2	.03	.02	.00	.00	3.6	.04	.11	.88
21	.23	.06	.06	.19	1.8	.01	.00	.00	.27	.04	.08	1.3
22	.13	.04	.05	.10	1.1	.01	.00	.00	.16	.03	.06	.94
23	.08	.11	.04	.06	.13	.00	.00	.00	.10	.01	.04	1.8
24	.08	7.2	.04	4.3	.05	.00	.00	.00	.06	.01	.04	4.3
25	.06	9.1	.04	1.5	.04	.00	.00	.00	5.5	.01	.52	.51
26	.11	1.3	.04	. 82	5.7	.00	.00	.00	2.8	.02	2.2	.08
27	. 27	.23	.06	1.1	7.9	.00	.00	.00	.30	.06	.63	.04
28	. 45	.63	.76	1.3	18	.00	.00	.00	.10	.08	3.6	.03
29	.13	.30	.16	1.2	1.8	.01	.00	.00	.23	.06	4.7	.02
30	.08	2.0	.06	. 82		.00	.00	.00	.13	2.6	8.1	.02
31	.30		.04	.57		.00		.00		.45	1.8	
TOTAL	19.61	45.15	11.07	35.78	56.73	12.66	.00	.00	16.91	17.98	58.35	35.80
MEAN	.63	1.50	.36	1.15	1.96	.41	.00	.00	.56	.58	1.88	1.19
MAX	5.0	15	3.7	11	18	7.5	.00	.00	5.5	2.6	13	5.4
MIN	.06	.03	.02	.01	.01	.00	.00	.00	.00	.01	.04	.02
AC-FT	39	90	22	71	113	25	.00	.00	34	36	116	71

MAX

MAX

30

18

MIN

MIN

.00

.00

AC-FT

AC-FT

542

615

CAROLINE ISLANDS, YAP ISLANDS

16892000 QATLIW STREAM, YAP--Continued

	DATE	TI	II II ME TA	TREAM- FLOW, NSTAN- ANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)		DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER-	TEMPER- ATURE (DEG C)	
	OCT							MAR					
	12 NOV	113	30	.48	28.0	25.5		15 22	1000 0920	.04		25.0 25.0	
	03	093	35	.06	28.0	26.0		JUN					
	28 DEC	115	50	.63	27.5	26.0		28 AUG	1145	.08	27.5	26.5	
	14 JAN	11	55	.15	27.0	26.0		13 SEP	1250	1.2	27.5	26.5	
	18 FEB	113	35	.08	26.5	26.0		05 25	1435 1105	.69		26.5 26.0	
	29	13:	10	1.1	26.0	25.5							
	TIME	STREA FLOW INSTA	AM- C	SPE- CIFIC CON- DUCT- ANCE	PH (STAND- ARD	TEMPER-	HARD- NESS (MG/L AS	HARD- NESS, NONCAR- BONATE (MG/L	CALCIU DIS- SOLVE (MG/L	DIS-	SODIUM, DIS-	PERCENT	SODIUM AD- SORP- TION RATIO
DATE		(CFS		MHOS)	UNITS)	(DEG C)	CACO3)	CACO3)	AS CA			SODIUM	
MAR 22	0920		.01	190	6.6	25.0	83	8	10	14	10	21	• 5
DATE	SI DI SOL (MG	S- VED	ALKA- LINITY LAB (MG/L AS CACO3)	SULF DIS SOL (MG AS SO	- DIS VED SOL /L (MG	E, RIDI - DI: VED SOLV /L (MG.	E, DIS S- SOI VED (MG	S- CONS LVED TUEN G/L DI S SOI	OF SO STI- NTS, SO IS- ('	LIDS, GOIS- NO2 DLVED DOING SO PER (M	LVED SOI	MANN ON, NESS IS- DIS LVED SOL G/L (UG, FE) AS I	E, S- VED /L
MAR 22		.30	75		4.5 14	<	.10 2	25	120	.17	<.10	68	46

< Actual value is known to be less than the value shown.

16892400 QARINGEEL STREAM, YAP

LOCATION.--Lat 09°31'02" N., long 138°05'31" E., Hydrologic Unit 20100006, on right bank at Qaringeel and 0.3 mi southwest of Dalipeebinaew School.

DRAINAGE AREA .-- 0.24 mi2.

PERIOD OF RECORD. -- April 1968 to current year. Prior to October 1980, published as Aringel Stream.

GAGE. -- Water-stage recorder and concrete control. Altitude of gage is 15 ft, from topographic map.

REMARKS. -- Records fair. No diversion above station.

AVERAGE DISCHARGE. -- 16 years, 1.07 ft 3/s (775 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 674 ft³/s July 13, 1981, gage height, 7.82 ft, from rating curve extended above 20 ft³/s; no flow at times.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 512 ft³/s Nov. 17, gage height, 7.01 ft, no other peak above base of 200 ft³/s; no flow for many days.

		DISCHARGE,	IN CUBIC	FEET P		WATER YEAR N VALUES	OCTOBER	1983 T	O SEPTEMBE	R 1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.18	.14	1.5	.04	.31	.30	.00	.00	.00	.10	.08	.45
2	1.5	.14	. 81	.02	.20	.14	.00	.00	.00	.13	1.8	.14
3	.58	.08	.62	.04	.11	.07	.00	.00	.00	1.0	15	.10
4	.27	6.7	.33	.02	.06	7.6	.00	.00	.00	1.0	2.7	1.7
5	.14	.73	.16	.01	.04	.90	.00	.00	.00	1.9	.51	1.0
6	.11	.33	.10	.01	.03	.42	.00	.00	.00	1.3	.25	.48
7	.51	.14	.05	.01	.01	.36	.00	.00	.00	.42	.16	.45
8	.45	.08	.04	.01	.01	.39	.00	.00	.00	.16	.36	.25
9	.25	2.6	.02	.03	.01	.25	.00	.00	.00	.11	.36	.74
10	.14	.33	.05	.06	7.0	.16	.00	.00	.00	.08	.58	1.2
11	.10	.11	.03	.02	1.4	.30	.00	.00	.00	.06	3.8	1.3
12	.08	.05	.01	5.3	.91	.14	.00	.00	.07	.14	2.2	4.1
13	5.0	.03	.03	1.5	.84	.08	.00	.00	.03	.10	1.6	.88
14	2.6	.02	.04	.27	1.6	.05	.00	.00	.51	.75	.58	1.1
15	.62	.01	.74	.18	.54	.03	.00	.00	1.1	.36	.88	1.4
16	. 23	.01	.30	.18	.20	.02	.00	.00	.97	.13	3.7	.51
17	.18	21	.11	.13	.10	.02	.00	.00	.42	.07	1.1	.39
18	2.3	.88	.05	. 23	.07	.01	.00	.00	.13	.04	. 45	.36
19	.69	.39	.02	9.5	.02	.01	.00	.00	.08	.06	.33	4.2
20	.33	.23	.01	. 82	.02	.01	.00	.00	4.6	.02	.48	.69
21	.33	.73	.01	.25	3.7	.01	.00	.00	1.5	.01	.20	.36
22	.51	.33	.01	.13	1.8	.01	.00	.00	.51	.01	.16	.69
23	. 27	. 45	.01	.08	.78	.01	.00	.00	.33	.01	.16	1.0
24	.16	5.2	.01	1.4	. 23	.01	.00	.00	.30	.01	.13	1.8
25	.10	5.8	.05	.36	.14	.00	.00	.00	3.3	.01	1.2	.44
26	.08	1.3	.01	.16	7.1	.00	.00	.00	2.6	.01	2.3	.20
27	.08	.39	.01	.14	3.0	.00	.00	.00	.58	.01	2.2	.11
28	.06	. 25	2.4	.11	13	.00	.00	.00	.20	.01	2.3	.06
29	.03	.36	.73	.07	1.0	.00	.00	.00	.11	.01	3.8	.06
30	.01	2.4	. 25	.08		.00	.00	.00	.10	.05	6.4	.07
31	.39		.10	.06		.00		.00		.08	1.4	
TOTAL	18.28	51.21		21.22	44.23	11.30	.00	.00	17.44	8.15	57.17	26.23
MEAN	.59	1.71	.28	.68	1.53	.36	.00	.00	.58	.26	1.84	. 87
MAX	5.0	21	2.4	9.5	13	7.6	.00	.00	4.6	1.9	15	4.2
MIN	.01	.01	.01	.01	.01	.00	.00	.00	.00	.01	.08	.06
AC-FT	36	102	17	42	88	22	.00	.00	35	16	113	52
CAL YR WTR YR		OTAL 297. OTAL 263.		MEAN MEAN	.82 .72			IN IN		C-FT C-FT	591 523	

CAROLINE ISLANDS, YAP ISLANDS

16892400 QARINGEEL STREAM, YAP--Continued

	DATE	TIME	STRE. FLO' INST. TANE	W, TH AN- A OUS	EMPER- ATURE, AIR DEG C)	TEMPER- ATURE (DEG C)		DATE		F IN IME TA	REAM- LOW, STAN- NEOUS CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)	
	OCT 12 NOV	1415		.10	28.0	26.0		MAR 15 22		445 105	.04	27.5	27.0 28.5	
	03 28 DEC	1050		.12 .26	27.5 27.0	26.0 26.0		JUN 28 AUG	. 1	040	.23	27.5	26.0	
	14 JAN	1340	i .	.02	27.5	27.0		13 SEP	. 1	105	1.8	26.5	26.0	
	18 FEB	1025		.30	26.5	25.5		05 25		245 220	1.3	28.5 28.5	27.0 27.0	
	29	1150		. 93	26.0	25.5								
DATE	TIME	STREAM FLOW, INSTAM TANEOU (CFS)	CON- DUC'S	IC - T- (S E	PH STAND- ARD NITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR BONATE (MG/L CACO3	- DI SO (M	CIUM S- LVED S G/L (AGNE- SIUM, DIS- OLVED MG/L S MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO
MAR 22	1105	.0	1	179	6.9	28.5	73		4	7.9	13	9.2	21	.5
DAT	SI DI SOI (MG	UM, LI S- VED (LAB MG/L AS	SULFATE DIS- SOLVEI (MG/L AS SO4)	DIS- SOL' (MG	E, RIDE - DIS VED SOLV	E, DI: S- SO: VED (MC	ICA, SUS- S- CO LVED TU G/L S S	LIDS, M OF NSTI- ENTS, DIS- OLVED MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NO2+	N, NO3 IRC S- DI VED SOI /L (UC	S- DI VED SOL	E, S- VED /L
MAR 22.		.40 6	9	2.7	7 14	<.	10 :	25	110	.15		.16	79	7

< Actual value is known to be less than the value shown.

CAROLINE ISLANDS, YAP ISLANDS

16892480 AIRPORT POND, YAP

LOCATION.--Lat 09°29'14" N., long 138°05'08" E., Hydrologic Unit 20100006, on northwest shore of pond, behind Pacific Missionary Aviation facilities, and north of former landing strip.

PERIOD OF RECORD. -- October 1983 to September 1984.

GAGE. -- Water-stage recorder. Datum of gage is at mean sea level.

REMARKS .-- Records fair .

EXTREMES FOR CURRENT YEAR. -- Highest water level, 34.09 ft, Nov. 17; lowest, 28.19 ft, June 1.

GAGE HEIGHT (FEET AT DATUM), WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 MEAN VALUES

					MEA	IN VALUES						
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	32.98	32.91	32.91	32.61	32.32	32.96	31.97		#28.2	29.50	31.00	33.10
2	32.99	32.96	32.89	32.59	32.32	32.88	31.91			29.60	31.20	33.02
3	32.96	32.95	32.87	32.57	32.28	32.82	31.87			29.80	32.05	32.96
4	32.91	33.34	32.83	32.54	32.24	32.99	31.84			30.00	32.58	32.96
5	32.88	33.20	32.81	32.50	32.19	32.98	31.80			30.15	32.63	32.94
6	32.84	33.07	32.77	32.45	32.14	32.91	31.74			30.26	32.64	32.90
7	32.96	32.99	32.73	32.47	32.10	32.87	31.69			30.40	32.69	32.88
8	33.02	32.93	32.72	32.46	32.05	32.85	31.63			30.30	32.79	32.85
9	32.97	33.03	32.69	32.43	32.00	32.82	31.56			30.31	32.83	32.82
10	32.92	32.99	32.72	32.40	32.11	32.79	31.50			30.32	32.85	32.84
11	32.99	32.92	32.72	32.37	32.29	32.80	31.46			30.31	32.91	32.90
12	33.05	32.87	32.68	32.43	32.29	32.79	31.44			30.34	33.27	32.95
13	33.04	32.82	32.71	32.65	32.31	32.75	31.42			30.35	33.15	32.90
14	33.14	32.78	32.72	32.62	32.33	32.70	31.38	≠29.5		30.33	33.05	32.85
15	33.07	32.73	32.83	32.60	32.33	32.67	31.33			30.31	32.99	32.90
16	33.00	32.73	32.84	32.57	32.30	32.63	31.31		1999	30.29	33.03	33.00
17	32.93	33.57	32.80	32.52	32.26	32.60	31.26			30.27	33.03	33.05
18	32.89	33.26	32.77	32.50	32.23	32.57	31.19			30.23	32.97	33.00
19	32.86	33.10	32.73	32.61	32.20	32.51	31.13			30.21	32.95	32.95
20	32.85	33.00	32.69	32.67	32.15	32.46	31.06		≠28.9	30.17	32.98	32.90
21	32.86	33.00	32.66	32.64	32.22	32.42	31.01			30.18	32.95	32.90
22	32.83	32.93	32.63	32.60	32.49	32.37	30.96			30.17	32.90	32.95
23	32.81	32.89	32.59	32.57	32.54	32.34	30.90			30.12	32.87	33.00
24	32.79	32.94	32.58	32.58	32.51	32.30	30.84			30.10	32.85	33.05
25	32.76	33.09	32.58	32.57	32.48	32.25	30.76			30.08	32.86	32.97
26	32.74	33.05	32.55	32.52	32.54	32.22	30.70			30.44	32.96	32.92
27	32.73	32.98	32.49	32.51	32.59	32.17	30.65			30.85	32.99	32.87
28	32.70	32.92	32.62	32.47	32.88	32.12	30.55		≠29.3	30.85	32.95	32.83
29	32.68	32.92	32.68	32.42	33.06	32.12	30.50			30.85	32.97	32.80
30	32.65	32.91	32.66	32.36		32.07	30.45			30.96	33.29	32.78
31	32.91		32.64	32.33		32.02				31.00	33.20	
MEAN	32.89	32.99	32.71	32.52	32.34	32.57	31.26			30.29	32.79	32.92
MAX	33.14	33.57	32.91	32.67	33.06	32.99	31.97			31.00	33.29	33.10
MIN	32.65	32.73	32.49	32.33	32.00	32.02	30.45			29.50	31.00	32.78

		SPE-				HARD-		MAGNE-			SODIUM
		CIFIC			HARD-	NESS,	CALCIUM	SIUM,	SODIUM,		AD-
		CON-	PH		NESS	NONCAR-	DIS-	DIS-	DIS-		SORP-
		DUCT-	(STAND-	TEMPER-	(MG/L	BONATE	SOLVED	SOLVED	SOLVED		TION
	TIME	ANCE	ARD	ATURE	AS	(MG/L	(MG/L	(MG/L	(MG/L	PERCENT	RATIO
DATE		(UMHOS)	UNITS)	(DEG C)	CACO3)	CACO3)	AS CA)	AS MG)	AS NA)	SODIUM	
MAR											
20	1350	111	8.7	32.0	50	9	15	3.0	12	34	. 8
							SOLIDS,		NITRO-		
	POTAS-	ALKA-		CHLO-	FLUO-	SILICA,	SUM OF	SOLIDS,	GEN,		MANGA-
	SIUM,	LINITY	SULFATE	RIDE,	RIDE,	DIS-	CONSTI-	DIS-	NO2+NO3	IRON,	NESE,
	DIS-	LAB	DIS-	DIS-	DIS-	SOLVED	TUENTS,	SOLVED	DIS-	DIS-	DIS-
	SOLVED	(MG/L	SOLVED	SOLVED	SOLVED	(MG/L	DIS-	(TONS	SOLVED	SOLVED	SOLVED
	(MG/L	AS	(MG/L	(MG/L	(MG/L	AS	SOLVED	PER	(MG/L	(UG/L	(UG/L
DATE	AS K)	CACO3)	AS SO4)	AS CL)	AS F)	SIO2)	(MG/L)	AC-FT)	AS N)	AS FE)	AS MN)
MAR											
20	. 80	41	8.5	20	<.10	2.3	86	.12	<.10	29	2

[/] Staff-gage reading.
< Actual value is known to be less than the value shown.</pre>

16893100 BURONG STREAM, YAP

LOCATION.--Lat 09°32'05" N., long 138°07'19" E., Hydrologic Unit 20100006, on left bank at Dugor, 0.25 mi upstream from mouth, and 0.5 mi northeast of Mount Gamuw.

DRAINAGE AREA. -- 0.23 mi2.

PERIOD OF RECORD. -- April 1968 to current year.

REVISED RECORDS. -- WDR HI-79-2: Drainage area, 1968-78(P).

GAGE.--Water-stage recorder and concrete control. Altitude of gage is 15 ft, from topographic map.

REMARKS.--Records good. No diversion above station. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 16 years, 0.919 ft 3/s (666 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 550 ft³/s June 21, 1982, gage height, 5.45 ft, from rating curve extended above 15 ft³/s; no flow at times.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 117 ft³/s Nov. 17, gage height, 3.54 ft, no other peak above base of 100 ft³/s; no flow for many days.

		I	DISCHARGE,	IN CUBIC	FEET	PER		WATER YEAR N VALUES	OCTOBER	1983 TO	SEPTEMBE	R 1984		
DAY	oc	т	NOV	DEC	JAN		FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	.1	6	.05	4.8	.05		.08	.37	.00	.00	.00	.00	.14	.34
2	1.5		.04	.92	.03		.11	.14	.00	.00	.00	.00	1.0	.14
3	. 5	3	.04	.37	.03		.09	.10	.00	.00	.00	.46	10	.09
4	. 2	4	2.1	.16	.02		.08	4.6	.00	.00	.00	.53	4.0	1.1
5	.1	6	.53	.10	.01		.04	1.2	.00	.00	.00	.34	.50	1.0
6	.1		.27	.07	.01		.02	.30	.00	.00	.00	.65	.27	1.7
7	7.7		.11	.05	.01		.01	.16	.00	.00	.00	.14	.16	1.4
8	2.6		.08	.03	.01		.01	.24	.00	.00	.00	.03	.16	.34
9	.7	5	.14	.03	.01		.00	.22	.00	.00	.00	.57	.20	.16
10	.3	4	.09	.04	.01		1.8	.22	.00	.00	.00	.44	.24	.13
11	. 2	0	.05	.03	.01		2.4	1.3	.00	.00	.00	.33	.92	.09
12	.1	8	.03	.03	6.0		.60	. 44	.00	.00	.00	.53	2.3	.27
13	2.0		.02	.16	1.9		.34	.18	.00	.00	.00	.30	.90	.18
14	1.6		.01	.14	.27		1.2	.13	.00	.00	.00	.20	. 47	1.5
15	. 4	0	.01	.95	.18		.40	.08	.00	.00	.42	.10	1.2	1.7
16	.1		.01	.34	.24		.14	.06	.00	.00	. 40	.05	.95	.57
17	.1		8.1	.14	.11		.09	.03	.00	.00	.29	.01	.90	4.0
18	2.9		. 85	.09	.16		.07	.02	.00	.00	.22	.00	.34	2.7
19	1.0		.40	.06	6.1		.05	.01	.00	.00	.73	.00	.16	3.9
20	.3	7	.16	.05	1.0		.04	.01	.00	.00	2.6	.00	.13	. 80
21	.2		.10	.03	.27		1.6	.00	.00	.00	.30	.00	.09	.57
22	.1		.08	.02	.13		1.1	.00	.00	.00	.11	.00	.07	.53
23	.1		.09	.01	.09		. 27	.00	.00	.00	.03	.00	.05	.62
24	. 2		2.3	.02	2.3		.11	.00	.00	.00	.01	.00	.02	3.0
25	.1	3	6.0	.02	.44		.08	.00	.00	.00	3.9	.00	.36	.50
26	.1		1.3	.01	.18		3.9	.00	.00	.00	1.4	.00	2.0	.20
27	.1		.57	.01	.11		5.2	.00	.00	.00	.27	.00	.85	.10
28	.1		1.0	. 87	.09		13	.00	.00	.00	.07	.35	2.6	.07
29	.0		. 44	.37	.04		1.4	.00	.00	.00	.02	.10	3.2	.05
30	.0		1.1	.14	.03			.00	.00	.00	.01	3.0	5.9	.03
31	.0	5		.08	.02			.00		.00		.37	1.1	
TOTAL	24.4				19.86		34.23	9.81	.00	.00	10.78	8.50	41.18	27.78
MEAN	. 7		. 87	.33	.64		1.18	.32	.00	.00	.36	. 27	1.33	.93
MAX	7.		8.1	4.8	6.1		13	4.6	.00	.00	3.9	3.0	10	4.0
MIN	.0		.01	.01	.01		.00	.00	.00	.00	.00	.00	.02	.03
AC-FT	4	9	52	20	39		68	19	.00	.00	21	17	82	55
CAL YR WTR YR		TOTA			MEAN MEAN		.58			IN IN		C-FT C-FT	422 422	

16893200 MUKONG STREAM, GAGIL-TAMIL

LOCATION.--Lat 09°32'05" N., long 138°10'18" E., Hydrologic Unit 20100006, on right bank 0.2 mi upstream from mouth and 0.9 mi south of U.S. Coast Guard LORAN station.

DRAINAGE AREA .-- 0.50 mi2.

PERIOD OF RECORD.--Occasional low-flow measurements, water years 1972-75, December 1974 to June 1978, July to September 1978, stage-discharge relation indefinite due to blocked control. October 1978 to current year.

REVISED RECORDS. -- WDR HI-79-2: Drainage area.

GAGE. -- Water-stage recorder. Altitude of gage is 5 ft, from topographic map.

REMARKS. -- Records fair. At times some water is pumped from above station for village use.

AVERAGE DISCHARGE. -- 8 years (water years 1976-77, 1979-84), 1.92 ft3/s (1,390 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 153 ft³/s June 21, 1982, gage height, 4.10 ft, from rating curve extended above 18 ft³/s; minimum, 0.02 ft³/s May 17-23, 1983.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 24 ft³/s Aug. 4, gage height, 2.21 ft, no peak above base of 50 ft³/s; minimum, 0.06 ft³/s May 16-18.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 1.5 .90 4.0 .72 1.8 1.9 45 .18 .10 1.5 1.9 2.8 2 3.3 1.9 2.4 1.4 2.4 2.3 2.3 -63 1.5 . 42 .18 .10 3 2.4 1.3 .63 1.1 .39 .10 .18 2.0 1.6 .68 1.5 .39 .18 .08 2.6 3.6 .95 5 2.2 2.3 1.5 2.5 2.0 3.7 2.6 .63 .45 .13 .10 6 1.6 1.5 1.3 - 58 . 82 .42 2.0 1.5 .13 .10 1.9 4.5 1.5 .10 1.3 3.1 12 1.2 .58 .75 .42 .08 1.2 8 6.1 1.0 1.2 .54 .72 1.5 2.6 .42 .08 .10 1.5 2.9 2.7 1.0 .54 1.6 .39 .08 .18 1.0 3.3 2.1 .68 10 2.2 1.7 1.1 .54 2.1 1.6 .39 .08 .37 1.0 3.2 1.6 1.8 .50 3.7 1.7 .39 .08 .69 .96 3.8 1.4 11 1.2 1.1 12 2.2 1.5 6.8 2.4 2.4 1.1 1.4 .37 .08 .96 1.2 6.4 13 2.0 1.1 1.9 5.2 1.9 1.1 .52 .08 .63 1.0 3.1 1.5 . 52 1.4 14 2.3 1.0 1.7 1.6 2.9 .96 .08 .37 2.1 2.7 15 2.0 2.4 5.2 1.8 .96 2.4 1.6 .86 .42 .08 .37 1.7 16 1.6 .86 1.7 . 47 .06 .57 1.2 17 1.6 2.9 1.5 1.0 1.3 .81 .52 .06 .52 1.0 4.4 2.5 18 5.3 2.4 1.3 1.1 1.6 .76 . 42 .06 .57 .89 2.7 1.9 2.9 19 1.6 1.1 7-6 1.3 -72 .37 -08 -75 -75 20 1.9 .96 2.8 1.1 .68 .33 .08 1.6 .69 2.7 2.3 .75 21 1.9 .96 . 86 1.5 1.3 .72 .33 .08 1.4 2.0 2.4 .76 22 .90 1.8 1.7 1.1 1.9 .76 .28 .08 1.4 .70 2.8 1.0 2.7 23 1.3 .58 1.2 .23 .75 1.5 1.1 . 86 .24 .24 1.8 .68 . 81 .30 1.0 . 82 25 1.2 7.8 . 81 2.6 .68 .24 .21 2.2 1.2 1.9 2.4 .65 26 3.0 .21 1.0 4.3 1.8 1.4 2.8 -72 1.7 -60 .18 3.2 2.7 1.5 1.1 1.5 .63 5.4 .52 -21 .15 2.2 27 1.9 1.6 1.8 11 1.4 2.3 2.5 28 1.6 .60 .13 .18 3.2 29 1.0 1.6 1.4 .75 .10 1.2 1.4 4.1 2.1 30 .90 2.0 1.0 1.1 - 60 .18 .08 1.6 1.2 7.0 1.7 . 81 .08 1.4 4.9 . 86 1.0 .54 31 ---TOTAL 74.16 55.98 42.61 56.37 60.21 35.98 10.76 3.68 24.94 40.81 109.8 70.7 . 83 MEAN 2.39 1.87 1.37 1.82 2.08 1.16 .36 .12 1.32 3.54 2.36 MAX 12 7.8 4.0 7.6 11 4.1 .52 .30 3.2 2.7 9.4 5.2 .50 .06 .08 MIN . 86 . 86 .58 .68 .52 .18 .69 1.6 147 111 71 7.3 AC-FT 112 119 21 49 81 218 140 CAL YR 1983 TOTAL WTR YR 1984 TOTAL 1.22 444.31 MEAN MAX 15 MIN .02 AC-FT 881 586.00 MEAN 1.60 MAX 12 MIN .06 AC-FT 1160

CAROLINE ISLANDS, YAP ISLANDS

16893200 MUKONG STREAM, GAGIL-TAMIL--Continued

	DATE	TI	I	TREAM- FLOW, NSTAN- ANEOUS (CFS)	TEMPER ATURE AIR (DEG C	, TEM	PER- PURE GG C))ATE	т	IME T	TREAM- FLOW, NSTAN- ANEOUS (CFS)	TEMP ATU AI (DEG	RE,	TEMPE ATUR (DEG	E	
	DATE			(CFS)	(DEG C	, (DE	10 C/			ALL			(CF5)	(DDC		(DEG	C,	
	NOV		ol. ec			3	60/ G		MA			40.00	18.8		2 4	4		
	01		55	.91	28.		27.5			5		050	.09		8.0	27		
	24	13	00	1.8	27.	5	26.0			1	1	210	.07	2	7.5	27	. 5	
	DEC 13	10	155	2.5	27.		26.5		JU	3	0	930	.64	-	8.0	27	0	
	JAN	10	133	2.5	21.	3	20.5		2	7		000	2.1		6.5	26		
	04	10	25	. 82	27.	5	26.0		JU		-	.000					• •	
	17 FEB		20	1.1	27.		26.5			3	1	140	.67	2	8.5	28	. 0	
	07	10	55	.76	27.	0	26.0			0	1	300	2.9	2	8.0	27	.5	
	MAR								3	10		110	6.9	2	6.5	25	. 5	
	16		20	. 82	28.		27.0		SE									
	21	11	35	.70	27.	0	26.5		2	1	1	120	2.1	2	7.5	26	.0	
	APR	10	2.5	20	20		27 0											
	10		15 05	.38	28. 28.		27.0 27.5											
		STRE	AM-	SPE- CIFIC CON-	РН			HARD- NESS	NE	RD- SS,		CIUM S-	MAGNE- SIUM, DIS-	SODI				SODIUM AD- SORP-
		INST		DUCT-	(STAND		PER-	(MG/L		ATE			SOLVED	SOLV				TION
DATE	TIME	TANE (CF		ANCE UMHOS)	ARD UNITS)		URE G C)	AS CACO3)		IG/L CO3)			(MG/L AS MG)	(MG	NA)	PERCE		RATIO
DATE		(CF	5) (UMHUS)	UNITS	(DE	iG C)	CACOST	CF	1003)	AS	CA	AS MG)	AS	NA)	SODI	OM	
MAR 21	1135		.70	82	6.	4	26.5	32		0		4.9	4.8	5	.5		27	. 4
DAT	SI DI SOI (MC	S- LVED S/L	ALKA- LINITY LAB (MG/L AS CACO3	SULF DIS SOL (MG	ATE F VED S	HLO- IDE, IS- OLVED MG/L S CL)	FLUO- RIDE, DIS- SOLVE (MG/I AS F)	DIS SOL D (MG	- VED /L	SOLI SUM CONS TUEN DI SOL	OF TI- TS, S- VED	SOLIDS DIS- SOLVE) (TONS PER AC-FT	NO2+ DI SOL	S- VED G/L	IRO DI SOL (UG	N, S- VED	MANG. NESE DIS SOLV (UG/	ED L
DAI	n Ab		CACOS	, 40 9	041 F	D CD)	AD F	510	21	CFIG	, 11,	AC-FT	, AS	147	no	E 47	no M.	
MAR															,			
21.		.20	34		5.4	7.3	<.1	.0	9.5		59	.0	8 <	.10	1	100	2	00
	al malmo	12 1																

< Actual value is known to be less than the value shown.

CAROLINE ISLANDS, YAP ISLANDS

16893400 EYEB STREAM, GAGIL-TAMIL

LOCATION.--Lat 09°33'02" N., long 138°09'03" E., Hydrologic Unit 20100006, on left bank 0.6 mi southeast of the Tagireeng Canal bridge and 1.2 mi northwest of the Coast Guard LORAN Station.

DRAINAGE AREA . -- 0.22 mi2.

PERIOD OF RECORD .-- January 1982 to current year.

GAGE. -- Water-stage recorder and concrete control. Altitude of gage is 15 ft, from topographic map.

REMARKS. -- Records fair. No diversion above station.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 490 ft³/s June 21, 1982, gage height, 6.22 ft, from rating curve extended above 14 ft³/s; minimum, 0.01 ft³/s for many days in May 1983.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 85 ft³/s Feb. 28; gage height 3.32 ft, no peak above base of 150 ft³/s; minimum, 0.05 ft³/s May 16-18.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1.3	. 83	2.2	.59	1.3	2.7	.30	.13	.09	.69	2.0	2.3
2	3.0	1.3	1.7	.54	1.1	2.0	.27	.13	.09	.90	2.7	1.9
2	2.1	1.2	1.5	.59	. 83	1.5	.25	.13	.09	1.2	11	1.7
4	1.7	2.3	1.2	.59	1.1	6.2	.25	.11	.07	1.4	9.0	5.1
5	2.0	1.5	1.1	.59	.69	2.4	.30	.11	.07	.90	3.4	2.2
6	1.5	1.1	.97	.54	.59	1.9	.27	.11	.07	. 83	3.2	1.7
6 7	8.0	.97	.90	.54	.54	1.7	.27	.11	.07	.69	2.2	1.6
8	5.5	.90	.90	.54	.54	1.7	.27	.09	.07	.54	2.0	1.3
9	2.5	2.1	. 83	.59	.54	1.4	.25	.09	.07	.44	2.4	1.3
10	2.0	1,2	.97	.59	3.4	1.2	. 25	.09	.16	. 44	2.0	1.2
11	2.0	.97	.97	.49	2.7	1.3	.27	.07	.34	.39	3.7	1.0
12	2.6	. 83	1.2	9.9	2.0	1.0	.25	.07	.64	.39	4.7	1.3
13	2.1	. 83	1.5	2.8	1.3	.90	.29	.07	.39	.34	2.4	1.0
14	2.2	.76	1.2	1.3	2.0	.76	.24	.07	.24	.69	2.0	1.4
15	1.5	.69	2.2	1.3	1.3	.69	.24	.07	.50	.69	2.1	2.6
16	1.3	.69	1.3	1.1	1.0	.69	.29	.05	1.4	.44	2.3	1.3
17	1.3	3.2	1.1	. 86	.90	.64	.24	.05	.90	.39	2.1	1.5
18	3.9	1.7	.90	. 83	1.0	.59	.24	.05	.64	.44	1.5	2.0
19	2.0	1.3	.76	5.7	.83	.54	.24	.07	.69	.34	1.4	2.6
20	1.4	1.0	.64	1.9	.69	.49	.24	.07	1.5	.29	1.7	1.6
21	1.3	.97	.69	1.3	2.1	.45	.24	.07	1.3	.29	1.6	1.6
22	1.6	.90	.64	1.0	1.5	.50	.19	.07	1.0	.29	1.3	1.7
23		.97	.59	.97	.90	.60	.19	.19	.76	.44	1.3	1.6
	1.6											
24	1.3	1.6	.59	3.8	.69	.50	.16	.24	.64	.39	1.3	3.0
25	1.0	5.4	.54	1.5	.64	.45	.16	.19	2.3	.39	2.0	1.5
26	1.2	2.2	.54	1.2	2.7	.40	.16	.16	3.0	.39	3.6	1.3
27	1.3	1.5	.54	1.1	7.3	.35	.16	.13	1.4	.39	2.0	1.2
28	1.0	1.4	1.5	1.1	25	. 40	.16	.11	.76	2.2	2.4	1.3
29	.90	1.4	1.1	.90	5.0	.50	.13	.11	.69	1.9	3.7	1.3
30	.90	1.7	. 83	.76		. 40	.13	.09	1.0	1.1	6.3	1.1
31	.97		.69	.76		.35		.07		1.1	3.5	
TOTAL	62.97	43.41	32.29	46.27	70.18	35.20	6.90	3.17	20.94	21.31	92.8	52.2
MEAN	2.03	1.45	1.04	1.49	2.42	1.14	.23	.10	.70	.69	2.99	1.74
MAX	8.0	5.4	2.2	9.9	25	6.2	.30	.24	3.0	2.2	11	5.1
		.69	.54	.49	.54	.35	.13	.05	.07	.29	1.3	1.0
MIN	.90				139							
AC-FT	125	86	64	92	139	70	14	6.3	42	42	184	104
CAL YR			6.37	MEAN	1.09	MAX	26	MIN	.01	AC-FT	786	
WTR YR	1984 TO	OTAL 48	7.64	MEAN	1.33	MAX	25	MIN	.05	AC-FT	967	

CAROLINE ISLANDS, YAP ISLANDS 16893400 EYEB STREAM, GAGIL-TAMIL--Continued

MAR 21.		.10	19		7.9	5.8 <.	.10	8.3	48	.06	۲.	.10 2	500	190
DAT	SOI SOI (MG	FAS- IUM, IS- LVED G/L K)	ALKA LINIT LAI (MGA AS CACO	TY SULI B DIS L SOI	FATE RII S- DIS LVED SOI G/L (MG	LO- FLUC DE, RIDE S- DIS LVED SOLV G/L (MG, CL) AS I	E, DIS S- SOL VED (MG VL AS	CA, SUM - CON VED TUE /L D SO	STI- NTS, IS- LVED	OLIDS, DIS- SOLVED (TONS PER AC-FT)	NITE GEN NO2+N DIS SOLV (MG/ AS N	NO3 IRO S- DI VED SOL 'L (UG	S- DI VED SOL /L (UG	E, S- VED /L
MAR 21	1515		,50	60	6.7	26.5	18	0	3.	6 2	. 2	4.9	37	.5
DATE	TIME	FL INS TAN	EAM- OW, TAN- EOUS FS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCI DIS- SOLV (MG/ AS C	UM SI DI ED SOL	S- VED	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO
	MAR 16 21		305 515	.71 .50	27.5 27.5	27.0 26.5		31 SEP 24	093 123		.8	28.5	25.5 26.5	
	07 29		400 930	.53 5.7	27.0 26.5	26.0 26.0		AUG 10	144	0 1	. 8	28.5	27.0	
	04 17 FEB		325 240	.58 .83	27.5 27.5	26.5 26.5		27 JUL 24	132	5 1	.39	27.0 27.5	26.5	
	DEC 13 JAN		400	1.6	28.0	27.0		31 JUN 13	093 133		.07	28.0	27.0 27.0	
	01		240	.82 1.5	28.0 27.0	27.0 26.0		MAY 17	110		.04	28.0	27.5	
	OCT 11 NOV	1	210	1.9	28.0	27.5		APR 11 24	095		.28	27.0 29.5	25.5 27.5	
	DATE	т	'IME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)			DATE	TIM	STRE FLC INST E TANE (CF	W, AN- OUS	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)	

< Actual value is known to be less than the value shown.

CAROLINE ISLANDS, TRUK ISLANDS

16893800 WICHEN RIVER AT ALTITUDE 18 M, MOEN

LOCATION.--Lat 07°27'01" N., long 151°51'56" E., Hydrologic Unit 20100006, on left bank at Peniesence, 0.3 mi upstream from mouth, and 1.4 mi west of Saint Xaviers Academy.

DRAINAGE AREA. -- 0.57 mi2.

PERIOD OF RECORD.--April 1955 to March 1956 (published as "at Peniesence"), June 1968 to January 1980, May 1980 to May 1983, February to September 1984. All figures of discharge above 3 ft³/s prior to April 1956, published in WSP 1751, are unreliable and should not be used.

REVISED RECORDS. -- WSP 2137, WDR HI-79-2: Drainage area.

GAGE.--Water-stage recorder and concrete control since Mar. 29, 1973. Altitude of gage is 60 ft, from topographic map. Prior to Apr. 1, 1956, nonrecording gage at site 100 ft downstream at different datum.

REMARKS.--Records good. No diversion above station. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE.--13 years, 3.05 ft3/s (2,210 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 910 ft³/s June 4, 1972, gage height, 6.80 ft, from rating curve extended above 28 ft³/s; minimum, 0.01 ft³/s Apr. 16-19, 1977, Apr. 8, 1983.

EXTREMES FOR CURRENT YEAR.--Maximum discharge during period February to September, 188 ft³/s Mar. 10, gage height, 3.15 ft, no peak above base of 200 ft³/s; minimum, 0.03 ft³/s May 11, July 28 to Aug. 1.

DISCHARGE, IN CUBIC FEET PER SECOND, FEBRUARY TO SEPTEMBER 1984 MEAN VALUES

						HEAN VALUE	000					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1					.50	.55	.45	.19	1.6	.30	.05	2.1
					.45	.55	.37	.15	7.0	.30	.11	6.5
2 3 4					.45	.55	.55	.15	4.3	.24	.08	4.0
1					.40	.45	1.2	.11	2.4	.24	.19	2.8
5					.40	.55	1.0	.11	2.0	.19	.19	2.4
6					. 45	.88	.55	.11	1.3	.15	.19	2.0
7 8 9					.40	1.2	. 45	.08	1.0	.15	.15	1.8
8					.45	.88	.88	.05	.88	.15	.11	1.3
9					2.1	1.3	2.0	.08	2.1	.11	.24	1.2
10					1.3	29	4.0	.05	8.6	.11	.88	1.3
11					.76	6.2	2.3	.05	3.8	.08	4.7	.88
12					1.6	3.3	1.3	12	2.3	.08	1.6	.76
13					18	2.3	1.0	4.4	1.8	.11	.76	.76
14					7.1		.65					
14						3.3		1.8	1.5	.08	2.0	.65
15					4.0	3.3	.55	2.1	1.5	.15	1.3	.55
16					2.6	2.1	.37	1.3	1.2	.15	1.3	.55
17					2.0	1.6	15	2.1	.88	.08	3.6	.55
18					1.5	1.3	5.5	2.8	1.0	.11	2.4	.55
19					1.3	.88	2.8	2.0	1.0	.30	7.1	.76
20					1.2	.76	2.0	1.3	1.0	.37	6.5	1.8
					1.2	. 70	2.0	1.3	1.0	.37	0.5	1.0
21					1.0	.65	1.3	.76	.76	.19	4.0	1.3
22					1.5	.55	1.0	.65	1.6	.15	5.6	2.3
23					1.3	. 45	.88	.55	1.5	.11	5.0	4.5
24					1.0	.37	.65	.45	1.2	.08	4.0	2.8
25					1.0	.37	.55	4.3	1.0	.08	3.1	1.8
26					.76	.30	.37	2.1	.76	.08	2.4	1.5
27					1.3	.30	.37	1.3	.65	.05	2.3	1 2
28					.88	.30	.30	1.2	.55	.05	2.0	1.2
29					.76	.24	.24	2.0	.45	.05	1.8	1.2
30						2.1	.24	2.0	.37	.05		.76
31						.76					3.1	
31						. / 6		1.6		.08	2.3	
TOTAL					56.46	67.34	48.82	47.84	56.00	4.42	69.05	52.07
MEAN					1.95	2.17	1.63	1.54	1.87	.14	2.23	1.74
MAX					18	29	15	12	8.6	.37	7.1	6.5
MIN					.40	.24	.24	.05	.37	.05	.05	.55
AC-FT					112	134	97	95	111	8.8	137	103
AC-FI					112	134	3/	33	TIT	0.0	13/	103

CAROLINE ISLANDS, ISLAND OF PONAPE

16897600 NANPIL RIVER

LOCATION.--Lat 06°55'09" N., long 158°11'59" E., Hydrologic Unit 20100006, on left bank 0.1 mi upstream from diversion dam and 1.3 mi upstream from Kiepw River.

DRAINAGE AREA . -- 3.00 mi2.

PERIOD OF RECORD .-- March 1970 to current year. Prior to October 1980, published as Nanepil River.

REVISED RECORDS.--WDR HI-76-1: 1970 (M), 1971-72 (P), 1973 (M), 1974 (P), 1975 (M). WDR HI-81-2: Drainage area.

GAGE. -- Water-stage recorder. Altitude of gage is 370 ft, from topographic map.

REMARKS. -- Records fair. No diversion above station.

AVERAGE DISCHARGE. -- 14 years, 44.6 ft 3/s (32,310 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 8,820 ft³/s Aug. 4, 1976, gage height, 9.68 ft, from rating curve extended above 168 ft³/s on basis of slope-area measurement at gage height 9.68 ft; minimum, 0.54 ft³/s Apr. 19, 1983.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2,270 ft³/s Aug. 20, gage height 6.73 ft, no peak above above base of 3,200 ft³/s; minimum, 2.0 ft³/s May 11, 12, 20.

		DISCHARGE,	IN CUBIC	FEET 1	PER SECOND, MEA	WATER YEA N VALUES	R OCTOBER	R 1983 TO	SEPTEMBE	R 1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	99	19	21	37	30	13	5.3	6.0	50	9.3	46	32
2	48	87	20	27	22	17	4.4	5.3	34	6.9		
	26	63	25	23	17	23	4.4	4.9	31	7.3	22	
3 4	23	33	22	81	13	13	6.4	4.5	20	5.8		
5	17	20	107	34	12	35	6.0	3.7	15	5.3		
6	12	19	39	42	42	19	13	3.3	11	4.5	31	34
7	29	21	37	46	34	12	46	2.9	77	16	22	40
8	41	14	74	46	21		120	2.9	93	7.7	12	25 35
9	32	12	28	38	16	22	38	2.5	89	12	31	35
10	30	19	16	52	14	205	22	2.3	50	7.1		61
11	17	41	11	101	45	65	37	2.1	100	7.3		
12	11	109	14	80	132	30	33	2.5	37	7.1		
13	8.5	53	148	52	74	18	22	2.5	28	5.8	42	
14	6.9	31	83	106	53	13	19	6.0	35	6.9		43
15	7.3	167	51	106	44	9.5	14	9.1	37	6.2	42	27
16	6.4	34	93	74	89	7.6	12	5.2	107	4.5		94
17	53	18	110	50	37	6.2	16	3.5	37	4.1		
18	50	32	48	87	25	24	14	2.7	30	6.4		25
19	17	74	30	58	47	20	11	2.4	78	76	39	
20	29	80	31	97	31	9.3	7.3	2.1	36	25	219	37
21	45	45	23	44	91	6.4	6.0	7.5	31	26	55	
22	48	28	32	64	63	5.4	5.4	11	91	24	33	
23	27	133	42	88	36	4.9	28	5.4	29	26	96	
24	197	34	32	46	38	5.1	13	3.5	19	17	47	
25	67	19	25	30	25	5.3	7.1	3.5	16	10	26	14
26	31	12	18	28	87	5.4	5.8	37	42	7.3		
27	19	85	14	28	68	4.7	8.1	17	26	11	17	
28	96	73	28	48	27	4.9	21	17	14	93	61	21
29	43	33	26	76	17	25	13	53	11	46	39	
30	34	26	24	38		13	7.8	22	13	17	36	
31	19		20	38		8.0		12		15	27	
TOTAL	1189.1	1434	1292	1765	1250		566.0	265.3	1287	523.5		
MEAN	38.4	47.8	41.7	56.9	43.1	21.3	18.9	8.56	42.9	16.9		
XAM	197	167	148	106	132	205	120	53	107	93	219	
MIN	6.4	12	11	23	12	4.7	4.4	2.1	11	4.1		
AC-FT	2360	2840	2560	3500	2480	1310	1120	526	2550	1040	2870	2280
CAL YR WTR YR		OTAL 9579. OTAL 12825		MEAN MEAN	26.2 35.0			IIN IIN		C-FT C-FT	19000 25440	

CAROLINE ISLANDS, ISLAND OF PONAPE 16897600 NANPIL RIVER--Continued

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)
OCT					MAY				
13	1245	8.2	31.0	24.0	09	1110	2.6	30.0	25.0
26 NOV	1140	31	28.0	24.0	22 JUN	1040	12	27.0	24.0
09 JAN	1130	10	28.0	24.0	21 JUL	1135	40	28.0	24.0
05	1115	43	29.0	25.0	03	1020	10	31.5	24.0
25 FEB	1335	27	28.0	24.5	17 AUG	1005	4.1	28.0	24.0
29 MAR	1130	17	28.0	24.0	16	1005 1050	89 27	28.0 28.0	24.0 23.0
14 APR	0955	13	28.0	24.0	SEP 24	1010	18	30.0	23.0
10	1045	22	28.0	24.0	200				
			SPE	-			MAG	NE-	

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
JAN 25	1335	27	24	6.2	24.5	6	1.2	.74	2.3
DATE	PERCENT SODIUM		POTAS- SIUM, DIS- SOLVED (MG/L AS K)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
JAN 25	45	.4	.10	2.3	4.1	<.10	5.5	47	1

< Actual value is known to be less than the value shown.

16897900 LEWI RIVER

LOCATION.--Lat 06°55'32" N., long 158°12'18" E., Hydrologic Unit 20100006, on right bank at road and pipeline crossing, 300 ft upstream from right-bank tributary, and 2.4 mi upstream from mouth.

DRAINAGE AREA . -- 0 . 46 mi 2 .

