

Water Resources Data New Jersey Water Year 1984

Volume 2. Delaware River Basin and Tributaries to Delaware Bay

U.S. GEOLOGICAL SURVEY WATER-DATA REPORT NJ-84-2 Prepared in cooperation with the New Jersey Department of Environmental Protection and with other agencies

CALENDAR FOR WATER YEAR 1984

									19	83										
	(OCT	OBE	R					NOV	EMBI	ΞR			DECEMBER						
S	M	Т	W	T	F	S	S	М	T	W	T	F	S	S	M	T	W	Т	F	S
9 16 23	3 10 17 24 31	11 18	12 19	20	14 21	15	13 20	21	15	9 16 23	10 17 24		12 19	18	5 12 19 26	20	14 21	15 22	9 16 23	
_									19	84			_							
	,	JAN	UAR	Y					FEB	RUA	RY					MA	RCH			
S	M	T	W	T	F	S	S	M	T	W	T	F	S	S	М	T	W	T	F	S
8 15 22	2 9 16 23 30	10 17 24	11 18		13 20	14 21	12 19	20	14	22	9 16 23	3 10 17 24		11 18	5 12 19 26	13 20	14 21	15 22	9 16 23	
		Al	PRI	L			MAY				JUNE									
S	M	T	W	T	F	S	S	M	T	W	T	F	S	S	M	Т	W	T	F	S
8 15 22	2 9 16 23 30	10 17	11 18		13 20	14 21	13 20	14 21	8 15	9 16 23	10 17 24		12 19	10 17	4 11 18 25	12 19	13 20	14 21	21	
		JI	JLY						AU	GUS:	Г				SI	EPT	EMBI	ER		
S	M	T	W	T	F	S	S	M	T	W	T	F	S	S	М	T	W	T	F	S
8 15 22	16	10· 17 24	11 18	12 19	13 20	14 21	12 19	13 20	14	8 15 22	9 16 23	17 24	11 18 25	2 9 16 23 30	3 10 17 24	11 18	12 19	13 20	14 21	15 22

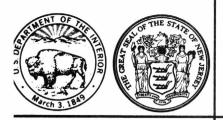
United States Department of the Interior

GEOLOGICAL SURVEY

Water Resources Division Room 409, Federal Building 402 East State Street Trenton, New Jersey 08608

I AM PLEASED TO ANNOUNCE THE RELEASE OF OUR ANNUAL REPORT, "WATER RESOURCES DATA FOR NEW JERSEY, WATER YEAR 1984". THIS REPORT WAS PREPARED BY THE U.S. GEOLOGICAL SURVEY, IN COOPERATION WITH THE STATE OF NEW JERSEY AND SEVERAL LOCAL AND FEDERAL GOVERNMENT AGENCIES.

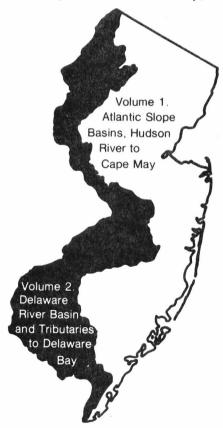
Once again this year, the report is issued in two volumes: Volume 1.--Atlantic Slope Basins, Hudson River to Cape May; Volume 2.--Delaware River Basin and Tributaries to Delaware Bay.


THE REPORT CONTAINS RECORDS OF STREAM DISCHARGE AND WATER-QUALITY MEASUREMENTS, ELEVATIONS OF LAKES AND RESERVOIRS, MAJOR WATER-SUPPLY DIVERSIONS, AND TIDAL ELEVATIONS. ALSO INCLUDED ARE RECORDS OF SEDIMENT CONCENTRATIONS AND RECORDS OF GROUND-WATER QUALITY AND GROUND-WATER LEVELS. SPECIAL SECTIONS ARE DEVOTED TO LOW-FLOW AND CREST-STAGE DATA AND SUMMARIES OF TIDAL CREST ELEVATIONS IN THE NEW JERSEY ESTUARIES AND INTRACOASTAL WATERWAYS.

Copies of this report are for sale through the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22161. When ordering, refer to U.S. Geological Survey Water-Data Report NJ-84-1 (for Volume 1) and NJ-84-2 (for Volume 2). For further information on this report, or if the address on the mailing label has changed, or if you no longer desire to receive this report, please contact me at the above address or telephone [609] 989-2162.

SINCERELY,

WILLIAM R. BAUERSFELD, CHIEF HYDROLOGIC STUDIES SECTION


William R. Barrefeld

Water Resources Data New Jersey Water Year 1984

Volume 2. Delaware River Basin and Tributaries to Delaware Bay

by W.R. Bauersfeld, E.W. Moshinsky, E.A. Pustay, and F.L. Schaefer

U.S. GEOLOGICAL SURVEY WATER-DATA REPORT NJ-84-2 Prepared in cooperation with the New Jersey Department of Environmental Protection and with other agencies

UNITED STATES DEPARTMENT OF THE INTERIOR

DONALD PAUL HODEL, Secretary

GEOLOGICAL SURVEY

Dallas L. Peck, Director

For additional information write to

District Chief, Water Resources Division
U.S. Geological Survey
Room 409, Federal Building
402 East State Street
Trenton, New Jersey 08608

PREFACE

This volume of the annual hydrologic data report of New Jersey is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by State, local, and Federal agencies, and the private sector for developing and managing our Nation's land and water resources. Hydrologic data for New Jersey are contained in 2 volumes:

Volume 1. Atlantic Slope Basins, Hudson River to Cape May Volume 2. Delaware River Basin and tributaries to Delaware Bay

This report is the culmination of a concerted effort by dedicated personnel of the U.S. Geological Survey who collected, compiled, analyzed, verified, and organized the data, and who typed, edited, and assembled the report. In addition to the authors, who had primary responsibility for assuring that the information contained herein is accurate, complete, and adheres to Geological Survey policy and established guidelines, the following individuals contributed significantly to the collection, processing, and tabulation of the data:

E. Dorr R.D. Schopp
R.L. Ulery W.D. Jones
M.A. Hardy G.M. Farlekas

S.J. Perry and I.C. Heerwagen word processed the text of the report, and G.L. Simpson drafted the illustrations.

This report was prepared under the general supervision of D.E. Vaupel, District Chief, New Jersey District, and S.P. Sauer, Regional Hydrologist, Northeastern Region, and in cooperation with the State of New Jersey and with other agencies.

-	-		-
50	272	- 1	O i

REPORT DOCUMENTATION PAGE 1. REPORT NO. USGS/WRD/HD-85/235	2.	3. Recipient's Accession No.
4. Title and Subtitle Water Resources Data for New Jersey, Water Year Volume 2. Delaware River Basin and Tributaries		5. Report Date May 1985 6.
7. Author(s) W.R. Bauersfeld, E.W. Moshinsky, E.A. Pustay, F.	L. Schaefer	8. Performing Organization Rept. No. USGS-WDR-NJ-84-2
9. Performing Organization Name and Address U.S. Geological Survey, Water Resources Division Room 409 Federal Building 402 E. State Street Trenton, New Jersey 08608		10. Project/Task/Work Unit No. 11. Contract(C) or Grant(G) No. (C) (G)
12. Sponsoring Organization Name and Address U.S. Geological Survey, Water Resources Division Room 409 Federal Building 402 E. State Street New Jersey 08608		13. Type of Report & Period Covered Annual - Oct. 1, 1983 to Sept. 30, 1984

15. Supplementary Notes
Prepared in cooperation with the New Jersey Department of Environmental Protection
and with other agencies

Mater Resources data for the 1984 water year for New Jersey consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground water. This volume of the report contains discharge records for 25 gaging stations; tide summaries for 3 stations; stage and contents for 16 lakes and reservoirs; water quality for 30 surface-water sites and 56 wells; and water levels for 27 observation wells. Also included are data for 27 crest-stage partial-record stations, 7 tidal crest-stage gages, and 18 low-flow partial-record stations. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements. These data represent that part of the national water data system operated by U.S. Geological Survey and cooperating State and Federal agencies in New Jersey.

17. Document Analysis a. Descriptors

*New Jersey, *Hydrologic data, *Surface water, *Ground water, *Water quality, Flow rate, Gaging stations, Lakes, Reservoirs, Checmical analyses, Sediments, Water temperatures, Sampling sites, Water Levels, Water Analyses

b. Identifiers/Open-Ended Terms

c. COSATI Field/Group

18. Availability Statemen: No restriction on distribution. This report may be purchased from: National	19. Security Class (This Report) Unclassified	21. No. of Pages 192
Technical Information, Service, Springfield,	20. Security Class (This Page) Unclassified	22. Price

CONTENTS

			1	* ·	Page
Preface					III
List of surface	e-water stations, in downstream order, for which	records are	published		VI
List of ground	-water stations, by county, for which records ar	e published.			VII
Introduction					1
Cooperation			• • • • • • • • • •	• • • • • • •	1
	S				2
	rologic conditionsterms				3
	er and station number				10
	em for wells and miscellaneous sites				10
	ks and programs				10
Explanation of	stage and water-discharge records				11
	nd computation of data				11
	field data and computed results				13
	vailable				13 13
	tage or discharge collected by agencies other th				14
	water-quality records				14
Collection as	nd examination of data				14
	atures				15
Sediment					15
	for water-quality data				15
Publications		• • • • • • • • • • • •	• • • • • • • • • • • • •	• • • • • • • • •	16 16
Collection of	ground-water level recordsf the data		• • • • • • • • • • • • • • • • • • • •	• • • • • • • •	16
	· · · · · · · · · · · · · · · · · · ·				16
	tore data				17
Selected refere	ences				17
Publications of	n techniques of water-resources investigations				20
Surface-water	records		• • • • • • • • • • • •		30
Discharge at p	artial-record stations and miscellaneous sitestial-record stations		• • • • • • • • • • • • • • • • • • • •	• • • • • • • •	140 140
Crest_stage	partial-record stations				142
	s sites				146
	age stations				147
	ecords				148
	level records				148
	round-water records				175
Index	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • •	182
	ILLUSTRATIONS				
Figure 1. Well	l locations system				10
2. Mon	thly streamflow at key gaging stations				21
	ual mean discharge at key gaging stations				22
4. Mon	thly ground-water levels at key observation well	ls			23
	showing location of gaging stations, and surface				25
	showing location of low-flow and crest-stage pa				27
7. Map	showing location of ground-water quality static	ons and obser	vation wells	• • • • • • •	29
	TABLES				
Table 1. Deg	rees Celsius (°C) to degrees Fahrenheit (°F)		N 10 10 10 10 10 10 10 10 10 10 10 10 10		14
	er-supply paper numbers, surface-water quality r				16
	er-supply paper numbers, surface-water quality rer-supply paper numbers, ground-water level reco				16
Fac	tors for converting Inch-pound units to Metric	units	in	side back	

[Letter after station name designates type of data: (d) discharge, (c) chemical, (m) microbiological, (e) elevation, gage height or contents, (t) water temperature, (s) sediment]

	Page
MAUDICE DIVER RACTY	
MAURICE RIVER BASIN	20
Maurice River at Norma (dcmt)	30 36
COHANSEY RIVER BASIN	30
Cohansey River at Seeley (dcm)	38
DELAWARE RIVER BASIN	20
Delaware River at Port Jervis, NY (dt)	41
Neversink River at Godeffroy, NY (d)	44
Delaware River at Montague (d)	45
Flat Brook at Flatbrookville (d)	46
Delaware River near Delaware Water Gap, PA (d)	47
Delaware River at Portland, PA (cm)	48
Paulins Kill at Balesville (cm)	50
Paulins Kill at Blairstown (dcm)	52
Yards Creek near Blairstown (d)	55
Pequest River at Pequest (d)	56
Delaware River at Belvidere (d)	57
Delaware River at Northampton Street, at Easton, PA (cm)	58
Lehigh River at Bethlehem (d)	59
Pohatcong Creek at New Village (cm)	60
Musconetcong River at outlet of Lake Hopatcong (cm)	62
Musconetcong River at Lockwood (cm)	64
Musconetcong River at Beattystown (cm)	66
Musconetcong River near Bloomsbury (d)	68
Musconetcong River at Riegelsville (cm)	69
Delaware and Raritan Canal at Kingston (d)	71
Delaware River at Lumberville (cm)	72
Wickecheoke Creek at Stockton (cm)	74
Delaware River at Washington Crossing (cm)	76
Delaware River at Trenton (dtcsm)	78 88
Assunpink Creek near Clarksville (cm)	
Assunpink Creek at Trenton (d)	90 91
Doctors Creek at Allentown (cm)	94
Delaware River at Burlington (e)	96
South Branch Rancocas Creek at Vincentown (cm)	97
North Branch Rancocas Creek at Browns Mills (cm)	99
Greenwood Branch:	,,
McDonalds Branch in Lebanon State Forest (dtcm)	100
North Branch Rancocas Creek at Pemberton (dcm)	106
Delaware River at Palmyra (e)	109
Pennsauken Creek:	
North Branch Pennsauken Creek near Moorestown (cm)	110
South Branch Pennsauken Creek at Cherry Hill (dcm)	112
Cooper River at Norcross Road, at Lindenwold (cm)	115
Cooper River at Lawnside (cm)	117
Cooper River at Haddonfield (d)	119
Big Timber Creek:	
South Branch Big Timber Creek at Blackwood Terrace (cm)	120
Schuylkill River at Philadelphia (d)	122
Raccoon Creek near Swedesboro (dcm)	123
Oldmans Creek at Porches Mill (cm)	125
Delaware River below Christina River at Wilmington	126
Salem River at Woodstown (dcm)	127
Reservoirs in Delaware River basin (e)	131
Diversions and withdrawals in Delaware River basin	137

	Page
GROUND-WATER LEVEL RECORDS	
BURLINGTON COUNTY Lebanon State Forest 23-D. Medford 4. Medford 5. Medford 1. Medford 2. Willingboro 2. Willingboro 1. Rhodia Corp. 1 CAMDEN COUNTY Elm Tree Farm 2.	148 149 150 151 152 153 154 155
Elm Tree Farm 3 Hutton Hill 1 Egbert Station CAPE MAY COUNTY	157 158 159
Traffic Circle	160 161 162 163
Jones Island 2	164 165 166
Shell Chemical 5 Eagle Point 3 HUNTERDON COUNTY	167 168
Bird	. 169
Salem 1 Salem 3 Salem 2 Point Airy. WARREN COUNTY Hoffman LaRoche 4	. 171 . 172 . 173
QUALITY OF GROUND-WATER RECORDS	
Burlington County. Cape May County Cumberland County. Gloucester County. Mercer County. Ocean County.	. 176 . 177 . 178 . 179
Salem County	. 181

INTRODUCTION

Water resources data for the 1984 water year for New Jersey consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground water. This volume contains water discharge at 25 gaging stations; tide summaries for 3 stations; stage and contents for 16 lakes and reservoirs; water quality for 30 surface water sites, and 56 wells; and water levels for 27 observation wells. Also included are data for 27 crest-stage partial-record stations; 7 tidal crest-stage gage and 18 low-flow partial-record stations. Locations of these sites are shown in figures 5, 6, and 7. Additional water data were collected at various sites not part of the systematic data collection program and are published as miscellaneous measurements and analyses. These data together with the data in Volume 1 represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State, Local, and Federal agencies in New Jersey.

Records of discharge or stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological Survey water-supply papers entitled, "Surface Water Supply of the United States." Through September 30, 1960, these water-supply papers were in an annual series and then in a 5-year series for 1961-65 and 1966-70. Records of chemical quality, water temperature, and suspended sediment were published from 1941 to 1970 in an annual series of water-supply papers entitled, "Quality of Surface Waters of the United States." Records of ground-water levels were published from 1935 to 1974 in a series of water-supply papers entitled "Ground-Water Levels in the United States." Water-supply papers may be consulted in the libraries of the principal cities in the United States or may be purchased from Branch of Distribution, U.S. Geological Survey, 604 South Pickett Street, Alexandria, Virginia 22304.

For water years 1961 through 1970, streamflow data were released by the Geological Survey in annual reports on a State-boundary basis. Water-quality records for water years 1964 through 1970 were similarly released either in separate reports or in conjunction with streamflow records.

Beginning with the 1971 water year, water data for streamflow, water quality, and ground water are published in offical Survey reports on a State-boundary basis. These offical Survey reports carry an identification number consisting of the two letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume of the report is identified as "U.S. Geological Survey Water-Data Report NJ-84-2." These water-data reports are for sale, in paper copy or in microfiche, by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

Additional information, including current prices, for ordering specific reports may be obtained from the District Chief at the address given on the back of the title page or by telephone (609) 989-2162.

COOPERATION

This report was prepared by the U.S. Geological Survey under cooperative agreement with the following organizations:

New Jersey Department of Environmental Protection, Robert E. Hughey, Commissioner.
Division of Water Resources, John W. Gaston, Jr., Director.

New Jersey Water Supply Authority, Rocco Ricci, Executive Director.

North Jersey District Water Supply Commission, Dean C. Noll, Chief Engineer.

Passaic Valley Water Commission, W.I. Inhoffer, General Superintendent and Chief Engineer.

County of Bergen, Edward R. Ranuska, Director of Public Works and County Engineer.

County of Camden, Barton Harrison, Chairman of Camden County Planning Board.

County of Morris, James Plante, Chairman of Morris County Municipal Utilities Authority.

County of Somerset, Thomas E. Decker, County Engineer, and Thomas Harris, Administrative Engineer.

Township of West Windsor, Larry Ellery, Chairman of Environmental Commission.

Township of Bridgewater, Cynthia Jacobson, Chairman of Environmental Commission.

Assistance in the form of funds was given by the Corps of Engineers, U.S. Army, in collecting records for 50 surface-water stations, and for the collection of sediment records at one stream-sampling station, by the U.S. Environmental Protection Agency for the collection of chemical analyses at four stream-sampling stations, and by the U.S. Army Armament Research and Development Center for the collection of records at two surface-water stations and one water-quality monitoring station. In addition, several stations were operated fully or partially from funds appropriated directly to the Geological Survey. Assistance was also furnished by the National Weather Service and the National Ocean Survey.

The following organizations aided in collecting records:

Municipalities of Atlantic City, Jersey City, Newark, New Brunswick and Spotswood; American Cyanamid Co.; Commonwealth Water Co.; Elizabethtown Water Co.; Ewing-Lawrence Sewerage Authority; Hackensack Water Co.; Johns-Manville Products Corp.; and Monmouth Consolidated Water Co.; Jersey Central Power and Light Co.

Organizations that supplied data are acknowledged in station descriptions.

ACKNOWLEDGMENTS

The Water Resources Data for New Jersey were processed and prepared for publication under the supervision of W.R. Bauersfeld, Chief, Hydrologic Studies Section. The data were collected, computed and processed by other personnel as follows:

J.B. Campbell	R.S. Cole	C.E. Gurney	C.E. Nahn
J.P. Campbell	M.J. DeLu	ca J.T. Fisher	M.O. Philips
G.L. Centinaro	J.F. Dude	k A.J. Kalik	E. Rodgers

SUMMARY OF HYDROLOGIC CONDITIONS

Streamflow in the 1984 Water Year was excessive throughout the State, ranging from 168 percent of normal in the north to 128 percent of normal in the south. Precipitation during the water year varied greatly within the State, ranging from 164 percent of normal (69.3 inches) in the northeast to 115 percent of normal (48.4 inches) in the southeast. Reservoir content decreased until November, when they all showed a sharp increase; by the end of December almost all reservoirs were spilling. Reservoir contents did not drop below 100 percent of capacity until August and, by the end of the water year, contents were still above normal at 84 percent of capacity. In general, field specific conductance of surface waters was below normal for the period May through September, due primarily to the diluting effect of the above-average precipitation. Water-table levels also were at or above normal for most of the State.

Water year 1984 began with streamflow about normal at all index stations. Subsequently, streamflow steadily increased until, by the end of December, it was 200 percent of normal in the north and 143 percent of normal in the south. Precipitation averaged about 212 percent of normal in December. Major storms occurred on December 13, 22, and 29. On December 13, Little Falls, in the northeastern part of the State, reported 3.6 inches of rain. Flooding was reported in the area of Wayne and Lincoln Park. Streamflow returned to normal in January and February. On March 29, the highest tides since 1962 caused considerable damage to many coastal communities. Precipitation in March, April and May was much above normal, which again caused very high streamflow. An intense storm occurred on April 5, and Essex Fells, near West Orange, reported 6.6 inches of rain in 24 hours. Flooding was reported throughout the northeastern part of the State. New high peaks were recorded at all gaging stations on the Wanaque and Ramapo Rivers, and at Rockaway River upstream from the reservoir at Boonton. Another storm on May 29 and 30 resulted in from 3.5 to 4.5 inches of rainfall in most northern communities. A new high monthly mean discharge for May was recorded at South Branch Raritan River at High Bridge; this exceeds the previous high set in 1947. Heavy precipitation continued through June and July. Most notable was a storm on July 6 and 7 concentrated along the Lamington River in the Raritan River basin where Pottersville reported 9.02 inches of rain; total monthly precipitation at this site was 17.11 inches. New peaks of record were recorded at many gaging stations in the Raritan River basin. For the remainder of the year, streamflow remained high throughout the State.

Streamflow at the index station for northern New Jersey (South Branch Raritan River near High Bridge) averaged 204 ft 3 /s for the water year, which is 168 percent of the 66-year average. Streamflow at the index station for southern New Jersey (Great Egg Harbor River at Folsom) averaged 111 ft 3 /s for the water year, which is 128 percent of 59-year average. The observed annual mean discharge of the Delaware River at Trenton was 15,740 ft 3 /s, which is 135 percent of normal. The Delaware River is highly regulated by reservoirs and diversion. The natural flow at Trenton (adjusted for upstream storage and diversions) was 107 percent of normal for the year. Figures 2 and 3 compare the monthly and annual discharges with past records at these index gaging stations.

Storage in the 13 major water-supply reservoirs in New Jersey increased from 46.8 billion gallons (62 percent of capacity) on October 1, 1983, to 63.5 billion gallons (84 percent of capacity) on September 30, 1984. Storage in Wanaque Reservoir increased from 18.9 billion gallons (67 percent of capacity) on October 1, 1983 to 24.3 billion gallons (87 percent of capacity) on September 1, 1984. Pumped storage in Round Valley Reservoir increased from 40.6 billion gallons (74 percent of capacity) on October 1, 1983, to 47.4 billion gallons (86 percent of capacity) on September 30, 1984.

Monthly mean and minimum specific conductance values at two of the NASQAN (National Stream Quality Accounting Network) sites -- the Maurice River near Norma (southern New Jersey) and the Passaic River at Little Falls (northern New Jersey) -- were lower than those for the previous year for nearly the entire May through September period. This condition prevaled for 3 of the 5 months at the continuous record station -- Delaware River at Trenton.

The water table was at or above normal level throughout most of the State from October 1983 through September 1984. There was a seasonal rise in the water table in most wells from October to a peak in the period March through June, followed by a seasonal decline through September. The level of the water table reflects natural recharge and discharge, and indirectly reflects long-term precipitation trends.

Artesian water levels in wells tapping the heavily stressed confined aquifers of the Coastal Plain rose seasonally from October 1983 through March or April 1984, then declined through September. During the year, there was a net decline in water levels in many areas, continuing a long-term downward trend caused by withdrawals of ground water for industrial and public supplies. A notable exception occurred in the northern part of the Coastal Plain where 1984 water levels in the Potomac-

Raritan-Magothy aquifer system and the Englishtown aquifer leveled off from the steady declines of preceding years.

Monthly water levels are compared with long-term averages at two water-table observation wells in figure 4. The wells shown are the Bird well in Hunterdon County and the Crammer well in Ocean County. For further comparison, multi-year hydrographs are provided for most of the wells given in these reports. The hydrographs are shown with the 1984 water-level data.

DEFINITION OF TERMS

Terms related to streamflow, water-quality and other hydrologic data, as used in this report, are defined below. See also the table for converting Inch-pound Units to Metric Units on the inside of the back cover.

Acre-foot (AC-FT, acre-ft) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters.

Adenosine triphosphate (ATP) is the primary energy donor in cellular life processes. Its central role in living cells makes it an excellent indicator of the presence of living material in water. A measure of ATP therefore provides a sensitive and rapid estimate of biomass. ATP is reported in micrograms per liter of the original water sample.

Algae are mostly aquatic single-celled, colonial, or multi-celled plants, containing chlorophyll and lacking roots, stems, and leaves.

 $\underline{\text{Aquifer}}$ is a geologic formation, group of formations, or part of a formation that contains sufficient saturated permeable material to yield significant quantities of water to wells and springs.

Aquifer codes and geologic names:

The following list shows the aquifer unit codes and geologic names of the formations in which the sampled wells are finished. The aquifer unit codes also appear in the ground-water quality tables.

```
112SFDF
               STRATIFIED DRIFT
               CAPE MAY FORMATION, UNDIFFERENTIATED CAPE MAY FORMATION, ESTUARINE SAND FACIES
112CPMY
112ESRNS
121CNSY
               COHANSEY SAND
121CKKD
               KIRKWOOD-COHANSEY AQUIFER SYSTEM
               RIO GRANDE WATER-BEARING ZONE OF THE KIRKWOOD FORMATION
122KRKDU
122KRKDL
               ATLANTIC CITY 800-FOOT SAND OF THE KIRKWOOD FORMATION
124PNPN
               PINEY POINT AQUIFER
124MNSQ
               MANASQUAN FORMATION
125 VNCN
               VINCENTOWN FORMATION
211MLRW
               WENONAH-MOUNT LAUREL AQUIFER
211EGLS
               ENGLISHTOWN AQUIFER
               POTOMAC-RARITAN-MAGOTHY AQUIFER SYSTEM, UNDIFFERENTIATED UPPER AQUIFER, POTOMAC-RARITAN-MAGOTHY AQUIFER SYSTEM, (BURLINGTON, CAMDEN,
211MRPA
211MRPAU
               GLOUCESTER, SALEM COUNTIES)
211MRPAM
               MIDDLE AQUIFER, POTOMAC-RARITAN-MAGOTHY AQUIFER SYSTEM (BURLINGTON, CAMDEN,
               GLOUCESTER, SALEM COUNTIES)
211MRPAL
               LOWER AQUIFER, POTOMAC-RARITAN-MAGOTHY AQUIFER SYSTEM (BURLINGTON, CAMDEN,
               GLOUCESTER, SALEM COUNTIES)
2110DBG
               OLD BRIDGE AQUIFER, POTOMAC-RARITAN-MAGOTHY AQUIFER SYSTEM (MERCER, MIDDLESEX,
               MONMOUTH COUNTIES)
211FRNG
               FARRINGTON AQUIFER, POTOMAC-RARITAN-MAGOTHY AQUIFER SYSTEM (MERCER, MIDDLESEX,
               MONMOUTH COUNTIES)
               BRUNSWICK FORMATION
231BRCK
231SCKN
               STOCKTON FORMATION
```

Artesian means confined and is used to describe a well in which the water level stands above the top of the aquifer, tapped by the well. A flowing artesian well is one in which the water level is above land surface.

Bacteria are microscopic unicellular organisms, typically spherical, rod-like, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants.

Total coliform bacteria are a particular group of bacteria that are used as indicators of possible sewage pollution. They are characterized as aerobic or facultative anaerobic, gramnegative, nonspore-forming, rod-shaped bacteria which ferment lactose with gas formation within

48 hours at 35°C. In the laboratory these bacteria are defined as all the organisms which produce colonies with a golden-green metallic sheen within 24 hours when incubated at 35°C \pm 0.5°C on M-Endo medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 ml of sample.

 $\frac{\text{Fecal coliform bacteria}}{\text{consist}} \text{ are bacteria that are present in the intestines or feces of warmblooded animals.} They are often used as indicators of the sanitary quality of the water. In the laboratory they are defined as all organisms which produce blue colonies within 24 hours when incubated at 44.5°C <math display="inline">\pm$ 0.2°C on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 ml of sample.

Fecal streptococcal bacteria are bacteria found also in the intestine of warm-blooded animals. Their presence in water is considered to verify fecal pollution. They are characterized as gram-positive, cocci bacteria which are capable of growth in brain-heart infusion broth. In the laboratory they are defined as all the organisms which produce red or pink colonies within 48 hours at 35°C \pm 0.5°C on KF streptococcus medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 ml of sample.

Bedload is the sediment which moves along in essentially continuous contact with the streambed by rolling, sliding, and making brief excursions into the flow a few diameters above the bed.

Bed material is the unconsolidated material of which a streambed, lake, pond, reservoir, or estuary bottom is composed.

Biochemical oxygen demand (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, used for the decomposition of organic matter by microorganisms, such as bacteria.

 $\frac{\text{Biomass}}{\text{area or}}$ is the amount of living matter present at any given time, expressed as the weight per unit $\frac{\text{Biomass}}{\text{area or}}$ volume of habitat.

Ash mass is the mass or amount of residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of $500\,^{\circ}\text{C}$ for 1 hour. The ash mass values of zooplankton and phytoplankton are expressed in grams per cubic meter (g/m³) and periphyton and benthic organisms in grams per square meter (g/m²).

Dry mass refers to the mass of residue present after drying in an oven at 60° C for zoo-plankton and 105° C for periphyton, until the mass remains unchanged. This mass represents the total organic matter, ash and sediment, in the sample. Dry mass values are expressed in the same units as ash mass.

Organic mass or volatile mass of the living substance is the difference between the dry mass and the ash mass, and represents the actual mass of the living matter. The organic mass is expressed in the same units as for ash mass and dry mass.

Wet mass is the mass of living matter plus contained water.

Bottom material: See Bed material.

Cells/volume refers to the number of cells of any organism which is counted by using a microscope and grid or counting cell. Many planktonic organisms are multicelled and are counted according to the number of contained cells per sample, usually milliliters (mL) or liters (L).

Cfs-day is the volume of water represented by flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, approximately 1.9835 acre-feet, about 646,000 gallons or 2,447 cubic meters.

Chemical oxygen demand (COD) is a measure of the quantity of organic matter which can be chemically oxidized in the presence of a strong oxidant.

Chlorophyll refers to the green pigments of plants. Chlorophyll \underline{a} and \underline{b} are the two most common pigments in plants.

Color unit is produced by one milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale.

Contents is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage.

Continuing record station is a specified site which meets one or all conditions listed:

- When chemical samples are collected daily or monthly for 10 or more months during the water year.
- 2. When water temperature records include observations taken one or more times daily.
- 3. When sediment discharge records include periods for which sediment loads are computed and are considered to be representative of the runoff for the water year.

Control designates a feature downstream from the gage that determines the stage-discharge relation at the gage. This feature may be a natural constriction of the channel, an artificial structure, or a uniform cross section over a long reach of the channel.

Control structure as used in this report is a structure on a stream or canal that is used to regulate the flow or stage of the stream or to prevent the intrusion of salt water.

Cubic feet per second per square mile $(ft^3/s/mi^2, CFSM)$ is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming that the runoff is distributed uniformly in time and area.

 $\frac{\text{Cubic foot per second}}{\text{passing a given point during 1 second and is equivalent to 7.48 gallons per second or 448.8 gallons per minute or 0.02832 cubic meters per second.}$

 $\frac{\text{Discharge}}{\text{passes a given point within a given period of time.}}$ is the volume of water (or more broadly, volume of fluid plus suspended sediment),

Instantaneous discharge is the discharge at a particular instant of time.

Mean discharge (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period.

Dissolved refers to that material in a representative water sample which passes through a 0.45 μ m membrane filter. This is a convenient operational definition used by Federal agencies that collect water data. Determinations of "dissolved" constituents are made on subsamples of the filtrate.

Diversity index is a numerical expression of the evenness of distribution of aquatic organisms. The formula for diversity index is:

$$\bar{d} = -\sum_{i=1}^{8} \frac{n_i}{n} \log_2 \frac{n_i}{n}$$

Where n is the number of individuals per taxon, n is the total number of individuals, and s is the total number of taxa in the sample of the community. Diversity index values range from zero, when all the organisms in the sample are the same, to some positive number, when some or all of the organisms in the sample are different.

<u>Drainage area</u> of a stream at a specified location is that area, measured in a horizontal plane, enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into the stream above the specified point. Figures of drainage area given herein include all closed basins, or noncontributing areas, within the area unless otherwise noted.

<u>Drainage basin</u> is a part of the surface of the earth that is occupied by a drainage system, which consists of a surface stream or body of impounded surface water together with all tributary surface stream and bodies of impounded surface water.

Gage height (G.H.) is the water-surface elevation referred to some arbitrary gage datum. Gage height is often used interchangeably with the more general term "stage," although gage height is more appropriate when used with a reading on a gage.

Gaging station is a particular site on a stream, canal, lake, or reservoir where systematic observations of gage height or discharge are obtained. When used in connection with a discharge record, the term is applied only to those gaging stations where a continuous record of discharge is obtained.

Hardness of water is a physical-chemical characteristic that is commonly recognized by the increased quantity of soap required to produce lather. It is attributable to the presence of alkaline earths (principally calcium and magnesium) and is expressed as equivalent calcium carbonate (CaCO₂).

High tide is the maximum height reached by each rising tide.

Hydrologic unit is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as delineated by the Office of Water Data Coordination on the State Hydrologic Unit Maps; each hydrologic unit is identified by an 8-digit number.

Land-surface datum is a datum plane that is approximately at the land surface at the well.

Low tide is the minimum height reached by each falling tide.

Mean high or low tide is the average of all high or low tides, respectively, over a specified period.

Metamorphic stage refers to the stage of development that an organism exhibits during its transformation from an immature form to an adult form. This developmental process exists for most insects, and the degree of difference from the immature stage to the adult form varies from relatively slight to pronounced, with many intermediates. Examples of metamorphic stages of insects are egg-larva-adult or egg-nymph-adult.

Methylene blue active substance (MBAS) is a measure of apparent detergents. This determination depends on the formation of a blue color when methylene blue dye reacts with synthetic detergent compounds.

Micrograms per gram (UG/G) is a unit expressing the concentration of a chemical element as the weight (micrograms) of the element sorbed per unit weight (gram) of sediment.

Micrograms per liter (UG/L, μ g/L) is a unit expressing the concentration of chemical constituents in solution as weight (micrograms) of solute per unit volume (liter) of water. One thousand micrograms per liter is equivalent to one milligram per liter.

 $\frac{\text{Milligrams per liter (MG/L, mg/L)}}{\text{constituents in solution.}} \text{ is a unit for expressing the concentration of chemical constituents in solution.} \\ \text{Milligrams per liter represents the weight of solute per unit volume of water.} \\ \text{Milligrams or micrograms per liter may be converted to milliequivalents (one thousandth of a gram-equivalent weight of a constituent) per liter by multiplying by the factors in Hem (1970).}$

National Geodetic Vertical Datum of 1929 (NGVD of 1929). A geodetic datum derived from a general adjustment of the first order level nets of both the United States and Canada, formerly called "Mean Sea Level."

NJ-WRD well number is a hyphenated, 6-digit identification number which the U.S. Geological Survey assigned to all New Jersey wells in the Ground Water Site Inventory (GWSI) data base. This numbering system was developed in 1978 to simplify identification of wells. The first two digits are a code for the county in which the well is located, and the last four digits are a sequence number. Each well added to GWSI is assigned the next higher sequence number for the county in which the well is located. These NJ-WRD well numbers are being used now in the ground-water level descriptions, wells sampled for water-quality analyses, and on the corresponding location maps in these reports.

Organism is any living entity, such as an insect, phytoplankter, or zooplankter.

Organism count/area refers to the number of organisms collected and enumerated in a sample and adjusted to the number per area habitat, usually square meters (m^2) , acres, or hectares. Periphyton, benthic organisms, and macrophytes are expressed in these terms.

Organism count/volume refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliliters (mL) or liters (L). Numbers of planktonic organisms can be expressed in these terms.

 $\underline{\text{Total organism count}}$ is the total number of organisms collected and enumerated in any particular sample.

Partial-record station is a particular site where limited streamflow data are collected systematically over a period of years for use in hydrologic analyses.

Particle size is the diameter, in millimeters (mm), of suspended sediment or bed material determined either by sieve or sedimentation methods. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube) determine fall diameter of particles in either distilled water (chemically dispersed) or in active water (the river water at the time and point of sampling).

<u>Particle-size classification</u> used in this report agrees with recommendations made by the American Geophysical Union Subcommittee on Sediment Terminology. The classification is as follows:

Classification	Size (mm)	Method of analysis
Clay Silt Sand Gravel	0.00024 - 0.004 .004062 .062 - 2.0 2.0 - 64.0	Sedimentation. Sedimentation. Sedimentation or sieve. Sieve.

The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. Most of the organic material is removed and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native-water analysis.

Percent composition is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, mass or volume.

<u>Periphyton</u> is the assemblage of microorganisms attached to and growing upon solid surfaces. While <u>primarily</u> consisting of algae, they also include bacteria, fungi, protozoa, rotifers, and other small organisms. Periphyton is a useful indicator of water quality.

Pesticides are chemical compounds used to control the growth of undesirable plants and animals. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides.

Picocurie (PCI, pCi) is one trillionth (1 x 10^{-12}) of the amount of radioactivity represented by a curie (Ci). A curie is the amount of radioactivity that yields 3.7 x 10^{10} radioactive disintegrations per second. A picocurie yields 2.22 dpm (disintegrations per minute).

Plankton is the community of suspended, floating, or weakly swimming organisms that live in the open water of lakes and rivers.

<u>Phytoplankton</u> is the plant part of the plankton. They are usually microscopic and their movement is <u>subject</u> to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substances. Because they are able to incorporate as well as release

materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment, and are commonly known as algae.

Blue-green algae are a group of phytoplankton organisms having a blue pigment, in addition to the green pigment called chlorophyll. Blue-green algae often cause nuisance conditions in water.

<u>Diatoms</u> are the unicellular or colonial algae having a siliceous shell. Their concentrations are expressed as number of cells per milliliter of sample.

Green algae have chlorophyll pigments similar in color to those of higher green plants. Some forms produce algal mats or floating "moss" in lakes. Their concentrations are expressed as number of cells per milliliter of sample.

Zooplankton is the animal part of the plankton. Zooplankton are capable of extensive movements within the water column, and are often large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, the zooplankton are a vital part of the aquatic food web. The zooplankton community is dominated by small crustaceans and rotifers.

 $\frac{\text{Polychlorinated biphenyls}}{\text{compounds having various percentages of chlorine.}} \text{ They are similar in structure to organochlorine insecticides.}$

<u>Primary productivity</u> is a measure of the rate at which new organic matter is formed and accumulated through photosynthetic and chemosynthetic activity of producer organisms (chiefly green plants). The rate of primary production is estimated by measuring the amount of oxygen released (oxygen method) or the amount of carbon assimilated by the plants (carbon method).

Milligrams of carbon per area or volume per unit time [mg $C/(m^2/time)$ for periphyton and macrophytes and mg $C/(m^3/time)$ for phytoplankton] are units for expressing primary productivity. They define the amount of carbon dioxide consumed as measured by radioactive carbon (carbon 14). The carbon 14 method is of greater sensitivity than the oxygen light and dark bottle method, and is preferred for use in unenriched waters. Unit time may be either the hour or day, depending on the incubation period.

Milligrams of oxygen per area or volume per unit time $[mg\ 0_2/(m^2/\text{time})]$ for periphyton and macrophytes and mg $0_2/(m^3/\text{time})]$ for phytoplankton are the units for expressing primary productivity. They define production and respiration rates as estimated from changes in the measured dissolved oxygen concentration. The oxygen light and dark bottle method is preferred if the rate of primary production is sufficient for accurate measurements to be made within 24 hours. Unit time may be either the hour or day, depending on the incubation period.

Radioisotopes are isotope forms of an element that exhibit radioactivity. Isotopes are varieties of a chemical element that differ in atomic weight, but are very nearly alike in chemical properties. The difference arises because the atoms of the isotopic forms of an element differ in the number of neutrons in the nucleus. For example: ordinary chlorine is a mixture of isotopes having atomic weights 35 and 37, with the natural mixture having an atomic weight of 35.453.

Radioisotopes that are determined in this report are natural uranium in $\mu g/L$ (micrograms per liter), radium as radium-226 in PCI/L, (pCi/L, picocuries per liter), gross beta in PCI/L, and gross alpha radiation as micrograms of uranium equivalent per liter ($\mu g/L$). Gross alpha and beta radioactivity associated with the fine grained (silt and clay sized) sediments in the samples are also determined.

Recoverable from bottom material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of only readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

River mile as used herein, is the distance above the mouth of Delaware Bay, measured along the center line of the navigation channel or the main stem of the Delaware River. River mile data were furnished by the Delaware River Basin Commission.

Runoff in inches (IN, in) shows the depth to which the drainage area would be covered if all the runoff for a given time period were uniformly distributed on it.

Screened interval (FT) is the length of well screen through which water enters a well, in feet below land surface.

 $\underline{\underline{Sediment}} \ \ \text{is solid material that originates mostly from disintegrated rocks and is transported by, } \\ \underline{\underline{suspended}} \ \ \text{in, or deposited from water; it includes chemical and biochemical precipitates and decomposed organic material such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are influenced by environmental factors. Some major factors are degree of slope, length of slope, soil characteristics, land usage, and quantity and intensity of precipitation.$

Mean concentration is the time-weighted concentration of suspended sediment passing a stream section during a 24-hour day.

Suspended sediment is the sediment that at any given time is maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid.

Suspended-sediment concentration is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 ft above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L).

Suspended-sediment discharge (tons) is the rate at which dry weight of sediment passes a section of a stream or is the quantity of sediment, as measured by dry weight, or by volume, that is discharged in a given time. It is computed by multiplying discharge times mg/L times 0.0027.

Suspended-sediment load is quantity of suspended sediment passing a section in a specified period.

Total sediment discharge (tons/day) is the sum of the suspended-sediment discharge and the bed-load discharge. It is the total quantity of sediment, as measured by dry weight or volume, that passes a section during a given time.

Solute is any substance derived from the atmosphere, vegetation, soil, or rocks that is dissolved in water.

Specific conductance is a measure of the ability of a water to conduct an electrical current and is expressed in micromhos per centimeter at 25°C. Because the specific conductance is related to the number and specific chemical types of ions in solution, it can be used for approximating the dissolved-solids content of the water. Commonly, the amount of dissolved solids (in milligrams per liter) is about 65 percent of the specific conductance (in micromhos per cm at 25°C). This relation is not constant from stream to stream or from well to well, and it may even vary in the same source with changes in the composition of the water.

Stage-discharge relation is the relation between gage height and the amount of water flowing in a channel, expressed as volume per unit of time.

Streamflow is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff." Streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

Substrate is the physcial surface upon which an organism lived.

Artificial substrate is a device which is purposely placed in a stream or lake for colonization by organisms. The artificial substrate simplifies the community structure by standardizing the substrate from which each sample is taken. Examples of artificial substrates are basket samplers (made of wire cages filled with clean streamside rocks) and multi-plate samplers (made of hardboard) for benthic organism collection, and plexiglass strips for periphyton collection.

Natural substrate refers to any naturally occurring emersed or submersed solid surface, such as a rock or tree, upon which an organism lived.

Surface area of a lake is that area outlined on the latest U.S.G.S. topographic map as the boundary of the lake and measured by a planimeter in acres. In localities not covered by topographic maps, the areas are computed from the best maps available at the time planimetered. All areas shown are those for the stage when the planimetered map was made.

 $\underline{\text{Surficial bed material}}$ is that part (0.1 to 0.2 ft) of the bed material that is sampled using U.S. $\underline{\text{Series Bed-Material Samplers}}$.

Suspended, recoverable is the amount of a given constituent that is in solution after the part of a representative water-suspended sediment sample that is retained on a 0.45 μ m membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Determinations of "suspended, recoverable" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total recoverable concentrations of the constituent.

Suspended, total is the total amount of a given constituent in the part of a representative water-suspended sediment sample that is retained on a 0.45 μ m membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent

determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total."

Determinations of "suspended, total" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total concentrations of the constituent.

Taxonomy is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchical scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common. For example, the taxonomy of a particular mayfly, Hexagenia limbata is the following:

Kingdom.....Animal
Phylum.....Arthropoda
Class.....Insecta
Order.....Ephemeroptera
Family.....Ephemeridae
Genus.....Hexageria
Species...Hexagenia limbata

Thermograph is a thermometer that continuously and automatically records, on a chart, the water temperatures of a stream. "Temperature recorder" is the term used to indicate the location of the thermograph or a digital mechanism that automatically records water temperature on paper tape.

Time-weighted average is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water that would be contained in a vessel or reservoir that had received equal quantities of water from the stream each day for the year.

Tons per acre-foot indicates the dry mass of dissolved solids in 1 acre-foot of water. It is computed by multiplying the concentration in milligrams per liter by 0.00136.

Tons per day is the quantity of a substance in solution or suspension that passes a stream section during a 24-hour day.

Total is the total amount of a given constituent in a representative water-suspended sediment sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total" (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determines all of the constituent in the sample).

Total in bottom material the total amount of a given constituent in a representative sample of bottom material. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total in bottom material."

Total load (tons) is the total quantity of any individual constituent, as measured by dry mass or volume, that is being transported in a specific amount of water (discharge) during a given time. It is computed by multiplying the total discharge, times the mg/L of the constituent, times the factor 0.0027, times the number of days.

Total, recoverable is the amount of a given constituent that is in solution after a representative water-suspended sediment sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

<u>WDR</u> is used as an abbreviation for "Water-Data Report" in the summary REVISIONS paragraph to refer to previously published State annual basic-data reports. Prior to 1975, WRD was used, which was the abbreviation for "Water-Resources Data."

Weighted average is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir.

 $\frac{\text{WSP}}{\text{VSP}}$ is used as an abbreviation for "Water-Supply Paper" in reference to previously published reports.

DOWNSTREAM ORDER AND STATION NUMBER

Since October 1, 1950, the order of listing hydrologic-station records in Survey reports is in a downstream direction along the main stream. All stations on a tributary entering upstream from a main-stream station are listed before that station. A station on a tributary that enters between two main-stream stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary on which a station is situated with respect to the stream to which it is immediately tributary is indicated by an indention in a list of stations in front of the report. Each indention represents one rank. This downstream order and system of indention show which stations are on tributaries between any two stations and the rank of the tributary on which each station is situated.

As an added means of identification, each hydrologic station and partial-record station has been assigned a station number. These are in the same downstream order used in this report. In assigning station numbers, no distinction is made between partial-record stations and other stations; therefore, the station number for a partial-record station indicates downstream-order position in a list made up of both types of stations. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The complete 8-digit number for each station such as 01463500, which appears just to the left of the station name, includes the 2-digit part number "01" plus the 6-digit downstream order number "463500."

NUMBERING SYSTEM FOR WELLS AND MISCELLANEOUS SITES

The 8-digit downstream order station numbers are not assigned to wells and miscellaneous sites where only random water-quality samples or discharge measurements are taken.

The wells and miscellaneous site numbering system of the U.S. Geological Survey is based on the grid system of latitude and longitude. The system provides the geographic location of the well or miscellaneous site and a unique number for each site. The number consists of 15 digits. The first 6 digits denote the degrees, minutes, and seconds of latitude, the next 7 digits denote degrees, minutes, and seconds of longitude, and the last 2 digits are a sequential number for wells within a 1-second grid. In the event that the latitude-longitude coordinates for a well and a miscellaneous site are the same, they are assigned sequential numbers "01", "02", etc. as one would for wells. See figure 1 below.

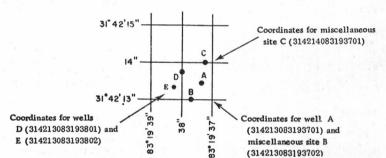


Figure 1. System for numbering wells and miscellaneous sites (latitude and longitude)

SPECIAL NETWORKS AND PROGRAMS

Some of the stations for which data are published in this report are included in special networks and programs. These stations are identified by their title, set in parentheses, under the station name.

Hydrologic bench-mark station is one that provides hydrologic data for a basin in which the hydrologic regimen will likely be governed solely by natural conditions. Data collected at a bench-mark station may be used to separate effects of natural from manmade changes in other basins which have been developed and in which the physiography, climate, and geology are similar to those in the undeveloped bench-mark basin.

National stream-quality accounting network (NASQAN) is a data collection network designed by the U.S. Geological Survey to meet many of the information demands of agencies or groups involved in national or regional water-quality planning and management. Both accounting and broad-scale monitoring objectives have been incorporated into the network design. Areal configuration of the network is based on river-basin accounting units (identified by 8-digit hydrologic-unit numbers) designated by the Office of Water Data Coordination in consultation with the Water Resources Council. Primary objectives of the network are (1) to depict areal variability of streamflow and water-quality conditions nationwide on a year-by-year basis and (2) to detect and assess long-term changes in streamflow and stream quality.

Pesticide program is a network of regularly sampled water-quality stations where samples are collected to determine the concentration and distribution of pesticides in stream where potential

contamination could result from the application of the commonly used insecticides and herbicides. Operation of the network is a Federal interagency activity.

Radiochemical program is a network of regularly sampled water-quality stations where samples are collected to be analyzed for radioisotopes. The streams that are sampled represent major drainage basins in the conterminous United States.

EXPLANATION OF STAGE AND WATER-DISCHARGE RECORDS

Collection and computation of data

The base data collected at gaging stations consist of records of stage and measurements of discharge of streams or canals, and stage, surface area, and contents of lakes or reservoirs. In addition, observations of factors affecting the stage-discharge relation or the stage-capacity relation, weather records, and other information are used to supplement base data in determining the daily flow or volume of water in storage. Records of stage are obtained from either direct readings on a nonrecording gage or from a water-stage recorder that gives either a continuous graph of the fluctuations or a tape punched at selected time intervals. Measurements of discharge are made with a current meter, using the general methods adopted by the Geological Survey. These methods are decribed in standard text-books, in Water-Supply Paper 888, and in U.S. Geological Survey Techniques of Water Resources Investigations, book 3, chapter A6.

For stream-gaging stations, rating tables giving the discharge for any stage are prepared from stage-discharge relation curves. If extensions to the rating curves are necessary to express discharge greater than measured, they are made on the basis of indirect measurements of peak discharge (such as slope-area or contracted-opening measurements, computation of flow over dams or weirs), step-backwater techniques, velocity-area studies, and logarithmic plotting. The daily mean discharge is computed from gage heights and rating tables, then the monthly and yearly mean discharge are computed from the daily figures. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the daily mean discharge is computed by the shifting-control method, in which correction factors based on individual discharge measurements and notes by engineers and observers are used in applying the gage heights to the rating tables. If the stage-discharge relation for a station is temporarily changed by the presence of aquatic growth or debris on the control, the daily mean discharge is computed by what is basically the shifting-control method.

At some stream-gaging stations the stage-discharge relation is affected by backwater from reservoirs, tributary streams, or other sources. This necessitates the use of the slope method in which the slope or fall in a reach of the stream is a factor in determining discharge. The slope or fall is obtained by means of an auxiliary gage set at some distance from the base gage. At some stations the stage-discharge relation is affected by changing stage; at these stations the rate of change in stage is used as a factor in determining discharge.

At some northern stream-gaging stations the stage-discharge relation is affected by ice in the winter, and it becomes impossible to compute the discharge in the usual manner. Discharge for periods of ice effect is computed on the basis of the gage-height record and occasional winter discharge measurements, consideration being given to the available information on temperature and precipitation, notes by gage observers and hydrologists, and comparable records of discharge for other stations in the same or nearby basins.

For a lake or reservoir station, capacity tables giving the contents for any stage are prepared from stage-area relation curves defined by surveys. The application of the stage to the capacity table gives the contents, from which the daily, monthly, or yearly change in contents is computed. Discharge over spillways is computed from a stage-discharge relation curve defined by discharge measurements.

If "the stage-capacity curve is subject to changes because of deposition of sediment in the reservoir, periodic resurveys of the reservoir are necessary to define new stage-capacity curves. During the period between reservoir surveys the computed contents may be increasingly in error due to the gradual accumulation of sediment.

For some gaging stations there are periods when no gage-height record is obtained or the recorded gage height is so faulty that it cannot be used to compute daily discharge or contents. This happens when the recorder stops or otherwise fails to operate properly, intakes are plugged, the float is frozen in the well, or for various other reasons. For such periods the daily discharge are estimated on the basis of recorded range in stage, adjoining good record, discharge measurements, weather records, and comparison with other station records from the same or nearby basins. Likewise daily contents may be estimated on the basis of operator's log, prior and subsequent records, inflow-outflow studies, and other information.

The data in this report generally comprise a description of the station and tabulations of daily and monthly figures. For gaging stations on streams or canals a table showing the daily discharge and monthly and yearly discharge is given. For gaging stations on lakes and reservoirs a monthly summary table of stage and contents or a table showing the daily contents is given. Tables of daily mean gage height are included for some streamflow stations and for some reservoir stations. Records are published for the water year, which begins on October 1 and ends on September 30.

The description of the gaging station gives the location, drainage area, period of record, notations of revisions of previously published records, type and history of gages, general remarks, average discharge, and extremes of discharge or contents. The location for the gaging station and the drainage area are obtained from the most accurate maps available. River mileage, given under "LOCATION" for some stations, is that determined and used by the Corps of Engineers or other agencies. Periods for which there are published records for the present stations or for stations generally equivalent to the present one are given under "PERIOD OF RECORD."

Previously published streamflow records of some stations have been found to be in error on the basis of data or information later obtained. Revisions of such records are usually published along with the current records in one of the annual or compilation reports. In order to make it easier to find such revised records, a paragraph headed "REVISED RECORDS" has been added to the description of all stations for which revised records have been published. Listed therein are all the reports in which revisions have been published, each followed by the water years for which figures are revised in that report. In listing the water years only one number is given; for instance, 1965 stands for the water year October 1, 1964, to September 30, 1965. If no daily, monthly, or annual figures of discharge are affected by the revision, the fact is brought out by notations after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; "(m)" that only the instantaneous minimum was revised; and "(P)" that only peak discharges were revised. If the drainage area has been revised, the report in which the revised figure was first published is given. It should be noted that for all stations for which cubic feet per square mile and runoff in inches are published, a revision of the drainage area necessitates corresponding revision of all figures based on the drainage area. Revised figures of cubic feet per second per square mile and runoff in inches resulting from a revision of the drainage area only are usually not published in the annual series of reports.

The type of gage currently in use; the datum of the present gage referred to National Geodetic Vertical Datum; and a condensed history of the types, locations, and datums of previous gages used during the period of record are given under "GAGE." National Geodetic Vertical Datum is explained in "DEFINITION OF TERMS."

Information pertaining to the accuracy of the discharge records and to conditions which affect the natural flow of the gaging station is given under "REMARKS."

The average discharge for the number of years indicated is given under "AVERAGE DISCHARGE"; it is not given for stations having fewer than 5 complete years of record or for stations where changes in water development during the period of record cause the figure to have little significance. In addition, the median of yearly mean discharges is given for stream-gaging stations having 10 or more complete years of record if the median differs from the average by more than 10 percent. Under "EXTREMES" are given first the extremes for current year, second, the extremes for the period of record, and last information available outside the period of record. Unless otherwise qualified, the maximum discharge (or contents) is the instantaneous maximum corresponding to the crest-stage obtained by use of a water-stage recorder (graphic or digital), a crest-stage gage, or a nonrecording gage read at the time of the crest. If the maximum gage height did not occur on the same day as the maximum discharge (or contents), it is given separately. Similarly, the minimum is the instantaneous minimum unless otherwise qualified. For some stations peak discharges are listed with EXTREMES FOR THE CURRENT YEAR; if they are, all independent peaks, including the maximum for the year, above the selected base with the time of occurrence and corresponding gage heights are published in tabular format. The base discharge, which is given in the table heading, is selected so that an average of about three peaks a year will be presented. Peak discharges are not published for any canals, ditches, drains, or for any stream for which the peaks are subject to substantial control by man. Time of day is expressed in 24-hour local standard time; for example, 12:30 a.m. is 0030, 1:30 p.m. is 1330. The minimums for these stations are published in a separate paragraph following the table of peaks.

Skeleton rating tables are published, immediately following EXTREMES, for stream-gaging stations where they serve a useful purpose and the dates of applicability can be easily identified.

The daily table for stream-gaging stations gives the mean discharge for each day and is followed by monthly and yearly summaries. In the monthly summary below the daily table, the line headed "TOTAL" gives the sum of the daily figures. The lines headed "MAX" and "MIN" give the maximum and minimum daily discharges, respectively, for the month. Discharge for the month also may be expressed in cubic feet per second per square mile (line headed "CFSM"), or in inches (line headed "IN"). Figures for cubic feet per second per square mile and runoff in inches are omitted if there is extensive regulation or diversion, if the drainage area includes large noncontributing areas, or if the average annual rainfall over the drainage basin is usually less than 20 inches. In the yearly summary below the monthly summary, the figures shown are the appropriate daily discharges for the calendar and water years.

Footnotes to the table of daily discharge are introduced by word "NOTE." Footnotes are used to indicate periods for which the discharge is computed or estimated by special methods because of no gage-height record, backwater from various sources, or other unusual conditions. Periods of no gage-height record are indicated if the period is continuous for a month or more or includes the maximum discharge for the year. Periods of backwater from an unusual source, of indefinite stage-relation, or of any other unusual condition at the gage site are indicated only if they are a month or more in length and the accuracy of the records is affected. Days on which the stage-discharge relation is affected by ice are not indicated. The methods used in computing discharge for various unusual conditions have been explained in preceding paragraphs.

For most gaging stations on lakes and reservoirs the data presented comprise a description of the station and a monthly summary table of stage and contents. For some reservoirs a table showing daily contents or stage is given. A skeleton table of capacity at given stages is published for all reservoirs for which records are published on a daily basis, but is not published for reservoirs for which only monthly data are given.

Data collected at partial-record stations follow the information for continuous record sites. Data for partial-record discharge stations are presented in two tables. The first is a table of discharge measurements at low-flow partial-record stations, and the second is a table of annual maximum stage and discharge at crest-stage stations. The tables of partial-record stations are followed by a listing of discharge measurements made at sites other than continuous-record or partial-record stations. Occasionally, a series of discharge measurements are made within a short time period to investigate the seepage gains or losses along a reach of a stream or to determine the low-flow characteristics of an area. Such measurements are also given in special tables following the tables of partial-record stations.

Accuracy of field data and computed results

The accuracy of streamflow data depends primarily on (1) the stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements, and (2) the accuracy of observations of stage, measurements of discharge, and interpretation of records.

The station description under "REMARKS" states the degree of accuracy of the records. "Excellent" means that about 95 percent of the daily discharges are within 5 percent; "good" within 10 percent; and "fair" within 15 percent. "Poor" means that daily discharges have less than "fair" accuracy.

Figures of daily mean discharge in this report are shown to the nearest hundredth of a cubic foot per second for discharges of less than 1 cfs; to tenths between 1.0 and 10 cfs; to whole numbers between 10 and 1,000 cfs; and to 3 significant figures above 1,000 cfs. The number of significant figures used is based solely on the magnitude of the figure. The same rounding rules apply to discharge figures listed for partial-record stations and miscellaneous sites.

Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. For such stations, figures of cubic feet per second per square mile and of runoff in inches are not published unless satisfactory adjustments can be made for diversions, for changes in contents of reservoirs, or for other changes incident to use and control. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents, unless it is so stated. Even at those stations where adjustments are made, large errors in computed runoff may occur if adjustments or losses are large in comparison with the observed discharge.

Publications

Each volume of the 1960 series of U.S. Geological Survey water-supply papers entitled "Surface Water Supply of the United States" contains a listing of the numbers of all water-supply papers in which records of surface-water data were published for the area covered by the individual volumes. Each volume also contains a list of water-supply papers that give detailed information on major floods for the area. A new series of water-supply papers containing surface-water record for the 5-year period October 1, 1965 to September 30, 1970, also will include lists of annual and special reports published as water-supply papers.

Records through September 1950 for the area covered by this report have been compiled and published in Water-Supply Paper 1302; records for October 1950 to September 1960 have been compiled and published in Water-Supply Paper 1722; records for October 1960 to September 1965 have been compiled and published in Water-Supply Paper 1902; records for October 1965 to September 1970 have been compiled and published in Water-Supply Paper 2102. These reports contain summaries of monthly and annual discharge and month-end storage for all previously published records, as well as some records not contained in the annual series of water-supply papers. All records were reexamined and revised where warranted. Estimates of discharge were made to fill short gaps whenever practical. The yearly summary table for each gaging station lists the numbers of the water-supply papers in which daily records were published for that station.

Special reports on major floods or droughts or of other hydrologic studies for the area have been issued in publications other than water-supply papers. Information relative to these reports may be obtained from the district office.

Other data available

Information of a more detailed nature than that published for most of the gaging stations such as observations of water temperatures, discharge measurements, gage-height records, and rating tables is on file in the district office. Also most gaging-station records are available in computer-usable form and many statistical analyses have been made.

Information on the availability of unpublished data or statistical analyses may be obtained from the district office.

Records of stage or discharge collected by agencies other than the Geological Survey

Records of stage or discharge not published by the Geological Survey were collected in New Jersey at 30 sites during the water years October 1960 to current year by the following agencies: records at 4 sites were collected by the North Jersey District Water Supply Commission; at 14 sites by Passaic County; at 1 site by the National Weather Service; at 3 sites by the National Ocean Survey; at 3 sites by the Corps of Engineers; and 5 sites by Delaware River Joint Toll Bridge Commission. The National Water Data Exchange, Water Resources Division, U.S. Geological Survey, National Center, Reston, VA 22092, maintain an index of such sites. Information on records available at specific sites can be obtained upon request.

EXPLANATION OF WATER-QUALITY RECORDS

Collection and examination of data

Water samples for analyses usually are collected at or near gaging stations. The discharge records at these stations are used in conjunction with the computations of the chemical constituents and sediment loads.

The data in this report include a description of the sampling station and tabulations of the samples analyzed. The description of the sampling station gives the location, drainage area, periods of record for the water-quality data, extremes of the pertinent data, and general remarks. For ground-water sampling stations, no descriptive statements are presented. However, the well number, date of sampling, and other pertinent data are given in the table containing the chemical analyses of ground water.

Water-quality information is presented for chemical, biological, and microbiological quality, water temperature, and fluvial sediment. Chemical quality includes the concentrations of individual constituents and certain properties such as hardness, specific conductance, and pH. The biological information may include qualitative and quantitative analyses of plankton, bottom organisms, and particulate inorganic and amorphous matter present. Microbiological information includes quantitative identifications of certain bacteriological indicator organisms. Water-temperature data represent once-daily observations except for stations where a water-quality noncontinuous-digital monitor furnishes hourly temperature readings that provide daily maximum, minimum, and mean temperature data summaries. Fluvial-sediment information is given for suspended-sediment discharges and concentrations and for particle-size distribution of suspended sediment.

Prior to the 1968 water year, data for chemical constituents and concentrations of suspended sediment were reported in parts per million (ppm) and water temperatures were reported in degrees Fahrenheit (°F). In October 1967, the U.S. Geological Survey began reporting data for chemical constituents and concentrations of suspended sediment in milligrams per liter (mg/L) and water temperatures in degrees Celsius (°C). In waters with a density of 1.000 g/ml (grams per milliliter), parts per million and milligrams per liter can be considered equal. In waters with a density greater than 1.000 g/ml, values in parts per million should be multiplied by the density to convert to milligrams per liter. Temperatures reported in degrees Celsius may be converted to degrees Fahrenheit by using Table 1 below.

Table 1.--Degrees Celsius (°C) to degrees Fahrenheit (°F)*
(Temperature reported to nearest 0.5°C)

°C	°F	°C	°F	°C	°F	°C	°F	°C	°F
0.0	32	10.0	50	20.0	68	30.0	86	40.0	104
0.5	33	10.5	51	20.5	69	30.5	87	40.5	105
1.0	34	11.0	52	21.0	70	31.0	88	41.0	106
1.5	35	11.5	53	21.5	71	31.5	89	41.5	107
2.0	36	12.0	54	22.0	72	32.0	90	42.0	108
2.5	36	12.5	54	22.5	72	32.5	90	42.5	108
3.0	37	13.0	55	23.0	73	33.0	91	43.0	109
3.5	38	13.5	56	23.5	74	33.5	92	43.5	110
4.0	39	14.0	57	24.0	75	34.0	93	44.0	111
4.5	40	14.5	58	24.5	76	34.5	94	44.5	112
5.0	41	15.0	59	25.0	77	35.0	95	45.0	113
5.5	42	15.5	60	25.5	78	35.5	96	45.5	114
6.0	43	16.0	61	26.0	79	36.0	97	46.0	115
6.5	44	16.5	62	26.5	80	36.5	98	46.5	116
7.0	45	17.0	63	27.0	81	37.0	99	47.0	117
7.5	45	17.5	63	27.5	81	37.5	99	47.5	117
8.0	46	18.0	64	28.0	82	38.0	100	48.0	118
8.5	47	18.5	65	28.5	83	38.5	101	48.5	119
9.0	48	19.0	66	29.0	84	39.0	102	49.0	120
9.5	49	19.5	67	29.5	85	39.5	103	49.5	121

*C = 5/9 (°F - 32) or °F = 9/5 (°C) + 32.

as the minor elements in micrograms per liter instead of milligrams per liter. (See "Definitions of Terms," and table for converting Inch-pound Units to International System Units, inside back cover).

Most methods for collecting and analyzing water samples to determine the kinds and concentrations of solutes are described in the U.S. Geological Survey Techniques of Water-Resources Investigations listed at the end of this section. Analysis of pesticides, herbicides, and organic substances in water are described by Wershaw and others. The collection and analysis of aquatic, biological and microbiological samples are described by Greeson and others.

One sample can define adequately the water quality at a given time if the mixture of solutes throughout the stream cross section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled through many vertical sections to obtain a representative sample needed for an accurate mean concentration and for use in calculating load.

Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis.

For chemical-quality stations equipped with noncontinuousdigital monitors, the records consist of daily maximum, minimum, and mean values for each constituent measured and are based upon hourly punches beginning at 0100 hours and ending at 2400 hours for the day of record. More detailed records (hourly values) may be obtained from the U.S. Geological Survey district office (for address see Page IV).

The quality of ground water normally does not change significantly during short periods of time; infrequent sampling and analysis of ground water adequately defines ground-water quality at a given site. Water samples from wells are collected after prepumping the well and are analyzed individually.