PERIOD OF RECORD. -- March 1970 to current year. Prior to October 1980, published as Lui River.

REVISED RECORDS. -- WDR HI-81-2: Drainage area.

GAGE.--Water-stage recorder. Altitude of gage is 290 ft, from topographic map.

REMARKS .-- Records good. No diversion above station.

AVERAGE DISCHARGE.--14 years, 5.31 ft 3/s (3,850 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,190 ft³/s Aug. 4, 1976, gage height, 5.92 ft, from rating curve extended above 37 ft³/s, on basis of slope-area measurement at gage height 5.92 ft; minimum, 0.02 ft³/s Apr. 18, 19, 1983.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 228 ft³/s Oct. 24, gage height, 3.42 ft, no peak above base of 500 ft³/s; minimum, 0.16 ft²/s May 20.

		D	ISCHARGE,	IN CUBIC	FEET	PER		WATER YEAR N VALUES	R OCTOBER	R 1983 TO	SEPTEMBI	ER 1984		
DAY	oc	т	NOV	DEC	JAN		FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	12		2.5	2.8	3.2		3.9	1.7	.65	.49	11	1.2	5.4	1.8
2	5.1		7.8	3.1	2.5		2.6	2.1	.52	. 43	3.8	.95	8.0	1.6
3	2.5		8.6	3.4	1.6		2.1	2.6	.49	.36	2.4	1.0	3.6	1.4
4	2.0		4.2	3.1	11		1.6	1.5	.65	.33	1.4	. 85	4.7	1.2
5	1.4		2.5	12	3.9		1.4	2.0	.55	.30	.90	.70	2.3	.95
6	1.4		2.1	4.7	6.3		2.6	1.4	.52	. 27	.70	.60	3.9	2.4
7	3.1		3.9	4.3	5.0		3.2	1.0	1.2	.24	7.0	.70	2.8	2.5
8	1.5		3.2	9.7	5.2		2.2	.95	7.1	.24	13	.92	1.3	1.6
9	1.4		2.3	3.1	5.4		1.6	1.6	3.1	.22	9.4	1.4	1.5	2.2
10	1.4		5.0	2.0	6.1		1.3	30	1.8	.20	4.8	.75	2.0	2.6
11	.9		7.8	1.6	12		2.2	8.5	3.1	.20	9.1	1.2	1.0	1.7
12	. 8		20	2.1	12		11	3.8	2.7	.22	4.5	2.1	. 80	1.4
13	. 6		6.9	20	5.8		7.0	2.2	1.6	.22	2.6	1.4	.95	1.2
14	.6	0	4.4	8.7	11		6.0	1.6	1.5	.36	2.5	1.0	1.3	1.2
15	. 6	5	29	5.7	12		4.1	1.4	1.0	.33	2.7	.85	1.2	1.0
16	.5		4.5	12	7.5		9.0	1.1	1.0	.24	12	.60	11	14
17	9.3		2.7	22	5.8		4.1	1.0	1.0	.20	3.1	.52	5.5	5.0
18	5.6		6.2	6.2	18		2.8	4.1	. 85	.20	2.0	.52	20	2.3
19	1.8		11	3.4	12		6.0	2.9	.65	.20	11	3.9	5.2	2.4
20	1.8		10	5.3	20		3.8	1.4	.52	.18	3.8	2.2	25	3.1
21	5.6		5.8	3.8	6.3		8.3	1.0	.46	.46	3.1	2.4	6.1	6.8
22	1.9		3.8	4.2	8.8		9.5	. 85	. 43	.95	17	1.5	4.4	5.6
23	3.4		18	4.5	16		3.8	.70	1.7	.36	3.6	1.0	15	2.6
24	46		4.5	3.6	6.4		3.2	.70	.90	. 27	2.1	. 80	5.8	1.6
25	9.9		2.8	3.5	3.8		2.5	.90	.52	.33	1.8	.55	3.5	2.0
26	4.1		2.0	2.1	4.7		14	. 80	. 46	4.4	4.7	.49	2.5	17
27	2.5		8.9	1.6	4.4		11	.60	.70	1.8	3.4	.55	1.8	5.8
28	14		9.8	2.8	7.9		3.5	.75	1.6	1.4	1.8	13	3.8	2.9
29	8.6		4.5	2.3	11		2.2	1.1	1.0	5.3	1.4	5.6	2.8	2.4
30	4.4		3.5	1.9	4.2			1.1	.60	2.0	1.5	1.7	4.9	7.0
31	2.5			1.6	6.7			1.1		1.0		1.3	2.9	
TOTAL	157.3				246.5		36.5				148.10	52.25	160.95	105.25
MEAN	5.0		6.94	5.39	7.95		4.71	2.66	1.30	.76	4.94	1.69	5.19	3.51
MAX	4		29	22	20		14	30	7.1	5.3	17	13	25	17
MIN	.5		2.0	1.6	1.6		1.3	.60	. 43	.18	.70	.49	. 80	.95
AC-FT	31	2	413	331	489		271	164	77	47	294	104	319	209
CAL YR WTR YR		TOTAL			MEAN MEAN		.04	MAX MAX				C-FT	2200 3030	

CAROLINE ISLANDS, ISLAND OF PONAPE

16897900 LEWI RIVER--Continued

	DATE		TIME	STRE FLO INST TANE (CF	W, AN- OUS	TEMPER ATUR AIR (DEG (Ξ,	TEMPER- ATURE (DEG C)			I	DATE	Т		STREA FLOW INSTANCE TANEO	W, AN- OUS	AT A	PER- URE, IR G C)	TEMP	RE	
	OCT										AF	PR									
	13		1055		.68	31	.0	25.0				0	1	215	1	. 8		28.0	2	5.0	
	18		1350		.1	31		26.0			MA										
	26		1005		. 3	28	. 0	24.0			0	9	1	240		.21		29.0	2	5.0	
	NOV											22	1	230	3.	.0		28.0	2	4.0	
	09		0950	2	. 2	28	. 0	24.0			JU	JN									
	30		1330	3	.3	28.	.0	25.0				1	1	000	3.	. 4		29.0	2	4.0	
	DEC				•	20	•	05.0			JU		,	200				00 0	_	- 0	
	06	•	1445	4	.0	29	. 0	25.0				3		200		.1		29.0		5.0	
	JAN		0005	- 4	-	0.0	•	04.0				7	1	145	10	.52		29.0	2	5.0	
	05		0925		.3	28.		24.0			AU			150	7.0						
	18		0900		. 8	28.		24.0				6		150	12			28.0		4.0	
	25 FEB		1440	3	.3	29.	. 0	26.0			SE	0	1	210	2.	. 0	1	28.0	2	4.0	
	29		1325	2	. 2	28.	0	25.0				4	1	225	- 1	.7		30.0	2	4.0	
	MAR	5	1323	-	. 4	20.	. 0	23.0				4	1	223	1.	• /		30.0	- 4	4.0	
	14		1130	1	.6	29.	0	25.0													
DATE	TIME	F: IN TA	REAM- LOW, STAN- NEOUS CFS)	SPE CIF CON- DUC ANC	IC T- E	PH (STANI ARD UNITS)		TEMPER- ATURE (DEG C)	NE (M	ARD- SSS IG/L AS ACO3)	NON BON (M	ARD- CSS, ICAR- IATE IG/L ACO3)	DI SO (M	CIUM S- LVED G/L CA)	MAGN SIU DIS SOLV (MG/ AS M	JM, S- VED /L	DI:		PERC!		SODIUM AD- SORP- TION RATIO
JAN																					
25	1440		3.3		36	6.	6	26.0		13		0		2.2	1.	. 8		2.4		29	.3
DAT	1 S0 (1	OTAS- SIUM, DIS- DLVED MG/L S K)	ALK. LINI' LA' (MG. AS CAC	TY B /L	SULFA DIS- SOL' (MG.	ATE F - I VED S /L	CHLC RIDE DIS- SOLV (MG/ AS C	PED SOLVED (MG)	E, S- VED /L	SILI DIS SOL (MG AS	VED /L		OF TI- TS, S- VED	SOLID DIS SOLV (TON PER AC-F	ED S	NIT GE NO2+ DI SOL (MG AS	N, NO3 S- VED /L		S- VED	MANG NESE DIS SOLV (UG/ AS M	ED L
JAN 25.		.10	13			2.7	3.		.10		9.8		31		04	<	.10		63		3

< Actual value is known to be less than the value shown.

CAROLINE ISLANDS, ISLAND OF PONAPE

16898600 LUHPWOR RIVER

LOCATION.--Lat 06°54'09" N., long 158°09'07" E., Hydrologic Unit 20100006, on left bank about 300 ft upstream from 50-ft waterfall, 0.2 mi downstream from highway bridge, and 0.2 mi west of Pwakorokot Hill.

DRAINAGE AREA. -- 0.72 mi2.

PERIOD OF RECORD. -- September 1972 to current year. Prior to October 1980, published as Lupwor River.

REVISED RECORDS. -- WDR HI-81-2: Drainage area.

GAGE. -- Water-stage recorder. Altitude of gage is 145 ft, from topographic map.

REMARKS .-- Records fair. No diversion above station.

AVERAGE DISCHARGE. -- 12 years, 8.66 ft 3/s (6,270 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,090 ft³/s Aug. 4, 1976, gage height, 8.26 ft, from rating curve extended above 47 ft³/s, on basis of estimate of peak flow; minimum, 0.13 ft³/s May 4, 5, 1983.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 304 ft³/s Nov. 3, gage height, 4.48 ft, no peak above base of 750 ft³/s; minimum, 0.62 ft³/s May 19, 20.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

MEAN VALUES DAY OCT NOV FEB APR JUN JUL AUG SEP DEC JAN MAR MAY 16 7.1 5.5 5.9 7.6 4.0 1.5 1.4 4.7 3.7 7.6 7.6 15 5.3 4.3 1.4 1.2 10 7.1 2 12 6.0 4.3 4.2 3.2 7.8 40 4.8 4.0 2.8 5.9 3 4.8 16 4.0 3.6 1.6 3.0 5.3 5 4.8 8.3 19 7.8 4.0 1.5 1.0 2.3 2.2 5.5 6.8 3.9 7.1 9.0 6.8 6 8.8 3.9 1.5 1.0 2.0 2.0 5.1 13 8.5 .96 4.2 6.8 11 3.1 3.1 8.8 2.2 4.0 9.8 7 6.4 8.3 12 4.8 3.4 12 2.8 18 .96 16 2.0 3.5 7.6 6.4 6.2 9.9 7.3 10 3.7 6.8 5.0 12 3.6 33 4.3 . 80 11 1.8 4.2 9.5 11 2.9 6.9 20 5.1 15 5.0 .80 16 1.8 3.2 8.8 12 2.5 4.2 21 18 8.3 8.0 4.6 1.0 1.8 2.8 6.9 13 2.3 12 26 13 14 5.9 3.7 6.2 1.7 3.4 5.9 7.8 14 2-0 18 18 13 4.5 3.2 1.4 5.9 1.7 6.6 8.2 6.6 6.2 1.5 6.0 15 38 11 11 1.2 2.3 23 3.6 2.7 16 1.8 11 16 15 17 3.2 2.6 1.0 13 1.4 34 4.8 . 80 6.8 17 18 3.0 7.3 23 12 2.8 3.2 10 1.3 16 4.8 27 7.1 .74 1.5 5.2 2.7 8.8 10 2.0 .71 12 10 11 19 15 14 3.5 20 10 9.8 7.6 8.3 4.2 38 7.8 2.6 1.6 .68 21 5.0 15 12 13 13 6.9 13 14 2.1 1.5 1.0 7.3 5.7 9.0 6.4 1.9 4.6 9.3 9.6 15 12 1.4 1.4 19 8.2 1.8 3.0 1.1 8.3 3.8 33 23 32 6.8 17 8.6 6.2 24 30 10 5.7 .92 14 4.5 25 9.9 6.8 4.8 8.3 5.9 1.8 1.6 1.0 5.0 2.6 8.3 5.5 26 11 3.8 8.2 2.7 7.7 6.9 1.8 1.4 2.7 9.1 11 7.1 13 11 1.6 1.6 1.6 6.6 3.8 6.0 7.6 3.3 6.6 4.6 5.3 28 25 14 3.7 8.0 6.0 1.9 2.8 1.6 13 29 14 7.6 3.7 14 4.8 2.5 2.2 3.4 3.9 6.0 10 11 8.0 9.8 14 3.8 30 6.4 3.5 ---2.2 1.6 2.0 3.8 11 ---3.5 8.6 31 7.8 3.4 9.6 1.7 1.5 343.3 TOTAL 245.6 375.9 267.3 390.6 243.0 142.7 91.8 37.85 233.9 98.3 232.7 7.76 MEAN 7.92 12.5 8.62 12.6 8.38 4.60 3.06 1.22 7.80 3.17 11.1 40 24 38 MAX 30 26 18 33 18 3.4 19 10 13 4.5 5.5 3.5 775 3.6 ·6.8 2.0 1.3 MIN 1.8 3.3 1.6 1.4 487 746 482 283 AC-FT 182 464 195 681 462 CAL YR 1983 TOTAL WTR YR 1984 TOTAL 5.64 7.39 84 40 4080 2059.19 MEAN MAX MIN .16 AC-FT 2702.95 MEAN AC-FT 5360 MAX MIN .68

DA	TE.	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPEI ATURI AIR (DEG (E, TEN	MPER- FURE EG C)	Ī	DATE	F IN TIME TA	STAN- NEOUS	PEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)
OCT			5.1					PR		15.4		44.4
		1245	2.4	29		25.0			1205	7.5	29.0	25.0
		1320	2.9	30		26.0	MA				00.0	
	• • •	1110	7.5	29	. 0	25.0			1220	1.6	28.0	24.0
NOV		1430	24	29.	0	24.0			1230	1.1	28.0	24.0
DEC		1430	24	29	. 0	24.0	JU		1055	1 4	28.5	26.5
		1045	6.4	28.	0	24.0			1205	1.4	28.0	24.0
JAN		1045	0.4	20.	. 0	24.0	JU		1205	3.2	20.0	24.0
		1415	7.5	28.	0	24.0			1005	2.2	28.0	24.0
		1445	11	29		25.0			1450	3.1	29.0	25.0
		0930	7.2	28		24.0	SE		1430	3.1	23.0	23.0
FEE		0330	/	20		24.0			0910	4.9	29.0	24.0
		1355	5.6	29.	. 0	26.0	-				25.0	2
MAR												
15		1115	3.9	28.	. 0	24.0						
DATE JAN	TIME	STREA FLOW INSTA TANEO (CFS	N- (STA	ND- TI	EMPER- ATURE DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM DIS- SOLVED (MG/I	PERCE	
26	0930	7	.2	6.8	24.0	14	0	3.0	1.7	2.6		28 .3
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	LINIT	Y SULF DIS L SOL (MG	ATE I VED S	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NO2+NO DIS- SOLVE (MG/L	IRON DIS D SOLV	DIS- ED SOLVED L (UG/L
JAN												
26	.10	16		2.1	3.5	<.10	12	35	.05	. 8	15 1	30 6

< Actual value is known to be less than the value shown.

16898690 LEHN MESI RIVER

LOCATION.--Lat 06°50'41" N., long 158°11'02" E., Hydrologic Unit 20100006, on left bank 3.2 mi upstream from mouth, 1.7 mi southwest of Mount Tolenpwoaipwoai, and 4.5 mi south of Mount Temwetemwensekir.

DRAINAGE AREA . -- 2.31 mi2.

PERIOD OF RECORD. -- November 1981 to current year.

GAGE. -- Water-stage recorder. Altitude of gage is 260 ft, from topographic map.

REMARKS. -- Records fair except those for periods of no gage-height record, which are poor.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 7,740 ft³/s, May 8, 1982, gage height, 10.14 ft, from rating curve extended above 126 ft³/s; minimum, 4.5 ft³/s for several days in April and May, 1983.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2,020 ft³/s, Feb. 26, gage height, 5.78 ft, no peak above base of 3,000 ft³/s; minimum, 8.1 ft³/s May 10, 11.

		DISCHARGE,	IN CUBIC	FEET P		WATER YEAR N VALUES	OCTOBE	R 1983	TO SEPTEME	BER 1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	215	46	49	70	66	50	22	17	87	26	47	90
2	102	242	54	50	55	60	19	17	60	23		66
3	83	142	49	40	49	70	18	14	98	46		48
4	58	94	38	150	40	50	27	13	49	32		39
5	43	69	162	50	35	90	22	11	36	27		35
6	80	66	64	70	100	60	31	10	29	21	164	44
7	136	70	55	80	80	50	71	10	209	58	59	34
8	67	47	93	80	60	40	205	8.9	235	30	36	27
9	67	40	58	60	48	58	82	8.5	135	38	92	129
10	58	41	41	80	50	364	51	8.1	99	23	78	109
11	41	66	34	200	100	175	94	8.1	198	24	44	120
12	36	183	67	100	200	88	55	9.3	66	23	46	64
13	30	104	370	81	150	59	39	8.9	57	20	121	54
14	28	70	151	150	100	44	32	33	76	18	88	40
15	27	187	132	150	80	40	32	46	67	19	83	39
16	26	67	154	100	150	32	34	23	215	20		92
17	157	53	179	75	80	29	57	14	81	18	148	59
18	77	117	94	130	50	64	44	12	60	44	111	58
19	39	200	98	80	90	59	32	11	126	113	70	87
20	106	170	79	150	60	32	23	9.7	123	35	171	61
21	135	118	64	80	150	28	19	26	72	34	115	171
22	47	74	55	100	100	25	16	22	170	31		96
23	44	312	81	150	70	21	55	15	65	32	111	51
24	222	99	54	100	70	26	30	12	50	29	76	38
25	132	66	47	70	50	24	19	19	56	22		32
26	172	48	36	60	150	27	16	115	95	19		218
27	76	179	32	55	130	21	21	42	57	21	51	86
28	191	138	58	114	70	24	46	66	38	67	174	54
29	100	66	56	118	60	76	32	84	32	50	87	45
30	88	51	40	74	1	43	22	47	32	25	61	144
31	55		35	75		27		33		21		
TOTAL	2738	3225	2579	2942	2493	1856	1266	773.5	2773	1009	2691	2230
MEAN	88.3	108	83.2	94.9	86.0	59.9	42.2	25.0	92.4	32.5	86.8	74.3
MAX	222	312	370	200	200	364	205	115	235	113		218
MIN	26	40	32	40	35	21	16	8.1	29	18		27
AC-FT	5430	6400	5120	5840	4940		2510	1530	5500	2000	5340	4420
CAL YR WTR YR		OTAL 20257.		MEAN MEAN	55.5 72.6			MIN MIN		AC-FT AC-FT	40180 52710	

NOTE.--No gage-height record Dec. 30 to Jan. 12, Jan. 14-27, Feb. 4-8, and Feb. 11 to Mar. 8.

CAROLINE ISLANDS, ISLAND OF PONAPE

16898690 LEHN MESI RIVER--Continued

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO
JAN 27	1200	51	6.9	25.0	18	3	3.9	1.9	2.6	24	.3
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
JAN 27	.40	15	1.4	3.1	<.10	9.4	32	.04	<.10	38	3

< Actual value is known to be less than the value shown.

CAROLINE ISLANDS, ISLAND OF KOSRAE

16899620 MELO RIVER

LOCATION.--Lat 05°20'30" N., long 162°58'33" E., Hydrologic Unit 20100006, on left bank 0.5 mi upstream from mouth and 1.3 mi southwest of Mount Mutunte.

DRAINAGE AREA .-- 0.68 mi2.

PERIOD OF RECORD. -- October 1974 to September 1979, June 1980 to current year.

REVISED RECORDS. -- WRD HI-81-2: Drainage area.

GAGE. -- Water-stage recorder and concrete control. Altitude of gage is 20 ft, from topographic map.

REMARKS.--Records poor. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE.--9 years (water years 1975-79, 1981-84), 6.75 ft3/s (4,890 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 784 ft³/s Mar. 22, 1976, gage height, 5.78 ft, from rating curve extended above 17 ft³/s; minimum, 0.11 ft³/s for several days in April 1983.

EXTREMES FOR CURRENT YEAR. -- Maximum discharge, 374 ft 3/s Nov. 15, gage height, 3.92 ft, no other peak above base of 300 ft 3/s; minimum, 0.18 ft 3/s May 10.

		DISCHARGE,	IN CUBIC	FEET PEF		WATER YEAR	R OCTOBER	R 1983 TO	SEPTEMBE	R 1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	15	3.0	17	12	11	12	1.3	1.2	12	3.4	20	2.6
1 2	6.7	3.4	17	13	8.1	5.5	1.3	. 83	9.7	3.2	11	2.4
3	6.9	2.6	15	8.1	6.2	4.3	1.2	.59	11	3.2	7.8	2.1
3 4	5.2	3.8	15	8.4	5.2	3.6	1.2	.59	18	3.0	6.7	2.0
5	9.2	7.0	10	6.2	7.4	3.0	1.0	.51	9.7	2.8	7.2	1.7
6	9.4	22	8.1	6.9	28	2.5	1.2	.46	31	2.6	5.0	1.5
7	9.6	7.5	6.2	7.0	11	4.1	1.2	.42	17	2.5	4.3	1.3
8	6.9	5.0	5.5	5.5	13	2.8	1.2	.34	12	2.4	4.5	1.1
9	7.2	4.1	4.5	4.7	23	3.9	1.0	.30	12	6.2	7.5	1.0
10	5.9	5.9	3.8	7.9	13	30	.92	.26	9.1	3.0	4.7	1.1
11	5.0	5.0	3.8	15	13	11	.75	.78	6.4	2.8	3.9	.85
12	4.7	4.1	3.4	7.5	10	10	.67	.84	5.7	3.0	3.9	.67
13	4.1	3.5	8.2	6.4	13	11	.59	.93	14	3.9	3.6	.60
14	3.6	3.0	5.9	6.9	25	6.9	.67	3.3	20	2.7	3.8	.60
15	6.3	40	5.0	6.9	30	5.5	1.2	2.6	12	2.5	6.7	.55
16	22	15	17	5.5	14	4.5	1.5	1.3	13	2.2	3.6	1.0
17	8.1	10	8.1	14	15	6.7	. 83	3.0	18	2.0	3.4	. 80
18	5.9	7.0	12	7.2	9.4		12	5.0	10	2.2	4.3	1.0
19	4.7	10	11	7.0	7.5	4.7	5.0	2.0	17	2.1	4.0	2.0
20	4.1	15	33	6.9	17	4.1	2.2	5.5	18	2.5	3.6	4.8
21	3.9	10	15	13	44	3.6	1.7	10	12	12	3.6	1.7
22	3.8	7.5	9.4	10	16	3.2	1.5	4.5	8.8	3.8	3.0	1.2
23	6.0	7.0	8.1	34	9.7	2.6	1.3	3.2	6.4	6.4	2.7	1.0
24	7.0	6.0	13	18	6.9	2.4	1.2	4.1	8.4	3.8	2.5	1.1
25	5.7	5.5	31	12	6,4	2.1	1.2	4.1	10	3.6	2.3	1.1
26	3.8	5.5	33	11	5.2	1.8	2.1	4.4	5.7	3.8	5.7	1.7
27	3.9	7.0	17	31	4.5	2.0	1.7	7.5	4.5	3.4	3.8	1.5
28	4.7	10	19	52	3.6	1.8	1.3	14	3.9	27	3.6	1.5
29	3.2	30	16	18	3.0	1.7	1.0	19	3.6	9.4	3.0	1.9
30	2.6	20	9.7	14		1.6	1.7	9.2	3.4	5.9	2.7	9.9
31	3.6		7.5	15		1.6	:	7.9		7.5	3.0	
TOTAL	198.7				379.1			18.65	342.3	144.8	155.4	52.27
MEAN	6.41	9.51	12.5	12.6	13.1	5.46	1.72	3.83	11.4	4.67	5.01	1.74
MAX	22	40	33	52	44	30	12	19	31	27	20	9.9
MIN	2.6	2.6	3.4	4.7	3.0	1.6	.59	.26	3.4	2.0	2.3	.55
AC-FT	394	566	770	776	752	336	102	235	679	287	308	104
CAL YR WTR YR		OTAL 1947. OTAL 2676.			5.33 7.31	MAX MAX				C-FT C-FT	3860 5310	

16899750 MALEM RIVER

LOCATION.--Lat 05°17'35" N., long 163°00'54" E., Hydrologic Unit 20100006, on left bank 0.9 mi upstream from mouth and 2.0 mi southeast of Mount Finkol.

DRAINAGE AREA. -- 0.76 mi2.

PERIOD OF RECORD .-- July 1971 to March 1981, March 1982 to current year.

REVISED RECORDS. -- WDR HI-81-2: Drainage area.

GAGE .-- Water-stage recorder and concrete control. Altitude of gage is 95 ft, from stadia survey.

REMARKS.--Records fair except those for periods of no gage-height record, which are poor. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISHCARGE.--11 years (1972-80, 1983-84), 6.71 ft3/s (4,860 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,550 ft³/s Mar. 22, 1976, gage height, 6.20 ft, from rating curve extended above 110 ft³/s; minimum, 0.07 ft³/s Apr. 30, May 1, 1983.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 350 ft³/s Feb. 20, gage height, 4.58 ft, no other peak above base of 350 ft³/s; minimum, 0.18 ft³/s May 10.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

		2200			MI	EAN VALUES	3					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	11	1.9	11	7.3	11	11	1.6	.90	5.5	3.2	15	1.3
1 2	5.9	2.0	10	12	8.0	9.9	1.4	.76	3.5	2.7	8.2	1.1
3 4	5.3	1.7	9.9	9.0	6.4	7.7	1.4	.97	12	3.3	5.7	.97
4	4.1	1.5	11	9.3	6.4	7.0	1.3	1.1	21	2.6	5.7	.90
5	5.3	2.5	8.2	7.0	7.5	6.8	1.4	.97	4.9	2.2	6.1	.76
6	6.6	15	6.6	6.6	28	6.4	1.4	.69	35	2.0	4.1	.90
7	4.7	4.0	5.1	5.5	10	7.0	1.4	.97	21	1.9	3.8	. 83
8	3.5	3.0	4.9	4.5	7.7	5.9	1.3	. 83	13	1.8	3.3	. 83
9	4.3	2.5	3.6	5.3	11	6.1	1.3	.76	9.3	4.5	4.5	.76
10	4.1	4.0	3.2	9.6	9.0	41	1.3	. 43	7.5	2.7	3.3	1.1
11	6.0	3.3	3.2	15	8.5	11	1.2	.69	5.3	2.4	2.7	.76
12	4.3	2.7	3.2	7.3	7.5	9.3	.97	1.0	4.5	1.8	2.6	. 83
13	4.3	2.5	8.3	6.1	7.3	13	. 97	1.3	22	2.0	2.1	1.4
14	3.2	2.5	4.7	5.3	9.9	6.6	1.1	.97	16	1.8	2.3	1.4
15	2.7	30	3.5	4.7	16	4.9	1.4	1.2	11	1.8	12	1.0
16	7.4	10	10	4.1	11	4.3	1.3	.58	8.8		3.3	1.4
17	4.1	7.0	5.3	8.6	11	5.5	.90	4.5	14	1.8	2.3	.90
18	3.0	5.0	3.5	5.1	8.8	8.8	8.0	4.6	8.2	2.2	2.1	1.9
19	2.4	7.0	4.1	4.5	7.2	4.3	4.8	1.2	19	1.7	2.1	.76
20	2.1	10	16	3.8	41	3.5	1.4	2.9	20	2.7	2.3	1.6
21	3.1	7.0	7.3	9.3	69	J • 2	1.0	9.5	11	14	2.1	.90
22	2.4	5.5	4.3	6.6	20	3.2	1.0	3.3	7.7	3.2	1.8	.53
23	5.3	5.0	4.1	21	12	3.0	.97	2.4	5.9	13	1.7	.48
24	5.9	4.0	6.8	14	8.8	2.7	.97	3.8	8.6	3.4	1.6	.69
25	5.9	3.5	15	9.6	9.0	2.7	.63	4.5	21	2.1	1.4	.63
26	3.3	3.5	25	7.0	7.0	2.4	1.3	3.5	10	1.9	2.0	2.8
27	2.7	5.0	11	12	8.0	2.4	1.3	3.6	6.6	1.7	1.9	1.4
28	3.6	7.0	12	34	5.5	2.1	.90	12	4.9	36		1.3
29	2.6	20	9.6	12	4.5	2.1	.76	10	4.3	9.8	1.3	1.5
30	2.0	13	6.8	12		2.0	1.4	4.7	3.6	5.5	1.1	3.3
31	2.2		5.3	20		1.8		3.6		4.1	1.4	
TOTAL	133.3	191.6	242.5	298.1	377.0	207.6	46.07	88.22	345.1	141.6	111.4	34.93
MEAN	4.30	6.39	7.82	9.62	13.0	6.70	1.54	2.85	11.5	4.57	3.59	1.16
MAX	11	30	25	34	69	41	8.0	12	35	36	15	3.3
MIN	2.0	1.5	3.2	3.8	4.5	1.8	.63	. 43	3.5	1.7	1.1	.48
AC-FT	264	3 80	481	591	748	412	91	175	685	281	221	69
CAL YR		TAL 144	9.82	MEAN	3.97	MAX	42	MIN	.07	AC-FT	2880	
WTR YR	1984 TO	TAL 221	7.42	MEAN	6.06	MAX	69	MIN	. 43	AC-FT	4400	

NOTE. -- No gage-height record Nov. 2 to Dec. 1.

CAROLINE ISLANDS, ISLAND OF KOSRAE

16899800 TOFOL RIVER

LOCATION.--Lat 05°19'10" N., long 163°00'24" E., Hydrologic Unit 20100006, on left bank 25 ft downstream from right-bank tributary, 0.9 mi upstream from mouth, and 1.3 mi northeast of Mount Finkol.

DRAINAGE AREA . -- 0.53 mi2.

PERIOD OF RECORD .-- June 1971 to September 1979, March 1980 to current year.

GAGE. -- Water-stage recorder and concrete control. Altitude of gage is 98 ft, from stadia survey.

REMARKS.--Records fair. Water is diverted through 8-in pipe from dam above station for domestic use. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE.--12 years (1971-79, 1981-84), 5.70 ft3/s (4,130 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 1,560 ft³/s Nov. 10, 1981, gage height, 5.97 ft, from rating curve extended above 79 ft³/s; minimum, 0.01 ft³/s Apr. 1, 1983.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 272 ft³/s Feb. 20, gage height, 3.56 ft, no peak above base of 450 ft³/s; minimum, 0.09 ft³/s May 10.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

		Dibomino	a, in cobic	, ruur r		EAN VALUES		DEK 1903	10 bbi ibi	IDDN 1904		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	12	1.8	12	7.3	12	12	1.0	.34	4.3	2.8	13	1.2
2	6.4	1.9	12	11	8.9	7.8	.88	.26	3.2	2.7	7.1	1.0
3	5.2	1.7	11	8.6	7.1	5.0	.82	.28	7.2		5.5	1.0
3 4	4.3	1.7	11	8.1	5.9	4.3	.76	.26	14	2.5	5.0	.94
5	7.8	2.3	8.4	6.6	6.2	3.5	.70	.28	4.7	2.1	5.5	.88
6	6.6	17	6.6	6.8	22	2.9	.66	.26	26	2.0	4.0	.82
7	5.0	4.5	5.5	5.7	9.7	3.6	1.1	.18	17	1.9	3.5	. 82
8	4.2	3.1	4.7	4.7	7.8	2.8	.76	.14	10	1.8	3.2	.76
9	4.3	2.5	4.2	5.8	10	2.8	.62	.18	7.3	4.3	3.8	.70
10	4.0	5.2	3.8	8.7	8.9	25	.54	.18	6.4	2.7	2.7	.82
11	3.6	3.8	3.8	12	8.5	8.6	.54	.46	4.7	2.6	2.3	.76
12	3.8	3.3	3.3	7.3	7.8	7.1	.46	.46	3.8	2.2	2.1	.66
13	4.0	2.7	5.3	6.2	7.1	8.1	.46	.54	14	2.2	1.9	.58
14	3.2	2.7	3.8	5.7	9.5	5.2	.50	.71	11	1.8	3.5	.50
15	3.5	30	3.6	5.5	19	4.3	.70	.62	7.8	1.6	7.3	.50
16	6.6	10	11	5.3	11	3.6	.62	.38	7.1	1.5	2.6	.66
17	4.8	7.0	5.9	7.6	14	4.8	.46	2.3	14	1.4	1.9	.50
18	3.6	5.0	4.7	4.8	10	7.6	4.9	2.8	7.8	1.7	2.0	.66
19	2.9	7.0	5.4	4.3	8.9	4.0	2.1	.94	13	1.5	2.1	.54
20	2.7	10	14	3.6	31	3.2	.88	2.7	20	1.9	1.9	3.4
21	2.7	7.0	7.8	7.0	65	2.8	.66	6.1	12	13	1.9	.70
22	2.3	5.5	5.7	6.2	22	2.6	.62	1.8	8.4	3.3	1.5	.54
23	2.7	5.0	4.8	20	13	2.3	.50	1.1	6.4	7.4	1.4	.46
24	2.7	4.5	8.9	14	9.5	2.1	.46	1.8	7.0	3.3	1.3	.50
25	2.9	4.0	17	9.7	11	1.9	.46	1.9	12	2.6	1.2	.50
26	2.2	4.0	23	8.8	7.1	1.8	. 80	1.6	6.2	2.2	1.5	. 82
27	2.0	5.0	11	14	7.1	1.7	.54	1.4	4.7	2.5	1.2	.76
28	2.3	7.5	12	34	5.5	1.5	.54	7.4	3.8	29	1.3	.76
29	1.8	20	11	15	4.3	1.2	.38	6.5	3.5	9.7	1.2	.82
30	1.7	15	7.6	12		1.1	.38	3.1	3.2	5.9	1.1	2.8
31	1.9		6.2	17		1.0		2.3		4.7	1.5	
TOTAL	123.7	200.7	255.0	293.3	369.8	146.2	24.80	49.27	270.5	127.6	96.0	26.36
MEAN	3.99	6.69	8.23	9.46	12.8	4.72	. 83	1.59	9.02	4.12	3.10	.88
MAX	12	30	23	34	65	25	4.9	7.4	26	29	13	3.4
MIN	1.7	1.7	3.3	3.6	4.3	1.0	.38	.14	3.2	1.4	1.1	. 46
AC-FT	245	398	506	582	733	290	49	98	537	253	190	52
CAL YR WTR YR		OTAL 1223		MEAN MEAN	3.35 5.42	MAX MAX	30 65	MIN MIN	.02	AC-FT AC-FT	2430 3930	

16912000 PAGO STREAM AT AFONO

LOCATION.--Lat 14°16'03" S., long 170°39'02" W., Hydrologic Unit 20100001, on left bank 0.2 mi south of Afono and 0.3 mi upstream from mouth.

DRAINAGE AREA .-- 0.60 mi2.

PERIOD OF RECORD. -- October 1958 to current year. Prior to July 1960, published as Afono Stream at Afono.

REVISED RECORDS .-- WSP 1937: Drainage area.

GAGE.--Water-stage recorder and concrete control. Altitude of gage is 30 ft, from topographic map.

REMARKS.--Records good. About 0.06 ft³/s is diverted above station for domestic use in Afono. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE.--25 years (water years 1960-84), 3.40 ft³/s (2,460 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 1,350 ft 3/s July 5, 1969, gage height, 5.49 ft, from rating curve extended above 52 ft 3/s; minimum, 0.11 ft 3/s Sept. 15, 16, 1983.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 210 ft 3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)
Dec. 27	1400	*785	4.75
Mar. 27	0400	223	3.32
Sept. 9	2200	350	3.75

Minimum discharge, 0.13 ft 3/s Aug. 17-22.

DISCHARGE	IN	CUBIC	FEET	PER	SECOND,	WATER	YEAR	OCTOBER	1983	TO	SEPTEMBER	1984	
					MEA	N VALUI	ES						
17077	-	EG.	T 3 37		nnn	MAD		* DD	16 3 17		77751	7777	

DAY	ocs	r no	V DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1.4	3.7	5.1	2.8	1.4	1.2	2.7	.70	.28	.32	.19	.23
2	.70	3.6	2.4	2.2	1.1	1.6	2.1	1.0	.32	.32	.19	2.2
3	7.1	18	1.6	1.8	.78	15	1.8	.78	1.4	.28	.20	4.4
4	3.2	4.0		1.7	.78	6.7	1.7	.78	5.4	. 25		1.2
5	1.0	2.2		1.4	.70	3.2	1.4	1.0	3.8	.25	.25	.49
3	1.0	2.2	1.0	1.4	. 70	3.2	1.4	1.0	3.0	.23	.25	
6	1.2	1.7		1.3	. 55	3.3	1.4	2.9	1.8	.28		.25
7	7.8	1.3		1.3	.70	2.4	1.2	4.0	4.4	.25		.25
8	2.1	.9	6 3.0	1.1	.78	3.4	1.0	1.8	2.5	.25	.20	. 43
9	1.8	.7	8 3.0	1.0	.55	3.8	.96	1.1	1.2	.25	.20	27
10	2.1	.7	0 2.2	1.1	. 43	3.4	. 87	1.0	1.5	.23	.22	13
11	.96	6	2 2.1	1.7	.37	1.9	. 87	.78	3.4	.25	.20	12
12	. 49			1.2	.49	5.5	1.0	.70	1.8	.25	.28	6.5
13	.32			.96	5.3	3.0	.78	.62	1.3	.23	.22	3.8
14												
	. 23			.78	2.2	2.4	.70	. 55	1.1	.22	.17	2.8
15	. 22	2 1.3	1.8	.78	1.0	3.0	.70	.49	. 87	.22	.16	1.8
16	. 22	2 31	1.6	.78	.70	5.2	.62	.49	.70	.22		1.2
17	. 23	8.1	1.4	1.6	.55	3.4	1.0	.49	.62	.22	.15	.96
18	4.2			1.8	. 49	11	. 87	3.2	.55	.37	.15	.78
19	15	3.2		1.3	.55	7.0	.70	1.6	.55	.23	.15	.62
20	4.4	2.2		3.6	.62	3.0	2.9	. 87	. 49	.23	.15	.55
21		1.7	0.5	6.4	.49	2.2	10	.70	.43	.22	.15	.49
	1.8											
22	1.1	1.3		2.4	. 43	2.4	13	.55	.43	. 20	.14	. 43
23	.78			1.6	. 43	2.1	2.5	.49	1.7	.22	.16	.32
24	24	. 8		2.1	. 43	1.9	1.8		1.3	.22	.16	.32
25	6.5	. 8	7 9.0	3.4	.32	17	1.2	.49	.78	.23	.33	.28
26	16	.7	0 12	1.7	.28	31	1.1	.37	. 87	.22	.16	.25
27	4.2	.5	5 61	1.8	4.9	57	1.0	.32	.96	.84	6.5	.28
28	3.2	. 4		1.2	8.8	9.9	.96	.32	.62	.28	4.1	.28
29	2.1	. 4		1.1	2.1	5.7	. 87	.32	.49	.20	2.5	.25
30	1.8	7.0		1.1		4.0	.78	.32	.37	.19	.78	.23
												-23
31	1.3		- 4.0	1.2		3.0		.32		.19	.37	
TOTAL	117.45	106.0		54.20	38.22	225.6	58.48	29.54	41.93	8.13	19.46	83.59
MEAN	3.79	3.5	3 5.84	1.75	1.32	7.28	1.95	.95	1.40	.26	.63	2.79
MAX	24			6.4	8.8	57	13	4.0	5.4	.84	6.5	27
MIN	. 22			.78	.28	1.2	.62	.32	.28	.19	.14	.23
AC-FT	233			108	76	447	116	59	83	16	39	166
CAL YR	1002	TOTAL	723.61	MEAN	1.98	MAX	61	MIN	.12	AC-FT	1440	
WTR YR			963.67	MEAN	2.63		61	MIN	.14	AC-FT	1910	
MIL IK	1704	TOTAL	JUJ.0/	MEAN	2.03	MAX	OT	NITH	. 14	WC-LT	TATO	

16920500 AASU STREAM AT AASU

LOCATION.--Lat 14°17'51" S., long 170°45'30" W., Hydrologic Unit 20100001, on right bank at Aasu and 200 ft upstream from mouth.

DRAINAGE AREA .-- 1.03 mi2.

PERIOD OF RECORD .-- October 1958 to current year.

REVISED RECORDS.--WSP 1937: Drainage area. WSP 2137: 1959-60(P), 1961(M), 1962-65(P).

GAGE. -- Water-stage recorder and concrete control. Altitude of gage is 5 ft, by hand levels from high-tide mark.

REMARKS.--Records fair. Small diversion above station for domestic use. Recording rain gage located at station. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE.--25 years (water years 1960-84), 6.05 ft3/s (4,380 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 498 ft³/s Sept. 7, 1972, gage height, 5.16 ft, from rating curve extended above 20 ft³/s on basis of slope-area measurement at gage height 4.57 ft; minimum, 0.12 ft³/s Oct. 21, 23, 24, 27, 1974.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 404 ft³/s Dec. 27, gage height, 4.78 ft, no other peak above base of 180 ft³/s; minimum, 0.42 ft³/s Aug. 20-23.

		DISCHARGE,	IN CUBIC	FEET I	PER SECOND, MEA	WATER YEAR N VALUES	CTOBER	1983 TO	SEPTEMBE	R 1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	7.1	5.8	3.8	11	4.9	6.7	11	3.2	1.5	1.7	.74	4.6
2	5.5	4.9	2.8	8.8	3.8	6.4	7.0	3.2	1.6	1.7	.74	4.9
3	13	4.3	2.7	7.4	3.4	14	6.0	3.0	4.4	1.6	.72	5.5
4	15	3.8	2.4	6.4	3.2	13	5.0	3.4	14	1.5	.90	4.0
5	11	3.6	2.2	5.5	3.0	11	4.5	4.1	14	1.4	.80	3.4
6	9.8	3.2	2.2	4.6	2.8	9.5	3.7	3.4	6.7	1.4	.76	3.0
7	13	4.2	2.4	4.6	2.8	8.1	3.2	4.2	8.4	1.4	.76	3.0
8	8.8	3.4	3.0	3.8	2.7	7.8	3.0	2.8	6.4	1.3	1.1	3.0
9	9.2	2.8	2.5	3.4	2.4	6.7	3.1	2.5	5.2	1.3	.74	5.5
10	9.2	2.7	2.2	3.6	2.2	5.8	2.9	14	6.5	1.2	.68	4.6
11	7.0	2.5	2.1	3.3	2.7	5.2	3.2	6.7	6.4	1.2	.64	7.7
12	6.1	2.2	4.1	2.8	5.8	4.6	2.7	4.3	5.2	1.3	.64	8.8
13	5.2	2.1	5.2	3.2	3.4	4.0	2.6	3.4	4.9	1.2	.60	5.8
14	4.6	3.0	3.4	2.5	2.7	5.5	2.6	3.2	4.0	1.2	.56	4.6
15	4.6	2.7	3.0	2.4	2.2	7.3	2.5	3.0	3.6	1.2	.56	4.0
16	4.0	11	3.0	2.2	2.2	13	2.4	3.0	3.4	1.1	.52	3.8
17	3.6	6.1	3.2	2.2	11	9.2	2.3	2.8	3.2	1.1	. 47	3.6
18	6.8	4.6	3.0	2.5	13	13	2.2	4.3	3.0	1.4	. 47	3.2
19	15	3.8	2.5	3.0	9.5	9.0	5.0	2.7	2.8	1.2	. 47	3.0
20	10	3.4	2.4	3.0	7.4	7.5	6.0	2.4	2.7	1.0	. 47	2.8
21	7.4	3.0	2.2	3.2	12	6.5	14	2.7	2.5	1.0	.47	2.5
22	6.1	2.8	2.2	2.7	9.2	10	13	2.4	2.7	1.0	. 47	2.4
23	5.8	2.8	2.2	2.2	9.0	18	7.5	2.2	3.0	1.0	.52	2.2
24	16	2.5	5.2	4.3	7.8	20	6.5	2.2	2.5	1.1	. 47	2.2
25	14	2.4	7.6	6.8	6.7	28	6.0	2.2	2.1	.95	.63	1.9
26	11	2.2	18	7.0	5.8	40	5.0	1.9	3.1	.95	. 47	1.8
27	9.5	2.1	45	7.4	7.6	37	4.5	1.8	2.5	1.6	2.8	2.2
28	8.4	2.1	24	4.3	13	25	4.3	1.8	1.9	.95	11	1.9
29	7.0	1.9	20	3.8	8.4	15	4.0	1.7	1.9	. 81	4.6	1.7
30	6.4	5.4	15	3.8		12	3.6	1.9	1.8	.74	4.6	1.6
31	5.5		12	6.1	755	10		1.7		.74	4.7	
TOTAL	265.6			137.6	170.6		49.3	102.1	131.9	37.24	44.07	109.2
MEAN	8.57	3.58	6.82	4.44	5.88		4.98	3.29	4.40	1.20	1.42	3.64
MAX	16	11	45	11	13	40	14	14	14	1.7	11	8.8
MIN	3.6	1.9	2.1	2.2	2.2	4.0	2.2	1.7	1.5	.74	. 47	1.6
AC-FT	527	213	420	273	338	771	296	203	262	74	87	217
CAL YR		TAL 1357.		MEAN	3.72			IN		C-FT	2690	
WTR YR	1984 TC	TAL 1855.	21	MEAN	5.07	MAX	45 M	IN	.47 A	C-FT	3680	

NOTE. -- No gage-height record Mar. 18 to Apr. 27 and Aug. 2-16.

16931000 ATAULOMA STREAM AT AFAO

LOCATION.--Lat 14°20'10" S., long 170°48'02" W., Hydrologic Unit 20100001, on left bank at Afao, 100 ft upstream from highway bridge, and 300 ft upstream from mouth.

DRAINAGE AREA . -- 0.24 mi2.

PERIOD OF RECORD .-- October 1958 to current year.

REVISED RECORDS. -- WSP 1937: Drainage area.

GAGE.--Water-stage recorder. Altitude of gage is 20 ft, by hand levels from high-tide mark.

REMARKS.--Records good. No diversion above station. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE.--25 years (water years 1960-84), 1.44 ft3/s (1,040 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 815 ft³/s Oct. 28, 1979, gage height, 4.47 ft, from rating curve extended above 30 ft³/s; minimum, 0.04 ft³/s Oct. 24-26, 28-31, Nov. 1, 1974.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 475 ft³/s Dec. 27, gage height, 3.67 ft, no other peak above base of 180 ft³/s; minimum, 0.15 ft³/s Aug. 26.

		DISCHARGE,	IN CUBIC	FEET F		WATER N VALUE	YEAR OCTOBER	1983	TO SEPTEMB	ER 1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	5.3	.33	.40	. 87	.94	1.2	1.6	.69	.40	.33	.24	.36
2	1.6	.33	.30	.64	.74	1.1	1.3	.59	.44	.33	.24	.30
3	4.0	.33	.44	.54	.59	13	1.2	.59	1.4	.33	.27	.54
4	1.8	.30	.30	. 44	.49	5.1	1.3	. 87	3.3	.30	.30	.27
5	1.3	.30	.30	.36	.40	1.9	1.1	.80	4.2			.24
3	1.3	.30	.30	.30	.40	1.9	1.1	. 00	4.2	.30	.27	.24
6	1.1	. 27	.36	.36	.36	1.3	1.0	.64	1.6	.30	.24	.27
7	1.1	1.2	.30	.44	.36	1.0	.94	.69	4.9	.30	.30	.27
8	.74	. 49	.36	.36	.36	5.0	. 87	.64	1.6	.27	.36	.40
9	. 80	. 40	.30	.33	.33	3.5	. 87	.59	1.1	.27	.27	1.7
10	. 80	.33	.27	. 44	.33	1.8	.94	7.1	1.3	. 27	.24	.74
11	.59	.27	.27	.40	.44	1.2	. 80	1.3	.94	.27	.24	8.2
12	. 44	.33	.36	.30	3.8	1.2	. 87	.94		.30	.24	2.0
					1.2	1.3			.74			1.0
13 14	.40	. 27	.36	.58			. 80	. 80		. 27	.24	
	.36	.55	.24	.33	.69	1.1	.74	.69	.59	• 27	.21	3.1
15	.44	1.3	.24	.42	.64	2.2	1.0	.59	.59	. 27	.21	1.4
16	. 40	17	.24	.33	.59	4.9	.74	.64	.59	.61	.21	. 87
17	.54	2.1	.33	.36	4.8	2.3	2.1	.64	.54	.33	.21	.69
18	2.5	. 87	.27	.33	2.2	3.1	1.4	1.7	.54	.40	.21	.59
19	5.0	. 80	.27	1.0	1.7	1.8	1.3	.80	.49	.33	.21	.54
20	2.1	.69	.27	.74	1.2	1.3	1.3	.59	.49	.30	.21	.49
21	1.2	.54	.24	.74	6.5	1.0	5.4	.59	.44	.30	.21	.40
22	. 87	.49	.21	.59	1.9	7.1	4.6	.54	.44	.30	.21	.36
23	.64	.59	.21	.40	1.4	3.9	2.0	.49	.77	.30	.21	.33
24	.59	.40	.33	.72	1.3	7.1	2.1	.49	.49	.30	.21	.33
25	1.3	.40	.65	2.0	1.0	6.4	1.0	.59	.44	.27	.19	.33
111					-							
26	.74	.36	7.8	.94	. 87	18	.94	. 49	.78	. 27	.17	.30
27	.64		29	2.4	1.9	13	. 87	.44	.36	.30	.44	1.4
28	.64	.33	3.9	1.0	5.2	4.1	. 80	. 44	.36	• 27	9.6	.59
29	.44	.33	1.3	.74	1.8	3.0	.69	.49	.36	.24	1.1	.40
30	.36	.54	. 87	1.5		1.9	. 87	.54	.33	.21	.40	.36
31	.36		. 87	1.3		1.6		.44		.21	.51	
TOTAL	39.09	32.77	51.56	21.90	44.03	122.4	41.44	27.43	31.26	9.32	18.17	28.77
MEAN	1.26	1.09	1.66	.71	1.52	3.95	1.38	.88	1.04	.30	.59	.96
MAX	5.3	17	29	2.4	6.5	18	5.4	7.1	4.9	.61	9.6	8.2
MIN	.36	.27	.21	.30	.33	1.0	.69	.44	.33	.21	.17	.24
AC-FT	78	65	102	43	87	243	82	54	62	18	36	57
CAL YR WTR YR	1983 TO	OTAL 306. OTAL 468.		MEAN MEAN	.84 1.28	MAX MAX		IN IN		AC-FT	607 929	

16931500 ASILI STREAM AT ALTITUDE 330 FT NEAR ASILI

LOCATION.--Lat 14°19'34" S., long 170°47'38" W., Hydrologic Unit 20100001, on right bank 1.3 mi northwest of Leone, 1.5 mi southwest of Aoloaufou, and 0.8 mi upstream from mouth.

DRAINAGE AREA .-- 0.32 mi2.

PERIOD OF RECORD .-- October 1977 to current year.

GAGE .-- Water-stage recorder. Altitude of gage is 330 ft, from topographic map.

REMARKS.--Records good. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 7 years, 2.45 ft 3/s (1,780 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 635 ft³/s, Oct. 28, 1980, gage height, 4.73 ft, from rating curve extended above 14 ft³/s; minimum, 0.20 ft³/s Aug. 16, 1983.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 460 ft³/s Oct. 9, gage height, 4.35 ft, no other peak above base of 205 ft³/s; minimum, 0.22 ft³/s Aug. 21-24, 26.

		DISCHARG	E, IN CUE	IC FEET I		, WATER Y		BER 1983	TO SEPTEM	BER 1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	8.6	1.5	1.0	3.0	2.0	3.2	3.8	1.1	.71	.71	.37	1.2
2	5.9	1.4	. 83	2.3	1.7	9.8	2.2	1.1	. 84	.67	.40	1.5
3	7.5	1.4	2.2	2.0	1.4	9.4	2.0	1.0	1.8	.67	.37	1.8
3	6.2	1.2	1.0	1.7	1.3	8.4	1.9	1.2	4.0	.64	.46	1.2
5	4.5	1.2	.99	1.5	1.2	5.9	1.5	1.4	5.4	.61	.37	1.0
6	3.6	1.1	1.0	1.4	1.1	4.2	1.3	3.3	2.8	.64	.37	.99
7	3.6	1.3	1.1	1.4	1.1	3.2	1.2	1.5	4.5	.64	. 43	. 87
8	2.3	.99	1.2	1.2	.99	3.8	1.2	1.3	3.2	.61	. 43	.92
9	3.1	.99	.99	1.2	. 87	3.0	1.1	1.2	2.3	.58	.34	1.6
10	2.9	. 87	.91	1.3	. 83	2.3	1.2	8.6	2.8	.58	.34	.95
11	2.3	. 83	. 87	1.3	1.1	1.9	1.0	3.1	2.2	.58	.31	5.4
12	2.0	.91	2.2	1.0	3.9	1.8	1.4	2.3	1.9	.61	.31	3.1
13	1.7	.79	1.6	1.1	2.7	1.6	.95	1.8	1.7	.55	.31	2.5
14	1.5	1.6	1.2	.95	1.5	1.4	.95	1.6	1.2	.52	.31	3.2
15	1.5	1.4	1.2	.95	1.2	2.0	1.2	1.4	1.2	•52	.28	2.0
16	1.4	8.7	1.1	. 87	1.2	4.6	.98	1.2	1.1	.58	.28	1.7
17	1.3	2.7	1.4	.97	4.1	3.0	.92	1.3	1.0	.52	.28	1.5
18	2.9	2.0	1.0	.95	2.9	4.4	. 87	2.4	.95	.68	.28	1.3
19	5.7	1.7	.99	1.7	2.3	3.2	1.5	1.2	.91	.52	.25	1.2
20	3.1	1.5	.91	1.4	1.8	2.5	1.0	1.1	. 87	.49	.25	1.1
21	2.3	1.3	. 83	1.3	4.0	2.2	4.1	1.1	. 83	.52	.22	.99
22	2.0	1.3	. 83	1.1	2.7	5.8	6.0	.99	. 83	. 46	.22	.95
23	1.9	1.3	. 83	.91	3.0	6.6	1.9	.95	1.4	. 46	.25	. 87
24	3.1	1.1	1.1	1.9	2.3	5.9	2.3	.91	1.1	. 46	.25	. 83
25	3.6	1.1	1.8	3.8	1.9	8.3	1.6	1.0	.79	. 43	.34	.79
26	5.1	1.0	5.7	2.3	1.7	15	1.4	. 83	1.7	. 43	.25	.71
27	3.9	.95	28	2.8	3.0	16	1.3	.79	.99	.49	1.4	1.5
28	3.2	.91	11	1.7	7.9	8.4	1.2	.75	. 83	. 43	10	. 87
29	2.4	. 87	7.1	1.7	4.5	5.4	1.2	. 81	.75	.40	2.8	.67
30	2.0	2.2	4.8	2.3		3.9	1.6	.92	.75	.37	1.3	.64
31	1.8		3.5	2.9		3.0		.75		.37	1.8	
TOTAL	102.9	46.11	89.18	50.90	66.19	160.1	50.77	48.90	51.35	16.74	25.57	43.85
MEAN	3.32	1.54	2.88	1.64	2.28	5.16	1.69	1.58	1.71	.54	. 82	1.46
MAX	8.6	8.7	28	3.8	7.9	16	6.0	8.6	5.4	.71	10	5.4
MIN	1.3	.79	. 83	. 87	. 83	1.4	. 87	.75	.71	.37	.22	.64
AC-FT	204	91	177	101	131	318	101	97	102	33	51	87
CAL YR WTR YR			4.62 2.56	MEAN MEAN	1.49	MAX MAX	28 28	MIN MIN	.22	AC-FT AC-FT	1080 1490	

16933500 LEAFU STREAM AT ALTITUDE 370 FT, NEAR LEONE

LOCATION.--Lat 14°19'31" S., long 170°46'50" W., Hydrologic Unit 20100001, on left bank 900 ft upstream from village stream intake, 1.1 mi north of Leone, and 1.0 mi southwest of Aoloaufou.

DRAINAGE AREA .-- 0.31 mi2.

WTR YR 1984 TOTAL

1376.21

MEAN

3.76

MAX

PERIOD OF RECORD. -- October 1977 to current year.

REVISED RECORDS. -- WDR HI-79-2: 1978(P).

GAGE .-- Water-stage recorder. Altitude of gage is 370 ft, from topographic map.

REMARKS.--Records good. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 7 years, 4.47 ft3/s (3,240 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, about 370 ft³/s Mar. 17, 1981, gage height, about 6.4 ft, from rating curve extended above 48 ft³/s; minimum, 0.32 ft³/s Aug. 9, 1983, Aug. 21, 1984.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 160 ft3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Dec. 27	1230	*342	6.12	Mar. 26	2330	227	4.97
Mar. 3	2000	161	4.31	Aug. 28	1030	194	

DISCHARGE. IN CURIC FEET PER SECOND. WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

AUG

SEP

Minimum discharge, 0.32 ft3/s Aug. 21.

	MEAN VALUES														
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL					
1	24	2.9	2.8	5.0	3.6	5.3	7.0	1.9	1.1	1.2					
2	14	2.5	2.0	4.0	3.0	4.9	4.2	1.8	1.1	1.2					
-				-											

1 2	24 14	2.9	2.8	5.0 4.0	3.6	5.3	7.0	1.9	1.1	1.2	.62	2.8 3.2
3							4.2	1.8		1.2	.62	
	17	2.4	3.9	3.2	2.8	16	3.7	1.7	1.8		.56	3.5
4	13	2.0	2.1	2.8	2.5	15	3.4	1.7	5.7	1.1	.74	2.4
5	8.1	1.8	1.9	2.4	2.4	9.5	2.8	2.4	7.4	1.1	.66	2.2
6	6.6	1.8	1.9	2.2	2.0	7.0	2.5	2.9	4.3	1.1	.62	2.0
7	6.0	1.7	2.6	2.2	2.1	5.4	2.3	2.4	6.8	1.1	.66	1.9
8	4.7	1.6	2.3	1.8	1.9	4.6	2.1	1.9	4.9	.98	. 86	1.9
9	5.2	1.5	1.9	1.8	1.7	4.2	2.0	1.7	4.1	.94	.56	5.0
10	4.7	1.4	1.8	1.8	1.6	3.4	2.1	8.4	5.5	.94	.52	2.4
11	3.8	1.3	1.7	1.8	2.0	3.1	1.8	3.9	4.3	.98	.52	9.4
12	3.3	1.4	6.0	1.4	6.4	3.0	2.3	3.1	3.5	.98	.52	5.4
13	2.9	1.2	4.0	1.5	2.7	2.5	1.7	2.8	3.4	.90	.48	3.8
14	2.7	2.6	2.7	1.3	2.0	3.2	1.7	2.4	2.7	.90	. 45	3.3
15	2.5	1.8	2.3	2.3	1.8	5.4	1.9	2.3	2.5	.86	.45	2.8
16	2.2	12	2.2	1.4	1.7	9.0	1.6	2.2	2.2	. 86	.42	2.4
17	2.0	3.4	2.4	1.4	10	5.0	1.6	2.0	2.1	.82	.42	2.2
18	4.2	2.5	2.0	1.8	10	7.9	1.4	3.8	1.9	1.1	.42	1.9
19	11	2.4	1.8	3.0	6.8	5.4	5.6	2.0	1.8	.86	.39	1.8
20	5.5	2.2	1.7	2.9	5.1	4.5	2.8	1.8	1.7	. 82	.39	1.6
21	4.3	2.0	1.6	2.2	9.0	3.9	9.4	1.7	1.6	.90	.36	1.5
22	3.6	1.9	1.6	1.8	5.4	7.6	8.7	1.6	1.6	.78	.39	1.4
23	3.5	1.9	1.4	1.6	5.4	13	4.8	1.5	2.4	.74	.42	1.3
24	7.6	1.7	2.5	3.5	4.2	14	4.4	1.4	1.6	.74	.42	1.2
25	6.3	1.6	3.9	5.3	3.6	22	3.4	1.5	1.7	.74	.60	1.2
26	8.0	1.5	15	3.8	3.2	38	2.9	1.3	3.3	.70	.39	1.1
27	5.9	1.4	45	4.8	5.3	36	2.7	1.2	1.8	.74	2.6	2.2
28	5.6	1.3	26	3.1	14	21	2.4	1.2	1.4	.66	23	1.4
29	4.3	1.2	16	3.1	6.1	13	2.2	1.2	1.4	.62	5.3	1.1
30	3:6	7.6	9.2	3.0		8.5	2.2	1.3	1.3	.62	3.1	.98
31	3.1		6.5	5.3		6.2		1.2		.59	3.3	
TOTAL	199.2	72.5	178.7	83.5	128.3	307.5	97.6	68.2	86.9	27.77	50.76	75.28
MEAN	6.43	2.42	5.76	2.69	4.42	9.92	3.25	2.20	2.90	.90	1.64	2.51
MAX	24	12	45	5.3	14	38	9.4	8.4	7.4	1.2	23	9.4
MIN	2.0	1.2	1.4	1.3	1.6	2.5	1.4	1.2	1.1	.59	.36	.98
AC-FT	395	144	354	166	254	610	194	135	172	55	101	149
	1983 TO		1.49	MEAN	2.88	MAX	45	MIN	.36	AC-FT	2090	

45

MIN

.36

AC-FT

2730

16948000 AFUELO STREAM AT MATUU

LOCATION.--Lat 14°18'07" S., long 170°41'07" W., Hydrologic Unit 20100001, on left bank 0.2 mi northwest of Matuu and 0.3 mi upstream from mouth.

DRAINAGE AREA . -- 0.25 mi2.

PERIOD OF RECORD. -- March 1958 to current year. Prior to July 1960, published as Matuu Stream at Matuu.

REVISED RECORDS. -- WSP 1937: Drainage area. WSP 2137: 1958-65.

GAGE. -- Water-stage recorder. Altitude of gage is 80 ft, from topographic map.

REMARKS.--Records fair. Small diversion above station for domestic use since September 1972. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 26 years, 1.45 ft 3/s (1,050 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 502 ft³/s Apr. 29, 1975, gage height, 4.59 ft, from rating curve extended above 26 ft³/s on basis of slope-area measurement of peak flow; minimum, 0.01 ft³/s Sept. 16, 17, 20-26, 28, 29, 1975, Apr. 5-7, 1976.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 160 ft3/s and maximum (*):

Date		Time	Discharge (ft³/s)	Gage height (ft)
Dec.	27	1400	*324	3.82
Mar.	27	0200	285	3.63

Minimum discharge, 0.02 ft3/s Sept. 30.

DISCHARGE,	IN	CUBIC	FEET	PER	SECOND,	WATER	YEAR	OCTOBER	1983	TO	SEPTEMBER	1984
					MTA	AT TYR T TTT	7.0					

DAY	oca	r NO	V	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	. 80		24	.46	.50	1.4	.28	.70	.17	.06	.08	.06	.08
2	. 55		20	.17	.36	.59	.28	.50	.23	.07	.09	.05	1.5
3	4.4	1.9		.26	.23	.33	12	.50	.17	1.6	.06	.06	2.0
4	1.2			.11	.19	.23	3.5	.42	.17	5.5	.06	.13	.35
5	. 25			.25	.16	.79	2.0	.33	.25	3.6	.06	.08	.21
3	• 2 -	•	, ,	. 23	•10	•13	2.0	.55	.25	3.0	.00	.00	.21
6 7	. 21			. 84	.16	.36	1.2	.30	.25	.70	.05	.07	.16
7	1.1	. 1		. 83	.21	.21	.75	.17	.68	2.0	.07	.06	.14
8	.39			2.5	.14	.28	.67	.17	.23	.75	.04	.55	.14
9	.70			.91	.11	.17	4.2	.19	.16	.28	.08	.11	12
10	.60	. (19	.26	.16	.16	1.5	.17	4.9	.52	.06	.07	2.4
11	.21	:	4	.14	.98	.17	.60	.17	. 85	.60	.08	.06	8.1
12	.14			.40	.21	.42	.66	.19	.30	.28	.06	.81	3.2
13	.09			.48	.17	.17	.60	.16	.16	.17	.05	.13	1.7
14	.08			.25	.11	.13	.42	.14	.14	.13	.04	.08	1.3
15	.09			.13	.65	.11	2.9	.14	.11	.10	.06	.06	.55
13	.03	• • •	. 9	.13	.65	•11	2.9	.14	.11	.10	.00	.00	.33
16	. 29			.11	.25	.11	5.1	.16	.11	.09	.70	.06	.30
17	. 28			. 23	.16	.30	1.4	.55	.13	.09	.10	.05	.21
18	4.5	1.4		.14	.14	.11	6.9	.17	.96	.10	.17	.05	.14
19	6.2	1.3		.11	.19	.21	2.1	.69	.21	.09	.08	.05	.16
20	1.7	. 7	5	.13	1.3	.37	.91	. 89	.13	.08	.07	.04	.11
21	.50	.3	16	.07	1.2	1.4	.55	5.1	.09	.08	.05	.03	.09
22	. 25			.08	1.4	.42	.67	5.9	.08	.08	.05	.03	.08
23	.19			.07	. 46	.17	1.8	.70	.08	.29	.06	.04	.08
24	4.8			7.3	2.0	.13	5.4	.69	.07	.11	.05	.04	.09
25	1.5			2.9	1.7	.09	13	.33	.08	.09	.06	.11	.06
				2.5	1.7	.03	13	•33	.00	.03	.00		.00
26	.75				.65	.08	22	. 25	.07	.75	.06	.04	.07
27	.33				4.8	.59	37	.23	.05	.25	.44	3.0	.10
28	. 25			4.4	.75	3.8	5.1	.41	.05	.10	.11	18	.06
29	.16			7.5	.36	. 85	2.1	.23	.06	.08	.06	2.5	.04
30	.10			1.7	1.1		1.1	.19	.07	.08	.04	1.0	.03
31	.09		-	.75	3.2		. 80		.07		.06	1.5	
TOTAL	32.70	28.3	2 8	1.48	24.00	14.15	137.49	20.74	11.08	18.72	3.10	28.92	35.45
MEAN	1.05			2.63	.77	.49	4.44	.69	.36	.62	.10	.93	1.18
MAX	6.2		6	24	4.8	3.8	37	5.9	4.9	5.5	.70	18	12
MIN	.08			.07	.11	.08	.28	.14	.05	.06	.04	.03	.03
AC-FT	65		6	162	48	28	273	41	22	37	6.1	57	70
IIC FI	0.			102	40	20	2/3	41	22	37	0.1	37.	70
CAL YR		TOTAL	293.5		MEAN	.80	MAX	26	MIN	.02	AC-FT	582	
WTR YR	1984	TOTAL	436.1	5	MEAN	1.19	MAX	37	MIN	.03	AC-FT	865	

16963900 LEAFU STREAM NEAR AUASI

LOCATION.--Lat 14°16'27" S., long 170°34'26" W., Hydrologic Unit 20100001, on right bank 35 ft upstream from upper village intake, 0.1 mi north of Auasi, and 0.2 mi upstream from mouth.

DRAINAGE AREA . -- 0.11 mi2.

CAL YR 1983 WTR YR 1984

TOTAL

TOTAL

36.13

56.72

PERIOD OF RECORD. -- February 1972 to current year.

REVISED RECORDS. -- WDR HI-75-1: 1972(P), 1973-74.

GAGE. -- Water-stage recorder. Altitude of gage is 120 ft, from topographic map.

REMARKS.--Records fair. No diversion above station. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 12 years, 0.33 ft3/s (239 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 234 ft³/s Dec. 5, 1980, gage height, 4.43 ft, from recorded range in stage, from rating curve extended above 19 ft³/s; minimum, 0.02 ft³/s several days in 1976 and many days in 1983, 1984.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 MEAN VALUES

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 30 ft3/s and maximum (*):

Date		Time	Discharge (ft³/s)	Gage height (ft)
Dec. 2	7	1500	48	2.57
Jan. 2	2	0900	*62	2.77
Apr. 2	2	0230	44	2.50

Minimum discharge, 0.02 ft3/s for many days.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.04	.11	.39	.23	.05	.07	.11	.06	.03	.04	.02	.03
2	.04	.13	.17	.13	.04	.77	.11	.05	.03	.03	.02	.04
3	.11	.17	.11	.08	.04	.66	.11	.05	.11	.03	.02	.06
4	.05	.09	.07	.07	.04	.36	.07	.06	.15	.03	.02	.04
5	.04	.05	.07	.06	.04	.46	.07	.40	.11	03	.02	.04
3			,			. 10		• 10	• • • •			
6	.08	.04	.07	.04	.04	.21	.12	.20	.07	.03	.02	.04
7	.09	.04	.07	.05	.04	.11	.06	.17	.15	.03	.02	.04
8	.04	.04	.11	.04	.04	.21	.06	.11	.09	.03	.02	.07
9	.03	.04	.11	.04	.04	.11	.06	.08	.06	.03	.02	2.0
10	.03	.04	.14	.04	.04	.08	.06	.11	.05	.03	.02	.41
11	.04	.04	.17	.04	.04	.06	.07	.08	.05	.03	.02	2.1
12	.04	.04	.19	.03	.04	.07	.04	.07	.05	.03	.03	.39
13	.04	.04	.26	.03	.04	.06	.04	.06	.05	.03	.03	.11
14	.04	.07	.15	.03	.04	.06	.04	.06	.04	.03	.03	.06
15	.04	.08	.11	.03	.04	.08	.04	.05	.04	.03	.03	.04
13	.04	.00	•11	.03	.04	.00	.04	.05	.04	.03	.03	.04
16	.04	1.7	.08	.03	.04	.13	.04	.05	.04	.03	.03	.04
17	.04	.17	.08	.14	.04	.09	.04	.06	.04	.03	.03	.04
18	.14	.09	.07	. 26	.04	.45	.04	.11	.04	.04	.03	.03
19	.34	.17	.07	.08	.04	. 43	.04	.06	.05	.03	.03	.03
20	.17	.08	.07	. 83	.06	.17	.11	.05	.05	.03	.03	.03
21	.11	.05	.07	.47	.04	.11	.50	.05	.05	.03	.03	.03
22	.11	.04	.08	2.8	.04	.08	2.6	.05	.07	.03	.03	.03
23	.11	.04	.11	.36	.04	.07	.21	.04	.09	.03	.03	.03
24	.15	.04	.13	.24	.03	.06	.13	.04	.05	.03	.03	.03
25	.13	.04	.37	.17	.03	.76	.08	.04	.08	.03	.04	.03
26	.28	.04	1.0	.09	0.2	2.7	0.7	0.4	0.7	0.2	0.4	0.2
		.04			.03		.07	.04	.07	.03	.04	.03
27	.13		3.5	.08	.09	3.9	.08	.04	.04	.03	.05	.03
28	.09	.03	. 47	.06	. 46	.61	.07	.04	.04	.03	.03	.03
29	.08	.03	.76	.05	.21	.26	.07	.05	.03	.03	.03	.03
30	.09	.59	. 87	.04		.17	.06	.05	.04	.03	.03	.03
31	.11		.53	.08		.13		.04		.02	.03	
TOTAL	2.87	4.17	10.45	6.72	1.80	13.49	5.20	2.42	1.86	.94	. 86	5.94
MEAN	.093	.14	.34	.22	.062	.44	.17	.078	.062	.030	.028	.20
MAX	.34	1.7	3.5	2.8	. 46	3.9	2.6	. 40	.15	.04	.05	2.1
MIN	.03	.03	.07	.03	.03	.06	.04	.04	.03	.02	.02	.03
AC-FT	5.7	8.3	21	13	3.6	27	10	4.8	3.7	1.9	1.7	12
		~			3.0		10	4.0	3.1	1.,	4.7	14

MAX

MAX

3.5

3.9

.10

.15

MEAN

MEAN

MIN

MIN

.02

.02

AC-FT

AC-FT

72 113 As the number of streams on which streamflow information is likely to be desired far exceeds the number of stream-gaging stations feasible to operate at one time, the Geological Survey collects limited streamflow data at sites other than stream-gaging stations. When limited streamflow data are collected on a systematic basis over a period of years for use in hydrologic analyses, the site at which the data are collected is called a partial-record station. Data collected at these partial-record stations are usable in low-flow or flood-flow analyses, depending on the type of data collected. In addition, discharge measurements are made at other sites not included in the partial-record program. These measurements are generally made in times of base flow or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Records collected at partial-record stations are presented in two tables. The first is a table of discharge measurements at low-flow partial-record stations and the second is a table of low-flow measurements made at miscellaneous sites.

Low-flow partial-record stations

Measurements of streamflow in the area covered by this report made at low-flow partial-record stations are given in the following table. Most of these measurements were made during periods of base flow when streamflow is primarily from ground-water storage. These measurements, when correlated with the simultaneous discharge of a nearby stream where continuous records are available, will give a picture of the low-flow potentiality of the stream. The column headed "Period of record" shows the water years in which measurements were made at the same, or practically the same, site.

Discharge measurements made at low-flow partial-record stations during water year 1984

			Drainage	Period	Meas	urements
Station No.	Station name	Location	area mi²	of record	Date	Discharge (ft 3/s)
		Mariana Islands, Island of	Saipan			
1680000	Denni Spring	Lat 15°11'48" N., long 145°45'52" E., 2.8 mi southeast of Tanapag, 3.1 mi east of Garapan, and 5.6 mi north- east of Chalan Kanoa.	-	1952-54≠, 1968-83≠, 1984	11-28-83 1-5-84 2-22-84 3-28-84 5-2-84 6-15-84 8-5-84	0.52 .27 .25 .15 .17 .08
		Caroline Islands, Palau Isla	ands			
*16891700	Unnamed west coast stream, Ngerekebesang	Lat 07°21'14" N., long 134°27'10" E., 50 ft downstream from reservoir, 200 ft upstream from mouth, and 0.25 mi northwest of Ngerekesang Village community center.	.02	1970-79 1982, 1984	3-24-84	.05
*16891750	Unnamed south coast stream, Ngerekebesang	Lat 07°20'42" N., long 134°26'54" E., at Echang Village, 200 ft upstream from mouth and 0.5 mi southeast of Ngerekebesang Village community center.	.02	1970-79, 1981-82, 1984	3-24-84	.08
		Caroline Islands, Yap Island	ls			
16892600	Ripu Stream, Yap	Lat 09°30'10" N., long 138°06'24" E., 300 ft upstream from mouth and 0.3 mi southwest of Gitaem water- treatment plant.	.29	1968-84	11- 3-83	.38
16892650	Dinaey Stream, Yap	Lat 09°30'32" N., long 138°06'15" E., at upper Gitaem Reservoir, 0.4 mi northwest of water-treatment plant.	.04	1980-84	11- 3-83	.13
16892680	Tholomar Stream above reservoir, Yap	Lat 09°30'37" N., long 138°06'18" E., about 500 ft upstream from upper Gitaem Reservoir and 1.4 mi south- west of Colonia.	.10	1965≠, 1968-74≠, 1980-84	11- 3-83	.27
*16893180	Monguch Stream, Gagil-Tamil	Lat 09°31'59" N., long 138°09'57" E., 0.7 mi northeast of Tamel Elementary School and 1.0 mi south of Coast Guard LORAN station.	.18	1980-84	11- 1-83 3-21-84	.38 .28
16893190	Dorfay Stream, Gagil-Tamil	Lat 09°32'08" N., long 138°10'13" E., 0.2 mi upstream from mouth and 0.9 mi northeast of Tamilang Elementary School.	.20	1981-84	11- 1-83	.16
*16893500	Qamin Stream, Maap	Lat 09°35'57" N., long 138°10'15" E., 0.25 mi southeast of Qamin and 0.8 m upstream from mouth.	.19 ni	1980-81, 1984	3-21-84	.05

^{*} Also a water-quality partial-record station.

[≠] Operated as a continuous-record gaging station.
≠ At station 16892700, 800 ft downstream.

Discharge measurements made at low-flow partial-record stations during water year 1984--Continued

			4.000	2/5050	Meas	urements
Station No.	Station name	Location	Drainage area mi²	Period of record	Date	Discharge (ft³/s)
		Caroline Islands, Island of	Ponape			
*16898300	Dauen Neu River	Lat 06°56'47" N., long 158°11'55" E. 0.48 mi southwest of Ponape Island Central School and 1.7 mi upstream from bridge at mouth.	0.75	1970-75≠, 1975-76, 1981-82, 1984	11-23-83 11-30-83 1-25-84 3-15-84 4-9-84 5-15-84 5-24-84 7-9-84 7-24-84 8-31-84 9-26-84	22.8 8.79 10.5 1.24 2.22 .33 .61 4.06 2.55 5.16 4.81
*16898500	Nankewi River	Lat 06°56'03" N., long 158°10'46" E., at highway bridge 350 ft west of Sekere School.	1.48	1971-73, 1975-77, 1981-84	1-26-84	23.5
*16898550	Kiriedleng River	Lat 06°55'17" N., long 158°09'48" E., at small right-bank tributary, 300 ft downstream from road bridge, and 1.4 mi northwest of Mount Temwetemwensekir.	.73	1972-73, 1975-77, 1981-84	1-26-84	8.49
*16898900	Keprohi River	Lat 06°50'40" N., long 158°17'57" E., 150 ft upstream from road bridge and 0.46 mi northeast of Ponape Agriculture Trade School.	2.05	1981-84	1-26-84	17.6
		Samoa Islands, Island of To	utuila			
16917500	Leele Stream at mouth at Fagasa	Lat 14°17'28" S., long 170°43'09" W., on left bank at Fagasa and 200 ft upstream from mouth.	.23	1966-76≠, 1977, 1981-84	8-17-84	.08
16932000	Asili Stream near Asili	Lat 14°19'46" S., long 170°47'42" W., 0.4 mi north of Asili and 0.5 mi upstream from mouth.	.55	1959-61, 1963-65, 1968, 1970, 1974-77, 1981-84	8-22-84	.11
16932500	Asili Stream at Asili	Lat 14°20'04" S., long 170°47'40" W., 100 ft upstream from highway bridge at Asili and 0.1 mi upstream from mouth.	.66	1958-59≠, 1960-61, 1963-65, 1967-69, 1974-77, 1981-84	8-22-84	.30
16934000	Leafu Stream near Leone	Lat 14°19'47" S., long 170°46'55" W., 30 ft upstream from reservoir, 0.9 mi upstream from mouth, and 1.0 mi north of Leone.	.69	1959-64, 1968-69, 1971-74, 1976-77, 1981-84	8-21-84	.56
16944000	Papa Stream near Nuuuli	Lat 14°18'31" S., long 170°42'29" W., 0.3 mi upstream from Tauese Stream and 0.9 mi northwest of Nuuuli.	.57	1959-61, 1963-64, 1967-68, 1974-78, 1981-84	8-21-84	.07
16960000	Alega Stream at Alega	Lat 14°16'58" S., long 170°38'19" W., on left bank 300 ft upstream from left-bank tributary, 0.2 mi north- west of Alega, and 0.3 mi upstream from mouth.	.19	1958-76≠, 1977-78, 1981-84	8-17-84	.27

^{*} Also a water-quality partial-record station. # Operated as a continuous-record gaging station.

DISCHARGE MEASUREMENTS MADE AT MISCELLANEOUS SITES DURING WATER YEAR 1984

		Drainago	Measured	Meas	urements
Tributary to	Location	area mi²	(water years)	Date	Discharge (ft³/s)
	Caroline Islands, Island of	Ponape			
Lehn Mesi River	Lat 06°50'03" N., long 158°10'07" E., 0.77 mi above confluence with Lehn Mesi River and 1,200 ft northeast of Church at Nan Paremwed Village.	0.35		1-27-84	1.66
Pacific Ocean				1-26-84	4.82
	Lehn Mesi River Pacific	Caroline Islands, Island of Lehn Mesi Lat 06°50'03" N., long 158°10'07" E., River 0.77 mi above confluence with Lehn Mesi River and 1,200 ft northeast of Church at Nan Paremwed Village. Pacific Lat 06°51'00" N., long 158°17'40" E., Ocean at highway bridge 0.95 mi northwest	Tributary to Location mi² Caroline Islands, Island of Ponape Lehn Mesi River 0.77 mi above confluence with Lehn Mesi River and 1,200 ft northeast of Church at Nan Paremwed Village. Pacific Lat 06°51'00" N., long 158°17'40" E., .67	Tributary to Location Caroline Islands, Island of Ponape Lehn Mesi River 0.77 mi above confluence with Lehn Mesi River and 1,200 ft northeast of Church at Nan Paremwed Village. Pacific Ocean Drainage (water years) 0.35 (water years) Caroline Islands, Island of Ponape Lehn Mesi Ocean Lat 06°50'03" N., long 158°10'07" E., 0.35 Ocean Drainage (vater) (water years) A. Ocean 1.200 ft northeast of Church at Nan Paremwed Village.	Tributary to Location Caroline Islands, Island of Ponape Lehn Mesi River Nesi River and 1,200 ft northeast of Church at Nan Paremwed Village. Pacific Ocean Lat 06°51'00" N., long 158°17'40" E., 67 Lat 06°51'00" N., long 158°17'40" E., 67

Water-quality partial-record stations are particular sites where chemical-quality, biological and or sediment data are collected systematically over a period of years for use in hydrologic analyses. The data are collected usually less than quarterly.

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

CAROLINE ISLANDS, PALAU ISLANDS

16891700 UNNAMED WEST COAST STREAM, NGEREKEBESANG

LOCATION.--Lat 07°21'14" N., long 134°27'10" E., Hydrologic Unit 20100006, 50 ft downstream from reservoir, 200 ft upstream from mouth, and 0.25 mi northwest of Ngerekesang Village community center.

DRAINAGE AREA .-- 0.02 mi2.

PERIOD OF RECORD .-- Water years 1970-79, 1982, current year.

DATE	TIME	STRE. FLO INST. TANE (CF.	W, AN- OUS	SPE- CIFIC CON- DUCT- ANCE (UMHOS)		AND-	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	DIS SOI (MC	CIUM S- LVED S G/L (AGNE- SIUM, DIS- OLVED MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	
MAR															
24	1500		.05	103		7.1	28.0	36	1		9.6	3.0	6.9	29	.5
DATE	SI DI SOI (MC	UM, L S- VED S/L	ALKA- INITY LAB (MG/L AS CACO3)	SULFA DIS- SOLV (MG/	ED L	CHLO- RIDE, DIS- SOLVE (MG/I AS CI	RIDE, DIS- ED SOLVEI L (MG/L	SILICA DIS- SOLVE (MG/I AS SIO2)	CONST TUENT DIS SOLV	F S	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO GEN, NO2+NO DIS- SOLVE (MG/I AS N)	O3 IRON	N, NE S- D /ED SO /L (U	NGA- SE, IS- LVED G/L MN)
MAR 24		.30	35	1	.9	9.9	<.10	23		76	.10	. 1	2	55	3

16891750 UNNAMED SOUTH COAST STREAM, NGEREKEBESANG

LOCATION.--Lat 07°20'42" N., long 134°26'54" E., Hydrologic Unit 20100006, at Echang Village, 200 ft upstream from mouth, and 0.5 mi southeast of Ngerekebesang Village community center.

DRAINAGE AREA. -- 0.02 mi2.

PERIOD OF RECORD. -- Water years 1970-79, 1981-82, current year.

DATE	TIME	FI INS TAN	EAM- OW, STAN- HEOUS	SPE- CIFIC CON- DUCT- ANCE UMHOS)	PH (STAND ARD UNITS)	AT	PER- (HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALC DIS SOL (MG AS	TIUM S - I VED SC /L (N	AGNE- SIUM, DIS- DLVED MG/L S MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT	
MAR															
24	1550	1	.08	45	6.	9	27.0	12	0	2	.3	1.4	4.1	43	.5
DAT	E	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3	(MG	ATE R VED S	HLO- IDE, IS- OLVED MG/L S CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILIC DIS- SOL (MG, AS SIO)	CONS VED TUEN L DI SOI	OF STI-	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	GE NO2+	NO3 IR S- D VED SO /L (U	ON, 1 IS- LVED S G/L	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
MAR 24.		.20	12		2.6	5.5	<.10	1	7	40	.05	<	.10	150	12

< Actual value is known to be less than the value shown.

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

CAROLINE ISLANDS, YAP ISLANDS

16893180 MONGUCH STREAM, GAGIL-TAMIL

LOCATION.--Lat 09°31'59" N., long 138°09'57" E., Hydrologic Unit 20100006, 0.7 mi northeast of Tamel Elementary School and 1.0 mi south Coast Guard LORAN station.

DRAINAGE AREA. -- 0.18 mi2.

PERIOD OF RECORD. -- Water years 1980 to current year.

DATE	TIM	FI INS E TAN	REAM- COW, COMPANDED IN TAN-	SPE- CIFIC CON- DUCT- ANCE UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	DIS-	M, SODIUM - DIS- ED SOLVEM L (MG/M	D PERCENT	
MAR													
21	091	5	.30	33	5.3	26.5	4	2	.61	. (51 4.1	2 69	.9
DAT	°E	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFA DIS- SOLV (MG/	DIS	E, RIDE - DIS VED SOLV	DIS- SOL' ED (MG, L AS	CONSTED TUENT L DI	OF SOLUTE, SOL	IDS, IS- NO LVED ONS S ER	DIS- SOLVED S (MG/L	RON, I DIS- SOLVED S (UG/L	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
MAR 21.		.10	2.0	3	3.4 7	.1 <.	10	1.5	22	.03	<.10	110	48

16893500 QAMIN STREAM, MAAP

LOCATION.--Lat 09°35'57" N., long 138°10'15" E., Hydrologic Unit 20100006, 0.25 mi southeast of Qamin and 0.8 mi upstream from mouth.

DRAINAGE AREA. -- 0.19 mi2.

PERIOD OF RECORD. -- Water years 1980-81, current year.

DATE	TIMI	FI INS E TAN	REAM- LOW, STAN- HEOUS CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	DIS-	SODIUM DIS- SOLVED (MG/L	PERCENT	
MAR													
21	1335	5	.05	148	7.5	27.5	43	10	6.4	6.6	11	35	.7
DAT	E	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA LINIT LAB (MG/) AS CACO	Y SULF DIS L SOL (MG	ATE RII - DIS VED SOI /L (MC		E, DIS S- SOI VED (MC	LVED TUEN G/L DI S SOI	OF SOLUTION OF SOL	IDS, GIS- NO2 LVED DONS SO ER (M	DIS- DLVED S MG/L (RON, N DIS- DLVED S UG/L (ANGA- ESE, DIS- OLVED UG/L S MN)
MAR 21.		.30	33	1	2 15	5 <	.10	20	91	.12	.18	230	27

< Actual value is known to be less than the value shown.

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

CAROLINE ISLANDS, ISLAND OF PONAPE

16898300 DAUEN NEU RIVER

LOCATION.--Lat 06°56'47" N., long 158°11'55" E., Hydrologic Unit 20100006, 0.48 mi southwest of Ponape Island Central School and 1.7 mi upstream from bridge at mouth.

DRAINAGE AREA. -- 0.75 mi2.

PERIOD OF RECORD. -- Water years 1970-76, 1981-82, current year.

DATE	TIM	FI INS E TAN	OW, STAN- SEOUS	SPE- CIFIC CON- DUCT- ANCE UMHOS)	PH (STAND- ARD UNITS)	AT	PER- (HARD- NESS, NONCAR- BONATE (MG/L CACO3)	DI SO (M	CIUM S- LVED S G/L (AGNE- SIUM, DIS- OLVED MG/L S MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCEN	
JAN															
25	100	0	10	84	6.6		24.0	35	14		9.1	3.1	3.1	1	.6 .2
DAT	E	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3	SULF. DIS SOL	ATE RI - DI VED SO /L (N	LO- DE, S- LVED G/L CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA DIS- SOLVI (MG/I AS SIO2	CONS ED TUEN DI SOI	OF TI-	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	GE NO2+ DI	S- D VED SO /L (U	ON, IS- LVED G/L FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
JAN 25.		.10	22		5.9	4.4	<.10	7	. 6	47	.06	5	. 2	39	12

16898500 NANKEWI RIVER

LOCATION.--Lat 06°56'03" N., long 158°10'46" E., Hydrologic Unit 20100006, at highway bridge 350 ft west of Sekere School.

DRAINAGE AREA. -- 1.48 mi2.

PERIOD OF RECORD. -- Water years 1971-73, 1975-77, 1981 to current year.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO
JAN											
26	1100	24	6.8	26.0	20	2	5.4	1.7	3.0	24	.3
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
JAN 26	.40	19	3.1	4.0	<.10	12	41	.06	.24	98	8

< Actual value is known to be less than the value shown.

83

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

CAROLINE ISLANDS, ISLAND OF PONAPE--Continued

16898550 KIRIEDLENG RIVER

LOCATION.--Lat 06°55'17" N., long 158°09'48" E., Hydrologic Unit 20100006, at small right-bank tributary, 300 ft downstream from road bridge, and 1.4 mi northwest of Mount Temwetemwensekir.

DRAINAGE AREA. -- 0.73 mi2.

PERIOD OF RECORD. -- Water years 1972-73, 1975-77, 1981 to current year.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM
JAN										202	
26	1000	8.5	37	6.4	25.5	14	0	3.0	1.6	2.9	31
DATE	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
JAN 26	.3	.20	15	2.0	3.9	<.10	13	36	.05	46	5

16898900 KEPROHI RIVER

LOCATION.--Lat 06°50'40" N., long 158°'17'57" E., Hydrologic Unit 20100006, 150 ft upstream from road bridge and 0.46 mi northeast of Ponape Agriculture Trade School.

DRAINAGE AREA. -- 2.05 mi2.

PERIOD OF RECORD. -- Water years 1981 to current year.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO
JAN											
26	1440	18	6.9	27.0	15	0	2.6	2.1	2.9	29	.3
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
JAN 26	.20	16	1.6	4.1	<.10	11	34	.05	.11	55	3

< Actual value is known to be less than the value shown.

Samples are collected at sites other than gaging stations and partial-record stations to give better areal coverage in a river basin. Such sites are referred to as miscellaneous sites.

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

CAROLINE ISLANDS, PALAU ISLANDS

16891190 NGERIMEL RESERVOIR, BABELTHUAP (LAT 07°22'00" N., LONG 134°32'08" E.)

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO
MAR 24	1240	69	7.5	30.5	25	0	5.1	2.9	4.2	27	. 4
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
MAR 24	.30	27	1.7	4.6	<.10	19	54	.07	<.10	140	2

16891300 EDENG RIVER, BABELTHUAP (LAT 07°23'00" N., LONG 134°33'07" E.)

DATE	TIME	FL INS TAN	REAM- LOW, STAN- HEOUS CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STANI ARD UNITS)	PA	IPER-	HARD- NESS (MG/L AS CACO3)	HARD NESS NONCA BONAT (MG/: CACO	CAR- DE S	LCIUM IS- OLVED MG/L S CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT	
MAR								0.0						2	
24	1155		17	74	7.	7	26.5	28		0	5.8	3.3	4.1	2	1 .3
									S	OLIDS,		NIT	rro-		
	P	OTAS-	ALKA-	-		HLO-	FLUO-	SILI	CA, S	UM OF	SOLID	S, GI	EN,		ANGA-
	-1	SIUM,	LINITY	Y SULF	ATE F	IDE,	RIDE,			ONSTI-					NESE,
		DIS-	LAB	DIS		IS-	DIS-			UENTS,				IS-	DIS-
		OLVED	(MG/I			OLVED	SOLVE			DIS-	(TON				SOLVED
70.24		MG/L	AS	(MG		MG/L	(MG/L			SOLVED				200	(UG/L
DAT	E A	SK)	CACO	3) AS S	04) P	S CL)	AS F)	SIO	2)	(MG/L)	AC-F	r) As	N) AS	FE)	AS MN)
MAR															
24.		.20	30		2.2	4.3	<.1	0 2	0	58		08 <	.10	170	7

16891780 UNNAMED NORTH COAST STREAM, MALAKAL (LAT 07°19'51" N., LONG 134°27'33" E.)

DATE	TIME	FI INS TAN	REAM- LOW, STAN- HEOUS CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STANI ARD UNITS)	A.	MPER-	HARD- NESS (MG/L AS CACO3)	HARD NESS NONCA BONAT (MG/ CACO	R- DE S	LCIUM IS- OLVED MG/L	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCE	
MAR 24	1405		.03	83	7.	1	27.0	30		10	7.8	2.6	5.8		29 .5
DAT	2	POTAS- SIUM, DIS- SOLVED (MG/L	ALKA- LINITY LAB (MG/I AS CACO3	SULF DIS SOI (MG	ATE I - I VED S	CHLO- RIDE, DIS- SOLVED (MG/L	FLUO- RIDE, DIS- SOLVE (MG/L AS F)	DIS SOL D (MG	CA, S - C VED T /L	OLIDS, EUM OF CONSTI- CUENTS, DIS- SOLVED (MG/L)	SOLIDS DIS- SOLVE (TONS	, GE NO2+ D DI SOL (MG	S- D VED SO S/L (U	ON, IS- LVED G/L FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
MAR 24.		.60	20		7.1	7.9	<.1	0 1	5	59	.0	8	.33	110	23

< Actual value is known to be less than the value shown.