Water temperature

Water temperatures are measured at most of the water-quality stations. In addition, water temperatures are taken at time of discharge measurements for surface-water stations. For daily stations, the water temperatures are taken at about the same time each day. Large streams have a small diurnal temperature change; shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams may be affected by waste-heat discharges. Influential factors, field measurement, and data representation of temperature are described by Stevens, Ficke and Smoot (1975).

Sediment

Suspended-sediment concentrations are determined from samples collected by using depth-integrating samplers. Samples usually are obtained at several verticals in the cross-section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross section.

During periods of rapidly changing flow or rapidly changing concentration, samples may have been collected more frequently (twice daily or, in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided-day method (time-discharge weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided-day method. For periods when no samples were collected, daily loads of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspended-sediment loads for other periods of similar discharge.

At other stations, suspended-sediment samples were collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observations, such data are useful in establishing seasonal relations between quality and streamflow in predicting long-term sediment-discharge characteristics of the stream.

In addition to the records of the quantities of suspended sediment, records of the periodic measurements of the particle-size distribution of the suspended sediment are included.

Remark codes for water-quality data

(NON-IDEAL COLONY COUNT)

PRINT!		PRINTED OUTPUT	REMARK						
Е	ESTIMATED VALUE	<	ACTUAL VALUE IS KNOWN TO BE LESS THAN THE VALUE SHOWN						
>	ACTUAL VALUE IS KNOWN TO BE GREATER THAN THE VALUE SHOWN	ND	MATERIAL SPECIFICALLY ANALYZED FOR BUT NOT DETECTED						
K	RESULTS BASED ON COLONY COUNT OUTSIDE THE ACCEPTABLE RANGE								

Publications

Table 2 below, shows the annual series of water-supply papers that give information on quality of surface waters in New Jersey.

Table 2.--Water-supply paper (WSP) numbers, water years, 1945-70

Year	WSP	Year	WSP	Year	WSP
1945	1030	1954	1350	1963	1947
1946	1050	1955	1400	1964	1954
1947	1102	1956	1450	1965	1961
1948	1132	1957	1520	1966	1991
1949	1162	1958	1571	1967	2011
1950	1186	1959	1641	1968	2091
1951	1197	1960	1741	1969	2141
1952	1250	1961	1881	1970	2151
1953	1290	1962	1941		
	1945 1946 1947 1948 1949 1950 1951	1945 1030 1946 1050 1947 1102 1948 1132 1949 1162 1950 1186 1951 1197 1952 1250	1945 1030 1954 1946 1050 1955 1947 1102 1956 1948 1132 1957 1949 1162 1958 1950 1186 1959 1951 1197 1960 1952 1250 1961	1945 1030 1954 1350 1946 1050 1955 1400 1947 1102 1956 1450 1948 1132 1957 1520 1949 1162 1958 1571 1950 1186 1959 1641 1951 1197 1960 1741 1952 1250 1961 1881	1945 1030 1954 1350 1963 1946 1050 1955 1400 1964 1947 1102 1956 1450 1965 1948 1132 1957 1520 1966 1949 1162 1958 1571 1967 1950 1186 1959 1641 1968 1951 1197 1960 1741 1969 1952 1250 1961 1881 1970

EXPLANATION OF GROUND-WATER LEVEL RECORDS

Collection of the data

Only ground-water level data from a basic network of observation wells are published herein. This basic network contains observation wells so located that the most significant data are obtained from the fewest wells in the most important aquifers.

Each well is identified by means of (1) a 15-digit number that is based on latitude and longitude (see figure 1) and (2) a local name and a NJ-WRD well number that are provided for local needs.

Water-level measurements in this report are given in feet with reference to land-surface datum (LSD, lsd). Land-surface datum is a datum plane that is approximately at land surface at each well. The altitude of the land-surface datum above NGVD 1929, and the height of the measuring point (MP) above or below land-surface datum is given in each well description.

Measurements are made in many types of wells, under varying conditions of access and at different temperatures, hence, neither the method of measurement nor the equipment can be standardized. At each observation well, however, the equipment and techniques used are those that will ensure that measurements at each well are consistent.

Water-level data in these reports were obtained from water-level recorders, water-level extremes recorders, and from periodic manual measurements. The equipment used at each well is described in the well description under the listing "Instrumentation." Water levels in wells equipped with water-level recorders are reported for every fifth day and the end of each month (eom). Beginning in the 1977 water year, water-level recorders were removed from some wells and replaced by water-level extremes recorders. The extremes are read from these recorders at about three month intervals, but the actual dates of occurrence of the extremes (highest and lowest water levels) are unknown. In these reports the water-level extremes are given with the interim dates together with the manually measured water levels.

Water levels are reported to as many significant figures as can be justified by the local conditions. For example, in a measurement of a depth to water of several hundred feet, the error in determining the absolute value of the total depth to water may be a few tenths of a foot, whereas the error in determining the net change of water level between successive measurements may be only a hundredth or a few hundredths of a foot. For lesser depths to water the accuracy is greater. All measurements published herein are reported to a hundredth of a foot.

Publications

Table 3 below, shows the series of water-supply papers that give ground-water level data for New Jersey, 1935 to 1974. No water-level data were published in 1975. Beginning in 1976, ground-water level data for New Jersey have been published in these annual water data reports.

Table 3.--Water-supply paper (WSP) numbers, water years, 1935-74

Year	WSP	Year	WSP '	Year	WSP
1935	777	1944	1016	1953	1265
1936	817	1945	1023	1954	1321
1937	840	1946	1071	1955	1404
1938	845	1947	1096	1956-57	1537
1939	886	1948	1126	1958-62	1782
1940	906	1949	1156	1963-67	1977
1941	936	1950	1165	1968-72	2140
1942	944	1951	1191	1973-74	2164
1943	986	1952	1221	.,,,,	

ACCESS TO WATSTORE DATA

The National $\underline{\text{WATer}}$ Data $\underline{\text{STO}}$ rage and $\underline{\text{RE}}$ trieval System (WATSTORE) was established for handling water data collected through the activities of the U.S. Geological Survey and to provide for more effective and efficient means of releasing the data to the public. The system is operated and maintained on the central computer facilities of the Survey at its National Center in Reston, Virginia.

WATSTORE can provide a variety of useful products ranging from simple data tables to complex statistical analyses. A minimal fee, plus the actual computer cost incurred in producting a desired product, is charged to the requester. Information about the availability of specific types of data, the acquisition of data or products, and user charges can be obtained locally from each of the Water Resources Division's district offices (see address given on the back of the title page).

General inquiries about WATSTORE may be directed to:

Chief Hydrologist U.S. Geological Survey 437 National Center Reston, Virginia 22092

SELECTED REFERENCES

- Anderson, P. W., 1970, Occurrence and distribution of trace elements in New Jersey streams; New Jersey Division of Water Policy and Supply, Water Resources Circular 24, 24 p.
- Anderson, P.W., and Faust, S. D., 1973 Characteristics of water quality and streamflow, Passaic River basin above Little Falls, New Jersey: U.S. Geological Survey Water-Supply Paper 2026, 80 p.
- _____1974, Water-quality and streamflow characteristics, Raritan River basin, New Jersey: U.S. Geological Survey Water Resources Investigations 14-74, 82 p.
- Anderson, P. W., and George, J. R., 1966, Water-quality characteristics of New Jersey streams: U.S. Geological Survey Water-Supply Paper 1819-G, 48 p.
- Barnett, P. R., and Mallory, Jr., E. C., 1971, Determination of minor elements in water by emission spectros-copy: U.S. Geological Survey Techniques of Water-Resources Investigations, book 5, Chapter A2, 31 p.
- Carter, R. W., and Davidian, Jacob, 1968, General procedure for gaging streams: U.S. Geological Survey Techniques Water-Resources Investigations, Book 3, Chapter A6, 13 p.
- Corbett, D. M., and others, 1943, Stream-gaging procedure, a manual describing methods and practices of the Geological Survey: U.S. Geological Survey Water-Supply Paper 888, 245 p.
- Fishman, M. J., and Bradford, W. L., 1982, A supplement to methods for the determination of inorganic substances in water and fluvial sediments: U.S. Geological Survey Techniques of Water Resources Investigations, Book 5, Chapter A1, U.S. Geological Survey Open-File Report 82-272, 136 p.
- Fusillo, T. V., 1982, Impact of suburban residential development on water resources in the area of Winslow Township, Camden County, New Jersey: U.S. Geological Survey Water-Resources Investigations 81-27, 38 p.
- Fusillo, T. V., and Voronin, L. M., 1982, Water-quality data for the Potomac-Raritan-Magothy aquifer system, Trenton to Pennsville, New Jersey, 1980: U.S. Geological Survey Open-File Report 81-814, 38 p. 2 pls.
- Fusillo, T. V., Schornick, J. C., Jr., Koester, H. E., and Harriman, D. A., 1980, Investigation of acidity and other water-quality characteristics of Upper Oyster Creek Ocean County, New Jersey: U.S. Geological Survey Water-Resources Investigations 80-10, 30 p.
- Gillespie, B. D., and Schopp, R. D., 1982, Low-flow characteristics and flow duration of New Jersey streams: U.S. Geological Survey Open-File Report 81-1110, 164 p.
- Greeson, P. E., Ehlke, T. A., Irwin, G. A., Lium, B. W., and Slack, K. V., 1977, Methods for collection and analysis of aquatic biological and microbiological samples: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Chapter A4, 332 p.
- Guy, H. P., 1969, Laboratory theory and methods for sediment analysis: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Chapter C1, 58 p.
- ____1970, Fluvial sediment concepts: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter C1, 55 p.
- Guy, H. P., and Norman, V. W., 1970, Field methods for measurement of fluvial sediment: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter C2, 59 p.

- Harriman, D. A., and Velnich, A. J., 1982, Flood data in West Windsor Township, Mercer County, New Jersey through 1982 Water Year: U.S. Geological Survey Open-File Report.
- Harriman, D. A., and Voronin, L. M., 1984, Water-quality data for aquifers in east-central New Jersey, 1981-82: U.S. Geological Survey Open-File Report 84-821, 39 p.
- Hem, J. D., 1970, Study and interpretation of the chemical characteristics of natural water, 2d ed.: U.S. Geological Survey Water-Supply Paper 1473, 363 p.
- Hindall, S. M., and Jungblut, D. W., [no date], Sediment yields of New Jersey streams: U.S. Geological Survey Open-File Report 80-432, 1 sheet.
- Hochreiter, J. J., Jr., 1982, Chemical-quality reconnaissance of the water and surficial bed material in the Delaware River estuary and adjacent New Jersey tributaries, 1980-81: U.S. Geological Survey Water-Resources Investigations 82-36, 41 p.
- Langbein, W. B., and Iseri, K. T., 1960, General introduction of hydrologic definitions: U.S. Geological Survey Water-Supply Paper 1541-A, 29 p.
- Laskowski, S. L., 1970, Statistical summaries of New Jersey streamflow records: New Jersey Division of Water Policy and Supply, Water Resources Circular 23, 264 p.
- Lohman, S. W., and other, 1972, Definitions of selected ground-water terms-revisions and conceptual refinements: U.S. Geological Survey Water-Supply Paper 1988, 21 p.
- Luzier, J. E., 1980, Digital-simulation and projection of head changes in the Potomac-Raritan-Magothy aquifer system, Coastal Plain, New Jersey: U.S. Geological Survey Water-Resources Investigations 80-11, 72 p.
- Mansue, L. J., and Anderson, P. W., 1974, Effect of landuse and retention practices on sediment yields in the Stony Brook basin, New Jersey: U.S. Geological Survey Water-Supply Paper 1798-L.
- McCall, J. E., and Lendo, A. C., 1970, A modified streamflow data program for New Jersey: U.S. Geological Survey Open-File Report, 46 p.
- Porterfield, George, 1972, Computations of fluvial-sediment discharge: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter C3, 66 p.
- Rantz, S. E., and others, 1982, Measurement and Computation of Streamflow; Volume 1. Measurement of Stage and Discharge, Volume 2. Computation of Discharge: U.S. Geological Survey Water-Supply Paper 2175, 631 p.
- Schaefer, F. L., and Walker, R. L., 1982, Saltwater intrusion into the Old Bridge aquifer in the Keyport-Union Beach area of Monmouth County, New Jersey: U.S. Geological Survey Water-Supply Paper 2184, 21 p.
- Schaefer, F. L., 1983, Distribution of Chloride Concentrations in the Principal Aquifers of the New Jersey Coastal Plain, 1977-81: U.S. Geological Survey Water-Resources Investigations Report 83-4061, 56 p.
- Schornick, J. C., and Ram, N. M., 1978, Nitrification in four acidic streams in southern New Jersey: U.S. Geological Survey Water-Resources Investigations, 77-121, 51 p.
- Schornick, J. C., and Fishel, D. K., 1980, Effects of storm runoff on water quality in the Mill Creek drainage basin, Willingboro, New Jersey: U.S. Geological Survey Water-Resources Investigations 80-98, 111 p.
- Schopp, R. D., and Gillespie, B. D., 1979, Selected streamflow data for the Delaware River basin: U.S. Geological Survey Open-File Report 79-347, 16 p.
- Schopp, R. D., and Velnich, A. J., 1979, Flood of November 8-10, 1977 in Northeastern and Central New Jersey: U.S. Geological Survey Open-File Report 79-559, 32 p.
- Seaber, P. R., 1963, Chloride concentrations of water from wells in the Atlantic Coastal Plain of New Jersey, 1923-61: New Jersey Division of Water Policy and Supply, Special Report 22, 250 p.
- Skougstad, N. W., Fishman, M. J., Friedman, L. C., Erdmann, D. E., and Duncan, S. S., 1978, Methods for determination of inorganic substances in water and fluvial sediments: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Chapter A1, 626 p.
- Stankowski, S. J., 1972, Floods of August and September 1971 in New Jersey: New Jersey Division of Water Resources, Special Report 37, 329 p.
- Stankowski, S. J., and Velnich, A. J., 1974, A summary of peak stages and discharges for the flood of August 1973 in New Jersey: U.S. Geological Survey Open-File Report, 12 p.
- Stankowski, S. J., 1974, Magnitude and frequency of floods in New Jersey with effects of urbanization: New Jersey Department of Environmental Protection, Division of Water Resources, Special Report 38, 46 p.

- Stankowski, S. J., Schopp, R. D., and Velnich, A. J., 1975, Flood of July 21, 1975 in Mercer County, New Jersey: U.S. Geological Survey Water-Resources Investigations 51-75, 52 p.
- Stevens, Jr., Herbert H., Ficke, John F., and Smoot, George F., 1975, Water temperature-influential factors, field measurement, and data representation: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 1, Chapter D1, 65 p.
- U.S. Environmental Protection Agency, 1976, National Interim Primary Drinking Water Regulations: U.S. Environmental Protection Agency report EPA 570/9-76-003, 159 p.
- U.S. Geological Survey, 1976, Surface water supply of the United States, 1966-70, Part 1. North Atlantic Slope basins, Volume 2. Basins from New York to Delaware: U.S. Geological Survey Water-Supply Paper 2102, 985 p., (most recent volume).
- _____1977, Ground-water levels in the United States, 1973-74, Northeastern States: U.S. Geological Survey Water-Supply Paper 2164, 126 p., (most recent volume).
- Vecchioli, John, and Miller, E. G., 1973, Water Resources of the New Jersey part of the Ramapo River basin: U.S. Geological Survey Water-Supply Paper 1974, 77 p.
- Velnich, A. J., and Laskowski, S. L., 1979, Technique for estimating depth of 100-year flood in New Jersey: U.S. Geological Survey Open-File Report 79-419, 17 p.
- Velnich, A. J., 1982, Drainage Areas in New Jersey: Delaware River Basin and Streams Tributary to Delaware Bay: U.S. Geological Survey Open-File Report 82-572, 48 p.
- Velnich, A. J., 1984, Drainage Areas in New Jersey: Atlantic Coastal Basins, South Amboy to Cape May: U.S. Geological Survey Open-File Report 84-150, 33 p.
- Vickers, A. A., and McCall, J. E., 1968, Surface water supply of New Jersey, Streamflow records 1961-65: New Jersey Division of Water Policy and Supply, Special Report 31, 351 p., (most recent volume).
- Vickers, A. A., 1982, Flood of August 31 September 1, 1978, in Crosswicks Creek Basin and vicinity, Central New Jersey: U.S. Geological Survey Water-Resources Investigations 80-115, 20 p.
- Vickers, A. A., Farsett, H. A., and Green, J. W., 1982, Flood peaks and discharge summaries in the Delaware River basin: U.S. Geological Survey Open-File Report 81-912, 292 p.
- Vowinkel, E. F., 1984, Ground-water withdrawals from the Coastal Plain of New Jersey, 1956-80: U.S. Geological Survey Open-File Report 84-226, 32 p.
- Walker, R. L., 1983, Evaluation of water levels in major aquifers of the New Jersey Coastal Plain, 1978: U.S. Geological Survey Water-Resources Investigations 82-4077, 56 p.
- Wershaw, R. L., Fishman, M. J., Grabbe, R. R., Lowe, L. E., 1983, Methods for the determination of organic substances in water and fluvial sediments: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, chapter A3, U.S. Geological Survey Open-File Report 82-1004, 173 p.

PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS

Thirty-seven manuals by the U.S. Geological Survey have been published to date in the series on techniques describing procedures for planning and executing specialized work in water-resources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, Section A of Book 3 (Applications of Hydraulics) is on surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises. The reports listed below are for sale by the U.S. Geological Survey, Branch of Distribution, 604 South Pickett St., Alexandria, VA 22304 (authorized agent of the Superintendent of Documents, Government Printing Office).

- When ordering any of these publications, please give the title, book number, chapter number, and "U.S. Geological Survey Techniques of Water-Resources Investigations".
- Water temperature--influential factors, field measurement, and data presentation, by H. H. Stevens, Jr., J. F. Ficke, and G. F. Smoot: USGS--TWRI Book 1, Chapter D1. 1975. 65 pages. Guidelines for collection and field analysis of ground-water samples for selected unstable constituents, by W. W. Wood: USGS--TWRI Book 1, Chapter D2. 1976. 24 pages. 1-D1.
- 1-D2.
- Application of surface geophysics to ground-water investigations, by M. A. R. Zohdy, G. P. Eaton, and D. R. Mabey: USGS--TWRI Book 2, Chapter Dl. 1974. 116 pages.

 Application of borehole geophysics to water-resources investigations, by W. S. Keys and L. M. MacCary: USGS--TWRI Book 2, Chapter El. 1971. 126 pages. 2-D1.
- 2-E1.
- 3-A1.
- 3-A2.
- m. macuary: USGS--IWRI Book 2, Chapter El. 1971. 126 pages.

 General field and office procedures for indirect discharge measurements, by M. A. Benson and

 Tate Dalrymple: USGS--TWRI Book 3, Chapter Al. 1967. 30 pages.

 Measurement of peak discharge by the slope-area method, by Tate Dalrymple and M. A. Benson:

 USGS--TWRI Book 3, Chapter A2. 1967. 12 pages.

 Measurement of peak discharge at culverts by indirect methods, by G. L. Bodhaine: USGS--TWRI

 Book 3, Chapter A3. 1968. 60 pages. 3-A3.
- Weasurement of peak discharge at width contractions by indirect methods, by H. F. Matthai: USGS--TWRI Book 3, Chapter A4. 1967. 44 pages. 3-A4.
- 3-A5
- Measurement of peak discharge at dams by indirect methods, by Harry Hulsing: USGS--TWRI Book 3, Chapter A5. 1967. 29 pages.
- 3-A6. General procedure for gaging streams, by R. W. Carter and Jacob Davidian: USGS--TWRI Book 3, Chapter A6. 1968. 13 pages.
- Stage measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3, Chapter A7. 1968. 28 pages. 3-A7.
- 3-A8.
- Discharge measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3, Chapter A8. 1969. 65 pages.

 Measurement of time of travel and dispersion in streams by dye tracing, by E. F. Hubbard, F. A. Kilpatrick, L. A. Martens, and J. F. Wilson, Jr.: USGS--TWRI Book 3, Chapter A9. 1982. 44 3-A9.
- Measurement of discharge by moving-boat method, by G. F. Smoot and C. E. Novak: USGS--TWRI Book 3, Chapter All. 1969. 22 pages.

 Aquifer-test design, observation, and data analysis, by R. W. Stallman: USGS--TWRI Book 3, 3-A11.
- 3-B1. Chapter B1. 1971. 26 pages.
- 3-B2.
- 3-B3.
- 3-C1.
- Chapter B1. 1971. 26 pages.

 Introduction to ground-water hydraulics, a programed text for self-instruction, by G. D.

 Bennett: USGS--TWRI Book 3, Chapter B2. 1976. 172 pages.

 Type curves for selected problems of flow to wells in confined aquifers, by J. E. Reed:

 USGS--TWRI Book 3, Chapter B3. 1980. 106 pages.

 Fluvial sediment concepts, by H. P. Guy: USGS--TWRI Book 3, Chapter C1. 1970. 55 pages.

 Field methods for measurement of fluvial sediment, by H. P. Guy and V. W. Norman: USGS--TWRI

 Field methods for measurement of fluvial sediment, by H. P. Guy and V. W. Norman: USGS--TWRI 3-C2. Book 3, Chapter C2. 1970. 59 pages.
- Computation of fluvial-sediment discharge, by George Porterfield: USGS--TWRI Book 3, Chapter 3-C3. C3. 1972. 66 pages.

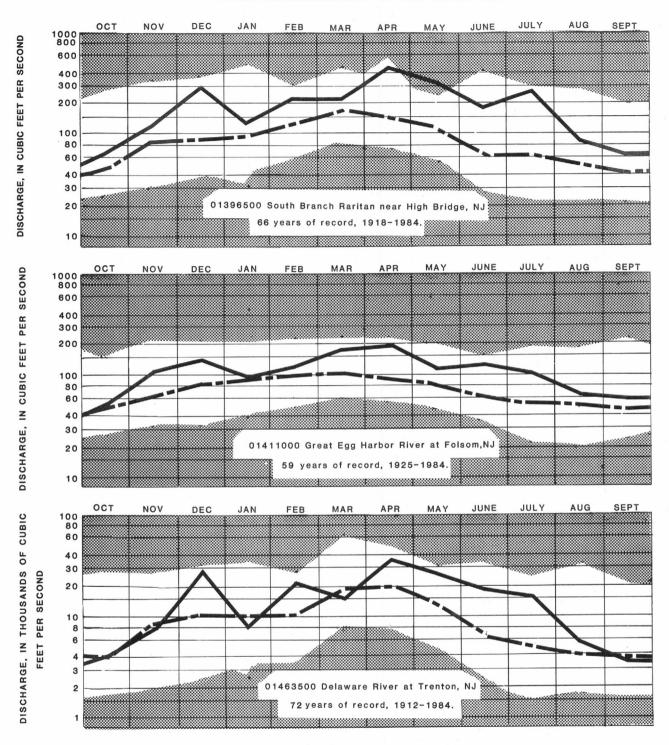
 Some statistical tools in hydrology, by H. C. Riggs: USGS--TWRI Book 4, Chapter A1. 1968. 39
- 4-A1.
- 4-B1.
- 4-B2.
- Frequency curves, by H. C. Riggs: USGS--TWRI Book 4, Chapter A2. 1968. 15 pages.

 Low-flow investigations, by H. C. Riggs: USGS--TWRI Book 4, Chapter B1. 1972. 18 pages.

 Storage analyses for water supply, by H. C. Riggs and C. H. Hardison: USGS--TWRI Book 4,

 Chapter B2. 1973. 20 pages.

 Regional analyses of streamflow characteristics, by H. C. Riggs: USGS--TWRI Book 4, Chapter 4-B3. B3. 1973. 15 pages.
- 4-D1. Computation of rate and volume of stream depletion by wells, by C. T. Jenkins: USGS--TWRI
- 5-A1.
- Book 4, Chapter D1. 1970. 17 pages.

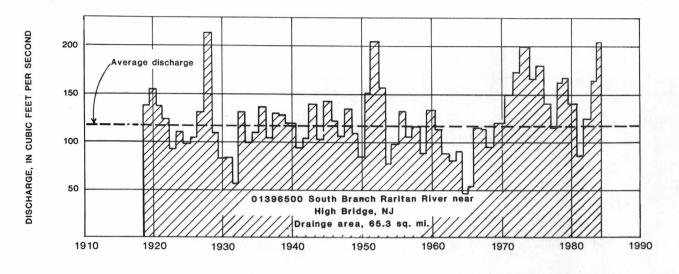

 Methods for determination of inorganic substances in water and fluvial sediments, by M. W. Skougstad and others, editors: USGS--TWRI Book 5, Chapter A1. 1979. 626 pages.

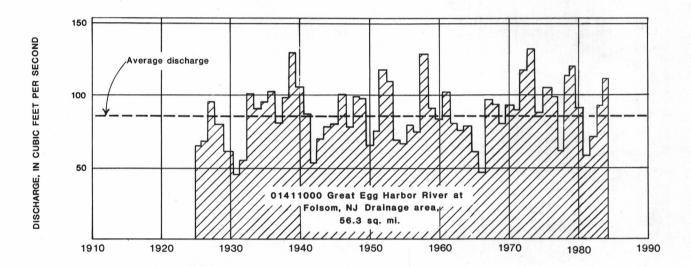
 Determination of minor elements in water by emission spectroscopy, by P. R. Barnett and E. C. Mallory, Jr.: USGS--TWRI Book 5, Chapter A2. 1971. 31 pages. 5-A2.
- 5-A3. for analysis of organic substances in water, by D. F. Goerlitz and Eugene Brown:
- USGS--TWRI Book 5, Chapter A3. 1972. 40 pages.

 Methods for collection and analysis of aquatic biological and microbiological samples, edited by P. E. Greeson, T. A. Ehlke, G. A. Irwin, B. W. Lium, and K. V. Slack: USGS--TWRI Book 5, Chapter A4. 1977. 332 pages. 5-A4
- Methods for determination of radioactive substances in water and fluvial sediments, by L. L. 5-A5.
- Thatcher, V. J. Janzer, and K. W. Edwards: USGS--TWRI Book 5, Chapter A5. 1977. 95 pages. Laboratory theory and methods for sediment analysis, by H. P. Guy: USGS--TWRI Book 5, Chapter C1. 1969. 58 pages. 5-C1.
- Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by P. C. Trescott, G. F. Pinder, and S. P. Larson: USGS--TWRI Book 7, Chapter 7-C1. C1. 1976. 116 pages.
- 7-C2.
- Computer model of two-dimensional solute transport and dispersion in ground water, by L. F. Konikow and J. D. Bredehoeft: USGS--TWRI Book 7, Chapter C2. 1978. 90 pages.

 A model for simulation of flow in singular and interconnected channels, by R. W. Schaffranek, R. A. Baltzer, and D. E. Goldberg: USGS--TWRI Book 7, Chapter C3. 1981. 110 pages.

 Methods of measuring water levels in deep wells, by M. S. Garber and F. C. Koopman: USGS--7-C3.
- 8-A1. TWRI Book 8, Chapter Al. 1968. 23 pages
- Calibration and maintenance of vertical-axis type current meters, by G. F. Smoot and C. E. Novak: USGS--TWRI Book 8, Chapter B2. 1968. 15 pages. 8-B2.




Unshaded area.--Indicates range between highest and lowest mean recorded for the month, prior to 1984 water year.

Broken line.--Indicates normal (median of the monthly means) for the standard reference period, 1951-1980.

Solid line.--Indicates observed monthly mean flow for the 1984 water year.

FIGURE 2.--MONTHLY STREAMFLOW AT KEY GAGING STATIONS.

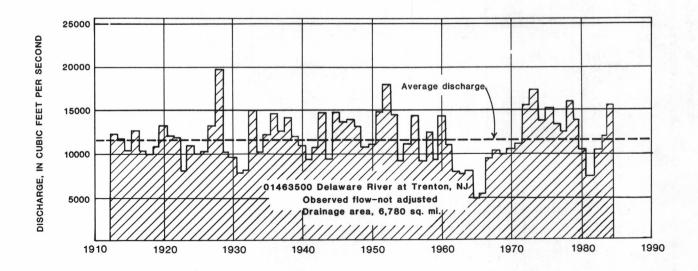
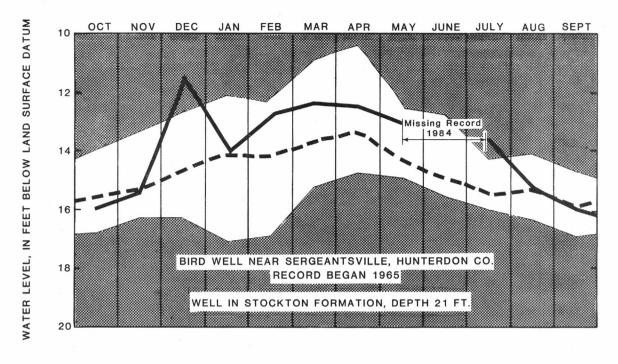
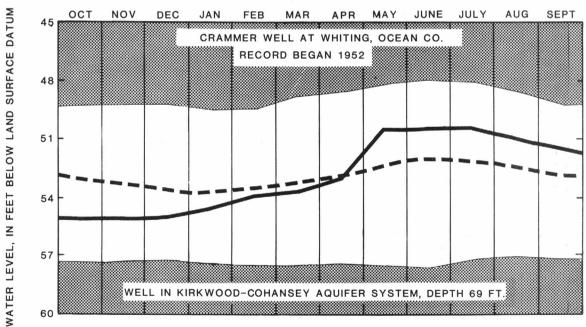
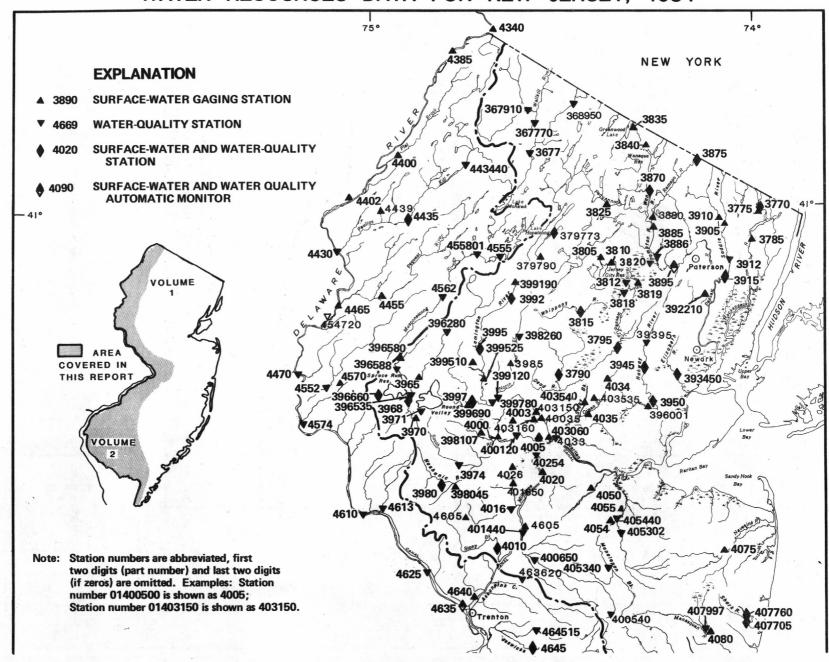




FIGURE 3.--ANNUAL MEAN DISCHARGE AT KEY GAGING STATIONS


Unshaded area.--Indicates range between highest and lowest recorded monthly minimum water levels, prior to the current year.

Dashed line.--Indicates average of the monthly minimum water levels, prior to current year.

Solid line. -- Indicates monthly minimum water level for the current year.

FIGURE 4.--MONTHLY GROUND-WATER LEVELS AT KEY WATER-TABLE OBSERVATION WELLS.

WATER RESOURCES DATA FOR NEW JERSEY, 1984

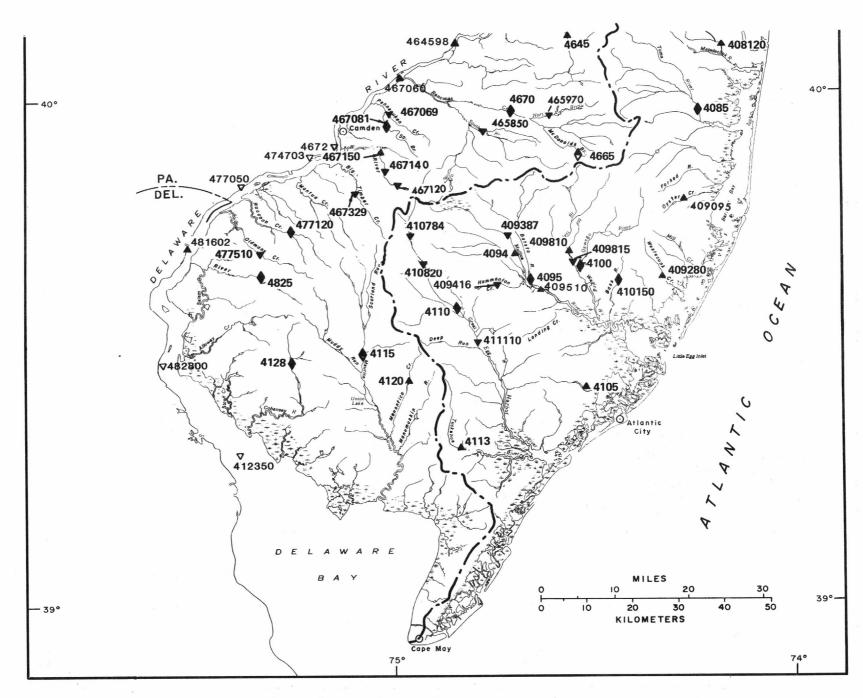
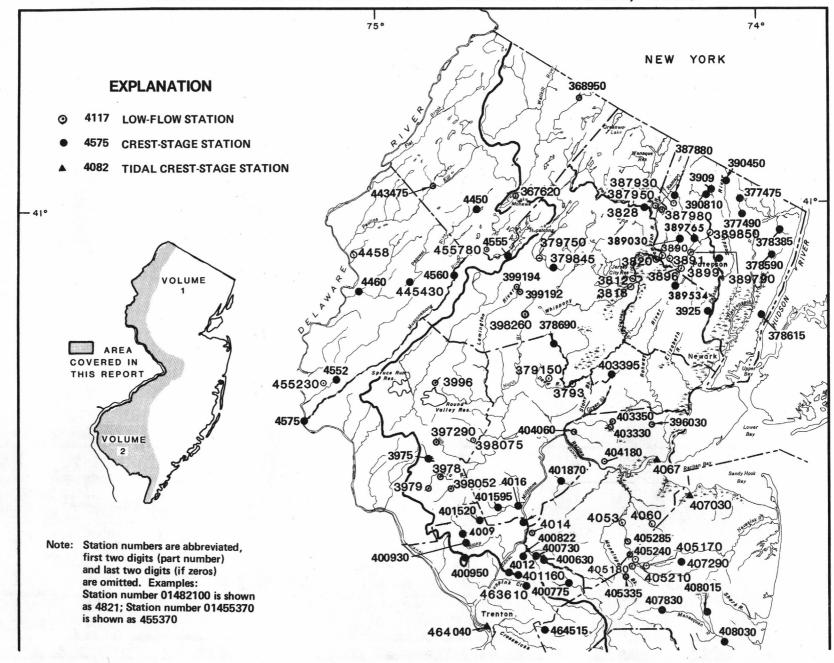



Figure 5.--Location of surface-water gaging stations and water-quality stations.

WATER RESOURCES DATA FOR NEW JERSEY, 1984

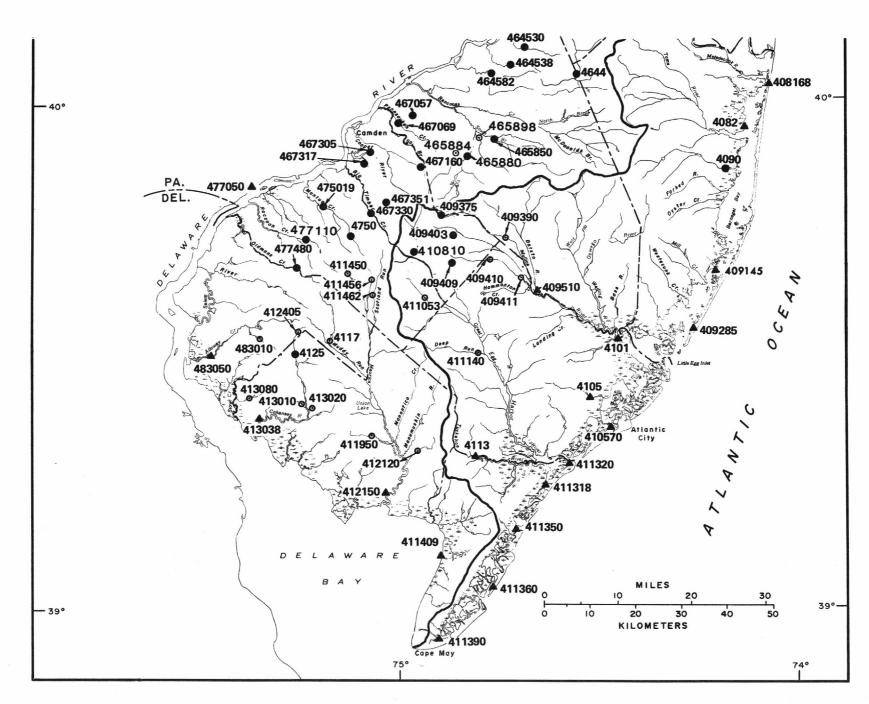
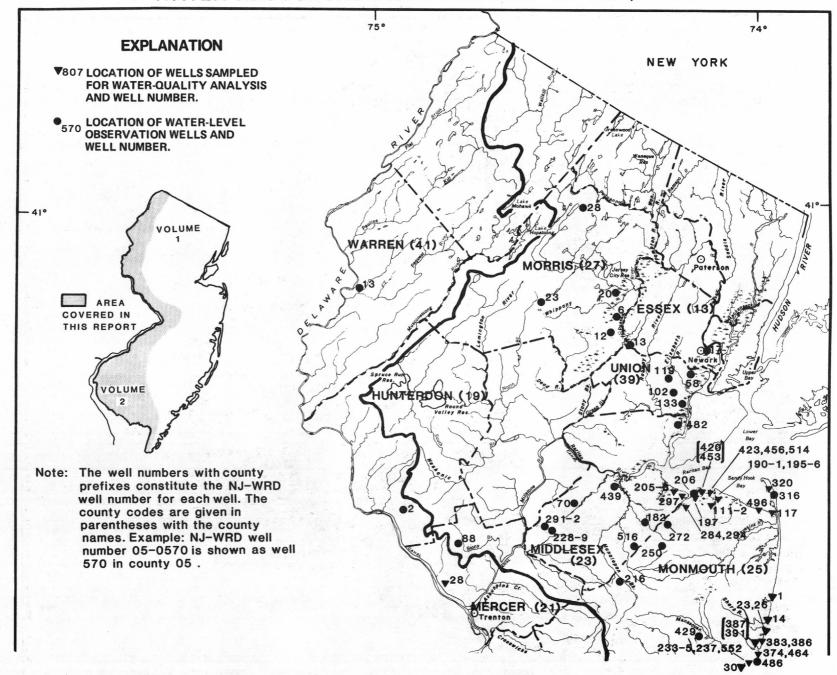



Figure 6.--Location of low-flow and crest-stage partial record stations.

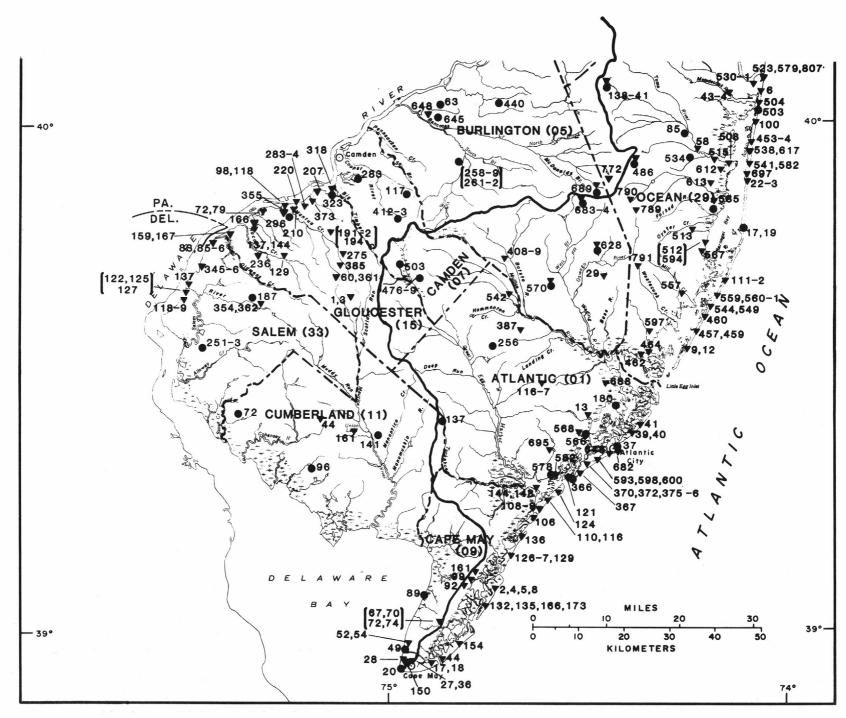


Figure 7.-- Location of ground-water quality stations and observation wells.

HYDROLOGIC-DATA STATION RECORDS

MAURICE RIVER BASIN

01411500 MAURICE RIVER AT NORMA, NJ (National stream quality accounting network station)

LOCATION.--Lat 39°29'42", long 75°04'38", Salem County, Hydrologic Unit 02040206, on right bank just upstream from Almond Road Bridge at Norma, and 0.8 mi downstream from Blackwater Branch.

DRAINAGE AREA .-- 112 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- July 1932 to current year. Monthly discharge only for December 1933, published in WSP 1302.

REVISED RECORDS.--WSP 1382: 1933. WDR NJ-79-1: 1967(P). WDR NJ-82-2: Drainage area.

GAGE.--Water-stage recorder. Concrete control since Dec. 27, 1937. Datum of gage is 46.94 ft National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records fair. Occasional regulation by ponds above station.

AVERAGE DISCHARGE .-- 52 years, 168 ft3/s, 20.19 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 7,360 ft³/s Sept. 2, 1940, gage height, 8.72 ft, from rating curve extended above 3,000 ft³/s; minimum daily, 23 ft³/s Sept. 8, 1964, July 2, Sept. 7, 11-13, 1966.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 380 ft3/s and maximum(*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Mar. 2		390		Apr. 16	2200	468	3.60
Mar. 16		675		June 1	1000	723	4.04
Mar. 29	2400	636	3.90	July 2	1200	636	3.90
Apr. 7	2000	*834	4.21	July 20	0500	381	3.43

Minimum discharge, 71 ft³/s Oct. 10, 11, and 12.

DISCHARGE,	IN	CUBIC	FEET	PER	SECOND,	WATER	YEAR	OCTOBER	1983	TO	SEPTEMBER	1984	
					MEAL	VALUE	ES						

							5050						
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1 2 3 4 5	75 96 110 105 92	86 85 83 93	219 201 186 204 237	263 243 226 212 205	224 211 201 206 206	320 380 330 290 255	527 456 437 390 565	285 290 285 270 260	701 655 538 326 300	207 538 428 313 260	171 157 182 183 183	117 110 109 146 161	
6 7 8 9	85 80 77 74 72	92 89 87 85 95	249 265 260 243 227	201 198 192 187 184	203 200 193 188 188	240 250 265 270 260	688 790 741 594 496	270 280 280 280 280 300	291 267 247 225 206	242 232 264 328 362	193 195 200 192 179	157 143 130 118 114	
11 12 13 14 15	71 89 110 114 111	128 132 135 130 140	215 220 253 278 289	210 207 198 192 187	188 180 185 190 200	240 230 235 290 400	433 433 420 371 382	340 330 300 270 248	181 160 160 177 202	364 361 332 307 266	172 187 205 196 193	109 109 109 109 129	
16 17 18 19 20	107 99 96 92 88	232 229 229 222 207	290 279 259 239 222	178 171 168 168 165	230 285 345 370 310	620 590 520 450 400	419 443 424 428 417	240 231 216 196 186	194 190 234 282 266	201 222 254 303 374	183 169 155 148 147	132 127 125 120 114	
21 22 23 24 25	85 82 87 120 123	229 228 223 227 267	204 225 261 256 160	159 153 148 151 186	270 240 220 218 250	360 320 285 280 280	370 350 310 300 320	211 230 216 217 218	250 236 216 193 197	353 327 303 316 290	139 133 128 129 124	108 103 97 93 93	
26 27 28 29 30 31	123 115 107 100 93 89	288 286 275 258 237	204 267 235 276 285 278	208 234 249 246 236 233	300 315 300 310	285 295 314 456 581 546	350 350 325 300 280	204 205 202 206 407 621	189 181 177 170 166	254 208 208 202 196 191	119 115 113 114 122 121	91 102 123 121	
TOTAL MEAN MAX MIN CFSM IN.	2967 95.7 123 71 .85 .99	5190 173 288 83 1.54 1.72	7486 241 290 160 2.15 2.49	6158 199 263 148 1.78 2.05	6926 239 370 180 2.13 2.30	10837 350 620 230 3.13 3.60	13109 437 790 280 3.90 4.35	8294 268 621 186 2.39 2.75	7777 259 701 160 2.31 2.58	9006 291 538 191 2.60 2.99	4947 160 205 113 1.43 1.64	3510 117 161 91 1.04 1.17	

CAL YR 1983 TOTAL 68393 MEAN 187 MAX 738 MIN 55 CFSM 1.67 IN. 22.72 WTR YR 1984 TOTAL 86207 MEAN 236 MAX 790 MIN 71 CFSM 2.11 IN. 28.63

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1923, 1953, 1960-62, 1965 to current year.

PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: January 1980 to current year.
WATER TEMPERATURES: October 1966 to January 1968 (once daily), January 1980 to current year.
SUSPENDED-SEDIMENT DISCHARGE: February 1965 to January 1968.

INSTRUMENTATION .-- Water-quality monitor since January 1980.

REMARKS.--Missing continuous water-quality records are the result of malfunction of the instrument.

EXTREMES FOR PERIOD OF RECORD .--

SPECIFIC CONDUCTANCE: Maximum, 151 micromhos Jan. 25, 1984; minimum, 52 micromhos June 16, 1982. WATER TEMPERATURE: Maximum, 28°C July 21, 1980; minimum 0.0°C on many days during winter months.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum, 151 micromhos Jan. 25; minimum, 53 micromhos May 31.
WATER TEMPERATURES: Maximum, 25.5°C June 11, 12; minimum, 0.0°C on many days during winter months.

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

									,				50	TODE	••	. , 55	- 0				. ,	•						
DATE	:	TIME]	FLOI FLOI INST	W, AN- OUS	CO	FICT.	-	PH (STA) AF UNII	ND- RD	I	EM PE AT UR DE G	E	B	UR- SID- TY	-	SO	GEN IS- LVE G/L	, D	SOL (PE CE SAT ATI	S- VED R- NT UR-	DEN B: CI IO	YGEN MANI IO- HEM- CAL, DAY MG/L), - k (COLI- FORM, FECAL 0.7 UM-MF (COLS.	, /	STRE TOCOO FECA KF AC (COLS PEF 100 M	CI L, GAR
NOV 22 JAN		1215		:	227		8	32		5.8	3	10	. 5		1.	2		8.	8		79		2.	2	-	-	7	90
18		1030			167		8	36		6.0)	1	• 5		1.	4		12.	4		87		-		-	-		
MAR 26		1325		;	295			70		5.9	9	9	. 0		1.	5		10.	2		88			9	K	7	2	40
MAY 15		1140			453			58		6.3	3	14	. 5	<	1.0	0		7.	9		77		1.	0	<	2	K2	200
JUL 25		1200			295		(50		6.	1	23	. 5		1.	7		5.	4		63		3.	0	K 4	6	21	00
SEP 18		1315			124			71		6.6	5	16	. 5		1.	4		9.	1		92		_		К2	7	K 6	550
		HARD- NESS (MG/L AS	(DIS- SOL	IUM - VED	SC	GNI SIUI OIS- OLVI	E- 4, -	SODI DIS SOLI	UM, S- VED	,	POTA SIU DIS SOLV	S- IM, S- VED	AL LIN L	.KA	- Y		FAT	E D	CHL RID DIS SOL (MG	O- E, - VED	FI R:	LUO- IDE, DIS- DLVE	ED.	SILICA DIS- SOLVE (MG/L AS	, D	SOLII RESII AT 18 DEG. DIS	OS, OUE BO C
DATE	:	CACO3)	AS	CA)	AS	M	G)	AS	NA)) I	AS K	()	CA	CO	3)	AS	S04)	AS	CL)	A	S F)		S102)		(MG/	L)
NOV 22 JAN		2	2	4	• 5		2.	5	6	5.1		1.	7	7	.0			21		10			. 2	20	6.	7		64
18		2	2	4	. 6		2.	5	6	5.4		1.	6	7	.0			14		11			۲.	10	6.	1		64
MAR 26		1	8	3	. 6		2.	1	1	1.9		1.	6	3	. 0			11		9	. 1		<.1	10	2.	5		52
MAY 15 JUL		1	7	3	. 6		1.	9	5	5.2		1.	5	5	. 0			8.	0	8	. 6		. 1	10	1.	8		38
25		1	6	3	. 6		1.	В	1	1.7		1.	5	6	. 0			11		8	. 7		۷.1	10	6.	5		70
SEP 18		1	7	3	. 5		2.	1	1	1.7		1.	7	7	. 0			7.	7	8	.6		. 1	10	4.	3		58
	DA:		SEDI MENI SUS- PENI (MG/	r, DED	ME D CHA S PE	DI- NT, IS- RGE, US- NDEI DAY)	, ;	SIE	SP. VE AM. NER AN	NC S	NITRO GEN; D2+NO DIS- SOLVE (MG/I	, 03 ED L	AMM D SO (M	TRO- EN, ONIA IS- LVED G/L N)	\ 1	NIT GEN, MONI ORGA TOT (MG	AM- A + NIC AL	P	PHOS HORU TOTA (MG/ AS A	JS, AL 'L	PH S (HOS- ORUS DIS- OLVE MG/L S P)	, D S	PHOS ORTH DIS- SOLVE (MG/I	US, HO, C ED L	ARB RGA TOT (MG AS	NIC AL /L	
	NOV 22			11		6.7	,		66		. 9	92		.540)	1	. 6		. 1	410		. 20	0	. 2	200	11		
	JAN 18.			6		2.7	,		90		2.	1		.030)		. 60		. (030		<.01	0	<.0	010	4	. 0	
				3		2.4	ı		56		1.	4	<	.010)		.50		. (020		<.01	0	<.0	010			
	MAY 15			6		7 - 3	3		64		. 9	93		. 400)	5	. 2		. (010		<.01	0	<.0	010	7	. 7	
				13		10			56		<.0	61	<	.070)		.70		. (060		.03	0	<.0	020	18		
	SEP 18			16		5.4	ļ		44		1.	4		.050)		.60		<.0	010		<.01	0	. (020			

MAURICE RIVER BASIN

01411500 MAURICE RIVER AT NORMA, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	TI	ME	ALUM INUM DIS SOLV (UG/ AS A	, ED L	ARSE DI: SOL' (UG: AS	S- Ved /L	BARII DIS- SOLVI (UG/ AS I	ED /L	BER LIU DIS SOL (UG AS	M, - VED /L	CADM DI: SOL' (UG: AS	S- VED /L	CHRO MIUI DIS- SOLV (UG/ AS (M, - VED /L	COBAI DIS- SOLVI (UG/ AS (ED /L	COPPE DIS- SOLV (UG/ AS (ED L	IRON DIS SOLV (UG/ AS F	ED L	LEAD DIS SOLV (UG/ AS F	S- VED /L
NOV 22 JAN	12	15	2	00		96		80		<.5		<1	<1			<3		2	3	310		2
18 MAY	10	30	2	90		96		79		<.5		<1	3			<3		2	1	50		3
15 SEP	11	40	1	40		1		65	<	1		<1	20			<3		3	1	30		3
18	13	15		50		37		65	<	1		1	2			<3		1	2	230		4
Ŋ	ATE	LITH DI SOL (UG AS	S- VED /L	NES	S- VED /L	SOL (UC	S- VED	MOL DEN DI SOL (UG AS	UM, S- VED /L	(UG	VED		M, S- VED /L	SILV DI SOL (UG AS	S- VED /L	D: SOI (U(RON- IUM, IS- LVED G/L SR)	VAN DIU DI SOL (UG AS	M, S- VED /L	SOL (UG	S- VED	
JAI 18 MA	2 N 8		6 <4 <4		52 34 21		<.1 <.1 <.1		<10 <10 <10		4 2 6		<1 <1 <1		<1 <1 <1		28 28 23		34 8 8		23 19	
SEI			<4		14		.1		<10		4		<1		<1		22		7		10	

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBE	R		NOVEMBE	?		DECEMBE	R		JANUAR	
1 2 3 4 5	17.0 18.0 18.0 19.5 20.0	16.5 16.5 16.0 17.0 18.0	17.0 17.0 17.0 18.0 19.0	11.0 12.0 12.5 12.5 10.5	9.0 10.0 11.5 10.5 9.0	10.0 11.0 12.0 11.5 10.0	7.5 6.0 7.0 7.0 7.0	5.0 5.0 6.0 6.0	7.0 5.5 6.5 6.5	1.0 2.0 2.0 3.0 3.5	.0 .5 1.0 1.5 2.5	1.5 1.5 2.0 3.0
6 7 8 9 10	19.5 18.0 17.5 16.5 15.0	18.5 16.5 14.0 13.0	19.0 17.5 15.5 15.0 14.0	9.5 10.0 10.5 11.5 12.5	8.5 8.5 9.0 9.5 10.5	9.0 9.5 10.0 10.5 11.0	8.0 7.5 5.0 4.5 5.5	6.5 5.0 3.5 3.0 4.0	7.0 6.5 4.5 3.5 5.0	3.5 3.5 3.0 3.0 4.0	2.0 2.5 2.0 2.0 2.5	3.0 3.0 2.5 2.5 3.0
11 12 13 14 15	16.0 17.5 19.0 19.0	13.5 16.0 17.5 17.5	15.5 17.0 18.0 18.5 16.0	13.0 11.5 8.5 8.0 9.5	12.0 9.0 7.5 7.5 8.0	12.5 10.5 8.0 8.0 8.5	5.5 8.0 10.0 10.0	4.0 5.5 8.5 9.5 9.5	4.5 6.5 9.0 10.0	3.0 1.5 2.0 3.0 2.5	1.5 1.0 1.5 2.0	2.5 1.5 2.0 2.5 2.0
16 17 18 19 20	16.0 15.5 15.0 14.0 13.5	14.0 13.5 13.0 13.5	14.5	10.0 9.0 8.0 9.0 10.0	9.5 8.0 7.0 7.0 7.5	9.5 8.5 7.5 8.0 9.0	9.0 7.5 5.5 4.0 2.5	7.5 5.5 4.0 3.0	8.5 7.0 4.5 3.5 2.0	2.0 2.5 2.0 2.5 1.5	1.5 1.5 1.5 1.0	1.5 2.0 1.5 2.0 1.0
21 22 23 24 25	13.0 12.5 13.0 14.5 14.0	12.5 11.5 12.0 13.0 13.0	13.0 12.0 12.5 14.0 13.5	11.5 10.5 10.5 11.5 11.5	10.5 9.5 9.0 10.0 8.0	11.0 10.5 10.0 11.0	2.0 4.5 3.5 2.0	2.0 2.0 .0	1.5 3.5 2.5 1.0	1.0 1.0 2.0 3.0 3.0	.0 .0 .0 2.0 2.0	1.0 .5 1.0 2.5 2.5
26 27 28 29 30 31	13.5 12.0 12.0 13.0 11.5	12.5 11.0 10.0 11.5 10.0 9.0	11.5 11.0	8.5 9.5 10.0 8.5	7.5 7.0 8.5 8.5 7.0	8.0 8.0 9.0 9.5 8.0	.0 .5 1.5 1.0	.0 .5 1.0 .0	.0 1.0 1.0 .5	3.5 3.0 3.0 3.0 3.5	2.0 2.0 2.0 2.0 2.0 2.5	2.5 3.0 2.5 2.5 2.5 3.0
MONTH	20.0	9.0	15.0	13.0	7.0	9.5	10.0	.0	4.5	4.0	.0	2.0
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	MIN FEBRUAR		MAX	MIN MARCH	MEAN	MAX	MIN APRIL		MAX	MIN MAY	MEAN
DAY 1 2 3 4 5	MAX 2.5 3.0 4.5 5.0 4.5			MAX 4.0 4.5 5.5		3.5 3.5 3.5 4.5	9.0 10.5 12.5 11.5			MAX 18.5 17.5 16.0 17.0 18.0		MEAN 16.5 16.0 15.5 16.0 16.5
1 2 3	2.5 3.0 4.5 5.0	1.0 1.0 2.5 4.0 3.5	2.0 2.0 3.5 4.5	4.0 4.5 4.5	MARCH 2.5 2.5 2.5 3.5	3.5 3.5 3.5 4.5	9.0 10.5 12.5 11.5 13.0	APRIL 5.5 6.5 9.0 10.5	7.0 8.5 11.0	18.5 17.5 16.0 17.0	MAY 15.0 14.5 15.0 15.0	16.5 16.0 15.5 16.0
1 2 3 4 5	2.5 3.0 4.5 5.0 4.5 4.0 3.5	1.0 1.0 2.5 4.0 3.5	2.0 2.0 3.5 4.5 4.0	4.0 4.5 5.5 5.5 6.0	MARCH 2.5 2.5 2.5 4.0 4.5 3.5	3.5 3.5 3.5 4.5 4.5	9.0 10.5 12.5 11.5 13.0	APRIL 5.5 6.5 9.0 10.5 11.5	7.0 8.5 11.0 11.0 12.0	18.5 17.5 16.0 17.0 18.0	MAY 15.0 14.5 15.0 15.0	16.5 16.0 15.5 16.0 16.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14	2.0505 4.0505 4.00505 5.505 6.0505	1.0 1.0 2.5 4.0 3.5 3.5 2.0 2.5 4.5 5.5 7.0	2.0 2.0 3.5 4.0 3.5 3.5 3.0 4.0 5.5 6.0 7.5	4.55 4.55 6.50 5.50 6.50 6.50 6.50 6.50 6.50 6	MARCH 2.5 2.5 3.5 4.0 4.5 3.5 2.5 3.5 2.5 3.5 3.5 3.5	3.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	9.0 10.5 12.5 13.0 12.5 11.5 12.5 12.5 12.5 14.5 14.5 14.5	APRIL 5.5 6.5 9.0 10.5 11.5 11.5 9.0 9.5 9.0 10.0 10.5 12.0 12.0	7.0 8.5 11.0 11.0 12.0 12.0 11.0 10.0 10.5 11.0	18.5 17.5 16.0 17.0 18.0 16.5 16.5 16.5 16.0 17.0 17.0	MAY 15.0 14.5 15.0 15.0 15.0 15.0 14.0 14.5 14.0 14.5 16.0 15.5 14.5	16.5 16.0 15.5 16.5 16.5 15.0 15.5 15.0 16.0 16.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	2.05.05 4.505 4.505 4.505 5.505 5.505 10.00 10.00	FEBRUAR 1.0 2.5 4.0 3.5 3.5 2.0 2.5 4.5 5.5 7.0 8.0 9.5 8.0	2.0 2.0 3.5 4.0 3.5 3.5 3.0 4.0 5.5 6.5 7.5 9.0 9.0	4.555.5.05.055.055.055.055.055.055.055.0	MARCH 2.5 2.5 4.0 4.5 5.5 4.0 5.0 5.0 6.0 7.5	3.3.3.4.4.5.4.2.2.4.3.3.4.5.6.7.7.8.	9.0 10.5 12.5 13.0 12.5 11.5 12.5 13.0 14.5 13.0 14.5 14.5 14.0	APRIL 5.5 6.5 9.0 10.5 11.5 11.5 10.0 9.5 9.0 10.0 12.0 11.0 11.0 11.0 12.5 12.5	7.0 8.5 11.0 11.0 12.0 12.0 11.0 10.0 10.5 11.5 12.5 13.5 12.5 11.5	18.5 17.5 16.0 17.0 18.0 16.5 16.5 16.5 16.0 17.0 17.0 17.0 17.0 14.0 14.0 14.5 14.5	MAY 15.0 14.5 15.0 15.0 15.0 14.0 14.5 14.0 14.5 13.5 13.0 11.5 13.0	16.5 16.0 15.5 16.0 16.5 15.0 15.0 16.0 17.0 16.0 14.5 13.0 13.5 13.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	2.50.50.5 0.50.55 0.50.05 0.50.5 0.50	FEBRUAR 1.0 2.50 3.5 3.55 2.0 2.5 5.50 9.0 9.0 9.0 7.6 6.5 8.0	2.0 2.0 3.5 4.0 3.5 4.0 3.5 3.0 3.0 5.0 5.0 5.0 5.0 5.0 9.0 9.0 9.5 7.5 7.5 9.5	4.555.05.055.05.05.05.05.00.05.55.00.05.05	MAR 5.55.50 5.55.50 5.55.50 0.00.55 0.	333344 54422 433345 67789 98888	9.0 10.5 12.5 13.0 11.5 11.5 11.5 12.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14	APRIL 5.5 6.5 9.0 11.5 11.5 10.0 9.0 9.0 10.0 12.0 11.0 11.0 12.5 12.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0	7.0 8.5 11.0 11.0 12.0 11.0 10.5 11.0 11.5 12.5 11.5 12.5 11.5 13.5 13.5 13.5 13.5 13.5	18.5 17.5 16.0 18.0 16.5 16.5 16.5 16.0 17.0 18.0 17.0 18.0 17.0 14.0 14.0 14.5 14.5 14.5 14.5 14.5 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0	MAY 15.0 14.5 15.0 15.0 15.0 14.5 14.5 14.5 14.5 14.5 13.5 13.6 13.6 14.5 14.5 14.5 14.5 15.6 18.6 19.0	16.5 16.0 15.5 16.5 16.5 15.0 15.0 15.0 17.0 16.5 17.0 16.5 17.0 16.5 17.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

				,		,	 	.,05		 		
DAY	MAX	MIN	MEAN									
		JUNE			JULY			AUGUST			SEPTEME	BER
1 2 3 4 5	16.0 16.0 16.0 18.5 19.5	15.0 15.5 15.5 15.5	15.5 16.0 16.0 17.0 18.5	23.0 23.0 23.5 24.0 25.0	21.5 22.5 23.0 22.5 23.0	22.5 22.5 23.0 23.5 24.0	21.5 21.5 21.5 23.0 22.5	18.5 19.5 20.5 21.0 21.5	20.0 20.5 21.0 22.0 22.0	===	===	
6 7 8 9	21.0 22.5 23.5 25.0 25.5	18.5 20.0 21.0 22.0 23.0	20.0 21.5 22.5 23.5 24.5	25.0 24.0 22.0 21.0 20.5	23.5 22.5 21.0 20.0 20.0	24.0 23.5 21.5 20.5 20.5	22.5 22.5 24.0 24.0 23.0	20.5 21.0 21.0 22.5 22.0	21.5 22.0 22.5 23.0 22.5	19.0 18.5 19.0 20.0	16.5 16.5 16.0 17.5	18.0 17.5 17.5
11 12 13 14 15	25.5 25.5 25.5 25.0 24.5	23.0 23.0 23.0 23.5 22.0	24.5 24.5 24.0 24.5 23.5	22.5 23.5 24.0 24.5 25.0	20.5 21.5 22.5 22.5 23.0	21.5 22.5 23.5 23.5 24.0	22.5 22.5 23.5 24.5 24.5	21.5 21.5 22.0 22.0 23.0	22.0 22.0 22.5 23.0 23.5	20.0 20.0 20.0 21.5 21.0	18.5 19.0 18.0 19.0	19.0 19.5 19.0 20.5 20.0
16 17 18 19 20	22.0 20.5 19.5 21.5 22.5	20.5 19.5 19.0 19.5 20.5	21.0 20.0 19.5 20.5 21.5	25.0 24.5 23.5 23.0 22.5	23.5 22.5 22.5 21.5 21.0	24.5 23.5 23.0 22.5 22.0	24.5 24.0 23.5 22.0 20.5	21.0 22.5 22.0 19.5 18.5	22.5 23.5 22.5 20.5 19.5	18.0 17.5 17.5 17.0 18.5	17.0 15.5 15.5 15.0 16.0	17.5 16.5 16.5 16.5 17.5
21 22 23 24 25	22.5 22.5 22.0 22.0 23.0	20.5 20.0 20.0 20.5 20.5	21.5 21.5 21.5 21.0 21.5	22.0 22.5 23.5 24.5 24.0	21.5 21.0 22.0 22.5 23.0	21.5 22.0 22.5 23.5 23.5	21.0 20.5 19.5 19.5 19.0	17.0 18.5 18.0 17.5	19.5 19.5 19.0 18.5 18.5	19.0 19.0 19.5 21.0 21.0	17.0 17.0 17.0 18.5 19.5	18.0 18.0 18.5 19.5 20.5
26 27 28 29 30 31	22.5 23.0 23.0 23.0 22.5	21.0 20.0 21.5 21.5 21.5	21.5 21.5 22.5 22.0 22.0	23.5 23.0 22.0	22.0 21.5 20.5 	22.5 22.5 21.5 	18.5 18.0 	17.0 16.5 	18.0 17.5	20.5 18.0 15.5 15.0	18.0 16.0 14.0 13.5 13.5	19.5 16.5 14.5 14.0 14.5
MONTH	25.5	15.0	21.0	25.0	20.0	22.5	24.5	16.5	21.0	21.5	13.5	18.0
YEAR	25.5	.0	12.5									

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	·MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER			NOVEMBER			DECEMBE	R		JANUAR	Y
1 2 3 4 5	76 76 75 76 74	74 72 73 73 73	75 75 74 75 73	80 80 81 81	78 79 79 78 77	79 79 80 79	81 82 83 83 74	75 76 75 70 71	78 80 81 76 73	77 79 81 81 81	76 77 79 80 79	77 78 80 80 80
6 7 8 9	74 75 76 77 77	72 73 75 76 75	73 74 75 76 76	80 78 79 78 78	77 77 78 77 75	79 78 79 77	74 71 74 74 76	72 69 69 72 73	73 70 72 73 75	80 79 79 79 79	78 78 77 77 77	79 79 78 78 78
11 12 13 14 15	76 79 80 77 81	75 74 75 75 74	76 77 78 76 76	78 77 78 79 78	75 76 76 76 76	77 76 78 78 77	76 77 76 77	73 75 73 74 74	75 76 74 75 76	77 85 80 85 89	75 78 78 79 82	76 81 79 81 85
16 17 18 19 20	82 77 74 75 76	77 73 72 73 74	80 74 73 74 75	81 77 79 80 81	76 75 76 78 77	78 76 78 78 79	75 75 76 77 79	72 72 73 74 77	74 74 75 76 78	84 84 90 87 88	82 82 80 80 86	82 83 85 83 87
21 22 23 24 25	76 77 82 80 79	75 74 75 77 78	76 76 77 79 78	81 86 86 85	73 77 80 80 73	76 83 84 82 77	78 78 74 76 82	76 72 72 75 77	77 75 73 75 80	87 88 87 121 151	81 81 86 88 97	85 86 87 94 116
26 27 28 29 30 31	77 80 80 80 81 81	76 75 78 79 79	77 78 79 80 80	80 80 79 79 82	74 77 77 74 75	78 79 77 77 78	82 81 82 80 79	78 79 78 77 78 76	80 80 80 79 79 78	97 87 84 82 83 83	88 79 79 81 79	92 83 82 82 82 82
MONTH	82	72	76	86	73	78	83	69	76	151	75	83

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUAR	Y		MARCI	ł		APRI	L		MAY	
1 2 3 4 5	83 83 83 81	79 79 79 79 79	82 81 82 82 80	70 71 72 73 74	68 69 69 71 72	69 70 71 72 73	69 71 71 73 68	63 68 70 68 65	68 69 71 71 66	71 70 71 70 70	69 69 70 68 67	70 70 70 69 68
6 7 8 9	82 79 80 82 81	79 78 77 78 78	80 79 79 80 80	73 74 74 79 78	71 73 72 71 75	72 73 73 73 76	66 63 65 65 68	62 61 61 63 61	64 62 63 64 65	70 70 69 69 68	68 68 66 67 61	69 69 68 68
11 12 13 14 15	82 80 76 74 74	79 76 74 73 70	80 78 75 74 72	77 78 78 74 72	74 76 73 70 70	75 77 76 71 71	69 69 73 73 70	67 68 69 70 69	68 69 71 72 70	66 68 68 68	61 61 66 66	64 65 67 67 68
16 17 18 19 20	72 70 70 73 73	70 68 67 70 71	71 69 68 71 73	70 70 69 68 72	67 67 65 66 68	69 69 67 68 70	70 72 72 70 71	68 69 69 68	68 71 71 69 70	70 70 71 76 77	68 69 69 70 72	69 69 70 73 74
21 22 23 24 25	75 77 78 74 73	73 75 71 67 72	75 76 76 71 73	74 74 73 73 74	70 72 70 70 70	72 73 71 72 72	70 71 69 69 70	68 68 68 68	69 70 68 68 69	74 74 74 74 75	72 71 72 71 71	73 72 73 72 72
26 27 28 29 30 31	74 74 72 70	72 71 67 68 	73 73 69 70	74 74 74 72 68 67	70 72 71 62 62 62	72 73 72 67 66 66	71 70 72 73 73	69 68 69 69	70 69 70 70 71	75 75 74 74 68 56	72 72 72 69 56 53	74 73 73 72 59 54
MONTH	83	67	76	79	62	71	73	61	69	77	53	69
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	MIN JUNE	MEAN	MAX	MIN JULY	MEAN	MAX	MIN		MAX	MIN SEPTEM	
1 2 3 4 5	56 56 62 67 67		MEAN 55 56 58 64 65	72 61 57 59 61		MEAN 68 55 56 58	MAX 81 86 80 76 78			83 83 86 81 74		
1 2 3	56 56 62 67	JUNE 54 55 57 61	55 56 58 64	72 61 57 59	JULY 61 54 55 56	68 55 56 58	81 86 80 76	AUGUS 74 73 73 75	T 78 79 76 76	83 83 86 81	SEPTEMI 74 75 81	79 78 83
1 2 3 4 5	56 56 62 67 67 68 68 70	JUNE 54 55 57 61 63 64 65 67	55 56 58 64 65 66 67 68	72 61 57 59 61 63 64 63	JULY 61 54 55 56 59 61	68 55 56 58 60 62 62	81 86 80 76 78	AUGUS 74 73 73 75 76 75 74	78 79 76 76 77 76	83 83 86 81 74 75 73	SEPTEMI 74 75 81 74 72 72 72 71 71	79 78 83 77 73 74 72
1 2 3 4 5 6 7 8 9 10 11 12 13 14	56 56 62 67 67 68 68 70 73 73 73 76 77 78	JUNE 54 555 57 61 63 64 655 67 73 734 74	55 56 58 64 66 66 72 75 75 76	72 61 57 59 61 63 64 63 60 58 59 59	JULY 61 54 55 56 59 61 61 57 57 57 57	68 55 56 58 60 62 62 58 57	81 86 80 76 78 77 77 75 79 80 79 74	74 73 73 75 76 75 74 72 73 76 77 71 71	78 79 76 76 77 76 76 74 74 77	83 86 81 74 75 73 74 73 76	74 75 81 74 72 72 72 71 71 71 74 72 71	79 78 83 77 73 74 72 73 72 75
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	56 56 62 67 67 68 68 70 73 73 76 77 78 79 74	JUNE 54 557 613 645 677 773 774 69 71 766	55 56 58 65 66 67 72 75 76 70 72 73 667	72 61 57 61 63 63 63 63 65 59 59 59 59 60 64 66 65 61	JULY 61 54 55 56 59 61 61 59 57 57 57 57 57 59 64 62 58	685 5580 6622887 5888881 66329	81 86 80 76 78 77 77 75 79 80 79 74 73 73	74 73 73 75 76 75 74 72 73 76 77 71 71 72 71	78 79 76 76 77 76 74 74 77 78 73 73 73 72 72	83 83 86 81 74 75 73 76 74 77 75 76	74 75 81 74 72 72 72 71 71 71 74 72 71 73 74 73 74 73 74 73	79 78 83 77 73 74 72 73 72 75 73 74 75 74 75 74
1 2 3 4 5 6 7 8 90 11 123 14 15 16 17 18 19 20 21 223 425 26 278	56 56 67 67 68 68 70 73 73 76 77 78 79 74 75 70 69 70 74 74	JUNE 555 663 665 67 77 77 665 77 76 67 71 71	55 56 56 66 67 77 77 77 77 77 77 77 77 77 77 67 6	721 57961 63463658 59958604 6655618 580664 665561 58066135 67122	JULY 61 54 556 59 61 659 57 57 57 57 57 57 57 57 64 62 58 66 67 67 67 71	68555586 6226557 5588855 662557 5596614 66771172	81 86 80 76 78 77 77 75 79 80 79 74 74 73 75 85 79 81 79 80 83 82 86 90 93	74 73 73 75 76 75 74 77 71 71 71 71 71 73 73 75 75 76 77 71 71 71 71 71 73 73 75 75 76 77 77 77 77 77 77 77 77 77 77 77 77	78 79 76 76 77 76 77 77 78 73 73 73 73 73 73 76 77 77 77 77 78 81 88 91	83 83 86 81 74 75 73 74 74 75 76 74 77 77 76 73 72 73 81 73	74 75 81 74 72 72 71 71 71 73 74 73 71 71 70 72 74 73	79 78 83 77 73 74 72 73 72 75 73 74 75 74 77 71 71
1 2 3 4 5 6 7 8 9 10 112 133 14 15 16 178 19 20 21 22 32 42 5 26	56 56 67 67 68 68 70 73 77 77 78 79 74 75 77 77 77 77 77	JUNE 5557 663 6657 773449 7126657 711 7701 771 771	55 56 56 66 67 77 77 77 77 77 77 77 77 77 77 77	72 61 57 61 63 63 63 63 65 65 65 66 65 66 61 63 65 68 67 72	JULY 61 54 556 59 61 61 59 57 57 57 57 57 59 642 598 56 61 65 69 70	68556866222887 558888556 662557 556614 66671771	81 86 80 76 78 77 77 75 79 80 74 74 73 74 75 85 79 81 79 80 83	74 73 73 75 76 75 74 72 73 76 77 71 71 71 71 73 72 73 75 75 74 75 75 75 76 84 88	78 79 76 76 77 76 77 78 75 73 72 73 74 77 77 78 77 77 78 88 71 77 77 77 78 77 77 77 78 77 77 77 77 77	83 83 86 81 74 75 73 76 74 774 775 76 73 775 777 790 766 7676 777 775 90	74 75 81 74 72 72 71 71 71 73 74 73 71 71 70 72 74 73 71 70 72 74 73 77 73 71 73 74 73	79 78 83 77 73 74 72 73 73 74 75 74 75 74 77 77 77 77 77 77 77 77

MAURICE RIVER BASIN

01412000 MENANTICO CREEK NEAR MILLVILLE, NJ

LOCATION.--Lat 39°25'12", long 74°58'00", Cumberland County, Hydrologic Unit 02040206, on right bank at upstream side of Mays Landing Road (State Route 552), 0.9 mi downstream of Menantico Lake, 4.0 mi northeast of Millville, and 7.0 mi upstream from mouth.