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

CAROLINE ISLANDS, PALAU ISLANDS -- Continued

16891800 ELODESACHEL SPRING, KOROR (LAT 07°20'44" N., LONG 134°31'04" E.)

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)		HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	DIS-	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO
MAR 24	1315	.30	135	7.9	26.0	60	0	18	3.6	4.7	15	.3
DATE	POTA SIC SOLV (MG/ AS F	JM, LINITY S- LAB /ED (MG/I /L AS	SULFA DIS- L SOLV (MG/	DIS- ED SOLV	RIDE, DIS- ED SOLVEI L (MG/L	SILICA DIS- SOLVEI O (MG/L AS SIO2)	CONST	SOLIDS, I- DIS- S, SOLVEI - (TONS ED PER	NO2+NO DIS- SOLVE (MG/L	IRON DIS	ED SOLV	SE, S- VED /L
MAR 24		20 59	6	.4 5.	3 <.10	20	9	94 .13	<.1	0 4	50	28

CAROLINE ISLANDS, YAP ISLANDS

093144138054470 MAGAF STREAM, YAP (LAT 09°31'44" N., LONG 138°05'44" E.)

DATE	TIME	FI INS	REAM- LOW, STAN- NEOUS CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	AT	PER-	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	DI SO (M	CIUM S- LVED S G/L (AGNE- SIUM, DIS- OLVED MG/L S MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCEN	SO T NT RA	DIUM AD- RP- ION TIO
MAR 22	1040	1	E.01	262	7.0		26.0	120	3	2	4	14	9.2	1	15	. 4
DAT	E	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/I AS CACOS	SULF. DIS SOL (MG	ATE RI - DI VED SO /L (N	LO- DE, S- LVED	FLUO- RIDE, DIS- SOLVEI (MG/L AS F)	SILIC DIS- SOL (MG. AS SIO	CONS VED TUEN /L DI SOI		SOLIDS, DIS- SOLVED (TONS PER AC-FT)	GE NO2+ DI	S- D VED SO	ON, IS- LVED G/L FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	
MAR 22.		.30	115		5.0	3	<.10	2	7	160	.22		.31	960	430	

 $[\]mbox{<}$ Actual value is known to be less than the value shown. E Estimated value.

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

CAROLINE ISLANDS, TRUK ISLANDS

16896800 CHUN STREAM, DUBLON (LAT 07°22'30" N., LONG 151°51'43" E.)

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM
FEB 28	1100	95	6.9	27.5	33	0	6.2	4.3	5.1	25
20,,,				27.0	33			4.5	3.1	23
DATE	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
FEB 28	.4	.40	37	2.1	6.2	<.10	21	68	.09	<.10
DATE	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)
FEB 28	70	<1	<100	<10	<1	10	<1	4	1000	100
DA:	ERA (UC	COV- REALE ER	TAL NE COV- D ABLE SO G/L (U	IS- REC LVED ERA G/L (UC	CURY DEN FAL TOT COV- REC ABLE ERA G/L (UG	COV- RECABLE ERA	AL SEL OV- NIU BLE TOT	M, REC AL ERA /L (UG	OV- RECABLE ERA	AL COV- BLE
FEB 28.		1	<10	85	<.1	<1	6	<1	<1	10

< Actual value is known to be less than the value shown.

PERIODIC DETERMINATIONS OF TEMPERATURES 87

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)
			MAR	IANA ISLANDS	s, ISLAND OF SAIP	AN			
	1680	1000	- SF TA	LOFOFO STRE	MM, SAIPAN (LAT 1	5 12 58	LONG 145	46 31)	
OCT , 19					JAN , 19				
18 NOV	1505	.44	27.5	26.0	05 AUG	1030	.06	28.5	25.0
22	1015	.42	27.5	26.5	02	1450	1.3		26.0
			MA	RIANA ISLANI	OS, ISLAND OF GUA	м			
	1680960	00 -	LA SA FU	A RIVER NEAR	R UMATAC, GUAM (L	AT 13 18	8 23 LONG	144 39 45)
NOV , 19		2.2	28.0	27.0	MAR , 19		60	28.5	27.0
09 DEC	1300	2.3	20.0	27.0	19 APR	1055	.60	20.5	27.0
14	1200	1.6	28.0	27.0	24 MAY	1305	.55	28.5	27.0
JAN , 19	1225	.97	28.5	27.5	16	1430	.54	29.0	27.0
FEB 22	1405	.84	28.5	27.5					
	168400	000	- TINAGA	RIVER NR INA	ARAJAN, GUAM (LAT	13 17	10 LONG 14	14 45 04)	
NOV , 19	83				MAY , 19	84			
DEC	1600	3.7	27.5	26.0	14 JUN	1225	.68	29.0	27.0
12	1335	3.1	28.5	27.5	19	1225	2.5	28.5	27.0
JAN , 19 11		2.1	28.5	27.5	JUL	1225	1.1	29.0	27.5
FEB	1340	2.1	20.3	27.5	AUG	1235	1.1	25.0	27.5
21 MAR	1405	1.1	28.0	27.0	15 SEP	1620	6.2	27.0	25.0
14	1500	.73	28.5	27.5	13	1215	4.5	27.0	25.0
APR 10	1145	.61	29.0	27.0					
	168	347000	- IMON	G RIVER NR A	AGAT, GUAM (LAT 1	3 20 -17	LONG 144	41 55)	
OCT , 19	83				APR , 19	84			
12	1005	3.8	28.5	27.0	03	1145	2.0	29.0	27.5
NOV 16	1240	55	26.5	25.5	26 MAY	1210	1.6	28.5	27.0
DEC 19	1050	5.9	28.5	27.0	22 SEP	1205	1.8	28.5	27.0
JAN , 19	84				14	1125	11	27.5	26.5
16	1110	3.1	29.0	27.0					
	168481	100	-ALMAGOS	A RIVER NEAR	R AGAT, GUAM (LAT		43 LONG 14	44 41 36)	
NOV , 19	83 1525	17.6	27.0	25.5	APR , 19 26	1320	.32	28.5	27.0
DEC					MAY				
19 JAN , 19	1240	1.21	29.0	26.0	22 JUL	1410	.24	28.5	27.0
16	1240	.92	29.0	27.0	06	1120	.50	27.5	27.0
FEB 28	1205	.60	27.5	26.5	SEP 14	1335	3.34	27.5	26.5
APR						77.7			2.7.7
03	1335	.37	29.0	27.5					

PERIODIC DETERMINATIONS OF TEMPERATURES

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)		DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)
			MARIANA	ISLANDS,	ISLAND O	F GUAMC	ontinued			
	16848	3500	- MAULAP	RIVER NEA	R AGAT,	GUAM (LAT	13 21 14	LONG 144	41 44)	
OCT , 198	33					MAY , 19	84			
12 NOV	1325	2.1	30.5	28.0		22 JUL	1550	.60	28.5	27.0
16	1020	8.0	26.5	25.5		06	1410	1.2	29.5	27.5
DEC 19	1415	2.6	28.5	26.5		AUG 14	1100	1.8		26.0
JAN , 198 16	34 1340	1.5	29.0	27.0		SEP 14	1535	3.3	27.5	26.5
APR 03	1550	.65	29.0	27.5			2175	2.53		
26	1515	.56	28.5	27.0						
1685450	10	- HGHM P	TVED AR T	ALOFOFO FA	IIS ND T	ALOPOPO (ייעעון אינוי	13 10 16	TONG 144	44 011
		ooon n	1,010 11	indicate in	DDC/III 1			13 13 10	DONG 144	14 017
NOV , 198	33 1130	22	28.5	27.0		APR , 19	1540	4.9	29.0	28.0
DEC 13	1105	19	28.5	27.5		MAY 15	1310	5.6	28.5	27.0
JAN , 198	34					JUN				
17 FEB	1035	12	28.5	27.0		JUL 21	1505	7.9	29.0	27.5
22 MAR	1105	7.6	28.0	27.0		11 SEP	1150	4.8	29.5	27.0
14	1210	7.1	29.0	28.0		26	1405	48	27.5	26.0
	168	58000	- YLIG	RIVER NR	YONA, GU	AM (LAT 13	23 28 L	ONG 144 4	5 06)	
NOV , 198	33					APR , 19	84			
07	1400	24	28.0	27.0		10	1450	1.1	29.0	27.0
DEC 13	1420	14	28.5	27.5		MAY 14	1545	.67	29.0	27.0
JAN , 198	1535	9.1	28.5	27.5		JUN 19	1405	21	28.5	27.0
FEB						JUL		9.8		
21 MAR	1215	3.8	28.0	27.0		10	1410	9.8	29.0	27.0
15	1340	2.1	28.5	27.0						
			CZ	AROLINE IS	LANDS. Y	AP ISLANDS				
						2001				
	168931	00	- BURONG	STREAM, YA	P, YAP I	SLANDS (LA	T 09 32	05 LONG 1	38 07 19)	
OCT , 198				25.2		MAR , 19			07.5	
NOV	1020	1.8	28.0	26.0		JUN	1420	.31	27.5	26.5
01	1350 1025	3.9	27.5 27.0	27.0 26.0		28 AUG	0915	.13	27.0	25.5
DEC						13	0905	1.2	26.5	25.5
14 JAN , 198	1020 34	.17	26.5	26.0		31 SEP	1100	1.1	27.0	26.5
17	1345	.10	27.5	26.0		25	1355	.40	28.5	26.0
FEB 29	1045	1.3	26.5	25.0						

89

PERIODIC DETERMINATIONS OF TEMPERATURES

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)		DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	ATURE
			C	AROLINE ISI	LANDS, TRU	K ISLAND	os			
1689	3 800	- WICH	EN RIVER	AT ALT 18M,	, MOEN, TF	UK ISLAN	NDS (LAT	07 27 01	LONG 151	51 56)
FEB , 19 07	84 1200	.39	28.0	27.0		JUN , 19		3.5	28.0	26.5
02	1145 0915	2.4		28.0 26.0						
		15000500		OLINE ISLAM				a 162 F0	22.	
		16899620	- M	ELO RIVER,	KUSRAE (I	AT 05 20	30 LON	G 162 58	337	
DEC , 19 03 FEB , 19	1550	19	27.0	25.5		MAR , 19 05 JUN	1625	2.5	27.0	26.5
01	1615	12	27.5	26.0		07	0930	23	27.0	26.5
		16899750	- M.	ALEM RIVER	, KOSRAE	LAT 05 1	17 35 LO	NG 163 00	54)	
DEC , 19	83					MAR , 19	84			
01	1620	11	28.0	26.0		20	1300	3.3	27.0	25.5
JAN , 19		6.1		26.0		26	1335	2.2	27.0	25.5
17 31 FEB	1630 1655	6.1 17	27.5	25.5		MAY 23 JUN	1145	3.1		26.5
13 27	1140 1630	5.5 6.9	27.5 27.5	26.0 26.0		05 07	1630 1455	3.9 22	26.5 26.5	
		16899800	- T	OFOL RIVER	, KOSRAE	LAT 05 1	L9 10 LO	NG 163 00	24)	
DEC , 19	83					FEB , 19	984			
01	1410 1605	11 9.4	28.0 27.0	26.0 25.5		28 MAR	1020	5.2	27.5	26.0
JAN , 19						19	1005	3.5	27.0	
25 FEB	1130	9.8		26.0		27 MAY	1625	1.5	26.0	25.5
01 14	1000	12 9.5	26.5	25.5 25.5		23	1450	.81		26.5

PERIODIC DETERMINATIONS OF TEMPERATURES

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)
			SA	MOA ISLA	NDS, ISLAND OF TUTU	LLA			
	1691	2000	- PAGO S	TREAM AT	AFONO, TUTUILA (LA	r 14 16	03 LONG 17	0 39 02)	
OCT , 19	83				MAR , 19	984			
04	1425	2.2	25.0	24.0	15	0935	2.8	26.0	24.0
13	1215	.34	24.0	24.0	APR				
19 NOV	1525	21	25.0	24.5	25 MAY	1325	1.2	26.0	24.0
08	0950	.91	24.0	22.0	31	1050	.34	26.0	24.5
DEC					JUN				
01	1035	5.7	25.0	24.0	29	0905	.48	25.0	23.0
19 JAN , 19	1500	1.0	25.0	23.0	JUL 13	0910	.23	26.0	24.0
05	0915	1.4		24.0	AUG	0310		2010	2.00
24	0955	1.2	25.0	23.0	17	1050	.18	24.0	22.0
FEB 10	0025	.48	27.0	25.0	30 SEP	1025	.78	25.0	24.0
15	0835	1.1	28.0	26.0	12	1005	6.9	26.0	24.0
	157.	7.17		7,111	22-2-22	274.5	7.5		
	16920	0500	- AASU S	TREAM AT	AASU, TUTUILA (LAT		1 LONG 170	45 30)	
OCT , 19			05.5	24.0	APR , 19			27.0	25.0
25 NOV	0800	14	25.5	24.0	28 MAY	0855	4.2	27.0	25.0
29	0825	1.9	26.0	25.0	22	0845	2.4	26.0	24.0
JAN , 19					JUL	1000	1.58		
11	0840	3.8	25.0	23.0	03 AUG	0920	1.6	24.0	22.5
FEB 08 MAR	0920	2.8	25.0	23.0	16 SEP	1210	.56	23.0	21.0
07	0830	8.1	26.0	24.0	28	0830	1.9	26.0	24.0
APR	2015		0.4.0	20.0					
27	0945	4.3	24.0	22.0					
	1693100	00 -	ATAULOMA	STREAM A	AT AFAO, TUTUILA (LA	AT 14 20	10 LONG 1	70 48 02)	
OCT , 19	83				MAR , 19				
04	0810	1.8	26.0	24.0	28	1115	3.9	25.0	23.0
26 NOV	0920	.63	24.0	22.0	MAY 04	0920	.48	28.0	26.0
09	0820	.41	24.0	22.0	JUN	0320	. 40	20.0	20.0
DEC		137			12	1010	.74	26.0	24.5
02	0735	.31	25.0	24.0	JUL	1005		25.2	25.0
14 JAN , 19	0915	.24	27.0	25.0	18 AUG	1025	.56	26.0	25.0
12	1230	.30	24.0	22.0	24	0850	.21	24.0	23.0
20	0815	.59	24.0	22.0	SEP				
FEB 22	0915	1.9	26.0	24.0	05	0920	.23	25.0	23.0
169315	0.0	- ASTLT	מיים איים	ጥ 330 ድጥ	(100M) NR ASILI, TUT	TITT.A (T.	ልጥ 14 19 3	A LONG 17	0 47 38)
105515				- 333 11	vii/ iii. iibibi/101		3	. 2010 17	- 1, 507
NOV , 19				44.0	MAY , 19		4.2		5.00
01	0845	1.6	24.0 25.0	22.0	30 JUN	0950	.71	25.5	24.0
22 DEC	0800	1.2	23.0	24.0	13	1030	2.0	26.0	24.0
08	0910	.91	26.0	23.0	JUL				
FEB , 19				22.12	11	0920	.50	24.0	23.0
01 MAR	0840	1.9	24.0	22.0	AUG 15	0920	.28	24.0	22.0
09	0850	2.5	24.0	22.0	SEP	0320	.20	24.0	22.0
APR					19	0920	1.2	24.0	22.0
24	0940	2.0	26.0	22.0					

PERIODIC DETERMINATIONS OF TEMPERATURES

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)
			SAMOA I	SLANDS, ISLAN	D OF TUTUILAC	ontinue	đ		
169335	000	- LEAFU S	TR AT ALT	370 FT (113M) NR LEONE, TUT	UILA (L	AT 14 19 3	1 LONG 17	0 46 50)
OCT , 1	0.03				MAY , 19	8.4			
13		2.9	24.0	22.0	15 JUN	1010	2.4	26.0	24.0
02	0815	2.7	24.0	22.0	21	0930	1.6	25.0	24.0
18 DEC	0810	2.6	26.0	24.0	JUL 10	1020	.94	24.0	23.0
07	1010	1.8	24.0	22.0	25	0935	.71	26.0	24.0
22	0830	1.5	26.0	24.0	AUG			27.15	
JAN , 1		1.5	24.0	22.0	21 SEP	1015	.36	25.0	23.0
31	0900	4.5	25.0	23.0	25	0930	1.2	24.0	22.0
APR	0300		20.0	23.0	20	0.00		9.511	2515
11	1040	1.9	24.0	22.0					
	169480	000	- AFUELO	STREAM AT MAT	UU, TUTUILA (LA	T 14 18	07 LONG 1	70 41 07)	
OCT , I	983				APR , 19	84			
19		10	25.0	24.0	06	0900	.27	24.0	22.0
NOV 02	1110	.15	24.0	22.0	24 MAY	1210	.63	26.0	22.0
22	1110	.21	25.0	24.0	30	1230	.07	25.5	24.0
DEC 14	1200	.23	24.0	22.0	JUL 06	0915	.05	26.0	23.0
28		3.4	26.0	24.0	AUG	0913	.03	20.0	23.0
JAN ,]		3.4	20.0	24.0	14	1010	.08	24.0	21.0
19 FEB		.19	26.0	24.0	21 SEP	1255	.04	25.0	23.0
02 MAR	0910	.66	25.0	21.0	05	1130	.21	25.0	23.0
13	0820	.72	24.0	22.0					
	1696390	00 -	LEAFU ST	REAM NEAR AUA	SI, TUTUILA (LA	T 14 16	27 LONG 1	70 34 26)	
OCT , I	983				APR , 19	84			
19	0825	.38	26.0	24.0	26 MAY	1115	.04	24.0	22.0
08	0735	.04	24.0	22.0	10	1125	.30	26.0	24.0
23	0800	.05	26.0	24.0	JUL				1 39.5
DEC		22		22.2	05	1020	.03	25.0	23.0
06	0930	.07	26.0	25.0	24	0945	.02	26.0	24.0
09	0910	.10	23.0	21.0	AUG	0016			
20	1220	.08	24.0	22.0	10	0910	.02	24.0	22.0
29	0835	. 82	24.0	22.0	SEP	0050	0.7	24.0	22.0
JAN ,]		.07	26.2	24.0	18	0950	.03	24.0	22.0
19	0925		26.0	24.0					
25	1140	.14	26.0	24.0					

92 GROUND-WATER RECORDS

MARIANA ISLANDS, ISLAND OF SAIPAN

151032145460370. Local number, 14-1045-09 Hakmang Well 78.

LOCATION.--Lat 15°10'22" N., long 145°45'51" E., Hydrologic Unit 20100006, 0.8 mi west-southwest of the Hakmang Communication station and 2.3 mi northeast of San Vicente Village. Owner: Government of the Northern Mariana Islands.

AQUIFER. -- Tagpochau Limestone.

WELL CHARACTERISTICS. -- Drilled artesian well, depth 369 ft, diameter 12 in.

DATUM.--Altitude of land-surface datum is 229 ft. Measuring point: Top of casing, about 230 ft above mean sea level.

PERIOD OF RECORD. -- Water-level recorder, March 1973 to May 1976, March 1977 to September 1978, December 1980 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 20.58 ft above mean sea level, Sept. 17, 1975; lowest, 18.40 ft above mean sea level, Aug. 24, 1982.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	19.09	19.15	19.17	19.06	19.22	19.21	19.21	19.24	19.27	19.29	18.72	
2	19.08	19.15	19.16	19.05	19.24	19.22	19.21	19.25	19.26	19.31	18.90	
3	19.10	19.14	19.14	19.07	19.26	19.24	19.22	19.25	19.26	19.31	18.95	
4	19.11	19.15	19.15	19.07	19.24	19.24	19.22	19.26	19.27	19.33	18.94	
5	19.12	19.16	19.14	19.09	19.24	19.26	19.22	19.25	19.27	19.36	18.93	
6	19.12	19.15	19.14	19.08	19.26	19.24	19.24	19.24	19.29	19.36	18.97	
7	19.12	19.14	19.14	19.09	19.24	19.23	19.24	19.25	19.31	19.34	18.96	
8	19.08	19.14	19.13	19.10	19.24	19.24	19.24	19.27	19.32	19.36	18.98	
9	19.08	19.13	19.13	19.11	19.21	19.22	19.25	19.28	19.31	19.37	18.98	
10	19.08	19.14	19.15	19.12	19.23	19.20	19.25	19.27	19.30	19.36	18.96	
11	19.08	19.14	19.16	19.13	19.22	19.17	19.27	19.28	19.30	19.37	18.98	
12	19.04	19.14	19.16	19.16	19.23	19.16	19.27	19.28	19.29	19.37	19.01	
13	19.04	19.14	19.16	19.14	19.24	19.17	19.26	19.29	19.31	19.36	19.01	18.85
14	19.02	19.16	19.17	19.14	19.25	19.18	19.27	19.29	19.32	19.36		18.86
15	19.02	19.17	19.18	19.14	19.23	19.19	19.29	19.31	19.32	19.37	777	18.85
16	19.04	19.15	19.17	19.16	19.20	19.20	19.29	19.30	19.32	19.38		18.86
17	19.04	19.17	19.18	19.18	19.22	19.21	19.28	19.29	19.34	19.39		18.87
18	19.05	19.18	19.19	19.19	19.23	19.22	19.27	19.28	19.35	19.40		18.85
19	19.08	19.18	19.17	19.20	19.24	19.24	19.27	19.28	19.35	19.41		18.85
20	19.10	19.18	19.16	19.17	19.24	19.24	19.26	19.26	19.36	19.42		18.84
21	19.13	19.17	19.14	19.20	19.24	19.25	19.25	19.25	19.34	19.44		18.83
22	19.13	19.18	19.14	19.22	19.24	19.24	19.24	19.26	19.33	19.42		18.83
23	19.16	19.18	19.13	19.24	19.24	19.23	19.26	19.27	19.33	19.42		18.84
24	19.16	19.15	19.14	19.23	19.24	19.24	19.23	19.27	19.34	19.42		19.71
25	19.16	19.15	19.12	19.23	19.25	19.20	19.20	19.27	19.32	19.43		18.86
26	19.14	19.16	19.13	19.21	19.23	19.16	19.20	19.28	19.31	19.43		18.72
27	19.14	19.16	19.11	19.21	19.22	19.16	19.21	19.28	19.29	19.44		18.91
28	19.16	19.17	19.09	19.20	19.19	19.18	19.21	19.28	19.28	19.46		18.97
29	19.16	19.16	19.09	19.20	19.19	19.18	19.23	19.27	19.29	19.50		18.98
30	19.14	19.16	19.08	19.19		19.18	19.22	19.27	19.28	19.79		19.00
31	19.15		19.08	19.20	555	19.18		19.27		18.66		
MEAN	19.10	19.16	19.14	19.15	19.23	19.21	19.24	19.27	19.31	19.38		141
MAX	19.16	19.18	19.19	19.24	19.26	19.26	19.29	19.31	19.36	19.79		
MIN	19.02	19.13	19.08	19.05	19.19	19.16	19.20	19.24	19.26	18.66		

MARIANA ISLANDS, ISLAND OF SAIPAN

93

151130145445970. Local number, 14-1144-07 Akgak Well 31.

LOCATION.--Lat 15°11'30" N., long 145°44'59" E., Hydrologic Unit 20100006, 1.2 mi south of Capitol Hill and 2.5 mi north of San Vicente Village. Owner: Government of the Northern Mariana Islands.

AQUIFER .-- Tagpochau Limestone.

WELL CHARACTERISTICS .-- Drilled perched water-table well, depth 290 ft, diameter 12 in.

DATUM.--Altitude of land-surface datum is 615 ft. Measuring point: Top of casing, 615.37 ft above mean sea level. PERIOD OF RECORD.--Water-level recorder, July 1982 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 407.97 ft above mean sea level, Dec. 24, 1982; lowest, 371.34 ft above mean sea level, July 21, 1984.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	377.26 377.26	377.02 376.98	376.70 376.65	375.56 375.52	374.24 374.21	373.18 373.13	372.56 372.55	372.24 372.20	371.82 371.83	371.68 371.66	371.66 371.68	374.40 374.50
3	377.26	376.96	376.61	375.48	374.18	373.11	372.54	372.19	371.83	371.62	371.68	374.70
4	377.25	376.94	376.51	375.44	374.11	373.09	372.53	372.20	371.83	371.57	371.68	374.90
5	377.22	376.94	376.45	375.41	374.09	373.03	372.52	372.17	371.84	371.56	371.64	375.00
6	377.22	376.94	376.40	375.37	374.05	373.02	372.51	372.13	371.85	371.56	371.62	375.10
7	377.21	376.93	376.35	375.33	374.02	373.01	372.49	372.11	371.87	371.54	371.60	375.30
8	377.20	376.92	376.32	375.29	373.99	372.97	372.48	372.09	371.88	371.51	371.58	375.40
9	377.26	376.92	376.31	375.24	373.96	372.92	372.47	372.06	371.89	371.48	371.57	375.50
10	377.27	376.91	376.29	375.22	373.92	372.87	372.46	372.04	371.93	371.45	371.54	375.70
11	377.24	376.91	376.25	375.18	373.86	372.83	372.44	372.01	371.94	371.42	371.54	376.00
12	377.21	376.90	376.21	375.13	373.83	372.79	372.43	372.00	371.95	371.45	371.53	376.20
13	377.19	376.89	376.19	375.05	373.79	372.77	372.41	372.01	371.99	371.44	371.53	376.40
14	377.23	376.88	376.13	375.00	373.73	372.71	372.41	371.97	372.18	371.41	371.67	376.60
15	377.23	376.85	376.14	374.96	373.69	372.66	372.43	371.94	372.30	371.60	371.89	376.70
16	377.20	376.84	376.11	374.91	373.65	372.63	372.43	371.92	372.37	371.76	372.09	376.80
17	377.16	376.82	376.07	374.88	373.63	372.62	372.42	371.91	372.34	371.64	372.22	376.90
18	377.11	376.81	376.04	374.84	373.64	372.62	372.42	371.90	372.20	371.53	372.29	377.00
19	377.09	376.78	376.01	374.81	373.60	372.61	372.42	371.89	372.13	371.42	372.42	377.00
20	377.07	376.74	375.98	374.76	373.55	372.61	372.41	371.88	372.11	371.38	372.59	377.10
21	377.05	376.71	375.94	374.71	373.52	372.60	372.47	371.88	372.09	371.36	372.69	377.20
22	377.04	376.68	375.91	374.68	373.50	372.60	372.47	371.87	372.01	371.48	372.70	377.40
23	377.08	376.66	375.89	374.63	373.45	372.60	372.42	371.86	371.94	371.44	372.77	377.60
24	377.07	376.66	375.84	374.58	373.43	372.59	372.39	371.85	371.98	371.46	373.00	377.80
25	377.06	376.66	375.83	374.53	373.39	372.59	372.37	371.83	371.88	371.61	373.10	378.10
26	377.05	376.65	375.79	374.50	373.34	372.58	372.35	371.83	371.82	371.78	373.30	378.40
27	377.04	376.67	375.77	374.44	373.32	372.57	372.32	371.82	371.79	371.91	373.50	378.60
28	377.04	376.70	375.73	374.41	373.29	372.57	372.30	371.82	371.77	371.84	373.70	378.70
29	377.03	376.69	375.71	374.36	373.22	372.57	372.28	371.82	371.74	371.76	373.90	378.80
30	377.02	376.70	375.67	374.33		372.57	372.27	371.82	371.70	371.69	374.10	378.90
31	377.02		375.64	374.30		372.57		371.82		371.63	374.30	
MEAN	377.15	376.82	376.11	374.93	373.73	372.76	372.43	371.97	371.96	371.57	372.36	376.62
MAX	377.27	377.02	376.70	375.56	374.24	373.18	372.56	372.24	372.37	371.91	374.30	378.90
MIN	377.02	376.65	375.64	374.30	373.22	372.57	372.27	371.82	371.70	371.36	371.53	374.40
				24.253.50	77.155.55					13.55		

WTR YR 1984 MEAN 374.03 MAX 378.90 MIN 371.36

GROUND-WATER RECORDS

MARIANA ISLANDS, ISLAND OF SAIPAN

	LOCAL IDENT- I-	LAT- I-	LONG- I-	DATE OF		SPE- CIFIC CON- DUCT-	TEMPER-	CHLO- RIDE, DIS- SOLVED
STATION NUMBER	FIER	TUDE	TUDE	SAMPLE	TIME	ANCE (UMHOS)	ATURE (DEG C)	(MG/L AS CL)
150723145431170	14-0742-06	15 07 23	145 43 11	84-06-01 84-08-02	1520 0936	5800 5950		1700 1700
150737145431070	14-0742-07	15 07 37	145 43 10	84-06-01 84-08-02	0910 1015	4650 5330	==	1400 1600
150744145430370	14-0742-08	15 07 44	145 43 03	84-06-01 84-08-02	0913 1031	6370 6890		1900 2000
150731145430870	14-0742-11	15 07 31	145 43 08	84-06-01 84-08-02	1600 1419	6330 6700	72	1900 2000
150736145425370	14-0742-13	15 07 36	145 42 53	84-06-01 84-08-02	0915 1043	12100 11400	55	3900 3500
150732145432070	14-0743-09	15 07 32	145 43 20	84-06-01 84-08-02	1530 0934	9320 10300	- 32	2800 3100
150728145431470	14-0743-10	15 07 28	145 43 14	84-06-01 84-08-02	1540 0948	6190 6490		1800 1800
150730145431370	14-0743-11	15 07 30	145 43 13	84-06-01 84-08-02	0905 0953	6260 6560		1800 1900
150730145435270	14-0743-17	15 07 30	145 43 52	84-05-03 84-06-01 84-08-02	1130 0855 0906	1040	28.0	150 160 160
150737145440670	14-0743-18	15 07 37	145 44 06	84-05-03 84-06-01 84-08-02	1135 0820 0922	1850 1850 1940	28.5	400 430 440
150749145434170	14-0743-19	15 07 49	145 43 41	84-05-03 84-06-01 84-08-02	1140 0815 0830	1950 1960	28.5	420 430 450
150731145440370	14-0743-22	15 07 31	145 44 03	84-05-03 84-06-01	1120 0845	1730 2290	28.5	360 560
150738145435870	14-0743-23	15 07 38	145 43 58	84-05-03 84-06-01 84-08-02	1110 0833 0852	1670 1730 1630	28.0	340 400 380
150743145435470	14-0743-24	15 07 43	145 43 54	84-05-03 84-06-01 84-08-02	1055 0825 0837	2090 2370 2360	28.0	480 580 580
150740145435570	14-0743-25	15 07 40	145 43 55	84-05-03 84-06-01 84-08-02	1105 0830 0845	1640 1690 1800	28.0	330 380 400
150733145435970	14-0743-26	15 07 27	145 43 44	84-05-03 84-06-01 84-08-02	1115 0840 0859	1770 1810 1880	28.0	370 420 440
150722145434570	14-0743-27	15 07 22	145 43 45	84-05-03 84-06-01	1125 0850	1770 1640	31.5	390 370
150843145434770	14-0843-04	15 08 43	145 43 47	84-05-31 84-08-02	1330 1405	4320 4330		1200 1200
150905145435670	14-0943-01	15 09 05	145 43 56	84-05-31 84-08-02	1315 1345	2480		590 620
150919145441170	14-0944-03	15 09 19	145 44 11	84-05-31	1340	4840		1400
151026145454970	14-1045-08	15 10 26	145 45 49	84-05-01 84-05-31 84-08-02	1215 1400 1500	1080 1130	27.5	140 180 200
151021145460870	14-1046-03	15 10 21	145 46 08	84-05-31 84-08-02	1410 1532	2090 1390		500 320

GROUND-WATER RECORDS 95
MARIANA ISLANDS, ISLAND OF SAIPAN--Continued

STATION NUMBER	LOCAL IDENT- I- FIER	LAT- I- TUDE	LONG- I- TUDE	DATE OF SAMPLE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	TEMPER- ATURE (DEG C)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
151127145434270	14-1143-02	15 11 27	145 43 42	84-05-03 84-05-30 84-07-31	0900 1300 1420	1400 3970 1430	28.5	290 1100 300
151127145434070	14-1143-05	15 11 27	145 43 40	84-05-03 84-05-30 84-07-31	0905 1305 1415	4030 4040 4340	30.0	1200 1100 1300
151248145443470	14-1244-05	15 12 48	145 44 34	84-05-02 84-05-30 84-08-01	1450 1425 1450	5730 8030 9550	27.0	1600 2400 2900
151239145441870	14-1244-07	15 12 39	145 44 18	84-05-02 84-05-30	1500 1410	6110 5760	27.0	1700 1700
151246145443770	14-1244-08	15 12 46	145 44 37	84-05-02 84-05-30 84-08-01	1505 1415 1500	6270 9440 15300	27.0	1800 2900 5000
151250145444170	14-1244-09	15 12 50	145 44 41	84-05-02 84-05-30 84-08-01	1515 1405 1445	4840 5530 7190	27.5	1400 1600 2100
151250145443370	14-1244-10	15 12 50	145 44 33	84-05-02 84-05-30 84-08-01	1445 1435 1510	12400 13000 12900	28.0	3900 4200 4100
151251145443070	14-1244-13	15 12 51	145 44 30	84-05-29 84-07-30	1315 1405	560 574		36 38
151258145443770	14-1244-14	15 12 58	145 44 37	84-05-29 84-07-30	1320 1425	1680 1490		380 360
151255145443770	14-1244-16	15 12 55	145 44 37	84-07-30	1417	609		76
151219145440770	14-1244-17	15 12 19	145 44 07	84-07-30	1024	2970		800
151312145441570	14-1344-14	15 13 12	145 44 15	84-05-03 84-05-30 84-07-31	0845 1335 1430	3120 3060 4600	29.5	800 820 1300
151314145441570	14-1344-15	15 13 14	145 44 15	84-05-03 84-05-30 84-07-31	0835 1340 1435	9500 9300 8950	27.0 	2900 2800 2700
151312145443970	14-1344-17	15 13 12	145 44 39	84-05-02 84-05-29 84-07-30	1435 1300 1310	827 	27.0 	75 77 83
151309145443870	14-1344-18	15 13 08	145 44 39	84-05-02 84-05-29 84-07-30	1415 1309 1320	920 1030	27.0	120 140 220
151309145443370	14-1344-19	15 13 09	145 44 33	84-05-02 84-05-29 84-07-30	1420 1305 1330	1020 1110	27.0	150 210 220
151310145443970	14-1344-20	15 13 10	145 44 39	84-05-29 84-07-30	1345 1345	900 1090		180 220
151302145443870	14-1344-21	15 13 02	145 44 38	84-07-30	1440	3370	-	900

GROUND-WATER RECORDS

MARIANA ISLANDS, ISLAND OF GUAM

132624144452771. Local number, 18-2645-07 Ordot Well A-20.

LOCATION.--Lat 13°26'24" N., long 144°45'27" E., Hydrologic Unit 20100003, at Ordot School, 1.4 mi west of junction of Routes 4 and 10, Ordot. Owner: Government of Guam.

AQUIFER. -- Mariana Limestone and Alutom formation.

WELL CHARACTERISTICS. -- Drilled parabasal water-table well, depth reported 120 ft, diameter 6 in.

DATUM.--Altitude of land-surface datum is 137 ft. Measuring point: Top of casing, 141.74 ft above mean sea level.

PERIOD OF RECORD. -- Water-level recorder, January 1974 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 54.03 ft above mean sea level, Oct. 21, 1980; lowest, 32.76 ft above mean sea level, June 21, 22, 1984.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	36.93	38.89	39.97	39.54	37.32	35.72	34.27	33.45	32.94	33.01	34.33	40.79
2	37.01	38.89	40.05	39.45	37.26	35.67	34.23	33.41	32.93	33.01	34.41	40.91
3	37.04	38.93	40.10	39.36	37.20	35.63	34.20	33.39	32.92	33.02	34.58	41.07
4	37.08	39.07	40.20	39.28	37.12	35.59	34.17	33.36	32.90	33.03	34.71	41.19
5	37.12	39.24	40.25	39.19	37.07	35.54	34.14	33.34	32.90	33.03	34.84	41.29
6	37.14	39.37	40.30	39.12	37.01	35.49	34.11	33.32	32.90	33.04	35.00	41.38
7	37.16	39.50	40.35	39.06	36.94	35.42	34.08	33.30	32.89	33.06	35.25	41.41
8	37.14	39.63	40.40	38.98	36.88	35.37	34.05	33.28	32.88	33.09	35.45	41.42
9	37.13	39.73	40.45	38.90	36.82	35.32	34.02	33.26	32.87	33.12	35.65	41.43
10	37.10	39.81	40.50	38.82	36.75	35.27	34.00	33.24	32.86	33.17	35.85	41.44
11	37.08	39.84	40.50	38.74	36.70	35.22	33.95	33.23	32.85	33.23	36.11	41.56
12	37.08	39.83	40.45	38.67	36.65	35.16	33.93	33.21	32.83	33.30	36.32	41.69
13	37.10	39.79	40.45	38.61	36.60	35.12	33.89	33.20	32.83	33.38	36.54	41.77
14	37.15	39.76	40.40	38.53	36.55	35.07	33.87	33.19	32.82	33.48	36.74	41.84
15	37.23	39.71	40.40	38.46	36.49	35.01	33.84	33.17	32.81	33.57	36.91	41.87
16	37.32	39.65	40.35	38.37	36.42	34.97	33.82	33.15	32.80	33.64	37.08	41.89
17	37.35	39.63	40.29	38.31	36.37	34.92	33.79	33.14	32.80	33.73	37.20	41.88
18	37.37	39.65	40.25	38.23	36.32	34.87	33.76	33.13	32.79	33.79	37.37	41.82
19	37.39	39.72	40.23	38.15	36.27	34.83	33.74	33.11	32.78	33.85	37.69	41.76
20	37.46	39.78	40.23	38.09	36.22	34.78				33.89	38.04	41.65
20	37.40	39.76	40.22	30.09	30.22	34.70	33.72	33.09	32.77	33.09	30.04	41.05
21	37.51	39.82	40.21	38.02	36.17	34.73	33.69	33.08	32.76	33.94	38.32	41.58
22	37.61	39.83	40.18	37.93	36.13	34.69	33.67	33.06	32.77	33.99	38.56	41.53
23	37.76	39.81	40.14	37.87	36.10	34.66	33.64	33.04	32.80	34.02	38.82	41.51
24	37.92	39.78	40.09	37.83	36.05	34.62	33.63	33.03	32.84	34.04	39.10	41.58
25	38.10	39.77	40.05	37.77	35.99	34.57	33.59	33.02	32.87	34.08	39.31	41.70
26	38.26	39.78	39.97	37.71	35.93	34.52	33.59	33.00	32.89	34.11	39.53	41.86
27	38.45	39.82	39.90	37.65	35.88	34.47	33.55	32.99	32.92	34.14	39.73	42.07
28	38.62	39.84	39.82	37.59	35.83	34.43	33.52	32.98	32.94	34.18	39.97	42.30
29	38.73	39.87	39.75	37.54	35.77	34.38	33.49	32.96	32.97	34.21	40.22	42.48
30	38.81	39.93	39.68	37.46	33.77	34.35	33.46	32.95	32.99	34.23	40.41	42.69
31	38.87		39.61	37.38		34.32		32.94	32.99	34.27	40.68	42.09
31						34.32		32.34		34.27	40.00	
MEAN	37.55	39.62	40.18	38.41	36.51	34.99	33.85	33.16	32.86	33.60	37.25	41.65
MAX	38.87	39.93	40.50	39.54	37.32	35.72	34.27	33.45	32.99	34.27	40.68	42.69
MIN	36.93	38.89	39.61	37.38	35.77	34.32	33.46	32.94	32.76	33.01	34.33	40.79

WTR YR 1984 MEAN 36.63 MAX 42.69 MIN 32.76

97 MARIANA ISLANDS, ISLAND OF GUAM

132644144480871. Local number, 18-2648-02 BPM Well 1.

LOCATION.--Lat 13°26'44" N., long 144°48'08" E., Hydrologic Unit 20100003, on lot number 2287, 0.2 mi southeast of junction of Routes 15 and 10, Mangilao. Owner: Ana P. Diaz.

AQUIFER. -- Coralline Limestone, probably Miocene age.

WTR YR 1984 MEAN

2.80

MAX

3.34

MIN

2.41

WELL CHARACTERISTICS.--Drilled basal water-table well, depth reported 235 ft, casing diameter 12 in.

DATUM. -- Altitude of land-surface datum is 210 ft. Measuring point: Top of casing, 209.86, revised, ft above mean sea level.

PERIOD OF RECORD.--Occasional measurements, February 1972 to December 1973.
Water level recorder, January 1974 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 4.45 ft above mean sea level, May 22, 1976; lowest, 1.89 ft above mean sea level, Feb. 11, 12, 1983.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 MEAN VALUES DAY OCT NOV DEC JUL AUG SEP JAN FEB APR MAY JUN 2.97 2.94 3.25 2.65 2.68 2.57 2.43 2.60 2.68 2.89 2.90 2.97 2.66 2.43 2.69 2.64 2.92 2.97 2.94 2.58 2.69 2.91 2.96 3.23 2.69 2.66 2.76 2.44 2.64 2.88 2.92 2.97 2.96 2.95 3.19 2.66 2.76 2.58 2.45 2.65 2.72 2.87 2.92 2.98 2.95 2.95 3.16 2.96 2.95 5 2.66 2.76 2.57 2.45 2.67 2.72 2.87 2.92 2.98 3.13 6 2.67 2.76 2.47 2.95 2.56 2.68 2.72 2.88 2.90 2.99 2.89 2.78 2.79 2.86 2.99 2.95 2.93 3.05 2.68 2.54 2.49 2.68 R 2.68 2.52 2.50 2.68 2.71 2.84 2.88 2.98 2.95 2.94 3.06 2.99 2.95 2.77 2.68 2.51 2.52 2.68 2.73 2.83 2.89 2.95 3.05 10 2.69 2.50 2.54 2.72 2.83 2.91 2.99 2.96 2.93 3.08 2.68 11 2.69 2.73 2.51 2.56 2.67 2.70 2.80 2.91 2.97 2.96 2.91 3.09 12 2.69 2.71 2.50 2.55 2.68 2.68 2.81 2.89 2.94 2.95 2.89 3.08 2.69 2.56 13 2.70 2.50 2.68 2.68 2.81 2.90 2.70 2.82 2.92 2.49 2.68 2.69 2.90 2.96 2.86 3.10 2.58 2.72 2.83 2.92 2.91 2.96 2.86 3.08 15 2.69 2.70 2.51 2.68 2.86 16 2.69 2.69 2.58 2.68 2.74 2.84 2.91 2.96 3.05 2.52 2.92 2.96 2.92 3.03 2.85 2.91 17 2.68 2.69 2.55 2.59 2.68 2.76 2.90 2.77 2.92 2.98 18 2.69 2.56 2.69 2.85 2.96 3.03 2.88 2.97 3.04 3.04 2.65 2.69 2.54 2.59 2.71 2.78 2.84 2.87 2.93 20 2.65 2.69 2.60 2.72 2.79 2.94 2.98 3.08 3.00 2.50 2.83 2.85 21 2.99 3.12 2.96 2.69 2.50 2.72 2.79 2.83 2.83 2.96 2.66 2.60 22 2.66 2.69 2.50 2.62 2.72 2.79 2.82 2.81 2.97 2.99 3.14 2.96 2.79 2.97 2.97 3.16 3.00 2.66 2.71 2.47 2.63 2.72 2.83 2.81 24 2.66 2.70 2.47 2.79 2.82 2.98 2.97 3.18 3.02 2.64 2.84 25 2.71 2.66 2.45 2.63 2.72 2.80 2.82 2.85 3.01 2.95 3.20 3.04 26 2.70 2.63 2.73 2.80 2.83 2.88 3.02 2.94 3.08 2.63 2.85 2.93 3.25 3.11 27 2.71 2.62 2.45 2.62 2.71 2.81 3.01 3.11 28 2.69 2.60 2.44 2.61 2.69 2.81 2.87 2.91 3.00 2.92 3.29 2.68 2.93 3.34 3.08 29 2.59 2.42 2.59 2.68 2.83 2.88 2.94 2.99 30 2.57 2.41 2.97 2.60 2.84 2.90 2.96 2.94 3.31 3.04 2.59 3.29 MEAN 2.70 2.68 2.51 2.56 2.69 2.75 2.85 2.89 2.97 2.96 3.04 3.08 2.79 2.99 3.02 3.34 3.25 MAX 2.71 2.58 2.64 2.73 2.87 2.92 2.98 2.65 2.57 2.41 2.43 2.60 2.68 2.80 2.91 2.92 2.86 2.96 2.81

GROUND-WATER RECORDS

MARIANA ISLANDS, ISLAND OF GUAM

132824144464271. Local number, 18-2846-01 ACEORP Tunnel.

LOCATION.--Lat 13°28'24" N., long 144°46'42" E., Hydrologic Unit 20100003, behind Navy Telephone Exchange, 0.35 mi southwest of junction of Routes 1 and 14, Tamuning. Owner: U.S. Navy, Public Works Department.

AQUIFER .-- Mariana Limestone.

WTR YR 1984 MEAN

2.66

MAX

3.23

WELL CHARACTERISTICS.--Dug basal water-table well consisting of an inclined shaft, three skimming tunnels, and a large pump room. Tunnels 1 and 2 are 150 ft each and tunnel 3 is 700 ft in length.

DATUM.--Altitude of land-surface datum is 180 ft. Measuring point: Top of wooden recorder shelf, 9.28 ft above mean sea level.

PERIOD OF RECORD. -- Water-level recorder, October 1954 to May 1965, March 1973 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 4.95 ft above mean sea level, May 22, 1976; lowest, 1.70 ft above mean sea level, Feb. 12, 1983.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 2.76 2.82 3.05 2.54 2.49 2.48 2.36 2.58 2.63 2.69 2.69 2.85 2 2.54 2.56 2.48 2.75 2.38 2.57 2.65 2.69 2.94 3.02 2.71 2.81 2.63 2.66 2.72 2.75 2.92 2.97 2.58 2.61 2.45 2.55 2.65 2.43 2.44 2.56 2.60 2.65 2.71 2.77 2.81 2.89 2.92 2.77 2.87 5 2.54 2.68 2.42 2.42 2.56 2.58 2.67 2.70 2.81 2.84 6 2.53 2.66 2.39 2.41 2.60 2.57 2.68 2.67 2.78 2.80 2.86 2.38 2.43 2.56 2.67 2.80 2.78 2.82 2.86 2.53 2.70 2.63 8 2.51 2.79 2.34 2.47 2.59 2.57 2.65 2.66 2.83 2.77 2.85 2.87 9 2.47 2.73 2.32 2.47 2.58 2.58 2.65 2.66 2.82 2.79 2.84 2.89 2.45 10 2.67 2.31 2.47 2.64 2.55 2.68 2.80 2.81 2.80 2.92 2.66 2.33 2.48 2.52 2.67 2.77 2.82 2.75 2.93 2.75 2.76 2.78 12 2.92 2.42 2.54 2.33 2.50 2.65 2.51 2.68 2.72 2.84 2.72 2.72 13 2.42 2.51 2.32 2.47 2.67 2.50 2.67 2.85 2.68 14 2.67 2.66 2.85 2.66 2.93 2.74 2.81 2.83 2.90 15 2.40 2.49 2.38 2.47 2.63 2.60 2.66 2.65 2.79 16 2.39 2.50 2.39 2.46 2.59 2.69 2.73 2.71 2.89 2.62 2.82 2.81 2.81 2.89 2.59 2.71 2.84 17 2.39 2.47 2.63 2.39 2.53 2.39 2.52 2.40 2.47 2.62 2.72 2.70 2.61 2.82 2.82 2.93 2.89 19 2.39 2.51 2.39 2.49 2.61 2.63 2.68 2.82 2.84 3.02 2.89 20 2.41 2.50 2.40 2.52 2.59 2.64 2.70 2.66 2.83 2.85 3.02 2.85 21 2.46 2.55 2.52 2.66 2.64 2.67 2.64 2.85 2.84 2.99 2.84 2.43 22 2.49 2.55 2.45 2.52 2.66 2.64 2.65 2.62 2.85 2.82 3.04 2.96 23 2.52 2.57 2.44 2.54 2.64 2.65 2.63 2.84 2.81 3.07 2.96 2.63 24 2.53 2.56 2.42 2.53 2.62 2.73 2.65 2.65 2.84 2.80 3.10 2.95 3.07 25 2.52 2.51 2.36 2.50 2.61 2.76 2.63 2.68 2.85 2.81 3.12 26 2.51 2.76 2.62 2.70 2.80 2.48 2.36 2.51 2.56 2.73 2.67 2.71 2.85 3.20 3.07 28 2.48 2.44 2.34 2.53 2.56 2.70 2.69 2.72 2.84 2.79 3.23 2.98 29 2.56 2.82 2.83 30 2.47 2.44 2.59 2.67 2.69 2.75 2.82 2.84 3.17 2.84 2.86 2.46 2.36 2.57 ---2.66 2.77 3.09 31 MEAN 2.47 2.56 2.38 2.61 2.62 2.67 2.81 2.82 2.93 2.48 2.70 2.93 3.23 3.12 2.58 2.79 2.48 2.59 2.67 2.76 2.72 2.77 2.86 2.86 MAX MIN 2.39 2.41 2.31 2.56 2.50 2.62 2.75 2.65 2.84 2.36 2.62

MIN

2.31

MARIANA ISLANDS, ISLAND OF GUAM

132813144472771. Local number, 18-2847-12 Barrigada Well 2 (A-16).

LOCATION.--Lat 13°28'13" N., long 144°47'27" E., Hydrologic Unit 20100003, at Carbullido School, 0.6 mi west of junction of Routes 8 and 10, Barrigada. Owner: Public Utility Agency of Guam.

AQUIFER .-- Mariana Limestone, probably Pliocene age.

WTR YR 1984 MEAN

3.64

MAX

4.27

MIN

3.31

WELL CHARACTERISTICS .-- Drilled basal water-table well, depth reported 215 ft, diameter 12 in.

DATUM.--Altitude of land-surface datum is 207 ft. Measuring point: Top of casing, 208.00 ft above mean sea level. PERIOD OF RECORD.--Water-level recorder, June 1974 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 6.71 ft above mean sea level, May 22, 1976; lowest, 2.83 ft above mean sea level, Feb. 11, 12, 1983.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 MEAN VALUES DAY OCT NOV AUG SEP DEC FEB MAR APR JUN JUL JAN MAY 3.79 3.53 3.47 3.46 3.34 3.53 3.56 3.63 3.67 3.72 3.76 4.11 3.75 2 3.52 3.55 3.47 3.34 3.54 3.64 3.72 3.72 3.59 3.69 3.86 4.06 3 3.54 3.58 3.45 3.38 3.55 3.58 3.62 3.70 3.88 4.02 3.40 3.72 3.75 3.63 3.43 3.55 3.55 3.61 3.70 3.87 3.98 3.94 5 3.54 3.43 3.55 3.54 3.61 3.69 3.83 3.69 3.74 3.74 6 3.55 3.70 3.38 3.57 3.73 3.78 3.57 3.64 3.38 3.40 3.60 3.53 3.62 3.64 3.87 8 3.42 3.54 3.77 3.71 3.56 3.66 3.35 3.58 3.61 3.64 3.79 3.88 3.76 3.88 3.55 3.65 9 3.52 3.33 3.56 3.60 10 3.50 3.43 3.74 3.71 3.32 3.60 3.54 3.60 3.66 3.76 3.76 3.90 3.73 3.63 3.74 3.72 3.91 11 3.49 3.67 3.32 3.45 3.61 3.51 3.69 3.46 3.63 3.70 3.76 3.70 3.90 12 3.47 3.61 3.32 3.62 3.49 3.71 3.70 3.47 13 3.46 3.57 3.32 3.63 3.45 3.44 3.31 3.64 3.51 3.63 3.72 3.77 3.64 3.92 3.71 15 3.45 3.54 3.35 3.44 3.54 3.64 3.72 3.76 3.64 3.91 16 3.43 3.75 3.53 3.37 3.44 3.58 3.72 3.89 3.56 3.66 3.72 3.65 3.68 3.71 3.73 3.75 3.88 17 3.43 3.55 3.38 3.44 3.57 3.57 18 3.43 3.55 3.45 3.38 3.58 3.67 3.69 3.76 3.75 3.84 3.88 19 3.43 3.53 3.38 3.45 3.59 3.59 3.66 3.68 3.76 3.76 3.96 3.89 20 3.46 3.52 3.37 3.48 3.56 3.59 3.66 3.67 3.76 3.77 3.98 3.86 21 3.54 3.39 3.49 3.60 3.60 3.65 3.64 3.78 3.78 3.98 3.83 3.76 3.74 22 3.50 3.56 3.41 3.48 3.61 3.62 3.63 3.78 4.00 23 3.52 3.57 3.40 3.50 3.60 3.59 3.62 3.62 3.78 4.03 4.06 24 3.54 3.58 3.40 3.51 3.59 3.64 3.62 3.64 3.78 3.75 4.06 4.02 3.79 25 4.08 4.08 3.53 3.60 3.65 3.54 3.35 3.48 3.58 3.67 26 3.51 3.51 3.32 3.49 3.68 3.60 3.66 27 3.49 3.48 3.33 3.49 3.54 3.67 3.63 3.68 3.79 3.73 4.15 4.14 28 3.48 3.47 3.32 3.50 3.53 3.65 3.66 3.68 3.78 3.73 4.23 4.07 29 3.49 3.43 3.31 3.53 3.52 3.64 3.66 3.69 3.76 3.75 4.27 4.01 30 3.32 3.43 3.63 3.67 3.71 3.76 3.79 4.22 3.93 31 3.49 3.33 3.53 3.61 3.80 MEAN 3.50 3.57 3.37 3.45 3.58 3.63 3.75 3.90 3.96 3.58 3.68 3.75 3.72 3.57 3.54 3.68 3.80 3.80 MAX 3.76 3.47 3.68 3.64 3.43 3.43 3.47 3.70 3.71 3.60 3.64 3.83

MARIANA ISLANDS, ISLAND OF GUAM

133032144491871. Local number, 18-3049-03 Harmon Loop School Well M-10A.

LOCATION.--Lat 13°30'32" N., long 144°49'18" E., Hydrologic Unit 20100003, at Harmon Loop School, Dededo. Owner: Public Utility Agency of Guam.

AQUIFER .-- Barrigada Limestone.

WTR YR 1984 MEAN

2.78

MAX

3.30

MIN

2.45

WELL CHARACTERISTICS .-- Drilled basal water-table well, depth reported 288 ft, casing diameter 8 in.

DATUM.--Altitude of land-surface datum is 227 ft. Measuring point: Top edge of casing, 228.62, revised, ft above mean sea level.

REMARKS.--Well was abandoned in 1973 because of oil taste and high iron content.

PERIOD OF RECORD .-- Water-level recorder, January 1974 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 4.61 ft above mean sea level, May 23, 1976; lowest, 1.94 ft above mean sea level, Feb. 10-12, 1983.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 MEAN VALUES DAY OCT NOV DEC FEB MAR APR MAY JUN JUL AUG SEP JAN 3.14 2.74 2.63 2.62 2.49 2.67 2.73 2.79 2.84 2.92 2-95 2.94 2.77 2.74 2.72 2.73 2.80 2.92 2.94 3.10 2 2.66 2.61 2.48 2.67 2.84 2.94 2.86 2.93 2.57 2.54 3 2.72 2.67 2.73 2.76 2.56 2.54 2.88 2.93 2.95 3.02 2.66 2.77 5 2.73 2.56 2.70 2.88 2.93 2.91 2.95 2.97 2.52 2.66 2.78 2.54 2.93 6 2.78 2.91 2.94 2.73 2.51 2.69 2.69 2.79 2.87 2.93 2.95 2.93 2.74 2.82 2.52 2.53 2.74 2.67 2.79 2.86 2.89 2.93 2.95 2.49 2.70 2.68 2.96 2.56 2.77 2.82 2.89 2.94 2.93 2.68 2.93 2.47 2.57 2.69 2.77 2.84 2.96 2.90 2.95 2.93 10 2.65 2.88 2.45 2.55 2.76 2.67 2.77 2.85 2.95 2.96 2.86 2.95 2.78 2.93 2.96 2.83 2.97 11 2-65 2.82 2.46 2.57 2.77 2.64 2.86 12 2.63 2.75 2.46 2.60 2.76 2.63 2.79 2.87 2.90 2.79 2.97 13 2.62 2.73 2.45 2.58 2.76 2.61 2.79 2.88 2.89 2.95 2.77 2.97 14 2.61 2.69 2.45 2.57 2.76 2.65 2.80 2.89 2.90 2.96 2.76 2.97 2.69 2.50 2.57 2.73 2.69 2.90 2.90 2.96 15 2.60 2.80 16 2.59 2.68 2.51 2.56 2.69 2.71 2.82 2.89 2.89 2.96 2.78 2.95 17 18 2.58 2.71 2.51 2.57 2.69 2.72 2.83 2.88 2.88 2.96 2.83 2.94 2.84 2.87 2.89 2.96 2.90 2.94 2.74 2.90 2.94 19 2.52 2.58 2.85 2.97 2.98 2.58 2.69 2.74 2.83 20 2.60 2.69 2.52 2.72 2.75 2.92 3.02 2.61 2.98 2.93 2.93 2.99 3.02 2.89 21 2.63 2.72 2.53 2.61 2.75 2.81 2.82 2.76 22 2.65 2.55 2.75 2.74 2.61 2.78 2.79 2.80 2.95 2.99 3.04 2.89 2.76 2.54 2.74 2.79 2.95 2.97 3.08 2.91 23 2.68 2.63 2.76 2.79 24 2.69 2.75 2.54 2.63 2.80 2.80 2.95 2.97 2.92 2.80 3.13 25 2.69 2.70 2.49 2.61 2.73 2.84 2.79 2.83 2.96 2.95 3.16 2.99 26 2.67 2.68 2.46 2.61 2.71 2.83 2.78 2.84 2.97 2.94 3.18 3.03 27 2.65 2.49 2.68 2.81 2.80 2.85 2.96 2.93 3.25 3.02 2.66 2.61 28 2.64 2.64 2.48 2.62 2.80 2.82 2.85 2.96 2.92 3.30 3.00 29 2.65 2.60 2.45 2.67 2.67 2.80 2.84 2.88 2.95 2.93 3.30 2.95 30 2.61 2.69 2.78 ---2.84 2.90 2.95 2.94 3.27 2.89 2.77 31 2.63 2.67 2.93 2.94 3.18 MEAN 2-66 2.73 2.51 2.58 2.72 2.73 2.80 2.86 2.93 2.94 2.99 2.97 2.62 2.93 MAX 2.75 2.95 2.69 2.78 2.84 2.84 2.97 2.99 3.30 3.14 MIN 2.48 2.58 2.60 2.66 2.61 2.88 2.77 2.89 2.75 2.89

MARIANA ISLANDS, ISLAND OF GUAM

133047144500171. Local number, 18-3049-05 Well M-11.

LOCATION.--Lat 13°30'49" N., long 144°49'58" E., Hydrologic Unit 20100003, at intersection of Harmon Loop School Road and Route 1 at Dededo. Owner: Public Utility Agency of Guam.

AQUIFER .-- Barrigada Limestone.

WELL CHARACTERISTICS. -- Drilled basal water-table well, depth reported 325 ft, casing diameter 8 in.

DATUM. -- Altitude of land-surface datum is 294 ft. Measuring point: Top of casing, 295.82 ft above mean sea level.

PERIOD OF RECORD. -- Water-level recorder, July 1977 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 4.76 ft above mean sea level, Oct. 2, 1980; lowest, 2.46 ft above mean sea level, Feb. 12, 1983.

	7	WATER LEVE	L, IN FEED	ABOVE MI		VEL, WATE	R YEAR O	CTOBER 19	83 TO SEP	rember 19	84	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	3.45	3.27	3.29	3.07	3.24	3.27	3.34	3.34	3.44	3.50	3.55	4.05
2	3.42	3.29	3.29	3.07	3.24	3.31	3.36	3.35	3.43	3.50	3.55	3.96
3	3.40	3.34	3.26	3.11	3.23	3.30	3.34	3.36	3.44	3.48	3.55	3.90
4	3.39	3.37	3.24	3.13	3.22	3.28	3.32	3.37	3.45	3.48	3.63	3.86
5	3.38	3.52	3.23	3.12	3.22	3.27	3.33	3.36	3.45	3.47	3.66	3.79
6	3.38	3.61	3.21	3.10	3.25	3.26	3.35	3.33	3.45	3.47	3.61	3.81
7	3.38	3.63	3.19	3.11	3.27	3.26	3.35	3.31	3.46	3.46	3.60	3.73
8	3.37	3.69	3.17	3.14	3.25	3.26	3.33	3.30	3.48	3.45	3.59	3.70
9	3.34	3.68	3.13	3.17	3.24	3.28	3.32	3.31	3.49	3.46	3.61	3.69
10	3.30	3.61	3.12	3.16	3.28	3.26	3.32	3.33	3.48	3.51	3.57	3.70
11	3.29	3.53	3.12	3.17	3.30	3.23	3.33	3.37	3.46	3.53	3.54	3.82
12	3.28	3.48	3.12	3.19	3.30	3.22	3.34	3.38	3.44	3.54	3.50	4.00
13	3.26	3.44	3.11	3.18	3.30	3.19	3.35	3.38	3.44	3.55	3.47	4.00
14	3.25	3.39	3.09	3.17	3.32	3.22	3.34	3.39	3.44	3.55	3.45	3.94
15	3.24	3.37	3.14	3.17	3.32	3.26	3.34	3.41	3.43	3.54	3.44	3.89
16	3.23	3.35	3.13	3.14	3.30	3.27	3.36	3.40	3.43	3.55	3.43	3.84
17	3.21	3.37	3.12	3.15	3.29	3.29	3.38	3.39	3.43	3.54	3.47	3.84
18	3.21	3.38	3.12	3.15	3.29	3.29	3.39	3.37	3.43	3.55	3.52	3.88
19	3.21	3.44	3.12	3.15	3.31	3.30	3.38	3.36	3.43	3.56	4.03	3.88
20	3.22	3.45	3.12	3.19	3.28	3.31	3.36	3.34	3.45	3.57	4.40	3.85
21	3.24	3.47	3.13	3.19	3.31	3.31	3.34	3.32	3.47	3.57	4.22	3.80
22	3.26		3.15									
23	3.28	3.47 3.47	3.14	3.19 3.21	3.33	3.31	3.32	3.31	3.49	3.55	4.10	3.73
	3.28					3.31	3.31	3.30	3.49		4.33	3.70
24		3.46	3.15	3.22	3.30	3.33	3.31	3.32	3.51	3.53	4.34	3.77
25	3.31	3.42	3.10	3.18	3.28	3.39	3.29	3.33	3.51	3.53	4.24	3.86
26	3.34	3.38	3.06	3.19	3.27	3.39	3.28	3.35	3.53	3.53	4.17	3.91
27	3.33	3.36	3.08	3.20	3.25	3.37	3.30	3.36	3.52	3.52	4.13	4.12
28	3.32	3.33	3.07	3.21	3.25	3.34	3.32	3.38	3.52	3.52	4.12	4.32
29	3.32	3.30	3.05	3.25	3.24	3.34	3.33	3.39	3.50	3.55	4.24	4.22
30	3.31	3.29	3.05	3.26		3.33	3.34	3.42	3.50	3.57	4.27	4.05
31	3.29		3.06	3.25		3.32		3.43		3.57	4.16	4.03
MEAN	3.31	3.44	3.14	3.17	3.28	3.29	3.34	3.36	3.47	3.52	3.82	3.89
MAX	3.45	3.69	3.29	3.26	3.33	3.39	3.39	3.43	3.53	3.57	4.40	4.32
MIN	3.21	3.27	3.05	3.07	3.22	3.19	3.28	3.30	3.43	3.45	3.43	3.69
WTR YR	1984 ME	EAN 3.4	42 MAX	4.40) MIN	3.05						

MARIANA ISLANDS, ISLAND OF GUAM

133119144491771. Local number, 18-3149-05 Exploratory Well Ex-7.

LOCATION.--Lat 13°31'19" N., long 144°49'17" E., Hydrologic Unit 20100003, 200 ft east of junction of Routes 1 and 3, Wettengel. Owner: Government of Guam.

AQUIFER .-- Barrigada Limestone.

WELL CHARACTERISTICS.--Drilled basal water-table well, sounded depth 698 ft, borehole diameter 8 in, casing diameter 6 in, cased to 10 ft.

DATUM.--Altitude of land-surface datum is 283 ft. Measuring point: Top of 6-in diameter surface casing, 283.31 ft above mean sea level.

PERIOD OF RECORD. --

WTR YR 1984 MEAN

3.22

MAX

3.73

MIN

WATER LEVEL: Occasional measurements, August 1981 to May 1983.
Water-level recorder, June 1983 to current year.

WATER QUALITY: 1981 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 3.78 ft above mean sea level, Aug. 12, 1981, Aug. 28, 29, 1984; lowest, 2.78 ft above mean sea level, June 6, 7, 1983.

DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP			WATER LEVEL,	IN FEET	ABOVE		LEVEL, WATER EAN VALUES	YEAR	OCTOBER 1983	TO SEP	TEMBER 1984	i.	
2 3.13 3.10 3.00 3.02 2.94 3.13 3.19 3.22 3.30 3.36 3.40 3.40 3.50 4 3.12 3.18 2.99 3.00 3.12 3.16 3.20 3.31 3.36 3.39 3.40 3.50 4 3.12 3.18 2.99 3.00 3.12 3.14 3.19 3.30 3.38 3.39 3.39 3.46 5 3.12 3.21 2.98 2.98 3.12 3.13 3.21 3.29 3.38 3.37 3.37 3.41 6 3.14 3.20 2.96 2.98 3.15 3.13 3.21 3.29 3.38 3.37 3.37 3.41 6 3.14 3.20 2.96 2.95 3.00 3.18 3.13 3.21 3.24 3.41 3.35 3.33 3.39 7 3.15 3.26 2.95 3.00 3.18 3.13 3.21 3.24 3.41 3.35 3.33 3.37 8 3.14 3.36 2.92 3.02 3.15 3.14 3.20 3.23 3.39 3.35 3.36 3.37 9 3.11 3.33 2.89 3.03 3.15 3.15 3.14 3.20 3.23 3.39 3.35 3.36 3.37 9 3.11 3.33 2.89 3.03 3.15 3.15 3.21 3.25 3.41 3.35 3.38 3.38 10 3.09 3.25 2.88 3.02 3.20 3.13 3.22 3.26 3.40 3.35 3.35 3.38 11 3.07 3.19 2.88 3.04 3.20 3.20 3.13 3.22 3.26 3.40 3.36 3.37 3.37 12 3.05 3.14 2.88 3.06 3.20 3.08 3.23 3.29 3.35 3.40 3.25 3.41 13 3.04 3.12 2.88 3.06 3.20 3.08 3.23 3.29 3.35 3.40 3.25 3.41 13 3.04 3.12 2.88 3.06 3.20 3.07 3.23 3.29 3.34 3.40 3.25 3.42 14 3.04 3.11 2.87 3.05 3.17 3.15 3.24 3.23 3.39 3.36 3.41 3.24 3.24 15 3.03 3.10 2.91 3.05 3.17 3.15 3.24 3.32 3.36 3.40 3.25 3.42 16 3.01 3.10 2.93 3.05 3.17 3.15 3.24 3.23 3.39 3.34 3.40 3.23 3.24 16 3.01 3.11 2.95 3.05 3.13 3.18 3.27 3.28 3.34 3.39 3.36 3.42 17 3.01 3.11 2.96 3.06 3.17 3.19 3.27 3.28 3.34 3.39 3.36 3.34 20 3.03 3.11 2.97 3.08 3.15 3.20 3.28 3.29 3.34 3.39 3.36 3.38 20 3.03 3.11 2.96 3.06 3.15 3.18 3.27 3.28 3.24 3.35 3.40 3.29 3.36 21 3.06 3.14 2.98 3.09 3.19 3.20 3.28 3.29 3.34 3.39 3.35 3.40 22 3.09 3.05 3.11 3.18 2.99 3.11 3.17 3.25 3.28 3.29 3.34 3.39 3.35 3.40 24 3.12 3.13 3.14 2.96 3.06 3.12 3.25 3.26 3.29 3.34 3.39 3.36 3.37 25 3.11 3.11 2.96 3.06 3.17 3.19 3.29 3.28 3.24 3.35 3.42 3.47 3.37 26 3.09 3.09 2.92 3.10 3.14 3.28 3.29 3.34 3.39 3.39 3.55 3.38 20 3.03 3.11 3.18 2.99 3.11 3.17 3.25 3.28 3.29 3.42 3.37 3.37 3.41 3.44 26 3.09 3.09 2.92 3.10 3.14 3.28 3.29 3.20 3.24 3.39 3.39 3.55 3.35 3.11 3.10 3.11 2.93 3.09 3.15 3.25 3.26 3.29 3.34 3.39 3.34 3.40 3.39 3.36 3.47 3	DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
3 3.13 3.16 2.99 3.00 3.12 3.16 3.20 3.31 3.36 3.39 3.40 3.50 5 3.12 3.12 3.12 3.21 2.98 2.98 3.12 3.13 3.21 3.29 3.38 3.37 3.37 3.41 6 3.14 3.12 3.13 3.21 3.29 3.38 3.39 3.49 3.40 5 3.12 3.14 3.12 3.13 3.21 3.29 3.38 3.37 3.37 3.41 6 3.14 3.20 2.96 2.98 3.15 3.13 3.21 3.29 3.38 3.39 3.38 3.37 3.41 6 3.14 3.20 2.96 2.98 3.15 3.13 3.21 3.24 3.41 3.45 3.45 3.33 3.37 8 3.14 3.36 2.95 3.00 3.18 3.13 3.21 3.24 3.41 3.45 3.45 3.33 3.37 8 3.14 3.36 2.92 3.02 3.15 3.14 3.20 3.23 3.39 3.35 3.36 3.37 9 3.11 3.33 2.289 3.03 3.15 3.15 3.11 3.25 3.41 3.35 3.38 3.38 10 3.09 3.25 2.88 3.02 3.20 3.13 3.22 3.26 3.40 3.36 3.35 3.40 11 3.07 3.19 2.88 3.06 3.20 3.01 3.22 3.26 3.40 3.36 3.35 3.40 11 3.07 3.19 2.88 3.06 3.20 3.08 3.20 3.29 3.35 3.40 3.25 2.89 3.06 3.20 3.08 3.29 3.35 3.40 3.25 2.89 3.06 3.20 3.08 3.29 3.35 3.40 3.25 2.89 3.06 3.20 3.08 3.20 3.29 3.35 3.40 3.25 2.84 3.41 3.30 3.04 3.11 2.88 3.06 3.20 3.08 3.23 3.29 3.35 3.40 3.25 2.88 3.06 3.20 3.08 3.23 3.29 3.35 3.40 3.25 3.41 3.30 3.11 2.87 3.05 3.17 3.15 3.24 3.23 3.29 3.34 3.40 3.25 3.42 14 3.04 3.11 2.87 3.05 3.17 3.15 3.24 3.32 3.29 3.34 3.40 3.25 3.42 14 3.01 3.11 2.86 3.05 3.17 3.15 3.24 3.32 3.36 3.41 3.24 3.43 3.42 3.42 3.43 3.01 3.11 2.95 3.05 3.17 3.15 3.24 3.32 3.36 3.41 3.24 3.43 3.42 3.42 3.43 3.01 3.11 2.96 3.04 3.15 3.18 3.27 3.28 3.34 3.49 3.32 3.38 3.39 3.32 3.38 19 3.01 3.11 2.96 3.04 3.05 3.15 3.29 3.28 3.24 3.35 3.40 3.39 3.32 3.38 19 3.01 3.11 2.96 3.06 3.17 3.19 3.27 3.28 3.24 3.35 3.40 3.49 3.35 3.88 3.99 3.15 2.99 3.08 3.29 3.29 3.34 3.49 3.39 3.32 3.38 19 3.01 3.11 2.96 3.06 3.17 3.19 3.27 3.28 3.24 3.32 3.41 3.43 3.39 3.32 3.38 19 3.01 3.11 2.96 3.06 3.17 3.19 3.27 3.28 3.24 3.35 3.40 3.49 3.35 3.38 3.39 3.34 3.39 3.36 3.41 3.43 3.39 3.36 3.41 3.43 3.39 3.36 3.41 3.43 3.39 3.36 3.41 3.43 3.39 3.36 3.41 3.43 3.39 3.36 3.41 3.43 3.39 3.36 3.41 3.43 3.39 3.36 3.41 3.43 3.39 3.36 3.41 3.43 3.39 3.36 3.41 3.43 3.39 3.36 3.41 3.43 3.39 3.39 3.39 3.39 3.39 3.39 3.39	1												
4 3.12 3.18 2.99 3.00 3.12 3.14 3.19 3.30 3.38 3.39 3.39 3.46 5 3.12 3.12 3.13 3.21 3.29 3.38 3.39 3.39 3.46 6 3.14 3.20 2.96 2.98 3.15 3.13 3.21 3.29 3.38 3.37 3.41 6 3.15 3.16 3.26 2.95 3.00 3.18 3.13 3.21 3.24 3.41 3.35 3.33 3.37 9 3.11 3.33 2.89 3.02 3.15 3.14 3.20 3.23 3.39 3.35 3.36 3.37 9 3.11 3.33 2.89 3.02 3.15 3.14 3.20 3.23 3.39 3.35 3.36 3.37 9 3.11 3.33 2.89 3.03 3.15 3.15 3.12 3.25 3.41 3.35 3.38 3.38 10 3.09 3.25 2.88 3.02 3.20 3.13 3.22 3.26 3.40 3.36 3.35 3.36 3.36 10 3.09 3.25 2.88 3.02 3.20 3.13 3.22 3.26 3.40 3.36 3.35 3.40 11 3.07 3.19 2.88 3.06 3.20 3.08 3.23 3.29 3.35 3.40 3.36 3.35 3.40 11 3.05 3.14 2.88 3.06 3.20 3.08 3.23 3.29 3.35 3.40 3.28 3.41 13 3.04 3.12 2.88 3.06 3.20 3.08 3.23 3.29 3.35 3.40 3.25 3.41 13 3.04 3.12 2.88 3.06 3.20 3.08 3.23 3.29 3.35 3.40 3.25 3.42 14 3.05 3.14 2.87 3.05 3.19 3.12 3.23 3.30 3.36 3.41 3.24 3.43 15 3.03 3.10 2.91 3.05 3.17 3.15 3.24 3.32 3.30 3.36 3.41 3.24 3.43 15 3.03 3.10 2.91 3.05 3.17 3.15 3.24 3.32 3.30 3.36 3.41 3.24 3.43 15 3.03 3.10 2.91 3.05 3.17 3.15 3.24 3.32 3.30 3.36 3.41 3.24 3.39 3.36 3.40 3.23 3.42 16 3.01 3.11 2.96 3.04 3.15 3.18 3.28 3.29 3.34 3.39 3.36 3.40 3.23 3.38 18 3.01 3.11 2.96 3.06 3.07 3.13 3.18 3.28 3.29 3.34 3.39 3.36 3.36 3.40 3.23 3.38 18 3.01 3.11 2.96 3.06 3.17 3.19 3.27 3.28 3.24 3.35 3.42 3.47 3.37 2.1 3.06 3.14 2.98 3.09 3.15 3.99 3.19 3.20 3.28 3.24 3.35 3.42 3.47 3.37 2.1 3.06 3.14 2.98 3.09 3.15 3.99 3.19 3.20 3.28 3.24 3.35 3.42 3.47 3.37 2.1 3.06 3.14 2.98 3.11 3.19 3.19 3.20 3.28 3.24 3.35 3.42 3.47 3.37 3.40 3.29 3.31 3.11 3.18 2.99 3.11 3.19 3.19 3.20 3.28 3.24 3.35 3.39 3.40 3.49 3.39 3.61 3.43 3.99 3.61 3.43 3.19 3.11 3.18 2.99 3.11 3.19 3.12 3.23 3.28 3.24 3.35 3.39 3.40 3.49 3.39 3.61 3.43 3.39 3.40 3.40 3.29 3.29 3.31 3.31 3.14 3.19 3.29 3.29 3.30 3.31 3.31 3.34 3.39 3.40 3.42 3.47 3.37 3.40 3.29 3.30 3.31 3.11 3.18 2.99 3.11 3.19 3.19 3.20 3.28 3.29 3.24 3.39 3.40 3.49 3.39 3.51 3.40 3.49 3.39 3.51 3.30 3.31 3.30 3.31 3.30 3.31 3.30 3.31 3.30 3.31 3.30 3.31 3.30 3.31 3.30 3.31 3.30 3.31 3.30 3.31 3	2												
5 3.12 3.21 2.98 2.98 3.12 3.13 3.21 3.29 3.38 3.37 3.37 3.41 6 3.14 3.20 2.96 2.98 3.15 3.13 3.21 3.29 3.38 3.37 3.37 3.41 6 3.14 3.20 2.96 2.98 3.15 3.13 3.22 3.26 3.49 3.38 3.38 3.37 7 3.15 3.26 2.95 3.00 3.18 3.13 3.21 3.24 3.41 3.35 3.33 3.37 8 3.14 3.36 2.92 3.02 3.15 3.14 3.20 3.23 3.39 3.35 3.36 3.37 9 3.11 3.33 2.89 3.03 3.15 3.15 3.21 3.25 3.41 3.35 3.38 3.38 10 3.09 3.25 2.88 3.02 3.20 3.13 3.22 3.26 3.40 3.35 3.38 3.81 11 3.07 3.19 2.88 3.04 3.20 3.10 3.24 3.28 3.37 3.37 3.32 3.41 12 3.05 3.14 2.88 3.06 3.20 3.08 3.23 3.29 3.35 3.40 3.28 3.41 13 3.04 3.12 2.88 3.06 3.20 3.08 3.23 3.29 3.35 3.40 3.28 3.41 13 3.04 3.11 2.87 3.05 3.19 3.12 3.23 3.29 3.34 3.40 3.25 3.42 14 3.04 3.11 2.87 3.05 3.19 3.12 3.23 3.20 3.36 3.40 3.23 3.24 15 3.03 3.10 2.91 3.05 3.17 3.15 3.24 3.23 3.30 3.36 3.41 3.24 3.43 15 3.03 3.10 2.91 3.05 3.17 3.15 3.24 3.23 3.30 3.36 3.40 3.23 3.42 16 3.01 3.10 2.93 3.03 3.14 3.18 3.28 3.29 3.34 3.40 3.23 3.42 18 3.01 3.11 2.96 3.04 3.15 3.18 3.28 3.29 3.34 3.39 3.32 3.38 18 3.01 3.11 2.96 3.04 3.15 3.18 3.28 3.29 3.34 3.39 3.32 3.38 18 3.01 3.11 2.96 3.06 3.17 3.19 3.27 3.26 3.34 3.41 3.43 20 3.03 3.11 2.97 3.08 3.15 3.20 3.28 3.29 3.34 3.41 3.43 21 3.06 3.14 2.98 3.09 3.19 3.20 3.28 3.29 3.34 3.41 3.43 3.38 22 3.09 3.15 2.99 3.18 3.09 3.19 3.20 3.28 3.19 3.39 3.40 3.49 3.33 23 3.11 3.18 2.99 3.11 3.19 3.18 3.28 3.29 3.34 3.39 3.36 3.40 3.28 24 3.23 3.31 3.18 2.99 3.11 3.19 3.18 3.28 3.29 3.42 3.37 3.37 21 3.06 3.14 2.98 3.09 3.19 3.20 3.28 3.19 3.39 3.40 3.49 3.33 23 3.11 3.18 2.99 3.11 3.19 3.18 3.28 3.29 3.42 3.37 3.71 3.46 25 3.11 3.11 2.93 3.09 3.15 3.28 3.29 3.24 3.32 3.39 3.61 3.43 3.01 3.11 3.13 3.18 2.99 3.11 3.19 3.18 3.28 3.29 3.42 3.37 3.39 3.61 3.43 3.01 3.11 3.19 3.18 3.29 3.19 3.20 3.20 3.28 3.19 3.39 3.40 3.49 3.33 3.11 3.18 2.99 3.11 3.19 3.18 3.28 3.29 3.42 3.37 3.37 3.58 3.21 3.01 3.11 3.19 3.18 3.29 3.29 3.24 3.33 3.39 3.40 3.49 3.33 3.11 3.18 2.99 3.11 3.19 3.18 3.28 3.29 3.42 3.37 3.39 3.40 3.49 3.39 3.61 3.43 3.44 3.49 3.49 3.49 3.49 3.49 3.49	3												
6 3.14 3.20 2.96 2.98 3.15 3.13 3.22 3.26 3.39 3.38 3.32 3.38 7 3.15 3.26 2.95 3.00 3.18 3.13 3.21 3.24 3.41 3.35 3.33 3.37 8 3.14 3.36 2.92 3.02 3.15 3.14 3.20 3.23 3.39 3.35 3.36 3.37 9 3.11 3.33 2.89 3.03 3.15 3.15 3.14 3.20 3.23 3.25 3.41 3.35 3.38 3.38 10 3.09 3.25 2.88 3.02 3.20 3.13 3.22 3.26 3.40 3.36 3.35 3.36 3.37 11 3.07 3.19 2.88 3.04 3.20 3.10 3.24 3.28 3.37 3.37 3.32 3.41 3.35 3.38 3.38 10 3.09 3.25 2.88 3.06 3.20 3.03 3.10 3.24 3.28 3.37 3.37 3.32 3.41 3.35 3.38 3.38 3.38 3.38 3.38 3.38 3.38													
8 3.14 3.36 2.92 3.02 3.15 3.14 3.20 3.23 3.39 3.35 3.36 3.37 3.38 3.38 1.35 1.0 3.09 3.25 2.88 3.02 3.20 3.13 3.22 3.26 3.40 3.36 3.35 3.38 3.38 1.0 3.09 3.25 2.88 3.02 3.20 3.13 3.22 3.26 3.40 3.36 3.35 3.40 11 3.07 3.19 2.88 3.04 3.20 3.10 3.24 3.28 3.37 3.37 3.32 3.41 1.2 3.05 3.14 2.88 3.06 3.20 3.08 3.23 3.29 3.35 3.40 3.28 3.41 1.3 3.04 3.11 2.87 3.05 3.19 3.12 3.23 3.20 3.07 3.36 3.41 3.24 3.24 3.28 3.37 3.37 3.32 3.41 1.3 3.04 3.11 2.87 3.05 3.19 3.12 3.23 3.30 3.36 3.41 3.24 3.43 1.5 3.03 3.10 2.91 3.05 3.17 3.15 3.24 3.32 3.36 3.40 3.23 3.42 1.4 3.04 3.11 2.87 3.05 3.17 3.15 3.24 3.32 3.36 3.40 3.23 3.42 1.6 3.01 3.10 2.93 3.03 3.14 3.17 3.26 3.31 3.34 3.39 3.26 3.40 3.23 3.42 1.6 3.01 3.11 2.95 3.05 3.13 3.18 3.28 3.29 3.34 3.39 3.26 3.40 3.28 3.29 3.35 3.40 3.23 3.38 1.8 3.01 3.11 2.96 3.04 3.15 3.18 3.28 3.29 3.34 3.39 3.32 3.38 1.8 3.01 3.11 2.96 3.04 3.15 3.18 3.27 3.28 3.34 3.39 3.36 3.38 1.9 3.01 3.11 2.96 3.06 3.17 3.19 3.27 3.28 3.34 3.39 3.36 3.38 1.9 3.01 3.11 2.96 3.06 3.17 3.19 3.27 3.28 3.34 3.39 3.36 3.38 2.0 3.28 3.21 3.38 3.42 3.47 3.37 2.1 3.06 3.14 2.98 3.09 3.15 3.20 3.28 3.24 3.35 3.42 3.47 3.37 2.1 3.06 3.14 2.98 3.09 3.15 3.20 3.28 3.24 3.35 3.42 3.47 3.37 2.2 3.09 3.15 2.99 3.08 3.20 3.28 3.24 3.35 3.42 3.47 3.37 2.2 3.09 3.15 2.99 3.08 3.20 3.28 3.24 3.35 3.42 3.47 3.37 2.2 3.09 3.15 2.99 3.08 3.20 3.28 3.28 3.29 3.40 3.49 3.39 3.52 3.35 2.4 3.12 3.16 2.98 3.11 3.17 3.25 3.28 3.24 3.35 3.42 3.47 3.37 3.48 2.2 3.09 3.15 2.99 3.10 3.14 3.18 3.28 3.29 3.42 3.43 3.39 3.50 3.32 3.31 3.11 3.18 2.93 3.11 3.11 3.19 3.28 3.28 3.29 3.42 3.37 3.38 3.55 3.40 3.49 3.39 3.50 3.30 3.31 3.28 3.29 3.40 3.40 3.49 3.39 3.50 3.30 3.31 3.18 3.29 3.30 3.30 3.21 3.38 3.42 3.47 3.33 3.28 3.29 3.31 3.31 3.18 3.29 3.30 3.30 3.21 3.38 3.42 3.47 3.33 3.48 3.49 3.39 3.40 3.49 3.49 3.49 3.49 3.49 3.49 3.49 3.49	5	3.12	3.21	2.98	2.98	3.12	3.13	3.21	3.29	3.38	3.37	3.37	3.41
8 3.14 3.36 2.92 3.02 3.15 3.14 3.20 3.23 3.39 3.35 3.36 3.37 3.38 3.38 1.35 1.0 3.09 3.25 2.88 3.02 3.20 3.13 3.22 3.26 3.40 3.36 3.35 3.38 3.38 1.0 3.09 3.25 2.88 3.02 3.20 3.13 3.22 3.26 3.40 3.36 3.35 3.40 11 3.07 3.19 2.88 3.04 3.20 3.10 3.24 3.28 3.37 3.37 3.32 3.41 1.2 3.05 3.14 2.88 3.06 3.20 3.08 3.23 3.29 3.35 3.40 3.28 3.41 1.3 3.04 3.11 2.87 3.05 3.19 3.12 3.23 3.20 3.07 3.36 3.41 3.24 3.24 3.28 3.37 3.37 3.32 3.41 1.3 3.04 3.11 2.87 3.05 3.19 3.12 3.23 3.30 3.36 3.41 3.24 3.43 1.5 3.03 3.10 2.91 3.05 3.17 3.15 3.24 3.32 3.36 3.40 3.23 3.42 1.4 3.04 3.11 2.87 3.05 3.17 3.15 3.24 3.32 3.36 3.40 3.23 3.42 1.6 3.01 3.10 2.93 3.03 3.14 3.17 3.26 3.31 3.34 3.39 3.26 3.40 3.23 3.42 1.6 3.01 3.11 2.95 3.05 3.13 3.18 3.28 3.29 3.34 3.39 3.26 3.40 3.28 3.29 3.35 3.40 3.23 3.38 1.8 3.01 3.11 2.96 3.04 3.15 3.18 3.28 3.29 3.34 3.39 3.32 3.38 1.8 3.01 3.11 2.96 3.04 3.15 3.18 3.27 3.28 3.34 3.39 3.36 3.38 1.9 3.01 3.11 2.96 3.06 3.17 3.19 3.27 3.28 3.34 3.39 3.36 3.38 1.9 3.01 3.11 2.96 3.06 3.17 3.19 3.27 3.28 3.34 3.39 3.36 3.38 2.0 3.28 3.21 3.38 3.42 3.47 3.37 2.1 3.06 3.14 2.98 3.09 3.15 3.20 3.28 3.24 3.35 3.42 3.47 3.37 2.1 3.06 3.14 2.98 3.09 3.15 3.20 3.28 3.24 3.35 3.42 3.47 3.37 2.2 3.09 3.15 2.99 3.08 3.20 3.28 3.24 3.35 3.42 3.47 3.37 2.2 3.09 3.15 2.99 3.08 3.20 3.28 3.24 3.35 3.42 3.47 3.37 2.2 3.09 3.15 2.99 3.08 3.20 3.28 3.28 3.29 3.40 3.49 3.39 3.52 3.35 2.4 3.12 3.16 2.98 3.11 3.17 3.25 3.28 3.24 3.35 3.42 3.47 3.37 3.48 2.2 3.09 3.15 2.99 3.10 3.14 3.18 3.28 3.29 3.42 3.43 3.39 3.50 3.32 3.31 3.11 3.18 2.93 3.11 3.11 3.19 3.28 3.28 3.29 3.42 3.37 3.38 3.55 3.40 3.49 3.39 3.50 3.30 3.31 3.28 3.29 3.40 3.40 3.49 3.39 3.50 3.30 3.31 3.18 3.29 3.30 3.30 3.21 3.38 3.42 3.47 3.33 3.28 3.29 3.31 3.31 3.18 3.29 3.30 3.30 3.21 3.38 3.42 3.47 3.33 3.48 3.49 3.39 3.40 3.49 3.49 3.49 3.49 3.49 3.49 3.49 3.49	6												
9 3.11 3.33 2.89 3.03 3.15 3.15 3.21 3.25 3.41 3.35 3.38 3.38 1.0 3.09 3.25 2.88 3.02 3.20 3.13 3.22 3.26 3.40 3.36 3.35 3.40 11 3.07 3.19 2.88 3.04 3.20 3.10 3.24 3.28 3.37 3.37 3.32 3.41 12 3.05 3.14 2.88 3.06 3.20 3.08 3.23 3.29 3.35 3.40 3.25 3.41 3.3 3.04 3.12 2.88 3.06 3.20 3.07 3.23 3.29 3.34 3.40 3.25 3.42 14 3.04 3.11 2.87 3.05 3.19 3.12 3.23 3.29 3.34 3.40 3.25 3.42 14 3.04 3.11 2.87 3.05 3.19 3.12 3.23 3.20 3.36 3.41 3.24 3.43 15 3.03 3.10 2.91 3.05 3.17 3.15 3.24 3.32 3.36 3.40 3.23 3.23 3.29 3.34 3.40 3.25 3.42 15 3.03 3.10 2.91 3.05 3.17 3.15 3.24 3.32 3.36 3.40 3.23 3.24 3.43 15 3.03 3.10 2.91 3.05 3.17 3.15 3.24 3.32 3.36 3.40 3.23 3.24 3.43 15 3.03 3.10 2.91 3.05 3.17 3.15 3.24 3.32 3.36 3.40 3.23 3.24 3.40 17 3.01 3.11 2.95 3.05 3.13 3.18 3.28 3.29 3.34 3.39 3.26 3.40 17 3.01 3.11 2.96 3.04 3.15 3.18 3.27 3.28 3.29 3.34 3.39 3.36 3.38 19 3.01 3.11 2.96 3.04 3.15 3.18 3.27 3.28 3.34 3.39 3.36 3.38 19 3.01 3.11 2.96 3.06 3.17 3.19 3.27 3.26 3.34 3.41 3.43 3.38 20 3.03 3.11 2.97 3.08 3.15 3.20 3.28 3.24 3.35 3.42 3.47 3.37 12 3.06 3.11 2.97 3.08 3.15 3.20 3.28 3.24 3.35 3.42 3.47 3.37 12 3.06 3.11 2.99 3.08 3.15 3.20 3.28 3.24 3.35 3.42 3.47 3.37 12 3.06 3.11 2.99 3.08 3.11 3.19 3.29 3.28 3.24 3.35 3.42 3.47 3.35 24 3.12 3.16 2.98 3.11 3.19 3.18 3.28 3.19 3.39 3.40 3.49 3.33 23 3.11 3.18 2.99 3.11 3.19 3.18 3.28 3.29 3.40 3.49 3.33 23 3.11 3.11 2.93 3.09 3.11 3.19 3.18 3.28 3.29 3.42 3.37 3.71 3.46 2.88 3.07 3.09 2.94 3.10 3.11 3.19 3.28 3.29 3.42 3.37 3.71 3.46 2.88 3.07 3.09 2.94 3.10 3.11 3.12 3.25 3.26 3.29 3.42 3.37 3.71 3.46 2.88 3.07 3.09 2.94 3.10 3.11 3.12 3.25 3.26 3.29 3.42 3.38 3.73 3.44 3.49 3.49 3.39 3.66 3.40 3.40 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.2	7												
10 3.09 3.25 2.88 3.02 3.20 3.13 3.22 3.26 3.40 3.36 3.35 3.40 11 3.07 3.19 2.88 3.04 3.20 3.10 3.24 3.28 3.37 3.37 3.32 3.41 12 3.05 3.14 2.88 3.06 3.20 3.08 3.23 3.29 3.35 3.40 3.28 3.41 13 3.04 3.11 2.87 3.05 3.19 3.12 3.23 3.30 3.36 3.41 3.24 3.43 15 3.03 3.10 2.91 3.05 3.17 3.15 3.24 3.32 3.36 3.40 3.28 3.41 16 3.01 3.10 2.93 3.03 3.17 3.15 3.24 3.32 3.36 3.40 3.23 3.42 16 3.01 3.10 2.93 3.03 3.14 3.17 3.26 3.31 3.34 3.39 3.26 3.40 17 3.01 3.11 2.95 3.05 3.13 3.18 3.28 3.29 3.34 3.39 3.32 3.38 18 3.01 3.11 2.96 3.04 3.15 3.18 3.27 3.28 3.34 3.39 3.32 3.38 19 3.01 3.11 2.96 3.06 3.17 3.19 3.27 3.28 3.34 3.39 3.36 3.38 20 3.03 3.11 2.97 3.08 3.15 3.20 3.28 3.24 3.35 3.42 3.47 3.37 21 3.06 3.14 2.98 3.09 3.15 3.20 3.28 3.24 3.35 3.42 3.47 3.37 21 3.06 3.14 2.98 3.09 3.19 3.20 3.28 3.24 3.35 3.42 3.47 3.37 21 3.06 3.14 2.98 3.09 3.19 3.20 3.28 3.24 3.35 3.42 3.47 3.37 21 3.06 3.14 2.98 3.09 3.19 3.20 3.28 3.24 3.35 3.42 3.47 3.37 21 3.06 3.14 2.98 3.09 3.19 3.20 3.28 3.24 3.35 3.42 3.47 3.37 21 3.06 3.14 2.98 3.09 3.19 3.20 3.28 3.24 3.35 3.42 3.47 3.37 21 3.06 3.14 2.98 3.09 3.19 3.20 3.28 3.24 3.35 3.42 3.47 3.37 21 3.06 3.14 2.98 3.09 3.19 3.20 3.28 3.24 3.35 3.42 3.47 3.37 21 3.06 3.14 2.98 3.09 3.19 3.20 3.28 3.24 3.35 3.42 3.47 3.37 22 3.09 3.15 2.99 3.08 3.20 3.20 3.28 3.24 3.35 3.42 3.47 3.37 23 3.11 3.18 2.99 3.18 3.29 3.18 3.28 3.29 3.34 3.38 3.57 3.36 25 3.11 3.11 2.93 3.09 3.15 3.28 3.29 3.42 3.37 3.71 3.46 3.48 3.49 3.49 3.39 3.40 3.49 3.49 3.39 3.40 3.49 3.49 3.49 3.49 3.49 3.49 3.49 3.49													
11 3.07 3.19 2.88 3.04 3.20 3.10 3.24 3.28 3.37 3.37 3.32 3.41 12 3.05 3.14 2.88 3.06 3.20 3.08 3.23 3.29 3.35 3.40 3.28 3.41 13 3.04 3.12 2.88 3.06 3.20 3.07 3.23 3.29 3.35 3.40 3.28 3.41 13 3.04 3.11 2.87 3.05 3.19 3.12 3.23 3.39 3.34 3.40 3.25 3.42 3.43 15 3.03 3.10 2.91 3.05 3.17 3.15 3.24 3.32 3.30 3.36 3.41 3.24 3.43 15 3.03 3.10 2.91 3.05 3.17 3.15 3.24 3.32 3.36 3.40 3.23 3.42 16 3.01 3.10 2.93 3.03 3.14 3.17 3.26 3.31 3.34 3.39 3.26 3.40 17 3.01 3.11 2.95 3.05 3.13 3.18 3.28 3.29 3.34 3.39 3.32 3.38 18 3.01 3.11 2.95 3.05 3.13 3.18 3.28 3.29 3.34 3.39 3.32 3.38 19 3.01 3.11 2.96 3.04 3.15 3.18 3.27 3.26 3.34 3.39 3.32 3.38 19 3.01 3.11 2.96 3.06 3.17 3.19 3.27 3.26 3.34 3.49 3.39 3.32 3.38 19 3.01 3.11 2.97 3.08 3.15 3.20 3.28 3.24 3.35 3.42 3.47 3.37 21 3.06 3.14 2.98 3.09 3.15 3.20 3.28 3.24 3.35 3.42 3.47 3.37 21 3.06 3.14 2.98 3.09 3.15 3.20 3.28 3.24 3.35 3.40 3.49 3.32 23 3.31 3.18 3.29 3.31 3.11 3.18 2.99 3.11 3.19 3.20 3.28 3.21 3.38 3.42 3.47 3.37 22 3.09 3.15 2.99 3.11 3.19 3.18 3.28 3.19 3.39 3.40 3.49 3.33 23 3.11 3.18 2.99 3.11 3.19 3.18 3.28 3.19 3.39 3.40 3.49 3.33 23 3.11 3.18 2.99 3.11 3.19 3.18 3.28 3.29 3.41 3.38 3.57 3.36 2.98 3.11 3.11 2.93 3.09 3.15 3.28 3.29 3.42 3.37 3.71 3.46 2.8 3.09 3.09 2.94 3.10 3.12 3.25 3.28 3.22 3.41 3.38 3.57 3.36 2.8 3.27 3.07 3.09 2.94 3.10 3.12 3.25 3.26 3.29 3.42 3.37 3.71 3.46 2.9 3.07 3.09 2.94 3.10 3.12 3.25 3.26 3.29 3.42 3.37 3.71 3.46 2.9 3.07 3.09 2.94 3.10 3.12 3.25 3.26 3.29 3.42 3.37 3.71 3.46 2.9 3.07 3.09 2.94 3.10 3.12 3.25 3.26 3.29 3.42 3.37 3.71 3.46 2.9 3.07 3.09 2.94 3.10 3.12 3.25 3.26 3.29 3.42 3.37 3.71 3.46 2.9 3.07 3.09 2.99 3.15 3.10 3.12 3.29 3.29 3.22 3.41 3.38 3.73 3.40 3.49 3.39 3.40 3.49 3.39 3.40 3.49 3.39 3.40 3.49 3.39 3.40 3.49 3.39 3.40 3.49 3.39 3.40 3.49 3.39 3.40 3.49 3.39 3.40 3.49 3.39 3.40 3.49 3.39 3.40 3.49 3.39 3.40 3.49 3.39 3.40 3.49 3.39 3.40 3.49 3.39 3.40 3.49 3.39 3.40 3.49 3.30 3.30 3.30 3.30 3.30 3.30 3.30 3.3													
12	10	3.09	3.25	2.88	3.02	3.20	3.13	3.22	3.26	3.40	3.36	3.35	3.40
13 3.04 3.12 2.88 3.06 3.20 3.07 3.23 3.29 3.34 3.40 3.25 3.42 14 3.04 3.11 2.87 3.05 3.19 3.12 3.23 3.30 3.36 3.41 3.24 3.43 15 3.03 3.10 2.91 3.05 3.17 3.15 3.24 3.32 3.36 3.41 3.24 3.42 16 3.01 3.10 2.93 3.03 3.14 3.17 3.26 3.31 3.34 3.39 3.26 3.40 17 3.01 3.11 2.95 3.05 3.13 3.18 3.28 3.29 3.34 3.39 3.32 3.38 18 3.01 3.11 2.96 3.06 3.17 3.18 3.27 3.28 3.34 3.39 3.36 3.38 19 3.01 3.11 2.96 3.06 3.17 3.19 3.27 3.26 3.34 3.41 3.43 3.43 20 3.03 3.11 2.97 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
14 3.04 3.11 2.87 3.05 3.19 3.12 3.23 3.30 3.36 3.41 3.24 3.42 15 3.03 3.10 2.91 3.05 3.17 3.15 3.24 3.32 3.36 3.40 3.23 3.42 16 3.01 3.10 2.93 3.05 3.13 3.18 3.28 3.29 3.34 3.39 3.26 3.40 17 3.01 3.11 2.96 3.04 3.15 3.18 3.29 3.34 3.39 3.36 3.38 19 3.01 3.11 2.96 3.06 3.17 3.19 3.27 3.26 3.34 3.41 3.43 3.38 20 3.03 3.11 2.96 3.06 3.17 3.19 3.27 3.26 3.34 3.41 3.43 3.38 20 3.03 3.14 2.98 3.09 3.19 3.20 3.20 3.28 3.24 3.35 3.42 3.47 3.33 21 3.06 3.14 2.98 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
15 3.03 3.10 2.91 3.05 3.17 3.15 3.24 3.32 3.36 3.40 3.23 3.42 16 3.01 3.10 2.93 3.03 3.14 3.17 3.26 3.31 3.34 3.39 3.26 3.40 17 3.01 3.11 2.95 3.05 3.13 3.18 3.28 3.29 3.34 3.39 3.32 3.38 18 3.01 3.11 2.96 3.04 3.15 3.18 3.27 3.28 3.34 3.39 3.36 3.38 19 3.01 3.11 2.96 3.06 3.17 3.19 3.27 3.26 3.34 3.41 3.43 3.38 20 3.03 3.11 2.97 3.08 3.15 3.20 3.28 3.24 3.35 3.42 3.47 3.37 21 3.06 3.14 2.98 3.09 3.19 3.20 3.28 3.24 3.35 3.42 3.47 3.37 21 3.06 3.14 2.98 3.09 3.19 3.20 3.28 3.21 3.38 3.42 3.47 3.37 22 3.09 3.15 2.99 3.08 3.20 3.20 3.28 3.19 3.39 3.40 3.49 3.33 23 3.11 3.18 2.99 3.11 3.19 3.18 3.28 3.19 3.39 3.40 3.49 3.33 24 3.12 3.16 2.98 3.11 3.17 3.25 3.28 3.22 3.41 3.38 3.57 3.36 25 3.11 3.11 2.93 3.09 3.15 3.28 3.24 3.24 3.42 3.37 3.36 26 3.09 3.09 2.92 3.10 3.14 3.28 3.28 3.22 3.41 3.38 3.57 3.36 26 3.09 3.09 2.92 3.10 3.14 3.28 3.28 3.24 3.24 3.42 3.37 3.40 26 3.09 3.09 2.92 3.10 3.14 3.28 3.28 3.29 3.42 3.37 3.71 3.46 27 3.07 3.09 2.94 3.10 3.12 3.25 3.26 3.29 3.42 3.37 3.71 3.46 28 3.07 3.05 2.93 3.11 3.11 3.12 3.25 3.26 3.29 3.42 3.37 3.71 3.46 29 3.07 3.02 2.92 3.15 3.10 3.14 3.28 3.29 3.30 3.41 3.41 3.73 3.40 30 3.06 3.02 2.93 3.15 3.10 3.21 3.29 3.30 3.41 3.41 3.73 3.40 30 3.06 3.02 2.93 3.16 3.19 3.29 3.30 3.41 3.41 3.73 3.40 30 3.06 3.02 2.93 3.14 3.18 3.33 3.42 3.62 MEAN 3.08 3.14 2.94 3.05 3.16 3.27 3.38 3.39 3.44 3.41 3.42 3.69 MEAN 3.08 3.14 2.94 3.05 3.16 3.27 3.38 3.39 3.44 3.41 3.58													
16													
17	15	3.03	3.10	2.91	3.05	3.17	3.15	3.24	3.32	3.36	3.40	3.23	3.42
18 3.01 3.11 2.96 3.04 3.15 3.18 3.27 3.28 3.34 3.39 3.36 3.38 19 3.01 3.11 2.96 3.06 3.17 3.19 3.27 3.26 3.34 3.41 3.43 3.38 20 3.03 3.11 2.97 3.08 3.15 3.20 3.28 3.24 3.35 3.42 3.47 3.37 21 3.06 3.14 2.98 3.09 3.19 3.20 3.30 3.21 3.38 3.42 3.47 3.33 22 3.09 3.15 2.99 3.08 3.20 3.28 3.19 3.39 3.40 3.49 3.33 23 3.11 3.18 2.99 3.11 3.18 3.28 3.19 3.39 3.40 3.49 3.33 24 3.12 3.16 2.98 3.11 3.17 3.25 3.28 3.22 3.41 3.38 3.57 3.36 25 3.11 3.11 2.93 3.09 3.15 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
19 3.01 3.11 2.96 3.06 3.17 3.19 3.27 3.26 3.34 3.41 3.43 3.38 20 3.03 3.11 2.97 3.08 3.15 3.20 3.28 3.24 3.35 3.42 3.47 3.37 3.37 3.37 3.38 3.41 2.98 3.09 3.19 3.20 3.30 3.21 3.38 3.42 3.47 3.33 22 3.09 3.15 2.99 3.08 3.20 3.20 3.28 3.19 3.39 3.40 3.49 3.33 23 3.11 3.18 2.99 3.11 3.19 3.18 3.28 3.19 3.39 3.40 3.49 3.35 24 3.12 3.16 2.98 3.11 3.17 3.25 3.28 3.29 3.39 3.52 3.35 25 3.31 3.11 2.93 3.09 3.15 3.28 3.24 3.24 3.24 3.42 3.39 3.61 3.43 3.48 3.57 3.36 25 3.11 3.11 2.93 3.09 3.15 3.28 3.24 3.24 3.24 3.24 3.39 3.61 3.43 3.48 3.57 3.36 3.57 3.36 3.57 3.36 3.57 3.36 3.57 3.36 3.57 3.37 3.57 3.58 3.28 3.29 3.42 3.38 3.57 3.36 3.47 3.48 3.57 3.58 3.59 3.59 3.59 3.59 3.59 3.59 3.59 3.59													
20 3.03 3.11 2.97 3.08 3.15 3.20 3.28 3.24 3.35 3.42 3.47 3.37 21 3.06 3.14 2.98 3.09 3.19 3.20 3.30 3.21 3.38 3.42 3.47 3.33 22 3.09 3.15 2.99 3.08 3.20 3.20 3.28 3.19 3.39 3.40 3.49 3.33 23 3.11 3.18 2.99 3.11 3.19 3.18 3.28 3.19 3.39 3.39 3.52 3.35 24 3.12 3.16 2.98 3.11 3.17 3.25 3.28 3.22 3.41 3.38 3.57 3.36 25 3.11 3.11 2.93 3.09 3.15 3.28 3.24 3.24 3.24 3.39 3.61 3.43 26 3.09 3.09 2.92 3.10 3.14 3.28 3.28 3.24 3.24 3.24 3.39 3.61 3.43 26 3.09 3.09 2.92 3.10 3.14 3.28 3.28 3.24 3.24 3.24 3.39 3.61 3.43 28 3.29 3.42 3.37 3.71 3.46 28 3.07 3.05 2.93 3.11 3.11 3.11 3.23 3.28 3.26 3.29 3.42 3.38 3.73 3.44 2.9 3.07 3.05 2.93 3.11 3.11 3.23 3.28 3.29 3.42 3.38 3.73 3.44 2.9 3.07 3.02 2.92 3.15 3.10 3.21 3.29 3.30 3.41 3.41 3.73 3.40 3.0 3.06 3.02 2.93 3.16 3.19 3.29 3.30 3.41 3.41 3.42 3.69 3.34 3.1 3.05 2.93 3.14 3.18 3.33 3.32 3.42 3.69 3.34 3.41 3.42 3.69 3.34 3.58 3.58 3.58 3.58 3.59 3.44 3.41 3.42 3.69 3.34 3.58 3.58 3.59 3.36 3.36 3.04 3.16 3.20 3.28 3.28 3.27 3.38 3.39 3.44 3.41 3.42 3.69 3.34 3.35 3.36 3.36 3.04 3.16 3.20 3.28 3.30 3.31 3.33 3.43 3.42 3.73 3.58													
21													
22 3.09 3.15 2.99 3.08 3.20 3.20 3.28 3.19 3.39 3.40 3.49 3.33 23 3.11 3.18 2.99 3.11 3.19 3.18 3.28 3.19 3.39 3.39 3.52 3.35 24 3.12 3.16 2.98 3.11 3.17 3.25 3.28 3.22 3.41 3.38 3.57 3.36 25 3.11 3.11 2.93 3.09 3.15 3.28 3.24 3.24 3.42 3.39 3.61 3.43 26 3.09 3.09 2.92 3.10 3.14 3.28 3.24 3.24 3.42 3.39 3.61 3.43 26 3.07 3.09 2.94 3.10 3.12 3.25 3.26 3.29 3.42 3.37 3.71 3.46 28 3.07 3.05 2.93 3.11 3.11 3.11 3.23 3.28 3.29 3.42 3.38 3.73 3.44 2.9 3.07 3.05 2.93 3.11 3.11 3.11 3.23 3.28 3.29 3.42 3.38 3.73 3.44 2.9 3.07 3.02 2.92 3.15 3.10 3.21 3.29 3.30 3.41 3.41 3.73 3.40 3.00 3.06 3.02 2.93 3.16 3.19 3.29 3.30 3.41 3.41 3.42 3.69 3.34 3.1 3.05 2.93 3.14 3.18 3.33 3.42 3.69 3.34 3.69 3.34 3.15 3.36 3.04 3.16 3.20 3.28 3.29 3.27 3.38 3.39 3.44 3.41 3.42 3.69 3.34 3.35 3.36 3.36 3.04 3.16 3.20 3.28 3.30 3.31 3.43 3.42 3.73 3.58	20	3.03	3.11	2.97	3.08	3.15	3.20	3.28	3.24	3.35	3.42	3.47	3.37
23													
24 3.12 3.16 2.98 3.11 3.17 3.25 3.28 3.22 3.41 3.38 3.57 3.36 25 3.11 3.11 2.93 3.09 3.15 3.28 3.24 3.24 3.24 3.42 3.39 3.61 3.43 3.43 3.43 3.43 3.43 3.43 3.43 3.4													
25 3.11 3.11 2.93 3.09 3.15 3.28 3.24 3.24 3.42 3.39 3.61 3.43 26 3.09 3.09 2.92 3.10 3.14 3.28 3.23 3.27 3.43 3.38 3.65 3.47 27 3.07 3.09 2.94 3.10 3.12 3.25 3.26 3.29 3.42 3.37 3.71 3.46 28 3.07 3.05 2.93 3.11 3.11 3.23 3.28 3.29 3.42 3.38 3.73 3.44 29 3.07 3.02 2.92 3.15 3.10 3.21 3.29 3.30 3.41 3.41 3.73 3.40 29 3.07 3.02 2.93 3.16 3.19 3.29 3.32 3.41 3.41 3.73 3.40 30 3.06 3.02 2.93 3.14 3.19 3.29 3.32 3.41 3.42 3.69 3.34 31 3.05 2.93 3.14 3.18 3.33 3.42 3.62 MEAN 3.08 3.14 2.94 3.05 3.16 3.17 3.25 3.27 3.38 3.39 3.44 3.41 MAX 3.15 3.36 3.04 3.16 3.20 3.28 3.30 3.33 3.43 3.42 3.73 3.58													
26													
27 3.07 3.09 2.94 3.10 3.12 3.25 3.26 3.29 3.42 3.37 3.71 3.46 28 3.07 3.05 2.93 3.11 3.11 3.23 3.28 3.29 3.42 3.38 3.73 3.44 2.94 3.05 3.06 3.02 2.93 3.16 3.19 3.29 3.30 3.41 3.41 3.73 3.40 3.05 2.93 3.14 3.18 3.33 3.42 3.69 3.34 3.10 3.05 3.06 3.02 3.06 3.02 3.07 3.08 3.14 3.09 3.18 3.09 3.38 3.39 3.44 3.41 3.41 3.73 3.40 3.08 3.14 3.05 3.06 3.07 3.08 3.14 3.07 3.18 3.08 3.14 3.08 3.14 3.08 3.14 3.09 3.16 3.17 3.25 3.27 3.38 3.39 3.44 3.41 3.42 3.69 3.38 3.15 3.36 3.04 3.16 3.20 3.28 3.30 3.33 3.43 3.42 3.73 3.58	25	3.11	3.11	2.93	3.09	3.15	3.28	3.24	3.24	3.42	3.39	3.61	3.43
28 3.07 3.05 2.93 3.11 3.11 3.23 3.28 3.29 3.42 3.38 3.73 3.44 2.99 3.07 3.02 2.92 3.15 3.10 3.21 3.29 3.30 3.41 3.41 3.73 3.40 3.01 3.05 2.93 3.16 3.19 3.29 3.32 3.41 3.42 3.69 3.34 3.10 3.05 2.93 3.14 3.18 3.33 3.42 3.69 3.34 3.62 3.18 3.08 3.14 2.94 3.05 3.16 3.17 3.25 3.27 3.38 3.39 3.44 3.41 3.42 3.63 3.39 3.44 3.41 3.42 3.58 3.39 3.44 3.41 3.42 3.58													
29													
30 3.06 3.02 2.93 3.16 3.19 3.29 3.32 3.41 3.42 3.69 3.34 3.05 3.05 2.93 3.14 3.18 3.33 3.42 3.62 MEAN 3.08 3.14 2.94 3.05 3.16 3.17 3.25 3.27 3.38 3.39 3.44 3.41 MAX 3.15 3.36 3.04 3.16 3.20 3.28 3.30 3.33 3.43 3.42 3.73 3.58													
31 3.05 2.93 3.14 3.18 3.33 3.42 3.62 MEAN 3.08 3.14 2.94 3.05 3.16 3.17 3.25 3.27 3.38 3.39 3.44 3.41 MAX 3.15 3.36 3.04 3.16 3.20 3.28 3.30 3.33 3.43 3.42 3.73 3.58													
MEAN 3.08 3.14 2.94 3.05 3.16 3.17 3.25 3.27 3.38 3.39 3.44 3.41 MAX 3.15 3.36 3.04 3.16 3.20 3.28 3.30 3.33 3.43 3.42 3.73 3.58													
MAX 3.15 3.36 3.04 3.16 3.20 3.28 3.30 3.33 3.43 3.42 3.73 3.58	31	3.05		2.93	3.14		3.18		3.33		3.42	3.62	
MIN 3.01 3.02 2.87 2.94 3.10 3.07 3.19 3.19 3.34 3.35 3.23 3.33													
	MIN	3.01	3.02	2.87	2.94	3.10	3.07	3.19	3.19	3.34	3.35	3.23	3.33