DRAINAGE AREA .-- 23.2 mi2.

WTR YR 1984

TOTAL 16562.0

MEAN 45.3

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--June 1931 to September 1957, October 1977 to February 1985 (discontinued, converted to crest-stage gage Mar. 5, 1985). Published as "Manantico Creek" prior to October 1978.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 36.63 ft National Geodetic Vertical Datum of

REMARKS.--Water-discharge records good except those for October 1, 1984 to March 5, 1985, which are fair, and those for summer months, which are poor. Occasional regulation from unknown source.

AVERAGE DISCHARGE .-- 33 years (water years 1932-57, 1978-84), 37.5 ft3/s, 22.84 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,050 ft³/s Aug. 20, 1939, gage height, 6.21 ft, from rating curve extended above 300 ft³/s; minimum, 1.4 ft³/s Aug. 16-18, 1936.

EXTREMES FOR CURRENT PERIOD.--Water year 1984: Peak discharges above base of 125 ft³/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Mar. 15	0015	150	2.77	Apr. 6	0615	174	2.99
Mar. 30	0930	148	2.75	May 31	1300	*247	3.44

Minimum daily discharge, 9.0 ft3/s Oct. 20.

OCTOBER 1984 TO FEBRUARY 1985: Maximum discharge during period, 87 ft³/s Feb. 13, gage height, 1.86 ft: minimum, 16 ft³/s Jan. 16, Feb. 8, gage height 0.85 ft.

		DISCH	ARGE, IN	CUBIC FE	ET PER SECO	OND, WATE	R YEAR O	CTOBER 198	33 TO SEPT	EMBER 198	34	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	10 14 47 29 21	20 20 19 22 24	38 37 36 46 64	42 39 39 38 38	40 37 36 42 43	74 59 52 48 48	77 66 61 61 117	61 54 50 53 58	207 136 96 79 69	35 35 32 30 29	26 15 26 30 27	16 15 15 32 43
6 7 8 9 10	18 16 15 14 14	22 21 20 20 24	60 57 51 44 41	38 38 37 36 36	41 37 35 34 34	65 70 61 56 53	163 114 81 68 63	58 53 52 67 71	60 55 52 48 45	30 43 97 87 53	24 23 20 18 18	32 25 22 21 19
11 12 13 14 15	14 21 30 30 25	37 39 34 29 33	38 41 54 65 61	52 51 43 39 37	35 36 36 36 56	50 50 56 116 127	60 58 55 58 65	58 50 46 43 40	42 40 37 40 39	50 65 62 47 40	20 32 46 37 25	18 18 18 18 27
16 17 18 19 20	22 20 19 16 9.0	71 77 55 41 36	54 45 41 39 37	36 34 34 35 34	80 67 55 49 45	83 67 60 56 54	83 91 75 68 62	39 37 36 37 37	37 38 67 88 71	36 53 74 84 63	17 19 22 20 21	25 23 20 19 18
21 22 23 24 25	15 17 19 38 41	57 66 52 44 67	36 48 68 60 47	33 31 31 35 62	42 40 42 73 81	53 54 51 49 51	57 53 61 75 69	38 38 36 45 44	53 46 42 40 44	48 45 43 39 36	20 19 18 18 17	17 16 16 16
26 27 28 29 30 31	33 27 23 22 21 20	87 70 51 44 41	40 36 43 71 71 52	75 65 54 45 41 42	62 51 63 87	63 62 62 102 141 105	60 53 50 61 66	37 38 36 36 100 219	41 37 36 35 34	32 32 33 32 33 29	16 16 15 18 18	16 16 17 22 22
TOTAL MEAN MAX MIN CFSM IN.	680.0 21.9 47 9.0 .94 1.09	1243 41.4 87 19 1.78 1.99	1521 49.1 71 36 2.12 2.44	1290 41.6 75 31 1.79 2.07	1415 48.8 87 34 2.10 2.27	2098 67.7 141 48 2.92 3.36	2151 71.7 163 50 3.09 3.45	1667 53.8 219 36 2.32 2.67	1754 58.5 207 34 2.52 2.81	1447 46.7 97 29 2.01 2.32	678 21.9 46 15 .94 1.09	618 20.6 43 15 .89
CAL YR	1983 TO	TAL 1408	7.6 MEA	N 38.6	MAX 187	MIN 7.9	CFSM	1.66 IN	. 22.59			

MIN 9.0

CFSM 1.95

IN. 26.56

37

01412000 MENANTICO CREEK NEAR MILLVILLE, NJ--Continued

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 MEAN VALUES

						HEAR TAL	OLD					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	24 37 36 29 25	22 21 20 20 26	25 23 24 24 23	20 21 22 24 26	21 38 45 35 28							
6 7 8 9 10	24 22 21 21 20	30 26 23 22 22	36 44 33 28 26	27 25 24 22 21	27 26 23 22 22							
11 12 13 14 15	19 19 19 18 18	25 38 36 28 25	25 24 24 23 22	21 20 20 20 20	21 29 76 64 41							
16 17 18 19 20	18 18 18 18	24 23 23 27 31	22 22 22 22 21	19 20 20 20 19	33 29 27 26 25							
21 22 23 24 25	18 18 19 20 22	28 25 24 23 23	21 23 23 22 22	18 18 18 18	24 24 24 24 24							
26 27 28 29 30 31	22 22 21 22 24 23	22 22 21 26 28	21 21 21 21 20 20	19 18 18 18 18	23 23 22 							
TOTAL MEAN MAX MIN CFSM IN.	673 21.7 37 18 .94 1.08	754 25.1 38 20 1.08 1.21	748 24.1 44 20 1.04 1.20	630 20.3 27 18 .87	846 30.2 76 21 1.30 1.36							

CAL YR 1984 TOTAL 15293 MEAN 41.8 MAX 219 MIN 15 CFSM 1.80 IN. 24.52

COHANSEY RIVER BASIN

01412800 COHANSEY RIVER AT SEELEY, NJ

LOCATION.--Lat 39°28'21", long 75°15'21", Cumberland County, Hydrologic Unit 02040206, on right bank just downstream from bridge on Silver Lake Road, 0.6 mi south of Seeley, 2.6 mi east of Shiloh, 4.1 mi north of Bridgeton, and 22.5 mi upstream from mouth.

DRAINAGE AREA .-- 28.0 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1977 to current year.

GAGE .-- Water-stage recorder. Datum of gage is 26.9 ft National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records fair prior to May 4 and poor thereafter. Flow diverted above gage during summer months for irrigation.

AVERAGE DISCHARGE.--7 years, 39.4 ft3/s, 19.11 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 10,000 ft³/s June 21, 1983, includes discharge from dam break at Seeley Lake 1.3 mi upstream, gage height, 8.50 ft, from rating curve extended above 600 ft³/s on basis of step-backwater computation of peak flow; minimum, 13 ft³/s Sept. 13, 1981, gage height, 2.71 ft.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 250 ft3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Dec. 28 Jan. 25 Apr. 5	2330 2045 1530	293 *399 293	5.08 5.35 5.08	May 30 July 19	1015 0245	328 293	5.17 5.08

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

Minimum daily discharge, 21 ft3/s Sept. 10, 11, 12, 13, 22.

		DICCHINGE,	IN OUDI	O I EEI I EK	MEAN	VALUES	OOTOBER	1903 10	DEI TENDEN	1704		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	28	27	35	37	39	40	48	56	52	70	31	25
2	29	28	34	37	34	37	47	53	33	48	31	25
3	28	29	35	38	35	37	48	53	30	40	32	27
4	27	35	79	38	47	36	52	61	29	34	32	67
5	26	32	81	39	43	42	217	54	29	33	53	33
6	25	30	53	40	36	51	122	47	30	41	47	25
7	24	30	49	39	34	42	64	48	31	52	32	22
8	24	30	39	37	32	38	55	63	29	80	29	22
9	24	29	36	36	31	42	52	135	28	41	27	22
10	24	40	36	39	31	38	51	63	27	36	31	21
11	25	56	36	72	35	39	51	42	26	38	38	21
12	38	46	52	42	35	39	49	40	25	52	53	21
13	40	36	89	36	33	59	49	39	24	39	93	21
14	43	33	84	36	35	148	51	38	49	33	42	25
15	32	48	53	37	65	74	54	37	31	32	32	133
16	29	121	44	35	60	50	70	37	29	31	30	32
17	27	63	40	34	43	46	67	37	31	50	29	24
18	28	39	38	36	41	44	57	36	73	92	28	23
19	29	34	39	37	37	43	54	38	70	184	30	23
20	29	33	36	34	36	43	52	38	39	48	32	23
21	27	128	35	33	34	49	51	40	33	51	28	22
22	26	72	70	31	33	48	49	37	31	106	27	21
23	36	40	70	32	40	44	67	36	31	51	28	22
24	67	44	47	40	111	42	65	42	35	38	28	22
25	43	93	31	225	56	48	58	34	52	34	26	23
26 27 28 29 30 31	34 31 29 28 27	85 46 40 40 36	37 35 86 192 58 40	236 92 53 41 39 55	40 37 52 49	58 47 63 122 90 55	54 52 51 64 58	31 36 32 51 241 114	39 36 35 34 39	32 33 33 33 33 33	26 26 29 29 27	23 23 31 34 28
TOTAL	954	1443	1689	1656	1234	1654	1879	1709	1080	1551	1052	884
MEAN	30.8	48.1	54.5	53.4	42.6	53.4	62.6	55.1	36.0	50.0	33.9	29.5
MAX	67	128	192	236	111	148	217	241	73	184	93	133
MIN	24	27	31	31	31	36	47	31	24	31	26	21
CFSM	1.10	1.72	1.95	1.91	1.52	1.91	2.24	1.97	1.29	1.79	1.21	1.05
IN.	1.27	1.92	2.24	2.20	1.64	2.20	2.50	2.27	1.43	2.06	1.40	1.17

CAL YR 1983 TOTAL 17317 MEAN 47.4 MAX 2150 MIN 16 CFSM 1.69 IN. 23.01 WTR YR 1984 TOTAL 16785 MEAN 45.9 MAX 241 MIN 21 CFSM 1.64 IN. 22.30

COHANSEY RIVER BASIN

01412800 COHANSEY RIVER AT SEELEY, NJ -- Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1975 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	TIME	FLO INST TAN	EAM- CI OW, CO TAN- DU EOUS AN	ICE	PH STAND- ARD NITS)	AT	PER- URE G C)	DXYGEN, DIS- SOLVED (MG/L)	OXYGEN DIS- SOLVE (PER- CENT SATUR ATION	DEM D BI CH IC	GEN IAND, IO- IEM- CAL, DAY	COLI- FORM, FECAL, EC BROTH (MPN)	STRE TOCOC FECA (MPN	CCI
OCT 20 JAN	1100		29	220	6.8		13.0	8.7	· ·	-	<.4	130	3	350
24 APR	1220		35	235	7.5		4.0	13.2	-	-	E1.1	20	1	130
03 MAY	1100		49	198	6.6		11.0	11.2	-	-	E1.4	20		21
16	1300		37	205	6.7		14.0	9.8	-	-	E1.6	330		46
JUL 11	1250		37	195	6.6		21.0	7.9	-	-	E1.6	330	9	920
AUG 07	1300		32	192	6.7		23.5	7.4	8	7	E1.9	1300	>24	100
DATE	HAR NES (MG AS	SS G/L	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE SIUM DIS- SOLVE (MG/L AS MG	, SODI DIS D SOLV	S- '	POTAS SIUN DIS- SOLVE (MG/I AS K)	A, LINI LA ED (MG AS	TY SUB D/L S	LFATE IS- OLVED MG/L SO4)	CHLO RIDE DIS- SOLV (MG/ AS C	ED SOIL (MC	JO- DE, IS- LVED G/L F)	
OCT 20 JAN		64	13	7.7	12	2	5.	1 19		25	30		<.10	
24 APR		61	12	7.6	11	1	5.	1 11		25	26		(.10,	
03 MAY		53	11	6.2	9	9.0	3.	7 10		25	20		C.10	
16 JUL		58	12	6.7	9	9.7	4.	1 14		23	23		.10	
11 AUG		53	11	6.2	9	9.4	4.	1 15		20	23		.20	
07		55	11	6.6	9	9.5	4.	16		20	23		.10	
DATE	(MC	S- LVED G/L	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO GEN, NITRIT TOTAL (MG/L AS N)	GE E NO2- TO: (MC	TRO- EN, +NO3 TAL G/L N)	NITRO GEN AMMON TOTAL (MG/I AS N	, MONÍ IA ORGA TOT . (MG	AM- A + N NIC AL T /L (ITRO- GEN, OTAL MG/L S N)	PHOS PHORU TOTA (MG/ AS P	IS, ORG.	BON, ANIC TAL G/L C)	
OCT 20		5.8	125	.03	7 3	3.9	. 18	30	.41	4.3	.0	060	4.1	
JAN 24		8.7	144	.02	7 5	5.5	. 1	50	.12	5.6	. 1	60	3.2	
APR 03		6.0	102	.02	4 1	4.1	. 10	00 E	.48		.0	90	3.5	
MAY 16		7.1	166	.05	0 1	4.3	. 10	50	.86	5.1	. 1	80	4.1	
JUL 11		7.3	149	.03	1 3	3.4	. 1	10	.92	4.3	. 1	50	4.6	
AUG 07	•	7.3	154	.02	0 3	3.7	.00	50	.62	4.3	. 1	00	3.8	

COHANSEY RIVER BASIN

01412800 COHANSEY RIVER AT SEELEY, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	TIME	SULFI TOTA (MG/ AS S	L SOL'L (UG	M, S- ARSE VED TOT /L (UG	TO: TO: TAL ERA	TAL TO COV- RE ABLE ER G/L (U	RON, TAL COV- ABLE G/L B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	TOTAL RECOVERABLE (UG/I	COPPE TOTA V- RECO LE ERAB L (UG/	L V- LE L
OCT											
20 MAY	1100	<	.5	50	1	10	50		1	10	3
16	1300	<	.5	10	1	<10	20	<1	1	20	4
DAT	T R E (RON, OTAL ECOV- RABLE UG/L S FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SE NI TO (U	LE- T UM, F TAL E G/L (UG/L	PHENOLS TOTAL (UG/L)	
OCT 20. MAY		360	8	50	<.1	4		<1	10	5	
16.	• •	2300	5	150	<.1	4		<1	20	<1	

01434000 DELAWARE RIVER AT PORT JERVIS, NY

LOCATION.--Lat 41°22'14", long 74°41'52", Pike County, PA, Hydrologic Unit 02040104, on right bank 250 ft downstream from bridge (on U.S. Highways 6 and 209) between Port Jervis, NY and Matamoras, PA, 1.2 mi upstream from Neversink River, and 6.5 mi downstream from Mongaup River. Water-quality sampling site at discharge station.

DRAINAGE AREA .-- 3.070 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1904 to current year.

REVISED RECORD.--WSP 1031: 1905-36. WDR NY-71-1: 1970. WDR NY-82-1: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 415.35 ft National Geodetic Vertical Datum of 1929. October 1904 to August 13, 1928, nonrecording gage at bridge 250 ft upstream at present datum; operated by U.S. Weather Bureau prior to June 20, 1914.

REMARKS.--Water-discharge records good. Flow regulated by Lake Wallenpaupack and by Toronto, Cliff Lake, and Swinging Bridge Reservoirs (see Reservoirs in Delaware River Basin) and smaller reservoirs. Large diurnal fluctuations at medium and low flows caused by powerplants on tributary streams. Subsequent to September 1954, entire flow from 371 mi² of drainage area controlled by Pepacton Reservoir, and subsequent to October 1963, entire flow from 454 mi² of drainage area controlled by Cannonsville Reservoir (see Reservoirs in Delaware River Basin). Part of flow from these reservoirs diverted for New York City municipal supply. Remainder of flow (except for conservation releases and spill) impounded for release during periods of low flow in the lower Delaware River basin, as directed by the Delaware River Master.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 233,000 ft³/s Aug. 19, 1955, gage height, 23.91 ft, from floodmarks in gage house, from rating curve extended above 89,000 ft³/s on basis of slope-area measurement of peak flow; maximum gage height, 26.6 ft Feb. 12, 1981 (ice jam), from floodmarks; minimum observed discharge, 175 ft³/s Sept. 23, 1908, gage height, 0.6 ft.

EXTREMES OUTSIDE PERIOD OF RECORD.--The U.S. Weather Bureau reported a discharge of 205,000 ft³/s Oct. 10, 1903, gage height, 23.1 ft, from rating curve extended above 70,000 ft³/s by velocity-area studies; stage on Mar. 8, 1904, was 25.5 ft, ice jam.

DIGGUARGE THE GURLE PERM PER GROUP HAMPE WEAR COMPONED 1092 MO SERMEMPER 1091

EXTREMES FOR CURRENT YEAR.--Maximum discharge, $84,400 \text{ ft}^3/\text{s}$ May 30, gage height, 14.04 ft; minimum, 759 ft $^3/\text{s}$ Oct. 16, gage height, 1.71 ft; minimum daily, 1,120 ft $^3/\text{s}$ Oct. 16.

		DI	SCHA	RGE, IN	CUBIC FEET	PER SEC	COND, WATER MEAN VALUES	YEAR OC	TOBER 1983	TO SEPTI	EMBER 1984		
DAY	OCT	N	OV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1590 1620 1480 1290 1510	15 15 15	60 80 80 80 80	5750 4660 3760 3370 3620	3490 3420 3430	1700 1600 1700 1600 2000	5190 4690 4120	4700 5430 6290 7890 28300	6050 5230 4760 9490 13300	35500 22900 17500 14500 11200	8410 14400 8380 5560 4570	2530 2970 2730 2620 2110	1540 1540 1590 1740 1770
6 7 8 9 10	1640 1710 1580 1540 1540	16 16 15	80 40 10 30 30	4130 11000 12300 8490 6450	2610 2100 2400	2900 3420 3350 2610 2740	4670 3990	52300 31500 21400 16100 13200	11500 10400 8970 10500 10600	9060 7780 6760 5480 4240	4600 8450 7780 6080 5160	2310 2740 2730 2830 2200	1600 1640 1540 1580 1520
11 12 13 14 15	1570 1830 1660 1510 1130	15 17 15	30 00 80 90 30	4980 4730 17100 56900 34400	2500 3000 2600	2080 2180 3030 5600 34500	2830 3270 3320	11400 10000 8880 8020 8780	9260 7760 8050 8870 10300	4090 4310 3980 4110 3940	4640 4480 4360 3970 3330	2030 1650 1880 2180 1920	1490 1510 1490 1730 1730
16 17 18 19 20	1120 1280 1370 1740 1710	14 12 16	60 40 80 80	19800 13500 10600 8850 7180	2500 2400 2400	42500 23000 15600 12700 12800	4760 4110 4550	13200 22700 19700 16800 17300	9850 8700 7800 6640 5830	3360 2440 2650 3110 2860	3240 3420 3650 4120 3880	1840 2230 1990 1690 1710	1770 1580 1450 1710 1660
21 22 23 24 25	1670 1760 1640 1730 1690	26 26 20	30 10 10 50	6510 5550 5880 5890 5390	1900 1900 1900	11400 9320 7960 8390 8150	8410 8320 6600	15100 12500 11500 11200 10600	6280 6570 5800 6960 6680	1890 1630 1550 1720 1840	3020 1820 2060 3010 2620	1840 1970 1750 1800 1770	1610 1670 1620 1540 1690
26 27 28 29 30 31	1530 1610 1510 1460 1460 1450	48 43 53 73	50 50 40 70 320	4590 4320 3960 4430 5560 5150	2900 2800 2100 1600	7150 6410 6170 6490	5590 5480 6010 5980	9740 8690 7300 5940 5870	5700 5430 4830 39900 75300 55400	1890 1640 1420 1490 4460	2230 2340 3100 2940 2500 2780	1490 1560 1700 1800 1750 2040	1720 1690 1490 1520 1560
TOTAL MEAN MAX MIN	47930 1546 1830 1120	73	50 352 320 280	298800 9639 56900 3370	2517 4090	249050 8588 42500 1600	4859 8410	422330 14080 52300 4700	392710 12670 75300 4760	189300 6310 35500 1420	140900 4545 14400 1820	64360 2076 2970 1490	48290 1610 1770 1450
CAL YR WTR YR	1983 1984	TOTAL TOTAL	195		MEAN 5351 MEAN 5882	MAX MAX	56900 MIN 75300 MIN	1020 1120					

01434000 DELAWARE RIVER AT PORT JERVIS. NY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1957-60, 1964 to current year.

CHEMICAL DATA: 1958-59(e), 1964-65(c), 1966(a), 1967-68(c), 1969-76(d).

MINOR ELEMENTS DATA: 1970(a), 1972-73(a), 1974-76(c).

PESTICIDE DATA: 1974(a).

ORGANIC DATA: 0C--1974(b), 1975(d).

NUTRIENT DATA: 1968(a), 1969-76(d).

BIOLOGICAL DATA: Bacteria--1973-76(d) Phytoplankton--1974(b), 1975-76(c). Periphyton--1976(a). SEDIMENT DATA: 1959(c), 1976(c).

PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: January 1973 to September 1973.
WATER TEMPERATURES: February 1957 to September 1960, January 1973 to September 1973, June 1974 to current year.
SUSPENDED-SEDIMENT DISCHARGE: February 1957 to September 1960, March 1970 to June 1976.

INSTRUMENTATION .-- Temperature recorder since January 1973.

REMARKS. -- No temperature record Sept. 24-30, due to instrument malfunction.

EXTREMES FOR PERIOD OF DAILY RECORD.-WATER TEMPERATURES: Maximum (water years 1957-59, 1973-81, 1983-84), 30.0°C July 13, 1981; minimum (water years 1958-60, 1973, 1975-84), freezing point on many days during winter periods, except 1984.

EXTREMES FOR CURRENT YEAR .--

WATER TEMPERATURES: Maximum, 27.5°C Aug. 15-17; minimum, 1.0°C on many days during winter period.

TEMPERATURE (DEG. C) OF WATER, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

		_		(2200 0)		***************************************	amini ooloban	->->				
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBE	R		NOVEMBER			DECEMBE	R		JANUAR	Y
1 2 3 4 5	16.5 18.0 19.0 19.0 20.0	16.0 16.5 17.0 17.5 18.5	16.5 17.5 18.0 18.5 19.5	7.5 8.0 8.5 8.5 7.5	6.5 7.0 8.0 7.5 6.5	7.0 7.5 8.0 8.0 7.0	5.0 4.0 4.0 3.0 3.5	4.0 3.5 3.5 3.0 3.0	4.5 4.0 3.5 3.0	1.0 1.0 1.0 1.5	1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0
6 7 8 9	19.5 18.0 17.0 16.5 15.5	18.5 17.0 15.5 15.5 14.5	19.0 17.5 16.5 16.0 15.0	7.0 8.0 8.0 8.0	6.0 6.5 6.5 7.0 7.0	6.5 7.5 7.5 7.5 7.5	4.5 4.5 4.0 3.0 3.5	3.5 4.0 3.0 2.5 2.5	4.0 4.0 3.5 2.5 3.0	2.0 1.5 1.0 1.0	1.5 1.0 1.0 1.0	1.5 1.5 1.0 1.0
11 12 13 14 15	15.0 15.0 16.0 16.5 15.5	14.0 14.0 15.0 15.5 14.0	14.0 14.5 15.5 16.0 14.5	8.5 8.5 5.5 5.5	8.0 6.0 4.5 4.5 5.0	8.5 7.0 5.0 5.0	3.0 3.0 4.5 5.5 6.0	2.5 2.5 3.0 4.5 5.5	3.0 2.5 4.0 5.5 6.0	1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0
16 17 18 19 20	14.5 13.5 13.5 14.0 13.5	13.0 13.0 13.0 13.0 12.5	14.0 13.5 13.5 13.5 13.0	6.0 6.0 5.0 6.0 7.5	5.0 5.0 4.5 4.5 5.5	5.5 5.5 4.5 5.0 6.5	6.0 5.5 4.0 3.0 1.5	5.5 4.0 3.0 1.5	6.0 5.0 3.5 2.5	1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0
21 22 23 24 25	12.5 11.5 11.0 11.5 11.0	11.0 10.5 10.5 10.5	12.0 11.0 10.5 11.0	8.5 8.5 8.5 8.5	8.0 7.5 7.5 7.5 6.0	8.0 8.0 8.0 7.0	1.0 1.5 1.5 1.0	1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0
26 27 28 29 30 31	10.5 10.0 10.0 10.0 8.5 8.0	10.0 9.0 8.0 8.5 7.5 7.0	10.0 9.5 9.0 9.5 8.0 7.5	6.0 5.5 5.5 5.5 5.0	5.5 5.0 5.0 5.0	5.5 5.0 5.0 4.5	1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0
MONTH	20.0	7.0	13.5	8.5	4.5	6.5	6.0	1.0	3.0	2.0	1.0	1.0

01434000 DELAWARE RIVER AT PORT JERVIS, NY--Continued

43

TEMPERATURE (DEG. C) OF WATER, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

The color of the
2 1.0 1.0 1.0 2.0 1.0 1.5 2.0 1.0 1.5 7.0 5.5 6.5 14.0 12.5 13.5 12.5 13.5 13.1 1.0 1.0 1.0 1.0 2.5 11.0 2.0 8.0 6.5 7.0 13.5 12.5 12.5 12.5 12.5 13.0 1.0 1.0 1.0 2.0 1.5 2.0 6.5 6.0 6.5 7.0 13.5 12.5 12.5 12.5 12.5 13.0 1.0 1.0 1.0 2.0 1.5 2.0 6.5 6.0 6.5 7.0 13.5 12.5 11.5 12.5 13.5 11.0 11.0 1.0 1.0 1.0 2.0 1.5 2.0 6.5 6.0 6.5 7.0 12.5 11.0 11.5 11.5 11.5 12.5 13.5 11.0 11.0 11.0 1.0 1.0 3.5 1.5 2.5 6.5 6.0 6.5 7.0 12.5 11.0 11.5 12.0 11.0 11.0 1.0 1.0 3.5 1.5 2.0 3.0 6.0 5.5 5.5 5.5 13.0 12.0 12.5 12.5 13.0 11.0 11.0 1.0 1.0 1.0 2.5 1.0 1.0 2.0 6.5 5.0 5.5 13.0 12.0 12.5 12.5 13.0 11.0 11.0 1.0 1.0 2.5 1.0 1.0 1.5 7.5 6.0 6.5 5.0 13.0 12.5 12.5 13.0 12.0 12.5 13.0 11.5 11.5 12.0 11.5 1.0 1.0 1.0 2.5 1.0 1.5 7.5 6.5 6.0 6.5 7.0 12.5 13.0 12.5 13.5 12.5 13.0 12.5 13.5 12.5 13.0 12.5 13.5 12.5 13.0 11.5 12.0 11.5 1.5 1.0 1.0 1.0 2.5 1.0 1.5 7.5 6.5 6.0 6.5 7.0 12.5 11.5 12.0 12.5 13.0 12.5 13.5 12.5 13.0 12.5 13.5 12.5 13.0 12.5 13.5 12.5 13.0 12.5 13.5 12.5 13.0 12.5 13.5 12.5 13.0 12.5 13.5 12.5 13.0 12.5 13.5 12.5 13.0 12.5 13.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12
7 1.0 1.0 1.0 3.5 2.0 3.0 6.0 5.5 5.5 13.0 12.0 12.5 8 1.0 1.0 1.0 1.0 1.0 2.5 1.0 1.0 1.5 5.5 5.5 13.0 12.5 13.0 9 1.0 1.0 1.0 1.0 1.0 2.5 1.0 1.5 7.5 6.0 6.5 5.0 13.0 12.5 13.0 13.0 12.5 13.0 13.0 12.5 13.0 13.0 12.5 13.0 13.0 12.5 13.0 13.0 12.5 13.0 13.0 12.5 13.0 13.0 12.5 13.0 13.0 12.5 13.0 13.5 13.0 13.5 13.0 13.5 13.0 13.5 13.0 13.5 13.0 13.5 13.0 13.5 13.0 13.5 13.0 13.5 13.0 13.5 13.0 13.5 13.0 13.5 13.0 13.5 13.0 13.5 13
12
177 5.0 4.0 4.5 1.5 1.0 1.0 10.5 1.0 1.0 10.5 1.0 1.0 10.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
14.5 3.5 4.0 5.5 5.0 5.0 5.0 6.0 8.0 8.5 17.5 14.0 15.5
27
DAY MAX MIN MEAN JUNE JULY AUGUST SEPTEMBER 1 14.0 13.0 13.5 20.5 19.5 20.5 25.5 22.5 24.0 24.0 22.5 23.0 21.5 22.0 20.0 21.0 25.5 24.0 25.0 23.0 21.5 22.0 20.0 21.0 25.5 24.0 25.0 23.0 21.5 22.0 20.0 21.0 25.5 24.0 25.0 23.0 21.5 22.0 20.0 21.0 25.5 24.0 25.0 22.5 21.5 22.0 20.0 21.0 25.5 24.0 25.0 22.5 21.5 22.0 20.0 21.0 25.0 26.5 24.5 25.0 22.5 21.5 22.0 20.5 17.5 15.5 16.5 24.0 22.5 23.0 26.0 25.0 25.5 21.5 22.0 26.5 24.5 25.0 22.5 21.5 22.0 26.5 24.5 25.0 22.5 21.5 22.0 26.5 24.5 25.0 22.5 21.5 22.0 26.5 24.5 25.0 22.5 21.5 19.5 20.5 20.5 20.0 20.5 21.0 26.0 25.0 25.5 21.5 19.5 20.5 20.5 20.0 20.5 21.0 26.0 24.5 25.5 20.0 18.5 19.0 20.5 20.0 20.5 21.0 26.0 24.5 25.5 20.0 17.5 18.5 20.0 20.5 21.0 20.0 20.5 27.0 24.0 25.5 20.0 17.5 19.0 20.0 20.5 22.0 20.5 19.5 20.0 26.5 25.0 25.5 20.5 18.5 19.5 20.0 25.5 23.0 24.0 25.5 23.0 26.5 25.0 25.5 20.5 18.5 19.5 20.0 25.5 24.0 25.5 20.5 18.5 19.5 20.0 25.5 24.0 25.5 20.5 18.5 19.5 20.0 25.5 24.0 25.5 20.0 17.5 19.0 20.0 20.5 25.5 24.0 25.5 20.5 19.5 20.0 25.5 24.0 25.5 20.5 19.5 20.0 25.5 24.5 25.0 20.5 19.5 20.0 20.5 25.5 24.5 25.0 20.5 19.0 20.0 20.5 25.5 24.5 25.0 20.5 19.0 20.0 20.5 25.5 24.5 25.0 20.5 19.0 20.0 20.5 25.5 24.5 25.0 20.5 19.0 20.0 20.5 21.5 22.0 20.5 21.
JUNE JULY AUGUST SEPTEMBER 1 14.0 13.0 13.5 20.5 19.5 20.5 25.5 22.5 24.0 24.0 22.5 23.0 21.5 22.0 3.0 15.5 13.5 14.5 21.0 19.0 20.0 25.5 24.0 24.5 22.5 21.5 22.0 3 15.5 14.5 15.0 22.0 20.0 21.0 25.5 24.0 25.0 23.0 21.5 22.0 4 15.5 14.0 15.0 23.0 20.5 22.0 26.5 24.5 25.0 22.5 21.5 22.0 5 17.5 15.5 16.5 24.0 22.5 23.0 26.0 25.0 25.5 21.5 19.5 20.5 21.5 22.0 26.5 24.5 25.0 25.5 21.5 19.5 20.5 21.5 22.0 26.5 24.5 25.0 25.5 21.5 19.5 20.5 21.5 22.0 26.5 24.5 25.0 25.5 21.5 19.5 20.5 21.5 22.0 26.5 24.5 25.0 25.5 21.5 19.5 20.5 21.0 26.0 25.0 25.5 21.5 19.5 20.5 21.0 26.0 25.0 25.5 21.5 19.5 20.5 21.0 26.0 25.5 25.5 21.5 19.5 20.5 21.0 26.0 24.5 25.5 20.0 18.5 19.0 21.0 20.0 20.5 21.0 26.0 24.5 25.5 20.0 17.5 19.0 25.5 22.0 20.5 19.5 20.0 25.5 25.0 25.5 20.5 18.5 19.5 25.0 20.5 22.0 20.5 19.5 20.0 25.5 25.0 25.5 20.5 18.5 19.5 20.0 25.5 23.0 24.0 25.5 22.0 20.5 19.5 20.0 25.5 24.5 25.0 20.5 19.5 20.0 20.5 25.5 24.5 25.0 20.5 19.5 20.0 20.5 25.5 24.5 25.0 20.5 19.5 20.0 20.5 25.5 24.5 25.0 20.5 19.5 20.0 20.5 25.5 24.5 25.0 20.5 19.5 20.0 20.5 25.5 24.5 25.0 20.5 19.5 20.5 20.0 20.5 25.5 24.5 25.0 20.5 19.5 20.5 20.0 20.5 25.5 24.5 25.0 20.5 19.0 20.0 20.5 25.5 24.5 25.0 20.5 19.0 20.5 25.5 24.5 25.0 24.5 25.0 20.5 25.5 24.5 25.0 20.5 25.5 22.0 20.5 25.5 22.0 20.5 25.
1 14.0 13.0 13.5 20.5 19.5 20.5 25.5 22.5 24.0 24.0 22.5 23.0 2 15.5 13.5 14.5 21.0 19.0 20.0 25.5 24.0 24.5 22.5 21.5 22.0 2 15.5 14.5 15.0 22.0 20.0 21.0 25.5 24.0 25.0 23.0 21.5 22.0 2 15.5 14.0 15.0 23.0 20.5 22.0 26.5 24.5 25.0 22.5 21.5 22.0 2 15.5 14.0 15.0 23.0 20.5 22.0 26.5 24.5 25.0 22.5 21.5 22.0 2 17.5 15.5 16.5 24.0 22.5 23.0 26.0 25.0 25.5 21.5 19.5 20.5 20.5 21.0 18.0 19.5 22.0 22.5 23.0 26.0 25.0 25.5 21.5 19.5 20.5 20.5 21.0 18.0 19.5 22.0 20.5 21.0 26.0 24.5 25.5 19.5 17.5 18.5 22.0 20.5 19.5 21.0 21.0 20.0 20.5 27.0 24.0 25.5 20.0 17.5 18.5 22.0 25.5 23.0 26.5 24.0 25.5 25.5 20.0 17.5 18.5 22.0 25.5 23.0 26.5 24.0 25.5 25.5 20.0 17.5 18.5 20.0 25.5 25.0 20.5 25.5 20.0 17.5 19.0 20.0 20.5 25.5 25.0 25.5 20.5 18.5 19.5 25.5 23.0 24.0 20.5 19.5 20.0 26.5 25.5 25.0 25.5 20.5 18.5 19.5 20.0 25.5 23.0 24.0 25.5 23.0 24.0 20.5 25.5 24.5 25.0 20.5 19.0 20.0 20.5 25.5 24.5 25.0 20.5 19.0 20.0 20.5 25.5 24.5 25.0 20.5 19.0 20.0 20.5 25.5 24.5 25.0 20.5 19.0 20.0 20.5 25.5 24.5 25.0 20.5 19.5 20.0 25.5 25.0 24.5 25.0 20.5 19.0 20.0 20.0 20.5 25.5 24.5 25.0 20.5 19.0 20.0 20.0 20.5 25.5 24.5 25.0 20.5 19.0 20.0 20.5 25.5 24.5 25.0 20.5 19.0 20.0 20.5 25.5 24.5 25.0 20.5 19.0 20.0 20.5 25.5 24.5 25.0 20.5 19.0 20.0 20.5 25.5 24.5 25.0 24.5 25.0 20.5 21.5 22.0 20.5 21.5
4 15.5 14.0 15.0 23.0 20.5 22.0 26.5 24.5 25.0 22.5 21.5 19.5 20.5 17.5 15.5 16.5 24.0 22.5 23.0 26.0 25.0 25.5 21.5 19.5 20.5 19.5 20.5 19.5 21.0 21.0 20.0 20.5 21.0 26.0 24.5 25.5 20.0 18.5 19.0 21.0 20.0 20.5 27.0 24.0 25.5 20.0 17.5 18.5 19.0 25.5 22.0 20.5 19.5 20.0 26.5 25.0 25.5 20.0 17.5 19.0 25.5 22.0 20.5 19.5 20.0 26.5 25.0 25.5 20.5 18.5 19.5 10 25.5 23.0 24.0 20.5 19.5 20.0 25.5 24.5 25.0 20.5 19.0 20.0 11 26.5 24.0 25.5 22.0 20.0 21.0 25.5 22.0 20.5 27.0 24.0 25.5 25.0 20.5 19.0 20.0 11 26.5 24.0 25.5 22.0 20.0 21.0 25.0 23.5 24.0 21.5 19.5 20.5 12.5 25.0 22.5 24.0 24.5 25.0 24.5 25.0 20.5 21.5 20.5 21.5 20.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21
7 21.0 18.0 19.5 22.0 20.5 21.0 26.0 24.5 25.5 19.5 17.5 18.5 8 22.5 19.5 21.0 21.0 20.0 20.5 27.0 24.0 25.5 20.0 17.5 19.0 9 25.0 20.5 22.0 20.5 19.5 20.0 26.5 25.0 25.5 20.5 18.5 19.5 10 25.5 23.0 24.0 20.5 19.5 20.0 25.5 24.5 25.0 20.5 19.0 20.0 11 26.5 24.0 25.5 22.0 20.0 21.0 25.0 23.5 24.0 21.5 19.5 20.5 12 25.0 22.5 24.0 24.5 20.5 22.5 24.5 25.0 24.5 22.0 20.5 21.5 25.0 24.5 22.0 20.5 21.5
11 26.5 24.0 25.5 22.0 20.0 21.0 25.0 23.5 24.0 21.5 19.5 20.5 12 25.0 22.5 24.0 24.5 20.5 22.5 25.0 24.0 24.5 22.0 20.5 21.5
13 24.5 23.0 23.5 24.5 22.5 23.5 26.5 24.5 25.5 22.0 20.5 21.5 14 23.5 22.0 23.0 25.0 23.0 24.0 27.0 25.0 26.0 21.5 20.5 21.0 15 22.5 20.5 21.5 26.0 23.5 25.0 27.5 25.0 26.5 20.5 17.0 19.5
16 21.0 19.0 20.0 26.0 24.5 25.5 27.5 25.0 26.5 19.0 16.5 17.5 17 20.0 19.5 19.5 26.0 24.0 25.0 27.5 24.5 26.0 18.0 16.5 17.5 18 20.0 19.0 19.5 24.5 23.0 23.5 26.0 23.5 25.0 18.0 16.5 17.5 19 22.5 19.0 21.0 23.5 22.0 23.0 24.0 23.0 23.0 23.0 23.0 18.5 17.0 18.0 20 24.0 21.5 22.5 24.0 22.0 23.0 23.5 22.0 22.5 20.0 18.0 19.0
21 24.5 21.0 23.0 23.0 22.0 22.5 23.5 20.5 22.5 20.0 18.0 19.0 22 25.0 22.0 23.5 25.0 21.5 23.0 24.0 21.0 22.5 20.5 18.5 19.5 23 24.5 22.5 23.5 26.0 23.5 24.5 24.0 22.0 23.0 21.5 20.0 20.5 24 24.0 22.0 22.5 25.5 24.5 25.0 23.5 21.5 22.5 25 24.0 21.0 22.5 25.5 23.5 24.5 23.5 21.0 22.5
26
MONTH 26.5 13.0 21.0 26.0 19.0 22.5 27.5 20.5 24.0 16.5 20.0

01437500 NEVERSINK RIVER AT GODEFFROY, NY

LOCATION.--Lat 41°26'28", long 74°36'07", Orange County, NY, Hydrologic Unit 02040104, on right bank just upstream from highway bridge on Graham Road, 0.5 mi downstream from Basher Kill, 0.8 mi southeast of Godeffroy, 1.7 mi south of Cluddebackville, and 8.5 mi upstream from mouth.

DRAINAGE AREA .-- 307 mi2.

CAL YR 1983

WTR YR 1984

TOTAL 193534

207406

MEAN

567

TOTAL

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--August to October 1903, July 1937 to current year. Gage heights and discharge measurements, August 1909 to April 1914. Twice-daily figures of discharge, January 1911 to December 1912, which do not represent daily mean discharges because of diurnal fluctuation. August to October 1903, published as "Navesink River at Godeffrov. NY."

REVISED RECORD. -- WSP 1502: 1951(M). WDR NY-82-1: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 459.66 ft National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers). Prior to Apr. 30, 1914, nonrecording gages at same site (August to October 1903 at datum 0.98 ft higher).

REMARKS.--Water-discharge records fair except those for winter periods, which are poor. Prior to 1949, diurnal fluctuation at low and medium flow caused by powerplant at Cuddebackville. Subsequent to June 1953, entire flow from 91.8 mi² of drainage area controlled by Neversink Reservoir (see Reservoirs in Delaware River Basin). Part of flow diverted for New York City municipal supply. Remainder of flow (except for conservation releases and spill), impounded for release during periods of low flow in the lower Delaware River basin, as directed by the Delaware River Master.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 33,000 ft³/s Aug. 19, 1955, gage height, 12.49 ft, from rating curve extended above 11,000 ft³/s on basis of slope-area measurment of peak flow; practically no flow several times in July 1911.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 10,800 ft3/s Apr. 5, gage height, 10.00 ft; minimum, 75 ft3/s Sept. 8, 9, 26; minimum gage height, 3.04 ft Sept. 3.

		DISCHA	RGE, IN (CUBIC FEET	PER SECON	ND, WATER AN VALUES	YEAR OCT	OBER 1983	TO SEPTE	MBER 1984		
DAY	OCT	VOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	121	126	523	350	200	654	607	460	3540	1030	192	113
2	128	151	453	340	190	577	706	423	2520	1120	197	109
3	128	150	408	320	220	520	818	412	1890	740	207	96
4	108	146	394	342	286	470	930	1390	1520	778	215	105
5	103	161	387	347	351	465	6360	1180	1030	566	222	94
6 7 8 9	113 108 102 99 98	141 123 117 113 112	433 1130 726 586 517	341 324 280 270 294	325 295 280 260 258	509 497 420 400 370	5360 3390 2420 1820 1410	944 808 769 883 722	784 658 557 496 449	517 2040 1320 967 798	218 211 207 198 184	88 82 79 77 82
11	97	192	462	270	263	350	1170	640	404	658	204	83
12	107	386	441	260	337	330	950	591	361	576	220	87
13	121	249	1810	250	438	310	824	581	339	482	216	82
14	123	177	2990	240	627	340	739	582	364	418	205	80
15	116	162	1940	230	2390	400	804	537	341	382	189	85
16	107	264	1460	230	2390	452	1590	494	314	359	182	89
17	101	278	1190	220	1650	520	2210	455	319	333	190	83
18	105	213	986	220	1340	565	2340	420	325	395	178	81
19	176	199	840	210	1220	540	1980	399	299	383	158	80
20	153	181	690	200	1510	603	1560	385	260	320	142	80
21	128	381	617	190	1190	779	1340	429	238	295	134	79
22	120	359	576	190	974	1170	1080	390	219	285	121	82
23	120	271	569	190	828	977	862	380	207	265	124	80
24	229	259	526	230	1030	854	795	631	216	256	120	79
25	214	668	490	260	990	769	735	460	306	239	112	79
26 27 28 29 30 31	175 177 158 140 141 137	620 541 476 653 639	480 450 420 529 450 400	288 268 261 245 234 220	875 729 722 771	699 623 601 639 615 575	679 609 553 522 487	422 499 547 3550 6810 5460	244 212 198 197 560	217 229 276 239 218 206	108 104 102 101 101 102	82 87 88 88 86
TOTAL	4053	8508	23873	8114	22939	17593	45650	32653	19367	16907	5164	2585
MEAN	131	284	770	262	791	568	1522	1053	646	545	167	86.2
MAX	229	668	2990	350	2390	1170	6360	6810	3540	2040	222	113
MIN	97	112	387	190	190	310	487	380	197	206	101	77

5070

6810

MAX

MIN

MTN

45

01438500 DELAWARE RIVER AT MONTAGUE, NJ

LOCATION.--Lat 41°18'33", long 74°47'44", Pike County, PA, Hydrologic Unit 02040104, on right bank 1,500 ft upstream from toll bridge (on U.S. Route 206) between Montague, N.J. and Milford, Pa. 0.8 mi downstream from Sawkill Creek, and at river mile 246.3.

DRAINAGE AREA .-- 3,480 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--March 1936 to September 1939 (gage heights only, published as "at Milford, PA"). October 1939 to current year. Monthly discharge only for some periods, published in WSP 1302.

REVISED RECORDS .-- WDR-NJ-81-2: 1980.

GAGE.--Water-stage recorder. Datum of gage is 369.93 ft National Geodetic Vertical Datum of 1929. Prior to Feb. 9, 1940, nonrecording gage on upstream side of left span of subsequently dismantled bridge at present site at datum 70 ft lower.

REMARKS.--Water-discharge records excellent except those for winter months, which are good. Diurnal fluctuations at medium and low flow caused by powerplants on tributary streams. Flow regulated by Lake Wallenpaupack and by Pepacton, Cannonsville, Swinging Bridge, Toronto, Cliff Lake, and Neversink Reservoirs (see Delaware River Basin, reservoirs in) and smaller reservoirs. Diversion from Pepacton, Cannonsville, and Neversink Reservoirs (see Delaware River Basin, diversions).

AVERAGE DISCHARGE .-- 45 years, 5,850 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 250,000 ft³/s Aug. 19, 1955, gage height, 35.15 ft, from rating curve extended above 90,000 ft³/s on basis of flood-routing study; minimum, 382 ft³/s Aug. 24, 1954, gage height, 3.83 ft, minimum daily, 412 ft3/s Aug. 23, 1954.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

EXTREMES OUTSIDE PERIOD OF RECORD .-- Flood of October 10, 1903, reached a stage of 35.5 ft from floodmark, present

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 89,500 ft3/s May 30, gage height, 20.75 ft; minimum discharge, 936 ft³/s Oct. 16, gage height, 4.33 ft.

			,			MEAN V	ALUES	001022	,05 10 02.			
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1720	1670	6950	4700	1700	7370	5800	7060	40200	8650	2820	1890
2	1770	1720	5630	4000	1900	6400	6570	6100	26500	15700	3180	1670
3	1660	1730	4550	3800	1900	5720	7790	5590	20300	9560	2990	1740
4	1490	1740	4080	3900	2000	5080	9670	11200	16400	6850	3030	1940
5	1610	1730	4150	3600	2400	5110	34100	16000	12600	5290	2400	2050
6	1750	1730	4850	3500	3200	5270	64300	13400	10300	5290	2410	1840
7	1890	1780	11400	3300	3700	5570	40300	11900	8930	9990	3010	1790
8	1740	1740	13500	2600	3700	4830	27600	10500	7780	9460	2970	1710
9	1690	1650	9650	2600	3100	4420	20500	12000	6530	7390	3080	1740
10	1680	1660	7690	3000	3100	3870	16200	12100	5020	6250	2590	1700
11	1710	1890	6010	3100	2700	3400	13700	10600	4580	5630	2550	1660
12	1980	1980	5390	3000	2600	3260	12000	9150	4940	5100	1990	1670
13	1890	2020	16400	3300	3300	3860	10700	9220	4430	5010	2160	1700
14	1750	1880	57100	3200	6000	4050	9660	9940	4620	4520	2490	1800
15	1420	1620	38600	2600	30000	4090	10200	11400	4420	3820	2250	1920
16	1190	1760	22900	2400	50600	4820	15200	10900	3940	3630	2130	1930
17	1450	1850	15300	2900	28900	5650	27600	9740	2850	3830	2590	1730
18	1480	1550	12000	2700	19500	5120	25100	8810	2890	4120	2290	1650
19	1890	1890	10200	2700	15300	5470	21100	7580	3640	4580	1940	1810
20	1920	1860	8410	2700	15500	5930	21100	6580	3290	4310	1960	1790
21	1830	2050	7230	2600	13800	6920	18400	6940	2250	3640	2060	1760
22	1920	2980	6300	2200	11300	10400	14800	7460	1930	2230	2180	1790
23	1830	3070	6700	1900	9770	10300	13100	6440	1790	2260	2060	1770
24	2030	2430	6700	2200	10200	8490	12900	8010	1970	3320	1970	1700
25	2020	3440	6000	2300	10200	6900	12200	7680	2210	3080	2040	1850
26 27 28 29 30 31	1760 1820 1730 1640 1620	6560 5890 5190 6280 8380	5200 4800 4500 5000 6100 5900	2700 2900 3300 2400 1900 1800	8970 7970 7610 8080	6870 6780 6590 7230 7170 6450	11300 10100 8790 7040 6720	6490 6250 5520 36500 82700 61900	2230 1940 1690 1710 4400	2730 2750 3410 3300 2600 3070	1700 1720 1920 1980 1930 2150	1910 1860 1640 1670 1710
TOTAL	53500	81720	329190	89800	289000	183390	514540	435660	216280	161370	72540	53390
MEAN	1726	2724	10620	2897	9966	5916	17150	14050	7209	5205	2340	1780
MAX	2030	8380	57100	4700	50600	10400	64300	82700	40200	15700	3180	2050
MIN	1190	1550	4080	1800	1700	3260	5800	5520	1690	2230	1700	1640

CAL YR 1983 TOTAL 2236530 MEAN 6127 MAX 57100 MIN 1090 WTR YR 1984 TOTAL 2480380 MEAN 6777 MAX 82700 MIN 1190

01440000 FLAT BROOK NEAR FLATBROOKVILLE, NJ

LOCATION.--Lat 41°06'24", long 74°57'09", Sussex County, Hydrologic Unit 02040104, on right bank 1.0 mi upstream from Flatbrookville, and 1.5 mi upstream from mouth.

DRAINAGE AREA .-- 64.0 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- July 1923 to current year.

REVISED RECORDS.--WSP 1432: 1924(M), 1928(M), 1929, 1930(M), 1932, 1933(M), 1936, 1938(M), 1939-40, 1949(M), 1952-53(M). WDR-NJ-80-2: 1970(M). WDR NJ-82-2: Drainage area.

GAGE.--Water-stage recorder. Concrete control since Aug. 19, 1929. Datum of gage is 347.73 ft National Geodetic Vertical Datum of 1929. Prior to Jan. 6, 1926, nonrecording gage at same site and datum.

REMARKS.--Water-discharge records good. Flow occasionally regulated by ponds above station.

AVERAGE DISCHARGE .-- 61 years, 110 ft3/s, 23.34 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 9,560 ft³/s Aug. 19, 1955, gage height, 12.58 ft, from high-water mark in gage house, from rating curve extended above 2,000 ft³/s on basis of slope-area measurement of peak flow; minimum, 3.6 ft³/s Sept. 25, 26, 1964, Sept. 11, 1966, but may have been lower during period of ice effect, Feb. 2-11, 1981.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 650 ft^3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Dec. 14	1115	1280	4.92	May 4	1600	840	4.14
Feb. 16	0015	1110	4.61	May 30	0345	2280	6.45
Apr. 5	2400	*2390	6.60	July 18	2200	758	3.99
Apr. 16	2345	660	3.80				

Minimum discharge, 8.7 ft³/s Oct. 7, 9, 10, gage height, 1.80 ft.

			DISC	HARGE, IN	CUBIC	FEET	PER SE	COND, WATE	R YEAR O	CTOBER 1983	TO SEP	TEMBER 1981		
DAY	OCT		NOV	DEC	JAN		FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	12 13 13 12 11		17 16 16 16 16	180 142 126 147 192	13 ⁴ 116 112 109		57 55 67 136 147	210 173 155 140 141	227 267 312 369 1190	128 118 115 574 418	532 380 297 255 209	225 224 104 158 104	58 54 53 56 67	42 30 26 41 36
6 7 8 9	9.7 9.2 9.0 9.7 9.0		15 15 14 14 15	198 334 237 183 159	102 98 83 83	3	108 90 79 90 70	152 156 132 129 122	1550 658 455 361 307	283 233 260 377 273	179 160 139 124 110	185 430 317 172 129	69 56 52 45 42	29 25 23 22 21
11 12 13 14 15	9.4 11 14 15		40 67 46 36 32	137 134 600 1160 594	82 69 76 80 75) 5	76 109 128 202 683	120 107 109 166 167	269 238 210 198 240	231 207 192 186 164	99 89 82 79 74	111 104 84 72 63	104 79 63 54 49	21 20 18 18 18
16 17 18 19 20	11 11 11 30 35		76 85 61 50 43	401 309 244 207 168	65 68 72 67 67	3	792 425 321 275 267	177 218 216 211 236	421 522 382 382 339	151 134 121 119 116	68 65 74 85 69	87 93 379 402 197	42 37 34 32 43	19 18 17 16 16
21 22 23 24 25	21 16 16 90 74		93 93 70 64 232	136 171 218 167 115	58 56 72 95 112		222 195 176 243 235	269 361 286 234 204	285 239 228 231 207	129 111 116 184 124	59 53 48 51 118	149 139 110 93 81	38 32 43 54 38	15 15 15 14 15
26 27 28 29 30 31	43 31 26 22 20 18		240 178 153 327 255	114 123 132 309 216 168	103 86 87 73 68	3	200 172 194 290	186 167 174 223 205 200	183 169 155 147 134	104 102 110 677 1960 1010	72 55 47 43 117	70 106 127 88 73 66	32 29 27 26 27 52	13 13 13 14 14
TOTAL MEAN MAX MIN CFSM IN.	645.0 20.8 90 9.0 .32 .37	7	2395 79.8 327 14 1.25	7721 249 1160 114 3.89 4.49	2614 84.; 133 50 1.33	3	6104 210 792 55 3.28 3.55	5746 185 361 107 2.89 3.34	10875 363 1550 134 5.67 6.32	9027 291 1960 102 4.55 5.25	3832 128 532 43 2.00 2.23	4742 153 430 63 2.39 2.76	1487 48.0 104 26 .75	617 20.6 42 13 .32
CAL YR WTR YR		TOTAL			AN 156 AN 152	MAX MAX	3600 1960		CFSM 2.					

47 01440200 DELAWARE RIVER BELOW TOCKS ISLAND DAMSITE, NEAR DELAWARE WATER GAP, PA

LOCATION.--Lat 41°00'42", long 75°05'09", Warren County, NJ, Hydrologic Unit 02040105, on left bank 40 ft streamward from River Road, 1.0 mi downstream from Tocks Island, 3.7 mi northeast of Delaware Water Gap, PA, 4.0 mi upstream from bridge on Interstate Highway 80, and at mile 216.1.

DRAINAGE AREA. -- 3,850 mi², approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- May 1964 to current year.

GAGE .-- Water-stage recorder and crest-stage gage. Datum of gage is 293.64 ft National Geodetic Vertical Datum of

REMARKS.--Water-discharge records fair. No gage-height record Jan. 21 to 26. Diurnal fluctuation at medium and low flow caused by powerplants on tributary streams. Flow regulated by Lake Wallenpaupack, and by Pepacton, Cannonsville, Swinging Bridge, Toronto, Cliff Lake, and Neversink Reservoirs (see Delaware River Basin, reservoirs in) and smaller reservoirs. Diversion from Pepacton, Cannonsville, and Neversink Reservoirs (see Delaware River Basin diversions) Basin, diversions).

AVERAGE DISCHARGE. -- 20 years, 6,474 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD .-- Maximum discharge, 103,000 ft3/s June 30, 1973, gage height, 23.82 ft; minimum daily, 580 ft³/s July 7, 8, 1965.