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

2.87

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	TEMPER- ATURE (DEG C)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	TEMPER- ATURE (DEG C)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
NOV						APR					
18	0935	290	2990	27.0	800	20	1055	290	4140	27.0	1100
18	1005	390	2790	26.0	750	20	1130	390	3740	26.0	1000
18	1040	420	31900	26.0	13000	20	1210	410	5660	26.0	1400
18	1115	450	42300	26.0	18000	20	1245	430	40800	26.0	16000

MARIANA ISLANDS, ISLAND OF GUAM

133224144495271. Local number, 18-3249-02 Finegayan Exploratory Well Ex-10.

LOCATION.--Lat 13°32'24" N., long 144°49'52" E., Hydrologic Unit 20100003, near NAVCAMS Housing area.
Owner: Government of Guam.

AQUIFER .-- Barrigada Limestone.

WELL CHARACTERISTICS .-- Drilled basal water-table well, sounded depth 704.5 ft, uncased hole diameter 8 in.

DATUM.--Altitude of land-surface datum is 348 ft. Measuring point: Top of surface casing, 348.54 ft above mean sea level.

PERIOD OF RECORD . --

WATER LEVEL: Occasional measurements, September 1981 to May 1984.
Water-level recorder, June 1984 to current year.
WATER QUALITY: 1982 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 3.49 ft above mean sea level, Aug. 27, 1984; lowest measured, 1.97 ft above mean sea level, Feb. 24, 1983.

WATER LEVL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 3.07 3.09 3.07 3.19 3.05 3.10 3.09 3.14 3 ---3.04 3.09 3.08 3.07 ---3.06 3.07 3.05 3.04 3.07 3.07 3.05 5 6 3.07 3.05 3.00 3.00 h2.88 ---3.09 3.02 3.01 3.00 ---8 3.11 3.02 3.05 3.01 q 3.10 3.03 3.07 3.01 10 h3.02 3.06 3-06 3.02 3.03 3.04 3.08 2.98 3.05 ___ 12 3.02 3.10 2.94 3.06 13 3.02 3.11 2.92 3.06 ---2.91 3.05 15 3.04 3.10 16 h3.05 3.03 3.09 ---2.93 3.04 3.08 ---3.01 2.99 3.03 17 18 3.03 3.04 3.10 h2.73 3.03 3.09 3.05 20 ---3.04 3.11 3.13 3.01 21 ___ 3.06 3.11 3.12 2.97 22 3.07 3.07 3.13 2.96 23 ---3.08 3.07 3.17

3.09

3.10

3.11

3.10

3.09

3.08

3.09

3.06

3.11

3.01

2.95

2.95

2.96

2.96

2.99

3.01

3.07

3.07

3.07

3.05

3.07

3.11

3.11

3.08

3.11

3.02

3.23

3.27

3.31

3.37

3.37

3.31

3.10

3.37

2.91

3.01

3.10

3.13

3.09

3.06

2.97

2.90

3.04

3.19

2.90

h Tape measurement.

24

25

26

27

28

29

30

31 MEAN

MAX

MIN

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	TEMPER- ATURE (DEG C)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	TEMPER- ATURE (DEG C)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
NOV						APR					
19	0920	365	3550	27.0	950	16	1225	460	10200	26.5	3100
19	0955	400	2640	27.0	670	16	1300	470	27300	26.5	9600
19	1025	470	24000	27.0	8800	16	1335	480	42300	26.5	16000
19	1055	490	42000	26.5	18000					2273	23.67.2
APR											
16	1115	365	2260	27.0	450						
16	1150	400	1930	27.0	440						

MARIANA ISLANDS, ISLAND OF GUAM

132615144470571. Local number, 18-2647-01 Father Duenas Well.

LOCATION.--Lat 13°26'15" N., long 144°47'05" E., Hydrologic Unit 20100003, at Father Duenas Memorial School, Chalan Pago-Ordot. Owner: Government of Guam.

AQUIFER .-- Mariana Limestone.

WELL CHARACTERISTICS .-- Drilled parabasal water-table well, casing diameter 8 in.

DATUM.--Altitude of land-surface datum is 179 ft. Measuring point: Top of casing, 179.86 ft above mean sea level. PERIOD OF RECORD.--March 1973 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 10.37 ft above mean sea level, Oct. 24, 1980; lowest measured, 6.08 ft above mean sea level, Aug. 5, 1980.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	3	WATER LEVEL	DAT	E	WATER LEVEL	DAT	E	WATER LEVEL	DAT	E	WATER LEVEL
NOV 10	7.26	APR 11	7.02	JUN	8	7.16	JUL	9	7.00	AUG	9	7.03	SEP	6	7.53

132626144471771. Local number, 18-2647-12 Exploratory Well Ex-4.

LOCATION.--Lat 13°26'26" N., long 144°47'17" E., Hydrologic Unit 20100003, in Tai Mangilao near Father Duenas Memorial High School. Owner: Government of Guam.

AQUIFER. -- Argillaceous member of the Marianas Limestone.

WELL CHARACTERISTICS. -- Drilled basal water-table well, sounded depth 400 ft, borehole diameter 8 in, casing casing diameter 6 in, cased to 400 ft.

DATUM.--Altitude of land-surface datum is 152 ft. Measuring point: Top of casing, 153.71 ft above mean sea level.

PERIOD OF RECORD . --

WATER LEVEL: Occasional measurements, March 1981 to April 1982, February 1983 to current year. Water-level recorder, May to November 1982.

WATER QUALITY: 1981, 1983 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 8.08 ft above mean sea level, Aug. 17, 1981; lowest, measured, 4.82 ft above mean sea level, Aug. 23, 1983.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE		WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV S	9	5.69 5.11	APR 11	5.15	MAY 9	5.19	JUN 8	5.31 5.26	AUG 9	5.38	SEP 6	6.16

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	TEMPER- ATURE (DEG C)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	TEMPER- ATURE (DEG C)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
NOV						SEP					
09	1250	170	724	28.0	50	17	1320	170	763	28.0	52
09	1325	370	752	28.0	50	17	1400	300	755	28.0	51
09	1405	389	34800	28.0	14000	17	1435	340	761	28.0	52
APR	7.77	7.55	200100			17	1505	360	758	28.0	48
19	1315	170	690	26.5	43	17	1550	380	32900	27.5	11000
19	1345	375	13000	26.5	4200	17	1625	390	43600	27.5	16000
19	1420	380	24000	26.5	8600	- 4.5		200	12-27-0		49.00
19	1500	389	23700	26.5	8200						

MARIANA ISLANDS, ISLAND OF GUAM

132758144450571. Local number, 18-2745-03 Agana Well 147.

LOCATION.--Lat 13°27'58" N., long 144°45'05" E., Hydrologic Unit 20100003, on Route 4, 0.6 mi south of junction of Routes 1 and 4 in Agana. Owner: Government of Guam.

AQUIFER. -- Mariana Limestone.

WELL CHARACTERISTICS.--Drilled basal water-table well, depth when drilled, 186 ft, when measured in May 1973, 29 ft, casing diameter 6 in.

DATUM. -- Altitude of land-surface datum is 33 ft. Measuring point: Top of casing, 33.22 ft above mean sea level.

PERIOD OF RECORD. -- August 1955 to May 1960, January 1972 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 31.42 ft above mean sea level, Oct. 14, 1955; lowest measured, 6.83 ft above mean sea level, June 20, 1978.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DAT	E	WATER LEVEL	DATE	WATER LEVEL	DAT	E	WATER LEVEL									
NOV MAR	9	8.57 8.50	APR 11 MAY 9	8.44 8.26	JUN	8	8.02	JUL	9	8.11	AUG	9	8.19	SEP	6	8.74

132742144452971. Local number, 18-2745-07 Agana Springs.

LOCATION.--Lat 13°27'42" N., long 144°45'29" E., Hydrologic Unit 20100003, near Sinajana on the edge of Agana Swamp.

AQUIFER .-- Mariana Limestone.

WELL CHARACTERISTICS. -- Basal ground water issues from an opening in the Mariana Limestone. The water level is measured in a pool with a concrete spillway.

DATUM.--Altitude of land-surface datum is 10 ft. Measuring point: Edge of concrete spillway, 8.80 ft above mean sea level.

PERIOD OF RECORD. -- April 1974 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Lowest water level measured, 6.04 ft above mean sea level, June 8, 1984.

DATE		WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV MAR	9	8.35 6.92	APR 11 MAY 9	6.66 6.40	JUN	8 6.04	JUL	9 6.42	AUG	9 7.54	SEP	8,39

MARIANA ISLANDS, ISLAND OF GUAM

132736144461671. Local number, 18-2746-06 Chochogo Well Ex-1.

LOCATION.--Lat 13°27'36" N., long 144°46'16" E., Hydrologic Unit 20100003, near San Miguel School, Chochogo.

AQUIFER. -- Mariana Limestone: Agana argillaceous member.

WELL CHARACTERISTICS.--Drilled basal water-table well, sounded depth 597 ft, casing diameter 6 in, cased to 300 ft.

DATUM.--Altitude of land-surface datum is 94 ft. Measuring point: Top of PVC casing, 96.50 ft above mean sea level.

PERIOD OF RECORD . --

WATER LEVEL: November 1980 to current year. WATER QUALITY: 1981, 1983 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 9.52 ft above mean sea level, Sept. 28, 1982; lowest measured, 6.14 ft above mean sea level, June 22, 1983.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, NOVEMBER 1983 TO SEPTEMBER 1984

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 15 MAR 7	7.39 6.23	APR 17 MAY 9	6.41	MAY 15 JUN 8	6.36 6.33	JUL 9	6.51	AUG 9	7.18	SEP 6	7.90

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	TEMPER- ATURE (DEG C)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	TEMPER- ATURE (DEG C)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
NOV						SEP					
15	1005	110	720	27.0	52	13	1115	300	15600	26.5	4900
15	1040	340	21800	26.5	8200	13	1155	330	26100	26.5	8800
15	1120	355	24700	26.5	9800	13	1225	340	28300	26.5	9600
15	1150	370	28100	26.0	11000	13	1300	350	28900	26.5	9800
APR						13	1335	365	30400	26.5	10000
17	0935	110	940	27.0	43	13	1420	375	35000	26.5	12000
17	1000	340	27800	26.0	9600	13	1455	400	42700	26.5	15000
17	1035	355	33700	26.0	12000	13	1535	450	42300	26.5	15000
17	1110	360	33100	26.0	12000	13	1615	550	49600	26.0	18000
17	1145	370	46100	26.0	18000						
SEP											
13	1010	110	703	27.5	36						
13	1040	200	742	27.0	47						

MARIANA ISLANDS, ISLAND OF GUAM

132806144481871. Local number, 18-2848-03 Barrigada Exploratory Well Ex-9.

LOCATION.--Lat 13°28'06" N., long 144°48'18" E., Hydrologic Unit 20100003, near P.C. Lujan Elementary School Radio Barrigada. Owner: Government of Guam.

AQUIFER .-- Barrigada Limestone.

WELL CHARACTERISTICS.--Drilled basal water-table well, sounded depth 513 ft, borehole diameter 8 in.

DATUM.--Altitude of land-surface datum is 238 ft. Measuring point: Top of surface casing, 239.41 ft above mean sea level.

PERIOD OF RECORD . --

WATER LEVEL: September 1981 to current year. WATER QUALITY: 1981 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 3.45 ft above mean sea level, Oct. 28, 1981; lowest, measured, 2.29 ft above mean sea level, Feb. 18, 1983.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 14	2.90	DEC 20	2.81	APR 11	3.13	APR 23	3.11	JUN 8	3.26	AUG 9	3.20
DEC 19	2.78	MAR 7	3.03	13	3.14	MAY 9	3.03	JUL 9	3.22	SEP 6	3.29

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	TEMPER- ATURE (DEG C)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	TEMPER- ATURE (DEG C)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
NOV						APR					
14	1055	260	3140	28.0	880	13	1245	360	31800	28.0	11000
14	1135	350	8160	27.5	2400	13	1315	365	35400	27.5	13000
14	1220	355	15900	27.5	5500	13	1350	370	38500	28.0	14000
14	1310	370	35000	27.5	13000	SEP					
DEC						18	1505	260	3350	28.5	920
20	1210	240	3960	29.0	1200	18	1535	320	2970	28.5	800
20	1250	260	3220	29.0	920	18	1610	330	2940	28.5	800
20	1320	290	2930	28.5	800	19	0950	340	2940	28.5	800
20	1350	320	2680	28.0	710	19	1020	350	14800	28.0	4600
20	1420	345	4530	28.0	1300	19	1055	360	32200	28.0	11000
20	1500	350	8930	28.0	2600	19	1130	380	42500	28.0	15000
20	1540	365	30600	28.0	11000	19	1210	400	48500	28.0	18000
20	1615	380	38500	27.5	15000	19	1255	500	51500	28.0	19000
20	1645	450	47300	27.5	19000						
APR											
13	1110	260	3590	28.0	880						
13	1210	350	11900	28.0	3600						

MARIANA ISLANDS, ISLAND OF GUAM

133034144500871. Local number, 18-3050-05 Macheche Rd. Well Ex-6.

LOCATION.--Lat 13°30'34" N., long 144°50'08" E., Hydrologic Unit 20100003, in Macheche area, Dededo.

AQUIFER. -- Barrigada Limestone.

WELL CHARACTERISTICS.--Drilled basal water-table well, sounded depth 407 ft, uncased hole diameter 12 in. Well deepened to 462 ft on Aug. 7, 1981.

DATUM.--Altitude of land-surface datum is 309 ft. Measuring point: Top of surface casing, 309.41 ft above mean sea level.

PERIOD OF RECORD .--

WATER LEVEL: February 1978 to current year. WATER QUALITY: 1982 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 4.09 ft above mean sea level, Aug. 16, 1978; lowest measured, 2.61 ft above mean sea level, Feb. 2, 1983.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATI	Е	WATER LEVEL	DAT	E	WATER LEVEL
NOV 16	3.23	APR 19	3.44	JUN 8	3.54	JUL 10	3.49	AUG	9	3.48	SEP	6	3.48

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	TEMPER- ATURE (DEG C)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	TEMPER- ATURE (DEG C)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
NOV						SEP					
16	0845	330	436	26.0	22	11	1435	330	399	27.0	14
16	0930	440	399	25.5	16	11	1515	440	632	26.5	86
16	1005	457	43500	25.5	18000	11	1550	450	48700	26.5	18000
APR						11	1635	445	36100	26.0	12000
19	1015	330	420	26.0	27	12	0855	445	33900	26.5	12000
19	1050	440	383	26.0	22	12	0935	455	49900	26.5	18000
19	1130	450	45000	26.0	17000						
19	1205	457	47000	25.5	18000						

MARIANA ISLANDS, ISLAND OF GUAM

133115144484971. Local number, 18-3148-02 Harmon Well 1 (107).

LOCATION.--Lat 13°31'15" N., long 144°48'49" E., Hydrologic Unit 20100003, 500 ft north of junction of Routes 1 and 16, Dededo. Owner: Government of Guam.

AQUIFER .-- Mariana Limestone.

WELL CHARACTERISTICS .-- Drilled basal water-table well, sounded depth 289 ft, diameter 10 in.

DATUM. -- Altitude of land-surface datum is 268 ft. Measuring point: Top of casing, 267.96 ft above mean sea level.

PERIOD OF RECORD.--Water-level recorder: March 1973 to May 1983.

Occasional measurements: June 1983 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 4.34 ft above mean sea level, May 22, 1976; lowest, 1.84 ft above mean sea level, Feb. 12, 1983.

DATE	3	WATER LEVEL	DATE	WATER LEVEL	DATE	3	WATER LEVEL	DAT	E	WATER LEVEL	DAT	Е	WATER LEVEL	DAT	E	WATER LEVEL
NOV MAR	9	2.83 2.73	APR 11 MAY 9	2.90 2.93	JUN	8	3.01	JUL	9	2.82	AUG	9	2.89	SEP	6	2.81

MARIANA ISLANDS, ISLAND OF GUAM

133120144505471. Local number, 18-3150-10 Ghura-Dededo Monitoring Well.

LOCATION.--Lat 13°31'20" N., long 144°50'54" E., Hydrologic Unit 20100003, in the Dededo Well Field, PUAG, Dededo. Owner: Government of Guam.

AQUIFER .-- Barrigada Limestone.

WELL CHARACTERISTICS. -- Drilled basal water-table well, sounded depth 785 ft, uncased hole diameter 12 in.

DATUM.--Altitude of land-surface datum is 393 ft. Measuring point: Top of surface casing, 393.90 ft above mean sea level.

PERIOD OF RECORD . --

WATER LEVEL: Water-level recorder, November 1982 to February 1983.

Occasional measurements, March 1980 to August 1982, March 1983 to current year.

WATER QUALITY: 1979 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 2.36 ft above mean sea level, May 11, 1981, June 12, 1981; lowest measured, 1.40 ft above mean sea level, Dec. 17, 1982.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 17 MAR 7	2.09	APR 12 MAY 9	2.18 2.20	MAY 17 JUN 8	2.17	JUL 10	2.31	AUG 9	2.28	SEP 6	2.32

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	TEMPER- ATURE (DEG C)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	TEMPER- ATURE (DEG C)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
NOV						SEP					
17	0925	400	874	27.0	120	20	0825	400	833	26.5	120
17	1005	520	2260	26.5	580	20	0910	450	647	27.0	64
17	1050	530	7490	26.5	2300	20	0950	500	694	27.0	82
17	1210	540	38700	26.5	19000	20	1035	520	5470	27.0	1600
APR						20	1115	530	14000	27.0	4400
12	1310	400	820	27.0	120	20	1200	540	48500	27.0	18000
12	1400	520	675	27.5	76	20	1240	550	52200	27.0	19000
12	1450	530	10600	27.0	3200	20	1325	600	52200	27.0	19000
12	1530	535	32700	27.0	12000	20	1410	200	52200	27.0	19000
12	1610	540	43200	27.0	17000	20	1505	775	52000	26.5	19000

MARIANA ISLANDS, ISLAND OF GUAM

133628144513271. Local number, 18-3651-05 Northwest Field Exploratory Well Ex-8.

LOCATION.--Lat 13°36'28" N., long 144°51'32" E., Hydrologic Unit 20100003, in old Air Force Housing area in Northwest Field.

AQUIFER .-- Barrigada Limestone.

WELL CHARACTERISTICS. -- Drilled basal water-table well, sounded depth 658 ft, diameter 8 in.

DATUM.--Altitude of land-surface datum is 461 ft. Measuring point: Top of surface casing 462.49 ft above mean sea level.

PERIOD OF RECORD .--

WATER LEVEL: September 1981 to current year. WATER QUALITY: 1982 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 2.86 ft above mean sea level, June 8, 1984; lowest, 1.88 ft above mean sea level, Feb. 28, 1983.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 18 MAR 7	2.54	APR 18 MAY 9	2.80	MAY 24 JUN 8	2.71	JUL 10	2.81	AUG S	2.77	SEP	6 2.70

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	TEMPER- ATURE (DEG C)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	TEMPER- ATURE (DEG C)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
NOV						APR					
18	1300	480	630	26.5	70	18	1305	600	16700	26.0	5500
18	1340	550	485	26.0	31	18	1350	605	24500	25.5	8500
18	1420	605	21900	25.5	7900	18	1440	610	34100	25.5	12000
18	1500	610	30300	25.5	12000						
APR											
18	1130	480	550	26.5	51						
18	1220	550	453	26.0	26						

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 133451144534071 - 18-3453-02 AIR FORCE MON. WELL, GUAM

		SAM- PLING	SPE- CIFIC CON- DUCT-	TEMPER-	CHLO- RIDE, DIS- SOLVED
DATE	TIME	DEPTH (FEET)	ANCE (UMHOS)	ATURE (DEG C)	(MG/L AS CL)
SEP 11	1025	495	710	26.0	20

CAROLINE ISLANDS, YAP ISLANDS

093204138095970. Local number, 25-3209-01 Dorfay 6-in Well, Gagil-Tamil.

LOCATION.--Lat 09°32'04" N., long 138°09'59" E., Hydrologic Unit 20100006, 0.8 mi northeast of the Tamilang Elementary School and 0.8 mi south of the Coast Guard LORAN Station.

AQUIFER . -- Tamil Volcanics.

WELL CHARACTERISTICS. -- Drilled water-table well, depth reported 170 ft, casing diameter 6 in.

DATUM. -- Altitude of land-surface datum is 29 ft. Measuring point: Top of casing, 30.92 ft above mean sea level.

PERIOD OF RECORD.--Occasional measurements, July 1982 to April 1983. Water level recorder, May 1983 to current.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 20.32 ft above mean sea level, Dec. 22, 1982; lowest, 15.67 ft above mean sea level, June 10, 1983.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	19.32	18.97	19.38	18.76	18.97	19.49	18.46	17.79	17.05	19.16	19.11	19.64
2	19.40	19.00	19.47	18.75	18.98	19.35	18.42	17.76	17.05	19.36	19.22	19.51
3	19.44	19.05	19.35	18.73	18.95	19.27	18.39	17.72	17.01	19.52	19.50	19.39
4	19.37	19.28	19.28	18.72	18.94	19.39	18.36	17.68	16.97	19.59	19.77	19.40
5	19.32	19.32	19.22	18.71	18.91	19.52	18.36	17.65	17.01	19.48	19.65	19.44
3	19.32	19.32	13.22	10.71	10.91	19.32	10.30	17.03	17.01	19.40	19.03	13.44
6	19.26	19.26	19.16	18.67	18.87	19.43	18.35	17.62	17.05	19.46	19.69	19.37
7	19.51	19.19	19.10	18.67	18.84	19.35	18.32	17.58	17.03	19.37	19.65	19.33
8	19.67	19.13	19.06	18.64	18.82	19.30	18.27	17.54	17.04	19.28	19.60	19.25
9	19.57	19.21	19.02	18.64	18.79	19.25	18.25	17.49	17.08	19.22	19.58	19.28
10	19.45	19.25	18.98	18.63	18.86	19.21	18.23	17.46	17.15	19.17	19.60	19.34
11	19.38	19.18	18.97	18.60	19.13	19.19	18.20	17.42	17.30	19.10	19.59	19.31
12	19.34	19.10	18.94	18.81	19.17	19.16	18.16	17.37	17.60	19.11	19.76	19.38
13	19.32	19.05	18.96	19.22	19.17	19.09	18.19	17.35	17.76	19.07	19.70	19.41
14	19.33	19.00	18.96	19.17	19.22	19.04	18.21	17.31	17.79	19.09	19.59	19.33
15	19.31	18.96	19.04	19.11	19.24	19.00	18.19	17.27	17.79	19.19	19.56	19.54
16	19.25	18.91	19.06	19.08	19.16	18.98	18.18	17.24	17.95	19.14	19.60	19.58
17	19.20	19.00	19.04	19.03	19.10	18.94	18.21	17.24	18.10	19.14	19.78	19.54
18	19.20	19.00	18.99	19.03	19.10	18.89	18.16	17.17	18.16	19.09	19.68	19.54
	19.33	19.07	18.94	19.02	18.99	18.86	18.10	17.12		19.00	19.58	19.45
19 20	19.45								18.32			
20	19.35	19.04	18.89	19.35	18.96	18.81	18.11	17.09	18.61	18.94	19.55	19.44
21	19.25	18.99	18.86	19.27	18.94	18.77	18.09	17.04	18.79	18.91	19.53	19.53
22	19.25	18.95	18.82	19.16	19.03	18.73	18.06	16.98	18.86	18.86	19.44	19.54
23	19.22	18.92	18.77	19.09	19.02	18.72	18.02	17.12	18.91	18.84	19.40	19.53
24	19.18	18.98	18.75	19.27	18.99	18.70	18.00	17.15	18.94	18.81	19.35	19.71
25	19.16	19.34	18.76	19.33	18.94	18.67	17.98	17.10	19.17	18.85	19.33	19.67
26	19.12	19.35	18.74	19.25	19.05	18.63	17.95	17.05	19.37	18.97	19.50	19.53
27	19.13	19.28	18.70	19.18	19.31	18.60	17.92	17.08	19.33	18.97	19.47	19.38
28	19.12	19.21	18.77	19.11	19.58	18.57	17.88	17.09	19.22	18.97	19.40	19.26
29	19.07	19.14	18.87	19.06	19.65	18.57	17.85	17.09	19.14	18.96	19.51	19.05
30	19.02	19.16	18.86	19.01		18.54	17.81	17.08	19.16	18.95	19.68	18.97
31	19.00		18.80	18.97		18.50		17.05		19.00	19.75	
MEAN	19.29	19.11	18.98	18.98	19.06	18.98	18.16	17.31	18.02	19.11	19.55	19.42
MAX	19.67	19.35	19.47	19.35	19.65	19.52	18.46	17.79	19.37	19.11	19.33	19.42
MIN	19.00	18.91	18.70	18.60	18.79							
MIN	19.00	10.91	10.70	10.60	10.79	18.50	17.81	16.98	16.97	18.81	19.11	18.97

WTR YR 1984 MEAN 18.83 MAX 19.78 MIN 16.97

092919138045670. Local number, 25-2904-01 Yugamanman Well 1 (Frag-Lamaer), Yap.

LOCATION.--Lat 09°29'19" N., long 138°04'57" E., Hydrologic Unit 20100006, 800 ft southwest of the Communication Station, and 800 ft northwest of the U.S. Weather Bureau station.

AQUIFER . -- Tamil Volcanics.

WELL CHARACTERISTICS. -- Drilled water-table well, depth reported 92 ft, diameter 6 in.

DATUM.--Altitude of land-surface datum is 42 ft. Measuring point: Top of casing, 42.68 ft above mean sea level.

PERIOD OF RECORD . --

WATER LEVEL: July 1982 to current year. WATER QUALITY: 1984.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 32.09 ft above mean sea level, Sept. 23, 1983; lowest measured, 12.24 ft above mean sea level, May 13, 1983.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	WATER LEVEL										
OCT 7	28.66	NOV 8	28.18	DEC 13	27.52	FEB 8	25.03	APR 9	24.01	JUL 24	25.70
OCT 11	28.55	NOV 15	27.90	DEC 19	27.71	FEB 24	26.98	APR 24	22.05	AUG 24	28.20
OCT 19	28.42	NOV 22	29.04	JAN 5	26.31	MAR 8	28.42	MAY 14	19.18	SEP 6	28.80
OCT 21	28.19	NOV 28	29.17	JAN 18	26.30	MAR 16	27.23	JUN 20	24.60	SEP 24	29.51
NOV 3	28.18	DEC 7	28.05	FEB 1	25.57	MAR 23	26.25	JUN 28	26.78		

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO
MAR 23	0850	49	7.7	29.0	10	0	2.7	.86	5.9	54	. 8
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
MAR 23	.40	18	2.0	3.7	<.10	.9	27	.04	<.10	20	51

< Actual value is known to be less than the value shown.

CAROLINE ISLANDS, YAP ISLANDS

092918138045470. Local number, 25-2904-02 Yugamanman Well 2 (Faraq-Lamaer), Yap.

LOCATION.--Lat 09°29'18" N., long 138°04'54" E., Hydrologic Unit 20100006, 1,000 ft southwest of the Communication Station, and 1,000 ft northwest of the U.S. Weather Bureau Station.

AQUIFER. -- Tamil Volcanics.

WELL CHARACTERISTICS. -- Drilled water-table well, depth reported 84 ft, diameter 6 in.

DATUM.--Altitude of land-surface datum is 37 ft. Measuring point: Top of casing, 38.83 ft above mean sea level.