EXTREMES FOR CURRENT YEAR .-- Maximum discharge, 97.300 ft3/s May 30, gage height, 21.77 ft; minimum, 1,140 ft3/s Oct. 16, 17.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1840	1800	9210	6400	2200	9130	6920	7870	55800	8230	3390	2290
2	1890	1840	7360	5800	2200	7830	7190	7070	34600	17000	3460	1750
3	1920	1880	6060	5200	2380	7120	8620	6620	25100	12100	3590	1870
4	1770	1910	5390	5050	2800	6470	10400	11100	19900	8690	3450	2020
5	1590	1900	5360	4750	4000	5950	34100	19200	15400	6430	3080	2290
6 7 8 9	1810 1980 1920 1830 1780	1900 1890 1920 1870 1840	5900 10200 17100 12300 9950	4500 4300 3500 3300 3600	3850 4200 4100 3800 3550	6370 6450 6170 5460 5000	78900 53800 34500 24400 18800	15800 13700 12200 13000 13600	11500 10000 8760 7600 6410	6430 9680 11500 9270 7360	2980 3500 3400 3510 3300	2100 1910 1890 1840 1880
11	1800	1990	7930	3550	3750	4230	15700	12200	5470	6790	3030	1820
12	1960	2490	6690	3250	3170	3750	13500	10800	5400	5870	2440	1780
13	2140	2250	14900	3000	3500	4320	12000	9770	5210	6180	2360	1810
14	1960	2530	59600	3150	7320	4550	10800	10500	5150	5410	2750	1770
15	1790	2020	52800	2950	31000	4800	10700	11900	5080	4630	2680	2110
16	1360	2240	32900	2750	60500	5150	14500	11800	4660	4360	2370	1980
17	1470	2530	21700	2650	38500	6070	28000	10700	3560	4440	2660	1990
18	1550	2330	16100	3050	24300	6290	28000	9700	3330	5120	2650	1860
19	1850	2120	13300	3050	18400	6230	23600	8660	4080	5960	2230	1750
20	2250	2400	11100	2850	17400	6670	22700	7650	4020	5620	2220	2030
21	2110	2550	9260	2600	16400	7470	21000	7440	3010	4810	2300	1960
22	2000	3350	8490	2650	13500	10500	16900	8270	2510	3320	2330	1870
23	2080	3910	9900	2380	11600	11700	14300	7520	2240	2850	2440	1960
24	2480	3370	9000	2550	11300	10200	14200	8250	2290	3610	2230	1920
25	2660	3880	7300	3000	12400	8220	13300	8630	2970	3690	2360	1750
26 27 28 29 30 31	2280 2040 2050 1910 1830 1800	7010 7600 6560 7310 9550	6100 5750 5850 7700 7350 7000	3300 3400 3800 3350 2500 2380	10900 9620 9080 9450	7650 7780 7490 8180 8190 7740	12400 11200 10100 8140 7490	7560 7060 6500 28400 93200 79200	2810 2540 2210 2000 2650	3250 3340 3830 3990 3410 3600	2000 1870 2120 2110 2160 2450	1760 1740 1660 1570 1530
TOTAL	59700	96740	409550	108560	345170	213130	586160	485870	266260	190770	83420	56460
MEAN	1926	3225	13210	3502	11900	6875	19540	15670	8875	6154	2691	1882
MAX	2660	9550	59600	6400	60500	11700	78900	93200	55800	17000	3590	2290
MIN	1360	1800	5360	2380	2200	3750	6920	6500	2000	2850	1870	1530

TOTAL 2736190 MEAN 7496 MAX TOTAL 2901790 MEAN 7928 MAX CAL YR 1983 74100 MIN 1250 WTR YR 1984 93200 MIN 1360

01443000 DELAWARE RIVER AT PORTLAND, PA

LOCATION.--Lat 40°55'26", long 75°05'46", Northampton County, Hydrologic Unit 02040105, at walkbridge connecting Portland, PA and Columbia, NJ, and 0.5 mi upstream of Paulins Kill.

DRAINAGE AREA. -- 4,165 mi2.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

				SPE					0:	XYGEN, DIS-	OXYGEN DEMAND,	COLI-	
		TIME	STREAM- FLOW, INSTAN- TANEOUS	CIF CON DUC ANC	IC - T- (S	PH TAND- ARD	TEMPER- ATURE		GEN, IS-	SOLVED (PER- CENT SATUR-	BIO- CHEM- ICAL, 5 DAY	FORM, FECAL, EC BROTH	STREP- TOCOCCI FECAL
DATE			(CFS)	(UMH			(DEG C)			ATION)	(MG/L)	(MPN)	(MPN)
OCT O5 FEB		1045	1690		104	8.1	19.0		9.8		E2.2	<20	>2400
09	•	1100	4910		92	7.2	1.5	•	14.4		E1.4	230	17
27 JUN		1045	10300		76	7.8	5.0		13.0		3.1	<20	2
05		1115	18300		76	7.3	15.0		10.1	101	E1.8	70	23
JUL 23 AUG		1215	4410		79	7.5	22.0		8.3	96 -	E1.7	20	27
14		1230	3500		91	7.9	24.5		7.6	91	E1.8	20	350
		HARI NESS (MG/ AS	DIS L SOL	S- VED I/L	MAGNE- SIUM, DIS- SOLVED (MG/L	SODIU DIS- SOLVE (MG/	M, SI DI D SOL L (MG		ALKA- LINITY LAB (MG/L AS	SULFA DIS- SOLV (MG/	DIS- VED SOLV 'L (MG/	E, RID DI VED SOL 'L (MG	DE, S- VED
	DATE	CAC)3) AS	CA)	AS MG)	AS N	A) AS	K)	CACO3) AS SC	04) AS (CL) AS	F)
	OT 05 EB		33 9	.9	2.1	5.	5 1	.0	21	12	? 7.	3 <	.10
М	09		30 8	3.7	1.9	6.	8	.90	15	13	3 11	<	.10
	27		22 6	.6	1.3	4.	5	.60	9.0	11	7.	9 <	.10
	05		20 6	5.1	1.2	2.	8	.70	10	11	1 4.	6 <	.10
	23		28 8	3.7	1.6	3.	7	.70	18	11	6.	.0 <	.10
	14		30 9	.3	1.7	4.	2	.80	21	11	6.	.8 <	.10
	DATE	SILIO DIS- SOLV (MG/ AS SIO2	AT 1 VED DEC VL DI SOL	DUÉ	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITR GEN NO2+N TOTA (MG/ AS N	, GE O3 AMMO L TOT L (MG	NÍA AL /L	NITRO GEN, AM MONIA ORGANI TOTAL (MG/L AS N)	- + NITE	PHORU L TOTA L (MG/	JS, ORGA L TOT 'L (MC	NIĆ AL KL
	CT	510	-) (110	,,,,	AS N	AS N	, ko	N /	AS N	AS I	, A5 I	, 10	0,
F	05 EB		1.2	52	.006		37 .	160	.1	7 .	.54 .0)40 2	2.5
M	09 IAR		3.3	68	.007		50 .	110	•3	ο .	.80 .0	50 1	.7
	27		2.6	49	.004		26 .	050	.2	1.	.47 .0	20 2	2.1
J	05		2.8		.005		29 <.	050	. 4	0 .	.69 .0	050 2	2.7
A	23		2.7	56	.007		24 <.	050	.3	8 .	.62 .0	30 3	1.3
	14		2.4	58	.005		32 .	050	• 3	3	.65 .0	040 2	2.5

01443000 DELAWARE RIVER AT PORTLAND, PA--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	E	TIME	SULF TOI (MG AS	AL SOL	M, S- ARSE VED TOT /L (UC	LI TO ENIC RE FAL ER G/L (U	TAL TO COV- RE ABLE ER G/L (U	TAL TO COV- RE ABLE ER G/L (U	MIUM MIUTAL TO: COV- REC ABLE ERA G/L (UC	TAL TOT COV- REC ABLE ERA G/L (UC	OV-
JUN 05.		1115		<.5	60	<1	<10	<20	1	10	3
	DATE		IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)		ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS TOTAL (UG/L)	
	JUN 05		20	14	50	<.1	4	<1	30	5	

01443440 PAULINS KILL AT BALESVILLE, NJ

LOCATION.--Lat 41°06'20", long 74°45'19", Sussex County, Hydrologic Unit 02040105, at bridge on unnamed road at Balesville, 2.2 mi downstream from Dry Brook, and 3.4 mi north of Newton.

DRAINAGE AREA .-- 67.1 mi2.

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- January 1979 to current year.

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

FLOW, CON- PH OXYGEN, (PER- CHEM- INSTAN- DUCT- (STAND- TEMPER- DIS- CENT ICAL, TIME TANEOUS ANCE ARD ATURE SOLVED SATUR- 5 DAY DATE (CFS) (UMHOS) UNITS) (DEG C) (MG/L) ATION) (MG/L)	FECAL, STREP- EC TOCOCCI BROTH FECAL (MPN) (MPN)
OCT 03 1030 E16 600 8.2 16.5 9.4 E1.9	230 280
FEB	
08 1045 134 413 7.9 .0 14.2 E2.0 MAR	50 43
22 1030 325 298 7.8 3.5 13.2 E1.8	140 46
17 1045 124 374 8.3 10.0 11.7 104 2.4 JUL	230 17
24 1145 118 429 8.0 20.5 8.4 96	1400 540
09 1045 68 450 8.1 20.5 8.5 96 E1.5	1300 920
MAGNE	E, RIDE, - DIS- VED SOLVED /L (MG/L
OCT	
03 230 56 21 29 2.6 176 40 51 FEB	.20
08 150 38 13 25 1.9 107 32 46 MAR	<.10
22 100 27 8.6 17 1.3 70 21 32	<.10
17 140 36 12 18 1.3 98 22 34	.10
24 150 38 13 17 1.4 123 19 29 AUG	.10
09 170 45 15 21 1.5 149 22 38	.10
SOLIDS, SILICA, RESIDUE NITRO- NITRO- NITRO- GEN, AM- DIS- AT 180 GEN, GEN, GEN, MONIA + NITRO- PHOR SOLVED DEG. C NITRITE NO2+NO3 AMMONIA ORGANIC GEN, PHOR (MG/L DIS- TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL AS SOLVED (MG/L (MG/L (MG/L (MG/L (MG/L DATE SIO2) (MG/L) AS N)	US, ORGANIĆ AL TOTAL /L (MG/L
OCT	., 0,
	240 4.6
	100 4.3
	060 4.4
17 4.1 242 .031 .96 .100 .81 1.8	080 3.8
	090 5.9
AUG 09 6.1 281 .013 1.0 <.050 .42 1.5 .	100 4.8

01443440 PAULINS KILL AT BALESVILLE, NJ--Continued

WATER QUALITY DATA, WATER YR OCTOBER 1983 TO SEPTEMBER 1984

DATE	TIMI	SULFI TOTA E (MG/ AS S	L BOT !	NH4 INOF G. GANI IN TOT I MAT BOT M /KG (G/K	R- INORGIC, ORGANIN TOT. MAT BOT M	+ ALUM IC INUM IN DIS IAT SOLV	- ARSEN ED TOTA L (UG/	L (UG/	L LIUM OT- TOTA IA- RECC IAL ERAE 'G (UG/	I, BORO L TOTA OV- RECO BLE ERAB 'L (UG/	L TOTA V- RECO LE ERAE	L FM BO V- TOM M BLE TERI 'L (UG/	V. T- IA- IAL
OCT 03	1030)	2100	0 2	2.0 9	•7			<1				<1
MAŸ 17	1045	5 <	.5				40	<1	<	10 <	20	<1	
	DATE	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO-MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)		COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)		MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	
	OCT 03 MAY		5	<10		0		6700		20		630	
	17	10			4		300		2		50		
	DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
	OCT 03		.01		/10				50		6	<1.0	
	MAY 17	<.1	.01	3	<10	<1	<1	20	50	<1	0	\1.0	
	DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT-	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TEL T	ENDRIN, TOTAL IN BOT- TOM MA-	TOM MA- ERIAL T		
	ост 03	<.1	3.0	<.1	.2	<.1	<.1	<.1	<.1	<.1	<.1	<.1	
	MAY 17												
	DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOTTOM MATERIL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
	OCT O3 MAY	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<1.00	<10	<.1	
	17												

01443500 PAULINS KILL AT BLAIRSTOWN, NJ

LOCATION.--Lat 40°58'44", long 74°57'15", Warren County, Hydrologic Unit 02040105, on right bank 1,200 ft upstream from bridge on State Highway 94 in Blairstown, 1,400 ft upstream from Blairs Creek, and 10 mi upstream from mouth. Water-quality samples collected at bridge 1,200 ft downstream from gage at high flows.

DRAINAGE AREA .-- 126 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. - 1921 to September 1976, October 1977 to current year.

REVISED RECORDS. -- WSP 971: 1942, WSP 1382: 1952-53(M).

GAGE.--Water-stage recorder and concrete control (Aug. 1, 1931, to Aug. 3, 1941, concrete control at site 280 ft, downstream). Datum of gage is 335.86 ft National Geodetic Vertical Datum of 1929. Prior to May 24, 1922, nonrecording gage and May 24, 1922 to July 31, 1931, water-stage recorder, at site of former highway bridge 1,300 ft downstream at different datum. Aug. 1, 1931 to July 28, 1939, water-stage recorder at site 100 ft downstream at present datum.

REMARKS.-Water-discharge records good except those for winter periods, which are fair. Diurnal fluctuation caused by powerplant above station and flow regulated slightly by Swartswood Lake.

AVERAGE DISCHARGE.--62 years, (water years 1922-76, 1978-84) 196 ft3/s, 21.12 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 8,750 ft³/s Aug. 19, 1955, gage height, 11.12 ft, from high-water mark in gage house; minimum, about 2.8 ft³/s Nov. 1, 1922; minimum daily, 5 ft³/s Aug. 13, 14, 1930.

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 1,000 ft3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Dec. 14	0215	1650	5.05	May 4	1600	1270	4.11
Feb. 15	2215	1390	4.45	May 30	1615	*2390	6.25
Apr. 6	0030	1720	5.19	July 7	1730	1500	4.74

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

Minimum discharge, 15 ft3/s Oct. 10, gage height, 1.41 ft.

						MEÁN VA	LUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	29 47 29 28 28	47 46 46 46 46	345 291 263 315 426	285 257 243 232 225	129 117 136 309 361	409 357 321 292 288	496 581 612 600	256 237 233 981 895	1470 1130 807 588 467	287 343 264 294 291	174 164 164 159 187	113 83 75 132 136
6 7 8 9	41 31 35 23 19	32 32 32 32 37	382 484 403 353 345	219 213 194 182 173	270 235 196 182 169	322 328 287 270 253	1580 1280 1030 779 605	591 478 520 728 537	402 420 367 308 271	687 1350 1270 964 651	195 164 148 133 122	100 79 69 63 61
11 12 13 14 15	23 29 28 30 38	111 101 96 60 81	302 308 930 1600 1310	174 148 150 158 149	192 287 294 351 987	243 222 224 319 375	509 449 401 371 410	453 406 381 366 330	236 213 195 194 182	587 611 435 349 300	125 134 129 119 109	61 59 54 52 53
16 17 18 19 20	35 26 26 49 50	151 141 125 103 68	1030 757 563 470 388	127 132 136 137 105	1190 874 645 545 510	397 486 481 466 480	645 801 651 687 636	301 272 250 244 243	158 150 169 176 153	325 343 535 690 453	102 99 88 82 103	52 50 48 45 45
21 22 23 24 25	64 59 56 129 162	129 141 167 160 252	320 355 413 366 273	110 105 108 114 199	444 395 361 442 437	483 562 490 428 388	543 473 446 432 400	257 230 238 316 250	135 119 108 120 374	385 361 305 266 229	92 78 90 94 81	52 46 42 43 42
26 27 28 29 30 31	145 123 83 62 50 48	278 272 270 306 409	235 267 359 586 431 341	195 184 195 164 148 150	389 339 372 494	357 323 337 424 413 421	362 326 301 289 273	219 204 220 1040 2310 1940	293 196 158 134 180	201 278 319 251 213 191	72 67 64 62 61 132	40 49 56 61 59
TOTAL MEAN MAX MIN CFSM IN.	1625 52.4 162 19 .42 .48	3817 127 409 32 1.01 1.13	15211 491 1600 235 3.90 4.49	5311 171 285 105 1.36 1.57	11652 402 1190 117 3.19 3.44	11446 369 562 222 2.93 3.38	18228 608 1580 273 4.83 5.38	15926 514 2310 204 4.08 4.70	9873 329 1470 108 2.61 2.91	14028 453 1350 191 3.60 4.14	3593 116 195 61 .92	1920 64.0 136 40 .51

CAL YR 1983 TOTAL 101929 MEAN 279 MAX 2550 MIN 19 CFSM 2.21 IN. 30.09 WTR YR 1984 TOTAL 112630 MEAN 308 MAX 2310 MIN 19 CFSM 2.44 IN. 33.25

01443500 PAULINS KILL AT BLAIRSTOWN, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1921, 1925, 1957-60, 1962-63, 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

OVYCEN OVYCEN

DATE	TIME	STREAM FLOW, INSTAM TANEOU (CFS)	I- CI CO I- DU IS AN	CE	PH STAND- ARD NITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVEI (MG/L)	CEN'	- DEM ED BI - CH T IC R- 5	IO- F IEM- F CAL, DAY B	OLI- ORM, ECAL, EC ROTH MPN)	STREP- TOCOCCI FECAL (MPN)
CT 03 EB	1245	2	29	575	8.7	17.0	12.0) .		E1.7	170	17
09 AR	1000	17	'5	370	7.2	1.0	13.2	2 .		E2.0	20	17
22 AY	1215	57	'2	304	8.3	5.0	13.1			E1.3	20	6
17	1245	27	'3	317	8.4	12.5	11.2	2 1	06	E2.1	50	79
24 UG	1000	27	'3	321	8.1	21.0	8.2	2	93		230	>2400
09	1215	13	34	380	8.4	24.0	8.9	9 1	08	E1.5	330	240
DATE	HAR NES (MG. AS CAC	S []	LCIUM DIS- SOLVED MG/L	MAGNE SIUM DIS- SOLVE (MG/L AS MG	, SODIO DIS- D SOLVI (MG	UM, S: - D: ED SOI /L (MC	IUM, LIN IS- I LVED (N G/L A	AB MG/L AS	ULFATE DIS- SOLVED (MG/L S SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	(MG	E, S- VED /L
ост	ono	J) 1	on,	AD NO	, 15	NA, AS	K) 01	10037 A	5 504)	AD OL/	, no 1	. ,
03 FEB	• , ;	210	51	21	24	2	2.0 172	2	33	42		.20
09 MAR	•	120	30	11	22		1.6 92	2	23	39	<	.10
22 MAY	•	110	27	9.5	16	;	1.1 78	3	21	30	<.	. 10
17 JUL	•	120	31	11	13		1.0 107	7	19	24	<	.10
24 AUG	•	130	32	12	13		1.1 110		16	20	<.	. 10
09	•	150	38	14	15		1.2 133	3	19	28		.10
DATE	SILIO DIS- SOL' (MG. AS- SIO:	CA, RE - AT VED D /L	DLIDS, SIDUE 180 DEG. C DIS- SOLVED MG/L)	NITRO GEN, NITRIT TOTAL (MG/L AS N)	GEI E NO2+1	N, GI NO3 AMMO AL TO: /L (MO	TRO- GENEN, MONDONIA ORC TAL TO	GANIC OTAL MG/L	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	CARBO ORGAI TOTA (MG/ AS O	NIC AL /L
OCT 03		2.5	291	.00	9	.87 <	.050	.39	1.3	.080	3	.6
FEB 09		4.9	206	.01			. 170	.61	1.4	.080		. 2
MAR 22		3.9	170	.00			.050	•39	1.1	.040	_	.0
MAY 17		4.0	252	.00			.060	.57	1.1	.060	_	.2
JUL 24		5.7	202	.01			.050	.41	.95	.080		•5
AUG 09		3.1	221	.00			.050	• 39	.80	.050		.0

01443500 PAULINS KILL AT BLAIRSTOWN, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	TIME	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)
OCT							
03	1245	3	<10	1	<10	<10	180
DATE	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS TOTAL (UG/L)
OCT 03	4	20	<.1	<1	<1	10	<1

55

01443900 YARDS CREEK NEAR BLAIRSTOWN, NJ

LOCATION.--Lat 40°58'51", long 75°02'25", Warren County, Hydrologic Unit 02040105, on left bank 100 ft upstream from bridge on Hainesburg-Mount Vernon Road, 1.4 mi downstream of Yards Creek Reservoir, 2.2 mi northeast of Hainesburg, 2.4 mi upstream from mouth, and 4.2 mi west of Blairstown.

DRAINAGE AREA .-- 5.34 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1966 to current year.

REVISED RECORDS.--WDR NJ-77-2: 1976. WDR NJ-79-2: 1977(m). WDR NJ-82-2: Drainage area.

GAGE .-- Water-stage recorder and concrete control. Altitude of gage is 608 ft, from topographic map.

REMARKS.--Water-discharge records fair except those during winter periods and period of no gage-height record, Mar. 9 to 12, which are poor. Complete regulation by the Jersey Central Power and Light Co., at Yards Creek Reservoir 1.4 mi above station.

AVERAGE DISCHARGE .-- 18 years, 11.3 ft3/s.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 583 ft3/s, Feb. 24, 1977, gage height, 3.92 ft; no flow Sept. 12, 1971.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 170 ft 3 /s Dec. 15, gage height, 3.15 ft; maximum gage height, 3.83 ft Jan. 21 (backwater from ice); minimum, 1.1 ft 3 /s Sept. 30.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

						MEAN VA	LUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	2.1 2.3 1.7 1.7	2.5 2.6 2.6 2.6 2.6	4.9 4.3 4.0 7.8 5.5	13 10 9.9 10	5.9 5.2 7.0 9.6 8.3	18 17 15 14 14	20 20 21 22 76	25 26 28 55 43	71 57 46 43 43	7.7 5.1 4.4 3.8 7.2	10 3.8 3.0 2.8 2.7	2.1 2.0 2.8 3.1 2.2
6 7 8 9	2.0 1.9 2.1 2.0 1.7	2.3 2.0 2.0 2.0 3.1	9.8 15 13 12	9.7 8.0 7.7 7.5	7.5 7.2 6.8 6.7 7.1	19 20 17 14 12	134 61 54 33 21	36 36 42 42	45 45 44 29 18	12 24 13 9.3 12	2.3 2.5 2.5 2.5 2.5	2.2 2.1 2.1 2.0 1.9
11 12 13 14 15	1.6 2.7 2.6 2.4 2.2	3.9 3.0 2.6 2.3 2.6	12 19 59 121 150	7.3 7.1 6.9 6.8 6.6	8.0 8.3 8.4 9.7 23	11 9.8 10 11	21 21 22 21 21	39 40 37 37 27	16 6.2 4.6 3.8 3.8	19 19 23 27 23	3.1 2.4 2.3 2.5 2.2	2.0 2.0 2.0 2.0 2.1
16 17 18 19 20	2.0 1.8 2.1 4.2 2.6	5.6 3.6 3.2 3.0 2.9	110 78 73 39 20	6.4 6.1 6.0 5.7 5.5	36 32 23 21 20	12 12 12 11 11	25 22 25 37 34	20 20 18 10 9.7	3.8 3.8 4.2 3.8 3.6	22 21 27 31 36	2.3 2.2 2.2 2.1 2.1	1.9 1.8 2.0 1.9
21 22 23 24 25	2.4 2.4 3.7 7.5 3.5	5.0 3.4 3.3 3.6 8.8	21 20 16 13	5.3 5.0 6.2 8.2	19 18 16 20 19	12 12 11 11 10	34 30 27 27 28	9.3 9.1 12 11	3.4 3.5 3.5 7.1 5.9	36 31 30 30 32	1.9 2.0 2.7 2.1 2.1	1.9 1.9 1.8 1.8
26 27 28 29 30 31	3.0 2.8 2.8 2.7 2.6 2.3	5.7 4.6 6.1 9.5 5.9	16 13 43 23 12	9.9 10 9.5 9.0 7.5 6.6	18 17 20 18	9.6 9.8 12 16 19	28 32 28 25 24	9.7 9.0 11 59 64 62	3.7 3.6 3.7 3.6 4.3	23 20 18 18 18	1.9 1.8 1.9 2.0 2.2 4.0	1.8 2.0 1.6 1.3 1.2
TOTAL MEAN MAX MIN	79.2 2.55 7.5 1.6	112.9 3.76 9.5 2.0	973.3 31.4 150 4.0	248.4 8.01 13 5.0	425.7 14.7 36 5.2	412.2 13.3 20 9.6	994 33.1 134 20	896.8 28.9 64 9.0	536.9 17.9 71 3.4	616.5 19.9 36 3.8	82.6 2.66 10 1.8	59.3 1.98 3.1 1.2

CAL YR 1983 TOTAL 5791.12 MEAN 15.9 MAX 150 MIN .61 WTR YR 1984 TOTAL 5437.8 MEAN 14.9 MAX 150 MIN 1.2

01445500 PEQUEST RIVER AT PEQUEST, NJ

LOCATION.--Lat 40°49'50", long 74°58'43", Warren County, Hydrologic Unit 02040105, on right bank at Pequest, 100 ft upstream from CONRAIL (formerly Lehigh and Hudson River Railway) bridge, and 300 ft downstream from Furnace Brook.

DRAINAGE AREA .-- 106 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1921 to current year. Monthly discharge only for October 1921, published in WSP 1302. REVISED RECORDS.--WSP 1902: 1940(M), 1945, 1955(M), 1957, 1959(M).

GAGE.--Water-stage recorder. Concrete control since Sept. 29, 1929. Datum of gage is 398.78 ft National Geodetic Vertical Datum of 1929. Prior to June 22, 1926, nonrecording gage at site 10 ft upstream at same datum.

REMARKS .-- Water-discharge records good.

AVERAGE DISCHARGE. -- 63 years, 155 ft3/s, 19.48 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,130 ft³/s Jan. 25, 1979, gage height, 5.97 ft, from floodmark; minimum, 12 ft³/s Aug. 17-22, Dec. 10, 1965.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 650 ft3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Dec. 14	0030	886	3.67	May 4	1045	863	3.62
Feb. 15	2015	723	3.30	May 30	1315	*1210	4.36
Apr. 5	2145	1200	4.33	July 7	0945	1110	4.14
Apr. 16	2130	677	3.19				

Minimum discharge, 28 ft³/s Oct. 11, gage height, 1.23 ft.

		DISC	HARGE, IN	CUBIC FEE	T PER SE	COND, WAT MEAN VA	ER YEAR LUES	OCTOBER 198	33 TO SEP	TEMBER 198	34	
DAY	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	38 38 37 34 34	49 46 44 44 45	201 175 161 245 292	218 208 205 194 190	108 91 132 362 285	303 262 244 226 226	445 475 446 422 965	248 230 226 706 572	1030 779 614 518 441	225 239 191 158 163	171 160 160 156 157	82 74 71 148 161
6 7 8 9	34 33 32 31 30	43 46 44 40 43	240 279 227 199 188	186 181 167 156 150	211 183 151 144 136	277 283 243 219 210	1180 1120 940 708 592	461 386 396 462 397	388 352 329 298 267	446 1010 884 672 504	186 174 148 134 127	114 93 84 79 75
11 12 13 14 15	30 33 38 36 34	75 97 85 75 68	177 187 652 825 688	152 125 123 144 132	169 259 237 266 579	203 190 182 304 367	514 460 422 396 402	344 340 360 336 301	244 220 202 197 188	443 557 473 393 325	124 120 119 115 107	76 74 69 66 66
16 17 18 19 20	31 31 31 59 60	117 114 93 82 74	574 465 391 338 281	98 119 118 121 89	655 554 462 410 382	398 429 406 383 350	537 619 546 568 598	276 257 246 252 269	173 166 188 191 172	296 278 339 362 317	101 121 104 94 124	65 62 60 58 56
21 22 23 24 25	46 40 44 213 159	146 131 105 98 302	232 329 388 309 181	100 90 93 104 178	339 297 271 345 357	338 379 364 336 309	499 432 404 392 370	290 242 222 250 226	153 140 131 146 328	279 265 243 219 196	106 94 110 111 97	55 52 51 51 53
26 27 28 29 30 31	104 78 65 56 51 52	276 218 195 319 240	166 214 273 535 343 256	198 188 176 139 127 124	324 279 291 373	286 264 257 276 291 332	338 310 288 272 262	199 188 195 648 1180 1160	272 208 164 144 158	181 286 294 245 206 188	86 81 79 77 77 80	51 49 49 51 49
TOTAL MEAN MAX MIN CFSM IN.	1632 52.6 213 30 .50	3354 112 319 40 1.06 1.18	10011 323 825 161 3.05 3.51	4593 148 218 89 1.40 1.61	8652 298 655 91 2.81 3.04	9137 295 429 182 2.78 3.21	15922 531 1180 262 5.01 5.59	11865 383 1180 188 3.61 4.16	8801 293 1030 131 2.76 3.09	10877 351 1010 158 3.31 3.82	3700 119 186 77 1.12 1.30	2144 71.5 161 49 .67

CAL YR 1983 TOTAL 79400 MEAN 218 MAX 1460 MIN 28 CFSM 2.06 IN. 27.86 WTR YR 1984 TOTAL 90688 MEAN 248 MAX 1180 MIN 30 CFSM 2.34 IN. 31.83

57

01446500 DELAWARE RIVER AT BELVIDERE, NJ LOCATION.--Lat 40°49'36", long 75°05'02", Warren County, Hydrologic Unit 02040105, on left bank at Belvidere, 800 ft downstream from Pequest River, and at mile 197.7.

DRAINAGE AREA .-- 4,535 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1922 to current year.

REVISED RECORDS.--WSP 781: 1933(M). WSP 951: 1940-41, Drainage area. WSP 1432: 1923, 1924(M).

GAGE.--Water-stage recorder. Datum of gage 226.43 ft National Geodetic Vertical Datum of 1929. Prior to Jan. 1, 1929, nonrecording gage at site 200 ft upstream at same datum.

REMARKS.--Water-discharge records good. Diurnal fluctuations at medium and low flow caused by powerplants on tributary streams. Flow regulated by Lake Wallenpaupack, and by Pepacton, Cannonsville, Swinging Bridge, Toronto, Cliff Lake, and Neversink Reservoirs (see Delaware River Basin, reservoirs in) and smaller reservoirs. Diversions from Pepacton, Cannonsville, and Neversink Reservoirs (see Deláware River Basin, diversions).

AVERAGE DISCHARGE. -- 62 years, 7,921 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 273,000 ft³/s Aug. 19, 1955, gage height, 30.21 ft, from high-water mark in gage house, from rating curve extended above 170,000 ft³/s on basis of flood-routing study; minimum, 609 ft³/s Sept. 28, 29, 1943, gage height, 2.11 ft.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Oct. 10, 1903, reached a stage of 28.6 ft, from floodmark, discharge, 220,000 ft³/s, from rating curve extended above 170,000 ft³/s.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 111,000 ft3/s May 30, gage height, 18.99 ft; minimum, 1,260 ft3/s Oct. 17, gage height, 2.83 ft.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1940	2120	12200	8080	2940	11900	10100	10000	61000	9740	4450	3020
2	2130	2170	9790	7270	2810	10300	10700	9130	39600	18100	4270	2400
3	2150	2220	8250	6850	3330	9280	12200	8510	29500	15200	5140	2270
4	1960	2230	7870	6760	4770	8480	14100	16600	23800	11100	4530	2620
5	1750	2230	8330	6600	5150	7750	39400	24300	19400	8550	4230	2760
6	1890	2200	8350	6200	4930	8280	89200	20400	15700	9840	4110	2680
7	2040	2180	12100	5980	5230	8460	61700	17500	13600	14100	4230	2390
8	2120	2220	19700	4880	4990	8150	40800	16300	11900	16800	4310	2320
9	1970	2160	15400	4260	4860	7280	29900	17100	10500	13500	4190	2180
10	1900	2130	12600	4930	4560	6690	23600	17500	8370	10700	4170	2200
11	1880	2610	10200	4810	4770	6040	20000	15700	7280	9710	3930	2150
12	2070	3140	8930	4040	4920	5330	17400	14200	7270	9960	3560	2100
13	2470	2940	19000	3610	5320	5700	15500	12700	6740	9060	3170	2070
14	2330	2950	66600	4320	6920	6340	14000	13500	6540	7720	3360	2080
15	2120	2640	65400	4200	29100	6850	13800	14500	6430	6770	3410	2270
16	1720	3770	38400	3350	65300	7240	17900	14500	5980	6470	3060	2340
17	1460	3850	26000	3350	43100	8450	30000	13300	5070	6570	3120	2320
18	1710	3430	19600	3920	28400	9100	31700	12000	4710	7580	3330	2110
19	2180	2930	16300	3960	22000	8790	27700	11000	5370	9230	2950	1990
20	2670	3120	13900	3400	20300	9290	26400	9820	5290	8050	2790	2180
21	2510	3920	11100	3190	19500	10200	24800	9540	4370	7040	2760	2150
22	2340	4480	10800	3350	16500	13400	20500	10200	3520	5680	2790	2080
23	2480	5040	11800	3070	14400	15200	17700	9620	3130	4510	3020	2120
24	3660	4610	10800	3320	14200	13600	17500	10500	3140	4730	2910	2110
25	3690	6150	8670	4250	15400	11100	16600	10900	5840	5080	2770	2030
26 27 28 29 30 31	3130 2680 2590 2390 2210 2150	9010 10000 8810 10700 12400	7160 7540 7890 10700 9680 8930	4590 4490 4820 4390 3550 3500	13800 12200 11600 12500	10200 10300 10100 11200 11300 10700	15400 14100 12800 10600 9710	9610 8790 8370 26600 104000 89000	4620 3910 3330 2950 3670	4530 5030 5640 5600 4870 4550	2650 2310 2330 2460 2540 3060	2190 2210 2180 1990 2000
TOTAL	70290	128360	503990	143290	403800	287000	705810	585690	332530	266010	105910	67510
MEAN	2267	4279	16260	4622	13920	9258	23530	18890	11080	8581	3416	2250
MAX	3690	12400	66600	8080	65300	15200	89200	104000	61000	18100	5140	3020
MIN	1460	2120	7160	3070	2810	5330	9710	8370	2950	4510	2310	1990

CAL YR 1983 TOTAL 3337310 MEAN 9143 MAX 91000 MIN 1360 WTR YR 1984 TOTAL 3600190 MEAN 9837 MAX 104000 MIN 1460

01447000 DELAWARE RIVER AT NORTHAMPTON STREET AT EASTON, PA

LOCATION.--Lat 40°41'30", long 75°12'15", Northampton County, Hydrologic Unit 02040105, at bridge on Northampton Street in Easton, 600 ft upstream from Lehigh River, and 0.2 mi downstream from U.S. Route 22 toll bridge in Easton.

DRAINAGE AREA .-- 4,717 mi2.

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	TIME	FL INS TAN	EAM- OW, TAN- EOUS FS)	CI CO DU AN	E- FIC N- CT- CE HOS)	(ST	H AND- RD TS)	A'	MPER- TURE EG C)	SC	GEN, DIS- DLVED	SO (P C SA	GEN, IS- LVED ER- ENT TUR- ION)	DEM BI CH IC	GEN AND, O- EM- AL, DAY	F F	COLI- FORM, FECAL, EC BROTH	TOC	REP- OCCI CAL PN)
ост 05	1245		1850		157		8.4		19.5		9.7				E1.7		20		920
FEB 22	1045		7200		104		7.4		3.0		12.8				E1.6		50		14
MAR 27	1345		9920		107		7.9		6.0		14.1				E2.0		<20		24
JUN	100						-												
07 JUL	1030		3800		115				17.0		9.4		98		E1.6		270		920
23 AUG	1030		4770		158		8.0		22.5		8.1		95		E1.8		20		350
14	1030		3220		167		8.0		24.0		7.6		91		2.8		80		540
DATE	HAR NES (MG AS CAC	S /L	CALC DIS SOL (MG AS	- VED /L	MAGI SII DIS SOLI (MG/ AS I	UM, S- VED /L	SODI DIS SOLV (MG AS	ED /L	SI		ALKA LINI: LAI (MGA AS CAC	TY B /L	SULF DIS SOL (MG AS S	- VED /L	RI DI SO (M	LO- DE, S- LVEI G/L	RI D SO (M	UO- DE, IS- LVED G/L F)	
OCT 05 FEB	•	56	15		4	. 4	8	. 1	1	. 1	36		1	9	1	0		<.10	
22 MAR	•	33	9	. 1	2	• 5	4	.6		.80	18		1	5		8.3		<.10	
27 JUN	•	36	9	.8	2	. 7	5	. 1		.70	22		1	3		9.2		<.10	
07 JUL		40	11		3	. 1	4	.3		.80	26		1	4		6.5		<.10	
23 AUG	. 5	64	17		5	. 2	5	.6	1	.0	46		1	6		9.3		<.10	
14		60	16		4	. 9	6	.2	1	.0	45		1	9		9.6		<.10	
DATE	SILI DIS SOL (MG AS	VED /L	SOLI RESI AT 1 DEG DI SOL (MG	DUÉ 80 . C S- VED	NITI GEI NITR TOTA (MG,	N, ITE AL /L	NIT GE NO2+ TOT (MG AS	N, NO3 AL /L		AL /L	NITI GEN, MONII ORGAI TOTI (MG, AS I	AM- A + NIC AL /L	NIT GE TOT (MG AS	N, AL /L	PHO TO	OS- RUS TAL IG/L P)	ORG TO	BON, ANIC TAL G/L C)	
OCT O5 FEB	•	1.4		88		010		.61	۲.	050		.24		.85		.060)	2.3	
22 MAR	•	3.5		64	. (005		.60		050		.23		.83		.040)	3.1	
27 JUN		2.7		66	. (800		• 35		160		. 25		.60		.020)	2.2	
07 JUL		3.3		88	. (010		.57		050		.46	1	.0		.050)	2.3	
23 AUG		3.5		117	. (800		.67	٧.	050		.30		.97		.040)	3.1	
14		3.0		134	. (005		.68		050		.36	1	.0		.040)	2.4	

01453000 LEHIGH RIVER AT BETHLEHEM, PA

- LOCATION.--Lat 40°36'55", long 75°22'45", Lehigh County, PA, Hydrologic Unit 02040106, on left bank 110 ft upstream from New Street Bridge at Bethlehem, and 1,800 ft upstream from Monocacy Creek. Records include flow of Monocacy Creek.
- DRAINAGE AREA.--1,279 mi², includes that of Monocacy Creek. At site used prior to October 1, 1928, 1,229 mi².

WATER-DISCHARGE RECORDS

- PERIOD OF RECORD.--September 1902 to February 1905, April 1909 to current year. Monthly discharge only for some periods, published in WSP 1302. Published as "at South Bethlehem" prior to October 1913.
- REVISED RECORDS.--WSP 261: 1903-5, WSP 321: 1910-11. WSP 1051: Drainage area. WSP 1141: 1929-34(M). WSP 1302: 1914(M), 1916(M), 1918, 1921, 1927-28. WSP 1432: 1903, 1919(M), 1920-21, 1929, 1933.
- GAGE.--Water-stage recorder. Datum of gage is 210.94 ft National Geodetic Vertical Datum of 1929. Prior to October 1928, nonrecording gage at New Street Bridge 120 ft downstream at same datum. Oct. 1, 1928, to Sept. 30, 1962, water-stage recorder at site 4,250 ft downstream at datum 2.49 ft lower. Oct. 1, 1963, to Dec. 14, 1975, water-stage recorder at site 40 ft downstream at same datum.
- REMARKS.--Water-discharge records good. Flow regulated by Wild Creek Reservoir (station 01449700) since January 1941, Penn Forest Reservoir (station 01449400) since October 1958, Francis E. Walter Reservoir (station 01447780) since February 1961, and Beltzville Lake (station 01449790) since February 1971. Several observations of water temperature were made during the year.
- AVERAGE DISCHARGE.--77 years (water years 1902-04, 1909-84), 2,349 ft 3 /s, 24.94 in/yr, adjusted for diversion 1902-04, 1909-42 and, for recirculated water, October 1, 1959 to September 30, 1962.
- EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 92,000 ft³/s May 23, 1942, gage height, about 25.9 ft, from floodmark, present site and datum, from rating curve extended above 48,000 ft³/s; minimum, 125 ft³/s June 28, 1965, gage height, 0.94 ft.
- EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of February 28, 1902, reached a stage of 24.9 ft, from floodmark, present site and datum, discharge, about 88,000 ft³/s.
- EXTREMES FOR CURRENT YEAR.--Maximum discharge, 33,700 ft³/s, Dec. 14, gage height, 13.03 ft; minimum, 380 ft³/s Oct. 7, gage height, 1.10 ft.

		DISC	CHARGE, I	N CUBIC	FEET PER	SECOND, WAT MEAN VALUES	ER YEAR	OCTOBER :	1983 TO SE	PTEMBER 19	984	
DAY	OCT	NOV	DEC	JAN	FEE	B MAR	APR	MAY	JUN	JUL	AUG	SEP
1	513	715	4670	2960	1390	3540	3940	3390	16700	4370	1550	1060
	487	688	3950	2870	1290	3120	3940	2860	10000	4600	1430	970
3	485	685	3190	2700	1300	2790	4100	2760	8180	5000	1430	967
2 3 4	444	691	3610	2670	3490	2620	4690	10100	7270	4430	1420	1140
5	496	673	3950	2540	2850	2690	17900	10700	4900	4800	1550	1110
6 7	451	618	3890	2280	1750	2890	23800	7350	4280	5790	1580	952
7	399	605	5210	2030			14900	5490	3550	9500	1680	876
8	496	578	5010	1690			16000	5310	3240	7320	1520	832
8 9	549	575	4440	1580			14600	5560	2960	5850	1510	815
10	551	679	3530	1620	1380	2180	13600	5590	2800	4280	1440	819
11	545	857	3080	1620	1800	2250	10100	4530	2560	4190	1390	823
12	680	1230	3930	1390			5930	4020	2120	4130	1380	800
13	804	979	23600	1390			5530	3760	2040	4270	1390	767
14	835	874	27600	1430			4680	4030	2020	3040	1320	751
15	1010	992	16200	1420			4420	3880	1930	2780	1290	829
16	1100	3770	15600	1290	10500	2230	5010	3400	1660	3040	1270	1160
17	799	3150	12900	1360			5140	3150	1820	2650	1260	841
18	728	2390	9400	1370			5400	2870	2620	3600	1270	734
19	873	1830	7450	1370			5000	2750	2690	3910	1270	707
20	993	1420	6160	1250			4860	2860	2360	3380	1280	714
21	884	3130	4520	1170	5030	2890	4270			2800	1290	699
22	835	3450	5240	1090	4930	4170	3960			2530	1260	683
23	969	3010	5670	1160			3900			2370	1340	680
24	2550	2370	4170	1290	4730	3610	3730			2210	1320	693
25	1760	4230	3430	2130	4500	3310	3660	3460	5370	1880	1220	686
26	1240	4800	3200	2760	3960	3190	3760			1560	1230	679
27	1170	3970	3400	2580			3480			2850	1200	677
28	1070	3690	4500	2120			3140			2730	1100	757
29	969	5510	7200	1410			3290			2310	892	721
30	777	5510	4820	1340		0.00	3100			2140	973	736
31	736		3210	1420)	- 3520		15300		1920	1120	
TOTAL	26198	63669	216730	55300			209830			115910	41175	24678
MEAN	845	2122	6991	1784			6994			3739	1328	823
MAX	2501	5510	27600	2960			23800			9500	1680	1160
MIN	399	575	3080	1090	1290	0 1770	3100	2750	1440	1560	892	677

CAL YR 1983 TOTAL 1136798 MEAN 3115 MAX 36100 MIN 399 WTR YR 1983 TOTAL 1248610 MEAN 3412 MAX 27600 MIN 399

01455200 POHATCONG CREEK AT NEW VILLAGE, NJ

LOCATION.--Lat 40°42'57", long 75°04'20", Warren County, Hydrologic Unit 02040105, at bridge on Edison Road, 0.4 mi southeast of New Village, and 4.3 mi upstream from Merrill Creek.

DRAINAGE AREA. -- 33.3 mi2.

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1959, 1962 and January 1979 to current year.

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DA	TE	TIME	FL INS TAN	EAM- OW, TAN- EOUS FS)	DU AN	FIC N- CT-	(ST	H AND- RD TS)	AT	PER- URE G C)	SO	GEN, OIS- OLVED	SO (P	GEN, OIS- OLVED EER- EENT TUR- TION)	DEN BI CH IC	GEN IAND, IO- IEM- CAL, DAY IG/L)	F F	OLI- ORM, ECAL, EC ROTH MPN)	STR TOCO FEC.	CCI AL
OCT																				
		1130		12		267		8.0		14.5		9.3				E1.4		1700	>2	400
	• • •	1240		28		218		7.3		1.5		14.6				2.3		40		5
MAR 27 JUN		1245		43		177		9.2		9.0		15.2				E2.0		<20		4
		1200		75		184		7.9		18.0		10.1		108		E1.8		1400		350
19 AUG		1030		69		206		7.8		18.0		8.6		92		<1.1		1300	1	600
	•••	1030		40		237		7.9		19.5		9.7		107		E2.4		5400	>2	400
	DATE	HAF NES (MC	SS G/L	CALC: DIS- SOL' (MG. AS	VED	MAG SI DI SOL (MG AS	UM, S- VED /L	SODIU DIS- SOLVE (MG/	ED /L	DI SOL (MG	UM, S- VED /L	ALKALINI	TY B /L	SULFA DIS- SOLV (MG/	ED L	RII DIS SOI (MC	LVED G/L	(MG	E, S- VED /L	
		CAC	,03)	AS (CA)	AS	4G)	AS N	NA)	AS	K)	CAC	03)	AS SC)4)	AS	CL)	AS	Γ)	in.
	0CT 12 FEB		100	23		11		13		2	. 8	81		21	ı	19	9	<	.10	
	09		69	16		7	. 1	11		1	. 7	44		20)	18	8	<	.10	
	27 JUN	• 1.4	59	14		5	. 8	7.	9	1	. 3	38		19)	13	3	<	.10	
	07 JUL		68	16		6	. 8	6.	9	1	. 3	48		20)		9.1	<	.10	
	19 AUG	•	78	19		7	. 3	6.	6	1	.7	56		18	3	1	1	<	.10	
	08		92	22		9	.1	7.	.5	1	.7	71		18	3	1	1		.10	
		SILI DIS SOI (MC	S- LVED G/L	SOLII RESII AT 18 DEG DIS	DUÉ BO C S-	NIT GE NITR TOT	N, ITE AL	NITE GEN NO2+N TOTA	N, 103 AL	NIT GE AMMO TOT	N, NIA AL	NITI GEN, MONIA ORGAI TOTA (MG	AM- A + NIC AL	NITE GEN TOTA (MG/	I,	PHO	OS- RUS, FAL	CARB ORGA TOT (MG	NIC AL	
	DATE	SIC)2)	(MG	/L)	AS		AS N		ÀS		AS I		AS N			P)	ÀS		
	0CT 12 FEB	. 1	13		164		033	2.	. 6		130		.58	3.	2	etia L	. 390	5	.4	
	09	. 1	12		130		015	1.	8		490		.67	2.	5		. 180	2	.7	
	27 JUN	. 1	11		107		015	1.	. 4		180		. 36	1.	7		.090	2	.6	
	07	. 1	13		140		022	1.	5		110		. 47	1.	9		.090	1	.6	
	19	. 1	13		146		039	1.	. 6		090		.74	2.	3		. 110	3	.2	
	08	. 1	13		166		052	2.	. 0	۷.	050		. 38	2.	4		.110	1	.9	

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

01455200 POHATCONG CREEK AT NEW VILLAGE, NJ--Continued

	TE	TIME	SULFI TOTA (MG/ AS S	L BOT N	H4 INOF G. GANI IN TOT I MAT BOT M 'KG (G/K	R- INORGIC, ORGANIN TOT. MAT BOT M	+ ALUM IIC INUM IN DIS IAT SOLV	1, S- ARSEN ZED TOTA ZL (UG/	L TERI	AL LIUM DT- TOTA MA- RECC MAL ERAE 'G (UG/	I, BORO L TOTA DV- RECO BLE ERAB 'L (UG/	IL TOTA V- RECO BLE ERAB L (UG/	L FM BOT- V- TOM MA- LE TERIAL L (UG/G	
0CT 12		1130) <	.5 470)	.2 3	. 4	10	2	<1 <	10	60	2 1	
	DA	TE	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	
	ОСТ 12		10	4	<10	<10	<1	180	3000	97	10	10	150	
	DA	TE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
	0CT 12		<.1	.06	4	<10	<1	<1	50	20	<1	<1	<1.0	
	DA	TE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
	0CT 12	• • •	<.1	2.0	. 4	.1	.2	<.1	<.1	<.1	<.1	<.1	<.1	
	DA	TE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOTTOM MATERIL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
	OCT 12		<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<1.00	<10	<.1	

01455500 MUSCONETCONG RIVER AT OUTLET OF LAKE HOPATCONG, NJ

LOCATION.--Lat 40°55'00", long 74°39'55", Morris County, Hydrologic Unit 02040105, just upstream of bridge on Warren County Route 43 and 300 ft downstream from Lake Hopatcong dam in Landing.

DRAINAGE AREA .-- 25.3 mi2.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1962, 1976 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DA	TE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	(ST	RD	EMPER- ATURE DEG C)	OXYGI DIS SOLV (MG/	EN, S- VED	XYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STRE TOCOO FEC! (MPI	CCI
JAN 25 MAR		1030	33	261		7.9	1.0	- 14	4.0		E1.4	<20)	4
		1300	30	240)	7.7	2.5	1:	3.5		E1.4	<20)	7
		1330	84	217		7.6	13.0	10	0.3	101	E2.1	20)	50
		1030	195	230)	7.9	22.5		8.0	97	E1.9	<20)	24
		1030	27	201	i .	8.0	26.0		8.0	103	E1.6	<20	>24	400
	•••	1330	13	210)	7.9	18.0		8.8	94	E1.6	80) 2	240
		HARD NESS (MG/ AS	L SOL	IUM S - I VED SO /L (N	GNE- SIUM, DIS- DLVED MG/L	SODIUM DIS- SOLVEI (MG/I	DI SOL (MG	UM, I S- VED /L	ALKA- LINITY LAB (MG/L AS	DIS SOL (MG	VED SOI	DE, RI S- I LVED SO	.UO- IDE, DIS- DLVED	
	DATE	CACC)3) AS	CA) AS	MG)	AS NA	AS	K)	CACO3) AS S	04) AS	CL) AS	5 F)	
	JAN 25		53 14		4.3	20		.90	29	1	8 38	3	<.10	
	MAR 21		50 13		4.2	23		.90	26	1	7 45	5	<.10	
	MAY 16 JUL		48 13		3.8	20		.90	22	1	6 39)	.10	
	11		45 12		3.6	19		.70	23	1	6 38	3	<.10	
	07 SEP	•	46 12		3.8	19		.60	26	1	4 35	5	<.10	
	27		46 12		3.9	20		.70	25	1	5 36	5	<.10	
	DATE	SILIC DIS- SOLV (MG/	AT 1 IED DEG 'L DI SOL	DUÉ N: 80 (. C NI: S- T(VED (1	TRO- GEN, TRITE DTAL	NITRO GEN, NO2+NO TOTAI (MG/I	GE AMMO TOT	N, NIA AL	NITRO GEN, AM MONIA ORGANI TOTAL (MG/L	+ NIT C GE TOT (MG	N, PHONAL TO	RUS, ORG FAL TO G/L (1	RBON, GANIC OTAL MG/L	
	DATE JAN	SIO	2) (MG	/L) A:	5 N)	AS N) AS	N)	AS N)	AS	N) AS	P) A:	S C)	
	25 MAR	. 1	1.1	126	.010	. 2	21 <.	050	.2	0	.41	.040	3.6	
	21 MAY	. 2	2.5	139	.004	. 2	25 .	010	• 3	2	.57	.020	3.0	
	16	. 2	2.4	142	.003		15 .	050	•5	0	.65	.040	3.5	
	11	. 1	1.7	129	.005	. (100	•3	2	.38	.030	3.8	
	07 SEP	. 1	1.9	132	.006	<.0		060	.5	2		.040	2.8	
	27	• 3	3.3	119	.003	<.0		090	.1	4	-	.030	3.8	

63

01455500 MUSCONETCONG RIVER AT OUTLET OF LAKE HOPATCONG, NJ--Continued

DATE	: TIME	SULFIDE :	INOR- I GANIC, O TOT IN	CARBON, INORG + DRGANIC TOT. IN BOT MAT (G/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)		IN BOT-	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)
MAY 16 SEP	1330	<.5			<10	<1		<10	20	<1	
27	1330		.2	3.3			<1				<1
DATE	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOVT ERABLE (UG/L AS FE)	(UG/G	LEAD, TOTAL RECOV- TO ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- DM MA- TERIAL (UG/G AS PB)	TOTAĹ RECOV- F ERABLE (UG/L	NESE, RECOV. M BOT- TOM MA- TERIAL
MAY 16 SEP	10			3		140		1		60	
27	-	3	<10		0		4700		20		230
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	FM BOT- TOM MA-	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ERABLE (UG/L	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOM MA- TERIAL
MAY											
16 SEP	<.1		2		<1		10		<1		
27		<.01		<10		<1		40		40	<1.0
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOM MA-	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOM MA- TERIAL	TOTAL IN BOT- TOM MA- TERIAL	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOM MA- TERIAL	TOM MA- TERIAL
MAY 16											
SEP 27	<.1	<1.0	<.1	<.1	.5	<.1	<.1	<.1	<.1	<.1	<.1
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT-	MALA- THION, TOTAL IN BOT- TOM MA-	METH- OXY- CHLOR, TOT. IN BOTTOM MATL.	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL.	MIREX, TOTAL I IN BOT- I TOM MA- TERIAL	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL
MAY 16 SEP											
27	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<1.00	<10	<.1

01455801 MUSCONETCONG RIVER AT LOCKWOOD, NJ

LOCATION.--Lat 40°55'10", long 74°44'07", Sussex County, Hydrologic Unit 02040105, at bridge in Lockwood, at boundary between Sussex County and Morris County, 0.2 mi southeast of Cage Hill, 0.4 mi south of Jefferson Lake, and 0.9 mi downstream from Lubbers Run.

DRAINAGE AREA .-- 60.1 mi2.

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1976 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	TIME	FL INS TAN	EAM- OW, TAN- EOUS FS)	SPE CIF COM DUC ANG	FIC N- CT- CE		AND- RD	ATI	PER- JRE G C)	SOL	EN, IS- VED	SO (P C SA	GEN, IS- LVED ER- ENT TUR- ION)	DEM BI CH IC	GEN AND, O- IEM- AL, DAY IG/L)	F F B	OLI- ORM, ECAL, EC ROTH MPN)	STRE TOCOC FECA (MPN	CI
JAN																			
25 MAR	1145		97		496		7.7		1.5	1	2.3				3.1		80	1	110
21 MAY	1145		190		293		7.8		4.5	1	2.3				E2.0		<20		15
16 JUL	1145		210		236		7.8		13.0	1	0.3		100		E2.0		<20	1	110
11 AUG	1200		280		256		7.7	;	22.5		8.0		95		E1.6		20	2	240
07	1200		56		267		7.9	;	24.0		8.0		98		E1.8		330	>24	100
SEP 27	1200		18		298		7.9		14.5		8.2		81		3.9		700	5	540
DATE	HAR NES (MG AS	S /L	CALC: DIS- SOLY (MG/ AS	VED /L	MAGI SIU DIS SOLV (MG/ AS I	JM, S- VED /L	SODI DIS- SOLVI (MG,	ED /L	POTA SIU DIS SOLV (MG/ AS E	JM, S- /ED /L	ALKA LINIT LAE (MG/ AS CACO	Y B 'L	SULF DIS- SOL' (MG AS S	- VED /L	(MC	E,	FLU RID DI SOL (MG AS	E, S- VED /L	
JAN																			
25 MAR	•	84	21		7	. 7	53		1.	3	52		2	1	96	,		.10	
21 May	•	68	17		6	. 1	23		1.	. 1	53		1	7	33	3	<	.10	
16 JUL	•	62	16		5	. 4	19			90	39		1	6	36	5		.10	
11 AUG		57	15		4	. 8	19		- 1	90	36		1	7	36	5	<	.10	
07 SEP		80	20		7	. 3	18		1.	. 0	60		1	4	33	3		.10	
27		110	26		10		24		1.	. 4	71		1	8	45	5		.10	
DATE	(MG	VED /L	SOLII RESII AT 18 DEG DIS SOLI (MG	DUÉ BO C S- VED	NITE GEI NITE TOTA (MGA	N, ITE AL /L	NIT GE NO2+ TOT (MG	N, NO3 AL /L	NITI GEI AMMOI TOTA (MGA	N, NIA AL 'L	NITE GEN, A MONIA ORGAN TOTA (MG/ AS M	AM- NIC AL 'L	NIT GE TOT (MG AS	N, AL /L		RUS, FAL G/L	CARE ORGA TOT (MG	NIĆ AL /L	
JAN																	43.		
25 MAR		7.6		258		017		.48		120		.86		• 3		. 110		.9	
21 MAY		4.4		147		007		•33	• 2	260	•	66		.99		.060	_	.2	
16 JUL	•	2.7		159		015		. 15	•	140		.77		.92		.060	3	.0	
11 AUG	•	4.5	-	137	. (035		. 17	•	190		46		.63		060	3	.8	
07 SEP		7.0		173	•	125		.54	. (060		53	1	. 1		100	3	. 4	
27		6.4		195		133		.97	. (530	1.	. 4	2	. 4		.210	3	.0	

01455801 MUSCONETCONG RIVER AT LOCKWOOD, NJ--Continued

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
SEP	1000	4.0			11.0		20	
27	1200	10	1	<10	40	1	20	5
DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS TOTAL (UG/L)
SEP 27	380	2	90	<.1	1	<1	20	<1

01456200 MUSCONETCONG RIVER AT BEATTYSTOWN, NJ

LOCATION.--Lat 40°48'48", long 74°50'32", Warren County, Hydrologic Unit 02040105, at bridge at Beattystown, 1.6 mi upstream of Hanes Brook, 2.1 mi northeast of Stephensburg, and 3.5 mi northeast of Scrappy Corner.

DRAINAGE AREA .-- 90.3 mi2.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	TIME	FL INS TAN	EAM- OW, TAN- EOUS FS)	DU AN	FIC N- CT-	(ST	H AND- RD TS)	AT	PER- URE G C)	D SO	GEN, IS- LVED G/L)	SO (P	GEN, IS- LVED ER- ENT TUR- ION)	DEM BI CH IC	GEN IAND, IO- IEM- IAL, DAY IG/L)	F(FI I BI	OLI- ORM, ECAL, EC ROTH MPN)	TOC	REP- OCCI CAL PN)
JAN 25	1300		E229		369		8.0		1.5		13.8				E1.6		1300		49
MAR 21	1030		E316		248		7.9		6.0		12.4				2.8		50		11
MAY 16	1030		E260		247		8.2		12.0		11.4		107		E1.5		50		33
JUL 11	1330		E473		262		8.0		21.0		8.8		102		E1.8		330		350
AUG 07	1330		E182		307		8.5		22.5		9.5		112		E1.8		330		540
SEP 27	1030		E58		360		8.4		13.5		10.8		104		E1.7		140		240
DATE	HAR NES (MG AS	S /L	CALC DIS SOL (MG AS	VED /L	MAG SI DI SOL (MG	NE- UM, S- VED /L MG)	SODI DIS SOLV (MG	UM,	POT SI DI	AS- UM, S- VED	ALK LINI LA (MG AS CAC	TY B /L	SULF DIS SOL (MG AS S	- VED /L	CH RI DI SO (M	LO- DE, S- LVED G/L CL)	FLU RII DI SOI	DE, IS- LVED G/L	240
JAN 25		110	25		11		25	i	1	. 4	80		2	1	4	5	•	.10	
MAR 21		79	19		7	.7	17			.90	39		1	6	4	5	•	.10	
MAY 16		83	20		8	.0	17			.90	58		1	5	3	1		.10	
JUL 11		73	18		6	8.8	14	į		.90	53		1	5	2	8		.10	
AUG 07		110	26		12	2	15	;	1	.2	94		1	6	2	7		.10	
SEP 27		140	31		15	,	20)	1	•5	111		1	8	3	5		.10	
DATE	SILI DIS SOL (MG AS	VED /L	SOLI RESI AT 1 DEG DI SOL (MG	DUÉ 80 . C S- VED		AL /L	NIT GE NO2+ TOT (MG	NÓ3 AL /L		AL /L	NIT GEN, MONI ORGA TOT (MG AS	AM- A + NIC AL /L	NIT GE TOT (MG AS	N, AL /L	PHO TO	IOS- PRUS, TAL IG/L B P)		ANIĆ FAL G/L	
JAN																			
25 MAR		9.3		204		026		.92		450		.83	1	. 8		. 190		3.3	
21 MAY	•	5.6		163		011		.44	•	070		.69	1	. 1		.080	ž	2.8	
16 JUL		4.6		171		019		.42		110		•79	1	.2		.090	3	3.4	
11 AUG	•	6.8		147		018		.43	•	060		.49		.92		.090	1	1.1	
07 SEP	•	8.2		201	•	042		.90		050		. 47	1	. 4		.170	2	2.9	
27	•	6.3	19	207		054	1	•3		190		•33	1	.6		.260	2	2.3	

01456200 MUSCONETCONG RIVER AT BEATTYSTOWN, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	TIME	SULFII TOTAI (MG/I AS S)	L SOLV	ARSE TOT	LI TC NIC RE AL ER	TAL COV- I ABLE I G/L	BORON, FOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
MAY 16	1030	<.	.5 <	10	1	<10	20	<1	<10	4
DA	T(R) E	RON, OTAL ECOV- RABLE UG/L S FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	TOTAL RECOVERABLE (UG/I	V SEI V NI LE TO L (U	LE- TO UM, RE TAL ER G/L (U	G/L T	ENOLS OTAL G/L)
MAY 16.	• • •	270	1	40	<.1		2	<1	30	< 1

01457000 MUSCONETCONG RIVER NEAR BLOOMSBURY, NJ

LOCATION.--Lat 40°40'20", long 75°03'40", Warren County, Hydrologic Unit 02040105, on right bank just downstream from highway bridge, 1.5 mi upstream from Bloomsbury, and 9.5 mi upstream from mouth.

DRAINAGE AREA .-- 141 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- July 1903 to March 1907, July 1921 to current year.

REVISED RECORDS.--WSP 1051: 1944-45. WSP 1382: 1904-06, 1922, 1923-29(M), 1931(M), 1933-34(M), 1936(M), 1940, 1942(M), 1944-45(M), 1951-52(M). WDR NJ-82-2: Drainage area.

GAGE.--Water-stage recorder and crest-stage gage. Concrete control since Sept. 29, 1932. Datum of gage is 274.83 ft National Geodetic Vertical Datum of 1929. July 1903 to Mar. 31, 1907, nonrecording gage at bridge 15 ft upstream at different datum. July 26 to Sept. 12, 1921, nonrecording gage at bridge at present datum.

REMARKS.--Water-discharge records good except those for periods of no gage-height record, Apr. 23 to June 14 and those for winter periods, which are fair. Flow regulated by Lake Hopatcong (see Delaware River Basin, reservoirs in). Diurnal fluctuation caused by small powerplants above station.

AVERAGE DISCHARGE .-- 66 years (water years 1904-06, 1922-84), 236 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 7,200 ft³/s Jan. 25, 1979, gage height, 8.50 ft, from floodmark, from rating curve extended above 1,800 ft³/s on basis of slope-area measurement at gage height 6.95 ft; minimum, 8.1 ft³/s Aug. 2, 1955; minimum daily 27 ft³/s Sept. 8, 1966.

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 1,000 ft3/s and maximum (#):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Dec. 13	1815	1490	4.41	Apr. 16	1715	1050	3.67
Dec. 22	1830	1050	3.67	May 30	Unknown	2530	5.80
Dec. 26		2010	a5.52	July 5	2230	1540	4.49
Apr. 5	1515	2750	6.03	July 7	0215	*4200	6.79
Apr. 9	1545	1210	3.98				

a Ice jam.

CAL YR 1983

TOTAL 125041 MEAN 343

TOTAL 140999 MEAN 385

MAX

MAX

2590 MIN 69

2520 MIN 69

Minimum discharge, 66 ft³/s Oct. 1, 10, 11, gage height, 1.29 ft.

		DISC	HARGE, IN	CUBIC FE	ET PER SE	COND, WAT MEAN VA	ER YEAR (OCTOBER 19	83 TO SEP	TEMBER 198	34	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	82	88	375	340	167	404	528	385	1300	524	227	152
2	88	147	321	322	159	351	559	365	900	485	216	133
3	91	216	307	310	190	332	610	350	720	362	216	127
4	86	211	417	280	587	313	666	540	620	307	207	220
5	81	183	423	270	315	317	2140	1080	540	449	216	210
6 7 8 9	82 75 72 70 69	163 154 147 143 142	382 493 447 401 385	255 240 230 220 205	257 225 197 188 181	394 361 313 304 287	2300 1980 1570 1250 1040	760 560 520 550 585	480 440 415 385 370	858 2520 1230 982 817	237 224 203 189 184	162 141 132 127 125
11	69	188	369	195	239	280	892	520	345	733	180	125
12	81	300	424	176	298	264	777	460	335	813	174	126
13	101	291	1040	172	271	271	695	460	320	662	181	118
14	98	274	1220	174	286	677	634	490	305	557	171	114
15	91	276	1020	166	701	624	625	430	281	488	162	118
16	86	348	851	159	750	583	857	395	260	492	154	120
17	81	261	734	150	611	579	812	360	253	475	162	116
18	77	238	663	145	529	534	736	325	283	527	157	111
19	125	271	609	142	477	502	794	320	271	505	148	108
20	138	275	553	140	447	470	776	375	245	437	166	108
21	114	383	513	138	403	468	676	450	220	415	186	105
22	97	346	748	135	361	504	605	520	207	400	152	103
23	101	323	747	132	335	461	586	370	200	358	169	101
24	339	287	634	160	509	420	600	360	264	324	176	104
25	233	478	606	284	456	392	570	350	552	296	155	104
26 27 28 29 30 31	163 129 113 101 92 90	449 394 407 536 446	1350 760 488 661 461 383	285 265 226 194 183 181	396 353 415 476	370 328 362 472 414 465	525 480 450 420 405	295 320 330 390 920 2000	342 265 235 215 279	267 373 346 296 264 245	141 135 130 130 132 136	102 97 99 98 96
TOTAL	3315	8365	18785	6474	10779	12816	25558	16135	11847	17807	5416	3702
MEAN	107	279	606	209	372	413	852	520	395	574	175	123
MAX	339	536	1350	340	750	677	2300	2000	1300	2520	237	220
MIN	69	88	307	132	159	264	405	295	200	245	130	96

69

01457400 MUSCONETCONG RIVER AT RIEGELSVILLE, NJ

LOCATION.--Lat 40°35'32", long 75°11'20", Warren County, Hydrologic Unit 02040105, at bridge on State Highway 13 in Riegelsville, 0.2 mi north of Mount Joy, and 0.2 mi upstream from mouth.

DRAINAGE AREA. -- 156 mi2.

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1962, 1976 to current year.

REMARKS.--Water-quality samples do not include Riegelsville Paper Company bypass.