PERIOD OF RECORD.--WATER LEVEL: July 1982 to current year. WATER QUALITY: 1984.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 28.75 ft above mean sea level, Aug. 8, 1983; lowest measured, 12.04 ft above mean sea level, May 13, 1983.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 7	26.83 26.93	NOV 8 NOV 15	27.01 26.28	DEC 13 DEC 19	26.20 26.20	FEB 8 FEB 24	24.23	APR 9 APR 24	23.37	JUL 24 AUG 24	24.65
OCT 19	26.68	NOV 22	27.16	JAN 5	25.17	MAR 8	26.70	MAY 14	18.93	SEP 6	26.91
OCT 21	26.52	NOV 28	27.28	JAN 18	25.23	MAR 16	25.82	JUN 20	23.81	SEP 24	27.61
NOV 3	26.50	DEC 7	26.40	FEB 1	24.65	MAR 23	25.11	JUN 28	25.45		

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO
MAR 23	0910	48	7.8	29.0	12	0	3.7	.61	4.8	45	.6
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
MAR 23	.60	14	1.7	4.8	<.10	.6	25	.03	<.10	54	30

< Actual value is known to be less than the value shown.

092915138050270. Local number, 25-2905-01 Timlang Well 1, Yap.

LOCATION.--Lat 09°29'15" N., long 138°05'02" E., Hydrologlic Unit 20100006, 900 ft south of the Communication Station, and 300 ft southwest of the U.S. Weather Bureau Station.

AQUIFER . -- Tamil Volcanics.

WELL CHARACTERISTICS. -- Drilled water-table well, depth reported 70 ft, diameter 6 in.

DATUM.--Altitude of land-surface datum is 41 ft. Measuring point: Top of casing, 42.65 ft above mean sea level.

PERIOD OF RECORD .-- July 1982 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 36.84 ft above mean sea level, Sept 24, 1984; lowest measured, 11.19 ft above mean sea level, May 13, 1983.

DATE	WATER LEVEL								
MAR 23	32.47	APR 24	27.26	JUN 20	24.52	JUL 24	31.27	SEP 6	36.69
APR 9	29.56	MAY 14	22.72	JUN 28	30.57	AUG 24	35.96	SEP 24	36.84

CAROLINE ISLANDS, YAP ISLANDS

092920138050270. Local number, 25-2905-02 Timlang Well 2, Yap.

LOCATION.--Lat 09°29'18" N., long 138°05'01" E., Hydrologic Unit 20100006, 600 ft south of the Communication Station, and 300 west of the U.S. Weather Bureau Station.

AQUIFER. -- Tamil Volcanics.

WELL CHARACTERISTICS. -- Drilled water-table well, depth reported 80 ft, diameter 6 in.

DATUM. -- Altitude of land-surface datum is 39 ft. Measuring point: Top of casing, 40.43 ft above mean sea level.

PERIOD OF RECORD .--

WATER LEVEL: July 1982 to current year. WATER QUALITY: 1984.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 35.88 ft above mean sea level, Sept. 1, 1982; lowest measured, 11.38 ft above mean sea level, May 13, 1983.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	WATER LEVEL										
OCT 7	32.50	NOV 8	32.85	DEC 13	30.61	FEB 8	26.29	APR 9	25.07	JUL 24	27.46
OCT 11	32.68	NOV 15	31.28	DEC 19	31.54	FEB 24	29.39	APR 24	22.81	AUG 24	33.06
OCT 19	32.17	NOV 22	33.05	JAN 5	28.47	MAR 8	32.69	MAY 14	19.82	SEP 6	33.71
OCT 21	31.68	NOV 28	33.63	JAN 18	28.22	MAR 16	30.65	JUN 20	24.65	SEP 24	35.11
NOV 3	31.77	DEC 7	31.84	FEB 1	27.05	MAR 23	28.77	JUN 28	29.88		

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO
MAR 23	0835	42	6.5	29.5	12	5	3.1	.93	4.3	44	.6
23	0033	42	0.3	23.3	12	ň	3.1	.,,	4,5		••
	POTAS-	ALKA-		CHLO-	DI IIO	SILICA,	SOLIDS, SUM OF	SOLIDS,	NITRO- GEN,		MANGA-
	SIUM,	LINITY	SULFATE	RIDE,	FLUO- RIDE,	DIS-	CONSTI-	DIS-	NO2+NO3	IRON,	NESE,
	DIS-	LAB	DIS-	DIS-	DIS-	SOLVED	TUENTS,	SOLVED	DIS-	DIS-	DIS-
	SOLVED	(MG/L	SOLVED	SOLVED	SOLVED	(MG/L	DIS-	(TONS	SOLVED	SOLVED	SOLVED
DATE	(MG/L AS K)	AS CACO3)	(MG/L AS SO4)	(MG/L AS CL)	(MG/L AS F)	AS SIO2)	SOLVED (MG/L)	PER AC-FT)	(MG/L AS N)	(UG/L AS FE)	(UG/L AS MN)
DATE	AS K	CACOST	A5 504)	AS CLI	AS F	51027	(MG/L)	AC-FI)	AS N/	AS FE)	AS PIN)
MAR											
23	.30	7.0	1.3	7.5	.20	. 4	23	.03	<.10	460	220

< Actual value is known to be less than the value shown.

CAROLINE ISLANDS, YAP ISLANDS

092616138050670. Local number 25-2905-03 Timlang Well 3, Yap

LOCATION.--Lat 09°29'16" N., long 138°05'05" E., Hydrologic Unit 20100006, 800 ft south-southeast of the Communication Station, and 100 ft southeast of the U.S. Weather Bureau Station.

AQUIFER . -- Tamil Volcanics.

WELL CHARACTERISTICS. -- Drilled water-table well, depth reported 88 ft, diameter 6 in.

DATUM.--Altitude of land-surface datum is 43 ft. Measuring point: Top of casing, 44.22 ft above mean sea level.

REMARKS .-- Water level affected by pumping of nearby well.

PERIOD OF RECORD . --

WATER LEVEL: September 1982 to current year. WATER QUALITY: 1982, 1984.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 37.03 ft above mean sea level, July 29, 1982; lowest measured, 12.76 ft above mean sea level, May 13, 1983.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
APR 12 APR 24	26.65 25.24	MAY 14 JUN 1	22.09 17.92	JUN 28 JUL 24	29.61 28.14	AUG 24 SEP 6	32.60 32.33	SEP 24	34.28

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO
MAR 20	1440	57	5.2	29.5	15	9	3.8	1.3	6.9	50	. 8
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
MAR 20	.20	6.0	3.1	10	<.10	7.1	36	.05	.57	230	21

< Actual value is known to be less than the value shown.

092926138050470. Local number, 25-2905-06 Communication Well 2, Yap.

LOCATION.--Lat 09°29'25" N., long 138°05'03" E., Hydrologic Unit 20100006, 75 ft north of the Communication Station.

AQUIFER .-- Tamil Volcanics.

WELL CHARACTERISTICS .-- Drilled water-table well, depth reported 81 ft, diameter 2 in.

DATUM.--Altitude of land-surface datum is 39 ft. Measuring point: Top of casing, 39.40 ft above mean sea level. PERIOD OF RECORD.--December 1981 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 33.40 ft above mean sea level, June 8, 1982; lowest measured, 9.90 ft above mean sea level, May 27, 1983.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	WATER LEVEL										
OCT 7	27.64	NOV 8	27.81	DEC 13	26.73	FEB 8	29.15	APR 12	22.81	JUL 24	25.07
OCT 11	27.58	NOV 15	27.15	DEC 19	27.10	FEB 24	25.70	APR 24	21.30	AUG 24	27.70
OCT 19	27.40	NOV 22	28.06	JAN 5	25.45	MAR 8	28.14	MAY 14	18.51	SEP 6	28.72
OCT 21	27.29	NOV 28	27.29	JAN 18	25.14	MAR 16	26.94	JUN 20	23.04	SEP 24	28.78
NOV 3	26.83	DEC 7	27.54	FEB 1	24.53	MAR 20	26.12	JUN 28	26.57		

093159138095870. Local number 25-3109-01 Monguch Well 1, Gagil-Tamil.

LOCATION.--Lat 09°31'59" N., long 138°09'58" E., Hydrologic Unit 20100006, 0.6 mi northeast of the Tamilang Elementary School, and 1.0 mi south of the Coast Guard LORAN Station.

AQUIFER . -- Tamil Volcanics.

WELL CHARACTERISTICS .-- Drilled observation well, depth reported 85 ft, diameter 6 in.

DATUM.--Altitude of land-surface datum is 19.5 ft. Measuring point: Top of casing, 21.38 ft above mean sea level. PERIOD OF RECORD.--July 1982 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, overflowing casing for many days each year; lowest measured, 18.19 ft above mean sea level, May 12, 1983.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 11 MAR 21	21.32 21.30	APR 9 APR 24	21.32 20.48	MAY 17 JUN 13	19.49 20.23	JUN 27 AUG 10	j	AUG 30 SEP 24	j

j Water overflowing casing.

093159138095870. Local number, 25-3109-02 Monguch Well 2, Gagil-Tamil.

LOCATION.--Lat 09°31'59" N., long 138°09'58" E., Hydrologic Unit 20100006, 0.6 mi north of the Tamilang Elementary School, and 1.0 mi south of the Coast Guard LORAN Station.

AQUIFER . -- Tamil Volcanics .

WELL CHARACTERISTICS. -- Drilled water-table well, depth reported 95 ft, diameter 6 in.

DATUM.--Altitude of land-surface datum is 24 ft. Measuring point: Top of casing, 26.47 ft above mean sea level.

PERIOD OF RECORD. -- July 1982 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 24.79 ft above mean sea level, Aug. 10, 1984; lowest measured, 20.19 ft above mean sea level, May 12, 1983.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	WATER LEVEL								
OCT 11	24.43	APR 9	23.27	MAY 17	21.97	JUN 27	24.07	AUG 30	24.25
MAR 21	23.95	APR 24	22.85	JUN 13	22.42	AUG 10	24.79	SEP 24	23.64

093157138095670. Local number, 25-3109-03 Thilung Well 1 (Monguch 3), Gagil-Tamil.

LOCATION.--Lat 09°31'57" N., long 138°09'56" E., Hydrologic Unit 20100006, 0.6 mi north of the Tamilang Elementary School, and 1.1 mi south of the Coast Guard LORAN Station.

AQUIFER . -- Tamil Volcanics.

WELL CHARACTERISTICS .-- Drilled water-table well, depth reported 115 ft, diameter 6 in.

DATUM.--Altitude of land-surface datum is 26 ft. Measuring point: Top of casing, 28.16 ft above mean sea level.

PERIOD OF RECORD. -- July 1982 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 26.58 ft above mean sea level, Sept. 1, 1982; lowest measured, 23.29 ft above mean sea level, Feb. 21, 1983.

DATE	WATER LEVEL								
MAR 21	25.31	APR 24	23.97	JUN 13	23.36	JUL 23	24.29	AUG 30	23.74
APR 9	24.46	MAY 17	24.00	JUN 27	25.37	AUG 10	26.25	SEP 24	25.97

093154138095370. Local number, 25-3109-04 Thilung Well 2 (Monguch 4), Gagil-Tamil.

LOCATION.--Lat 09°31'54" N., long 138°09'53" E., Hydrologic Unit 20100006, 0.5 mi north of the Tamilang Elementary School, and 1.1 mi south of the Coast Guard LORAN Station.

AQUIFER . -- Tamil Volcanics.

WELL CHARACTERISTICS. -- Drilled water-table well, depth reported 105 ft, diameter 6 in.

DATUM.--Altitude of land-surface datum is 33 ft. Measuring point: Top of casing, 34.82 ft above mean sea level. PERIOD OF RECORD.--July 1982 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 29.53 ft above mean sea level, Sept. 24, 1984; lowest measured, 22.95 ft above mean sea level, May 12, 1983.

	E/AMID		MARINE		MAMPI		T/A MIDD		tra mon
DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Dill	DEVED	52	22,22	2.1.2.2	DDVDD	D1112	DUVDD	Dill	DEVED
OCT 11	28.96	APR 24	26.77	JUN 13	25.26	JUL 23	28.38	AUG 30	28.84
MAR 21	28.37	MAY 17	25.67	JUN 27	28.38	AUG 10	29.49	SEP 24	29.53
ADD Q	27.39								

093217138101270. Local number, 25-3210-01 Mukong Well, Gagil-Tamil.

LOCATION.--Lat 09°32'17" N., long 138°10'12" E., Hydrologic Unit 20100006, 0.6 mi south of the Coast Guard LORAN Station, and 1.1 mi north-northeast of the Tamilang Elementary School.

AQUIFER .-- Coral formation in the Tamil-Volcanics.

WELL CHARACTERISTICS .-- Drilled water-table well, depth reported 120 ft, diameter 6 in.

DATUM.--Altitude of land-surface datum is 24 ft. Measuring point: Top of casing, 25.83 ft above mean sea level.

PERIOD OF RECORD .--

WATER LEVEL: July 1982 to current year. WATER QUALITY: 1984.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 16.19 ft above mean sea level, Sept. 1, 1982; lowest measured, 12.68 ft above mean sea level, May 12, 1983.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 11 OCT 21	15.67 15.58	DEC 13 JAN 4	15.26 14.98	FEB 27 MAR 16	15.32 15.33	APR 9 APR 24	14.57	JUN 27 JUL 23	14.81 15.03	AUG 30 SEP 24	15.75 15.73
NOV 13	15.23	FEB 15	15.17	MAR 21	15.16	MAY 17	13.63	AUG 10	15.62		

DATE	TIME		AND-	TEMPE ATUR (DEG	RE	HARD NESS (MG/I AS CACO	NONE BON.	RD- SS, CAR- ATE G/L CO3)	CALC DIS SOL (MG	VED	MAGI SIV SOLV (MG, AS I	UM, S- VED /L	SODI DIS SOLV (MG AS	ED /L	PERCEN SODIU	SC T NT RA	DIUM AD- ORP- CION ATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)
MAR 21	1230		8.7	29	0.0		9	0	2	. 8		.50	79		g	2	12	5.2
DAT	L	ALKA- INITY LAB (MG/L AS CACO3)	DI SO (M	FATE S- LVED G/L SO4)	CHL RID DIS SOL (MG AS	E, - VED /L	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	DI SO (M A	ICA, S- LVED G/L S	SOLI SUM CONS TUEN DI SOL (MG	OF TI- TS, S- VED	SO (T	IDS, IS- LVED ONS ER -FT)	GE NO2+ DI	NO3 S- VED	IRON, DIS- SOLVEI (UG/L AS FE)	N1) S(ANGA- ESE, DIS- DLVED UG/L S MN)
MAR 21.	1	76		1.6	11		.60		.7		210		.28		.15	87		8

CAROLINE ISLANDS, YAP ISLANDS

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

092703138041170 - 25-2704-01 WUGEEM, YAP

DATE	TIME	SPE CIF CON DUC ANC (UMH	IC I- IT- IE	PH (STAN ARD UNITS	D- (ARD- ESS MG/L AS ACO3)	HAR NES NONC BONA (MG CAC	S, AR- TE /L	CALC DIS SOI (MG AS	VED	MAGI SII SOL' (MG AS I	UM, S- VED /L	SODI DIS SOLV (MG	ED /L	PERC!		SODI SORE TIC RATI	0- 0N 10	POTAS- SIUM, DIS- SOLVED (MG/L AS K)
MAR 22	1830		212	6	.1	70		0	12		9	. 8	18			36	1	t.	.30
TAD	LI	ALKA- INITY LAB (MG/L AS CACO3)	(MG	VED	CHLO- RIDE, DIS- SOLVE (MG/L AS CL	RI D D SO (M	UO- DE, IS- LVED G/L F)	DI SO (M A	LVED G/L	SOLI SUM CONS TUEN DI SOL (MG	OF TI- TS, S- VED	SOI (TO	S- JVED ONS	NO2+ DI SOL	S- VED S/L	IRON DIS SOLV (UG/ AS I	ED L	MANG NESE DIS SOLV (UG/ AS M	ED L
MAR 22.	7	71		7.0	19		<.10		46		150		.21		.30		30		57

092903138051170 - 25-2905-04 LAMAER, YAP

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO
MAR 23	1000	61	5.4	29.0	17	5	3.6	1.9	5.5	41	.6
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
MAR 23	.20	12	2.5	8.5	<.10	12	42	.06	.16	750	35

< Actual value is known to be less than the value shown.

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

092920138043570 - 25-2905-05 COMMUNICATION BLDG WELL 1, YAP

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO
MAR											
20	1515	122	6.8	30.0	43	0	8.0	5.5	7.8	28	. 5
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
MAR 20	. 40	49	1.6	8.6	<.10	54	120	16	.19	19	6
20	. 40	45	1.0	0.0	.10	54	120	.16	.19	19	0

093144138054670 - 25-3105-01 MAGAF, YAP

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO
MAR											
22	1030	305	6.4	27.5	130	3	21	20	12	16	.5
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
MAR 22	.40	132	4.5	18	<.10	50	210	.28	.13	160	59

< Actual value is known to be less than the value shown.

CAROLINE ISLANDS, TRUK ISLANDS

STATION NUMBER	LOCAL IDENT- I- FIER	LAT- I- TUDE	LONG- I- TUDE	DATE OF SAMPLE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	TEMPER- ATURE (DEG C)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
072517151505770	30-2550-01	07 25 10	151 50 33	84-02-08	1030	172	28.0	9.0
072658151511970	30-2650-01	07 26 46	151 50 56	84-02-08	0830	148	27.5	12
072654151511870	30-2650-02	07 26 50	151 50 55	84-02-08	0825	180	28.5	12
072704151511070	30-2650-05	07 26 57	151 50 47	84-02-08	0950	180	28.5	16
072702151512570	30-2651-01	07 26 54	151 51 01	84-02-08	0840	400	28.5	37
072706151512470	30-2651-03	07 26 58	151 51 00	84-02-08	0910	400	28.5	49
072705151512670	30-2651-04	07 26 58	151 51 02	84-02-08	0900	2170	28.5	650
072708151512170	30-2750-03	07 27 01	151 50 56	84-02-07	1510	270	29.0	25
072710151512570	30-2751-01	07 27 03	151 51 01	84-02-08	0925	260	28.5	26

CAROLINE ISLANDS, TRUK ISLANDS

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

082522151444070 - 31-2544-02 NOMWIN W2, HALL IS, TRUK IS

SILICA, DIS- N SOLVED (MG/L AS DATE SIO2) MAR 16 5.2	GEN, NO2+NO3 DIS- SOLVED (MG/L	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR)	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, SUS- PENDED RECOV- ERABLE (UG/L AS FE)
SILICA, DIS- N SOLVED (MG/L AS DATE SIO2) MAR 16 5.2	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	TOTAL (UG/L AS AS)	TOTAL RECOV- ERABLE (UG/L AS BA)	LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	TOTAL RECOV- ERABLE (UG/L	MIUM, TOTAL RECOV- ERABLE (UG/L	COBALT, TOTAL RECOV- ERABLE (UG/L	TOTAL RECOV- ERABLE (UG/L	TOTAL RECOV- ERABLE (UG/L	SUS- PENDED RECOV- ERABLE (UG/L
16 5.2	24	40	2	<100	2.2						
				1100	10	<1	20	<1	6	100	40
DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	TOTAL RECOV- ERABLE (UG/L AS LI)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, SUS- PENDED RECOV. (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MOLYB- DENUM, TOTAL RECOV- ERABLE (UG/L AS MO)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)
MAR 16 59	2	<10	62	0	62	.1	i	2	<1	<1	20

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	LINITY LAB	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
MAR 16	1000	4000	6.9	27.5	140	75	490	20	366	150	930	.30
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	INUM, TOTAL RECOV-		BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)		TOTAL RECOV-	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, SUS- PENDED RECOV- ERABLE (UG/L AS FE)
MAR 16	2.4	1.9	30	1	<100	<10	<1	20	<1	2	80	0
DA	SOI (UC	ON, TO S- RE LVED ER G/L (U	TAL TO COV- RE ABLE ER G/L (U	HIUM NESTAL TOS COV- REG ABLE ER G/L (UG	NGA- SE, MAN PAL NES COV- DI ABLE SOL G/L (UG MN) AS	E, TOT S- REC VED ERA /L (UG	OV- REC	UM, NIC AL TO OV- RE BLE ER /L (U	COV- NI ABLE TO G/L (U	SILVI LE- TOTI UM, RECO TAL ERAI G/L (UG, SE) AS	AL TOT OV- REC BLE ERA /L (UC	
MAR 16		80	<1	10	130	130	.1	<1	<1	<1	<1	30

< Actual value is known to be less than the value shown.

CAROLINE ISLANDS, TRUK ISLANDS

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

083618152144070 - 31-3614-04 RUO W4, HALL IS, TRUK

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
MAR 04	1700	1550	6.7	27.0	150	30	140	7.8	484	71	180	.20
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO)	TOTAL RECOV-	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, SUS- PENDED RECOV- ERABLE (UG/L AS FE)
MAR 04	6.5	<.10	20	4	<100	<10	3	10	<1	5	80	50
DA	SO1	ON, TO IS- RE LVED ER G/L (U	TAL TO COV- RE ABLE ER G/L (U	HIUM NESTAL TOS COV- REG ABLE ERA G/L (UC		E, TOT S- REC VED ERA /L (UG	AL TOT OV- REC BLE ERA /L (UG	UM, NIC AL TO OV- RE BLE ER /L (U	COV- NI ABLE TO G/L (U	SILV LE- TOT UM, REC TAL ERA G/L (UG SE) AS	AL TOTO OV- REC BLE ERA /L (UC	COV- ABLE
MAR 04	1	30	<1	<10	34	34	<.1	<1	4	<1	<1	40

084111152203770 - 31-4120-14 MURILO W14, HALL IS, TRUK

TIME	SPE- CIFIC CON- DUCT- ANCE	PH (STAND- ARD UNITS)	TEMPER- ATURE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
100/1											
0930	975	7.1	27.0	120	18	63	2.7	358	20	110	.60
SILICA, DIS- SOLVED (MG/L AS SIO2)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR)	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, SUS- PENDED RECOV- ERABLE (UG/L AS FE)
	. 10	20	-21	4100	<10	41	<10		2	160	110
4.1	1.10	30	/1	100	(10	11	(10	1	2	160	110
IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LITHIUM TOTAL RECOV- ERABLE (UG/L AS LI)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, SUS- PENDED RECOV. (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MOLYB- DENUM, TOTAL RECOV- ERABLE (UG/L AS MO)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)
52	<1	<10	77	0	77	<.1	<1	3	<1	<1	20
	0930 SILICA, DIS- SOLVED (MG/L AS SIO2) 4.1 IRON, DIS- SOLVED (UG/L AS FE)	TIME CON- DUCT- ANCE (UMHOS) 0930 975 NITRO- GEN, DIS- NO2+NO3 SOLVED DIS- (MG/L AS (MG/L SIO2) AS N) 4.1 <.10 LEAD, TOTAL DIS- SOLVED CEABLE (UG/L AS FE) AS PB)	CIFIC CON- PH	CIFIC CON- PH DUCT- (STAND- TEMPER- ANCE ARD ATURE (UMHOS) UNITS) (DEG C)	CIFIC CON- PH DIS-	CIFIC	CIFIC	CIFIC	CIFIC CON- PH DIS- DIS- DIS- DIS- DIS- LAB DIS- DI	CIFIC	CIFIC

< Actual value is known to be less than the value shown.

CAROLINE ISLANDS, TRUK ISLANDS

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

083503150242070 - 32-3524-05 PISARACH W5, MAGUR IS, TRUK

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	CALCIUM DIS- SOLVEM (MG/L AS CA)	DIS- SOLVEI (MG/L	SODIU DIS- SOLVE (MG/	M, SI DI D SOI L (MG	G/L AS	ITY SUAB DIGITY S	ULFATE OIS- SOLVED MG/L S SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
MAR 21	1100	950	6.8	27.5	130	15	61	13	3 335		22	100	.20
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ERABLI (UG/L	TOTAL RECOV- E ERABLE (UG/L	CADMI TOTA RECO ERAB (UG/	L TOI V- REC LE ERA L (UG	JM, COBA FAL TO: COV- REC ABLE ERA G/L (UC	TAL TOOV- FABLE EG/L (PPPER, POTAL RECOV- ERABLE UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, SUS- PENDED RECOV- ERABLE (UG/L AS FE)
MAR 21	1.4	12	30	<1	<100	<10	Ľ	<1	20	<1	2	20	0
DA	SOI (UC	ON, TO IS- RE- LVED ER G/L (U	TAL TO COV- RE ABLE ER G/L (U	HIUM NE TAL TO COV- RE ABLE EF G/L (U	COV- I ABLE SO	ESE, TO DIS- RI DLVED EI UG/L (U	RCURY OTAL COV- RABLE UG/L	MOLYB- DENUM, TOTAL RECOV- ERABLE (UG/L AS MO)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SILVE TOTA RECO ERAB (UG/ AS A	L TOT V- REC LE ERA L (UG	AL OV- BLE /L
MAR 21	•••	19	4	<10	62	62	.1	<1	<1	<1		<1	10

083504149392070 - 32-3539-01 ULUL W1, MAGUR IS, TRUK IS

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	LINITY LAB	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
MAR 23	1230	1750	7.0	28.5	100	34	200	25	330	65	320	. 40
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)		COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, SUS- PENDED RECOV- ERABLE (UG/L AS FE)
MAR 23	7.6	16	30	2	<100	<10	<1	20	<1	6	50	30
DA	SO:	ON, TO IS- RE LVED ER G/L (U	TAL TO COV- RE ABLE ER G/L (U	HIUM NE TAL TO COV- RE ABLE ER G/L (U	TAL NES	S- REC	CURY DEN CAL TOT COV- REC	AL TO OV- RE BLE ER /L (U		JM, REC	AL TOI OV- REC BLE ERA /L (UG	COV- BLE
MAR 23		23	3	10	65	65	<.1	2	8	<1	<1	140

< Actual value is known to be less than the value shown.

CAROLINE ISLANDS, TRUK ISLANDS

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

072130149115970 - 33-2111-32 PULUWAT W32, WESTERN TRUK IS, TRUK

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
JAN 31	1040	571	6.4	27.5	110	6.5	4.2	<.10	313	3.5	5.3	.20
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, SUS- PENDED RECOV- ERABLE (UG/L AS FE)
JAN 31	.3	<.10	10	<1	<100	<10	. <1	<10	<1	6	300	290
DATE	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LITHIUM TOTAL RECOV- ERABLE (UG/L AS LI)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, SUS- PENDED RECOV. (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MOLYB- DENUM, TOTAL RECOV- ERABLE (UG/L AS MO)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)
JAN 31	14	9	<10	10	8	2	<.1	<1	4	<1	<1	140

073240149241470 - 33-3224-02 TAMATAM W2, WESTERN TRUK IS, TRUK

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
FEB 03	0930	1600	7.2	27.0	110	38	170	13	371	87	250	.20
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, SUS- PENDED RECOV- ERABLE (UG/L AS FE)
FEB 03	1.6	6.5	30	<1	<100	<10	3	10	<1	5	50	0
DATE	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LITHIUM TOTAL RECOV- ERABLE (UG/L AS LI)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, SUS- PENDED RECOV. (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MOLYB- DENUM, TOTAL RECOV- ERABLE (UG/L AS MO)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)
FEB 03	46	<1	<10	16	0	16	<.1	1	7	<1	<1	530

< Actual value is known to be less than the value shown.

CAROLINE ISLANDS, TRUK ISLANDS

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

073834149250470 - 33-3825-11 PULAP W11, WESTERN TRUK IS, TRUK

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
FEB 04	1030	1150	6.7	27.0	130	23	87	1.5	383	28	150	.20
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, SUS- PENDED RECOV- ERABLE (UG/L AS FE)
FEB 04	. 4	.23	10	<1	<100	<10	<1	20	<1	2	530	360
DATE	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LITHIUM TOTAL RECOV- ERABLE (UG/L AS LI)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, SUS- PENDED RECOV. (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MOLYB- DENUM, TOTAL RECOV- ERABLE (UG/L AS MO)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)
FEB 04	170	<1	<10	21	0	21	<.1	<1	3	<1	<1	30

064148149184070 - 33-4118-07 PULUSUK W7, WESTERN TRUK IS, TRUK

DATE	TIME	SPE- CIFI CON- DUCT ANCE (UMHO	C PH - (STA AR	ND- TEN	MPER- FURE EG C)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAL SIUI DIS- SOLVI (MG/I	M, LINI - LA ED (MG L AS	TY SU	ULFATE DIS- SOLVED (MG/L S SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
FEB 05	0930	11	00	6.9	27.5	130	23	34	75	491		20	39	.30
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	NITRO GEN NO2+NO DIS- SOLVO (MG/1 AS N	O3 TOTAL - RECO ED ERAL L (UG.	M, AL OV- ARS BLE TO /L (U	SENIC DTAL JG/L S AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHROMIUM TOTAL RECOVERABL (UG/1 AS CI	COBAL TOT V- REC LE ERA L (UG	OV- F BLE F	PPPER, POTAL RECOV- RABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)
FEB 05	2.5	13		20	<1	<100	<10	<1		10	<1	3	30	26
DA	TO: REC ERA (UC	TAL COV- I	ITHIUM FOTAL RECOV- ERABLE (UG/L AS LI)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MAN NES SU PEN REC (UG AS	S- NESI DED DIS OV. SOLV /L (UG/	E, TOT S- REC VED ERA /L (UC	URY DEI	COV- I BLE I	ICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SILVE TOTA RECO ERAE (UG/ AS A	AL TOTAL OV- RECO BLE ERA	AL OV- BLE /L
FEB 05		2	<10	27		0	27	<.1	<1	5	<1		<1	20

< Actual value is known to be less than the value shown.

CAROLINE ISLANDS, TRUK ISLANDS

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

052701153272970 - 35-2727-21 KUTTU W21, MORTLOCK IS, TRUK

		SPE-		CHLO-
		CIFIC		RIDE,
		CON-		DIS-
		DUCT-	TEMPER-	SOLVED
	TIME	ANCE	ATURE	(MG/L
DATE		(UMHOS)	(DEG C)	AS CL)
FEB				
17	1015	340	26.5	7.0

052655153272970 - 35-2727-28 KUTTU W28, MORTLOCK IS, TRUK

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
FEB	5375		4.6	24.0			500	2.1	225	3.5	4.2	1.2
17	1115	750	7.4	27.0	83	15	43	7.5	268	29	45	.40
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, SUS- PENDED RECOV- ERABLE (UG/L AS FE)
FEB												
17	4.4	7.4	30	1	<100	<10	3	<10	<1	3	40	10
DATE	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LITHIUM TOTAL RECOV- ERABLE (UG/L AS LI)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, SUS- PENDED RECOV. (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MOLYB- DENUM, TOTAL RECOV- ERABLE (UG/L AS MO)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)
FEB 17	26	3	<10	57	0	57	.1	1	8	<1	<1	170

< Actual value is known to be less than the value shown.

CAROLINE ISLANDS, TRUK ISLANDS

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

052918153321470 - 35-2932-18 MOCH W18, MORTLOCK IS, TRUK

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
FEB 18	1415	800	7.3	27.0	100	15	44	4.0	316	32	43	.20
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, SUS- PENDED RECOV- ERABLE (UG/L AS FE)
FEB 18	3.3	5.9	20	1	<100	<10	1	<10	2	5	100	60
DATE	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LITHIUM TOTAL RECOV- ERABLE (UG/L AS LI)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, SUS- PENDED RECOV. (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MOLYB- DENUM, TOTAL RECOV- ERABLE (UG/L AS MO)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)
FEB 18	37	3	<10	46	0	46	<.1	1	13	<1	<1	70

053446153344270 - 35-3434-20 ETAL W20, MORTLOCK IS, TRUK

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
FEB 19	1200	650	7.1	26.5	96	16	17	2.9	310	11	20	.30
25111	2242			20.0	3.0		7	2.0	320	-	20	
DATE	SILICA, DIS- SOLVED (MG/L AS S102)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR)	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, SUS- PENDED RECOV- ERABLE (UG/L AS FE)
FEB												
19	1.2	1.8	20	<1	<100	<10	11	<10	<1	6	180	150
DATE	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LITHIUM TOTAL RECOV- ERABLE (UG/L AS LI)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, SUS- PENDED RECOV. (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MOLYB- DENUM, TOTAL RECOV- ERABLE (UG/L AS MO)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)
FEB	2.4		42.0									
19	34	4	<10	50	0	50	<.1	1	9	<1	<1	50

< Actual value is known to be less than the value shown.

CAROLINE ISLANDS, TRUK ISLANDS

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

055525153065570 - 35-5506-28 NAMOLUK W28, MORTLOCK IS, TRUK

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
FEB 21	1100	600	7.1	28.5	110	8.6	11	1.7	300	7.9	8.3	.30
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, SUS- PENDED RECOV- ERABLE (UG/L AS FE)
FEB 21	3.7	2.7	20	43	<100	<10	5	10	<1	6	50	30
DATE	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LITHIUM TOTAL RECOV- ERABLE (UG/L AS LI)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, SUS- PENDED RECOV. (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MOLYB- DENUM, TOTAL RECOV- ERABLE (UG/L AS MO)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)
FEB 21	21	4	<10	54	0	54	<.1	1	11	<1	2	30

< Actual value is known to be less than the value shown.

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

070841171011801 - 50-0802-01 LAURA DW1, MAJURO

CIF CON DUC ANC	IC I- CT- CE	(STA	ND- D	ATUF	RE .	NESS (MG/I AS	NONG NONG L BONA	SS, CAR- ATE G/L	DIS SOL (MG	VED	SI SOL (MG	UM, S- VED	DIS SOLV	S- /ED S/L			SOR TI	D- P- ON	POTAS- SIUM, DIS- SOLVED (MG/L AS K)
	625			28	3.5										-	-			
	645		7.2	28	3.5	3:	10	0	1	.00		14		18	1	.1		. 5	1.7
										SOLID	s,			NIT	RO-				
	ALK	A-			CHLC)-	FLUO-	SIL	ICA,	SUM C	F	SOL	DS,	GE	N,			MAN	IGA-
	LINI	TY	SUL	FATE	RIDE	,	RIDE,	DI	S-	CONST	-I'	D)	S-	NO2+	NO3	IRO	N,	NES	SE,
	LA	B	DI	S-	DIS-		DIS-	SO	LVED	TUENT	rs,	SOI	VED	DI	S-	DI	S-	DI	s-
	(MC	/L	SO	LVED	SOL	ED	SOLVED	(M	G/L	DIS	5-	(TC	ONS	SOL	VED	SOL	VED	SOI	LVED
	AS	3	(M	G/L	(MG/	L	(MG/L	A	S	SOLV	/ED	PI	ER	(MG	J/L	(UG	/L	(UC	J/L
ATE	CAC	(3)	AS :	SO4)	AS C	(L)	AS F)	SI	02)	(MG/	(L)	AC-	-FT)	AS	N)	AS	FE)	AS	MN)
R																			
1					13														
8	3	14		19	19		.20		5.9	3	370		.50		. 47		21		71
	CIE CON DUC ANC (UME	LINI LA (MG AS PATE CAC	CIFIC CON- DUCT- STA ANCE AR (UMHOS) UNIT 625 645 ALKA- LINITY LAB (MG/L AS ATE CACO3) R 1	CIFIC CON- PH DUCT- (STAND- ANCE ARD (UMHOS) UNITS) 625 645 7.2 ALKA- LINITY SUL LAB DI (MG/L SO) AS (MG/L SO) AS (MATE CACO3) AS	CIFIC CON- DUCT- DUCT- ANCE ARD ATUR (UMHOS) UNITS) 625 645 7.2 28 ALKA- LINITY LAB DIS- (MG/L AS (MG/L AS (MG/L AS CACO3) AS SO4) R 1	CIFIC CON- PH DUCT- (STAND- TEMPER- ANCE ARD ATURE (UMHOS) UNITS) (DEG C) 625 28.5 645 7.2 28.5 ALKA- CHLC LINITY SULFATE RIDE LAB DIS- DIS- (MG/L SOLVED SOLV AS (MG/L (MG/L ATE CACO3) AS SO4) AS CORR 1 13	CIFIC CON- CON- PH NESS DUCT- ANCE ARD ATURE AS (UMHOS) UNITS) 625 645 7.2 28.5 645 7.2 28.5 33 ALKA- LINITY LAB DIS- (MG/L SOLVED AS (MG/L AS (MG/L AS CL) AS (MG/L AS CL) CR 1 13	CIFIC CON- PH NESS NON NESS NESS	CIFIC CON- PH NESS, NONCAR- DUCT- (STAND- TEMPER- (MG/L BONATE AS (MG/L CACO3) UNITS) (DEG C) CACO3) CACO3) 625 28.5 645 7.2 28.5 310 0 ALKA- CHLO- FLUO- SIL LAB DIS- DIS- DIS- SO (MG/L SOLVED SOLVED SOLVED (MG/L SOLVED SOLVED SOLVED (MG/L SOLVED SOLVED SOLVED (MG/L CACO3) AS SO4) AS CL) AS F) SI ARTE CACO3) AS SO4) AS CL) AS F) SI	CIFIC CON- PH NESS, CALCO CON- PH NESS NONCAR- DIS DUCT- (STAND- TEMPER- (MG/L BONATE SOL ANCE ARD ATURE AS (MG/L (MG/L UMHOS) UNITS) (DEG C) CACO3) CACO3) AS 625 28.5 645 7.2 28.5 310 0 1 ALKA- CHLO- FLUO- SILICA, LINITY SULFATE RIDE, RIDE, DIS- LAB DIS- DIS- DIS- SOLVED (MG/L SOLVED SOLVED SOLVED (MG/L AS MG/L (MG/L AS MG/L (MG/L AS MG/L AS CL) AS F) SIO2) ARE CACO3) AS SO4) AS CL) AS F) SIO2)	CIFIC CON- PH NESS, NONCAR- DIS- DUCT- (STAND- TEMPER- (MG/L BONATE SOLVED ANCE ARD ATURE AS (MG/L (MG/L (UMHOS) UNITS) (DEG C) CACO3) CACO3) AS CA) 625 28.5 645 7.2 28.5 310 0 100 ALKA- CHLO- FLUO- SILICA, SUM CACO3 (MG/L SOLVED SOLVED SOLVED (MG/L DIS- CONSTANT) LAB DIS- DIS- DIS- SOLVED TUENT (MG/L SOLVED SOLVED SOLVED (MG/L DIS- CACO3) AS SO4) AS CA) ATE CACO3) AS SO4) AS CL) AS F) SIO2) (MG/L CR) 1 13	CIFIC CON- PH NESS, NONCAR- DIS- DI DUCT- (STAND- TEMPER- (MG/L BONATE SOLVED SOL ANCE ARD ATURE AS (MG/L (MG/L (MG/L (MG/L CHAP))) (DEG C) CACO3) CACO3) AS CA) AS CA) AS CAS CAS CAS CAS CAS CAS CAS CAS CAS	CIFIC CON- PH NESS, CALCIUM SIUM, NESS NONCAR- DIS- DIS- DUCT- (STAND- TEMPER- (MG/L BONATE SOLVED SOLVED ANCE ARD ATURE AS (MG/L (MG/L (MG/L (UMHOS) UNITS) (DEG C) CACO3) CACO3) AS CA) AS MG) 625 28.5 645 7.2 28.5 310 0 100 14 SOLIDS, ALKA- CHLO- FLUO- SILICA, SUM OF SOLJED LAB DIS- DIS- DIS- SOLVED TUENTS, SOI (MG/L SOLVED SOLVED SOLVED (MG/L DIS- (TO AS (MG/L (MG/L MG/L AS SOLVED PE AS (MG/L (MG/L MG/L AS SOLVED PE AS (MG/L (MG/L MG/L AS SOLVED PE AS (MG/L MG/L AS SOLVED PE AS (MG/L MG/L MG/L MG/L AS SOLVED PE AS (MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L	CIFIC CON- PH NESS, CALCIUM SIUM, SODI NESS, CONCAR- DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS	CIFIC CON- PH NESS, CALCIUM SIUM, SODIUM, CON- PH NESS NONCAR- DIS- DIS- DIS- DIS- DUCT- (STAND- TEMPER- (MG/L BONATE SOLVED SOLVED SOLVED ANCE ARD ATURE AS (MG/L (MG/L (MG/L (MG/L (UMHOS) UNITS) (DEG C) CACO3) CACO3) AS CA) AS MG) AS NA) 625 28.5 645 7.2 28.5 310 0 100 14 18 SOLIDS, NIT ALKA- CHLO- FLUO- SILICA, SUM OF SOLIDS, GE LINITY SULFATE RIDE, RIDE, DIS- CONSTI- DIS- NO2+ LAB DIS- DIS- DIS- SOLVED TUENTS, SOLVED DI (MG/L SOLVED SOLVED SOLVED (MG/L DIS- (TONS SOL AS MG/L (MG/L (MG/L MG/L AS SOLVED PER (MG/L CACO3) AS SO4) AS CL) AS F) SIO2) (MG/L) AC-FT) AS CR.	CIFIC CON- PH NESS, CALCIUM SIUM, SODIUM, NESS NONCAR- DIS- DIS- DIS- DUCT- (STAND- TEMPER- (MG/L BONATE SOLVED SOLVED SOLVED ANCE ARD ATURE AS (MG/L	CIFIC CON- PH NESS, CALCIUM SIUM, SODIUM, CON- PH NESS NONCAR- DIS- DIS- DIS- DIS- DUCT- (STAND- TEMPER- (MG/L BONATE SOLVED SOLVED SOLVED ANCE ARD ATURE AS (MG/L (MG/L (MG/L (MG/L (MG/L OMG/L	CIFIC	CIFIC

070850171021901 - 50-0802-02 LAURA DW2, MAJURO

DATE	SPE CIF CON DUC ANC (UMH	IC - T- E	PH (STA AR UNIT	ND-	TEMPH ATUH (DEG	E	HARD- NESS (MG/L AS CACO3)		SS, CAR-	CALC DIS SOI (MG AS	VED	SI DI		SODI DIS SOLV (MG AS	ED /L	PERCI		SOD: SOR: TIC RAT:	0- 9- ИС	POTAS- SIUM, DIS- SOLVED (MG/L AS K)
APR																				
18		650		7.1	27	.5	290		0	96		12		30			18		. 8	5.7
		AT.	KA-			CHL	0- F	LUO-	SIL	ICA,	SOLI		SOL	IDS,		TRO-			MAN	IGA-
		LIN		SUL	FATE	RID		IDE,	DI		CONS			IS-		+NO3	IRO	N,	NES	
			AB	DI		DIS		DIS-		LVED	TUE			LVED		IS-	DI		DI	S-
			G/L		LVED	SOL		OLVED		G/L		s-		ONS		LVED	SOL			VED
	s m ro	A			G/L	(MG		MG/L	A			VED		ER		G/L	(UG.		(UC	
DI	ATE	CAC	203)	AS	504)	AS	CL) A	SF)	51	02)	(MC	3/L)	AC.	-FT)	AS	N)	AS I	E)	AS	MN)
API	R																			
18	8	322			8.8	25		.20		5.0		380		.51		.16		16		16

MARSHALL ISLANDS, MAJURO ATOLL

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

070849171011001 - 50-0802-03 LAURA DW3, MAJURO

DATE	SPE- CIFIC CON- DUCT- ANCE (UMHOS	P (ST A	AND- RD	TEMPE ATUR (DEG	R- E	HARD- NESS (MG/L AS CACO3)	HARI NESS NONCE BONAS (MG, CACO	S, AR- FE /L	CALC DIS SOL (MG AS	- VED /L	MAGI SII DIS SOLY (MG/ AS N	UM, S- VED /L	SODI DIS SOLV (MG AS	ED /L	PERCE	S NT R	ODIUM AD- ORP- TION ATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)
APR																		
13	39				.0										-			
17	35	0	6.9	28	. 5	170		0		60	5.	. 2	4	. 6)	6	. 2	.40
D.	L	ALKA- INITY LAB (MG/L AS CACO3)		S- LVED G/L	CHLC RIDE DIS- SOLV (MG/ AS C	PED SO	DE, DE, DIS- DLVED	SILI DIS SOL (MG AS	VED /L	SOLI: SUM CONS' TUEN' DI SOL (MG	OF TI- TS, S- VED	SO: (To	IDS, IS- LVED ONS ER -FT)	NO2- DI SOI	S- LVED S/L	IRON, DIS- SOLVE (UG/L AS FE	D SC	ANGA- SSE, DIS- DIVED DG/L S MN)
AP:																		
1	3	22			8.	0									63			
1	7	176	3	3.7	7.	1	.20		.6	1	90		. 25		16	77		530

070854171011201 - 50-0802-04 LAURA DW4, MAJURO

DATE	SPE- CIFIC CON- DUCT- ANCE (UMHOS	(ST.	AND- '	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	NONO BONA (MC	RD- SS, CAR- ATE G/L CO3)	CALC DIS SOL (MG AS	IUM - VED : /L	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM DIS- SOLVED (MG/L AS NA	PERCEN	SORI TIC T RATI	O- SIUM, P- DIS- ON SOLVED
APR		•		20.5										
17	71 70		6.6	28.5 28.5	340		0	1	20	9.6	21	12		.5 1.1
AP	L ATE R	ALKA- INITY LAB (MG/L AS CACO3)	SULFI DIS- SOL (MG AS SO	ATE RI - DI VED SC /L (M O4) AS	DE, R S- LVED S G/L (CL) A	CLUO- RIDE, DIS- SOLVED MG/L S F)	DI SO (M	LVED G/L S O2)	SOLID: SUM OF CONST: TUENT: DIS- SOLV! (MG/)	F SOI I- D S, SC - (T ED F L) AC	IDS, IS- N LVED ONS ER -FT)	DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
	7	339		22	15 18	.20		.8	40		.54	1.8	31	50

MARSHALL ISLANDS, MAJURO ATOLL

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

070835171021501 - 50-0802-05 LAURA A-37, MAJURO

	SPE- CIFIC CON- DUCT-	PH (STAND	- TEMP	N	ARD- ESS MG/L	HARD- NESS, NONCAR- BONATE	DI	CIUM S-	MAGNE- SIUM, DIS- SOLVED	SOD DI SOL			SODIUM AD- SORP- TION
	ANCE	ARD	ATU		AS	(MG/L			(MG/L		G/L	PERCENT	RATIO
DATE	(UMHOS)	UNITS)	(DEG	(C) C	ACO3)	CACO3)	AS	CA)	AS MG)	AS	NA)	SODIUM	
SEP													
20	2920		-										
24	2770	7.	9 3	2.0	520	180		42	100	-	3 80	60	7
									NIT	RO-			
	POT	AS- A	LKA-		CHL	O- FLU	10-	SILICA				MAN	GA-
				SULFATE				DIS-	NO2+		IRO		
			LAB	DIS-	DIS		S-	SOLVE		S-			S-
			MG/L	SOLVED			VED	(MG/L		VED			VED
			AS	(MG/L	(MG		J/L	AS	(MG		(UG		
DA	TE AS	K) C	ACO3)	AS SO4)	AS	CL) AS	F)	SIO2)	AS	N)	AS	FE) AS	MN)
SEP													
20					75	0							
24		30	337	25	72	0 1	.1	<1.0	3	.6	1	00	10

070856171021401 - 50-0802-06 LAURA D-14, MAJURO

DATE	SPE- CIFIC CON- DUCT- ANCE (UMHOS	P (ST.	AND- RD	TEMPE ATUR (DEG	R- (E	ARD- ESS MG/L AS ACO3)	HARI NESS NONCA BONAT (MGA CACO	AR- TE /L	CALC DIS SOL (MG AS	- VED /L	SI	/L	SODI DIS SOLV (MG AS	ED /L	PERCEN	S T F	ODIUM AD- ORP- TION ATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)
SEP																		
20	69	0																
24	69	0	7.5	29	.0	380		0	1	30		13		20	10		.5	.40
Da	L	ALKA- INITY LAB (MG/L AS CACO3)	DI	LVED G/L	CHLO- RIDE, DIS- SOLVE (MG/L AS CL	RI D D SO (M	UO- DE, IS- LVED G/L F)	SILIC DIS- SOL' (MG, AS	VED /L	SOLI SUM CONS TUEN DI SOL (MG	OF TI- TS, S- VED	SO (T	IDS, IS- LVED ONS ER -FT)	NO2- D: SOI	IS- LVED G/L	IRON, DIS- SOLVE (UG/I AS FE	D S	ANGA- ESE, DIS- OLVED UG/L S MN)
SE																		
	0				4.0											-		77
2	4	396		21	7.1		.20	1.	. 8	4	30		.59		.60	15	6	10

< Actual value is known to be less than the value shown.