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	I	TREAM- FLOW, NSTAN- ANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)		BIO- I CHEM- I ICAL, 5 DAY I	COLI- FORM, FECAL, EC BROTH	STREP- TOCOCCI FECAL (MPN)
OCT 12 FEB	1330	E77	340	8.2	14.5	10.0		E1.6	330	350
07 MAR	1145	E259	312	8.0	2.0	13.8		E2.0	490	130
22 JUN	1330	E548	257	8.3	6.5	13.2		E1.4	60	23
07 JUL	1330	E476	267	8.0	18.5	9.7	104	E1.7	<20	79
19 AUG	1200	E563	278	8.1	19.5	8.9	98	2.4	1300	540
08	1230	E222	307	8.4	20.5	9.5	107	E2.1	5400	>2400
DATE	HARD- NESS (MG/L AS CACO3	DIS- SOLV (MG/	DI ZED SOL L (MG	UM, SODI S- DIS VED SOLV /L (MG	UM, S ED SO	TAS- ALK IUM, LINI IS- LA LVED (MG G/L AS K) CAC	TY SULFA' B DIS- /L SOLV (MG/)	DIS- ED SOLVEI L (MG/L	(MG/	ED L
OCT 12 FEB	. 16	0 35	17	11		1.9 123	23	21	۷.	10
07 MAR	. 11	0 25	12	18		1.5 83	20	33	<.	10
22 JUN	• 9	1 21	9	.4 14		1.1 63	18	26	<.	10
07 JUL	. 9	9 23	10	11		1.2 75	19	22	<.	10
19 AUG	. 11	0 24	11	11		1.3 79	19	19	<.	10
08	. 13	0 29	14	10		1.5 103	20	18		10
DATE	SILICA DIS- SOLVE (MG/L AS SIO2)	AT 18 D DEG. DIS SOLV	DUÉ NIT 30 GE . C NITR 3- TOT VED (MG	N, GE ITE NO2+ AL TOT /L (MG	N, G NO3 AMM AL TO	TRO- GEN, EN, MONI ONIA ORGA TAL TOT G/L (MG N) AS	AM- A + NITRO NIC GEN AL TOTAL /L (MG/1	, PHORUS L TOTAL L (MG/L	CARBO ORGAN TOTA (MG/) AS C	IĆ L L
OCT 12 FEB	. 5.	8 1	99 .	045 2	.0 <	.050 1	.1 3.	1 .100	0 4.	9
07	. 8.	2 1	94 .	016 1	•7	.130	.64 2.	3 .080	2.	9
22 JUN	. 7.	2 1	46 .	011 1	.3 <	.050	.59 1.	9 .040	1.	9
07 JUL	. 8.	5 1	93 .	016 1	•5	. 170	.64 2.	1 .100	2.	0
19 AUG	. 9.	0 1	95 .	013 1	•5	.060	.62 2.	1 .120	2.	7
08	. 6.	9 2	206 .	024 1	.9	.060	.62 2.	.080	2.	3

01457400 MUSCONETCONG RIVER AT RIEGELSVILLE, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	TIME	SULFI TOTA (MG/	AL SOL	M, S- ARSE VED TOT /L (UC	LIU TO: ENIC REC FAL ERA G/L (UC	TAL TO: COV- REC ABLE ER	RON, CADM FAL TOT COV- REC ABLE ERA G/L (UG B) AS	AL TO: OV- REG BLE ERI /L (UC	JM, COPI TAL TO: COV- REC ABLE ERA G/L (UC	PER, TAL COV- ABLE G/L CU)
OCT	1330		.5	90	2	<10	20	1	<10	<10
DA	T R E (RON, OTAL ECOV- RABLE UG/L S FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS TOTAL (UG/L)	
ОСТ 12		240	7	20	<.1	4	<1	30	4	

01460500 DELAWARE AND RARITAN CANAL AT KINGSTON, NJ

LOCATION.--Lat 40°22'24", long 74°37'08", Middlesex County, Hydrologic Unit 02040105, on right bank at canal lock at Kingston, and 250 ft upstream from new bridge on State Highway 27.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- March 1947 to current year.

GAGE.--Two water-stage recorders and concrete control. Datum of gage is 40.00 ft National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records fair except those from May 3 to Sept. 30, which are poor. The canal diverts water from the Delaware River at Raven Rock and discharges into Raritan River at New Brunswick. There was no diversion from the Delaware River from Mar. 16 to Sept. 30 (see Diversions, Delaware River basin). Some water wasted to the Millstone River 500 ft above station. On days of zero flow during the period Mar. 16 to Sept. 30, reverse flow may have occurred due to pumping out of the gage pool to the upstream end of the lock for water supply.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 MEAN VALUES

AVERAGE DISCHARGE .-- 37 years, 74.5 ft3/s.

EXTREMES FOR PERIOD OF RECORD. -- Maximum daily discharge, 174 ft3/s Apr. 6, 1957; no flow many days in many years.

EXTREMES FOR CURRENT YEAR .-- Maximum daily discharge, 117 ft3/s Nov. 26; no flow many days in June to September.

DAY OCT NOV DEC JAN FEB APR MAY JUN JUL AUG SEP .00 .00 63 .00 .00 84 .00 .00 80 34 96 -00 .00 .00 .00 9.0 .00 .00 .00 .00 .00 .00 6.8 .00 .00 .00 .00 .00 18 .00 .00 .00 .00 .00 .00 38 .00 51 61 81 .00 .00 29 .00 .00 .00 .00 .00 .00 ---

64.4

46.5

1046.00

34.9

.00

47.5

 1693.00

54.6

.00

.00

37.0

1146.00

179.80

5.99

CAL YR 1983 TOTAL 25647.7 MEAN 70.3 MAX 117 MIN 3.8 WTR YR 1984 TOTAL 21787.80 MEAN 59.5 MAX 117 MIN .00

97.9

81.6

82.5

TOTAL.

MEAN

MAX

99.8

61.5

01461000 DELAWARE RIVER AT LUMBERVILLE, PA

LOCATION.--Lat 40°24'27", long 75°02'16", Bucks County, Hydrologic Unit 02040105, at pedestrian bridge at Lumberville, 1.4 mi upstream of Lockatong Creek.

DRAINAGE AREA. -- 6,598 mi2.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

	DATE	TIME	FL INS TAN	EAM- OW, TAN- EOUS FS)	DU AN	FIC N- CT-	PH (STAI ARI UNIT:	ND- D	AT	PER- URE G C)	SC	GEN, DIS- DLVED IG/L)	SO (P C SA	GEN, IS- LVED ER- ENT TUR- ION)	BI CH IC	AND,	F F F F F F F F F F F F F F F F F F F	OLI- ORM, ECAL, EC ROTH	TOC	REP- OCCI CAL PN)
	OCT 13 JAN	1300		4180		228		8.0		17.5		9.0				E1.3		50		79
	18 APR	0915		6540		222	8	8.0		.5		13.3				E1.7		170		17
	09 JUN	1030	4	8400		103	•	7.5		6.0		11.7				E1.7		130		22
	05 JUL	1400	2	5600		122	•	7.7		16.5		9.5		98		E1.6		230		17
	25 AUG	1445		8190		218		8.7	1	25.0		9.8		119		E1.5		230		49
	20 SEP	1330		4880		228	8	8.6		23.5		8.8		104		E1.6		40		20
٠	24	1045		3220		246	8	8.1		20.5		7.9		87		E1.7		20		350
	DATE	HAR NES (MG AS CAC	S /L	CALC DIS SOL (MG AS	VED /L	MAGN SIU DIS SOLV (MG/ AS N	JM, 5 5- /ED : /L	SODIU DIS- SOLVE (MG/ AS N	ED 'L	SI		ALK LINI LA (MG AS	TY B /L	SULF DIS SOL (MG AS S	VED /L	(MC	DE, S- VED	FLU RID DI SOL (MG AS	E, S- VED /L	
	OCT		83	21		7.	lı .	11			_	F 1			6	16			.10	
	13 JAN 18		77	20		6.		11			.5	51 45								
	APR				^				0	'					7	17			.10	
	JUN		33		• 9	2.		4.			.90	17			5		0.0		.10	
	JUL		41	11		3.		4.			.90	25			6		. 4		.10	
	AUG		78	20		6.		7.			• 3	54			5	12			.10	
	20 SEP		83	21		7.		8.	. 8		.6	60			3	13			.10	
	24	•	96	24		8.	.7	11		1	.7	64		2	7	16)	<	.10	
	DATE	SILI DIS SOL (MG AS SIO	VED /L	SOLI RESI AT 1 DEG DI SOL (MG	DUÉ 80 . C S- VED	NITE GEN NITE TOTA (MG/ AS N	I, ITE I L 'L	NITE GEN NO2+N TOTE (MG/ AS N	N, NO3 AL 'L	NIT GE AMMO TOT (MG AS	NIA AL /L	MONI ORGA TOT (MG	A + NIC AL /L	NIT GE TOT (MG AS	AL /L	PHOP PHOP TOT (MC	RUS, FAL G/L	CARB ORGA TOT (MG AS	NIC AL /L	
	OCT																			
	13 JAN		2.5		130		125	1.			160		.58		.2		180		.6	
	18 APR		5.8		141		18	1.			600		.97		• 3		110		.8	
	JUN		3.7		54		005		.70		140		.54		.2		060		•3	
	JUL 05		4.0		84		10		.69	۲.	050		.62		•3		070	2	.7	
	AUG		4.7		136		19	1.	. 0	•	070		.20	1	.2		090	3	.2	
	SEP		4.1		130		23	1.			090		.40		.6		080		.1	
	24	•	2.6		139	.()42	1.	.5		140		.60	2	.1	112	090	1	.8	

01461000 DELAWARE RIVER AT LUMBERVILLE, PA--Continued

	DATE	TIME	SULF TOT (MG AS	AL SOL	JM, IS- ARS LVED TO	ENIC TAL G/L AS)	BERYL LIUM, TOTAL RECOV ERABL (UG/L AS BE	BOR TOT REC E ERA	TAL TO TOV- RE BLE ER	OMIUM M OTAL T CCOV- R RABLE E	HRO- IUM, OTAL ECOV- RABLE UG/L S CR)	COPPE TOTA RECO ERAE (UG/ AS C	V- BLE
	JUN	11100			11.0			•	20				_
	O5 SEP	1400)	<.5	40	1	<1	0	30	2	20		5
	24	1045	i	<.5	<10	1	<1	0	60	1	<10		3
1	<i>(</i>				MANGA-								
			IRON,	LEAD,	NESE,	MERCU		ICKEL,	0515	ZINC,			
			TOTAL RECOV-	TOTAL RECOV-	TOTAL RECOV-	TOTA		TOTAL RECOV-	SELE- NIUM,	TOTAL RECOV			
			ERABLE	ERABLE	ERABLE			ERABLE	TOTAL	ERABL		ENOLS	
			(UG/L	(UG/L	(UG/L	(UG/		(UG/L	(UG/L	(UG/L		DTAL	
	DA	TE	AS FE)	AS PB)	AS MN)	AS F	iG)	AS NI)	AS SE)	AS ZN) (U	3/L)	
	JUN												
			620	7	70	<	. 1	5	<1	4	0	<1	9
			150	1	30		. 2	2	<1	1	0	<1	

01461300 WICKECHEOKE CREEK AT STOCKTON, NJ

LOCATION.--Lat 40°24'41", long 74°59'13", Hunterdon County, Hydrologic Unit 02040105, at bridge on State Route 29 in Stockton, 900 ft upstream from mouth.

DRAINAGE AREA .-- 26.6 mi2.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1959-63, 1976 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	TIME	STRE FLO INST TANE (CF	CAM- CI OW, CO CAN- DU COUS AN	ICE	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	SOL (PE CE SAT	IS- DE LVED B ER- C ENT I TUR- 5	IO- HEM- CAL, DAY	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)
OCT 13 JAN	1015		5.1	217	8.8	18.5	9.8			1.1	490	240
18 APR	1015	E 1	4	378	7.5	.0	14.3			E1.6	<20	49
09 MAY	1130	E6	60	212	7.4	9.0	11.1			<1.1	<20	4
21 JUL	1330	E7	7	178	7.6	18.0	9.7		103	2.4	460	
19	1345	E3	88	137	8.0	22.0	9.0		103	E1.8	2400	>2400
AUG 08	1345	E 1	4	274	8.7	26.0	8.8		110	E1.3	230	540
SEP 24	1230	E	1.9	218	8.2	19.0	12.1		130	E1.5	330	2400
DATE	HAR NES (MG AS	S /L	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNI SIUI DIS- SOLVI (MG/I AS MG	A, SODI	UM, S1 - D1 ED S01 /L (M0	IUM, LINI IS- LI LVED (MO	AB G/L	SULFATE DIS- SOLVED (MG/L AS SO4)	DIS-	(MG	E, S- VED /L
OCT		63	15	6.	. 15	,	2.5 47		21	16	,	.10
13 JAN										100	`	
18 APR		51	12	5.0			1.7 26		38	63		.20
MAY		40	9.5	3.9	21		1.6 21		27	28		.10
JUL .		32	7.7	3.0) 19		1.6 17		22	23	<	.10
19	••	36	8.8	3.	5 14	2	2.1 25		21	13		.10
08.	••	46	11	4.	30	2	2.3 31		25	38		.10
24.	• •	67	16	6.	5 14	•	1.9 46		24	13	<	.10
DATE	(MC	VED	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO GEN NITRI TOTAL (MG/I AS N	GE NO2+	N, GE NO3 AMMO AL TO3 /L (MO	TRO- GEN EN, MONI ONIA ORGA TAL TO:	TRO- , AM- IA + ANIC TAL G/L N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)		NIC AL /L
OCT												
13 JAN	1	2		.0	11 2	.2 <	.050	.34	2.5	. 15	0 3	.5
18.	. 1	2	218	.00	07 2	.7 <	.050	.44	3.2	.05	0 1	.7
09.	. 1	2	113	.00	05 2	•5	.240	.27	2.8	.04	0 1	.8
21 JUL	• •	8.5	133	.0	15	.64	100	.65	1.3	.08	0 6	.0
19	• •	7.9	97	.0	16 1	.5 <	.050	.59	2.1	.08	0 4	.7
08.	. 1	2	168	.0	10 1	.7 <	.050	.19	1.8	.06	0 2	.1
24.	. 1	1	128	.0	18 3	.2 E	.060	E.05		.05	0 1	.2

DELAWARE RIVER BASIN

01461300 WICKECHEOKE CREEK AT STOCKTON, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	TIME	SULFI TOTA (MG/I AS S	L SOL	M, S- ARSE VED TOT /L (UG	LI TO ENIC RE TAL ER	TAĹ TO COV- RI ABLE EI G/L (I	ORON, OTAL ECOV- RABLE UG/L S B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR)	ERABLE (UG/L
OCT										
13 MAY	1015		•5	30	1	10	50	3	20	<10
21	1330	<	•5	70	1	<10	30	1	10	4
DA	TC RE ER (U	RON, OTAL CCOV- RABLE IG/L S FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL TOTAL RECOV- ERABLI (UG/L AS NI	SEL NIU E TOT	LE- TOT JM, REG TAL ERA	G/L T	ENOLS OTAL G/L)
MAY		60 1300	5 3	10 30	<.1 <.1		4	<1 <1	<10 10	<1 <1

01462500 DELAWARE RIVER AT WASHINGTON CROSSING, NJ

LOCATION.--Lat 40°17'20", long 74°52'08", Mercer County, Hydrologic Unit 02040105, at bridge at Washington Crossing, 1.4 mi upstream of Jacobs Creek.

DRAINAGE AREA. -- 6,735 mi2.

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1976 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DAT	re	TIME	FL INS TAN	EAM- OW, STAN- EOUSR CFS)	CI CO DU AN	CT-	(ST	H AND- RD TS)	AT	MPER- TURE EG C)	sc	GEN, DIS- DLVED MG/L)	S (YGEN, DIS- OLVED PER- CENT ATUR- TION)	DEN BI CH IC	GEN MAND, IO- HEM- CAL, DAY MG/L)	F F B	OLI- ORM, ECAL, EC ROTH MPN)	STR TOCO FEC (MP	CCI AL
OCT O5. FEB	•••	1445		3050		230		8.5		21.0		10.4				E1.5		700	>2	400
07.		1345		8460		204		7.8		1.0		13.0				E2.3		70		17
APR		1300	5	3000		100		7.3		6.5		11.6				2.6		170		13
MAY 15.		1345	1	8600		134		7.9		13.0		10.7		102		E.9		<20		11
JUL 24.		1445		8360		217		8.3		24.0		8.9		106				330		27
AUG		1445		5810		224		8.7		26.5		9.8		122		2.9		<20		79
SEP 24.		1430		3300		240		8.9		22.0		10.0		114		E1.7		80		11
	DATE	HAF NES (MO	SS G/L	CALCI DIS- SOLV (MG/	ED L	DI SOL (MG	UM, S- VED /L	SODI DIS SOLV (MG	ED /L	SI DI SOI (MO		LIN L (M A	AB G/L S	DI SO	LVED G/L	RII DIS SOI (MC		FLU RID DI SOL (MG AS	E, S- VED /L	
		CAC	,037	AS C	Α)	AS	MG)	AS	NA)	AS	K)	CA	co3)	AS	SO4)	AS	CL)	AS	r,	
	OCT 05		84	21		7	•7	10		1	.6	54			25	15	5		.10	
	FEB 07		66	17		5	.8	11		1	.6	44			22	19	9	<	.10	
	APR 09		32	8.	6	2	.6	4	. 4		.90	18			14		3.0	<	.10	
	MAY 15		49	13		4	. 1	5	. 1		.90	30			17		3.7		. 10	
	JUL 24		78	20		6	.8	6	.9	1	. 4	53			23	-1	1	<	.10	
	AUG		83	21		7	.5	8	. 2	- 1	.5	59			24	12	2	<	. 10	
	SEP 24		95	24		8	.6	11		1	.7	64			27	16	5		.10	
	DATE		S- LVED G/L	SOLII RESII AT 18 DEG. DIS SOLV	OUÉ O C S- VED	NIT GE NITR TOT (MG AS	N, ITE AL /L	NIT GE NO2+ TOT (MG AS	N, NO3 AL /L		AL L	GEN MON ORG TO	TRO- , AM- IA + ANIC TAL G/L N)	TO (M	TRO- EN, TAL G/L N)	PHO:	OS- RUS, FAL G/L P)	CARB ORGA TOT (MG AS	NIĆ AL /L	
	OCT																			
	05 FEB	•	2.5	1	17	•	044	1	. 4	۷.	050		•38		1.8		. 130	2	.9	
	07		4.8	. 1	22		019	1	• 3		310		1.3		2.5		. 100	3	. 4	
	09		3.7		53		006		.76		240		.58		1.3		.060	3	.0	
	15 JUL	•	3.3	1	01		013		.80	W. F.	170		.66		1.5		.050	2	.0	
	24 AUG	•	4.8	- 1	49		015	1	. 1	<.	050		.38		1.5		.080	2	.6	
	14 SEP	554	4.3	1	49		031	1	•5	<.	050		• 39		1.9		.080	2	• 3	
	24		2.3	1	40		045	1	.6		080		.28		1.9		.080	1	.9	

DELAWARE RIVER BASIN

01462500 DELAWARE RIVER AT WASHINGTON CROSSING, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DAT	E	TIME	TO'	FIDE TAL S G/L (LUM- NUM, DIS- OLVED UG/L S AL)	ARSE TOT (UC AS	CAL	BER LIU TOT REC ERA (UG AS	M, AL OV- BLE /L	TOT	OV- BLE /L	REC ERA (UC	AIUM CAL COV- ABLE G/L CD)	CHR MIU TOT REC ERA (UG AS	M, AL OV- BLE /L	COPPE TOTA RECO ERAE (UG/ AS (AL OV- BLE 'L
OCT O5. MAY		1445	5	<.5	<10		4		<10		210		<1		10		10
15.	••	1345	5	<.5	30		<1		<10		<20		1		10		3
	DAT	E	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV ERABL (UG/L AS PE	- R E E	ANGA- ESE, OTAL ECOV- RABLE JG/L S MN)	MERCI TOTA RECO ERAI (UGA	AL OV- BLE /L		AL OV- BLE /L	NI TO	LE- UM, TAL G/L SE)	ERA (UG	AL OV- BLE	PHEN TOT (UG/	CAL	
	OCT O5. MAY		340		3	20		.1		6		<1		40		<1	
	15.		170		2	30		(.1		3		<1		20		<1	

01463500 DELAWARE RIVER AT TRENTON, NJ (National stream quality accounting network and Radiochemical program station)

LOCATION.--Lat 40°13'18", long 74°46'42", Mercer County, Hydrologic Unit 02040105, on left bank 450 ft upstream from Calhoun Street Bridge at Trenton, 0.5 mi upstream from Assunpink Creek, and at mile 134.5. DRAINAGE AREA.--6.780 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- February 1913 to current year. October 1912 to February 1913 monthly discharge only, published in WSP 1302. Gage-height records collected in this vicinity since 1904 are contained in reports of the National Weather Service.

REVISED RECORDS.--WSP 951: Drainage area. WSP 1302: 1913-20. WSP 1382: 1924, 1928. GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929. Prior to Sept. 30, 1965, at datum 7.77 ft higher. Feb. 24, 1913, to Oct. 2, 1928, nonrecording gage on downstream side of highway bridge at site 500 ft downstream.

site 500 ft downstream.

REMARKS.--Water-discharge records good. Diurnal fluctuations at medium and low flow caused by powerplants on tributary streams. Flow regulated by Lakes Wallenpaupack and Hopatcong, and by Pepacton, Cannonsville, Swinging Bridge, Toronto, Cliff Lake, Neversink, and Wild Creek Reservoirs (see Delaware River Basin, reservoirs in) and smaller reservoirs. Diversion from Pepacton, Cannonsville, and Neversink Reservoirs and to Delaware and Raritan Canal (see Delaware River Basin, diversions). Water diverted just above station by borough of Morrisville, PA, and city of Trenton for municipal supply (see Delaware River Basin, diversions).

AVERAGE DISCHARGE.--72 years, 11,740 ft³/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 329,000 ft³/s Aug. 20, 1955, elevation, 28.60 ft, from high-water mark in gage house, from rating curve extended above 230,000 ft³/s; minimum, 1,180 ft³/s Oct. 31, 1963, elevation, 7,26 ft. Flow in Delaware and Raritan Canal not included.

7.26 ft. Flow in Delaware and Raritan Canal not included.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Oct. 11, 1903, reached an elevation of about 28.5 ft National Geodetic Vertical Datum of 1929, discharge estimated, 295,000 ft³/s. Maximum elevation since 1903, 30.6 ft National Geodetic Vertical Datum of 1929, Mar. 8, 1904, from floodmark (ice jam).

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 50,000 ft³/s and maximum (*):

Date	Time	Discharge (ft³/s)	Elevation (ft)	Date	Time	Discharge (ft³/s)	Elevation (ft)
Dec. 15 Feb. 16 Apr. 6	0430 1600 1715	110000 87300 133000	18.27 16.72 19.58	May 30 July 7	1630 0930	*152000 90700	20.64 16.96

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

Minimum discharge, 2,500 ft3/s Oct. 1, gage height, 7.89 ft.

MEAN14670 MAX29000

MAX30000

MEAN15740

CAL YR 1983 TOTAL 5354360

WTR YR 1984 TOTAL 5761480

					MEAN V	ALUES						
OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
2810	3560	20500	15300	6010	18100	19800	13900	96200	12700	7910	4880	
3100	3490	17500	13100	5270	16100		14000	67200	23200	7340	4650	
		14800										
3280	3620	16500	11200		12900		25500	37700	19100	7710	4060	
3090	3710	18300	10900	13200	12200	53200	39700	30400	15400	7580	4780	
3010	3900	15400	10100	9610	13000	121000	34400	23700	20100	7550	4570	
					13400	101000	27400	20200				
3110	3450	19900	7200	7390	10600	44500	25500	14000	19900	7100	3570	
3010	4130	16600	8110	7330	10100	36300	23500	12100	16800	6840	3600	
3860	5000	102000	7160	26100	14200	19800	18800	9750	12000	5840	3450	
3840	8950	69000	6480	79500	13600	24200	19200	9470	11000	5610	3570	
4010	6120	23800	6250	28600	13400	34600	14100	9470	13800	5010	3210	
4430	7790	19300	5720	27400	14300	32900	16000	8640	13500	4900	3310	
9260	12500	16000	7000	23400	17300	22400	15700	13300	8550	4980	3240	
7030	17800	12300	8960	20800	15400	21200	14900	13000	8190	4750	3160	
				19400								
						14700		6110			3180	
3620	~	17500	6160		19500		129000		8180	4270		
124940	245140	862200	250520	605700	456980	1047000	829500	552820	494040	182620	110020	
4030	8171	27810	8081	20890	14740	34900	26760	18430	15940	5891	3667	
		102000		79500	20800	121000	130000					
2810	3380	10900	5210	5080	8910	14700	12600	5970	8180	4030	3160	
	2810 3100 3280 3000 3280 3010 2940 3190 3110 3010 3170 3560 4150 3840 2920 3340 4010 4130 4100 3980 7300 9260 7030 4470 4470 4470 4470 4470 4470 447	2810 3560 3100 3490 3280 3620 3090 3710 3010 3900 2940 3690 2990 3410 3190 3380 3110 4130 3170 4690 3560 5450 4150 4920 3860 5000 3840 8950 3640 11100 2920 8620 3340 7260 4010 6120 4430 7790 4100 10400 3980 9980 7300 9630 9260 12500 7030 17800 5480 17300 4770 15700 4470 20800 4180 21300 245140 4030 8171 9260 21300	2810 3560 20500 3100 3490 17500 3300 3490 14800 3280 3620 16500 3090 3710 18300 3010 3900 15400 2940 3690 18400 2990 3410 24700 3190 3380 25200 3110 3450 19900 3010 4130 16600 3170 4690 16200 3560 5450 45100 4150 4920 88200 3860 5000 102000 3840 8950 69000 3640 11100 49300 2920 8620 36800 3340 7260 28100 4010 6120 23800 44100 10400 23800 44100 10400 20800 3980 9980 23100 7300 9630 19200 9260 12500 16000 7030 17800 12300 5480 17300 10900 4470 20800 23900 4470 20800 23900 4470 20800 23900 4480 21300 20900 3620 17500 124940 245140 862200 4030 8171 27810	2810 3560 20500 15300 3100 3490 17500 13100 3280 3620 16500 11200 3090 3710 18300 10900 3010 3900 15400 10100 2940 3690 18400 9570 2990 3410 24700 8890 3190 3380 25200 7630 3110 3450 19900 7200 3010 4130 16600 8110 3170 4690 16200 7530 3560 5450 45100 6830 4150 4920 88200 6210 3860 5000 102000 7160 3840 8950 69000 6480 3640 11100 49300 5710 2920 8620 36800 5900 3340 7260 28100 6360 4010 6120 23800 5210<	2810 3560 20500 15300 6010 3100 3490 17500 13100 5270 3300 3490 14800 12000 5080 3280 3620 16500 11200 9670 3090 3710 18300 10900 13200 3010 3900 15400 10100 9610 2940 3690 18400 9570 8550 2990 3410 24700 8890 8610 3190 3380 25200 7630 8010 3110 3450 19900 7200 7390 3010 4130 16600 8110 7330 3170 4690 16200 7530 9880 3560 5450 45100 6830 9790 4150 4920 88200 6210 1200 3840 8950 69000 6480 79500 3840 28620 36800 <	OCT NOV DEC JAN FEB MAR 2810 3560 20500 15300 6010 18100 3100 3490 17500 13100 5270 16100 3280 3620 16500 11200 9670 12900 3090 3710 18300 10900 13200 12200 3010 3900 15400 10100 9610 13000 2940 3690 18400 9570 8550 13400 2990 3410 24700 8890 8610 12600 3190 3380 25200 7630 8010 11800 3110 3450 19900 7200 7390 10600 3110 3450 19900 7200 7390 10600 3170 4690 16200 7530 9880 9270 3560 5450 45100 6830 9790 8910 4150 4920	2810 3560 20500 15300 6010 18100 19800 3100 3490 17500 13100 5270 16100 18700 3300 3490 14800 12000 5080 14000 19400 3280 3620 16500 11200 9670 12900 20400 3090 3710 18300 10900 13200 12200 53200 3010 3900 15400 10100 9610 13000 121000 2940 3690 18400 9570 8550 13400 101000 2990 3410 24700 8890 8610 12600 69800 3190 3380 25200 7630 8010 11800 54400 3110 3450 19900 7200 7390 10600 44500 3110 4130 16600 8110 7330 10100 36300 3170 4690 16200 7530	OCT NOV DEC JAN FEB MAR APR MAY 2810 3560 20500 15300 6010 18100 19800 1390 3100 3490 17500 13100 5270 16100 18700 14000 3280 3620 16500 11200 9670 12900 20400 25500 3090 3710 18300 10900 13200 12200 53200 39700 3010 3900 15400 10100 9610 13000 121000 34400 2940 3690 18400 9570 8550 13400 10100 27400 2990 3690 18400 980 8610 12600 6980 24100 3190 3380 25200 7630 8010 11800 54400 25800 3110 4130 16600 8110 7330 10100 36300 23500 3170 4690 <	OCT NOV DEC JAN FEB MAR APR MAY JUN	OCT NOV DEC JAN FEB MAR APR MAY JUN JUL 2810 3560 20500 15300 6010 18100 19800 13900 96200 12700 3100 3490 17500 13100 5270 16100 18700 14000 67200 23200 3280 3620 16500 11200 9670 12900 20400 25500 37700 19100 3090 3710 18300 10900 13200 12200 53200 39700 30400 15400 3010 3990 15400 10100 9610 13000 121000 34400 23700 22100 2940 3410 24700 8890 8610 12600 69800 24100 17600 34500 3190 3380 25200 7630 8010 11800 54400 25800 15600 26300 3110 4130 16600 8110<	OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG 2810 3560 20500 15300 6010 18100 19800 13900 96200 12700 7910 3100 3490 17500 13100 5270 16100 18700 14000 6720 23200 7340 3280 3620 16500 11200 9670 12900 20400 25500 37700 19100 7710 3090 3710 18300 10900 13200 12200 53200 39700 30400 15400 7550 2940 3690 18400 9570 8550 13400 101000 27400 20200 49300 7000 2990 3410 24700 8890 8610 12600 69800 24100 17600 34500 7500 3110 3450 19900 7200 7390 10600 48400 25500 <td> OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP </td>	OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP

MIN 2470

MIN 2810

01463500 DELAWARE RIVER AT TRENTON, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1945 to current year.

PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE: June 1968 to September 1978, May 1979 to current year.
pH: June 1968 to September 1978, May to September 1978, February 1980 to August 1982, April 1983 to current year.
WATER TEMPERATURES: October 1944 to September 1978, May 1979 to current year.
DISSOLVED OXYGEN: October 1962 to September 1978, May 1979 to current year.
SUSPENDED-SEDIMENT DISCHARGE: Water years 1949 to 1981.

INSTRUMENTATION. -- Temperature recorder since October 1944, water-quality monitor since October 1962.

REMARKS.--Missing continuous water-quality records are the result of malfunction of sensor or sampling mechanism.

Unpublished records of suspended sediment discharge for the period October 1, 1981 to March 31, 1982 are available in files of the district office.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum, 400 micromhos Jan. 24, 1959; minimum, 50 micromhos Mar. 19, 1945.
pH: Maximum, 10.3 August 9, 10, 1983; minimum, 5.3 June 22, 1972.
WATER TEMPERATURES: Maximum, 34.0°C June 18, 1957; minimum 0.0°C on many days during winter months.
DISSOLVED OXYGEN: Maximum, 18.4 mg/L January 10, 1980; minimum, 4.0 mg/L Nov. 9, 1972.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum, 285 micromhos Jan. 26; minimum, 63 micromhos July 7.
pH: Maximum, 9.9 June 12, 13; minimum, 6.9 July 7.
WATER TEMPERATURES: Maximum, 29.0°C Aug. 16; minimum 0.0°C on many days during the winter months.
DISSOLVED OXYGEN: Maximum, 15.2 mg/L Dec. 31; minimum, 6.7 mg/L Sept. 15.

				,			.,				
DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	CON- DUCT-	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
DEC 14 FEB	1330	92400	104	7.4	6.5	55	12.0	98	4.8	>1200	K3700
13	1400	9650	200		4.0	14	13.7	102	1.9		>400
03 JUN	1200	12500	152	7.8	13.5	1.3	11.4	109	1.6	K20	K1300
26 AUG	1130	12800	167	7.9	22.0	40	7.8	89	3.5		1000
31	1200	4250	238	8.5	25.5	1.5	9.4	115	3.9	K90	500
DATE	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	DIS- SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)
DEC							4.5		4 40		
14 FEB		11	2.8	4.6	1.3	22	17	6.8	<.10	4.4	63
13 MAY		17	5 • 8	11	1.5	40	24	18	<.10	4.9	122
03 JUN	54	14	4.6	6.6	1.0	33	20	11	. 10	2.7	121
26 AUG	61	16	5.0	6.2	1.6	41	20	9.1	. 10	4.1	114
31	88	22	7.9	9.3	1.6	61	28	14	. 10	3.4	158
	ME SU PE	DI- CNT, CH	ENT, SIDIS- SI IARGE, D SUS- % F PENDED T	USP. G EVE NO2 IAM. D INER SO HAN (M	EN, G +NO3 AMM IS- D LVED SO G/L (M	EN, GE ONIA MO IS- OR LVED T G/L (GANIC PHO OTAL TO MG/L (M	OS- PHO RUS, D TAL SO G/L (M	OS- PHO	S- ORG VED TO /L (M	BON, ANIC TAL IG/L C)
Г	EC										
	14 EB		85600			.230	1.8			.020	
	13 IAY	24	625	67		. 290	. 80			.050	
J	03 UN	2	68	14	• 79	.030	. 80	.110	.040	.020	2.0
A	26 UG	108	3730	96	1.0	.080	1.4	.200	.010	.040	3.7
	31	5	57	60	1.4	.080	.60	. 180	.070	.060	1.8

DELAWARE RIVER BASIN

	DATE	TIME	ALUM- INUM, DIS- SOLVE (UG/L AS AL	ARS D SO	IS - L ve d s G/L	ARIUM, DIS- OLVED (UG/L AS BA)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COBALT, DIS- SOLVED (UG/L AS CO)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)
	DEC 14	1330	4	0	1	29	<.5	<1	7	<3	2	31
-	FEB 13	1400	2	0	1	38	<.5	<1	<1	<3	3	46
ì	MAY 03	1200		0	1	36	<1	<1	<1	<3	4	39
17.76	JUN											
	26 AUG	1130		0	1	33	<1	<1	<1	<3	5	65
	31	1200	5	0	2	37	<1	1	1	<3	3	23
	2455	LEAD, DIS- SOLVED (UG/L	LITHIU DIS- SOLVE (UG/L	M NE D SO	IS- LVED G/L	ERCURY DIS- SOLVED (UG/L	MOLYB- DENUM, DIS- SOLVED (UG/L	NICKEL, DIS- SOLVED (UG/L	SELE- NIUM, DIS- SOLVED (UG/L	SILVER, DIS- SOLVED (UG/L	STRON- TIUM, DIS- SOLVED (UG/L	VANA- DIUM, DIS- SOLVED (UG/L
	DATE	AS PB)	AS LI) AS	MN)	AS HG)	AS MO)	AS NI)	AS SE)	AS AG)	AS SR)	AS V)
	DEC 14 FEB	1		5	13	.1	<10	3	<1	<1	46	<6
	13	2	<	4	25	<.1	<10	3	<1	<1	72	<6
	03	1	<	4	15	. 4	<10	3	<1	<1	58	<6
	JUN 26	3		6	3	.2	<10	2	<1	<1	70	<6
	AUG 31	6		6	2	.1	<10	2	<1	<1	84	<6
	DAT	SOL (UC	IC, IS- S VED (ROSS LPHA, DIS- OLVED UG/L AS L-NAT)	GROSS ALPHA SUSP. TOTAL (UG/L AS U-NAT	SOLI SOLI (PCI	A, BET B- SUS VED TOT 'L (PCI AS	A, BET P. DI AL SOL /L (PC	A, BET S- SUS VED TOT I/L (PC SR/ AS	TA, 22 SP. DI TAL SOLV	S- D VED, SOL DON EXT CHOD TI	NIUM IS- VED, RAC- ON G/L)
	DEC											
	14. FEB		40		-	-						
	13. May	••	23		-	-						
	03. JUN	••	19	<1.8	۷.	4	1.7	<.4	1.4	<.4	.02	.03
	26. AUG	••	12	<1.9	5.	4 2	2.2	3.9	1.9	3.4	.09	.03
	31.	••	13	<2.6		6 <	1.9	.7 <	1.7	.7	.06	.10

DELAWARE RIVER BASIN
01463500 DELAWARE RIVER AT TRENTON, NJ--Continued

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
NOV					
16 DEC	1410	9330	56	1410	
14	1320	92300	308	76700	
14 15	1330 1520	92400 99600	343 · 155	85600 41700	52
FEB		16	7		
13 28	1400 1440	9650 19700	24 6	625 320	67
MAR				-	
30 APR	1245	20000	10	540	
05	1700	67100	352	63800	
05 06	2000 0145	73600 98800	330 485	65600 129000	
06	1100	125000	566	191000	
06	1545	131000	505	179000	
MAY 03	1200	12500	2	68	14
31	1040	129000	213	74400	
31 JUN	1500	125000	168	56700	
26	1130	12800	108	3730	96
AUG	10 - 1		N 2 2		1. T. 1.
31	1200	4250	5	57	60

01463500 DELAWARE RIVER AT TRENTON, NJ--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

			TEMPERATURE	, WAIER	(DEG. C),	WATER	YEAR	OCTOBER	1983 10	SEPTEMBE	K 1984		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN		MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBE	R		NOVEMBER				DECEMBE	R		JANUAR	Y
1 2 3 4 5	18.0 20.0 21.5 22.0 23.0	17.5 18.0 18.0 19.0 20.0	17.5 18.5 19.5 20.5 21.0	11.0 11.5 11.5 10.5 10.0	9.0 9.0 10.5 9.0 8.0	10.0 10.5 11.0 10.0 9.0		6.0 5.0 4.5 4.5 5.0	5.0 4.5 4.0 4.0	5.5 4.5 4.0 4.0	.0 .5 .5 1.5 2.0	.0 .5 1.0	.0 .5 .5 1.0 2.0
6 7 8 9	22.0 21.0 20.5 20.5 18.5	19.5 18.5 17.5 17.5	20.5 19.5 19.0 19.0 18.0	9.0 10.0 10.5 11.0	7.5 7.5 8.0 8.5 9.5	8.5 9.5 9.5 10.0		6.0 6.0 5.0 4.0	5.0 5.0 4.0 3.0 3.5	5.0 5.5 4.5 3.5 4.0	2.0 3.0 2.0 1.5 2.0	2.0 2.0 1.0 1.0	2.0 2.5 1.5 1.5
11 12 13 14 15	17.0 17.5 19.5 19.5 18.5	16.5 16.5 17.5 17.5 16.0	17.0 17.0 18.5 18.5	11.0 10.0 8.5 7.5 8.0	10.0 7.5 6.5 7.0 7.0	10.5 8.5 7.5 7.0 7.5		4.0 5.5 7.0 7.0 6.0	3.5 4.0 5.5 6.0	3.5 4.5 6.5 6.5	2.0 1.0 .0 .5	1.0	1.0 .5 .0 .0
16 17 18 19 20	18.0 17.0 16.5 16.0	15.0 15.0 15.0 14.5 13.5	16.5 16.0 16.0 15.5 14.0	9.0 8.0 7.5 8.0 9.5	8.0 7.0 6.5 7.0 7.5	8.5 7.5 7.0 7.5 8.5		6.0 6.0 5.0 4.0 3.0	6.0 5.0 4.0 3.0 2.0	6.0 5.5 4.5 3.5 2.5	.5 .5 .0 1.5	.0	.0 .0 .0 .5
21 22 23 24 25	15.0 14.0 13.0 14.0 13.0	12.5 12.0 12.5 13.0 12.5	13.5 13.0 13.0 13.5 12.5	10.5 10.0 10.0 10.0	9.5 9.0 9.5 9.5 7.5	10.0 9.5 9.5 9.5 9.0		2.0 2.0 1.5 1.0	1.0 1.0 1.0 .0	1.5 1.5 1.0 .5	.5 .0 .0 .0	.0	.0 .0 .0
26 27 28 29 30 31	13.5 12.5 13.0 13.0 12.0	12.0 11.0 10.5 11.0 10.0 9.0	12.5 12.0 11.5 12.0 11.0	8.0 7.5 7.5 7.5 7.0	7.0 7.0 7.0 7.0 6.0	7.5 7.5 7.5 7.5 6.5		.0 .0 .5 .5	.0 .0 .5 .0	.0 .0 .5 .0	2.5 3.0 2.5 1.5 2.0 2.5	1.0 2.0 1.5 1.5 1.0	2.0 2.5 2.0 1.5 1.5
MONTH	23.0	9.0	16.0	11.5	6.0	8.5		7.0	.0	3.0	3.0	.0	1.0
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN		MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUAR			MARCH				APRIL			MAY	
1	1.5	.5	1.0	3.0	2.5	2.5		7.0	5.0	6.0	16.0	14.5	15.0
2 3 4 5	1.5 2.5 2.0 2.5	.0 .0 1.5 2.0	.5 1.5 2.0 2.0	2.5 2.5 3.0 2.5	1.5 1.5 1.5 2.5	2.0 2.0 2.0 2.5		8.0 9.5 9.0 9.0	6.5 7.5 8.5 8.5	7.0 8.5 8.5 9.0	15.5 15.0 14.0 14.0	14.5 14.0 13.5 12.5	15.0 14.5 13.5 13.5
6 7 8 9	3.0 2.0 1.5 2.0 3.0	2.0 1.0 .5 1.0 1.5	2.0 1.5 1.0 1.5 2.0	3.5 4.5 4.0 3.0	2.5 3.0 3.0 2.0	3.0 4.0 3.5 2.5 2.5		8.5 6.5 7.0 7.5 8.5	6.5 6.5 6.5 7.0	7.5 6.5 6.5 7.0 7.5	13.5 13.0 14.0 14.0 14.0	13.0 12.5 13.0 13.0 12.5	13.0 13.5 13.5 13.5
11 12 13 14 15	3.5 4.5 4.5 5.5 6.0	2.5 3.5 4.0 4.5 5.5	3.0 4.0 4.0 5.0 5.5	3.0 3.0 2.5 3.0 4.0	2.0 1.0 2.0 1.5 2.0	2.5 2.0 2.0 2.5 3.0		9.0 10.5 11.0 10.5 9.5	7.5 8.5 10.0 9.5 9.0	8.5 9.5 10.5 10.0 9.5	14.5 15.0 16.0 16.0 15.0	12.5 14.0 14.0 15.0 14.0	13.5 14.5 15.0 15.0 14.5
16 17 18 19 20	5.5 4.0 5.0 5.5	1.0 2.5 4.0 5.0	2.5 3.5 4.5 5.0 5.5	5.0 5.5 6.0 7.0 8.0	3.5 4.5 5.0 5.5 6.0	4.5 5.0 5.5 6.0 7.0		9.0 9.5 9.5 10.0 10.5	9.0 8.5 9.0 9.5 9.5	9.0 9.0 9.5 9.5	14.0 13.0 13.0 13.5 15.0	13.0 12.0 12.0 12.0 13.0	13.5 12.5 12.0 12.5 14.0
21 22 23 24 25	5.5 5.0 6.0 6.0	4.5 4.5 4.5 5.0 5.5	5.0 5.0 4.5 5.5 6.0	7.5 7.5 7.0 6.5 6.0	7.0 6.5 6.0 5.0	7.5 7.0 6.5 6.0 5.5		11.0 10.0 9.5 9.0 9.5	9.5 9.5 9.0 9.0	10.0 9.5 9.0 9.0	17.0 19.0 20.0 19.5 20.0	14.5 16.5 18.5 18.0 18.0	16.0 18.0 19.0 19.0
26 27 28 29 30 31	5.5 5.0 4.5 4.0	4.5 4.0 3.0	5.0 4.5 4.0 3.5	7.5 8.0 8.0 6.0 4.5	5.5 6.5 6.0 4.0 4.0	6.5 7.5 7.0 4.5 4.0 5.0		11.0 12.5 13.5 15.0 15.0	9.0 10.5 12.0 13.0 14.5	10.0 11.5 12.5 14.0 15.0	21.0 20.5 20.0 18.0 17.0	19.0 19.5 18.0 17.0 13.5 13.0	20.0 20.0 19.0 17.5 15.0 13.5
MONTH	6.0	.0	3.5	8.0	1.0	4.5		15.0	5.0	9.5	21.0	12.0	15.0

O1463500 DELAWARE RIVER AT TRENTON, NJ--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

					,	,		. , . ,				
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST	Γ		SEPTEME	BER
1 2 3 4 5	14.0 14.5 15.0 16.0 17.5	13.0 13.5 14.0 14.5 15.5	13.5 14.0 14.5 15.0 16.5	24.0 22.0 22.5 22.5 24.0	22.0 21.5 21.0 21.0 22.0	23.0 21.5 21.5 22.0 23.0	24.5 25.5 26.0 27.0 26.0	22.5 23.5 24.5 24.5 25.0	23.5 24.5 25.0 25.5 25.5	25.0 25.0 26.5 24.0 23.5	23.0 22.5 23.0 22.0 21.0	24.0 23.5 24.5 23.5 22.0
6 7 8 9 10	18.5 20.5 22.0 23.5 25.0	17.0 18.0 19.5 21.5 23.0	17.5 19.0 21.0 22.5 24.0	23.0 22.5 21.0 20.5 20.5	22.5 20.5 20.0 19.5 19.5	22.5 21.0 20.5 20.0 20.0	26.5 27.0 27.5 27.5 26.5	24.0 25.0 25.0 25.5 25.5	25.0 26.0 26.0 26.5 26.0	22.5 22.5 23.0 23.0 23.5	20.0 19.0 19.0 19.0 20.5	21.0 20.5 20.5 21.0 21.5
11 12 13 14 15	26.0 26.5 27.0 26.5 25.5	24.0 24.5 25.0 25.5 23.5	25.0 25.5 26.0 26.0 24.5	21.5 23.0 23.5 25.0 25.5	19.5 21.0 22.0 22.5 23.5	20.5 22.0 23.0 23.5 24.5	25.5 27.0 27.0 28.5 28.5	24.5 24.5 25.0 25.0 26.0	25.0 25.5 26.0 26.5 27.0	24.0 24.5 24.0 23.0	20.5 21.5 21.0 22.5 20.0	22.0 22.5 22.5 23.5 21.5
16 17 18 19 20	24.0 22.5 21.0 23.0 23.0	22.5 21.0 20.5 20.0 21.5	23.0 21.5 21.0 21.5 22.0	26.0 26.0 25.5 24.5 24.0	24.5 24.5 24.5 23.5 22.5	25.0 25.0 25.0 24.0 23.0	29.0 28.5 28.0 26.0 25.5	26.0 25.5 25.0 24.0 23.0	27.5 27.0 26.5 25.0 24.0	21.5 21.5 21.0 21.5 22.0	18.0 18.0 17.5 18.0 18.5	19.5 19.5 19.5 19.5 20.0
21 22 23 24 25	24.0 25.5 25.5 23.5 23.0	22.0 22.5 23.0 22.0 21.5	23.0 24.0 24.0 23.0 22.5	23.5 23.5 25.0 25.5 25.5	22.0 21.5 23.0 23.5 23.5	22.5 22.5 24.0 24.5 24.5	25.5 25.0 24.5 24.5 25.0	22.0 22.0 22.5 22.0 22.0	23.5 23.5 23.5 23.5 23.5	22.5 22.5 23.0 24.0 23.5	19.5 19.0 19.5 21.0 21.5	21.0 20.5 21.0 22.5 22.5
26 27 28 29 30 31	22.5 23.5 24.5 26.0 25.0	21.0 21.0 22.5 23.0 24.0	22.0 22.0 23.5 24.5 24.5	25.5 24.0 22.0 22.0 22.0 24.0	23.5 21.5 21.0 21.0 21.5 21.5	24.5 23.0 21.5 21.5 21.5 22.5	26.0 25.0 25.5 25.0 26.0 26.5	22.5 22.5 22.5 23.5 23.5 24.0	24.0 24.0 24.0 24.0 24.5 25.0	22.5 19.5 17.5 18.0 18.5	19.5 17.5 16.0 15.5	21.5 18.5 16.5 16.5
MONTH	27.0	13.0	21.5	26.0	19.5	22.5	29.0	22.0	25.0	26.5	15.5	21.0
YEAR	29.0	.0	12.5									

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBE	R		NOVEMBE	R		DECEMBE	R		JANUAR	Y
1	221	216	219	206	202	204	123	116	119	148	144	146
2	227	214	224	209	204	206	119	115	116	152	145	148
3	224	215	220	212	208	210	125	119	121	151	148	150
4	216	206	210	216	211	213	129	118	123	154	149	151
5	208	203	207	217	214	216	138	120	132	158	153	155
6	209	207	208	217	210	214	141	138	140	157	151	154
7	211	208	210	216	208	212	147	137	141	158	153	155
8	222	210	218	214	210	213	138	109	126	165	159	162
9	221	212	216	214	207	211	108	102	105	168	162	164
10	212	204	208	214	194	208	112	106	108	172	169	171
11	217	207	212	208	199	205	116	111	113	178	172	175
12	219	204	214	224	207	214	122	116	118	179	171	174
13	215	210	213	224	213	222	122	99	114	183	176	180
14	212	202	207	221	211	216	105	84	96	189	181	185
15	211	207	209	212	163	199	83	75	77	215	188	196
16	209	205	207	178	169	174	81	76	79	195	179	189
17	210	206	207	211	178	197	87	80	84	195	174	188
18	216	211	215	183	172	175	93	88	90	195	192	194
19	215	200	205	179	174	176	102	93	98	204	195	200
20	202	197	199	181	177	179	107	102	105	195	186	192
21	207	202	205	178	169	175	113	106	109	202	187	196
22	206	200	203	188	173	181	122	105	114	207	187	201
23	202	186	196	181	160	168	151	117	138	206	204	205
24	190	177	185	158	151	154	139	133	135	206	198	202
25	201	175	191	149	141	146	148	135	140	222	206	212
26 27 28 29 30 31	194 197 199 209 209	188 193 193 200 206 205	190 195 196 204 208 207	153 148 130 132 134	141 132 125 124 124	150 139 127 128 130	149 157 158 174 169 155	140 145 145 129 146 147	145 150 156 149 154 151	285 283 231 205 196 202	225 232 203 196 185 188	246 257 217 201 190 196
MONTH	227	175	207	224	124	185	174	75	121	285	144	186

01463500 DELAWARE RIVER AT TRENTON, NJ--Continued

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DAV	MAV	MIN	MEAN	MAV	MIN		c), w	MAV	MIN	MEAN	IO DEI I	MAX	MIN	MEAN
DAY	MAX	FEBRUAR	MEAN	MAX	MARCH	MEAN		MAX	APRIL	MEAN		MAA	MAY	MEAN
1 2 3 4 5	211 221 219 226 208	203 210 216 186 193	207 217 217 203 201	142 142 145 151 155	137 139 141 145 149	139 140 144 148 152		152 156 155 152 145	138 142 150 146 96	143 150 153 149 115		145 143 139 144 137	138 137 137 121 109	141 140 138 136 121
6 7 8 9	192 194 195 193 181	185 185 192 179 177	187 189 194 185 179	166 172 165 163 170	155 164 163 160 161	160 169 164 162 165		116 85 88 91 103	76 76 85 85 88	86 80 86 88 95		108 113 120 128 127	105 108 115 120 124	106 110 117 125 125
11 12 13 14 15	185 190 192 183 181	179 182 183 180 152	181 186 188 182 164	179 181 205 218 184	169 172 174 146 144	173 176 183 162 163		121 130 130 129 132	102 120 120 120 128	111 126 125 125 130		123 129 133 138 134	120 122 129 134 130	122 124 130 136 132
16 17 18 19 20	150 84 90 95 106	84 82 83 90 97	106 83 87 93 101	187 184 184 178 176	178 176 177 172 171	183 181 182 174 174		134 133 122 110 121	131 123 111 102 101	133 128 118 105 112		131 126 129 134 140	124 124 125 129 133	127 125 127 131 137
21 22 23 24 25	106 108 115 125 131	104 103 108 116 126	105 105 111 121 129	174 167 162 138 135	168 159 139 132 130	172 163 149 134 133		133 148 152 130 125	120 132 132 121 120	126 141 144 124 122		148 151 150 150 149	139 148 139 140 140	142 149 146 144 145
26 27 28 29 30 31	126 127 137 141	120 125 129 132	123 126 131 135	139 140 142 146 154 155	135 139 137 134 141 148	137 140 139 140 146 150		126 127 131 134 144	123 123 126 130 135	124 125 128 131 141		140 145 147 144 118 75	136 137 141 109 71 72	139 140 145 134 89 74
MONTH	226	82	153	218	130	158		156	76	122		151	71	129
DAV	MAY	MIN	MEAN	MAY	MTN	MEAN		MAY	MTN	MEAN		мач	MTN	MEAN
DAY	MAX	MIN JUNE	MEAN	MAX	MIN JULY	MEAN		MAX	MIN AUGUST	MEAN		MAX	MIN SEPTEMB	MEAN ER
DAY 1 2 3 4 5	80 92 100 108 115		78 86 98 105	MAX 234 174 135 115 120		224 148 111 108 117		199 199 204 207 200		193 195 199 200 198		MAX 249 250 231 233 237		
1 2	80 92 100 108	JUNE 76 81 94 101	78 86 98 105	234 174 135 115	JULY 185 137 103 103	224 148 111 108		199 199 204 207	AUGUST 188 192 197 193	193 195 199 200		249 250 231 233	235 228 223 219	241 239 227 228
1 2 3 4 5	80 92 100 108 115 129 137 146	JUNE 76 81 94 101 108 115 130 138	78 86 98 105 111 121 133 141	234 174 135 115 120 139 142 146	JULY 185 137 103 103 115	224 148 111 108 117 129 111		199 199 204 207 200	AUGUST 188 192 197 193 196	193 195 199 200 198 191 207 207		249 250 231 233 237 240 237 239	235 228 223 219 233	241 239 227 228 235 238 234 236
1 2 3 4 5 6 7 8 9 1 1 1 2 3 1 4	80 92 100 108 115 129 137 146 151 159 169 176 183 187	JUNE 76 81 94 101 108 115 130 138 147 153 158 170 176	78 86 98 105 111 121 133 141 150 157 165 173 180 182	234 174 135 115 120 139 142 146 142 148 161 169 169	JULY 185 137 103 103 115 122 63 129 133 134 150 160 158 161	224 148 111 108 117 129 111 140 136 139 156 165 164 164		199 199 204 207 200 202 210 211 212 205 210 209 216 224	188 192 197 193 196 184 205 198 200 204 202 209 213	193 195 199 200 198 191 207 207 205 202 207 205 213 219		249 250 231 233 237 240 2237 2449 252 254 253 256	235 228 223 219 233 231 234 236 245 248 251 250 253	241 239 227 228 235 238 234 236 239 247 249 2551 254
1 2 3 4 5 6 7 8 9 1 1 1 2 3 1 4 5 1 6 7 1 8 9 1 1 1 2 3 1 4 5 1 6 7 1 8	80 92 100 108 115 129 137 146 151 159 169 176 183 187 191 188 186 191 201	JUNE 76 81 94 101 108 115 130 138 147 153 158 170 176 177 185	78 86 98 105 111 121 133 141 150 157 165 1780 182 188 185 184 186 198	234 174 135 120 139 146 142 146 148 161 169 170 174 183 191 189	JULY 185 137 103 103 115 122 63 129 133 134 150 160 163 174 182 177 172	224 148 111 108 117 129 111 140 136 139 156 165 164 168 179 185 180 182		199 199 204 207 200 211 212 205 210 209 216 224 227 227 223 230	188 192 197 193 196 184 204 205 198 200 204 202 209 213 223 217 218 220	193 195 199 200 198 191 207 207 205 202 207 205 213 219 225 223 221 226 228		249 250 231 233 240 237 249 2554 2554 2557 259 261	SEPTEMB 235 228 223 233 233 2331 234 235 245 245 250 253 241	241 239 2228 235 238 2336 237 249 2251 251 251 260 244
12345 67890 112345 167890 122345 222890	80 92 108 115 129 137 146 151 159 169 176 183 187 191 200 194 194 201 202 201 202 201 202 201 202 201 202 202	JUNE 76 81 101 108 115 130 138 147 153 158 170 176 177 185 182 184 191 195 187 186 195 209 198 164 169 191 204 218	78 86 98 105 111 121 133 141 157 165 188 188 188 188 198 199 190 189 190 189 190 189 190 190 190 190 190 190 190 190 190 19	234 174 135 120 139 146 148 161 169 170 174 183 1189 166 173 120 208 208 208 209 194	JULY 185 137 103 115 122 63 129 133 134 150 160 158 161 163 174 182 177 172 160 157 174 190 203 198 142 176 190	224 148 111 108 117 129 111 140 136 139 156 164 164 168 179 185 180 182 163 163 164 180 196 205 201 178 192 193		199 199 207 200 2010 2111 212 205 210 2111 212 205 210 2216 227 2230 231 224 226 228 230 231 226 231 231 231 231 231 231 231 231 231 231	AUGUST 188 192 197 193 196 184 205 198 200 204 202 209 213 221 222 223 222 228 228 228 238	193 195 199 200 198 191 207 205 202 205 213 219 225 221 226 228 222 227 227 227 227 227 227 227 227		2450 2450 2450 2450 2450 2450 2450 2450	SEPTEMB 235 2283 2219 233 2331 2334 2345 2450 2558 2329 2331 247 255 2447 255 2447	ER 2439785 844697 92255 500041 566912 2555 255544 2255 2555448
12345 67890 112345 67890 122345 67890	80 92 100 108 115 129 137 146 159 169 176 183 187 191 200 194 194 218 222 201 190 217	JUNE 76 81 94 101 108 115 130 138 147 153 158 170 176 177 185 182 184 191 195 187 186 195 209 198 164 169 190 190 190 190 190	78 86 98 105 111 121 133 141 157 165 173 180 182 188 184 186 197 190 189 221 213 211 175 180 180 211	234 174 135 120 139 144 148 169 174 183 189 163 190 208 208 203 195	JULY 185 137 103 103 115 122 63 129 133 134 150 160 158 161 163 174 182 177 172 160 157 155 174 190 203 198 142 176 192	224 148 111 108 117 129 111 140 139 156 164 168 179 180 182 163 163 163 164 180 196 205 201 178 192		199 199 2007 200 2010 2111 2105 2109 2116 2227 2230 2314 2228 2320 2321 2321 2321 2321 2321 2321 2321	AUGUST 188 192 197 193 196 184 205 198 200 204 202 209 213 223 217 218 220 223 227 228 228 228	193 195 199 200 198 191 207 205 202 207 205 213 219 225 221 226 228 222 227 224 227 227 227 227 227 227 227		2490 2490 2491 2491 2491 2491 2491 2491 2491 2491	SEPTEMB 235 2223 231 2334 2334 2334 235 245 255 258 2339 231 255 258 2339 231 247 249 252 2442 241	241992235 223782235 2336997 2455141 255141 255141 255141 255141 255141 255141 255141 255141

		0	XYGEN,	DISSOLVED (1	DO), MG/L,	WATER	YEAR OCTOBER	1983 TO	SEPTEMBE	R 1984		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER			NOVEMBER			DECEMBE	R		JANUARY	
1 2 3 4 5				12.5 12.4 12.4 12.3	12.4 12.0 12.0	12.4 12.2 12.2 12.1	12.0 12.4 12.5 12.4 12.3	11.8 12.0 12.2 12.1 12.1	11.9 12.2 12.4 12.2 12.2	15.0 14.4 14.6 14.0 13.5	14.3 14.2 14.3 13.5 13.1	14.5 14.3 14.4 13.7 13.3
6 7 8 9 10				12.1 12.2 12.0 12.0 12.1	11.8 11.9 11.6 11.8	12.0 12.1 11.8 11.9 11.9	12.2 11.9 12.4 12.7 12.8	11.7 11.7 12.0 12.5 12.7	12.0 11.8 12.2 12.7	13.1 12.7 12.8 13.2 13.2	12.6 12.5 12.6 12.9 12.9	12.9 12.6 12.7 13.1 13.1
11 12 13 14 15				12.2 12.2 12.2 12.2 12.1	11.7 12.0 11.9 12.0 10.1	12.0 12.1 12.1 12.1 11.4	12.9 12.8 12.3 11.9 12.1	12.8 12.3 11.6 11.8 12.0	12.8 12.6 11.9 11.9	13.2 13.8 13.8 13.8 13.7	13.0 13.2 13.7 13.6 13.5	13.1 13.6 13.7 13.7 13.6
16 17 18 19 20				10.2 10.4 11.1 11.7 12.0	9.8 9.9 10.4 10.9	10.0 10.1 10.8 11.1 11.2	12.3 12.7 13.0 13.3 13.7	12.1 12.3 12.7 13.1 13.3	12.2 12.5 12.9 13.2	13.7 13.7 13.6 13.5 13.8	13.5 13.5 13.5 13.3 13.4	13.6 13.6 13.4 13.4
21 22 23 24 25				10.9 10.7 10.7 10.9 11.0	10.3 10.3 10.4 10.6 10.5	10.6 10.5 10.6 10.8 10.8	14.2 14.2 13.8 13.9 14.4	13.8 13.5 13.5 13.8 13.9	14.1 13.7 13.7 13.9 14.2	14.1 14.3 14.3 14.1 13.7	13.8 14.1 14.1 13.7 13.2	13.9 14.2 14.2 13.9 13.4
26 27 28 29 30 31				11.4 11.8 11.8 11.8	11.1 11.4 11.7 11.5 11.6	11.2 11.6 11.8 11.6 11.8	14.7 14.5 14.8 14.8 14.8	14.3 14.4 14.2 14.3 14.5	14.4 14.4 14.4 14.7 14.7	13.3 13.4 13.5 13.5 13.9 14.0	13.1 13.2 13.2 13.3 13.5 13.6	13.2 13.3 13.3 13.4 13.7
MONTH				12.5	9.8	11.5	15.2	11.6	13.1	15.0	12.5	13.6
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1 2 3 4 5	14.3 14.6 14.6 13.8 13.2	13.8 14.0 13.9 13.3 12.9	14.0 14.3 14.2 13.5 13.0	12.8 13.2 13.3 13.5 13.2	12.4 12.8 13.0 13.2 12.8	12.7 13.0 13.2 13.3 13.0	14.1 14.4 	12.5	13.2	10.6 11.1 10.5 9.7 9.8	9.2 9.3 9.4 9.4	9.7 10.1 9.9 9.5 9.7
6 7 8 9	13.1 13.7 14.2 14.3 14.3	12.8 13.0 13.5 13.7	13.0 13.4 13.8 14.0 13.9	12.9 13.0 13.1 13.4 13.8	12.7 12.7 12.6 12.7 13.1	12.8 12.8 12.8 13.1 13.4				10.1 10.3 10.2 10.1 10.3	9.9 10.1 9.9 9.8 9.9	10.0 10.2 10.0 9.9 10.1
11 12 13 14 15	13.8 13.5 13.1 12.9 12.4	13.2 12.7 12.6 12.4 12.0	13.5 13.1 12.8 12.6 12.2	13.8 14.2 13.8 13.4 13.6	13.2 13.3 13.3 13.1 13.2	13.5 13.7 13.5 13.2 13.4				10.4 9.7 10.1 10.1 10.8	9.7 9.3 9.3 9.2 9.7	10.1 9.6 9.6 9.6 10.2
16 17 18 19 20	13.0 13.0 12.6 12.4 12.2	12.1 12.6 12.4 12.2 12.1	12.8 12.8 12.5 12.3 12.1	13.4 13.2 13.4 13.6 13.9	12.9 12.5 12.5 12.5 12.4	13.1 12.8 12.9 13.0 13.1		===		11.1 11.6 11.3 11.8 11.9	10.0 10.2 10.4 10.2 10.1	10.5 10.9 10.8 10.8
21 22 23 24 25	12.2 12.4 12.4 12.2 11.8	12.1 12.1 12.2 11.8 11.7	12.1 12.3 12.3 12.0 11.8	12.6 12.8 12.8 13.6 13.1	11.7 11.8 11.9 12.4 12.4	12.1 12.3 12.4 13.0 12.8	10.5	10.3	10.4	10.0 9.3 9.4 9.9 10.1	8.6 8.5 8.2 8.3 8.7	9.3 8.8 8.6 9.0 9.3
26 27 28 29 30 31	12.2 12.5 12.3 12.4	11.7 12.1 12.1 12.1	12.0 12.3 12.2 12.3	14.3 14.5 12.7 12.5 13.3 13.9	12.3 12.4 12.0 12.0 12.5 12.2	13.3 13.4 12.3 12.2 12.8 13.0	10.7 10.5 10.4 10.4 9.9	10.3 10.0 9.8 9.7 9.2	10.5 10.4 10.1 9.9 9.5	10.3 9.0 8.9 9.1 10.0	8.7 8.5 8.5 8.8 9.2	9.4 8.7 8.7 9.0 9.6 10.2

9.8

8.2

11.9

MONTH

14.6

11.7

12.9

14.5

11.7

13.0

14.4

9.2 10.9

OXYGEN, DISSOLVED (DO), MG/L, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