MARSHALL ISLANDS, MAJURO ATOLL

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

070856171021402 - 50-0802-07 LAURA D-31, MAJURO

DA	TE	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAN ARI UNITS)	EMPER- ATURE DEG C)	HARD- NESS (MG/L AS CACO3	NONG BONA (MC	SS, C. CAR- TE S/L	ALCIUM DIS- SOLVED (MG/L AS CA)	MAGN SIU DIS SOLV (MG/ AS M	M, SOD S- DI ZED SOL L (M		PERCENT SODIUM)-)-)N	POTAS- SIUM, DIS- SOLVED (MG/L AS K)
SEP																
	• • •	1030			20.0	400		10			-		25		-	1 0
24	• • •	1080	,	.5	30.0	400		18	92	4	2	62	25		1	1.9
	DA	LI	LKA- NITY LAB MG/L AS ACO3)	SULFA DIS- SOLV (MG/ AS SO	TE RI DI ED SO L (M	DE, S- LVED G/L	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILIC DIS- SOLV (MG/ AS SIO2	A, SUM CON ED TUE L D SO	IDS, OF STI- NTS, IS- LVED G/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NO2- DI SOI	IS- LVED S G/L (RON, DIS- OLVED UG/L S FE)	MANG NESI DIS SOL' (UG. AS I	E, S- VED /L
	SEP															
				-	10			-								
	24		385	2.	5 12	0	.70	2.	4	550	.75	<.	.10	10		3

070856171021403 - 50-0802-08 LAURA D-67, MAJURO

DATE	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO
SEP										
20	38500			22						22
24	40500	7.7	29.0	4700	4600	290	960	7900	77	51
DA'	SI DI SOI (MC	UM, LIN S- I VED (M	KA- ITY SULF AB DIS G/L SOL S (MG	VED SOI	DE, RID S- DI	E, DIS- S- SOLV VED (MG/ /L AS	CA, GE NO2+ VED DI VL SOL	S- DI VED SOI S/L (UC	MAN ON, NES IS- DI LVED SOL G/L (UG FE) AS	E, S- VED /L
SEP 20				140	100		2			
24	2	280	125 20	00 140	. 000	80 <1.	.0 <.	10 3	00	50

< Actual value is known to be less than the value shown.

MARSHALL ISLANDS, MAJURO ATOLL

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

070854171020801 - 50-0802-09 LAURA E-14, MAJURO

DATE	SPE- CIFIC CON- DUCT- ANCE (UMHOS	AI	AND- RD	TEMPE ATUR (DEG	R- (ARD- ESS MG/L AS ACO3)	HAR NES NONC BONA (MG CAC	S, AR- TE /L	CALC DIS SOL (MG AS	- VED /L	SI	VED /L	SODI DIS SOLV (MG AS	ED /L	PERCEN SODIU	SO T R	DDIUM AD- DRP- TION ATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)
SEP																		
20	40)																
24		-	7.5	30	.0	220		0		77	7	. 4	7	. 8	7		. 2	.70
D	L	ALKA- INITY LAB (MG/L AS CACO3)	DIS	LVED G/L	CHLO- RIDE, DIS- SOLVE (MG/L AS CL	RI I D SC	LUO- IDE, DIS- DLVED MG/L S F)	SILI DIS SOL (MG AS	VED /L	SOLII SUM (CONS' TUEN' DIS SOL' (MG.	OF TI- TS, S- VED	SO (T)	IDS, IS- LVED ONS ER -FT)	NIT GE NO2+ DI SOL (MG AS	N, NO3 S- VED /L	IRON, DIS- SOLVEI (UG/L AS FE	NE D SO (U	NGA- SE, IS- LVED (G/L
SE					- 0													
	0 4	237		5.8	5.0 9.5		.10		.5	2	50		.34	1	10	41		3
2	7.00	231		5.0	3.3		. 10		• -	2	50			V.	10	7.1		-

070854171020802 - 50-0802-10 LAURA E-42, MAJURO

DATE	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	A.	AND- RD	TEMPI ATUI (DEG	RE	HARD- NESS (MG/L AS CACO3)	HAR NES NONC BONA (MC CAC	SS, CAR- ATE	CALC DIS SOL (MG AS	VED	SI			3-	PERCI		SODI SORE TIC RATI)-)-)N	POTAS- SIUM, DIS- SOLVED (MG/L AS K)
SEP																			
20	490)																-	
24	552	2	7.8	29	0.0	210		8		44		24		36		27		1	1.6
D	L	ALKA- INITY LAB (MG/L AS CACO3)	DI SO:	FATE S- LVED G/L SO4)	CHLC RIDE DIS- SOLV (MG/ AS (E, R /ED S /L (LUO- IDE, DIS- OLVED MG/L S F)	DIS	LVED G/L	SOLII SUM (CONST TUENT DIS SOLI (MG.	OF TI- TS, S- VED	SO (T	IDS, IS- LVED ONS ER -FT)	NO2 D SO (M	TRO- EN, +NO3 IS- LVED G/L N)		S- VED	NES DI SOI (UC	GGA- SE, SS- LVED G/L MN)
SE																			
2	0				42														
2	4	201		2.5	54	1	.60		. 4		280		.39		.32		12		5

< Actual value is known to be less than the value shown.

MARSHALL ISLANDS, MAJURO ATOLL

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

070854171020803 - 50-0802-11 LAURA E-55, MAJURO

DATE	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND ARD UNITS)	- TEMPER ATURE (DEG C	AS	O- NI S NOI 'L BOI (1	NCAR- NATE NG/L	ALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO
SEP	Sential.										
20	15000				-						
24	15700	7.	8 29.	0 200	00	1800	140	390	2900	75	29
TAD	SI DI SOL (MG	UM, LI S- VED (I	LAB D MG/L S AS (LFATE IS- OLVED MG/L	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVE (MG/L AS F)	DIS- SOLVI D (MG/I	NO2+ ED DI SOL (MG	N, NO3 IRC S- DI VED SOL /L (UC	ON, NES S- DI VED SOL	S- VED /L
SEP											
20.					5000			-			
24.	1	50	199	610	5400	1.	1 <1.	.0 <	.10	140	30

070854171020001 - 50-0802-12 LAURA F-14, MAJURO

DATE	SPE CIF CON DUC ANC (UMH	IC T- E	PH (STA AR UNIT	ND- D	TEMPI ATUI (DEG	RE	HARD- NESS (MG/I AS CACO3	NONG BONA (MC	CAR-	(MC		SI SOL (MG	NE- UM, S- VED (/L MG)	SODI DIS SOLV (MG AS	ED /L	PERCI SOD:		SODI AD SORP TIO RATIO	- SI - DI N SOL	
SEP																				
20		560																-	- 7	
24		540		7.6	30	0.0	270)	24		91	9	.3		15	1.3	11		4 .	70
	DATE	LINI LA (MC	AB G/L	DI: SO: (M	FATE S- LVED G/L SO4)	CHL RID DIS SOL (MG AS	E, - VED /L	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	DI SO (M	LVED G/L	SOL	OF TI-	SO (T)	IDS, IS- LVED ONS ER -FT)	NO2 D SO (M	TRO- EN, +NO3 IS- LVED G/L N)	IRON DIS SOLV (UG/ AS E	S- /ED /L	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	
	EP																			
	20					2				-77										
	24		242		4.1	2	4	.20		.0		290		.39		<.10		56	4	

< Actual value is known to be less than the value shown.

MARSHALL ISLANDS, MAJURO ATOLL

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

070854171020002 - 50-0802-13 LAURA F-30, MAJURO

DATE	SPE- CIFIC CON- DUCT- ANCE (UMHOS	P (ST A	AND- RD	TEMPE ATUR (DEG	R- E	HARD- NESS (MG/L AS CACO3)	HAR NES NONC BONA (MG CAC	S, AR- TE /L	CALC DIS SOL (MG AS	- VED /L	MAG SI DI SOL (MG AS	UM, S- VED /L	SODI DIS SOLV (MG AS	ED /L	PERCE	NT	SODIUM AD- SORP- TION RATIO	SI SOI (MC	TAS- IUM, IS- LVED G/L K)
SEP		4																	
20	98		7.9	30	.0	240		18		74		14		69	3		2		2.2
Di	I ATE	ALKA- INITY LAB (MG/L AS CACO3)		S- LVED G/L	CHLO RIDE DIS- SOLV (MG/ AS C	ED S	FLUO- RIDE, DIS- SOLVED (MG/L	SILI DIS SOL (MG AS	VED	SOLII SUM (CONS TUEN DIS SOL' (MG.	OF TI- TS, S- VED	SOI (TO	IDS, IS- LVED DNS ER -FT)	NO2- DI SOI	PRO- EN, +NO3 IS- LVED G/L N)	IRON DIS SOLV (UG/ AS F	ED :	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	
SE					1.60														
	0 4	225	6	5.3	160 130		.30		.1	10	430		.59		<.10		7	3	

070854171020003 - 50-0802-14 LAURA F-45, MAJURO

DATE	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C	AS	NONC BONA (MG	SS, CAI CAR- DI CTE SC C/L (N	CCIUM IS- DLVED :	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO
SEP											
20	21300										
24	20100	7.8	31.	2300	22	00	190	450	3600	76	33
DA	SI DI SOI (MC	IUM, LINIS- I LVED (N	AB DI	LFATE FIS- DLVED SMG/L	HLO- IDE, IS- OLVED MG/L S CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA DIS- SOLVE! (MG/L AS SIO2)	, GE NO2+ D DI	NO3 IRO S- D: VED SOI /L (UC	ON, NES	S- VED /L
		 .40	 168	860	7900 6800	.50	<1.0	_ 0	.10	90	 20

< Actual value is known to be less than the value shown.

MARSHALL ISLANDS, MAJURO ATOLL

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

070843171021001 - 50-0802-15 LAURA P-9, MAJURO

DATE	SPE- CIFIC CON- DUCT- ANCE (UMHOS	(ST.	AND- RD	TEMPE: ATUR (DEG	R- (M E A	RD- SS G/L S CO3)	HARD- NESS, NONCAL BONATI (MG/I CACOS	CALC R- DIS E SOI L (MC	CIUM S- LVED G/L CA)	MAGNE- SIUM DIS- SOLVEI (MG/L AS MG	DIS DIS SOLV		PERCENT SODIUM)-)N :O	POTAS- SIUM, DIS- SOLVED (MG/L AS K)
SEP		24														
20	43														-	
24	45	8	7.5	31	. 0	210	()	74	6.0		12	11		4	.50
D	L	ALKA- INITY LAB (MG/L AS CACO3)	DIS	LVED G/L	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	RI SC (M	JUO- S DE, DIS- DLVED IG/L F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLII SUM (CONS' TUEN' DIS SOL' (MG.	OF SO TI- TS, S S- VED	DLIDS, DIS- SOLVED (TONS PER AC-FT)	NO2+ DI SOI	S- VED S	RON, DIS- OLVED UG/L S FE)	MANG NESE DIS SOLV (UG/ AS M	ED L
SE 2	P 0	-		4	16								11		152	-
	4	214	- 1	4.8	15		.20	. 4	2.	40	.33	<.	10	21		2

070843171021003 - 50-0802-17 LAURA P-25, MAJURO

DATE	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PI (STA AI UNIT	AND-	TEMPE ATUR (DEG	R- (E	ARD- IESS MG/L AS ACO3)	HARI NESS NONCO BONA! (MG. CACO	S, CA AR- D TE S /L (LCIUM IS- OLVED MG/L S CA)	SI SOL (MG	NE- UM, S- VED (/L MG)		3-	PERCE SODI	S NT R	ODIUM AD- ORP- TION ATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)
SEP																	
20	340													-	-		
24	378		7.6	33	.0	180		0	60	7	.5		11	1	2	. 4	.50
<i>ו</i> ם	LII (I	LKA- NITY LAB MG/L AS ACO3)	SULF DIS SOL (MG AS S	S- LVED S/L	CHLO- RIDE, DIS- SOLVE (MG/L AS CL	D SOI	UO- DE, IS- LVED G/L F)	SILICA DIS- SOLVE (MG/L AS SIO2)	CON CON D TUR I SC	IDS, OF OSTI- CNTS, OIS- OLVED	SO (T	IDS, IS- LVED ONS ER -FT)	NO2 D SO: (M	TRO- EN, +NO3 IS- LVED G/L N)	IRON, DIS- SOLVE (UG/L AS FE	N) D S(ANGA- ESE, DIS- DLVED UG/L S MN)
SE																	
	0				17			(-							-	-	
2	4	189	2	. 8	17		.30		3	210		.29		<.10	1	3	1

< Actual value is known to be less than the value shown.

MARSHALL ISLANDS, MAJURO ATOLL

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

070843171021004 - 50-0802-18 LAURA P-53, MAJURO

DATE	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STANI ARD UNITS	A.	MPER- TURE EG C)	HARD- NESS (MG/L AS CACO3)	HAR NES NONC BONA (MG CAC	S, CAL AR- DI TE SO /L (I	LCIUM IS- OLVED MG/L S CA)	MAGNI SIUM DIS- SOLVI (MG/I AS MC	ON SOD	VED	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO
SEP 20	9380		2		22							241	127
24	9000	7	. 7	30.0	1100	8	80	95	200		600	75	22
									N	NITRO-			
			ALKA-			LO-	FLUO-	SILIC	A,	GEN,		MAN	GA-
			INITY	SULFA		DE,	RIDE,	DIS-		2+NO3	IRON		
		S-	LAB	DIS-		S-	DIS-	SOLV		DIS-	DIS		
			(MG/L	SOLV		LVED	SOLVED	(MG/		OLVED	SOLV		
DAT		K) (AS CACO3)	AS SO		G/L CL)	(MG/L AS F)	AS SIO2		(MG/L AS N)	(UG/ AS F		
SEP													
20.					- 3	000		-	-		-		
24.		58	178	32	0 2	900	.90	<1.	0	.15	9	0	10

070917171021101 - 50-0902-01 LAURA I-10, MAJURO

DATE	SPE- CIFIC CON- DUCT- ANCE (UMHOS	P (ST A	H AND- RD TS)	TEMPI ATUI (DEG	RE	HARD- NESS (MG/L AS CACO3	NONG BONA (MC	SS, CAR-	(MC		SI		SODI DIS SOLV (MG	ED	PERCE		SODI AD SORP TIO RATI	– – N	POTAS- SIUM, DIS- SOLVED (MG/L AS K)
SEP																			
20	42	3													-		4	-	
24	42	8	7.2	28	3.5	210		0		75	5	. 7	7	. 2		7	•	2	.60
DF	L	ALKA- INITY LAB (MG/L AS CACO3)	DI SO (M	FATE S- LVED G/L SO4)	CHLC RIDE DIS- SOLV (MG/ AS (Z, ZED ZL	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	DIS	LVED G/L	SOI	OF STI-	SO (T	IDS, IS- LVED ONS ER -FT)	MO2 D SO (M	TRO- EN, +NO3 IS- LVED G/L N)	IRO DI SOL (UG AS	S- VED /L	MAN NES DI SOL' (UG AS	E, S- VED /L
	P 0 4	221	7	7.8	6.		.20		.1	2			.32		.89		17	9	7

< Actual value is known to be less than the value shown.

MARSHALL ISLANDS, MAJURO ATOLL

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

070917171021102 - 50-0902-02 LAURA I-25, MAJURO

DATE	SPE CIF CON DUC ANC (UMH	IC - T- (E	PH STAND- ARD NITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	(MG.	S, CALC AR- DIS TE SOI /L (MC	SIUM SI S- DI EVED SOI	IS- DI LVED SOL	VED G/L PER	s	ODIUM AD- ORP- TION ATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)
SEP													
20		442											
24		458	7.4	28.0	200		0	59	14	13	12	. 4	1.4
1	DATE	ALKA LINIT LAB (MG/ AS CACO	Y SUL DI L SO	FATE R S- D LVED SO G/L (IDE, I IS- DLVED S MG/L	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS-	DI SOL (UG	E, S- VED /L
	EP				4.4								
	20		-		14			240	20	40	1.7		
2	24	21	. 1	6.7	12	.40	. 2	240	.32	. 49	17		<1

070917171021103 - 50-0902-03 LAURA I-55, MAJURO

DATE	CIF CON DUC ANC	IC - T- E		AND- RD		PER- URE G C)	HAR NES (MG AS CAC	S /L	HAR NES NONC BONA (MG CAC	S, AR- TE /L	DI SO (M	CIUM S- LVED G/L CA)	SO (M	GNE- IUM, IS- LVED G/L MG)	DI SOL (M	IUM, S- VED G/L NA)		RCENT DDIUM	SODIUM AD- SORP- TION RATIO
SEP																			
20		500		7.8	3	28.0	19	00	17	0.0		150		380	2	800		75	28
1000	-	73.50								7,12									
														NIT					
		POT	AS- UM,	ALK.		SULFA	W.E.	CHLO		FLUO		SILIC DIS-		GE NO2+		TD	ON,	MAN	
		DI	20.0	LA		DIS-		DIS-		DIS		SOLV		DI			IS-	DI	
		SOL	VED	(MG	/L	SOLV	/ED	SOLV	ED	SOLV	ED	(MG/		SOL		SO	LVED	SOL	
		(MG		AS		(MG/	0.75	(MG/		(MG/		AS		(MG			G/L	(UG	
DA	re.	AS	K)	CAC	33)	AS SC)4)	AS C	L)	AS F)	SIO2)	AS	N)	AS	FE)	AS	MN)
SEP																			
20						-	-	320	0	-	-	-	-						
24		1	10	2	16	62	20	530	0	. 8	0	<1.	0		11		130		40

< Actual value is known to be less than the value shown.

SAMOA ISLANDS, ISLAND OF TUTUILA

143

141945170435401. Local number, 90-1943-24 Tafunafou Observation Well 1.

LOCATION.--Lat 14°19'45" S., long 170°43'54" W., Hydrologic Unit 20100001, 120 ft northwest of Tafunafou village cross road intersection, and 0.7 mi southeast of High School in Mapusaga. Owner: Government of American Samoa.

AQUIFER. -- Basalt lava flows of the Leone Volcanics.

WELL CHARACTERISTICS .-- Drilled basal water-table well, sounded depth 78 ft, casing diameter 4 in.

DATUM.--Altitude of land-surface datum is 73 ft. Measuring point: Top of 4-inch casing, 75.18 ft above mean sea level.

REMARKS .-- Water level affected by pumping of nearby well.

PERIOD OF RECORD. -- October 1976 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level 20.38 ft above mean sea level, may be caused by cascading water in the well following heavy rain, May 13, 1977; lowest 7.37 ft below mean sea level, July 13, 1978.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

			The sale from a second								
	WATER		WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
OCT 3	2.78	DEC 5	1.12	FEB 6	0.74	APR 9	1.86	JUN 11	2.40	AUG 13	0.58
11	2.14	12	.56	13	.64	16	1.38	18	1.97	20	40
17	27	19	.48	21	.71	23	2.35	25	1.63	27	1.74
24	2.82	27	1.60	27	1.17	30	2.28	JUL 2	1.45	SEP 4	2.31
31	1.60	JAN 3	1.99	MAR 5	1.33	MAY 7	2.07	9	.21	10	1.81
NOV 7	.32	09	.76	12	1.12	14	1.88	17	1.01	17	2.41
14	30	16	.61	19	1.86	21	1.93	23	1.24	24	1.98
21	1.00	23	.58	26	5.72	29	1.64	30	. 46		
28	. 47	30	.90	APR 2	3.26	JUN 4	1.59	AUG 6	.18		

141948170435701. Local number, 90-1943-28 Tafunafou Observation Well 5.

LOCATION.--Lat 14°19'48" S., long 170°43'57" W., Hydrologic Unit 20100001, 1,000 ft southeast of Tafunafou village, and 1.5 mi northwest of Pago Pago International Airport. Owner: Government of American Samoa.

AOUIFER. -- Basalt lava flows of the Leone Volcanics.

WELL CHARACTERISTICS .-- Drilled basal water-table well, sounded depth 106 ft, casing diameter 4 in.

DATUM.--Altitude of land-surface datum is 83 ft. Measuring point: Top of 4-inch casing, 85.32 ft above mean sea level.

REMARKS .-- Water level affected by pumping of nearby well.

PERIOD OF RECORD. -- October 1976 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 11.32 ft above mean sea level, may be caused by cascading water in the well following heavy rain, July 28, 1981; lowest 4.23 ft below mean sea level, Aug. 15, 1977.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 3	2.26	DEC 5	-1.08	FEB 6	1.85	APR 9	2.09	JUN 11	2.54	AUG 13	1.58
11	1.59	12	-1.31	13	2.03	16	-1.18	18	2.05	20	1.56
17	1.53	19	1.67	21	2.51	23	60	25	2.09	27	1.74
24	2.02	27	2.23	27	2.64	30	59	JUL 2	2.00	SEP 4	1.78
31	1.75	JAN 3	1.95	MAR 5	2.62	MAY 7	73	09	1.87	10	1.87
NOV 7	1.64	09	1.41	12	2.08	14	88	17	1.68	17	1.99
14	1.51	16	1.86	19	1.20	21	76	23	1.86	24	1.93
21	-1.04	23	1.79	26	3.76	29	71	30	1.52		
28	-1.18	30	2.14	APR 2	04	JUN 4	76	AUG 6	1.71		

144

GROUND-WATER RECORDS

SAMOA ISLANDS, ISLAND OF TUTUILA

142057170461501. Local number, 90-2046-02 Puapua Well 47.

LOCATION.--Lat 14°20'57" S., long 170°46'15" W., Hydrologic Unit 20100001, 0.8 mi east of Midkiff School and 1.1 mi west of Futiga village church.

AQUIFER .-- Basalt lava flows and sand of the Leone Volcanics underlain by calcareous coastal deposits.

WELL CHARACTERISTICS. -- Drilled basal water-table well, depth 190 ft, casing diameter 6 in.

DATUM.--Altitude of land-surface datum is 144 ft. Measuring point: Top of 6-inch casing, 146.25 ft above mean sea level.

REMARKS. -- Water level affected by pumping of nearby well.

PERIOD OF RECORD. -- December 1979 to August 1984 (discontinued).

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 6.25 ft above mean sea level, Aug. 13, 1980; lowest 0.12 ft below mean sea level, Dec. 1, 1980.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	DEVEL	DATE	PEAEP	DATE	LEVEL
OCT 3	2.69	NOV 28	3.02	JAN 23	2.95	MAR 19	3.80	MAY 14	3.04	JUL 9	2.55
11	2.48	DEC 5	2.77	30	3.02	26	5.14	21	2.08	17	2.43
17	2.33	12	2.55	FEB 6	2.99	APR 2	5.00	29	2.97	23	2.40
24	3.21	19	2.45	13	2.86	09	3.48	JUN 4	2.76	30	2.44
31	2.91	27	2.44	21	3.39	16	3.45	11	3.38	AUG 6	1.97
NOV 7	2.54	JAN 3	3.75	27	3.85	23	3.08	18	3.02	13	2.18
14	2.37	09	2.91	MAR 5	4.07	30	3.20	25	2.89		
21	2.73	16	2.78	12	3.83	MAY 7	3.11	JUL 2	2.58		

142102170445601. Local number, 90-2144-12 Iliili test well 115.

LOCATION.--Lat 14°21'02" S., long 170°44'56" W., Hydrologic Unit 20100001, 800 ft northwest of Iliili village church, and 0.5 mi northeast of Futiga village school.

AQUIFER. -- Basalt lava flows of the Leone Volcanics underlain by calcareous coastal deposits.

WELL CHARACTERISTICS. -- Drilled basal water-table well, well depth 243 ft, casing diameter 4 in.

DATUM.--Altitude of land-surface datum is 216 ft. Measuring point: Top of 4-inch casing, 216.94 ft above mean sea level.

REMARKS. -- Water level affected by pumping of nearby well.

PERIOD OF RECORD. -- February 1981 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 6.89 ft above mean sea level, June 15, 1982; lowest 2.56 ft above mean sea level, May 31, 1983.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
ост з	4.54	DEC 5	4.28	FEB 6	4.67	APR 9	4.88	JUN 11	5.02	AUG 13	4.31
11	4.09	12	4.01	13	4.58	16	4.83	18	4.73	20	4.16
17	4.40	19	4.68	21	5.33	23	4.65	25	4.62	27	4.37
24	4.65	27	4.56	27	5.34	30	4.90	JUL 2	4.59	SEP 4	4.29
31	4.79	JAN 3	5.06	MAR 5	5.55	MAY 7	4.84	09	4.45	10	4.44
NOV 7	5.05	9	4.82	12	5.43	14	5.24	17	4.40	17	4.49
14	3.97	16	4.70	19	5.73	21	4.79	23	4.48	24	4.44
21	4.00	23	5.01	26	6.30	29	4.93	30	4.14		
28	4.18	30	5.04	APR 2	5.82	JUN 4	4.75	AUG 6	4.30		

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

141623170393801 - 90-1639-08 AUA W97

DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT			FEB			JUN		
03	0635	15	06	0655	15	04	0710	15
11	0615	15	13	0640	15	11	0715	15
17	0635	15	21	0705	15	18	0720	15
24	0640	15	27	0725	15	25	0715	15
31	0635	15	MAR	2.0	7.2	JUL		25.
NOV			05	0720	15	02	0645	15
07	0635	15	12	0700	15	09	0725	23
14	0620	23	19	0720	15	17	0710	23
21	0620	15	26	0725	15	23	0725	23
28	0630	23	APR			30	0725	23
DEC			02	0650	15	AUG		
12	0635	15	09	0805	15	06	0715	23
19	0715	23	16	0750	15	13	0725	15
27	0650	15	23	0725	15	20	1115	23
JAN			30	0820	15	27	0750	23
03	0650	15	MAY			SEP		
09	0635	23	07	0725	15	04	0830	15
16	0750	15	14	0655	15	10	0730	15
23	0645	15	21	0725	15	17	0755	15
30	0650	15	29	0720	15			

141945170435301 - 90-1943-06 TAFUNAFOU W33

DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT			FEB			JUN		
03	0800	68	06	0820	197	04	0835	205
11	1025	68	13	0755	424	11	0755	106
17	0830	159	21	0815	303	18	0825	121
24	0735	98	27	0805	303	25	0805	219
NOV	7/33		MAR		7.0	JUL		555
07	0740	182	05	0905	128	02	0745	227
14	0805	333	12	0845	144	09	0820	454
21	0710	136	19	0845	128	17	0800	364
28	0815	212	26	0840	61	23	0820	424
DEC			APR			30	0815	424
05	1010	175	02	0815	68	AUG		
12	0815	364	16	0840	136	06	0815	364
19	0830	424	23	0810	212	13	0805	545
27	0745	333	30	0905	205	20	0720	545
JAN			MAY			SEP		
03	0820	114	07	0820	136	10	0815	394
09	0805	182	14	0800	121	17	0855	394
16	0845	205	21	0820	144	24	0815	364
23	0820	205	29	0815	182			
30	0815	189						

SAMOA ISLANDS, ISLAND OF TUTUILA

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

141928170435201 - 90-1943-20 TAFUNAFOU W81

DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT			FEB			JUN		
03	0755	23	06	0835	30	04	0815	38
11	1010	23	13	0815	45	11	0850	15
17	0820	30	21	0800	30	18	0810	23
24	0720	23	27	0900	30	25	0855	38
31	0730	23	MAR	100 4 5		JUL		
NOV			05	0920	23	02	0730	38
07	0725	23	12	0855	23	09	0800	45
14	0750	38	19	0905	23	17	0745	45
21	0700	30	26	0825	15	23	0800	53
28	0830	23	APR			30	0755	53
DEC			02	0910	23	AUG		
05	1020	23	09	0925	30	06	0755	76
12	0830	53	16	0940	23	13	0750	61
19	0810	53	23	0915	30	SEP		
27	0730	45	30	0950	30	10	0805	23
JAN			MAY			17	0845	23
03	0830	30	07	0930	30	24	0805	30
09	0820	23	14	0915	15			
16	0820	23	21	0805	15			
23	0725	30	29	0850	23			
30	0840	23						

141952170440201 - 90-1944-11 TAFUNAFOU W61

DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT			FEB			JUN		
03	0810	364	06	0740	273	11	0810	205
11	1035	424	13	0725	364	18	0840	189
24	0750	394	21	0840	364	25	0825	227
31	0755	394	27	0835	364	JUL		
NOV			MAR			02	0755	227
07	0755	364	05	0825	303	09	0830	227
14	0820	364	12	0805	303	17	0820	227
21	0725	333	19	0830	303	23	0840	364
28	0730	364	26	0855	121	30	0830	364
DEC			APR			AUG		
05	0935	333	02	0840	121	06	0855	424
12	0725	333	16	0900	167	13	0820	424
19	0850	364	23	0830	197	20	0740	424
27	0805	364	30	0920	303	SEP		
JAN			MAY			10	0840	454
03	0740	333	07	0840	303	17	0915	454
09	0720	333	14	0830	189	24	0835	394
16	0900	394	21	0835	212			
23	0740	303	29	0830	219			
30	0735	394						

GROUND-WATER RECORDS 147
SAMOA ISLANDS, ISLAND OF TUTUILA

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

141951170440101 - 90-1944-12 TAFUNAFOU W60

DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
DEC			MAR			AUG		
12	0730	454	05	0830	576	13	0815	485
19	0845	454	JUN			20	0745	515
27	0810	485	04	0900	227	27	0840	485
JAN			11	0820	364	SEP		
03	0745	333	18	0835	364	04	0925	485
09	0725	424	25	0820	424	10	0825	515
23	0745	424	JUL			17	0910	454
30	0740	485	17	0810	424			
FEB			23	0835	424			
06	0745	454	30	0825	515			
13	0730	515						
21	0835	515						
27	0825	515						

141929170441401 - 90-1944-13 MALAEIMI W67

DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT			FEB			JUN		
03	0840	15	06	0840	23	04	0925	23
11	1300	15	13	0820	23	11	0855	15
17	0910	15	21	0910	15	18	0910	15
24	0805	15	27	0905	15	25	0905	15
31	0835	15	MAR			JUL		
NOV			05	0925	15	02	0825	15
07	0835	15	12	0905	15	09	0900	15
14	0855	23	19	0910	15	17	0855	15
21	0810	15	26	0925	15	23	0910	23
28	0835	15	APR			30	0900	23
DEC			02	0945	23	AUG		
05	1030	15	09	0930	15	06	1035	15
12	0835	23	16	0950	15	13	0850	15
19	0925	23	23	0920	15	20	0815	23
27	0835	15	30	0955	23	27	0905	23
JAN			MAY			SEP		
03	0840	15	07	0935	15	04	0955	15
09	0825	15	14	0925	15	10	0910	15
16	0920	15	21	1040	15	17	0945	15
23	0825	15	29	0855	15	24	0855	15
30	0845	15						

SAMOA ISLANDS, ISLAND OF TUTUILA

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

141924170440401 - 90-1944-14 MALAEIMI W69

CHLORIDE,
DISSOLVED
TIME (MG/L
AS CL)

OCT
03... 0835 454

142002170444201 (formerly 142100170441701) - 90-2044-02 ILILI W84

DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT			APR			JUL		
24	0955	727	16	1110	303	30	1045	606
31	0955	727	30	1140	606	AUG		
NOV			MAY			06	0915	667
07	1255	727	07	1105	606	13	1025	606
DEC			14	1015	485	20	0950	606
05	1150	606	21	0855	576	27	1020	485
12	1025	727	29	1030	515	SEP		
JAN			JUN			04	1015	424
03	1005	576	04	1130	576	10	1045	424
30	1020	515	11	1030	576	17	1135	485
MAR			18	1105	485	24	1050	454
12	1030	606	JUL					
19	1040	606	02	1020	545			
APR			17	1035	454			
09	1050	545	23	1045	545			

GROUND-WATER RECORDS 149
SAMOA ISLANDS, ISLAND OF TUTUILA

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

142042170463001 - 90-2046-03 MALAELOA W70

		CHLO- RIDE, DIS- SOLVED		22.2	CHLO- RIDE, DIS- SOLVED		42.42	CHLO- RIDE, DIS- SOLVED
DAME	TIME	(MG/L	DAME	TIME	(MG/L	DATE	TIME	(MG/L
DATE		AS CL)	DATE		AS CL)	DATE		AS CL)
OCT			FEB			JUN		
03	0940	23	06	0930	23	04	1025	30
11	1220	30	13	0905	45	11	0945	23
17	1000	23	21	0955	30	18	1005	23
24	0855	23	27	1000	30	25	1000	23
31	0915	23	MAR			JUL		
NOV			05	1015	23	02	0920	30
07	1230	15	12	0945	23	09	0950	30
14	0945	23	19	0955	23	17	0945	30
21	0905	23	26	1015	23	23	0955	30
28	0930	30	APR			30	0955	30
DEC			02	1040	23	AUG		
05	1115	30	09	1020	30	06	0945	23
12	0925	30	16	1040	30	13	0940	38
19	1015	30	23	1010	30	20	0905	38
27	0920	30	30	1055	30	27	0955	38
JAN			MAY			SEP		
03	0920	30	07	1020	30	04	1050	38
09	0905	30	14	1050	23	10	1010	23
16	0955	30	21	0930	23	17	1100	30
23	0910	30	29	0950	23	24	1000	30
30	0945	30						

142110170444601 - 90-2144-05 ILIILI W62

DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT			FEB			JUN		
03	0955	136	06	0940	106	04	1010	84
11	1145	128	13	0940	106	11	1010	53
17	1010	144	21	1015	106	18	1040	91
24	0910	128	27	1020	114	25	1040	106
31	0930	121	MAR			JUL		
NOV	3,5,5,5		05	1030	106	02	0955	106
07	1235	136	12	1010	106	17	1005	106
14	1000	144	19	1020	121	23	1025	106
21	0915	121	26	1025	84	30	1025	121
28	0940	136	APR			AUG		
DEC			02	1215	53	06	0910	114
05	1125	136	09	1030	76	13	1010	136
19	1035	114	16	1055	61	20	0935	136
27	0945	114	23	1045	91	27	1005	106
JAN			30	1125	114	SEP		
03	0930	114	MAY			04	1105	68
09	0920	136	07	1045	91	10	1015	68
16	1005	144	14	0945	84	17	1110	68
23	0920	91	21	0905	98	24	1005	98
30	0955	91	29	1015	98			

SAMOA ISLANDS, ISLAND OF TUTUILA

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

142102170455801 - 90-2145-03 PUAPUA W119

DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT			FEB			JUN		
03	0910	394	27	0940	136	25	0935	189
11	1155	364	MAR			JUL		
NOV			05	0955	114	02	0900	205
07	0900	45	12	0925	91	09	0930	227
14	0925	38	19	0935	91	17	0925	394
21	0840	45	26	0955	76	23	0935	394
28	0910	30	APR			30	0935	394
DEC			02	1020	38	AUG		
05	1055	167	09	0955	61	06	0930	394
12	0905	212	16	1015	53	13	0920	454
19	0955	227	23	0950	53	20	0845	515
27	0900	394	30	1035	76	27	0935	454
JAN			MAY			SEP		
03	0900	167	07	1005	136	04	1030	454
16	0935	152	14	1025	121	10	0940	454
23	0850	167	21	0910	159	17	1020	424
30	0925	152	29	0930	167	24	0925	454
FEB			JUN					
06	0910	98	04	1005	205			
13	0845	182	11	0925	197			
21	0935	175	18	0945	167			

INDEX

11,00.

	Down		Dono
Aasu Stream, at Aasu, Tutuila	Page	Illustrations3-	Page
Access to WATSTORE data	28	Imong River near Agat, Guam	34,87
Accuracy of field data and computed		Instantaneous discharge, definition of	8
results	25	Introduction	1
Acre-foot, definition of	2		
Afuelo Stream at Matuu, Tutuila	75,91	Keprohi River, Ponape	78,83
Airport Pond, Yap, Yap Islands	52	Kiriedleng River, Ponape	78,83 67-69
Alega Stream at Alega, Tutuila	78 2	Kosrae, island of, gaging-station records in	21
Algae, definition of	35,87	Water-temperature records in	89
Aquifer, definition of	2	Kmekumel River, Babelthuap, Palau Islands	44-45
Artesian, definition of	2		
Ash mass, definition of	7	La Sa Fua River near Umatac, Guam	32,87
Asili Stream, at altitude 330 ft near Asili,	72 00	Leafu Stream, at altitude 370 ft, near Leone,	74.03
Tutuila	73,90 78	Tutuila near Auasi, Tutuila	74,91 76,91
at Asili, Tutuilanear Asili, Tutuila	78	near Leone, Tutuila	78
Atauloma Stream at Afao, Tutuila	72,90	Leele Stream at mouth at Fagasa, Tutuila	78
	100	Lehn Mesi River, Ponape	65-66
Bacteria, definition of	2	Lewi River, Ponape	61-62
Biochemical oxygen demand, definition of	7	Luhpwor River, Ponape	63-64
Biomass, definition of	7	W	0.5
Bottom material, definition of	7	Magaf Stream, Yap, Yap Islands	85
Burong Stream, Yap, Yap Islands	53,88	Majuro, Marshall Islands, water-quality records at ground-water sites in	133-142
Cells/volume, definition of	7	Malem River, Kosrae	68,89
Cfs-day, definition of	7	Maulap River near Agat, Guam	36,88
Chlorophyll, definition of	7	Mean concentration, definition of	9
Chun Stream, Dublon, Truk Islands	86	Mean discharge, definition of	8
Coliform organisms, definition of	7	Melo River, Kosrae	
Collection and computation of data	24	Microgram per gram, definition of	8
Collection and examination of data	26 28	Microgram per liter, definition of	8
Collection of the data	7	Milligram per liter, definition of Monguch Stream, Gagil-Tamil, Yap Islands	77,81
Contents, definition of	7	Mukong Stream, Gagil-Tamil, Yap Islands	54-55
Continuing record station, definition of	8	Control Street, Street	
Control, definition of	8	Nankewi River, Ponape	78,82
Control structure, definition of	8	Nanpil River, Ponape	5,59-60
Cooperation	1	Ngerdorch River, South Fork, Babelthuap,	16 17
Cubic foot per second, definition of	8	Palau Islands	46-47
Dauen Neu River, Ponape	78,82	Ngerimel Reservoir, Babelthuap, Palau Islands. Numbering system for wells and miscellaneous	84
Definition of terms	2	sites	11,23
Denni Spring, Saipan	77		/
Dinaey Stream, Yap, Yap Islands	77	Organic mass, definition of	7
Diongradid River, Babelthuap, Palau		Other data available	26
Islands			
Discharge, definition of	8	Pacific Islands, map of	3
Dissolved, definition of	8 77	Pago Stream at Afono, Tutuila	70,90 79
Dorfay Stream, Gagil-Tamil, Yap Islands Downstream order and station number	11	Pahlap River, Ponape Palau Islands, gaging-station records in	40-47
Drainage area, definition of	8	low-flow partial-record stations in	77
Drainage basin, definition of	8	map of	15-16
Dry mass, definition of	7	water-quality records, at miscellaneous	
		sites in	84-85
Edeng River, Babelthuap, Palau Islands	84	at partial-record stations in	80
Elodesachel Spring, Koror, Palau Islands Explanation of ground-water level records	85 28	Papa Stream near Nuuuli, Tutuila Partial-record station, definition of	78 9
Explanation of stage and water-discharge	20	Particle size, definition of	9
records	24	Particle-size classification, definition of	9
Explanation of water-quality records	26	Percent composition, definition of	9
Eyeb Stream, Gagil-Tamil, Yap Islands	56-57	Pesticides, definition of	9
		Picocurie, definition of	9
Fecal coliform bacteria, definition of	7	Polychlorinated biphenyls, definition of	9
Fecal streptococcal bacteria, definition of Fena Dam spillway near Agat, Guam	37	Ponape, island of, gaging-station records in	59-66
opening hear higher committees.	٠,	low-flow partial-record stations in	78
Gage height, definition of	8	map of	20
Gaging station, definition of	8	measurements at miscellaneous sites in	79
Ground-water records	92-150	water-quality records at partial-record	44.00
Guam, island of, gaging-station records in	32-39	stations in	82-83
ground-water records in	96-111	Publications on techniques of water-resources	26,27
map ofwater-quality records at ground-water	13-14	Publications on techniques of water-resources investigations	29
sites in	111	Pwadapwad River, Ponape	79
water-temperature records in	87-88		
		Qamin Stream, Maap, Yap Islands	77,81
Hardness, definition of	8	Qaringeel Stream, Yap, Yap Islands	
Hydrologic unit, definition of	8	Qatliw Stream, Yap, Yap Islands	48-49

	Page		Page
Records of discharge collected by agencies		Total, recoverable, definition of	10
other than the Geological Survey	26	Total-sediment discharge, definition of	9
Recoverable from bottom material, definition		Truk Islands, gaging-station records in	58
of		map of	18-19
Ripu Stream, Yap, Yap Islands		water-quality records, at ground-water	
		sites in	124-132
Saipan, island of, gaging-stations records		at miscellaneous sites in	86
in	30-31	water-temperature records in	89
ground-water records in		Turbidity, definition of	11
low-flow partial-record stations in		Tutuila, island of, gaging-station records in.	70-76
map of		ground-water records in	
water-quality records at ground-water	•••	low-flow partial-record stations in	78
sites in	94-95	map of	22
water-temperature records in			22
Sediment		water-quality records, at ground-water	145-150
Sediment, definition of		sites in	
		water-temperature records in	90-91
Solute, definition of			
Specific conductance, definition of		Ugum River above Talofofo Falls, near	20.00
Stage-discharge relation, definition of		Talofofo, Guam	38,88
Streamflow, definition of	10	Unnamed North Coast Stream, Malakal,	
Summary of Hydrologic Conditions		Palau Islands	84
Suspended, definition of		Unnamed South Coast Stream, Ngerekebesang,	400 100
Suspended recoverable, definition of		Palau Islands	77,80
Suspended-sediment concentration, definition		Unnamed West Coast Stream, Ngerekebesang,	2272
of		Palau Islands	77,80
Suspended sediment, definition of	9		
Suspended-sediment discharge, definition		Water analysis	27
of		Water temperature	27
Suspended-sediment load, definition of	9	WDR, definition of	11
Suspended, total, definition of	10	Weighted average, definition of	11
Susupe, Lake	31	Wet mass, definition of	7
		Wichen River at altitude 18 m, Moen, Truk	
Tabecheding River, Babelthuap, Palau Island	s 42-43	Islands	58,89
Talofofo Stream, South Fork, Saipan		WRD, definition of	11
Temperatures, periodic determination of		WSP, definition of	11
Tholomar Stream above reservoir, Yap, Yap			
Islands	77	Yap Islands, gaging-station records in	48-57
Time-weighted average, definition of		ground-water records in	
Tinaga River near Inarajan, Guam		low-flow partial-record stations in	77
Tofol River, Kosrae		map of	17
Tons per acre-foot, definition of		water-quality records, at ground-water	7.
Tons per day, definition of		sites in	122-123
Total coliform bacteria, definition of	0.717	at miscellaneous sites in	85
		at partial-record station in	81
Total, definition of			88
	2 3 2 3	water-temperature records in	
Total load, definition of	***	Ylig River near Yona, Guam	4,35,00

FACTORS FOR CONVERTING INCH-POUND UNITS TO INTERNATIONAL SYSTEM UNITS (SI)

The following factors may be used to convert the inch-pound units published herein to the International System of Units (SI). This report contains both the inch-pound and SI unit equivalents in the station manuscript descriptions.

Multiply inch-pound units	Ву	To obtain SI units
	Length	
inches (in)	2.54x10 ¹	millimeters (mm)
	2.54x10 ⁻²	meters (m)
feet (ft)	3.048x10 ⁻¹	meters (m)
miles (mi)	1.609x10°	kilometers (km)
	Area	
acres	4.047×10^{3}	square meters (m ²)
	4.047x10 ⁻¹	square hectometers (hm ²)
	4.047×10^{-3}	square kilometers (km²)
square miles (mi ²)	2.590x10°	square kilometers (km²)
	Volume	
gallons (gal)	3.785x10°	liters (L)
	3.785x10°	cubic decimeters (dm ³)
	3.785×10^{-3}	cubic meters (m ³)
million gallons	3.785×10^3	cubic meters (m ³)
	3.785×10^{-3}	cubic hectometers (hm ³)
cubic feet (ft ³)	2.832×10^{1}	cubic decimeters (dm³)
	2.832x10 ⁻²	cubic meters (m ³)
cfs-days	2.447×10^3	cubic meters (m ³)
	2.447×10^{-3}	cubic hectometers (hm³)
acre-feet (acre-ft)	1.233×10^3	cubic meters (m ³)
	1.233×10^{-3}	cubic hectometers (hm ³)
	1.233x10 ⁻⁶	cubic kilometers (km ³)
	Flow	
cubic feet per second (ft ³ /s)	2.832x101	liters per second (L/s)
	2.832x10 ¹	cubic decimeters per second (dm ³ /s)
	2.832x10 ⁻²	cubic meters per second (m ³ /s)
gallons per minute (gal/min)	6.309×10^{-2}	liters per second (L/s)
	6.309×10^{-2}	cubic decimeters per second (dm³/s)
The state of the s	6.309x10 ⁻⁵	cubic meters per second (m ³ /s)
million gallons per day	4.381x10 ¹	cubic decimeters per second (dm ³ /s)
	4.381x10 ⁻²	cubic meters per second (m³/s)
	Mass	
tons (short)	9.072x10 ⁻¹	megagrams (Mg) or metric tons

U.S. DEPARTMENT OF THE INTERIOR Geological Survey. Room 6110 300 Ala Moana Boulevard, P.O. Box 50166 Honolulu, HI 96850

OFFICIAL BUSINESS PENALTY FOR PRIVATE USE \$300 SPECIAL 4TH CLASS BOOK RATE