			OXIGEN,	DISSOLVED (DO), MG/L,	WAIER	IEAR OCTOBER	1903 10	DELIENDE	2N 1904		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEMB	BER
1 2 3 4 5	10.3 10.3 10.2 10.2 9.9	10.3 10.1 10.1 10.0 9.4	10.3 10.2 10.2 10.1 9.8	8.2 7.6 7.8 7.6 8.1	7.3 7.4 7.4 7.5 7.5	7.7 7.5 7.6 7.5 7.8	10.9 11.4 11.6 12.1	8.2 7.9 7.7 7.4	9.4 9.4 9.4 9.5	10.4 10.6 10.9 8.4 9.8	7.0 7.3 7.3 7.0 7.4	8.6 8.7 8.8 7.6 8.4
6 7 8 9	9.8 9.8 10.0 10.5 11.3	9.4 9.3 9.0 8.7 8.4	9.5 9.5 9.4 9.5 9.7	7.6 7.6 7.9 8.2 8.3	7.2 7.2 7.6 8.0 8.1	7.4 7.5 7.8 8.1 8.2		=======================================	=======================================	9.9 10.8 11.1 11.2 11.1	7.8 8.0 8.4 8.3 8.2	8.7 9.2 9.5 9.6 9.3
11 12 13 14 15	12.1 12.8 13.6 12.4 11.2	8.3 8.3 7.9 8.1	10.0 10.4 10.7 10.0 9.6	8.4 8.1 8.0 8.5 9.0	8.0 7.8 7.7 7.8 7.7	8.2 8.0 7.9 8.1 8.3		=	=======================================	11.1 10.9 10.9 9.7 8.1	8.0 7.9 7.5 7.2 6.7	9.3 9.1 8.9 8.2 7.4
16 17 18 19 20	10.8 8.9 9.0 10.0	7.8 7.8 7.6 7.7 7.8	9.2 8.3 8.8 9.1	9.3 8.4 8.1 7.6 8.2	7.8 7.6 7.3 7.4 7.5	8.4 8.0 7.6 7.5 7.8	11.6 11.6 10.1 10.7	6.9 7.1 7.3 7.2	9.1 9.2 8.5 8.9	9.8 10.3 10.9 11.2 11.4	7.3 7.8 8.0 8.1 8.0	8.4 8.9 9.3 9.4 9.4
21 22 23 24 25	11.5 12.7 13.1 11.8 8.5	8.0 7.9 7.9 7.7 7.0	9.7 10.1 10.2 9.3 7.5	8.0 8.3 9.2 9.8 10.2	7.7 7.8 7.9 7.9	7.8 8.0 8.4 8.7 9.0	10.8 11.0 10.0 10.4 10.2	7.7 7.8 7.8 7.7 7.6	9.1 9.2 8.7 8.9	11.3 11.7 12.0 11.3 10.9	7.8 7.9 7.9 7.7 7.3	9.3 9.5 9.6 9.1 8.8
26 27 28 29 30 31	7.2 8.4 10.2 11.5 10.6	7.0 7.2 7.5 7.6 7.4	7.1 7.7 8.7 9.4 8.8	10.9 8.8 8.3 9.2 9.6 10.8	8.2 7.7 7.7 8.2 8.4 8.6	9.4 8.1 8.0 8.7 8.9 9.5	10.7 10.8 11.4 10.8 10.6 10.5	7.6 7.7 7.8 7.6 6.9	9.0 9.1 9.4 9.1 8.7 8.5		===	
MONTH	13.6	7.0	9.4	10.9	7.2	8.1	12.1	6.9	9.1	12.0	6.7	8.9
YEAR	15.2	6.7	11.0									

PH (STANDARD UNITS), WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBE	R		NOVEMBE	R		DECEMBE	R		JANUAF	RY
1 2 3 4 5	8.5 8.9 9.2 9.3 9.3	8.0 7.9 8.0 8.0	8.2 8.3 8.5 8.5	8.8 8.7 8.3 8.5 8.8	7.7 7.5 7.3 7.2 7.6	8.2 8.0 7.6 7.8 8.1	8.1 8.1 8.2 8.2 8.1	8.1 8.1 8.0 8.0	8.1 8.1 8.1 8.1	8.2 8.1 8.0 8.0	7.9 7.8 7.9 7.9	8.0 8.0 7.9 7.9
6 7 8 9 10	9.3 9.3 9.4 9.4	7.9 8.0 8.0 8.3 8.1	8.5 8.6 8.8 8.8	8.8 8.9 9.1 9.1 8.3	7.6 7.6 7.6 7.5 7.4	8.1 8.2 8.2 7.8	8.2 8.2 8.1 7.9 7.9	8.1 8.0 7.9 7.9	8.1 8.1 8.1 7.9 7.9	7.9 8.0 8.0 8.0 8.1	7.9 7.9 8.0 8.0	7.9 8.0 8.0 8.0
11 12 13 14 15	8.6 8.3 8.6 8.8	8.0 7.9 7.8 7.8 7.9	8.2 8.1 8.1 8.2 8.4	8.1 8.2 8.4 8.1 8.0	7.4 7.5 7.7 7.7 7.6	7.6 7.8 7.9 7.8 7.8	8.0 8.0 7.9 7.8 7.5	7.9 7.9 7.7 7.5 7.3	8.0 8.0 7.8 7.6 7.4	8.1 8.2 8.3 8.2 8.2	8.1 8.1 8.1 8.1	8.1 8.2 8.1 8.1 8.2
16 17 18 19 20	9.1 9.1 9.2 9.0 9.0	7.9 8.0 7.9 7.9 7.8	8.4 8.5 8.5 8.3	7.7 7.9 8.0 8.2 8.5	7.4 7.6 7.7 7.9 8.0	7.6 7.8 7.9 8.0 8.2	7.4 7.4 7.4 7.5 7.6	7.3 7.3 7.4 7.5	7.4 7.3 7.4 7.4 7.5	8.2 8.3 8.2 8.3 8.5	8.2 8.1 8.1 8.2 8.2	8.2 8.2 8.2 8.3
21 22 23 24 25	9.0 9.1 8.5 7.9 7.7	7.8 7.9 7.9 7.6 7.6	8.3 8.4 8.1 7.7 7.6	8.3 8.3 8.3 8.4	8.0 8.1 8.2 8.3	8.1 8.2 8.3 8.3	7.8 7.8 7.8 8.1 8.5	7.6 7.5 7.6 7.7 7.8	7.7 7.7 7.8 7.8 7.9	8.5 8.3 8.3 8.3	8.2 8.2 8.2 8.3	8.3 8.3 8.3 8.3
26 27 28 29 30 31	8.0 8.3 8.6 8.6 8.8	7.6 7.7 7.4 7.7 7.7	7.7 7.9 8.0 8.1 8.1	8.5 8.5 8.4 8.1	8.4 8.4 8.3 8.1 8.0	8.4 8.5 8.4 8.2 8.1	7.9 8.1 8.5 7.9 8.0 8.3	7.8 7.9 7.9 7.8 7.8 7.6	7.9 8.0 8.0 7.8 7.9 8.0	8.3 8.2 8.2 8.4 8.5	8.3 8.2 8.2 8.2 8.2 8.3	8.3 8.2 8.2 8.3 8.4
MONTH	9.4	7.4	8.3	9.1	7.2	8.1	8.5	7.3	7.8	8.5	7.8	8.2

87

PH (STANDARD UNITS), WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

								TO DET	•			
DAY	MAX	MIN FEBRUAR	MEAN	MAX	MIN MARCH	MEAN	MAX	MIN APRIL	MEAN	MAX	MIN MAY	MEAN
1 2 3 4 5	8.4 8.5 8.5 8.3	8.3 8.3 8.3 8.1 8.1	8.4 8.4 8.2 8.1	8.5 8.5 8.5 8.5 8.5	8.4 8.4 8.4 8.4	8.4 8.5 8.5 8.5 8.4	8.9 9.0 9.3 8.8 8.2	8.1 8.2 8.3 8.2 7.8	8.5 8.6 8.8 8.4 7.9	8.3 8.6 8.2 7.8 7.7	7.5 7.7 7.8 7.5 7.5	7.9 8.1 7.9 7.7 7.6
6 7 8 9	8.1 8.3 8.4 8.4 8.4	8.0 8.1 8.3 8.2 8.2	8.1 8.2 8.3 8.3	8.5 8.6 8.6 8.6	8.3 8.4 8.5 8.4 8.4	8.4 8.5 8.5 8.5 8.5	8.0 7.7 7.8 7.8 7.9	7.6 7.6 7.7 7.8 7.8	7.7 7.6 7.8 7.8 7.9	7.6 7.7 7.7 7.7 7.8	7.5 7.5 7.6 7.6 7.7	7.5 7.6 7.6 7.7 7.7
11 12 13 14 15	8.4 8.2 8.3 8.2	8.2 8.2 8.1 8.1 7.9	8.3 8.2 8.2 8.2 8.0	8.7 8.7 8.6 8.4 8.4	8.5 8.5 8.4 8.1	8.6 8.6 8.5 8.2 8.3	7.9 8.0 8.1 8.1	7.9 7.9 8.0 8.0	7.9 8.0 8.1 8.1	7.8 7.7 7.9 8.0 8.2	7.6 7.6 7.6 7.7 7.8	7.7 7.6 7.7 7.8 8.0
16 17 18 19 20	8.0 7.5 7.6 7.7 7.8	7.4 7.4 7.5 7.6 7.7	7.6 7.4 7.5 7.6 7.7	8.5 8.6 8.8 9.1 9.3	8.3 8.4 8.4 8.4	8.4 8.5 8.6 8.7 8.9	8.1 8.0 7.8 7.6 7.7	8.0 7.8 7.6 7.6 7.6	8.1 7.9 7.7 7.6 7.7	7.9 8.5 8.2 8.7 8.8	7.8 7.8 7.8 7.8 7.9	7.8 8.1 8.0 8.1 8.3
21 22 23 24 25	7.8 7.8 7.9 8.0 8.1	7.8 7.8 7.8 8.0 8.1	7.8 7.8 7.9 8.0 8.1	8.9 8.7 8.5 8.9 8.5	8.3 8.3 8.2 8.2 8.1	8.6 8.5 8.4 8.5 8.3	7.7 7.6 7.5 7.7 7.7	7.6 7.5 7.5 7.5 7.6	7.7 7.5 7.5 7.6 7.7	8.1 8.0 8.1 8.3 8.4	7.7 7.8 7.9 7.9 8.0	7.9 7.9 7.9 8.1 8.1
26 27 28 29 30 31	8.2 8.3 8.4 8.4	8.2 8.3 8.4	8.2 8.3 8.4 8.4	9.4 9.6 9.1 8.2 8.4 9.0	8.2 8.4 8.2 7.9 8.1 8.1	8.8 9.1 8.5 8.0 8.2 8.5	7.9 7.9 7.9 7.9 7.9	7.7 7.7 7.7 7.7 7.6	7.8 7.8 7.8 7.8 7.7	8.6 8.1 8.2 8.1 7.9 7.4	8.0 8.0 8.1 7.7 7.3 7.3	8.2 8.0 8.1 8.0 7.6 7.3
MONTH	8.5	7.4	8.1	9.6	7.9	8.5	9.3	7.5	7.9	8.8	7.3	7.9
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	MIN JUNE	MEAN	MAX	MIN JULY	MEAN	MAX	MIN AUGUST		MAX	MIN SEPTEME	
DAY 1 2 3 4 5	7.3 7.3 7.4 7.3		7.3 7.2 7.3 7.2 7.3	8.4 7.7 7.7 7.6 7.9		8.1 7.6 7.5 7.5	9.2 9.3 9.3 9.4 9.0			9.0 9.1 9.2 8.6 8.8		
1 2 3	7·3 7·3 7·3 7·4	JUNE 7.2 7.2 7.2	7.3 7.2 7.3 7.2	8.4 7.7 7.7 7.6	JULY 7.8 7.5 7.5 7.4	8.1 7.6 7.5 7.5	9.2 9.3 9.3 9.4	8.3 8.3 8.3 8.3	8.7 8.8 8.8 8.9	9.0 9.1 9.2 8.6	8.0 8.1 8.1 8.0	8.5 8.5 8.6 8.2
1 2 3 4 5 6 7 8 9	7.3 7.3 7.4 7.3 7.5 7.5 8.5	JUNE 7.2 7.2 7.2 7.2 7.3 7.2 7.3	7.3 7.2 7.3 7.3 7.3 7.5 8.6	8.4 7.7 7.7 7.6 7.9 7.7 7.6 7.6	JULY 7.8 7.5 7.5 7.4 7.5 7.5 7.5 7.5 7.5	8.1 7.6 7.5 7.5 7.7 7.6 7.4 7.6	9.2 9.3 9.3 9.4 9.0 9.2 9.2	8.3 8.3 8.3 8.3 8.2 7.8 8.1 8.1	8.7 8.8 8.8 8.9 8.6 8.3 8.7	9.0 9.1 9.2 8.6 8.8 8.9 9.0 9.1 9.2	8.0 8.1 8.1 8.0 7.9 8.1 8.1 8.1	8.5 8.5 8.6 8.2 8.3 8.4 8.5 8.6
1 2 3 4 5 6 7 8 9 10 11 12 13 14	7.3 7.3 7.3 7.5 7.5 7.5 9.5 9.9 9.9 9.9	JUNE 7.2 7.2 7.2 7.3 7.2 7.4 7.5 8.2 8.3 8.5 8.6 8.7 8.4	7.3 7.3 7.3 7.3 7.3 7.5 8.6 9.0 9.2 9.4 8.8	8.4 7.7 7.7 7.6 7.9 7.7 7.6 7.6 7.8 7.8 7.8	JULY 7.8 7.5 7.5 7.5 7.5 7.6 7.6 7.6 7.7	8.1 7.6 7.5 7.7 7.6 7.6 7.6 7.7 7.7	9.2 9.3 9.3 9.0 9.0 9.2 9.2 8.9 8.7 8.9 9.0	8.3 8.3 8.3 8.3 8.2 7.8 8.1 8.2 8.1 8.1 7.8 7.8 7.9	8.7 8.8 8.8 8.9 8.6 8.7 8.8 8.7 8.5 8.3 8.5	9.0 9.1 9.2 8.6 8.8 8.9 9.0 9.1 9.2 9.1	8.0 8.1 8.1 8.0 7.9 8.1 8.1 8.1 8.1 8.1	8.5 8.5 8.6 8.2 8.3 8.4 8.6 8.6 8.5 8.5 8.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	7.33443 555515 599934 4070 7.899.5999.34 4070	JUNE 7.2 7.2 7.2 7.3 7.2 7.5 8.3 8.5 8.6 8.7 8.4 8.7 9.0 8.4 8.7	7.23 7.32 7.32 7.33 7.50 8.69 9.24 8.81 9.28 8.84 8.6	8.4 7.7 7.7 7.6 7.9 7.7 7.6 7.6 7.6 7.7 7.8 7.8 8.0 8.4 8.6 8.3 8.2	JULY 7.8 7.5 7.5 7.5 7.5 7.6 7.6 7.6 7.7 7.7 8.0 8.0 7.8	8.1 7.6 7.5 7.5 7.7 7.6 7.6 7.6 7.7 7.7 7.8 8.0 8.2 8.1 8.0 7.9	9.2 9.3 9.3 9.0 9.2 9.2 9.2 9.2 9.0 9.1 9.1 9.1	8.3 8.3 8.3 8.3 8.2 7.8 8.1 8.2 8.1 7.8 7.8 7.9 8.0 8.1 8.1	8.8 8.8 8.9 8.6 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7	9.0 9.1 9.2 8.6 8.8 8.9 9.1 9.1 9.1 9.1 8.9 8.3 8.7 8.8 9.0	8.0 8.1 8.0 7.9 8.1 8.1 8.1 8.1 8.1 8.1 7.9 7.9	8.5 8.5 8.6 8.3 8.4 8.5 8.6 8.6 8.5 8.5 8.5 8.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 32 42 5 26 27 28 9 30	333443 55515 59934 40702 46766 92032 77777 77899 99999 99899 99998 78999	JUNE 7.22 7.22 7.3 7.4 7.52 8.3 8.66 8.7 8.4 8.7 9.0 8.42 8.8 8.7 7.8 8.8 7.8 8.1 8.2 8.8 8.7 7.8 8.8 8.7 8.8 8.7 8.8 8.7 8.8 8.7 8.8 8.7 8.8 8.7 8.8 8.7 8.8	77.32323 35069 02481 28467 02322 89477 7.38.8.9 9.48.8.7 99.322 89477.8.7	8.4 7.7 7.6 7.7 7.6 7.7 7.6 7.7 7.8 8.0 8.4 8.3 8.1 8.0 9.0 9.2 8.7 8.3 8.6	JULY 7.8 7.5 7.5 7.5 7.5 7.6 7.6 7.6 7.7 7.7 8.0 8.0 7.8 7.7 7.7 7.7 7.7 8.1 8.2 8.4 7.6 8.4 7.8 8.1	8.167.55777.788.0 8.2109997.888.1488.88.199988.1488.88.199988.3	9.3 9.3 9.0 9.2 9.0 9.2 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	8.3 8.3 8.3 8.3 8.2 7.8 8.1 8.2 8.1 7.8 7.8 7.9 8.0 8.1 8.2 7.9 8.1 8.2 7.9	78896 37875 23356 77765 66555 56765 88888 88888 88888 88888 88888 88888 8888	9.1 9.1 9.2 8.8 9.0 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1	8.0 8.1 8.0 7.9 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1	SER 8.556623 456666 556651 245667 788876 34224
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 223 24 5 26 27 28 29	77.343 55515 59934 40702 46766 9203 77.77.77 7.899 99999 99899 99998 7899	JUNE 7.2 7.2 7.3 7.4 7.5 8.3 8.5 8.6 8.7 8.4 8.7 9.0 8.4 8.1 8.5 8.8 8.7 7.8 8.8 8.7 8.8 8.1	77.323 350669 02481 28467 02322 8948.7 7.88.89 9.488.8 9.2322 8948.8 77.88.8 9.2322 8948.7	8.4 7.7 7.7 7.6 7.7 7.6 7.7 7.6 7.8 8.0 8.4 8.3 8.1 8.9 8.5 8.9 9.2 8.7 8.3	JULY 7.8 7.5 7.5 7.5 7.6 7.6 7.6 7.7 8.0 8.0 9.8 7.7 7.7 7.7 7.7 7.7 8.1 8.2 8.4 7.8 8.7 7.9	8.1 7.6 7.5 7.7 7.6 6.6 7.7 7.7 7.8 8.0 8.1 8.0 7.9 9 7.8 8.1 8.6 8.1 8.1 8.1 8.1	9.3 9.3 9.0 9.0 9.2 9.0 9.0 9.0 9.0 9.1 9.0 9.1 9.0 9.1 9.0 9.1 9.0 9.0 9.1 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	8.3 8.3 8.3 8.3 8.2 7.8 8.1 8.1 7.8 7.8 7.9 8.0 8.1 8.2 8.1 8.2 8.1 8.2 8.1 8.2 8.1 8.1 8.2 8.1 8.1 8.2 8.1 8.1 8.1 8.1 8.2 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1	8.8.96 37.875 233356 777.65 66555 567.6 8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8	9.0 9.1 9.6 8.8 8.9 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9	8.0 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1	8.556623 8.556666 8.556666 8.556551 8.65667 8.6666 8.66556 8.6657 8.6666

01463620 ASSUNPINK CREEK NEAR CLARKSVILLE, NJ

LOCATION.--Lat 40°16'11", long 74°40'20", Mercer County, Hydrologic Unit 02040105, on left bank 200 ft upstream from bridge on Quaker Bridge Road, 1.9 mi south of Clarksville, 2.0 mi upstream from Shipetaukin Creek, and 7.6 mi upstream of mouth.

DRAINAGE AREA .-- 34.3 mi2.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1963, 1965, 1967, and 1979 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

D	ATE	TIME	FL INS TAN	EAM- OW, TAN- EOUS FS)	SPE CIF CON DUC ANC	IC T- E	PH (STA AR UNIT	ND-	AT	APER- TURE EG C)	SC	GEN, DIS- DLVED	SC (F	GEN, DIS- DLVED PER- CENT TUR- TION)	DEM BI CH IC	GEN AND, O- EM- AL, DAY G/L)	COL FOR FEC BRC	RM, CAL, OTH	TOC	REP- DCCI CAL PN)
oc	T																			
FE	4	1250		42		116		7.0		13.0		10.0				E1.7	3	3500	>2	2400
	6	1415		89		132		6.2		3.0		11.6				3.0		20		540
	7	1230		62		130		6.4		7.0		11.6				E2.1		<20		<2
	6	1030		163		97		6.5		19.0		8.0				E1.6		50		17
	1	1330		59		105		7.0		23.0		9.8		113		3.3		230		350
	6	1330		32		114		7.6		29.5		9.2		120		4.0		20		79
		HAR NES (MG AS	S /L	CALC DIS- SOL (MG	VED /L	MAGN SIU DIS SOLV (MG/	M, - ED L	SODI DIS SOLV (MG	ED /L	SOI (MC	TAS- TUM, TS- LVED G/L	ALK LINI LA (MG AS	TY B /L	SULF DIS SOL (MG	- VED /L	CHLO RIDE DIS- SOLV (MG/	ED L	FLUC RIDI DI: SOLY (MG.	E, S- VED /L	
	DATE	CAC	(3)	AS	CA)	AS M	G)	AS	NA)	AS	K)	CAC	(3)	AS S	04)	AS C	L)	AS I	F)	
	OCT 24	•	39	8	. 8	4.	1	5	. 3	á	2.9	17		1	8	12			.10	
	FEB 06		33	7	. 1	3.	7	7	.0		2.4	11		1	9	15		<	. 10	
	MAR 27		37	8	. 1	4.	0	5	. 8	2	2.1	5.	0	2	3	13			.10	
	JUN 06		27	6	.0	2.	9	3	. 2	á	2.4	8.	0	1	3	6.	9		.20	
	JUL 31		31	7	.0	3.	4	3	.7	2	2.5	13		1	4	9.	3		. 10	
	AUG 16		37	7	.9	4.	1	4	. 2	2	2.5	19		1	6	11			.20	
		(MG AS	VED /L	SOLI RESI AT 18 DEG DIS	DUÉ 80 . C S- VED	NITR GEN NITRI TOTA (MG/	ŤE L L	NIT GE NO2+ TOT	N, NO3 AL	NIT GE AMMO	TRO- EN, ONIA	NIT GEN, MONI ORGA TOT (MG	A + NIC	NIT GE TOT (MG	N, AL /L	PHOS PHORU TOTA (MG/	S, L L	CARBO ORGAI TOTA	NIĆ AL /L	
	DATE	SIO	2)	(MG	/L)	AS N)	AS	N)	AS	N)	AS	N)	AS	N)	AS P)	AS (C)	
	OCT 24 FEB	•	4.2		75	.0	17	1	.0		080		•53	1	.6	.0	70	5	. 6	
	06	•	5.2		76	.0	22	1	.7	, .	190		.98	2	.7	. 1	40	4.	. 2	
	MAR 27	•	3.8		76	.0	09	2	.0		050		.59	2	.6	.0	40	2	.5	
	JUN 06	•	4.3		78	.0	27		.99		220		.99	2	.0	.2	30	6	. 4	
	JUL 31		5.3		75	.0	15		.71	<.	050		.79	1	.5	.1	20	5	. 8	
	AUG 16	•	4.8		73	.0	11		.51	<.	050	1	.1	1	.6	.0	70			

01463620 ASSUNPINK CREEK NEAR CLARKSVILLE, NJ--Continued

DATE	TIME	NITRO- GEN, NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)
OCT										
24	1250	480	<.1	6.8	<1	1	6	<10	<1	1500
DATE	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
ост										
24	<10	94	<.01	<10	<1	8	<1	<1.0	<.1	<1.0
DATE	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)
OCT										
24	2.4	3.1	1.9	<.1	<.1	<.1	<.1	<.1	<.1	, <.1
	LINDANE TOTAL IN BOT-	MALA- THION, TOTAL IN BOT-	METH- OXY- CHLOR, TOT. IN	METHYL PARA- THION, TOT. IN	METHYL TRI- THION, TOT. IN	MIREX, TOTAL IN BOT-	PARA- THION, TOTAL IN BOT-	PER- THANE IN	TOXA- PHENE, TOTAL IN BOT-	TRI- THION, TOTAL IN BOT-
DATE	TOM MA- TERIAL (UG/KG)	TOM MA- TERIAL (UG/KG)	BOTTOM MATL. (UG/KG)	BOTTOM MATL. (UG/KG)	BOTTOM MATL. (UG/KG)	TOM MA- TERIAL (UG/KG)	TOM MA- TERIAL (UG/KG)	BOTTOM MATERIL (UG/KG)	TOM MA- TERIAL (UG/KG)	TOM MA- TERIAL (UG/KG)

01464000 ASSUNPINK CREEK AT TRENTON, NJ

LOCATION.--Lat 40°13'27", long 74°44'58", Mercer County, Hydrologic Unit 02040105, on left bank 20 ft upstream from Chambers Street Bridge in Trenton, and 1.5 mi upstream from mouth.

DRAINAGE AREA .-- 90.6 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- August 1923 to current year.

REVISED RECORDS. -- WDR NJ-82-2: Drainage area.

GAGE.--Water-stage recorder. Concrete control since July 10, 1932. Datum of gage is 24.76 ft National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark).

REMARKS.--Water-discharge records good except those of no gage-height record, Oct. 1 to 5, which are fair. Records include water diverted from outside the basin since February 1954 for municipal supply which returns to Assunpink Creek through Ewing-Lawrence Sewerage Authority Treatment Plant, 2.4 mi above station (records given herein). In addition there is an average inflow of about 2.0 ft³/s from industrial use of water that originates outside the basin. Some diversion for irrigation in headwater area during summer months. Flow regulated by several flood-control reservoirs upstream of gage since mid-1970's.

AVERAGE DISCHARGE. -- 61 years, 130 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,450 ft³/s July 21, 1975, gage height, 14.61 ft, from high-water mark in gage house; minimum, 1.0 ft³/s Aug. 21, Oct. 22, 1931, gage height, 0.25 ft; minimum daily, 4.0 ft³/s July 21, Aug. 8, Sept. 2, 1929.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 900 ft3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Nov. 16	0045	1010	6.17	Mar. 29	1115	1660	7.91
Dec. 4	1345	1150	6.57	Apr. 5	0845	1750	8.14
Dec. 13	2130	1870	8.42	Apr. 19	1730	907	5.82
Dec. 22	1530	1430	7.32	May 30	0815	1990	8.74
Dec. 28	2030	998	6.14	July 7	1445	*2300	9.50
Feb. 15	1145	949	6.00	July 27	1215	1240	6.83
Mar. 14	0115	1260	6.88	50 MANUA - 100 MAN			

Minimum discharge, 47 ft3/s Sept. 27, gage height, 2.69 ft.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984
MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1	85	79	202	229	179	273	360	160	537	108	155	59	
2	103	76	180	211	159	232	326	148	411	99	141	55	
3	91	74	196	199	182	209	312	175	364	94	128	66	
4	75	80	601	188	483	190	324	514	349	87	120	115	
5	67	71	467	178	350	252	1300	408	345	109	158	75	
6 7 8 9	75 67 64 60	68 68 68 68 223	364 373 278 244 220	171 162 151 142 142	283 244 207 187 174	354 267 226 229 176	652 428 369 346 315	319 289 388 489 318	319 304 302 269 261	248 1220 675 371 281	143 129 121 114 109	65 64 61 59 59	
11	59	269	199	163	178	191	300	276	252	330	104	59	
12	110	167	366	140	193	188	278	283	216	320	101	60	
13	83	138	1040	131	185	396	174	271	199	231	99	58	
14	114	127	979	136	184	938	136	240	146	201	94	62	
15	71	239	458	132	634	580	208	212	87	179	90	132	
16 17 18 19 20	63 62 61 90 67	542 278 208 179 160	361 344 314 292 267	124 120 119 119 111	454 330 279 240 218	461 360 305 273 244	510 290 330 541 459	197 179 165 159	81 88 133 112 124	167 149 225 163 132	86 83 77 74 75	76 65 64 67 64	
21	62	418	248	106	199	230	347	162	175	331	72	62	
22	59	249	766	100	180	217	300	136	159	238	70	58	
23	140	200	552	100	185	198	349	259	142	171	86	55	
24	403	211	347	143	417	180	326	217	151	144	74	56	
25	178	473	269	223	273	195	267	172	233	124	68	56	
26 27 28 29 30 31	129 112 101 91 84 82	377 260 252 280 228	249 225 460 516 330 262	234 254 252 210 190 198	226 201 432 364	185 159 341 1270 809 462	232 196 182 183 170	230 269 265 886 1600 950	127 108 103 123 125	111 722 500 270 205 174	64 63 64 62 61	56 54 87 66 59	
TOTAL	2968	6130	11969	5078	7820	10590	10510	10491	6345	8379	2949	1994	
MEAN	95.7	204	386	164	270	342	350	338	212	270	95.1	66.5	
MAX	403	542	1040	254	634	1270	1300	1600	537	1220	158	132	
MIN	59	68	180	100	159	159	136	136	81	87	61	54	
(†)	12.3	15.2	20.2	15.9	21.2	21.8	23.0	18.5	17.7	16.6	14.1	13.2	

CAL YR 1983 TOTAL 72803 MEAN 199 MAX 1570 MIN 43 + 16.2 WTR YR 1984 TOTAL 85223 MEAN 233 MAX 1600 MIN 54 + 17.5

[†] Inflow from outside the basin, 2.4 mi upstream of station through plant of Ewing-Lawrence Sewerage Authority, in cubic feet per second.

91

01464500 CROSSWICKS CREEK AT EXTONVILLE, NJ

LOCATION.--Lat 40°08'15", long 74°36'02", Mercer County, Hydrologic Unit 02040201, on right bank upstream from highway bridge in Extonville, 0.5 mi upstream from Pleasant Run, and 0.7 mi downstream from Mercer-Monmouth County line.

DRAINAGE AREA .-- 81.5 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- August 1940 to October 1951, October 1952 to current year.

REVISED RECORDS.--WDR NJ-79-2: 1971(M). WDR NJ-82-2: Drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 24.94 ft National Geodetic Vertical Datum of

REMARKS. -- Water-discharge records good. Flow regulated occasionally by lakes above station.

AVERAGE DISCHARGE.--43 years (water years 1941-51, 1953-84), 136 ft3/s, 22.66 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,860 ft³/s Sept. 1, 1978, gage height, 14.18 ft; minimum, 13.1 ft³/s Feb. 14, 1942 (result of freezeup); minimum daily, 16 ft³/s Aug. 30 to Sept. 3, Sept. 12, 1966.

EXTREMES FOR CURRENT YEAR.--Peak discharge above base of 750 ft3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Dec. 14 Dec. 29	0800 2400	1330 816	8.81 7.10	May 30 July 1	2000 1400	*3180 777	11.97 6.91
Mar. 31 Apr. 6	0600	1500 1600	9.43	July 8	1000	919	7.55

Minimum discharge, 42 ft3/s Sept. 26, 27, gage height, 2.46 ft.

		DISC	HARGE, IN	CUBIC FEE	T PER SEC	OND, WATE		CTOBER 198	3 TO SEPT	EMBER 198	4	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	63	73	140	214	162	263	404	137	1410	632	88	47
2	60	73	125	149	138	178	256	129	575	287	82	43
3	57	73	131	135	139	152	203	127	304	159	80	44
4	56	84	276	133	240	137	177	184	220	126	78	103
5	53	91	611	138	197	140	527	206	174	109	91	107
6	69	80	379	139	177	304	1310	152	150	360	183	78
7	199	77	338	136	148	287	602	137	136	479	118	62
8	264	77	247	129	125	194	315	155	126	800	95	57
9	189	75	176	122	117	170	223	373	116	241	83	52
10	122	102	149	121	113	155	186	220	107	143	76	50
11	82	455	135	161	120	147	170	149	100	131	74	51
12	69	434	178	152	134	146	159	138	92	189	86	51
13	141	205	595	153	132	165	150	160	86	132	174	50
14	127	145	1190	127	129	491	147	153	94	112	114	49
15	111	136	678	127	241	568	172	136	101	107	99	74
16	89	434	369	129	550	473	286	121	94	100	85	94
17	80	431	232	138	297	298	425	112	88	97	74	66
18	75	203	176	111	202	216	320	107	102	126	65	57
19	79	150	156	116	170	187	577	109	143	194	61	57
20	86	130	141	120	152	168	540	110	128	119	75	55
21	75	314	128	115	136	157	329	115	102	150	64	50
22	70	402	250	105	127	174	225	117	90	166	58	48
23	73	195	464	100	122	154	208	110	82	126	57	45
24	212	167	293	119	353	135	255	246	78	103	58	46
25	228	383	202	294	369	135	211	153	147	91	55	45
26 27 28 29 30 31	147 119 102 89 77 73	636 356 210 181 160	308 272 295 727 553 298	502 407 269 180 152 178	200 160 216 410 	196 173 174 396 1300	177 160 149 146 143	121 199 183 641 2170 2720	177 101 88 80 171	80 151 187 119 103 99	52 50 48 47 48 48	43 43 58 82 63
TOTAL MEAN MAX MIN CFSM IN.	3336 108 264 53 1.33 1.52	6532 218 636 73 2.67 2.98	10212 329 1190 125 4.04 4.66	5171 167 502 100 2.05 2.36	5776 199 550 113 2.44 2.64	8833 285 1300 135 3.50 4.03	9152 305 1310 143 3.74 4.18	9890 319 2720 107 3.91 4.51	5462 182 1410 78 2.23 2.49	6018 194 800 80 2.38 2.75	2466 79.5 183 47 .98 1.13	1770 59.0 107 43 .72

CAL YR 1983 TOTAL 65310 **MEAN 179** MIN 39 MAX 1190 CFSM 2.20 IN. 29.81 WTR YR 1984 TOTAL 74618 MEAN 204 MAX 2720 MIN 43 CFSM 2.50

01464500 CROSSWICKS CREEK AT EXTONVILLE, NJ -- Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1965 to current year.

PERIOD OF DAILY RECORD.-WATER TEMPERATURES: October 1966 to June 1970.
SUSPENDED-SEDIMENT DISCHARGE: February 1965 to June 1970.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DAT	ſE	TIME	FL INS TAN	EAM- OW, TAN- EOUS FS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	(ST	PH CAND- LRD CTS)	AT	PER- URE G C)	SO	GEN, IS- LVED G/L)	SOI (PI CI SA:		OXYGE DEMAN BIO- CHEN ICAL 5 DA (MG/	ID, 1- ÎÝ	FOI FEG BRG	RM, CAL, OTH		
OCT 04.		1120		56	140		7.1		17.5		7.6		79		2.4		490		790
FEB 16		1230		447	110		6.7		9.0		9.2		79		1.9		400	1	700
MAR 22.		1415		179	143		7.1		8.0		11.0		93		2.1		49		920
JUN 12.																		•	
JUL		1230		92	147		7.0		24.0		6.7		78		1.8		490	-	2400
AUG		1330		124	135		7.1		23.0		6.9		79		1.2		130		790
SEP		1130		81	172		7.1		21.0		6.9		77		5.3		350		1400
24.	• • •	1330		47	185		7.4		18.0		7.4		78	5	5.1		220		1400
	DATE	HAR NES (MG	S L	CALCI DIS- SOLV (MG/ AS C	UM S ED SC L (M	GNE- IUM, IS- LVED G/L MG)	SODI DIS SOLV (MG AS	ED /L	POT SI DI SOL (MG AS	UM, S- VED /L	ALKA LINIT LAB (MG/ AS CACO	Y L	SULFA DIS- SOLV (MG/I	ED L	CHLO RIDE DIS- SOLV (MG/ AS C	, ED L	FLUO- RIDE DIS- SOLV (MG/ AS F	ED L	
	OCT	CAC	,03)	AS C	A) AS	MG)	AS	NA)	AS	κ)	CACO	3)	A5 50	4)	AS C	L)	AS F	,	
	04		42	13		2.3	6	. 4	2	. 8	21		23		13			20	
	FEB 16		29	8.	4	1.9	7	• 3	2	. 4	9.0		21		12			20	
	MAR 22		41	12		2.7	6	.7	2	. 2	13		23		12			10	
	JUN 12		47	14		2.9	6	.5	2	. 7	21		22		13		Jan.	20	
	JUL 23		43	13		2.6	6	.0	2	.6	20		17		11			20	
	AUG 20		52	16		3.0	9	.0	3	. 0	28		24		16			30	
	SEP 24		58	18		3.1	10			. 3	30		24		17			30	
	DATE	SILI	CA, S- VED	SOLID RESID AT 18 DEG. DIS SOLV (MG/	UÉ NI O G C NII - TO ED (N	TRO-EN, RITE TAL	NIT GE NO2+ TOT (MG	RO-N, NO3	NIT GE AMMO TOT (MG AS	RO- N, NIA AL /L	NITR GEN,A MONIA ORGAN TOTA (MG/ AS N	M- + IC L L	NITR GEN TOTA (MG/I	, F L L	PHOS HORU TOTA (MG/ AS P	S, L L	CARBO ORGAN TOTA (MG/I	N, IC L	
	OCT																		
	O4 FEB		8.4	1	00	.044		.92		200		57	1.	5	.2	60	5.	0	
	16 MAR		5.2		78	.031		.68		500	1.	0	1.	7	•3	20	6.	9	
	22 JUN	• .	7.4		92	.021	1	. 1		760		91	2.	0	.2	30	4.	4	
	12 JUL	•	9.6	1	10	.077	1	• 3		240	•	76	2.	0	.2	80	7.	5	
	23 AUG		8.6	1	16	.082	1	.0		250	1.	1	2.	1	•3	00	7.	0	
	20 SEP	. 1	0	1	12	.101	1	• 3		290		93	2.	2	.2	20	7.	0	
	24	. 1	0	1	19	.079	1	.6		200		60	2.	2	.1	70	4.	2	

01464500 CROSSWICKS CREEK AT EXTONVILLE, NJ--Continued

DATE	TIME	SULFIDE TOTAL (MG/L AS S)	NITRO- GEN, NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)
OCT 04	1120	<.5	820	.2	5.8	<10	3	<1	<10	40	1
JUN 12	1230	<.5				50	2		<10	40	1
SEP 24	1330	<.5				<10	1		<10	40	1
DATE	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO-MIUM, RECOV. FM BOT-TOM MA-TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)
OCT 04 JUN	<1	10	10	<10	<10	<1	2400	21000	8	20	50
12 SEP		50			2		3400		2		80
24		<10			1		2300		1		50
DATE	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 04	70	<.1	.01	1	<10	<1	30	90	<1	<1	<1.0
JUN 12		.1		5		<1	20		8		
SEP 24		.1		4		<1	10		2		
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 04		1.0	2.0								
JUN	<.1	1.0	3.8	2.0	1.8	<.1	. 4	<.1	<.1	<.1	<.1
12 SEP											
24											
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOTTOM MATERIL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT											
04	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<1.00	<10	<.1
04 JUN 12 SEP	<.1 	<.1 	<.1 	<.1 	<.1 	<.1 	<.1	<.1 	<1.00	<10	<.1

01464515 DOCTORS CREEK AT ALLENTOWN, NJ

LOCATION.--Lat 40°10'37", long 74°35'57", Monmouth County, Hydrologic Unit 02040201, at bridge on Breza Road in Allentown, and 0.8 mi downstream from Conines Millpond dam.

DRAINAGE AREA .-- 17.4 mi2.

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1976 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	TIME		OW, TAN- EOUS	SPE- CIFIC CON- DUCT- ANCE UMHOS)	PH (STANDARD ARD UNITS)	A'	MPER- TURE EG C)	D SO	GEN, IS- LVED G/L)	OXYGE DIS SOLV (PER CEN SATU	S- DI /ED I R- C IT I	KYGEN EMAND, BIO- CHEM- ICAL, DAY (MG/L)	FORM FECA EC BROT	I, IL, S TO TH F	STREP- COCCI ECAL MPN)
OCT O4 FEB	1430		22	147	7.	2	19.0		8.3		89	1.2	17	00	130
16	1415		70	140	6.	В	8.0		10.9		91	1.9	<2	200	<200
MAR 22 JUN	1300		44	143	7.	3	8.0		11.4		97	2.1	1	160	490
12 JUL	1030		27	148	7.	1	25.0		7.3		87	1.1	5	00	800
23 AUG	1130		29	132	7.	2	23.0		7.2		83	3.3		00	1200
20 SEP	1030			158	7.	1	22.0		6.4		73	3.6	. 2	190	790
24	1015		11	159	7.	4	20.0		7.6		83	4.8		70	230
DATE	HAR NES (MG AS	S /L	CALCIU DIS- SOLVE (MG/L AS CA	DI SOL	S- D VED SO /L (DIUM, IS- LVED MG/L S NA)	SI		ALKA LINIT LAB (MG/ AS CACO	Y S	BULFATI DIS- SOLVEI (MG/L AS SO4	DIS- D SOLV (MG/	ED L	FLUO- RIDE, DIS- SOLVEI (MG/L AS F))
OCT															
04 FEB	•	49	12	4	.7	4.7	4	.2	24		20	14		.30)
16 MAR	•	37	8.4	1 4	.0	5.5	2	8.8	10		21	13		.20)
22 JUN	•	45	10	1	. 8	5.8	2	. 4	9.0	•	26	15		.10)
12 JUL	•	45	10	1	.9	4.8	2	2.7	19		19	13		.20)
23 AUG	•	47	. 11	14	.7	4.3	2	.9	24		13	13		.30)
20 SEP	•	51	12	5	.1	6.1	3	.7	29		18	15		.30)
24	• ,	50	12	1	.8	7.1	4	.2	24		19	16		.30)
DATE	(MC	VED	SOLIDS RESIDU AT 180 DEG. DIS- SOLVE (MG/L	JÉ NIT O GE C NITF - TOT ED (MC	IN, RITE NO CAL T	ITRO- GEN, 2+NO3 OTAL MG/L S N)		AL JL	NITR GEN, A MONIA ORGAN TOTA (MG/ AS N	M- H H I I I L L	NITRO GEN, TOTAL (MG/L AS N)	PHOS	JS, (L L	CARBON, ORGANIC TOTAL (MG/L AS C)	
OCT															
04 FEB	•	8.0	10	.00	022	.52		330		81	1.3		160	4.1	
16 MAR		5.6	8	32 .	031	1.2	•	380		92	2.1		190	3.8	
22 JUN	•	4.9	9	93 .	019	1.7		120		42	2.2	• 1	120	2.2	
12 JUL	•	8.7	10)5 .	037	1.2		330		58	1.8	•	130	3.4	
23 AUG	•	7.2	10	7 .	026	.67		230		76	1.4		160	3.8	
20 SEP		6.8	8	37	041	.48		760	1.	3	1.8	.2	240	4.2	
24	•	5.8	9)1 .	045	.40		940	1.	9	2.3	• :	380	3.7	

01464515 DOCTORS CREEK AT ALLENTOWN, NJ--Continued

DATE	TIME	SULFI TOTA E (MG/ AS S	L BOT M	H4 INOR G. GANI EN TOT I HAT BOT M KG (G/K	- INORG C, ORGAN N TOT. IAT BOT M G (G/K	+ ALUM IC INUM IN DIS IAT SOLV	ARSEN ED TOTA L (UG/	L TERI L (UG/	L LIUM T- TOTA A- RECO AL ERAB G (UG/	, BORO L TOTA V- RECO LE ERAB L (UG/	L TOTA V- RECO LE ERAB L (UG/	L FM BOT- V- TOM MA- LE TERIAL L (UG/G
OCT O4 SEP	1430) <	.5 360)	.5 6	.1 <	10	4	<1 <	10	40	1 <1
24	1015	5 <	•5	<	.1 5	.5 <	10	1	<1 <	10	40	1 <1
	DATE	CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR)	CHRO-MIUM, RECOV. FM BOT-TOM MA-TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
	OCT O4 SEP	<10	4	<10	<10	0	1700	6400	3	10	60	70
	24	10	5	<10	3	0	1400	9700	3	30	110	200
	DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
		AD IId)	AS IIG)	AS NI)	AS NI)	AS SE)	(00/0)	AD ZN)	AS ZN/	(00/11)	(00/10/	(00/10/
	OCT 04 SEP	<.1	.01	2	<10	<1	<1	20	30	<1	<1	<1.0
	24	•3	<.01	3	<10	<1	<1	10	30	7	8	<1.0
	DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
	OCT 04 SEP	<.1	5.0	1.5	1.3	1.4	<.1	<.1	<.1	<.1	<.1	•3
	24	.7	12	1.4	3.4	1.1	<.1	1.0	<.1	<.1	<.1	<.1
	DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOTTOM MATERIL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
	OCT O4 SEP	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<1.00	<10	<.1
	24	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<1.00	<10	<.1

01464598 DELAWARE RIVER AT BURLINGTON, NJ

LOCATION.--Lat 40°04'42", long 74°52'28", Burlington County, Hydrologic Unit 02040201, on left bank at the intake canal of the Public Service Electric and Gas Company, 0.3 mi downstream from Burlington-Bristol Bridge, 1.4 mi downstream from Assiscunk Creek, and at mile 117.54.

DRAINAGE AREA .-- 7.160 mi2.

TIDE ELEVATION DATA

PERIOD OF RECORD.--July 1964 to current year. March 1921 to July 1926, January 1931 to November 1939, August 1951 to June 1954, July 1957 to June 1964, in files of Philadelphia District Corps of Engineers.

REVISED RECORDS. -- WDR NJ-76-1: 1973(m).

GAGE.--Water-stage recorder. Datum of gage is -12.90 ft National Geodetic Vertical Datum of 1929. Prior to May 20, 1971, water-stage recorder at site 0.7 mi upstream at same datum. Gage-height record converted to elevation above or below (-) National Geodetic Vertical Datum of 1929 for publication.

REMARKS.--Elevation records good. Summaries for months with short periods of no gage-height record have been estimated with little or no loss of accuracy unless otherwise noted. Some periods cannot be estimated and are noted by dash (--) lines. No gage-height or doubtful record on Oct. 1-3, Oct. 27 - Nov. 2, Nov. 9-12, Nov. 27 - Dec. 1, Dec. 5-7, Dec. 12-14, Dec. 26 - Jan. 4, Feb. 28 - Mar. 2.

EXTREMES FOR PERIOD OF RECORD.--Maximum elevation, 8.74 ft Oct. 25, 1980; minimum, -6.60 ft Feb. 26, 1967.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum elevation known, 10.8 ft Aug. 20, 1955, from high-water mark at site 1.4 mi upstream; minimum, -9.1 ft Dec. 31, 1962, at present site.

EXTREMES FOR CURRENT YEAR.--Maximum elevation recorded, 8.13 ft May 31; minimum recorded, -6.04 ft Dec. 25.

Summaries of tide elevations during current year are as follows:

TIDE ELEVATIONS, IN FEET, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

		OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
Maximum	Elevation	6.73	6.61	7.20	5.87	7.26	6.88	7.89	8.13	8.03	7.27	6.60	6.12
high tide	Date	25	15	4	6	17	21	6	31 .	1	7	26	30
Minimum	Elevation	"	-4.31	-6.04	-4.28	-4.23	-3.85	-2.39	-3.19	-3.02	-3.04	-3.07	-3.84
low tide	Date		13	25	21	1	12	22	16	15	25	31	26
Mean high ti	de				4.57	4.86	5.13	6.15	5.64	5.71	5.67	5.52	5.18
Mean water l	evel				1.05	1.51	1.72	2.73	2.07	1.96	1.88	1.75	1.52
Mean low tid	е				-2.75	-2.16	-2.00	-0.99	-1.73	-2.11	-2.16	-2.34	-2.45

01465850 SOUTH BRANCH RANCOCAS CREEK AT VINCENTOWN, NJ

LOCATION.--Lat 39°56'22", long 74°45'50", Burlington County, Hydrologic Unit 02040202, at bridge on Lumberton-Vincentown Road at Vincentown, 2.9 mi southeast of Lumberton, and 3.1 mi upstream from Southwest Branch.

DRAINAGE AREA .-- 64.5 mi2.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1925, 1959-62, 1975 to current year.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	TIME	STREA FLOW INSTA TANEO (CFS	M- CI , CO N- DU US AN	CT- (S CE	PH TAND- ARD ITS)	TEMPER- ATURE (DEG C)	OXYGI DIS SOL (MG	SO EN, (1 S- (1 VED SA		OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)
FEB 14	1115		83	84	6.7	6.0	1,	0.9	88	.8	20	70
MAR												
20 MAY	0830		97	63	4.7	5.0		1.4	89	.2	<20	50
16 JUL	0845		65	65	5.9	13.0		7.9	75	1.1	80	330
16 AUG	0915		43	66	6.1	25.0	!	5.5	67	4.3	130	350
07 SEP	0800	1	95	62	5.3	24.0		5.2	62	1.8	1100	1300
24	0900		26	79	6.6	19.5		7.2	78	1.0	20	230
DATE	HAR NES (MG AS CAC	S /L	ALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIU DIS- SOLVE (MG/ AS N	IM, S D SO L (M	TAS- IUM, I IS- LVED G/L K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFA DIS- SOLV (MG/ AS SO	DIS- ED SOLV L (MG/	, RID DI ED SOL L (MG	E, S- VED /L
FEB												
14 MAR	•	22	6.2	1.7	3.	9	1.2	3.0	19	8.	1	.10
20 MAY	•	14	3.8	1.1	3.	0	.90	2.0	13	5.	9 <	.10
16 JUL		17	5.0	1.2	3.	7	1.4	3.0	13	7.	3	.10
16	•	18	5.2	1.2	3.	8	1.3	4.0	11	7.	5 <	.10
AUG 07		17	4.9	1.2	2.	8	1.5	3.0	13	6.	6 <	.10
SEP 24		21	6.2	1.3	4.	9	1.9	8.0	16	8.	1 (.10
DATE	SILI DIS SOL (MG AS SIO	CA, R - A' VED /L	OLIDS, ESIDUE T 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITR GEN NO2+N TOTA (MG/ AS N	G IO3 AMM L TO L (M	EN, N	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITR GEN TOTA (MG/ AS N	, PHORU L TOTA L (MG/	S, ORGA L TOT L (MG	NIĆ AL /L
FEB												
14 MAR		4.3	64	.011	•	50	.060	•55	1.			.0
MAY		2.6	60	.005	•	30 <	.050	1.1	1.	4 .0	50 8	.6
16 JUL	•	4.1	42	.005		40	.130	•59		99 .1	30 13	
16 AUG	. ;	5.7	72	.014		38	.200	1.1	1.	5 .2	30 18	
07 SEP	. !	5.6	82	.013	•	21	.050	.81	1.	0 .1	60 20	
24		4.8	68	.009		63	.120	•52	1.	2 .2	00 8	. 4

01465850 SOUTH BRANCH RANCOCAS CREEK AT VINCENTOWN, NJ--Continued

DATE	TIM	SULFI TOTA E (MG/ AS S	AL SOLY L (UG)	1, S- ARSE /ED TOT 'L (UG	LIU TOT ENIC REC TAL ERA	TAL TOT	OV- R BLE E	DMIUM MI DTAL TO ECOV- RI RABLE EI UG/L (U	HRO- IUM, OTAL ECOV- RABLE JG/L S CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
MAY 16	084	5 4	<.5 2	230	1	<10	50	<1	10	2
DA	TE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE	(UG/L	E PHE TO	NOLS TAL /L)
MAY 16		1800	3	20	<.1	3	<	1 30	0	<1

01465970 NORTH BRANCH RANCOCAS CREEK AT BROWNS MILLS, NJ

LOCATION.--Lat 39°58'04", long 74°34'48", Burlington County, Hydrologic Unit 02040202, at bridge on Lakehurst Road at outflow of Mirror Lake in Browns Mills, 1.5 mi north of Browns Mills Junction, and 2.0 mi northwest of outflow of Country Lake.

DRAINAGE AREA. -- 27.4 mi².

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1975 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	TIME	STREAM FLOW, INSTAM TANEOU (CFS)	, COI N- DUO JS ANO	FIC N- CT- (S CE	ARD	TEMPER- ATURE (DEG C)	D SO	GEN, IS- LVED G/L)	DXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)		AND, D- I EM- I AL, DAY I	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)
JAN 17	1115		50	56	4.5	3.0		12.6	93		1.5	5	17
MAR 20	1045	_	13	48	4.5	6.0		11.8	95		.2	2	<2
MAY	0 00 M=1		_	, . .					-				
22 JUL	1145	3	37	46	5.2	16.0		8.7	88		• 9	<20	<20
16 AUG	1100	1	10	41	5.7	24.0		6.8	81		1.6	23	170
07	1130	5	54	41	5.8	25.0		6.6	80		1.6	5400	350
DATE	HARI NESS (MG/ AS	S ['L S	ALCIUM DIS- BOLVED	MAGNE- SIUM, DIS- SOLVED (MG/L	SODIUM DIS- SOLVE (MG/M	M, SI DI D SOL L (MG		ALKA- LINITY LAB (MG/I AS	Y SULF DIS SOL (MG	- VED /L	CHLO- RIDE, DIS- SOLVE (MG/L AS CL	(MG	E, S- VED /L
	CACC	73) F	AS CA)	AS MG)	AS N	A) AS	K)	CACO	3) AS S	04)	AS CL) AS	r)
JAN 17 Mar		9	2.0	.87	2.9	9	.70	4.0	1	3	4.9	<	.10
20	•	7	1.7	.75	2.	5	.50	2.0		8.2	4.6	<	.10
MAY 22		8	2.0	.85	2.	5	.60	2.0		8.0	5.0	<	.10
JUL 16		10	2.2	.99	2.	5	.80	2.0	1	2	5.0	<	.10
AUG 07		9	2.0	.90	2.	5	.80	3.0		6.5	4.7	<	.10
DATE	SILIC DIS- SOLV (MG/ AS SIO2	CA, RE - AT /ED D /L	DLIDS, ESIDUE 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO GEN NO2+NO TOTAL (MG/I AS N	GE OS AMMO L TOT L (MG	AL /L	NITRO GEN, AM MONIA ORGANI TOTAI (MG/I AS N)	1- + NIT IC GE - TOT - (MG	N, AL /L	PHOS- PHORUS TOTAL (MG/L AS P)	CARB ORGA TOT (MG AS	NIĆ AL /L
JAN 17	. 1	1.1	35	.004		11 .	080	.1	15	.26	.020) 4	•3
MAR 20	. 2	2.6	36	.005	. (05 <.	050	2.3	3 2	. 4	.020	0 6	•7
MAY 22	. 2	2.4	26	.008	. (07 .	090	. 1	13	.50	.040	5	•9
JUL 16	. 1	1.5	50	.010	. (06 .	110	.7	74	.80	.070	13	
AUG 07	. 1	1.5	20	.012	. (07 .	060	.6	52	.69	.080	12	

01466500 MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ (Hydrologic bench-mark station)

LOCATION.--Lat 39°53'05", long 74°30'20", Burlington County, Hydrologic Unit 02040202, on right bank in Lebanon State Forest, 25 ft upstream from Butterworth Road Bridge, 3.4 mi upstream from confluence with Cooper Branch, and 7.0 mi southeast of Browns Mills.

DRAINAGE AREA .-- 2.35 mi2.

CAL YR 1983

WTR YR 1984

TOTAL

924.8

MEAN 2.53

MEAN 3.20

MAX

MAX

8.4

16

MIN 1.2 CFSM 1.08 MIN 1.2 CFSM 1.36 IN. 14.64

IN. 18.54

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1953 to current year. Prior to October 1962, published as "McDonald Branch in Lebanon State Forest".

REVISED RECORDS. -- WDR NJ-82-2: Drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 117.73 ft National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark).

REMARKS.--Water-discharge records fair. Gage-height record is collected above concrete control and discharge record, which includes leakage around control, is at site 785 ft downstream.

AVERAGE DISCHARGE .-- 31 years, 2.32 ft3/s, 13.46 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 35 ft³/s Aug. 25, 1958, gage height, 2.33 ft; minimum daily, 0.8 ft³/s July 6, 19, 1967.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 7.0 ft3/s and maximum(*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Mar. 14	1715	13	1.94	Apr. 18	1615	8.4	1.77
Mar. 29	1900	16	2.02	May 31	0100	*19	2.08
Apr. 5	2000	13	1.92	Aug. 5	1200	7.2	1.76
Apr. 16	1015	8.2	1.76				

Minimum discharge, 1.2 ft^3/s many days in October and November.

		DISC	HARGE, IN	CUBIC FEET	PER SE	COND, WAT	ER YEAR LUES	OCTOBER 19	83 TO SEPT	EMBER 1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.4 1.6 1.5 1.4 1.3	1.2 1.2 1.2 1.4 1.2	2.5 2.4 2.5 3.2 3.6	2.9 2.9 2.9 3.0 3.1	2.5 2.5 2.4 2.9 2.8	4.0 3.3 3.0 2.8 3.0	5.6 5.1 5.0 4.9	4.4 4.1 4.1 4.6 4.5	9.2 6.6 5.7 5.2 4.9	4.3 4.4 3.5 3.0 2.8	2.0 2.0 1.9 1.9 4.8	1.6 1.6 1.8 1.8
6 7 8 9 10	1.2 1.2 1.2 1.2	1.2 1.2 1.2 1.2	3.9 3.6 3.3 3.0 2.8	3.1 3.0 2.9 2.8 2.9	2.6 2.5 2.3 2.2 2.2	3.7 3.7 3.3 2.8 2.7	9.4 6.6 5.7 5.2 5.1	4.1 4.1 4.4 5.1 4.4	4.7 4.5 4.4 4.2 4.1	2.8 3.1 3.1 2.8 2.5	4.0 2.7 2.4 2.2 2.2	1.7 1.6 1.6 1.6
11 12 13 14 15	1.2 1.4 1.4 1.4	2.2 2.0 1.8 1.8	2.6 3.0 4.7 6.5 4.9	3.2 3.0 2.9 2.8 2.8	2.3 2.4 2.3 2.4 4.0	3.2 3.1 3.5 8.9 8.0	4.9 4.8 4.7 4.9 5.4	4.2 4.1 4.0 3.9 3.7	3.9 3.8 3.7 4.5 4.0	2.5 2.7 2.5 2.4 2.3	2.1 2.4 2.7 2.3 2.1	1.6 1.6 1.5 1.7 2.3
16 17 18 19 20	1.2 1.2 1.2 1.2	2.5 2.3 2.3 2.2 2.2	3.9 3.4 3.2 3.1 2.9	2.7 2.6 2.6 2.6 2.5	4.3 3.7 3.2 2.9 2.8	6.3 5.9 5.3 4.8 4.4	7.4 7.1 6.8 7.6 6.2	3.7 3.6 3.6 3.6 3.6	3.7 3.6 4.0 4.0 3.7	2.2 2.2 2.4 2.5 2.3	2.0 1.9 1.8 1.8	2.0 1.7 1.6 1.6
21 22 23 24 25	1.2 1.2 1.3 1.5	2.8 2.6 2.6 2.6 3.7	2.8 3.8 4.5 4.2 3.2	2.5 2.5 2.5 2.5 2.7	2.7 2.5 2.6 3.8 3.9	4.3 4.2 3.9 3.7 4.1	5.4 5.0 5.5 5.7 5.3	3.6 3.5 3.6 4.0 3.5	3.4 3.2 3.1 3.0 3.2	2.4 2.9 2.6 2.4 2.2	1.8 1.8 1.8 1.8	1.5 1.5 1.5 1.5
26 27 28 29 30 31	1.4 1.3 1.2 1.2 1.2	4.9 3.8 3.0 2.8 2.6	2.7 2.5 3.2 5.0 4.0 3.1	2.9 3.1 3.0 2.8 2.6 2.7	3.3 2.9 3.9 5.0	4.8 4.5 5.2 12 11 6.8	4.9 4.7 4.5 4.5 4.4	3.4 3.4 3.9 13	3.2 2.9 2.8 2.7 3.2	2.1 2.1 2.2 2.1 2.0 2.0	1.7 1.7 1.7 1.7 1.7	1.5 1.6 1.6 1.6
TOTAL MEAN MAX MIN CFSM IN.	40.0 1.29 1.6 1.2 .55 .63	65.2 2.17 4.9 1.2 .92 1.03	108.0 3.48 6.5 2.4 1.48 1.71	87.0 2.81 3.2 2.5 1.20 1.38	85.8 2.96 5.0 2.2 1.26 1.36	150.2 4.85 12 2.7 2.06 2.38	172.3 5.74 10 4.4 2.44 2.73	143.1 4.62 16 3.4 1.97 2.27	123.1 4.10 9.2 2.7 1.74 1.95	81.3 2.62 4.4 2.0 1.11 1.29	66.2 2.14 4.8 1.6 .91 1.05	48.9 1.63 2.3 1.5 .69 .77

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1963 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1968 to current year. WATER TEMPERATURES: October 1960 to current year.

INSTRUMENTATION. -- Temperature recorder since October 1960, water-quality monitor since October 1968.

REMARKS.--Water-quality samples were collected at the weir. Interruptions in the daily record were due to malfunctions of the instrument.

EXTREMES FOR PERIOD OF DAILY RECORDS.-SPECIFIC CONDUCTANCE: Maximum, 182 micromhos June 16, 1969; minimum, 19 micromhos Aug. 25, 1979.
WATER TEMEPRATURES: Maximum, 22.0°C Aug. 1, 1970; minimum, 0.0°C on many days during winter months.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum, 97 micromhos Dec. 14, 15; minimum, 27 micromhos on Nov. 9, 10.
WATER TEMPERATURES: Minimum, 0.0°C Mar. 14, 15.

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DA.	ГЕ	TIME	STRE FLO INST TANE (CF	AM- C W, C AN- D OUS A	NCE	PH STAND- ARD NITS)	TEMP ATU (DEG	ER- IRE	XYGEN, DIS- SOLVEI (MG/L)	SOI (PE CI SAT	LVED	OXYG DEMA BIO CHE ICA 5 D (MG	ND, - M- L, AY (COLI FORM FECA 0.7 UM-M COLS	L, FE KF F (CC	REP- OCCI CAL, AGAR LS. ER ML)	HAR NES (MG AS CAC	S /L
DEC 14		1200		6.8	96	3.8		8.5	6.	ļ	53		.2		<4	K 14		6
FEB 14		1200		2.4	63	4.1		5.0	8.0)	62		. 4					3
APR 25		1250		5.2	66	3.9		8.5	5.	ı	44		.6		<1	K 60		3
MAY 25.		1100		3.6	62	4.1		4.5	7.0)	68							3
JUN 27		1200		2.9	48	4.0		6.5	1.1		17		• 3		<2	K 62		2
JUL 26		1000		2.1	39	4.4		7.0	1.9		20		.2					2
SEP		1300		1.5	31	4.7		4.0	2.0		28		•5		<4	68		2
140	DATI	CAL DI SO (M	CIUM S- DLVED G/L S CA)	MAGNE SIUM DIS- SOLVE (MG/L AS MG	SODIU DIS- D SOLVE (MG/	PC M, S I D SC L (M	OTAS- BIUM, DIS- DLVED IG/L B K)	ALKA LINIT LAB (MG/ AS CACO	Y SI	JLFATE DIS- SOLVED MG/L S SO4)	CH RI DI SO	LO- DE, S- LVED G/L CL)	FLUC RIDE DIS SOLV (MG/	E, S- VED 'L	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOL RES AT DE D SO	IDS, IDUE 180 G. C IS- LVED G/L)	
	DEC 14.		1.2	.7		4	<i>(</i> 10	41.0		15		٠,	,	. 10	2.5		39	
	FEB				-	-	<.10	<1.0		15		6.0			_			
	14. APR		.64	. 4			. 20	<1.0		8.7		3.8		. 10	3.1		30	
	MAY		.66	. 2			. 10	<1.0		7.4		3.4		. 10	2.1		27	
	25. JUN		•53	. 2	9 1.	6	<.10	<1.0	1	6.4		3.6	<.	. 10	2.4		22	
	27. JUL		.36	• 3	0 1.	5	<.10	<1.0	1	12	8	3.9	<.	. 10	2.8		32	
	26. SEP	• •	.26	. 2	1 1.	5	. 10	<1.0		9.8	1	4.2	<.	. 10	3.2		33	
	14.	• •	. 45	. 2	5 1.	6	.20	1.0		2.4	-	3.6	<.	. 10	4.2		26	
	DATI	ME SU PE	DI- INT, IS- INDED	SEDI- MENT, DIS- CHARGE SUS- PENDE (T/DAY)	% FIN	P. C E NO2 M. I ER SC N (M	TRO- GEN, 2+NO3 DIS- DLVED MG/L S N)	NITR GEN AMMON DIS SOLV (MG/ AS N	IA MO	IITRO- EN, AM- ONIA + RGANIC TOTAL MG/L AS N)	PHO TO (M	OS- RUS, TAL G/L P)	PHOS PHORU DIS SOLU (MG/ AS I	JS, S- VED 'L	PHOS- PHORUS, ORTHO, DIS- SOLVED (MG/L AS P)	ORG DI SOL (M		
	DEC																	
	14. FEB	••	9	• 1	7	57	<.10	<.0	10	.20		.020	. (020	<.010	1	1	
	14. APR	• •	6	• 0	4	91	<.10	<.0	10	• 90		.030	. (020	<.010		6.9	
	25. MAY		6	. 0	8	96	<.10	. 0	30	.60	<	.010	<.0	010	<.010		7.5	
	25. JUN	•	14	. 1	4	65	<.10	.0	40	<.10	<	.010	<.0	010	<.010		7.4	
	27. JUL	• •	4	• 0	3	53	<.10	<.0	10	1.2	<	.010	<.0	010	<.010			
	26. SEP	• •	14	. 0	3	55	<.10	.0	50	• 50	<	.010	<.0	010	<.010	1	1	
	14.	••	18	. 0	7	50	<.10	.0	20	.70	<	.010	<.0	010	.010		3.3	

DELAWARE RIVER BASIN 01466500 MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ--Continued

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COBALT, DIS- SOLVED (UG/L AS CO)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)
DEC		.1.								
14 FEB	1200	420	1	34	<.5	<1	<1	<3	1	240
14 APR	1200						-			
25 MAY	1250	170	1	18	<.5	<1	<1	<3	. 1	180
25 JUN	1100	190	<1	20	<1	<1	<1	<3	<1	200
27 JUL	1200	180	<1	16	<1	<1	<1	<3	3	400
26 SEP	1000	210	1	12	1	<1	<1	<3	<1	700
14	1300	60	<1	9	<1	<1	<1	<3	<1	200
DATE	LEAD, DIS- SOLVED (UG/L AS PB)	LITHIUM DIS- SOLVED (UG/L AS LI)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO)	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	VANA- DIUM, DIS- SOLVED (UG/L AS V)
DEC										
14 FEB	5	<4	53	.1	<10	2	<1	<1	14	<6
14 APR										
25 MAY	5	<4	15	<.1	<10	1	<1	<1	7	<6
25 JUN	2	. <4	11	<.1	<10	1	<1	<1	7	<6
27 JUL	7	<4	10	.1	<10	<1	<1	<1	5	<6
26 SEP	2	<4	6	<.1	<10	<1	<1	<1	4	<6
14	2	<4	6	<.1	<10	<1	<1	<1	5	<6
DATE	ZINC, DIS- SOLVED (UG/L AS ZN)	GROSS ALPHA, DIS- SOLVED (UG/L AS U-NAT)	GROSS ALPHA, SUSP. TOTAL (UG/L AS U-NAT)	GROSS ALPHA, DIS- SOLVED (PCI/L AS U-NAT)	GROSS BETA, DIS- SOLVED (PCI/L AS CS-137)	GROSS BETA, SUSP. TOTAL (PCI/L AS CS-137)	GROSS BETA, DIS- SOLVED (PCI/L AS SR/ YT-90)	GROSS BETA, SUSP. TOTAL (PCI/L AS SR/ YT-90)	RADIUM 226, DIS- SOLVED, RADON METHOD (PCI/L)	URANIUM DIS- SOLVED, EXTRAC- TION (UG/L)
DEC										
14 FEB	50									
14 APR		1.4	<.4	1.0	1.7	<.4	1.5	<.4	.28	.02
25 MAY	23									
25 JUN	22									
27 JUL	31		· ·							
26 SEP	18				, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
14	15									

DELAWARE RIVER BASIN

01466500 MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ--Continued
TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

103

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBE	R		NOVEMBER			DECEMBE	R		JANUAR	Y
1 2 3 4 5	13.0 13.5 13.5 13.5 14.0	12.5 13.0 13.0 13.0	12.5 13.0 13.0 13.0	10.0 10.5 10.5 10.5 9.5	9.5 9.5 10.0 9.5 9.0	9.5 10.0 10.5 10.0 9.5	8.0 7.0 7.0 7.0 6.5	7.5 7.0 6.5 6.5	7.5 7.0 7.0 6.5 6.5	2.0 2.5 2.5 2.5 3.0	1.5 2.0 2.5 2.5 2.5	1.5 2.0 2.5 2.5 2.5
6 7 8 9 10	13.5 13.0 13.0 13.0 12.5	12.5 12.0 12.0	13.0 12.5 12.5 12.5 12.5	9.5 10.0 10.0 10.0 10.5		9.5 9.5 9.5 10.0	7.0 7.0 6.0 5.5 5.5	6.5 6.0 5.5 5.0 5.0	6.5 6.5 5.5 5.0 5.5	3.0 3.0 3.0 3.0	2.5 2.5 2.5 2.5 2.5	3.0 3.0 2.5 2.5 3.0
11 12 13 14 15	12.5 13.0 13.5 13.5	12.5	12.5 13.0 13.5 13.5 12.5	11.0 10.5 9.5 9.5 9.5		11.0 10.0 9.5 9.0 9.5	6.0 7.0 9.0 9.0	5.5 6.0 7.0 8.5 8.5	5.5 6.5 8.0 8.5 9.0	2.5 2.0 2.5 3.0 2.5	2.0 2.0 2.0 2.5 2.5	2.5 2.0 2.5 2.5 2.5
16 17 18 19 20	12.5 12.0 12.0 12.0 12.0	11.5 11.5 11.5 11.5	12.0 12.0 12.0 12.0 11.5	10.0 9.5 9.0 9.0	9.5 9.0 8.5 8.5 8.5	10.0 9.5 8.5 8.5	8.5 7.5 6.0 5.0 4.5	7.5 6.5 5.5 4.5 3.5	8.0 7.0 5.5 5.0 4.0	2.5 3.0 3.0 3.0 2.5	2.0 2.5 2.5 2.5 2.5	2.5 2.5 2.5 3.0 2.5
21 22 23 24 25	11.5 11.0 11.5 12.0 11.5	10.5	11.0 11.0 11.0 11.5	10.0 9.5 9.0 10.0	9.5 9.0 9.0 9.0 8.5	9.5 9.5 9.0 9.5 9.5	3.5 4.0 3.0 2.0	3.0 3.0 2.0 1.0	3.5 3.5 2.5 1.5	2.5 2.5 3.0 3.5 3.0	2.0 1.5 2.0 3.0 2.5	2.5 2.0 2.5 3.5 3.0
26 27 28 29 30 31	11.5 11.0 11.0 11.0 10.5	11.0 10.5 10.0 10.5 10.0 9.5	11.5 10.5 10.5 11.0 10.0	8.0 7.5 8.0 8.5 8.5	7.5 7.0 7.5 8.0 8.0	7.5 7.5 7.5 8.5 8.0	1.5 2.5 2.5 1.0 1.0	1.0 1.5 1.0 1.0 1.0	1.5 2.0 2.0 1.0 1.0	2.5 2.5 2.0 2.5 3.0 3.0	2.5 2.0 2.0 2.0 2.5 2.5	2.5 2.5 2.0 2.5 2.5 3.0
MONTH	14.0	9.5	12.0	11.0	7.0	9.5	9.0	1.0	5.0	3.5	1.5	2.5
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY		MIN FEBRUAR	Y		MARCH			MIN APRIL			MAY	MEAN
DAY 1 2 3 4 5	MAX 2.5 2.5 3.5 3.0 2.5			MAX 2.5 2.5 2.5 2.5 2.5		2.5 2.0 2.5 2.5 2.5	5.0 5.5 7.0 7.5 9.5			12.5 12.0 11.5 13.0		12.0 11.5 11.0 12.5
1 2 3 4 5	2.5 2.5 3.5 3.0 2.5	FEBRUAR 2.0 2.0 2.5 2.5 2.5 2.5	2.5 2.5 3.0 3.0 2.5	2.5 2.5 2.5 2.5	MARCH 2.0 2.0 2.0 2.0 2.5	2.5 2.0 2.5 2.5	5.0 5.5 7.0 7.5 9.5 9.0 8.5	APRIL 4.0 4.0 5.5 6.5	4.5 5.0 6.0 7.0 9.0	12.5 12.0 11.5 13.0	MAY 12.0 11.0 11.5 12.0 12.0	12.0 11.5 11.0
1 2 3 4 5	2.5 2.5 3.5 3.0 2.5	FEBRUAR 2.0 2.0 2.5 2.5 2.5 2.5	2.5 2.5 3.0 3.0 2.5	2.5 2.5 2.5 2.5 2.5	MARCH 2.0 2.0 2.0 2.0 2.5	2.5 2.0 2.5 2.5 2.5 2.5	5.0 5.5 7.0 7.5 9.5 9.0 8.5	4.0 4.0 5.5 6.5 7.5 8.5 7.5	4.5 5.0 6.0 7.0 9.0	12.5 12.0 11.5 13.0 13.0	MAY 12.0 11.0 11.5 12.0 12.0	12.0 11.5 11.0 12.5 12.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14	2.55505 2.55505 3.5505 4.00 5.0	FEBRUAR 2.0 2.0 2.5 2.5 2.5 2.5 2.5 2.5 4.0 4.5	2.5 2.5 3.0 3.5 2.5 2.5 2.5 3.0 3.5 4.0 4.0	2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	MARCH 2.0 2.0 2.0 2.5 2.5 2.5 2.0 1.5 2.0	2.5 2.0 2.5 2.5 2.5 2.5 2.5 2.0 2.0 2.0	5.0 5.5 7.0 7.5 9.0 8.5 7.5 7.0 7.5 8.0 7.5 8.0	APRIL 4.0 5.5 7.5 8.5 7.0 6.5 6.5 6.5 7.8 8.0	4.5 5.0 6.0 9.0 9.0 7.0 6.5 7.0 6.5 7.0 8.5	12.5 12.0 11.5 13.0 13.0 12.5 12.0 13.0 12.5 12.0 13.0 13.5 13.0	MAY 12.0 11.0 11.5 12.0 12.0 11.5 12.0 11.5 12.5 12.5 12.5	12.0 11.5 11.0 12.5 12.5 12.5 12.5 11.5 12.0 12.5 11.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	223332 32233 44555 3334.	FEBRUAR 2.0 2.0552.5 2.552.5 2.552.5 3.0 4.50 4.50 3.5	Y 2.55 3.00 3.5 2.55 3.5 2.55 3.5 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	MARCH 2.0 2.0 2.0 2.5 2.5 2.5 2.0 1.5 1.0 0.0 1.5 1.0 2.0	2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.0 2.0 2.0 2.0 2.0 2.0 2.5 5.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	5.0 5.5 7.0 9.5 9.0 8.5 8.0 7.5 7.0 7.5 8.5 8.5 8.5 8.0 9.0	APRIL 4.0 5.55 7.5 8.55 7.0 6.0 6.55 8.0 8.0 8.0 9.0	5.000 00505 05050 55550 98.505 05050 55550	12.5 12.0 11.5 13.0 13.0 12.5 12.0 13.0 12.5 12.0 13.0 13.5 13.0 12.0	MAY 12.0 11.0 11.5 12.0 11.5 12.0 11.5 12.5 11.5 12.5 11.5 10.5 10.5	12.0 11.5 11.0 12.5 12.5 12.5 12.0 12.5 11.5 12.0 13.0 13.0 13.0 11.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	55505 05505 00000 00505 5505 22332 32233 44455 33344 4455	FEBRUAR 2.005555 555550 50050 4.50 4.50 4.55	Y 22.500.5 5.550.5 0.000.0 0.050.5 5.550.5 4 4.50.0 4 4.50.5 5.550.5 4 4.50.5 5.550.5	2.55.55.55.55.55.55.55.55.55.55.55.55.55	MARCH 2.0 2.0 2.0 2.5 2.5 2.5 2.5 2.0 5.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.0 2.0 2.0 2.5 5 3.5 4.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5	5.0 5.5 7.5 9.5 9.0 8.5 8.0 7.5 8.5 8.0 9.0 10.0 9.5 10.0	APRIL 4.056.55 7.050 8.5550 8.5550 6.5550 8.500 9.00 9.050 8.50	50000 00505 05050 55505 5505 45679 98776 77888 89999 9888	12.5 12.0 11.5 13.0 13.0 12.5 12.0 13.5 12.0 11.0 12.5 13.5 13.0 12.5	MAY 12.0 11.0 11.5 12.0 11.5 12.0 11.5 11.5 12.5 12.5 12.5 11.5 10.5 10.0 11.0 12.5 13.0 14.5 15.0	12.0 11.5 12.5 12.5 12.5 12.5 12.0 12.5 11.5 12.0 13.0 13.0 10.5 10.5 12.0 13.0 14.0 15.0

01466500 MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEMBE	R
1 2 3 4 5	13.5 13.5 13.5 14.5 15.0	12.5 13.0 13.0 13.0 14.0	13.0 13.5 13.0 13.5 14.5	19.0 19.0 19.5 19.0 19.5	18.0 18.5 18.5 18.5 18.5	18.5 19.0 19.0 19.0	===	=======================================	===	14.5 14.5 14.5 14.5	14.0 13.5 14.0 14.5 14.0	14.5 14.0 14.0 14.5 14.0
6 7 8 9 10	16.0 17.0 17.5 18.5 19.0	15.0 16.0 16.5 17.5 18.0	15.5 16.5 17.0 18.0 18.5	19.5 19.0	19.0 19.0 	19.0 19.0		==	== == ==	14.0 13.5 13.0 13.0	13.0 12.5 12.0 12.0 12.5	13.5 13.0 12.5 12.5 13.0
11 12 13 14 15	19.5 19.0 19.0 19.5 19.5	18.5 18.5 18.5 19.0 17.5	19.0 19.0 19.0 19.0	===	===	===	===	=======================================	===	13.5 13.5 13.5 14.5 15.0	13.0 13.0 13.0 13.5 14.5	13.0 13.5 13.5 14.0 14.5
16 17 18 19 20	17.5 16.5 16.5 17.5	16.5 16.5 16.0 16.5	17.0 16.5 16.5 17.0	===	===	===	17.0 16.5 15.5 16.0	16.5 15.5 15.5 15.0	16.5 16.0 15.5 15.5	14.5 13.0 12.5 12.5 13.0	13.0 12.5 12.0 11.5 12.0	14.0 13.0 12.5 12.0 12.5
21 22 23 24 25	17.0 16.5 16.5 16.5 17.0	16.5 16.0 16.0 16.5 16.5	17.0 16.0 16.0 16.5 17.0			===	15.5 15.0 15.0 15.0	14.5 14.5 14.5 14.5 14.5	15.0 14.5 15.0 15.0 14.5	13.0 13.0 13.0 13.5 13.5	12.0 12.0 12.5 12.5 13.0	12.5 12.5 12.5 13.0 13.0
26 27 28 29 30 31	17.0 16.5 17.0 17.0	16.5 16.0 16.5 17.0	17.0 16.5 17.0 17.0		===		14.5 14.5 14.5 15.0 15.0	14.0 14.0 14.0 14.5 14.5	14.5 14.0 14.5 14.5 14.5	13.5 12.5 12.0 12.5 12.5	12.5 12.0 12.0 12.0 12.0	13.0 12.5 12.0 12.0
MONT	Н 19.5	12.5	16.5	19.5	18.0	19.0	17.0	14.0	15.0	15.0	11.5	13.0

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DAY	M	X	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
			остов	ER		NOVEMB	ER		DECEMB	ER		JANUA	RY
1 2 3 4 5		16 19 19 37	34 36 37 35 33	35 38 38 36 34	30 30 30 32 31	29 29 29 28 29	30 29 29 31 30	76 74 71 84 88	73 70 70 70 82	75 72 71 76 84	76 75 75 74 73	74 73 73 72 72	75 74 74 74 72
6 7 8 9		34 32 32 31	32 31 31 30 30	33 32 32 31 31	30 29 29 28 53	29 28 28 27 27	29 29 28 27 33	88 86 84 81 77	86 83 82 77 74	87 85 83 79 75	73 71 70 70 70	71 70 68 68	71 71 69 69 68
11 12 13 14 15	1	31 10 10 36 35	30 36 34 33	31 35 38 35 34	57 57 52 46 52	53 52 46 43 40	55 55 49 44 43	74 82 96 97 97	71 70 82 95 90	72 76 90 96 93	72 71 70 69 69	70 70 69 68 67	71 71 70 69 68
16 17 18 19 20		33 33 32 32	32 32 31 31 31	33 32 32 31 31	62 63 63 62 59	54 59 60 60 56	59 61 62 61 57	90 86 82 81 78	86 82 79 76 75	88 84 80 78 76	68 67 66 65 66	66 65 64 64	67 66 65 65 65
21 22 23 24 25		32 31 34 39	30 30 30 33 35	31 31 31 37 36	72 72 74 74 88	56 68 72 70 74	67 70 73 72 81	75 81 85 84 81	73 73 80 81 76	74 77 82 82 79	65 65 63 69 74	64 63 61 61 69	65 64 62 63 72
26 27 28 29 30 31		35 34 33 31	34 33 32 32 30 29	34 34 33 32 30 30	96 95 90 85 81	86 90 85 81 77	93 93 87 83 79	77 72 81 84 84	72 69 69 81 81 76	74 71 72 82 82 78	75 76 75 74 73 72	73 74 73 71 70 70	74 75 74 72 71 71
MONTH	1	0	29	33	96	27	55	97	69	80	76	61	70

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUAR	Y		MARCH			APRIL			MAY	
1 2 3 4 5	71 70 69 73 73	69 67 66 69 70	70 68 67 72 71	87 82 78 76 76	82 79 76 74 73	84 81 77 75 74	73 72 71 72 77	71 70 70 70 72	72 71 71 71 75	67 68 67 71 76	65 65 66 65 58	66 66 67 68 65
6 7 8 9	72 70 68 67 66	69 68 66 65 64	70 69 67 66 65	78 78 77 75 72	75 77 74 68 68	77 78 76 71 69	78 75 71 70 69	75 72 69 68 68	77 73 70 69 68	65 64 71 71 67	58 60 61 62 63	62 62 65 65
11 12 13 14 15	66 67 66 65 91	64 65 65 64 69	65 66 65 65 84	74 75 75 79 78	71 73 72 73 74	73 74 73 77 76	69 69 69 71	68 68 68 69	68 68 69 70	68 67 66 65 65	66 65 64 64	67 66 66 64 64
16 17 18 19 20	88 85 80 78 75	84 80 78 76 73	86 82 79 77 74	74 71 70 70 70	71 69 69 69	73 70 70 69 70	73 74 73 72 70	71 71 71 70 68	72 73 72 71 69	64 64 64 64	63 63 63 63	64 64 63 63
21 22 23 24 25	74 73 76 82 84	73 71 70 77 82	73 72 72 80 83	71 71 70 70 73	69 68 68 68	70 70 70 69 70	69 68 67 67	67 66 65 66	68 67 66 67	64 62 64 65 64	62 61 60 63 61	63 62 62 64 62
26 27 28 29 30 31	83 80 84 88	79 77 76 84	81 78 80 87	74 73 76 82 81 76	72 71 71 77 75 73	73 72 73 81 78 74	66 68 67 67	65 65 65 66	65 66 66 66	62 60 59 61 63	60 59 58 57 61 58	61 60 59 58 62 59
MONTH	91	64	74	87	68	74	78	65	69	76	57	63
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	MIN JUNE	MEAN	MAX	MIN JULY	MEAN	MAX	MIN AUGUST	MEAN	MAX	MIN Septeme	
1 2 3 4 5	60 60 59 59		59 59 59 59 59	53 53 51 48 47		51 51 49 47	MAX		MEAN	32 32 33 34 35		
1 2 3	60 60 59	JUNE 57 58 58	59 59 59	53 53 51 48	JULY 49 50 48 46	51 51 49 47	MAX		MEAN	32 32 33	31 31 31 31	32 32 31
1 2 3 4 5	60 60 59 59 59 59 59	JUNE 57 58 58 58 58	59 59 59 59 59	53 53 51 48 47 46 47	JULY 49 50 48 46 45	51 51 49 476 45 456 45		AUGUST	MEAN	32 32 33 34 35 35 34 33	31 31 31 31 34 33 32 32	32 32 31 33 35
1 2 3 4 5 6 7 8 9 10 11 12 3 14	60 60 59 59 59 59 58 58 58 58	JUNE 57 58 58 58 58 58 58 57 56	59 59 59 59 59 59 59 59 58 57	53 53 51 48 47 46 47	JULY 49 50 48 46 45	51 51 49 476 45 456 45		AUGUST	MEAN	32 32 33 34 35 35 34 33 31 31 30 30	31 31 31 31 31 32 32 32 31 30 29	32 32 31 33 35 34 33 32 30
1 2 3 4 5 6 7 8 9 1 1 1 2 3 4 5 1 6 1 1 3 4 5 1 6 7 1 8 1 7 1 8	60 60 59 59 59 58 58 58 57 56 54 57	JUN 7 558 855 55 55 55 55 55 55 55 55 55 55 5	5999999 998887 653364 2222	53 53 51 48 47 46 47	JULY 49 50 48 46 45 44 44	51 51 49 476 45 456 45	 39 39 39	AUGUST	 39 38 37	32 32 33 34 35 35 33 33 31 31 30 39 45	31 31 31 31 31 32 32 32 31 30 29 29 38 38 35 32	32 32 31 33 35 34 33 33 32 30 30 30 31
12345 67890 112345 167890 212345 26	600 5599 599 59888 555555 555555 54998	J 55555 55555 55555 484777 87665	999999 99887 65364 22222 99888 87768 55555 55555 55555 4444 4444	53 53 51 48 47 46 47	JULY 49 50 48 46 45 44 44 45 44	51 51 49 476 45 456 45	 39 38 39 36 36 36 36 37 36 35 34 34	AUGUST 38 37 37 37 37 37 35 36 35	 39 38 37 38 38 36 36 36 36	32 32 33 33 33 33 33 33 33 33 33 34 35 44 38 33 33 32 32 31 31 31 31 31 31 31 31 31 31 31 31 31	SEPTEME 31 31 31 31 32 32 32 31 30 29 29 29 38 35 22 31 30 30 29 29 28 27 27 27 27 27 27 28 28 28	32 33 33 33 33 33 33 33 33 33 33 33 33 3
1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 1 7 8 9 0 1 1 2 3 4 5 1 7 1 8 9 2 2 2 3 4 5 2 5 2 5 2 5 1 7 8 9 1 7 8	600 5599 55555 55555 55555 549989 48771	J 558888 887776 543333 21121 987777 8766	999999 99887 65364 22222 99888 8776 55555 55555 55555 4444 4444	53 53 51 48 47 46 47	JULY 49 50 48 46 45 44 44 45 44	51 51 49 476 45 456 45	 39 38 39 38 39 36 37 36 37 36	AUGUST	 39 38 37 38 37 38 36 36	32 32 33 33 33 35 35 33 31 31 30 30 39 45 44 38 33 32 31 30 30 30 30 30 30 30 30 30 30 30 30 30	31 31 31 31 31 32 32 32 31 30 29 29 29 38 35 32 31 30 29 29 29 29 29 29 29 29 29 29 29 29 29	32 331 335 33330 3301 4 163321 300 322 28 8 8 2 2 2 2 8 8 2 2 9

01467000 NORTH BRANCH RANCOCAS CREEK AT PEMBERTON, NJ

LOCATION.--Lat 39°58'10", long 74°41'05", Burlington County, Hydrologic Unit 02040202, on right bank at downstream side of bridge on Hanover Street at Pemberton, 12 mi upstream from confluence with South Branch Rancocas Creek.

DRAINAGE AREA .-- 118 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- September 1921 to current year.

REVISED RECORDS.--WSP 1302: 1922-23. WSP 1382: 1933. WDR NJ-82-2: Drainage area.

GAGE.--Water-stage recorder above concrete dams. Datum of gage is 31.19 ft National Geodetic Vertical Datum of 1929. Prior to June 9, 1923, nonrecording gage and June 9, 1923 to Aug. 9, 1951, water-stage recorder at site 600 ft downstream at datum 6.54 ft lower.

REMARKS .-- Water-discharge records good. Flow regulated occasionally by operation of gate in dam and by ponds above station.

AVERAGE DISCHARGE .-- 63 years, 256 ft3/s, 19.91 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,730 ft³/s Aug. 31, 1939, gage height, 10.77 ft, from high-water mark, site and datum then in use; minimum daily, 9.0 ft³/s Sept. 29, 1932.

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 600 ft3/s and maximum(*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Dec. 15	0400	656	2.51	Apr. 6	1915	839	2.77
Mar. 15 Mar. 30	2115 2015	734 964	2.62 2.95	Apr. 19 June 1	2000 0645	607 *1340	2.44 3.43

DISCHARGE IN CHRIC FEET DED SECOND. WATER VEAD OCTOBER 1092 TO SERTEMBER 1093

Minimum discharge, 64 ft3/s Oct. 9, 10, 11, 12.

		D	ISCHARGE,	IN CUB	IC FEE	r per se	ECOND, WA MEAN V		OCTOBER 1983	TO SE	PTEMBER 1984			
DAY	OCT	NO	V DE	c .	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1 2 3 4 5	98 140 149 134 112	8 8 10	0 20 0 20 8 32	15 19 19	279 251 236 224 218	236 225 214 227 230	415 389 355 323 311	719 568 436 392 585	264 276 264 291 262	1310 1070 763 573 412	219 320 243 196 191	108 104 99 98 184	83 80 83 123 131	
6 7 8 9 10	97 86 73 67 64	9 9 10	9 41 8 35 2 33	7 5 7	218 213 207 202 200	234 223 204 189 178	347 323 309 317 316	793 788 660 546 452	276 279 300 300 281	352 318 287 247 207	197 236 287 193 177	281 315 258 212 173	124 111 100 93 92	
11 12 13 14 15	64 85 115 115 101	34 26 22	2 28 0 42 3 60	6 7	240 208 215 209 201	175 175 174 187 329	300 262 277 550 689	386 296 306 338 346	282 268 249 234 221	183 163 155 177 227	162 168 156 143 129	148 139 155 260 275	110 86 83 86 88	
16 17 18 19 20	91 85 82 86 85	32 32 27	6 39 6 33 1 29	2 14 19	191 184 186 194 155	395 405 364 329 300	711 660 558 481 431	378 493 516 585 601	213 205 199 188 185	165 165 202 206 179	117 110 138 216 158	219 176 148 128 119	91 88 82 80 79	
21 22 23 24 25	80 74 81 133 145	31 30 26	8 29 9 33 9 33	11 18 16	160 145 159 161 227	267 251 265 328 332	398 374 341 274 282	555 490 455 434 385	182 171 170 184 195	206 134 122 117 139	144 165 165 150 139	114 109 101 99 97	75 72 70 70 70	
26 27 28 29 30 31	141 131 111 92 82 77	49 41 33 30	2 21 3 24 8 38 6 38	8 8 5 6	270 293 277 249 238 246	332 309 364 404	340 382 452 670 904 882	379 377 356 331 299	193 213 236 368 698 1090	141 148 136 125 145	131 138 143 135 128 118	94 98 97 94 94	70 69 77 86 83	
TOTAL MEAN MAX MIN CFSM IN.	3076 99.2 149 64 .84	25 50 7 2.1	2 34 2 63 9 19 4 2.8	1 12 19 19 1	556 215 293 145 .82	7845 271 405 174 2.30 2.47	13623 439 904 262 3.72 4.29	14245 475 793 296 4.03 4.49	8737 282 1090 170 2.39 2.75	8774 292 1310 117 2.47 2.77	5312 171 320 110 1.45 1.67	4683 151 315 87 1.28 1.48	2635 87.8 131 69 .74 .83	
CAL YR WTR YR		TOTAL TOTAL	77403 M 93726 M	IEAN 21			MIN 52 MIN 64	CFSM 1.80 CFSM 2.17	IN. 24.40 7 IN. 29.55					

01467000 NORTH BRANCH RANCOCAS CREEK AT PEMBERTON, NJ--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1923-24, 1958, 1962-69, 1975 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

DATE	TIME	STRE FLO INST TANE (CF	AM- CI W, CO AN- DU OUS AN	CT- (ST	PH TAND- ARD ITS)	TEMPER- ATURE (DEG C)	OXYGEN DIS- SOLVE (MG/L	I SC I, (F CD SA	DIS- D DLVED PER- CENT ATUR-		COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)
JAN 17 MAR	0945		185	60	4.4	1.5	13.	5	95	1.2	11	50
20 MAY	0945	8	433	53	4.3	5.0	11.	4	89	. 4	2	9
16 AUG	1020	3	213	47	4.6	14.0	8.	6	84	1.1	<20	110
07 29 SEP	1000 1100		327 94	44 39	4.5 4.9	23.0	5. 7.		69 79	1.7	330 23	3500 540
24	1000		70	40	5.2	17.0	8.	3	85	1.0	<20	2400
DATE	HAR NES (MG AS CAC	S /L	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIU DIS- SOLVE (MG/ AS N	DI D SOL L (MG	UM, LI S- VED (/L	LKA- NITY LAB MG/L AS (ACO3)	SULFAT DIS- SOLVE (MG/L AS SO4	DIS- D SOLVE (MG/L	RID DI D SOL (MG	E, S- VED /L
JAN 17 MAR		9	2.0	.87	3.	2	.60 <	1.0	13	7.0	<	.10
20 MAY		6	1.5	.58	2.	4	.50 <	1.0	8.	5 4.8	<	.10
16 AUG		7	1.7	.78	2.	7	.60 <	1.0	9.	5 5.4	<	.10
07		5	1.3	.53 .67	2.			1.0	6.° 5.			.10 .10
SEP 24		8	1.7	.81	2.	-	000 2 100	2.0	6.			.10
DATE	(MG AS	CA, - VED /L	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITR GEN NO2+N TOTA (MG/ AS N	O- NIT GE O3 AMMO L TOT L (MG	RO- GE N, MO NIA OR AL T /L (IITRO- IN, AM- ONIA + RGANIC OTAL MG/L S N)	NITRO GEN, TOTAL (MG/L AS N)	- PHOS- PHORUS TOTAL (MG/L AS P)	, ORGA TOT (MG	NIĆ AL /L
JAN 17		4.5	42	.004		13 .	120	.21	• 31	4 .03	0 5	•5
MAR 20 MAY		2.4	36	.005	۷.		050	•33		03	0 8	.0
16		2.7	42	.003		09 .	090	.66	•7!			•5
AUG 07 29		4.5 4.9	34 38	.013			050 050	.75 .61	.87			
SEP 24		4.8	38	.004	•		130	.21	. 31			.0

01467000 NORTH BRANCH RANCOCAS CREEK AT PEMBERTON, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

		TIME		FIDE D	LVED T	SENIC OTAL UG/L	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L	BORON, TOTAL RECOV- ERABLE (UG/L	TOTAL RECOV-	TOTAL RECOV-	COPPER, TOTAL RECOV- ERABLE (UG/L
DA	TE		AS	S) AS	AL) A	S AS)	AS BE)	AS B)	AS CD)	AS CR)	AS CU)
MAY 16		1020		<.5	180	< 1	<10	30	<1	10	4
	DATI	T F E	RON, COTAL RECOV- RABLE UG/L US/FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	ERABL (UG/L	MERCI TOTA - RECO E ERAI	AL TO OV- RE BLE ER /L (U	COV- N ABLE T G/L (ELE- I IUM, F OTAL E UG/L (UG/L TO	ENOLS OTAL G/L)
	MAY 16.		1600	1	1	0	(.1	2	<1	30	1

01467060 DELAWARE RIVER AT PALMYRA, NJ

LOCATION.--Lat 40°01'05", long 75°02'16", Philadelphia County, PA, Hydrologic Unit 02040202, on right bank opposite Palmyra, 0.5 mi upstream from Tacony-Palmyra Bridge, 3.5 mi downstream from Rancocas Creek, and at mile 107.55.

DRAINAGE AREA.--7,850 mi².

TIDE ELEVATION DATA

PERIOD OF RECORD. -- December 1962 to current year. Tidal volumes published from December 1962 to September 1970.

GAGE.--Water-stage recorder. Datum of gage is -10.00 ft National Geodetic Vertical Datum of 1929. Gage-height record converted to elevation above or below (-) National Geodetic Vertical Datum of 1929 for publication.

REMARKS.--Elevation records good. Some periods of low tide are affected by sluggish or plugged intake and the record is estimated with negligible loss in accuracy. Some periods cannot be estimated and are noted by dash (--) lines. No gage-height or doubtful record on Dec. 26 - Jan. 4, Jan. 21-25, Feb. 1-2, July 15-16, Sept. 17-19.

EXTREMES FOR PERIOD OF RECORD.--Maximum elevation, 8.23 ft Oct. 25, 1980; minimum, -8.6 ft Dec. 31, 1962.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum elevation known since 1899, 8.9 ft Aug. 24, 1933, from profile furnished by Corps of Engineers, U.S. Army.

EXTREMES FOR CURRENT YEAR.--Maximum elevation recorded, 7.48 ft Apr. 6; minimum recorded, -4.17 ft Dec. 25.

Summaries of tide elevations during current year are as follows:

		TIDE ELE	VATIONS,	IN FEET	r, WAT	ER YEAR	OCTOBE	R 1983	TO SEPT	EMBER 1	984		
		OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
Maximum	Elevation	6.13	6.68	7.02	6.30	6.74	6.30	7.48	7.37	7.35	6.37	5.97	5.56
high tide	Date	25	15	22	17	17	29	6	31	1	7	26	30
Minimum	Elevation	-3.67	-3.61	-4.17		-3.58	-3.72	-2.43	-3.05	-2.75	-2.83	-2.83	-3.62
low tide	Date	29	13	25		26	12	22	16	15	25	31	26
Mean high ti	de	4.71	4.61			4.44	4.45	5.59	5.04	5.13	5.00	4.89	4.60
Mean water 1	evel	1.63	1.47			1.38	1.37	2.40	1.79	1.76	1.65	1.58	1.41
Mean low tid	е	-1.80	-1.93			-1.95	-2.00	-1.04	-1.71	-1.94	-2.07	-2.14	-2.29

01467069 NORTH BRANCH PENNSAUKEN CREEK NEAR MOORESTOWN, NJ

LOCATION.--Lat 39°57'07", long 74°58'10", Burlington County, Hydrologic Unit 02040202, at bridge on Kings Highway, 200 ft downstream from outlet of Strawbridge Lake, 0.6 mi northwest of Moorestown Mall, 0.8 mi southeast of Lenola, and 1.8 mi southwest of Moorestown.

DRAINAGE AREA .-- 12.8 mi2.

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1976 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

I	DATE	TIME	FLO INS	TAN- Eous	SPE- CIFIC CON- DUCT- ANCE (UMHOS	(S7	RD	EMPER- ATURE DEG C)	SO	GEN, IS- LVED G/L)	SOI (PI CI SAI	GEN, IS- LVED ER- ENT TUR- ION)	DEMA BIC CHE ICA 5 I	AND, D- EM- AL,	FOI FEO BRO	CAL,	TOC	REP- OCCI CAL PN)
2	AN 25	0945		14	71	15	6.5	1.0		12.0		85		4.2		700		4600
1	19 AY	0745		4.4	26	50	6.5	5.0		11.2		88		3.3		130		80
1	15 JL	0830		1.8	25	8	6.6	15.0		6.5				3.9		50		70
1	18	0800		1.2	25	59	7.1	25.0		7.0		86		2.4		170		230
2	JG	0800		1.4	23	35	6.8	21.5		6.4		73		6.9		130		1100
	EP 27	0845			30	00	7.2	17.5		7.0		72		6.3		490		230
	DATE	HAR NES (MG AS CAC	S /L	CALCI DIS- SOLV (MG/ AS C	UM ED S L (MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM DIS- SOLVED (MG/L AS NA	SOL (MG	UM, S- VED /L	ALKA LINIT LAI (MGA AS	ry B /L	SULFA DIS- SOLV (MG/ AS SO	ED L	CHLC RIDE DIS- SOLV (MG/ AS (E, ED'L	RID RID SOL (MG	E, S- VED /L	
	JAN 25 Mar		83	23		6.2	150	4	. 1	14		52	2	240			.20	
	19	•	72	20		5.4	16	3	• 5	4.0	0	63	3	20			.10	
	15 JUL	•	73	20		5.5	12	4	• 5	5.0) ק	58	3	23			.20	
	18 AUG		77	21		5.9	12	5	•5	15		56	5	24			.30	
	20 SEP	•	69	19		5.2	11	5	. 6	14		55	;	20			.30	
	27		84	23		6.4	17	6	• 3	16		62	2	26			.30	
	DATE	SILI DIS SOL (MG AS SIO	VED /L	SOLID RESID AT 18 DEG. DIS SOLV (MG/	UÉ I O NI C NI ED (VITRO- GEN, ITRITE TOTAL (MG/L AS N)	NITRO GEN, NO2+NO TOTAL (MG/L AS N)	GE 3 AMMO TOT (MG	N, NIA AL /L	NITT GEN, MONI ORGAL TOTA (MG, AS	AM- A + NIC AL /L	NITE GEN TOTA (MG/ AS N	I, L L	PHOS PHORU TOTA (MG/	JS, AL 'L	CARBORGA TOT (MG	NIC AL /L	
	JAN 25 MAR		8.0	5	32	.036	1.1	٠.	650	1	.1	2.	. 1		130	3	.6	
	19	. 1	0	1	61	.012	1.0		490	1	.2	2.	3	• 1	170	4	.0	
	15 JUL	. 1	1	1	77	.037	.6	8 1.	41	2	. 4	3.	. 1	• 3	320	8	.2	
	18 AUG	. 1	1	1	91	.044	.4	9 .	360	1	. 9	2.	. 4	.2	240	5	.2	
	20 SEP	1	1	1	48	.051	.7	2.	830	1	. 8	2.	5		160	5	. 4	
	27	•	9.3	1	71	.077	. 4	4 1.	40	2	. 4	2.	. 8		330	4	. 4	

01467069 NORTH BRANCH PENNSAUKEN CREEK NEAR MOORESTOWN, NJ--Continued

DATE	TIME	SULFIDE	INOR- GANIC, TOT IN	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)
SEP 27	0845	<.5	1.8	7.1	10	3	<1	<10	70	1	<1
DATE	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	TOM MA- TERIAL	TOM MA- TERIAL (UG/G	COPPER, TOTAL RECOV- ERABLE (UG/L	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L	TERIAL (UG/G	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)		TOTAL RECOV- ERABLE (UG/L	NESE, RECOV. FM BOT- TOM MA- TERIAL
SEP 27	20	6	<10	3	<1	6100	6000	8	260	200	67
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	FM BOT- TOM MA- TERIAL (UG/G	NICKEL, TOTAL	FM BOT- TOM MA- TERIAL (UG/G	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAI (UG/G)	ERABLE (UG/L		PHENOLS TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOM MA- TERIAL
SEP 27	<.1	<.01	13	<10	<1	<1	40	40	<1	53	<1.0
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOM MA- TERIAL	DDD, TOTAL IN BOT- TOM MA- TERIAL	TOM MA- TERIAL	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOM MA-	TOTAL IN BOT- TOM MA- TERIAL	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOTAL IN BOT- TOM MA- TERIAL	TOM MA- TERIAL
SEP 27	<.1	42	26	12	11	<.1	1.8	۲.1	<.1	<.1	<.1
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL	TOTAL IN BOT- TOM MA- TERIAL	CHLOR, TOT. IN BOTTOM MATL.	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	TOT. IN BOTTON MATL.	MIREX, TOTAL IN BOT- TOM MA- TERIAL	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOTTOM MATERIL (UG/KG)		TOM MA- TERIAL
SEP 27	<.1	<.1	<.1	<.1	<.1	<.1	· · · 1	<.1	<1.00	<10	<.1

01467081 SOUTH BRANCH PENNSAUKEN CREEK AT CHERRY HILL. NJ

LOCATION.--Lat 39°56'30", long 75°00'05", Camden County, Hydrologic Unit 02040202, on left bank on downstream wingwall of bridge on Mill Road in Cherry Hill, 1.1 mi south of Maple Shade and 3.8 mi upstream from confluence with the North Branch Pennsauken Creek.

DRAINAGE AREA. -- 8.98 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1967 to September 1976, October 1977 to current year.

REVISED RECORDS.--WDR NJ-82-2: Drainage area.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 8.12 ft National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records fair except those for periods of no gage-height record, Oct. 14 to 23 and May 23 to June 27, which are poor. Diurnal fluctuations from unknown source.

AVERAGE DISCHARGE .-- 16 years, (water years 1968-76, 1978-84) 18.7 ft3/s, 28.27 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 868 ft³/s Aug. 28, 1978, gage height, 10.19 ft; maximum gage height, 11.34 ft Aug. 28, 1971; minimum discharge, 2.6 ft³/s Oct. 6, 9, 10, 11, 1970, gage height, 1.71 ft.

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 300 ft3/s and maximum (#):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Nov. 15	2245	341	6.62	May 8	2215	354	6.73
Mar. 14	0100	386	7.01	May 30		423	7.32
Mar. 29	0930	319	6.42	Aug. 5	0830	318	6.41
Apr. 5	0915	366	6.84	Aug. 12	1630	*557	8.33

Minimum discharge, 3.3 ft3/s Oct. 9.

DISCHARGE,	IN	CUBIC	FEET	PER	SECOND,	WATER	YEAR	OCTOBER	1983	TO	SEPTEMBER	1984
					MEAL	VALUE	ES					

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1 2 3 4 5	5.9 6.8 5.6 5.2 4.8	5.4 5.5 5.7 20 6.2	12 11 22 120 37	10 10 10 11 12	14 11 14 37 18	16 13 12 11 38	19 17 15 28 239	13 12 13 22 16	23 17 15 14 18	16 12 9.9 8.8 18	7.5 9.0 7.8 8.6 98	8.3 8.1 24 52 15	
6 7 8 9	5.4 4.7 4.5 4.7 4.8	5.8 5.8 5.5 5.3 47	35 27 15 13	11 11 9.7 9.4	14 12 10 10 9.8	51 20 15 17 17	52 26 19 16 15	11 11 74 96 19	15 13 12 12 11	116 72 20 12 10	17 11 10 8.0 7.8	13 12 11 9.4 10	
11 12 13 14 15	5.0 31 8.8 7.5 4.7	49 12 7.7 7.1 70	13 60 113 68 27	19 11 9.4 12	13 12 12 16 130	20 19 106 218 54	14 14 14 14 34	14 13 12 14 11	11 12 11 103 170	12 14 9.1 8.8 8.7	7.6 180 61 13 9.2	12 9.6 6.2 6.8	
16 17 18 19 20	5.2 4.7 4.9 5.6 5.4	135 18 12 10 9.4	19 16 15 14 13	9.1 9.0 9.4 9.0	39 19 19 15	32 22 18 16 15	100 32 23 21 16	11 11 11 12 12	10 11 24 43 59	8.6 8.7 46 12 8.8	8.0 7.2 6.7 6.6 6.7	7.1 6.4 6.5 6.5	
21 22 23 24 25	5.4 4.9 5.2 45	96 19 13 30 105	12 125 39 19 13	9.3 8.8 8.5 26 55	12 11 24 93 22	18 15 13 12 32	15 13 40 25 17	12 12 27 68 12	9.6 9.2 11 120	17 18 9.2 8.6 8.1	6.2 5.7 5.7 7.6	6.2 6.0 6.2 6.9	
26 27 28 29 30 31	7.3 5.9 5.5 5.4 5.4	33 17 16 17 12	11 11 78 57 17	40 28 18 14 13	15 13 99 34 	32 16 107 224 47 25	15 13 13 29 15	12 13 51 92 255 74	37 12 9.8 9.2 37	7.8 21 8.4 7.7 8.0 7.8	8.9 9.2 10 10 11 9.0	7.7 8.7 22 11 6.8	
TOTAL MEAN MAX MIN CFSM IN.	243.9 7.87 45 4.5 .88 1.01	800.4 26.7 135 5.3 2.97 3.32	1056 34.1 125 11 3.80 4.37	454.6 14.7 55 8.5 1.64 1.88	760.8 26.2 130 9.8 2.92 3.15	1271 41.0 224 11 4.57 5.27	923 30.8 239 13 3.43 3.82	1036 33.4 255 11 3.72 4.29	869.8 29.0 170 9.2 3.23 3.60	553.0 17.8 116 7.7 1.98 2.29	579.7 18.7 180 5.7 2.08 2.40	330.0 11.0 52 6.0 1.22 1.37	

CAL YR 1983 TOTAL 7881.1 MEAN 21.6 MAX 370 MIN 4.4 CFSM 2.41 IN. 32.65 WTR YR 1984 TOTAL 8878.2 MEAN 24.3 MAX 255 MIN 4.5 CFSM 2.71 IN. 36.78

01467081 SOUTH BRANCH PENNSAUKEN CREEK AT CHERRY HILL, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1970-73, 1975 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

D	ATE	TIME	STREAM FLOW, INSTAN TANEOU (CFS)	- CI CC - DU S AN	ICE	PH (STAND- ARD UNITS)	TEMPE ATUR (DEG	R- E S	XYGEN, DIS- SOLVED (MG/L)	OXYGE DIS SOLV (PER CEN SATU ATIO	- DEI ED B: - CI T IC	YGEN MAND, IO- HEM- CAL, DAY MG/L)	FO FE E BR	LI- RM, CAL, C OTH PN)	STRI TOCO FEC	CCI AL
JA 2 MA	5	1145	3	8	505	6.9	3	. 0	11.9		89	5.1		200	<	200
1	9	0945	1	6	328	7.0	5	. 0	11.0		86	5.1		2300	<:	200
	5	1000	1	1	341	7.2	12	.5	8.0		75	6.6		2300		800
	8	0930	1	3	310	7.2	23	.0	5.3		62	5.2	>24	0000	>240	000
	0	0915		5.6	343	7.2	18	.5	6.0		64	6.6	1	1000	2	200
SE 2	7	1045		8.8	395	7.4	15	. 0	6.3		61	6.6	>240	0000	22	000
	DATE	HARI NESS (MG/ AS CACO	S D /L S (LCIUM IS- OLVED MG/L S CA)	MAGN SIU DIS SOLV (MG/ AS M	M, SODI - DIS ED SOLV L (MG	UM, ED :	POTAS- SIUM, DIS- SOLVEI (MG/L AS K)	, LINIT	Y S	ULFATE DIS- SOLVED (MG/L S SO4)	CHL RID DIS SOL (MG AS	E, - VED /L	FLUC RIDE DIS SOLV (MG/ AS F	ED L	
	JAN 25		71	20	5.	1 59		4.3	17		39	110		٠,	20	
	MAR 19		86	23	7.	0 22		5.5	17		62	33			20	
	MAY 15		86	23	7.	0 20		6.7	25		56	28			20	
	JUL 18		75	20	6.	0 20		7.4	35		44	25			20	
	AUG 20		86	23	7.	0 25		8.4	45		55	31			30	
	SEP 27			24	7.			10	48		56	29			30	
	DATE	SILIO DIS- SOLV (MG/ AS SIO2	CA, RE - AT VED D 'L S	LIDS, SIDUE 180 EG. C DIS- OLVED MG/L)	NITR GEN NITRI TOTA (MG/ AS N	O- NIT, GE TE NO2+ L TOT L (MG	RO- I N, NO3 AI AL	NITRO- GEN, MMONIA FOTAL (MG/L AS N)	NITE GEN, A MONIA	M- HIC L L	NITRO- GEN, TOTAL (MG/L AS N)	PHOR TOT (MG AS	US, AL /L	CARBO ORGAN TOTA (MG/ AS C	N, IC L	
	JAN 25 MAR	. 1	7.0	288	.0	59 1	. 4	.950) 1.	8	3.2		440	6.	1	
	19	. 12	2	194	.0	77 2	.0	2.14	3.	2	5.2		680			
	15	. 12	2	229	.2	26 1	. 8	2.80	3.	8	5.6		850	4.	6	
	18	. 11	1	212	.2	15 1	.1	2.96	3.	6	4.6		690	6.	0	
	AUG 20	. 13	3	217	• 3	90 1	.7	2.28	2.	6	4.3		580	4.	1	
	SEP 27	. 13	3	235	. 4	50 2	. 4	3.00	3.	5	5.8	1.	65	3.	8	

01467081 SOUTH BRANCH PENNSAUKEN CREEK AT CHERRY HILL, NJ--Continued

		CARBON, INOR- GANIC, TOT IN	CARBON, INORG + ORGANIC TOT. IN	ALUM- INUM, DIS-	ARSENIC	TOTAL IN BOT- TOM MA-	BERYL- LIUM, TOTAL RECOV-	BORON, TOTAL RECOV-	CADMIUM TOTAL RECOV-	RECOV. FM BOT- TOM MA-	CHRO- MIUM, TOTAL RECOV-
	TIME	BOT MAT (G/KG	BOT MAT	SOLVED (UG/L	TOTAL (UG/L	TERIAL (UG/G	ERABLE (UG/L	ERABLE (UG/L	ERABLE (UG/L	TERIAL (UG/G	ERABLE (UG/L
DATE		AS C)	AS C)	AS AL)	AS AS)	AS AS)	AS BE)	AS B)	AS CD)	AS CD)	AS CR)
SEP 27	1045	.1	2.2	10	2	<1	<10	180	2	<1	20
DATE	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	TOM MA- TERIAL (UG/G	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)
SEP											
27			6	<1	1200	3700	<1	20	70	17	•3
	MERCURY RECOV. FM BOT- TOM MA- TERIAL	NICKEL, TOTAL RECOV- ERABLE	NICKEL, RECOV. FM BOT- TOM MA- TERIAL	SELE- NIUM, TOTAL	SELE- NIUM, TOTAL IN BOT- TOM MA-	ZINC, TOTAL RECOV- ERABLE	ZINC, RECOV. FM BOT- TOM MA- TERIAL	PHENOLS		PCN, TOTAL IN BOT- TOM MA-	ALDRIN, TOTAL IN BOT- TOM MA-
DATE	(UG/G AS HG)	(UG/L AS NI)	(UG/G AS NI)	(UG/L AS SE)	TERIAL (UG/G)	(UG/L AS ZN)	(UG/G AS ZN)	TOTAL (UG/L)	TERIAL (UG/KG)	TERIAL (UG/KG)	TERIAL (UG/KG)
SEP 27	<.01	6	<10	<1	<1	50	30	7	12	<1.0	<.1
	CHLOR- DANE, TOTAL IN BOT- TOM MA-	DDD, TOTAL IN BOT-	DDE, TOTAL IN BOT- TOM MA-	DDT, TOTAL IN BOT- TOM MA-	DI- AZINON, TOTAL IN BOT- TOM MA-	DI- ELDRIN, TOTAL IN BOT- TOM MA-	ENDO- SULFAN, TOTAL IN BOT- TOM MA-	ENDRIN, TOTAL IN BOT- TOM MA-	ETHION, TOTAL IN BOT- TOM MA-	HEPTA- CHLOR, TOTAL IN BOT- TOM MA-	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM
D.4.000	TERIAL	TERIAL	TERIAL	TERIAL	TERIAL	TERIAL	TERIAL	TERIAL	TERIAL	TERIAL	MATL.
DATE	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)
SEP 27	16	3.7	2.2	•5	<.1	1.4	<.1	<.1	<.1	<.1	<.1
	T IN TO T	NDANE THE OTAL TO BOT- IN M MA- TO ERIAL THE	HION, OX DTAL CH BOT- TOT M MA- BO ERIAL M	IY- PA ILOR, TH ILOR, TO ITOM BO IATL. N	RA- THION, THE TOTAL TOTAL BOTTOM BOTTOM BOTTOM	IION, TO I. IN IN OTTOM TOM NATL. TE	TREX, THE TOTAL TO BOT- IN MA- TOMERIAL TE	RIAL MAT	R- PH INE TO IN TOM TOM TERIL TE	HENE, THE TO BOT- IN MA- TOMERIAL TE	RI- IION, OTAL BOT- I MA- GRIAL G/KG)
	EP 27	<.1	<.1	<.1	<.1	<.1	<.1	<.1 <	1.00 <1	10	<.1

01467120 COOPER RIVER AT NORCROSS ROAD AT LINDENWOLD, NJ

LOCATION.--Lat 39°49'43", long 74°58'55", Camden County, Hydrologic Unit 02040202, at bridge on Norcross Road in Lindenwold, 50 ft downstream from outflow of Linden Lake, 1.1 mi southwest of Gibbstown, and 1.7 mi south of

DRAINAGE AREA.--1.13 mi2.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DA	TE	TIME	FL INS TAN	EAM- OW, TAN- EOUS FS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)		AND- RD	TEMP ATU (DEG	ER-	OXYGI DIS SOLV	EN, S- /ED	DXYG DI SOL (PE CE SAT ATI	S- VED R- NT UR-	OXYG DEMA BIO CHE ICA 5 D (MG	ND, - M- L, AY	FOR FEC EC BRC	CAĹ,	STRI TOCO FEC	CCI
		1100	E	1.0	100		6.3		1.0		9.2		63		1.2		4		8
MAR 21		0915	E	2.2	91		7.0		9.0	1	1.1		98		1.1		<20		<20
MAY 17		1000	E	1.2	80		7.3	1	3.0	8	3.0		76		4.8		<2		17
		1030	E	1.1	72		6.7	2	4.0	(5.0		72		2.1		40	1	130
AUG 09		0900		E.92	64		6.8	2	5.0		5.9		72		3.3		49	4	920
SEP 26	• • •	1115		E.84	67		6.7	2	0.0	(5.7		74		1.5		2		13
	DATE	HAF NES (MC AS CAC	SS G/L	CALCI DIS- SOLV (MG/ AS C	UM S ED SC L (M	GNE- IUM, IS- LVED G/L MG)	SODI DIS- SOLVI (MG,	ED /L	POTA SIU DIS SOLV (MG/ AS K	M, I - ED L	ALKA- INIT: LAB (MG/I AS CACO:	Y :	SULFA DIS- SOLV (MG/ AS SO	ED L	CHLO RIDE DIS- SOLV (MG/ AS (E, - /ED /L	FLUC RIDE DIS SOLV (MG/ AS F	E, S- /ED /L	
	JAN 23 Mar		22	6.	7	1.2	6	.9	1.	4	14		14		11		۲.	.10	
	21 MAY		21	6.	6	1.2	7	. 1	1.	6	10		13		10		۲.	.10	
	17 JUL		20	6.	3	1.1	5	• 5	1.	2	10		10		9.	. 0	<.	. 10	
	17 AUG	•	20	6.	3	1.0	4	.2		90	12		9	.7	8.	. 1	۲.	.10	
	09 SEP		. 19	6.	0	•93	3	. 9		70	13		9	.7	7.	. 8	<.	.10	
	26	•	20	6.	4	.94	3	. 8	1.	1	14		7	•5	7.	, 4	۷.	.10	
	DATE	SILI DIS SOI (MO AS	VED	SOLID RESID AT 18 DEG. DIS SOLV (MG/	UÉ NI O G C NIT - TO ED (M	TRO- EN, RITE TAL G/L N)	NIT GEI NO2+I TOT (MG	N, NO3 AL /L	NITR GEN AMMON TOTA (MG/ AS N	, N IA (L L	NITRO GEN, AI MONIA DRGAN TOTAL (MG/I AS N	M- ic L	NITR GEN TOTA (MG/ AS N	Ľ L	PHOS PHORU TOTA (MG/	JS, AL /L	CARBO ORGAN TOTA (MG/	NIĆ AL 'L	
	JAN 23 MAR	•	6.8		60	.012		.16	•3	20	E.	42			. (040	3.	. 2	
	21 MAY	•	1.6		54	.006		.12	. 1	50	• !	56		68	. (040	5.	7	
	17	•	1.5		60 <	.003	<	.05	. 1	00	. !	59			. (040	6.	. 0	
	17	•	.9		64	.004		. 05	. 1	30	. 4	48		53	.0	050	9.	. 4	
	09 SEP	•	2.5		54	.003	<	.05	.0	70		59			. (060	7.	5	
	26	•	1.9		44	.005	<	.05	.0	90	.!	57			.0	030	4.	0	

01467120 COOPER RIVER AT NORCROSS ROAD AT LINDENWOLD, NJ--Continued

DATE	TIME	SULFIDE	INOR- GANIC, TOT IN	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)		ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	TOTAL	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)
MAY 17 SEP	1000	<.5			30	<1		<10	30	<1	
26	1115		1.1	6.2			<1				<1
DATE	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)		TOM MA- TERIAL (UG/G	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	TOTAL RECOV- ERABLE (UG/L	TERIAL (UG/G	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	TOTAL RECOV ERABLE (UG/L	
MAY 17 SEP	10			4		2100		4		. 30	
26		3	<10		<1		1400		90)	20
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	FM BOT- TOM MA- TERIAL (UG/G	NICKEL, TOTAL		SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ERABLE (UG/L	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOM MA- TERIAL
MAY											
17 SEP 26	<.1 		3	<10	<1 	<1	20	30	<1 	 - <1	<1.0
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL	DDD, TOTAL IN BOT- TOM MA- TERIAL	DDE, TOTAL IN BOT- TOM MA-	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL	HEPTA- CHLOR, TOTAL IN BOT- TOM MA-
MAY 17 SEP									-		<u>-</u>
26	<.1	8.0	16	<.1	16	<.1	.7	<.1	<.1	<.1	<.1
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT-	TOTAL IN BOT- TOM MA- TERIAL	BOTTOM	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)		MIREX, TOTAL IN BOT- I TOM MA- TERIAL	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOTTOM MATERIL (UG/KG)		TOM MA-
MAY 17 SEP											
26	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<1.00	<10	<.1

01467140 COOPER RIVER AT LAWNSIDE, NJ

LOCATION.--Lat 39°52'14", long 75°00'59", Camden County, Hydrologic Unit 02040202, at bridge on Woodcrest Road in Lawnside, 0.2 mi upstream from the New Jersey Turnpike, and 1.7 mi upstream from Tindale Run.

DRAINAGE AREA. -- 12.7 mi2.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1964-65, 1976 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE		STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)
OCT 05	1330	E14	362	7.3	22.0	3.9	45	8.7	35000	7900
FEB 16	0945	E52	245	7.0	10.5	8.7	77	7.1	<200	<200
MAR 22				2122			200	10	200	200
MAY	1030	E28	275	7.1	10.0	9.4	84			
17 AUG	1045	E21	280	7.2	14.0	7.2	70	13	<200	500
09 30	1030 0800	E16 E16	345 370	7.1 7.2	24.0 20.5	3.8 4.0	45 45	10 8.7	<200 2700	17000 35000
DATE	HARD NESS (MG/ AS CACO	DIS L SOL	IUM SI - DI VED SOL /L (MO		UM, SI - DI ED SOI	VED (MC	ITY SULF AB DIS G/L SOL	- DIS- VED SOLV /L (MG/	E, RIDI - DIS /ED SOLV /L (MG/	E, S- VED /L
OCT O5 FEB		62 18	ц	.2 31	9	9.3 20	2	8 36	3	.30
16 MAR		45 13	3	.0 18	, 1	1.4 8	.0 2	8 30		.20
22 MAY		55 16	3	.7 22	: (5.1 10	3	2 31		.20
17		55 16	3	.7 22	: 1	7.4 14	2	8 32	~	.20
AUG 09 30		58 17 56 16		.7 25 .8 28		3.7 94 3.7 32		7 34 9 39		.30 .20
DATE	SILIC DIS- SOLV (MG/I AS SIO2	AT 1 ED DEG L DI SOL	DUÉ NIT 80 GE . C NITF S- TOT VED (MG	N, GE ITE NO2+ AL TOT /L (MG	N, GI NO3 AMMO AL TO3 /L (MO	TRO- GEN EN, MONI ONIA ORGA TAL TO: G/L (MO	IA + NIT ANIC GE FAL TOT G/L (MG	AL TOTA	JS, ORGAI AL TOTA L (MG)	NIĆ AL /L
OCT O5 FEB	. 14		174 .	208 1	.2 9.	.30 10) 11	1.8	37 12	
16 MAR	. 7	.2	133 .	051	•53 3	.60	4.0 4	.5 .9	20 8	.1
22 MAY	. 9	• 3	157 .	071	.67 5	.10	5.6 7	.3 1.2	25 10	
17	. 11		179 .	145	.99 E6	.45	7.6 8	.6 1.6	66 6	. 6
AUG 09 30						.00 10) 11 9.1 10			7

01467140 COOPER RIVER AT LAWNSIDE, NJ--Continued

DATI		IME	TO'	FIDE TAL G/L S)	ALU INU DI SOL (UG AS	M, S- VED /L	TO'	ENIC TAL G/L AS)	LI TO RE ER (U	RYL- UM, TAL COV- ABLE G/L BE)	BOI TO: REG ERA	RON, FAL COV- ABLE G/L B)		AL OV- BLE /L	ERA (UC	JM, TAL COV- ABLE		AL OV- BLE /L
05.	1	330		<.5		10		5		<10		290		1		10		20
	DATE	TO RE ER (U	ON, TAL COV- ABLE G/L FE)		AĹ OV- BLE /L	NE TO RE ER (U	NGA- SE, TAL COV- ABLE G/L MN)	T R E	RCURY OTAL ECOV- RABLE UG/L S HG)	T R E (CKEL, OTAL ECOV- RABLE UG/L S NI)	NI TO	LE- UM, TAL G/L SE)	REC ERA (UC	NC, TAL COV- ABLE G/L ZN)		NOLS TAL /L)	
	OCT 05		3400		3		80		.2		3		<1		50		18	

01467150 COOPER RIVER AT HADDONFIELD, NJ

LOCATION.--Lat 39°54'11", long 75°01'19", Camden County, Hydrologic Unit 02040202, on right bank of Wallworth Lake in Pennypacker Park, 200 ft upstream from bridge on State Highway 41 (Kings Highway) in Haddonfield, 0.6 mi upstream from North Branch Cooper River, and 7.7 mi upstream from mouth.

DRAINAGE AREA .-- 17.0 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1963 to current year.

REVISED RECORDS.--WRD-NJ 1969: 1967(M). WDR NJ-82-2: Drainage area.

GAGE .-- Water-stage recorder above concrete dam. Datum of gage is 9.29 ft National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good except those for period of no gage-height record Dec. 25 to 27, which are fair. Occasional regulation at low flow from Kirkwood Lake, other small lakes and wastewater treatment plants.

AVERAGE DISCHARGE .-- 21 years, 36.3 ft3/s, 29.00 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,300 ft³/s Aug. 28, 1971, gage height, 5.46 ft; minimum, 0.8 ft³/s Nov. 13, 1972, gage height, 1.07 ft regulation from unknown source; minimum daily, 1.2 ft³/s June 27, 1964.

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 500 ft3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Mar. 14 Apr. 5	0030 0730	548 *593	2.79	May 30	0745	573	2.83

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

Minimum discharge, 17 ft3/s Oct. 10, gage height, 1.47 ft.

		2100.	,	00010 122	I I DR OBC	MEAN VAL	UES .	71000 170	J 10 DL. 1		, .	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	19	20	26	27	32	40	47	39	67	50	24	21
2	21	20	25	26	28	35	42	36	44	36	31	20
3	20	24	38	27	31	33	41	38	43	29	25	27
4	21	52	165	27	59	32	56	64	39	26	25	82
5	21	27	72	29	36	61	400	52	49	36	31	29
6	26	23	59	29	31	79	102	38	35	166	25	24
7	23	22	48	29	28	45	63	38	33	181	24	21
8	20	20	30	27	26	37	48	99	33	78	24	20
9	19	22	29	27	27	41	42	147	31	36	22	20
10	19	62	27	30	28	42	43	45	29	31	22	21
11	20	84	27	43	33	43	42	34	31	34	23	21
12	59	34	87	28	33	41	42	32	33	47	105	22
13	38	25	160	26	34	150	40	30	30	29	78	20
14	43	24	107	28	37	351	41	35	48	26	32	20
15	26	78	48	27	191	115	62	33	31	24	27	28
16	22	191	34	25	77	74	164	32	29	25	25	24
17	20	38	30	25	44	58	76	28	32	29	24	22
18	20	27	29	26	40	47	53	28	64	115	23	22
19	26	26	29	26	35	43	46	29	81	49	22	21
20	21	26	26	25	34	41	42	29	33	29	24	21
21	23	128	25	24	32	44	41	31	26	41	22	21
22	20	41	174	23	30	40	39	28	25	49	22	20
23	53	27	78	24	46	36	77	49	24	31	23	20
24	89	55	36	48	154	34	59	47	34	27	24	20
25	32	165	45	93	49	67	47	29	202	24	21	20
26 27 28 29 30 31	25 22 23 20 20 20	64 34 32 34 27	27 30 104 121 43 29	67 50 38 32 32 47	37 33 131 66	72 44 173 363 108 57	43 42 39 68 44	29 33 89 194 422 200	45 28 26 25 100	24 31 25 24 25 26	21 22 22 22 22 22 23	20 46 31 24
TOTAL MEAN MAX MIN CFSM IN.	851 27.5 89 19 1.62 1.86	1452 48.4 191 20 2.85 3.18	1808 58.3 174 25 3.43 3.96	1035 33.4 93 23 1.96 2.26	1462 50.4 191 26 2.96 3.20	2446 78.9 363 32 4.64 5.35	1991 66.4 400 39 3.91 4.36	2057 66.4 422 28 3.91 4.50	1350 45.0 202 24 2.65 2.95	1403 45.3 181 24 2.66 3.07	880 28.4 105 21 1.67	748 24.9 82 20 1.46 1.64

CAL YR 1983 TOTAL 16424 MEAN 45.0 MAX 589 MIN 14 CFSM 2.65 IN. 35.94 WTR YR 1984 TOTAL 17483 MEAN 47.8 MAX 422 MIN 19 CFSM 2.81 IN. 38.26

120

DELAWARE RIVER BASIN

01467329 SOUTH BRANCH BIG TIMBER CREEK AT BLACKWOOD TERRACE, NJ

LOCATION.--Lat 39°48'05", long 75°04'27", Gloucester County, Hydrologic Unit 02040202, at bridge on Blackwood-Clementon Road at Blackwood Terrace, 1,000 ft upstream from Bull Run, and 2.0 mi northeast of Fairview.

DRAINAGE AREA. -- 19.1 mi2.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	TIME	STREA FLOW INSTANCE (CF:	AM- CI W, CO AN- DU DUS AN	CE	PH TAND- ARD ITS)	AT	PER- URE G C)	SO	GEN, IS- LVED G/L)	SO (P C SA	GEN, IS- LVED ER- ENT TUR- ION)	BI CH IC 5	AND,	FO FE E BR	LI- RM, CAL, C OTH PN)	STRE TOCOC FECA (MPN	CCI
JAN																	
23 MAR	0915			165	7.1		.5		13.3		90		4.5		80	1	190
21 MAY	0800		64	146	7.2		5.0		11.3		90		1.7		490		50
17	0830		59	134	7.2		11.0		9.5		86		1.8		330	1	140
JUL 17	0845		90	120	7.1		24.0		6.8		81		2.0	>2	4000	54	100
AUG 09	0800		41	122	7.1		23.5		7.7		91		2.4		220	7	790
SEP 26	0915		39	129	7.2		21.0		7.3		82		1.2		80	14	100
DATE	HAR NES (MG AS	S /L	CALCIUM DIS- SOLVED (MG/L	MAGNE- SIUM, DIS- SOLVED (MG/L	SODI DIS SOLV (MG	ED /L	POTA SIL DIS SOL	UM, S- VED /L	ALK LINI LA (MG AS	TY B /L	SULF DIS- SOL' (MG.	VED	CHL RID DIS SOL (MG AS	E, - VED /L	FLUG RID DI SOL (MG	E, S- VED /L	
	CAC	03)	AS CA)	AS MG)	AS	NA)	AS I	()	CAC	03)	AS S	04)	AS	CL)	AS.	.,	
JAN 23 Mar	•	43	12	3.1	10	Ü.	2	. 6	24		1	7	17		<	.10	
21		41	12	2.8	8	.6	2	. 3	20		11	7	14		<	.10	
MAY 17		39	11	2.8	7	.5	2.	. 3	- 21		1	4	13			.10	
JUL 17	•	38	11	2.6	5	.8	2	. 6	23		1.	3	11		<	.10	
AUG 09		36	9.9	2.7	7	. 1	2.	. 4	22		1	1	13		<	.10	
SEP 26		37	9.9	2.9	-	.2		. 6	22		1	2	14			.10	
DATE	SILI DIS SOL (MG	CA, VED	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NIT GE	RO- N, NO3 AL	NITI GEI AMMOI TOTA (MG,	RO- N, NIA AL	NIT GEN, MONI ORGA TOT (MG AS	AM- A + NIC AL /L	NIT GE TOT (MG	RO- N, AL	PHO PHOR TOT (MG	S- US, AL	CARBORGA TOT	ON, NIC AL	
	. 510	_ /	(Hd/L)	AS N	A.S	м,	NO I	. ,	AS	N)	no i	,	n.o	. ,	n.o	0,	
JAN 23 MAR	•	7.9	101	.022	1	.8		410	E	.76				080	2	.5	
21 MAY		5.3	92	.012	1	• 3	•	180		.71	2	.0		130	3	.9	
17		4.9	91	.035	1	• 3	. :	250		.87	2	.2		120	3	.2	
JUL 17 AUG		4.9	100	.039		.91	. :	200		.81	1	.7		160	5	. 1	
09 SEP	•	4.3	86	.018	1	. 2	. (090		.66	1	. 8		160	4	.2	
26		5.1	72	.025	1	•5	•	150		.78	2	. 3		110	2	. 6	

01467329 SOUTH BRANCH BIG TIMBER CREEK AT BLACKWOOD TERRACE, NJ--Continued

121

DATE SEP	TIME	SULFIDE TOTAL (MG/L AS S)	INOR- GANIC, TOT IN	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)		ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, CONTOTAL RECOVERABLE (UG/L AS B)	CADMIUM TOTAL	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)
26	0915	<.5	.6	6.1	10	2	<1 <1	<10	50	3	<1
DATE	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	TOM MA-	TOM MA- TERIAL UG/G	COPPER, TOTAL RECOV- ERABLE (UG/L	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L	TERIAL (UG/G	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
SEP	* .	,					411.00				•
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G	NICKEL, TOTAL	SELE- NIUM, TOTAL (UG/L	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G	PHENOLS TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
SEP 26	۰ ۲ ۰ 1	<.01	I (1	<1	<1	20	30	<1	29	<1.0	<.1
DATE	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL	DDE, TOTAL IN BOT- TOM MA- TERIAL	DDT, TOTAL IN BOT- TOM MA- TERIAL	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM
SEP 26	16	6.7	7 1.1	1.0	K. 1	. 4	<.1	<.1	۲.1	ر. د.1	<.1
SE	T IN TO T ATE (U	NDANE TOTAL TOTAL TO M MA- TO ERIAL TO G/KG) (U	THION, ON TOTAL CONTROL CONTRO	XY- PAHLOR, THE T. IN TOTO TOM BOMATL. N	ARA- HION, T C. IN TO DTTOM B HATL. G/KG) (U	HION, T T. IN IN OTTOM TO MATL. T G/KG) (U	IREX, TI OTAL TO BOT- IN M MA- TOI ERIAL TI G/KG) (UO	ERIAL MAT G/KG) (UG	R- PH NE TO IN TOM TOM TERIL TE	HENE, TI DTAL TO BOT- IN M MA- TOI ERIAL TI G/KG) (UO	TRI- HION, DTAL BOT- M MA- ERIAL G/KG)
2	6	<.1	<.1	<.1	<.1	<.1	<.1	<.1 <	1.00 <1	10	<.1

01474500 SCHUYLKILL RIVER AT PHILADELPHIA, PA (National stream-quality accounting network station)

LOCATION.--Lat 39°58'00", long 75°11'20", Philadelphia County, Hydrologic Unit 02040203, on right bank 150 ft upstream from Fairmount Dam, 1,500 ft upstream from Spring Garden Street Bridge, in Philadelphia, and 8.7 mi upstream from mouth. Water-quality sampling site 1.6 mi upstream.

DRAINAGE AREA .-- 1.893 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- September 1931 to current year. Records for January 1898 to December 1912, published in WSP 35, 48, 65, 82, 97, 125, 166, 202, 241, 261, 301, 381 have been found to be unreliable and should not be used.

REVISED RECORDS.--WSP 756: Drainage area. WSP 1302: 1936(M). WSP 1432: 1945. See also PERIOD OF RECORD.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 5.74 ft National Geodetic Vertical Datum of 1929. Prior to November 25, 1956, water-stage recorder at site on right bank just upstream from Fairmount Dam at same datum. November 26, 1956, to October 6, 1966, water-stage recorder at site on left bank 40 ft upstream from Fairmount Dam at same datum.

REMARKS.--Water-discharge records good. Flow regulated by Still Creek Reservoir (sta 01469200) since February 1933, Blue Marsh Reservoir (sta 01470870) since April 1979, Green Lane Reservoir (sta 01472200) since December 1956 and to some extent by Lake Ontelaunee, capacity 518,600,000 ft³. Records of discharge do not include diversion above station by City of Philadelphia for municipal water supply.

AVERAGE DISCHARGE. -- 53 years, 2,972 ft3/s, 21.32 in/yr, adjusted for diversion from October 1931 to September 1982.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 103,000 ft³/s June 23, 1972, gage height, 14.65 ft; no flow over dam at times; minimum daily, 0.6 ft³/s Sept. 2, 1966.

EXTREMS OUTSIDE PERIOD OF RECORD.--Flood of October 4, 1869, reached a stage of 17.0 ft, discharge, 135,000 ft³/s, from rating extended above 46,000 ft³/s. Flood of March 1, 1902, reached a stage of 14.8 ft, discharge, 98.000 ft³/s.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 63,400 ft³/s, July 7, gage height, 12.31 ft; minimum, 224 ft³/s Oct. 1, gage height 5.66 ft.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 MEAN VALUES SEP APR AUG DAY OCT NOV DEC FEB MAY JUN TIII. JAN MAR TOTAL MEAN MAX MIN

CAL YR 1983 TOTAL MEAN MAX MIN WTR YR 1984 TOTAL MEAN MAX MIN

 $[\]dagger$ Diversion, equivalent in cubic feet per second, for municipal water supply, furnished by City of Philadelphia.

01477120 RACCOON CREEK NEAR SWEDESBORO, NJ

LOCATION.--Lat 39°44'28", long 75°15'33", Gloucester County, Hydrologic Unit 02040202, on right bank 25 ft downstream from county bridge No. 5-F-3 on Harrisonville-Gibbstown Road, 1.8 mi west of Mullica Hill, and 2.8 mi east of Swedesboro.

DRAINAGE AREA .-- 26.9 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- May 1966 to current year.

REVISED RECORDS. -- WDR NJ-82-2: Drainage area.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is National Geodetic Vertical Datum of 1929. Prior to July 28, 1969, at datum 7.96 ft higher. July 28, 1969 to Sept. 30, 1969, at datum 5.96 ft higher.

REMARKS .-- Water-discharge records fair .

AVERAGE DISCHARGE .-- 18 years, 42.4 ft3/s, 19.26 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,530 ft³/s Aug. 10, 1967, elevation, 17.44 ft, present datum; minimum daily, 2.9 ft³/s July 14, Aug. 27, 28, Sept. 10, 1966.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 300 ft3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Elevation (ft)	Date	Time	Discharge (ft³/s)	Elevation (ft)
Dec. 13 Dec. 22 Dec. 29 Mar. 14 Mar. 29	0745 1930 0030 0930 1445	349 408 438 508 417	10.75 11.00 11.24 11.68 11.18	Apr. 5 May 30 July 7 July 18	1300 1145 2230 1145	*840 546 582 337	12.95 11.87 12.04 10.67

Minimum discharge, 16 ft³/s Oct. 9, 10, 11, gage height, 6.81 ft.

		DISCHARGE,	IN CUBIC	FEET PER	SECOND, MEA	WATER YEAR N VALUES	OCTOBER	1983 TO	SEPTEMBER	1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	19	21	34	43	43	47	64	49	93	117	34	20
2	22	21	33	40	38	43	57	42	59	71	33	19
3	20	21	37	40	44	41	56	42	49	42	36	21
4	18	29	154	40	97	39	63	50	44	36	41	38
5	18	25	104	40	55	49	612	39	39	36	37	28
6	18	22	62	40	45	76	211	33	37	160	35	23
7	17	21	61	39	40	53	94	34	36	264	32	22
8	17	21	44	37	37	45	73	87	34	204	30	21
9	17	21	41	35	36	49	63	105	32	62	29	21
10	16	40	38	37	36	48	60	54	30	47	31	21
11	16	61	36	52	40	49	57	45	27	103	32	21
12	35	36	77	40	40	49	59	43	28	99	55	21
13	31	28	289	36	38	86	61	40	28	52	66	21
14	28	25	166	37	39	441	56	37	57	42	37	20
15	22	64	73	37	124	183	60	36	35	38	32	23
16	20	157	58	34	95	90	98	36	31	36	29	22
17	19	54	53	34	58	69	84	34	33	55	27	21
18	19	36	48	35	54	58	63	34	78	136	26	20
19	20	32	47	36	48	55	57	43	104	85	26	20
20	20	31	44	35	44	52	53	37	50	45	26	20
21	19	101	43	36	41	52	49	35	37	72	24	20
22	19	55	212	38	38	52	45	33	33	87	23	19
23	28	36	146	38	44	45	67	36	31	72	24	18
24	48	43	68	38	140	42	68	43	35	48	24	18
25	35	139	58	99	66	55	55	33	136	40	22	18
26 27 28 29 30 31	27 23 22 21 21 21	84 46 40 39 36	60 57 150 208 64 49	126 107 69 46 42 49	48 43 70 67	82 56 126 352 176 82	49 45 43 71 57	31 30 48 94 440 223	61 40 39 36 57	36 38 43 37 37 36	22 21 22 22 22 22 22	18 18 25 28 23
TOTAL MEAN MAX MIN CFSM IN.	696 22.5 48 16 .84	1385 46.2 157 21 1.72 1.92	2614 84.3 289 33 3.13 3.61	1455 46.9 126 34 1.74 2.01	1608 55.4 140 36 2.06 2.22	2742 88.5 441 39 3.29 3.79	2550 85.0 612 43 3.16 3.53	1966 63.4 440 30 2.36 2.72	1429 47.6 136 27 1.77 1.98	2276 73.4 264 36 2.73 3.15	942 30.4 66 21 1.13 1.30	648 21.6 38 18 .80

CAL YR 1983 TOTAL 18913 MEAN 51.8 MAX 861 MIN 14 CFSM 1.93 IN. 26.15 WTR YR 1984 TOTAL 20311 MEAN 55.5 MAX 612 MIN 16 CFSM 2.06 IN. 28.09

01477120 RACCOON CREEK NEAR SWEDESBORO, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1965 to current year.

PERIOD OF DAILY RECORD.-WATER TEMPERATURES: May 1966 to September 1973.
SUSPENDED-SEDIMENT DISCHARGE: June 1966 to September 1969.

COOPERATION. -- Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	TIME	STRE FLO INST TANE (CF	W, AN- OUS	DUC	FIC N- CT- CE	PH (STANI ARD UNITS)	A	MPER- TURE EG C)	SC	GEN, DIS- DLVED MG/L)	SO (P	GEN, IS- LVED ER- ENT TUR- ION)	DEN BI CH IC	GEN MAND, IO- IEM- CAL, DAY MG/L)	FO FE E BR	LI- RM, CAL, C OTH PN)	STREP- TOCOCCI FECAL (MPN)	
JAN																		
24 MAR	0940		33		190	6.	9	1.0		12.2				1.2		20	13	
19 MAY	1120		55		150	6.	6	7.0		12.4				<1.1		<20	<2	
16 JUL	0955		36		173	7.	1	11.0		10.2				<.9		130	170	1
11 AUG	0930		131		120	6.	6	20.0		7.4				2.7	1	6000	>2400	1
07	0950		33		167	6.	9	23.5		7.8		92		E1.4		310	1600)
DATE	HAR NES (MG AS CAC	S /L	CALC: DIS- SOLV (MG/ AS (/ED	MAGN SIU DIS SOLV (MG/ AS M	M, SC - D ED SC L (DIUM, IS- LVED MG/L S NA)	SI DI SOL (MG		ALK LINI LA (MG AS CAC	TY B /L	SULF DIS SOL (MG AS S	- VED /L	CHLC RIDI DIS- SOLI (MG,	E, VED /L	FLU RID DI SOL (MG AS	E, S- VED /L	
JAN																		
24 MAR	•	63	18		4.	5	5.7	3	.3	22		3	0	13			.10	
19		53	15		3.	7	5.1	2	.7	14		3	1	11			.10	
16		58	. 17		3.	7	5.6	2	. 9	22		2	7	12			.20	
JUL 11		40	12		2.	5	3.0	3	.2	16		2	0	8	.1		.20	
AUG 07		57	17		3.	6	4.5	3	3.3	28		2	3	11			.20	
DATE	SILIO DIS- SOL' (MG, AS SIO	CA, VED /L	SOLII RESII AT 18 DEG. DIS SOLI (MG/	OUÉ 30 . C 3- /ED	NITR GEN NITRI TOTA (MG/ AS N	TE NO	ITRO- GEN, 2+NO3 OTAL MG/L S N)	GE	AL /L	NIT GEN, MONI ORGA TOT (MG AS	AM- A + NIC AL /L	NIT GE TOT (MG AS	N, AL /L	PHORI TOTA (MG/	US, AL /L ,	CARB ORGA TOT (MG	NIĆ Al /L	
	510	- /	(110)	٠,	no n	, .			,	n.o	,		,				•,	
JAN 24 Mar	•	9.6		22	.0	14	2.8		100		.21	3	. 1	.(90	2	.1	
19		7.8		87	.0	07	1.9		090		.30	2	.2		070	3	.1	
16	. :	3.2		123	.0	10	1.5		130		.61	2	. 1		120	2	.6	
JUL 11	. (5.9		97	.0	32	.97		110	1	.2	2	.2		580	7	.8	
AUG 07	. ,	9.1		112	.0	15	1.3		060		.55	1	.9		160	3	.7	

01477510 OLDMANS CREEK AT PORCHES MILL, NJ

LOCATION.--Lat 39°41'57", long 75°20'01", Salem County, Hydrologic Unit 02040206, at bridge on Kings Highway in Porches Mill, 150 ft downstream of tributary from outflow of lake at Porches Mill, 1.0 mi north of Seven Stars, and 2.1 mi southeast of Auburn.

DRAINAGE AREA .-- 21.0 mi2.

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1975 to current year.

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	TIME	STREA FLOV INSTA TANEO	AN- DUS	FIC N- CT- (S' CE	PH TAND- ARD ITS)	AT	IPER- TURE EG C)	D SO	GEN, IS- LVED G/L)	SOI (PE CE SAT	IS- DE LVED B IR- C INT I IUR- 5	YGEN MAND, IO- HEM- CAL, DAY MG/L)	COL FOR FEC EC BRC	M, AL, TH	STREP- TOCOCCI FECAL (MPN)	
JAN																
24 MAR	1050		27	200	7.3		1.0		12.4			E1.0		20	17	
19 MAY	1000		39	170	6.4		7.0		11.0			<1.1		20	50	
16 JUL	1120		25	185	7.1		13.0		10.4			<1.1		50	170	
11 AUG	1040		77	144	6.5		20.5		6.2			2.3	>24	000	>2400	
07	1100		22	185	6.9		23.0		7.2		84	E1.6		940	1600	
DATE	HAR NES (MG AS CAC	S /L	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	(MG)	ED /L	POTA SIU DIS SOLV (MG/ AS I	JM, S- VED /L	ALKA LINIT LAB (MG/ AS CACO	Y S L	SULFATE DIS- SOLVED (MG/L AS SO4)	DIS- SOLV (MG/	E, VED L	FLUO- RIDE DIS- SOLVI (MG/I AS F)	ED.	
JAN	00	· J /		no no,	NO I	WA,	ND I	.,	ONCO	,,,	AD 5047	ND C	,,,	AU I		
24 MAR	•	68	19	4.9	5	. 2	3	. 2	21		28	15		. 2	20	
19																
16		64	18	4.6	4.	. 1	2.	. 9	22		25	14		. 2	20	
JUL 11	•	39	11	2.9	2.	. 4	4.	. 5	14		19	8.	3	• 3	30	
AUG 07		67	19	4.7	3.	. 9	3	. 4	28		22	14		. 2	20	
	SILI DIS SOL	CA, F - A VED /L	SOLIDS, RESIDUE AT 180 DEG. C	NITRO- GEN, NITRITE TOTAL	GEN NO2+N TOTA	N, NO3 AL	NITI GEN AMMON TOTA	N, NIA AL	NITR GEN, A MONIA ORGAN TOTA	M- HIC L	NITRO- GEN, TOTAL	PHORU	IS,	CARBOI ORGANI TOTAI	. c	
DATE	AS SIO		SOLVED (MG/L)	(MG/L AS N)	(MG/ AS N		(MG/ AS N		(MG/ AS N		(MG/L AS N)	(MG/ AS P		(MG/I AS C)		
JAN 24 Mar	. 1	1	141	.017	3.	. 3	. 1	110		15	3.4	.1	00	3.0)	
19	•			.010	2.	. 4	<.0)50		15	2.6	.0	90	3.6	j	
MAY 16	. :	8.5	113	.019	2.	. 4	. 1	160		70	3.1	. 1	00	3.3	3	
JUL 11		5.5	102	.068	1.	. 5	.2	210	1.	8	3.3	1.4	6	9.2	?	
AUG 07	. 1	1	143	.021	2.	. 0	.0	080		66	2.7	. 1	30	4.8	3	

01481602 DELAWARE RIVER BELOW CHRISTINA RIVER AT WILMINGTON. DE

LOCATION.--Lat 39°43'00", long 75°31'03", New Castle County, DE, Hydrologic Unit 02040206, on right bank, 1,000 ft from mouth of Christina River at the Wilmington Marine Terminal at Wilmington, 2.0 mi upstream of Delaware Memorial Bridge, and at mile 69.70.

DRAINAGE AREA .-- 11.030 mi 2

TIDE ELEVATION DATA

- PERIOD OF RECORD.--December 1982 to current year. July 1967 to May 1983 published as Delaware River at Delaware Memorial Bridge, at Wilmington, DE (sta. 01482100). Tidal volumes published from July 1967 to September 1973.
- GAGE.--Water-stage recorder. Datum of gage is -18.05 ft National Geodetic Vertical Datum of 1929. Prior to Dec. 1982, water-stage recorder at Delaware River at Delaware Memorial Bridge 2.0 mi downstream at datum 8.05 ft higher. Gage-height record converted to elevation above or below (-) National Geodetic Vertical Datum 1929 for publication.
- REMARKS.--Elevation records good. Summaries for months with short periods of no gage-height record have been estimated with negligible or no loss of accuracy unless otherwise noted. Some periods cannot be estimated and are noted by dash (--) lines. No gage-height or doubtful record on Dec. 25-28, Dec. 31-Jan. 4, Jan. 12-24.
- EXTREMES FOR PERIOD OF RECORD .-- Maximum elevation, 7.88 ft Oct. 25, 1980; minimum, -5.86 ft Apr. 4, 1975.
- EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum elevation known, 8.4 ft Nov. 23, 1950, furnished by Corps of Engineers, U.S. Army; minimum, -9.1 ft Dec. 31, 1962.

EXTREMES FOR CURRENT YEAR .-- Maximum elevation recorded, 5.92 ft Dec. 4; minimum recorded, -4.84 ft Dec. 24.

Summaries of tide elevations during current year are as follows:

TIDE ELEVATIONS, IN FEET, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

		OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
Maximum	Elevation	5.24	5.64	5.92		4.92	5.79	5.64	5.23	5.43	5.07	5.21	4.79
high tide	Date	25	15	4		18	29	17	4	3	1	25	30
Minimum	Elevation	-3.16	-3.05	-4.84		-3.06	-3.05	-2.05	-2.68	-2.33	-2.50	-2.45	-3.05
low tide	Date	29	13	24		26	1	21	16	15	25	2	26
Mean high ti	.de	3.87	3.65	3.61		3.06	3.35	4.17	3.69	4.17	3.97	4.04	3.76
Mean water 1	.evel	1.38	1.08	0.95		0.87	1.07	1.74	1.16	1.30	1.08	1.25	1.10
Mean low tid	le	-1.35	-1.63	-1.80		-1.60	-1.48	-0.96	-1.61	-1.75	-1.95	-1.75	-1.73

127 01482500 SALEM RIVER AT WOODSTOWN, NJ

LOCATION.--Lat 39°38'36", long 75°19'52", Salem County, Hydrologic Unit 02040206, on right end of Memorial Lake Dam at Woodstown, 0.2 mi upstream from small brook, and 0.3 mi downstream from Pennsylvania-Reading Seashore Lines bridge.

DRAINAGE AREA .-- 14.6 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--March to September 1940, December 1941 to January 1985 (discontinued). Prior to October 1952, published as "Salem Creek at Woodstown".

REVISED RECORDS. -- WSP 1432: 1951(M). WSP 1702: 1959.

GAGE .-- Water-stage recorder above concrete dam. Datum of gage is 19.49 ft National Geodetic Vertical Datum of 1929. Prior to Oct. 1, 1977 at datum 10.00 ft higher.

REMARKS .-- Water-discharge records fair except those below 5 ft3/s, which are poor.

AVERAGE DISCHARGE .-- 42 years (water years 1943-84), 19.3 ft3/s, 17.95 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 22,000 ft³/s Sept. 1, 1940, gage height, 17.98 ft, present datum, from floodmark, from rating curve extended above 220 ft³/s on basis of slope-area measurement of peak flow at site 0.5 mi downstream; no flow for short periods during many years just after waste gate was closed and water was below spillway.

EXTREMES FOR CURRENT PERIOD .-- Water year 1984: Peak discharges above base of 350 ft3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Dec. 28	2100	369	11.48	June 30	2100	581	12.06
Mar. 14	0100	451	11.93	July 1	1300	378	11.85
Apr. 5	0700	602	12.08	July 7	1500	* 645	12.12

Minimum discharge, 3.2 ft3/s part or all of Oct. 7, 8, 9, 10, 11, 12, gage height 11.10 ft.

OCTOBER 1984 TO JANUARY 1985: Maximum discharge during period, 93 ft3/s Oct. 29, Dec. 6, gage height, 11.44 ft; minimum, 6.9 ft³/s Oct. 14, 15, 16, 17, Jan. 21.

DISCHARGE IN CURIC FEET PER SECOND. WATER VEAR OCTOBER 1983 TO SEPTEMBER 1984

		DISCH	IAKGE, IN	CORIC FEET	PER SE	MEAN VAL	R YEAR O	CTOBER 19	83 TO SEPT	EMBER 198	34	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	6.1 9.2 8.0 9.4 8.3	6.9 8.6 10 15 14	17 16 19 109 52	19 18 17 18 19	23 17 18 57 29	24 20 18 16 25	33 28 28 35 382	23 17 16 22 16	41 21 17 15	224 53 30 23 24	16 14 15 32 17	7.6 6.9 8.2 20 14
6 7 8 9 10	5.8 4.8 3.8 4.2 3.2	10 12 10 9.0 16	38 36 24 21 20	19 18 16 15 16	22 19 16 15 16	48 27 22 24 21	93 48 33 28 26	13 14 35 57 27	10 8.9 7.8 6.9 6.7	69 305 79 37 27	14 12 12 10 11	8.9 6.9 6.5 6.9
11 12 13 14 15	3.2 8.9 14 13 9.2	32 20 14 11 27	19 50 168 91 40	32 19 16 16 16	19 20 19 21 101	22 22 80 253 77	24 23 23 23 28	22 20 18 15 14	5.3 5.0 5.7 17 9.0	51 148 42 27 21	26 29 39 21 15	7.9 8.9 8.6 9.2
16 17 18 19 20	7.2 6.1 5.0 6.9 6.1	80 24 15 12	27 22 21 19 17	14 14 15 15 13	55 34 36 29 24	45 32 27 24 23	58 53 35 28 26	14 14 13 12	7.8 9.4 91 69 27	19 119 147 88 39	12 11 8.6 9.7	15 11 8.9 8.6 8.6
21 22 23 24 25	5.1 6.8 11 27 15	70 25 16 23 109	16 122 59 30 24	12 12 13 19 123	20 17 23 120 40	32 31 24 22 30	25 23 38 37 29	12 10 10 15 11	14 11 14 18 37	128 101 54 32 25	8.6 8.6 11 11 6.6	7.8 7.1 9.5 9.0 7.5
26 27 28 29 30 31	9.4 7.9 6.9 6.7 5.4 6.9	50 28 23 22 19	15 15 109 92 32 22	119 73 41 25 21 33	27 22 46 38	53 31 88 158 94 45	25 23 21 31 26	9.2 8.8 11 30 211	15 13 12 14 188	21 24 25 23 22 22	5.4 6.9 6.9 32 20 11	8.2 7.4 12 17 12
TOTAL MEAN MAX MIN CFSM IN.	250.5 8.08 27 3.2 .55 .64	743.5 24.8 109 6.9 1.70 1.89	1362 43.9 168 15 3.01 3.47	836 27.0 123 12 1.85 2.13	943 32.5 120 15 2.23 2.40	1458 47.0 253 16 3.22 3.71	1333 44.4 382 21 3.04 3.40	828.0 26.7 211 8.8 1.83 2.11	728.5 24.3 188 5.0 1.66 1.86	2049 66.1 305 19 4.53 5.22	463.3 14.9 39 5.4 1.02 1.18	298.0 9.93 21 6.5 .68 .76

MAX 609 MIN 3.2 CFSM 1.85 IN. 25.11 MAX 382 MIN 3.2 CFSM 2.12 IN. 28.77 TOTAL CAL YR 1983 9853.2 MEAN 27.0 WTR YR 1984 TOTAL 11292.8 MEAN 30.9

01482500 SALEM RIVER AT WOODSTOWN, NJ--Continued

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 MEAN VALUES

								-					
DAY	OCT	NOV	DEC	JAN	FEB		MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	39 41 20 13 10	10 9.2 8.6 8.6	17 15 16 18 15	12 13 14 17 21									
6 7 8 9 10	9.0 8.6 8.6 9.6	15 10 8.6 8.6 8.6	60 31 22 18 16	22 21 17 15 12									
11 12 13 14 15	11 10 9.2 6.9	10 14 11 8.7 8.7	15 14 14 13 14	13 14 14 14 29									
16 17 18 19 20	6.9 8.4 8.9 9.9	15 14 12 18 16	14 13 13 13	28 16 12 12 12									
21 22 23 24 25	11 10 26 22 17	12 10 10 10	13 18 16 14 14	8.4 8.6 8.6 8.6 8.4									
26 27 28 29 30 31	12 10 12 51 19	10 9.3 9.5 23 22	12 12 13 12 12	8.2 8.2 8.2 8.0 8.0									
TOTAL MEAN MAX MIN CFSM IN.	459.9 14.8 51 6.9 1.01 1.17	357.4 11.9 23 8.6 .82	513 16.5 60 12 1.13 1.31	419.4 13.5 29 8.0 .92 1.07									
CAL YR	1984 T	OTAL 102	67.1 M	EAN 28.1	MAX	382	MIN 5.0	CFS	M 1.92	IN. 26.16			

129

DELAWARE RIVER BASIN

01482500 SALEM RIVER AT WOODSTOWN, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1973 to current year.

COOPERATION.--Field data and samples for laboratory analyses supplied by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

DATE	TIME	FL INS TAN	EAM- OW, TAN- EOUS FS) (SPE- CIFIC CON- DUCT- ANCE UMHOS)	PH (STAND ARD UNITS)	Α	MPER- TURE EG C)	SOL		DXYGEN DIS- SOLVE (PER- CENT SATUR ATION	DEI D B: CI		COLI- FORM, FECAL, EC BROTH (MPN)	STRE	CI L
JAN 17	1040		14	252	6.	7	1.0	1	2.8	_	_	3.6	70		79
APR 03	0940		28	188	6.	7	11.0	1	0.6	_	-	2.6	20		27
MAY 23	1100		8.6	235	8.	0	24.0		9.0	_	-	4.5	220	1	49
JUL 25	1100		26	174	7.	3	27.0		7.4	_	_	3.5	490	35	50
AUG 07	1200		14	220	7.	2	26.5		7.7	9	6	3.5	130	51	40
DATE	HAR NES (MG AS	S /L	CALCIU DIS- SOLVE (MG/L AS CA	IM SI DI CD SOL (MG	S- D VED SO	DIUM, IS- LVED MG/L S NA)	POT SI DI SOL (MG AS	UM, S- VED /L	ALKA- LINITY LAB (MG/L AS CACO3	SU D S	LFATE IS- OLVED MG/L SO4)	CHLO- RIDE, DIS- SOLVE (MG/L AS CL	RII DI D SOL (MO	E, S- VED	
JAN															
17 APR		84	18		0.6	8.9	4	• 3	19		39	23		.10	
03 MAY		63	14	6	8.8	6.3	5	.2	16		33	15		.10	
23 JUL	•	82	18	8	3.9	6.1	3	.7	25		37	19		.10	
25 AUG	•	61	14	6	3	4.2	5	. 4	29		25	12		.20	
07		75	17	8	3.0	5.6	5	.9	31		30	17		.20	
DATE	(MG AS	VED /L	SOLIDS RESIDU AT 180 DEG. DIS- SOLVE (MG/L	E NIT GE C NITE TOT	RITE NO. CAL TO	ITRO- GEN, 2+NO3 OTAL MG/L S N)	GE	N, NIA AL /L	NITRO GEN, AM MONIA ORGANI TOTAL (MG/L AS N)	+ N C	ITRO- GEN, OTAL MG/L S N)	PHOS- PHORUS TOTAL (MG/L AS P)	, ORGA TOI (MG	NIC AL /L	
JAN															
17 APR	•	9.0	17	0 .	025	4.4		120	.8		5.2	.11	0 3	.0	
03 MAY		6.5	11	3 .	029	3.0	•	180	E1.2			.19	0 5	.2	
23 JUL	•	5.5	17	0 .	044	2.7	•	260	1.0		3.7	.13	0 3	.9	
25 AUG	•	8.0	12	2 .	048	1.5	•	130	1.0		2.5	.26	0 9	.1	
07		1.5	14	5 .	057	2.2		050	1.2		3.4	.19	0 7	.2	

01482500 SALEM RIVER AT WOODSTOWN, NJ--Continued

DATE	TIMI	SULF TOT (MG AS	AL SOL	M, S- ARSE VED TOT /L (UC	LIU TOT ENIC REC FAL ERA	TAL TO COV- REG ABLE ER	TAL TO COV- RE ABLE ER G/L (U	MIUM MI TAL TO CCOV- RE ABLE ER	TAL TO COV- RE ABLE ER G/L (U	PER, TAL COV- ABLE G/L CU)
MAY										
23	1100)	<.5	40	1	<10	80	1	10	3
D	ATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)		
MA 2	Y 3	890	5	50	<.1	6	<1	40	<1	

RESERVOIRS IN DELAWARE RIVER BASIN

01416900 PEPACTON RESERVOIR.--Lat 42°04'38", long 74°58'04", Delaware County, NY, Hydrologic Unit 02040102, near release chamber at Downsville Dam on East Branch Delaware River, and 1.6 mi east of Downsville, NY. DRAINAGE AREA, 371 mi². PERIOD OF RECORD, September 1954 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Board of Water Supply, City of New York).

Reservoir is formed by an earthfill rockfaced dam. Storage began Sept. 15, 1954. Usable capacity 140,190 mil gal between minimum operating level, elevation, 1,152.0 ft, and crest of spillway, elevation, 1,280.0 ft. Capacity, at crest of spillway 149,700 mil gal; at minimum operating level, 9,609 mil gal; at still of diversion tunnel, elevation, 1,143.0 ft, 6,098 mil gal; in dead storage below release outlet, elevation, 1,126.50 ft, 1,898 mil gal. Figures given herein represent total contents. Reservoir impounds water for diversion through East Delaware Tunnel to Rondout Reservoir on Rondout Creek, in Hudson River basin (see Delaware River Basin, diversions), for water supply to City of New York: for release during periods of low flow in the lower Delaware River basin. as for water supply to City of New York; for release during periods of low flow in the lower Delaware River basin, as directed by the Delaware River Master; and for conservation release. No diversion prior to Jan. 6, 1955. Records furnished by Bureau of Water Resources Development and Department of Environmental Protection, City of New York. EXTREMES FOR PERIOD OF RECORD: Maximum contents observed, 154,027 mil gal Apr. 5, 1960, elevation, 1,282.27 ft; minimum observed (after first filling), 9,575 mil gal Dec. 26, 1964, elevation, 1,151.92 ft.

EXTREMES FOR CURRENT YEAR: Maximum contents observed, 153,857 mil gal May 30, elevation, 1,282.18 ft; minimum, 71,319 mil gal Nov. 24, elevation, 1,228.18 ft.

01424997 CANNONSVILLE RESERVOIR.--Lat 42°03'46", long 75°22'29", Delaware County, NY, Hydrologic Unit 02040101, in emergency gate tower at Cannonsville Dam on West Branch Delaware River, and 1.8 mi southeast of Stilesville, NY. DRAINAGE AREA, 454 mi². PERIOD OF RECORD, October 1963 to current year. REVISED RECORDS, WRD-NY 1972: 1966. GA water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Board of Water Supply, GAGE City of New York).

Reservoir is formed by an earthfill rockfaced dam; storage began Sept. 30, 1963, usable capacity 95,706 mil gal between minimum operating level, elevation, 1,040.0 ft and crest of spillway, elevation, 1,150.0 ft. Capacity, at crest of spillway, 98,618 mil gal; at minimum operating level, 2,912 mil gal; at mouth of inlet channel to diversion tunnel, elevation, 1,035.0 ft, 1,892 mil gal; in dead storage below release outlet elevation, 1,020.5 ft, 328 mil gal. Figures given herein represent total contents. Impounded water is diverted for New York City water supply via West Delaware Tunnel to Rondout Reservoir in Hudson River basin (see Delaware River Basin, diversion); is released in Delaware River for downstream low flow augmentation as directed by Delaware River Master; and is released for conservation flow in the Delaware River. No diversion prior to Jan. 29. 1964. Records furnished by Bureau of Water

EXTREMES FOR PERIOD OF RECORD: Maximum contents observed, 108,116 mil gal Mar. 15, 1977, elevation, 1,155.85 ft; minimum observed (after first filling), 11,901 mil gal Nov. 7, 1968, elevation, 1,066.24 ft.

EXTREMES FOR CURRENT YEAR: Maximum contents, 105,136 mil gal May 31, elevation, 1,154.05 ft; minimum, 19,332 mil gal Nov. 21, elevation, 1,079.09 ft.

01428900 PROMPTON RESERVOIR.--Lat 41°35'18", long 75°19'39", Wayne County, PA, Hydrologic Unit 02040103, at dam on West Branch Lackawaxen River, 0.3 mi north of Prompton, PA, 0.4 mi upstream from highway bridge and 0.5 mi upstream from Van Auken Creek. DRAINAGE AREA, 59.6 mi². PERIOD OF RECORD, December 1960 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers).

Reservoir formed by an earth and rockfill dam with ungaged bedrock spillway at elevation 1,205.00 ft; storage began July 1960. Capacity at elevation 1,205.00 ft is 51,700 acre-ft. Ordinary minimum (conservation) pool elevation, 1,125.00 ft capacity, 3,420 acre-ft. Reservoir is used for flood control and recreation. Figures given herein represent total contents. Regulation is accomplished by discharge through an ungated tunnel. Records

furnished by Corps of Engineers.

EXTREMES FOR PERIOD OF RECORD: Maximum contents, 8,170 acre-ft June 29, 1973, elevation, 1,138.40 ft; minimum (after first filling), 2,920 acre-ft Sept. 27, 1964, elevation, 1,123.20 ft.

EXTREMES FOR CURRENT YEAR: Maximum contents, 4,650 acre-ft Dec. 13, elevation, 1,129.11 ft; minimum, 3,020 acre-ft Oct. 3,11, 12, elevation, 1,123.30 ft.

01429400 GENERAL EDGAR JADWIN RESERVOIR.--Lat 41°36'44", long 75°15,55", Wayne County, PA, Hydrologic Unit 02040103, at

dam on Dyberry Creek, 0.45 mi upstream from unnamed tributary, 2.4 mi north of Honesdale, PA, and 2.9 mi upstream from mouth. DRAINAGE AREA, 64.5 mi². PERIOD OF RECORD, October 1959 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers).

Reservoir formed by an earth and rockfill dam with ungated, concrete spillway at elevation, 1,053.00 ft; storage began in October 1959. Capacity at elevation 1,053.00 ft is 24,500 acre-ft. Reservoir is used for flood control. Figures given herein represent total contents. Regulation is accomplished by discharge through an ungated tunnel. Records furnished by Corps of Engineers.

EXTREMES FOR PERIOD OF RECORD: Maximum contents, 6,520 acre-ft June 19, 1973, elevation 1,017.40 ft; no storage many times.

EXTREMES FOR CURRENT YEAR: Maximum contents, 3,525 acre-ft Apr. 6, elevation, 1,007.10 ft; no storage Oct. 6, minimum elevation, 975.79 ft.

01431700 LAKE WALLENPAUPACK.--Lat 41°27'35", long 75°11'10", Wayne County, PA, Hydrologic Unit 02040103, at dam on Wallenpaupack Creek at Wilsonville, PA, 1.2 mi south of and 1.5 mi upstream from mouth. DRAINAGE AREA, 228 mi². PERIOD OF RECORD, January 1926 to current year. GAGE, vertical staff. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Pennsylvania Power and Light Co.).

Reservoir formed by concrete gravity-type and earthfill dam with concrete spillway at elevation 1,176.00 ft in two sections. Spillway equipped with roller gate, 14 ft high on each section. Storage began Nov. 3, 1925; water in reservoir first reached minimum pool elevation in January 1926. Total capacity at elevation 1,190.00 ft, top of gates, is 209,300 acre-ft of which 157,800 acre-ft is controlled storage above elevation 1,160.00 ft, minimum pool.

gates, is 209,300 acre-ft of which 157,800 acre-ft is controlled storage above elevation 1,160.00 ft, minimum pool. Reservoir is used for generation of hydrolelectric power. Figures given herein represent usable contents. Records furnished by Pennsylvania Power and Light Co.

EXTREMES FOR PERIOD OF RECORD: Maximum contents, 178,200 acre-ft Aug. 19-21, 1955, elevation, 1,193.45 ft; minimum (after first filling), 12,280 acre-ft Mar. 28, 1958, elevation, 1,162.60 ft.

EXTREMES FOR CURRENT YEAR: Maximum contents, 150,840 acre-ft May 29, 30, elevation, 1,188.8 ft; minimum, 85,940 acre-ft Jan. 27, elevation, 1,177.1 ft.

RESERVOIRS IN DELAWARE RIVER BASIN -- Continued

01433000 SWINGING BRIDGE RESERVOIR.--Lat 41°34'25", long 74°47'00", Sullivan County, NY, Hydrologic Unit 02040104, at dam on Mongaup River, and 1.8 mi northwest of Fowlersville, NY. DRAINAGE AREA, 118 mi² excluding Cliff Lake, Lebanon Lake, and Toronto Reservoir. PERIOD OF RECORD, January 1930 to current year. REVISED RECORDS, WSP 1552: 1951-54. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Orange and Rockland Utilities, Inc.). All capacity figures given herein are based on zero storage at minimum operating pool level,

Reservoir is formed by an earthfill dam. Storage began Jan. 19, 1930. Usable capacity, 1,436.6 mil ft³ between elevations 1,010.0 ft, minimum operating pool, and 1,071.2 ft, top of flashboards. Capacity below elevation 1,010.0 ft, minimum operating pool, about 212.7 mil ft³. Reservoir is used for storage of water for power. Figures given herein represent contents above 1,010.0 ft. Water is received from Cliff Lake, Lebanon Lake, and Toronto

Reservoir. Records furnished by Orange and Rockland Utilities, Inc.

EXTREMES FOR PERIOD OF RECORD: Maximum contents, 1,461.6 mil ft³ Mar. 14, 1977, elevation, 1,071.8 ft; minimum (after first filling), -141.4 mil ft³ Dec. 2, 1938, elevation, 987.5 ft.

EXTREMES FOR CURRENT YEAR: Maximum contents, 1,359 mil ft³ Apr. 14, elevation, 1,069.3 ft; minimum, 447.8 mil ft³ Oct. 31, Nov. 11, elevation, 1,040.5 ft.

01433100 TORONTO RESERVOIR.--Lat 41°37'15", long 74°49'55", Sullivan County, NY, Hydrologic Unit 02040104, at dam on Black Lake Creek, and 2.5 mi southeast of village of Black Lake, NY. DRAINAGE AREA, 23.2 mi². PERIOD OF RECORD, January 1926 to current year. REVISED RECORDS, WSP 1552: 1951-54. WSP 1702: 1959(M). Nonrecording gage. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Orange and Rockland Utilities, Inc.). All capacity figures given herein are based on zero storage at minimum operating pool level, 1,165.0 ft.

Reservoir is formed by an earthfill dam completed July 24, 1926. Storage began Jan. 13, 1926. Usable capacity, 1,098.2 mil ft³ between elevations 1,165.0 ft, minimum operating pool, and operating pool, about 26.8 mil ft³.

Reservoir is used for storage of water for power. Figures given herein represent contents above 1,165.0 ft. Records furnished by Orange and Rockland Utilities, Inc.

EXTREMES FOR PERIOD OF RECORD: Maximum contents observed, 1,171.2 mil ft³ July 20, 1945, elevation, 1,222.0 ft. minimum observed (after first filling), -26.8 mil ft³ Nov. 15, 1928, elevation, 1,144.5 ft.

EXTREMES FOR CURRENT YEAR: Maximum contents observed, 1,163.8 mil ft³ June 1, elevation, 1,221.8 ft; minimum observed, 211.4 mil ft³ Nov. 30, Dec. 1, elevation, 1,185.0 ft.

01433200 CLIFF LAKE.--Lat 41°35'00", long 74°47'40", Sullivan County, NY, Hydrologic Unit 02040104, at dam on Black Lake Creek, and 2.5 mi northwest of Fowlersville, NY. DRAINAGE AREA, 6.46 mi² excluding area above Toronto Reservoir. PERIOD OF RECORD, January 1939 to current year. REVISED RECORDS, WSP 1552: 1951-54. WRD NY-75-1: 1974(m). Nonrecording gage. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Orange and Rockland Utilities, Inc.). All capacity figures given herein are based on zero storage at minimum operating pool level, 1,043.3 ft.

Reservoir is formed by a concrete gravity-type dam. Storage began Jan. 6, 1939. Usable capacity, 136.06 mil ft³ between elevations 1,043.3 ft, minimum operating pool, and 1,072.0 ft, top of permanent flashboards. Capacity below elevation 1,043.3 ft, minimum operating pool, about 6.54 mil ft³. Reservoir is used for storage of water for power. Water is received from Toronto and Lebanon Lake reservoirs and is discharged through a tunnel into Swinging Bridge Reservoir. Figures given herein represent contents above 1,043.3 ft. Records furnished by Orange and Rockland Utilities, Inc.

EXTREMES FOR PERIOD OF RECORD: Maximum contents observed, 145.44 mil ft³ July 30, 31, 1945, elevation, 1,073.1 ft; minimum observed (after first filling), about -6.54 mil ft³ Mar. 16, 1963, elevation, 1,038.0 ft. EXTREMES FOR CURRENT YEAR: Maximum contents observed, 136.9 mil ft³ June 1, elevation, 1,072.1 ft, minimum observed, 3.56 mil ft³ Oct. 31, Nov. 1, elevation, 1,045.2 ft.

01435900 NEVERSINK RESERVOIR.--Lat 41°49'40", long 74°38'21", Sullivan County, NY, Hydrologic Unit 02040104, at a gate-house at Neversink Dam on Neversink River, and 2 mi southwest of Neversink, NY. DRAINAGE AREA, 91.8 mi². PERIOD OF RECORD, June 1953 to current year. Nonrecording gage read daily at 0900. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Board of Water Supply, City of New York).

Reservoir is formed by an earthfill rockfaced dam. Storage began June 2, 1953. Usable capacity 34,941 mil gal between minimum operating level, elevation, 1,319.0 ft and crest of spillway, elevation, 1,440.0 ft. Capacity at crest of spillway, 37,146 mil gal; at minimum operating level, 2,205 mil gal; dead storage belowand outlet sill at elevation 1,314.0 ft, 1,680 mil gal. Figures given herein represent total contents. Reservoir impounds water for diversion through Neversink-Grahemsville Tunnel to Rondoux Reservoir on Rondoux Creek, in Hudson River basin, for diversion through Neversink-Grahamsville Tunnel to Rondout Reservoir on Rondout Creek, in Hudson River basin, for water supply of City of New York (see Delaware River basin, diversions); for release during periods of low flow in the lower Delaware River basin, as directed by the Delaware River Master; and for conservation release. No diversion prior to Dec. 3, 1953. Records furnished by Bureau of Water Resources Development and Department of Environmental Protection, City of New York.

EXTREMES FOR PERIOD OF RECORD: Maximum contents observed, 37,978 mil gal Apr. 25, 1961, elevation, 1,441.67 ft; minimum observed (after first filling), 1,985 mil gal Nov. 25, 1964, elevation, 1,316.98 ft.

EXTREMES FOR CURRENT YEAR: Maximum contents observed, 37,768 mil gal May 30, elevation, 1,441.25 ft; minimum observed, 15,737 mil gal Nov. 21, elevation, 1,385.87 ft.

01447780 FRANCIS E. WALTER RESERVOIR (formerly published as Bear Creek Reservoir).--Lat 41°06'45", long 75°43'15", Luzerne County, PA, Hydrologic Unit 02040106, at dam on Lehigh River, 2,200 ft downstream from Bear Creek and 5 mi northwest of White Haven, PA. DRAINAGE AREA, 289 mi². PERIOD OF RECORD, February 1961 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers). Reservoir formed by an earthfill embankment covered with a rock shell, with concrete spillway at elevation 1,450.0 ft; storage began Feb. 17, 1961; water in reservoir first reached conservation pool elevation in June 1961. Total capacity at elevation 1,450.0 ft is 110,700 acre-ft of which 108,700 acre-ft is controlled storage above elevation 1,300.0 ft or (conservation pool). Dead storage is 2,000 acre-ft. Reservoir is used for flood control and recreation. Figures given herein represent total contents. Flow regulated by three gates and low flow by-pass system. Records furnished by Corps of Engineers.

EXTREMES FOR PERIOD OF RECORD: Maximum contents. 42,600 acre-ft June 26, 1972, elevation, 1,398.20 ft: minimum

EXTREMES FOR PERIOD OF RECORD: Maximum contents, 42,600 acre-ft June 26, 1972, elevation, 1,398.20 ft; minimum (after establishment of conservation pool), 981 acre-ft July 6, 1982, elevation, 1,287.70 ft.

EXTREMES FOR CURRENT YEAR: Maximum contents, 41,200 acre-ft Apr. 7, elevation, 1,396.73 ft; minimum, 1,520 acre-ft Oct. 24, elevation, 1,295.19 ft.

133 RESERVOIRS IN DELAWARE RIVER BASIN--Continued

01449400 PENN FOREST RESERVOIR.--Lat 40°55'45", long 75°33'45", Carbon County, PA, Hydrologic Unit 02040106, at dam on Wild Creek near Hatchery, PA, 0.7 mi upstream from Hatchery, 2.6 mi upstream from Wild Creek Dam, 4.4 mi upstream from mouth, and 10 mi northeast of Palmerton, PA. DRAINAGE AREA, 16.5 mi². PERIOD OF RECORD, October 1958 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by city of Bethlehem).

Reservoir formed by an earthfill dam, with ungated concrete spillway at elevation 1,000.00 ft; storage began in October 1958. Capacity at elevation 1,000.00 ft is 19,980 acre-ft. Reservoir is used for municipal water supply. Figures given herein represent total contents. Regulation is done by valves on pipe through dam. Records furnished by city of Bethlehem. Figures given herein include diversion, since October 1969, from Tunkhannock Creek basin into Wild Creek basin.

EXTREMES FOR PERIOD OF RECORD: Maximum contents, 20,560 acre-ft Apr. 6, 1984, elevation, 1,001.19 ft; minimum, 176 acre-ft Oct. 6, 1965, elevation, 902.40 ft.

EXTREMES FOR CURRENT YEAR: Maximum contents, 20,560 acre-ft Apr. 6, elevation, 1,001.19 ft; minimum,

14,640 acre-ft Nov. 28, elevation, 987.40 ft.

01449700 WILD CREEK RESERVOIR.--Lat 40°53'50", long 75°33'50", Carbon County, PA, Hydrologic Unit 02040106, at dam on Wild Creek near Hatchery, PA, 1.6 mi upstream from mouth, 2.4 mi south of Hatchery, and 7.5 mi northeast of Palmerton, PA. DRAINAGE AREA, 22.2 mi². PERIOD OF RECORD, January 1941 to current year. Nonrecording gage. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by city of Bethlehem).

Reservoir formed by earthfull dam, with concrete ungated spillway at elevation 820.00 ft; storage began January 27, 1941; water in reservoir first reached minimum pool elevation in February 1941. Total capacity at elevation 820.00 ft is 12,500 acre-ft of which 12,000 acre-ft is controlled storage. Reservoir is used for municipal water supply. Figures given herein represent usable contents. Regulation is accomplished by valves on pipe through dam. Records furnished by city of Bethlehem. Since October 1969 the basin upstream has received diversion from Tunkhannock Creek basin.

EXTREMES FOR PERIOD OF RECORD: Maximum contents, 12,880 acre-ft May 23, 1942, elevation, 822.93 ft; minimum (after first filling), 2,680 acre-ft Nov. 15, 1966, elevation, 774.10 ft.

EXTREMES FOR CURRENT YEAR: Maximum contents, 12,450 acre-ft Apr. 6, elevation, 821.49 ft; minimum,

10,660 acre-ft Sept. 30, elevation, 874.87 ft.

- 01449790 BELTZVILLE LAKE.--Lat 40°50'56", long 75°38'19", Carbon County, PA, Hydrologic Unit 02040106, at dam on Pohopoco Creek, 0.45 mi upstream from gaging station on Pohopoco Creek, 0.55 mi upstream from Sawmill Run and 2.3 mi northeast of Parryville, PA. DRAINAGE AREA, 96.3 mi². PERIOD OF RECORD, February 1971 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers).
- Reservoir formed by an earth and rockfill dam with ungated, partially lined spillway at elevation 651.00 ft; storage began Feb. 8, 1971. Capacity at elevation 651.00 ft is 68,300 acre-ft. Ordinary minimum (conservation) pool elevation, 628.00 ft, capacity, 41,250 acre-ft. Dead storage is 1,390 acre-ft. Reservoir is used for recreation, flood control, low flow augmentation and water supply. Figures given herein represent total contents. Regulation is accomplished by a multi-level water-quality outlet system and two flood-control gates. Records furnished by Corps of Engineers.

EXTREMES FOR PERIOD OF RECORD: Maximum contents 49,730 acre-ft Jan. 29, 1976, elevation, 636.30 ft; minimum, 16,343 acre-ft Jan. 31, Feb 1, 1981, elevation, 591.41 ft.

EXTREMES FOR CURRENT YEAR: Maximum contents 48,300 acre-ft Apr. 7, elevation, 634.98 ft; minimum, 37,200 acre-ft Oct. 18, elevation, 623.54 ft.

- 01455400 LAKE HOPATCONG.--Lat 40°55'00", long 74°39'50", Morris County, Hydrologic Unit 02040105, in gatehouse of Lake Hopatcong Dam on Musconetcong River at Landing. DRAINAGE AREA, 25.3 mi². PERIOD OF RECORD, February 1887 to current year. Monthend contents only prior to October 1950, published in WSP 1302. REVISED RECORDS, WDR NJ-82-2: Drainage area; WDR NJ-83-2: Corrections 1981 (m/m). GAGE, max-mim recorder and staff gage. Prior to June 24, 1928, daily readings obtained by measuring from high-water mark to water surface converted to gage height, present datum. Datum of gage is 914.57 ft National Geodetic Vertical Datum of 1929.
 - Lake is formed by concrete spillway and earthfill dam completed about 1828. Crest of spillway was lowered 0.11 ft in 1925. Usable capacity, 7,459,000,000 gal between (gage height -2.6 ft, sills of gates and 9.00 ft, crest of spillway). Flow regulated by four gates (3 by 5 ft, also by one 24-inch pipe with gate valve to recreation fountain 250 ft downstream from dam. Dead storage, about 8,117,000,000 gal. Figures given herein represent usable capacity. Lake used for recreation. CORRECTIONS.--Once-daily staff readings furnished by New Jersey Department of Environmental Protection.

EXTREMES FOR PERIOD OF RECORD: Maximum contents, 8,777,000,000 gal August 19, 1955 correction, gage height, 10.55 ft; minimum, 1,525,000,000 gal Dec. 29, 1960, gage height, 0.65 ft.

EXTREMES FOR CURRENT YEAR: Maximum contents, 8,648,000,000 gal Apr. 7, gage height, 10.40 ft; minimum, 5,365,000,000 gal Dec. 27, gage height, 6.48 ft.

01459350 NOCKAMIXON RESERVOIR.--Lat 40°28'13", long 75°11'10", Bucks County, PA, Hydrologic Unit 02040105, at dam on Tohickon Creek, 6.2 mi upstream from gaging station on Tohickon Creek, 2.9 mi upstream from Mink Run and 1.3 mi east of Ottsville. DRAINAGE AREA, 73.3 mi². PERIOD OF RECORD, December 1973 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Pennsylvania Department of Environmental Resources).

Reservoir formed by earthfill dam with concrete spillway at elevation 395.0 ft. Storage began Decmeber 1973. Total capacity 66,500 acre-ft at elevation 410 ft. Reservoir is used primarily for recreation, but can be used for water supply and flood control. Records furnished by Pennsylvania Department of Environmental Resources.

EXTRMES FOR PERIOD OF RECORD: Maximum contents, 44,380 acre-ft Jan. 20, 1979, elevation 397.85 ft; minimum (after first filling) 15,900 acre-ft around Dec. 31, 1975, elevation 372.78 ft.

EXTREMES FOR CURRENT YEAR: Maximum contents, 43,850 acre-ft July 7, elevation 397.50 ft; minimum, 38,800 acre-ft

Nov. 6, elevation 394.00 ft.

- 01469200 STILL CREEK RESERVOIR.--Lat 40°51'25", long 75°59'30". Schuylkill County, PA, Hydrologic Unit 02040106, at dam on Still Creek, 1 mi upstream from mouth and 2.3 mi north of Hometown, PA. DRAINAGE AREA, 8.5 mi². PERIOD OF RECORD, January 1933 to current year. Nonrecording gage. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Panther Valley Water Co.).
 - Reservoir formed by earth fill dam, with ungated concrete spillway at elevation 1,182.00 ft; storage began in February 1933. Capacity at elevation, 1,182.00 ft is 8,290 acre-ft. Reservoir is used for municipal water supply. Figures given herein represent total contents. Regulation is accomplished by valves on pipe through dam. Records furnished by Panther Valley Water Co.

 EXTREMES FOR PERIOD OF RECORD: Maximum contents, 8,570 acre-ft Oct. 15, 1955, elevation, 1,182.92 ft, but may have been greater during 1950 and 1951 water years; minimum (after initial filling), 588 acre-ft Dec. 8, 1944, elevation, 1,136.70 ft.

 EXTREMES FOR CURRENT YEAR: Maximum contents, 8,500 acre-ft Apr. 6, elevation, 1,182.7 ft; minimum, 6,940 acre-ft Nov. 13, elevation, 1,177.25 ft.

RESERVOIRS IN DELAWARE RIVER BASIN -- Continued

01470870 BLUE MARSH LAKE.--Lat 40°22'45", long 76°01'59", Berks County, PA, Hydrologic Unit 02040203, at dam on Tulpehocken Creek, 0.8 mi upstream from gaging station on Tulpehocken Creek, 1.0 mi northeast of Blue Marsh, PA, 1.9 mi upstream from Reber's Bridge, and 5.1 mi southeast of Bernville, PA. DRAINAGE AREA, 175 mi². PERIOD OF RECORD, April 1979 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers).

Reservoir formed by earthfill dam, with concrete ungated spillway at elevation 307.00 ft. Storage began April 23, 1979. Capacity at elevation, 307.00 ft is 50,000 acre-ft. Dead storage is 3,000 acre-ft. Reservoir is used for flood control, water supply, and recreation. Figures herein represent total contents. Records furnished by Corps of Engineers.

EXTREMES FOR PERIOD OF RECORD: Maximum contents, 39,480 acre-ft Apr. 16, 1983, elevation, 301.65 ft; minimum, 17,440 acre-ft Nov. 28, 1983 elevation, 284.49 ft.

EXTREMES FOR CURRENT YEAR: Maximum contents, 33,000 acre-ft Dec. 14, elevation, 297.70 ft; minimum, 16,700 acre-ft Mar. 26, elevation, 283.98 ft.

01472200 GREEN LANE RESERVOIR.--Lat 40°20'30", long 75°28'45", Montgomery County, PA, Hydrologic Unit 02040203, at dam on Perkiomen Creek at Green Lane, PA, 0.4 mi west of Green Lane and 2.1 mi upstream from Unami Creek. DRAINAGE AREA, 70.9 mi². PERIOD OF RECORD, December 1956 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Philadelphia Suburban Water Co.).

Reservoir formed by concrete, gravity-type dam, with ungated spillway at elevation 286.00 ft; storage began December 21, 1956. Capacity at spillway level, elevation 286.00 ft, 13,430 acre-ft. Reservoir is used for municipal water supply. Figures given herein represent total contents. Regulation is accomplished by valves on pipe through dam. Records furnished by Philadelphia Suburban Water Co.

EXTREMES FOR PERIOD OF RECORD: Maximum contents, 17,030 acre-ft June 23, 1972, elevation, 290.05 ft; minimum (after first filling), 1,270 acre-ft Aug. 25, 1957, elevation, 251.60 ft.

EXTREMES FOR CURRENT YEAR: Maximum contents, 15,340 acre-ft July 7, elevation, 288.15 ft; minimum, 10,550 acre-ft Oct. 12, elevation, 282.28 ft.

MONTHEND ELEVATION AND CONTENTS, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

Date	Elevation (feet)	Contents (million gallons)	Change in contents (equivalent in ft ³ /s)	Elevation (feet)	Contents (million gallons)	Change in contents (equivalent in ft ³ /s)	Elevation (feet)	Contents (acre- feet)	contents (equivalent in ft ³ /s)
	01416900 PE	PACTON RE	SERVOIR ‡	01424997 CANI	NONSVILLE I	RESERVIOR #	01428900 PR	OMPTON RES	ERVOIR +
Sept. 30 Oct. 31 Nov. 30 Dec. 31	1,252.33 1,239.01 1,229.01 1,242.10	103,600 84,850 72,460 88,996	-936 -639 +825	1,111.61 1,089.28 1,085.36 1,117.84	48,179 26,735 23,702 55,262	-1,070 -156 +1,575	1,123.34 1,123.56 1,126.31 1,125.56	3,040 3,100 3,870 3,660	+1.0 +12.9 -3.4
CAL YR 198	3 -	-	+67.9	-	-	+103	-	-	-0.07
Jan. 31 Feb. 29 Mar. 31 Apr. 30 May 31 June 30 July 31 Aug. 31 Sept. 30	1,239.18 1,258.24 1,261.33 1,280.12 1,281.40 1,276.14 1,270.78 1,264.65 1,257.13	85,075 112,667 117,584 150,021 152,398 142,777 133,348 122,996 110,929	-196 +1,472 +245 +1,673 +119 -496 -471 -517 -622	1,123.61 1,143.41 1,150.47 1,151.03 1,153.45 1,147.94 1,143.14 1,130.93 1,116.29	62,191 88,714 99,374 100,275 104,170 95,485 88,324 71,488 53,454	+346 +1,415 +532 +46.5 +194 -448 -357 -840 -930	1,125.19 1,125.83 1,125.80 1,125.83 1,128.19 1,127.27 1,125.38 1,123.87 1,123.43	3,550 3,730 3,720 3,730 4,390 4,140 3,610 3,180 3,060	-1.8 +3.1 2 +.2 +10.7 -4.2 -8.6 -7.0
WTR YR 198	4 -	-	+31.0	<u>-</u>	-	+22.3	-	<u>.</u>	+.03
Date	Elevation (feet)	Contents (acre- feet)	(equivalent in ft3/s)	Elevation (feet)	Contents (acre- feet)	Change in contents (equivalent in ft ³ /s)	Elevation (feet)	Contents (million cu ft)	Change in contents (equivalent in ft3/s)
		(acre- feet)	contents (equivalent in ft ³ /s)		(acre- feet)	contents (equivalent in ft ³ /s)		(million cu ft)	contents (equivalent in ft ³ /s)
	(feet)	(acre- feet)	contents (equivalent in ft ³ /s)	(feet)	(acre- feet)	contents (equivalent in ft ³ /s)	(feet)	(million cu ft)	contents (equivalent in ft ³ /s)
01429400 Sept. 30 Oct. 31 Nov. 30	(feet) GENERAL EDGA 975.85 976.00 978.20 977.61	(acrefeet) R JADWIN 0 0 0	contents (equivalent in ft³/s) RESERVOIR +	(feet) 01431700 LA 1,178.5 1,179.0 1,181.5	(acre- feet) AKE WALLEN 93,500 96,200 109,750	contents (equivalent in ft ³ /s) PAUPACK † +43.9 +228	(feet) 01433000 SWING 1,041.1 1,040.5 1,058.5	(million cu ft) GING BRIDGE 462 448 959	contents (equivalent in ft ³ /s) RESERVOIR + -5.2 +197
01429400 Sept. 30 Oct. 31 Nov. 30 Dec. 31	(feet) GENERAL EDGA 975.85 976.00 978.20 977.61	(acrefeet) R JADWIN 0 0 0	contents (equivalent in ft³/s) RESERVOIR † 0 0 0	(feet) 01431700 LA 1,178.5 1,179.0 1,181.5	(acre- feet) AKE WALLEN 93,500 96,200 109,750	contents (equivalent in ft ³ /s) PAUPACK + -+43.9 +228 -8.9	(feet) 01433000 SWING 1,041.1 1,040.5 1,058.5	(million cu ft) GING BRIDGE 462 448 959	contents (equivalent in ft ³ /s) RESERVOIR + -5.2 +197 +71.3

135

MONTHEND ELEVATION AND CONTENTS, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

Date	Elevation (feet)	Contents (million cu ft)	Change in contents (equivalent in ft3/s)	Elevation (feet)	Contents (million cu ft)	Change in contents (equivalent in ft ³ /s)	Elevation (feet)	Contents (million cu ft)	Change in contents (equivalent in ft ³ /s)
	01433100	TORONTO RES	SERVOIR †	01433200	CLIFF LAKE	RESERVOIR +	01435900	NEVERSINK	RESERVOIR ‡
Sept. 30 Oct. 31 Nov. 30 Dec. 31	1,196.0 1,196.4 1,185.0 1,193.5	422 431 211 368	+3.4 -84.9 +58.6	1,048.0 1,045.2 1,061.0 1,064.4	9.8 3.6 59.4 79.8	-2.3 +21.5 +7.6	1,401.87 1,391.22 1,389.48 1,405.97	21,005 17,398 16,848 22,499	-180 -28.4 +282
CAL YR 198	3 -	-	+3.6	_	-	+0.5	-	-	+33.8
Jan. 31 Feb. 29 Mar. 31 Apr. 30 May 31 June 30 July 31 Aug. 31 Sept. 30	1,196.5 1,206.0 1,206.1 1,217.3 1,221.7 1,216.6 1,215.7 1,207.5 1,196.8	434 671 674 1,005 1,160 981 952 712 440	+24.6 +94.6 +1.1 +128 +57.9 -69.1 -10.8 -89.6	1,062.8 1,069.0 1,061.9 1,067.5 1,071.7 1,068.2 1,069.6 1,064.2 1,064.6	69.9 112 64.5 101 134 106 116 78.5 81.1	-3.7 +16.8 -17.7 +14.1 +12.3 -10.8 +3.7 -14.0 +1.0	1,402.92 1,421.53 1,425.01 1,438.13 1,440.63 1,431.85 1,425.16 1,413.10 1,401.50	21,382 28,687 30,179 36,228 37,459 33,249 30,245 25,233 20,873	-55.8 +390 +74.5 +312 +61.4 -217 -150 -250
WTR YR 198	4 -	-	+.6	-	-	+2.3	-	-	6
Date	Elevation (feet)	Contents (acre- feet)	Change in contents (equivalent in ft ³ /s)	Elevation (feet)	Contents (acre- feet)	Change in contents (equivalent in ft ³ /s)	Elevation (feet)	Contents (acre- feet)	Change in contents (equivalent in ft3/s)
01447780 FRANCIS E. WALTER LAKE ‡				01449400	PENN FOREST	RESERVOIR +	01449700	WILD CREEK	RESERVOIR +
Sept. 30 Oct. 31 Nov. 30 Dec. 31	1,300.16 1,307.71 1,305.63 1,306.23	2,020 2,810 2,580 2,650	+12.8 -3.9 +1.1	993.60 989.94 987.78 997.80	17,140 15,620 14,790 18,990	-24.7 -13.9 +68.3	815.27 815.36 816.27 819.20	10,770 10,800 11,050 11,840	+0.5 +4.2 +12.8
CAL YR 198	3 -	-	+.8	-	-	+3.2	-	, <u>-</u>	+1.9
Jan. 31 Feb. 29 Mar. 31 Apr. 30 May 31 June 30 July 31 Aug. 31 Sept. 30	1,300.79 1,304.77 1,296.79 1,300.50 1,363.45 1,300.50 1,302.97 1,300.00	2,080 2,480 1,660 2,050 17,900 3,310 2,050 2,300 2,000	-9.3 +7.0 -13.3 +6.6 +258 -245 -20.5 +4.1 -5.0	1,000.15 1,000.26 1,000.18 1,000.21 1,000.69 1,000.33 1,000.07 999.90 997.03	20,070 20,130 20,080 20,100 20,380 20,170 20,020 19,930 18,640	+17.6 +1.0 8 ++3 +4.6 -3.5 -2.4 -1.5	816.03 820.15 820.13 820.21 821.04 820.21 820.05 817.21 815.92	10,990 12,040 12,040 12,060 12,310 12,060 12,020 11,310 10,960	-13.8 +18.3 0 +.3 +4.1 -4.2 7 -11.5
WTR YR 198	34 -	-	03	-	-	+2.1	-	, - .	+.3
Date	Elevation (feet)	Contents (acre- feet)	Change in contents (equivalent in ft ³ /s)	Gage Height (feet)	Contents (million gallons)	Change in contents (equivalent in ft3/s)	Elevation (feet)	Contents (acre- feet)	Change in contents (equivalent in ft ³ /s)
	01449790 B	ELTZVILLE L	AKE †	01455400	LAKE HOPAT	CONG ‡	01459350	NOCKAMIXON	RESERVOIR +
Sept. 30 Oct. 31 Nov. 30 Dec. 31	625.60 624.15 628.52 627.96	39,000 37,700 41,700 41,200	-21.1 +67.0 -8.1	8.77 9.06 7.48 6.74	7,268 7,509 6,216 5,630	+12.0 -66.7 -29.2	394.40 394.10 395.40 395.05	39,360 38,940 40,760 40,270	-6.8 +30.6 -8.0
CAL YR 198	33 -	-	+35.0	-	. •	+8.7	-	-	-0.1
Jan. 31 Feb. 29 Mar. 31 Apr. 30 May 31 June 30 July 31 Aug. 31 Sept. 30	628.04 627.88 627.65 628.18 632.42 628.22 628.08 628.15 627.69	41,300 41,100 40,900 41,400 45,600 41,500 41,300 41,400	+1.6 -3.5 -3.3 +8.4 +68.0 -69.0 -3.3 +1.6	6.76 7.78 9.18 9.26 10.02 9.42 9.12 8.66 8.20	5,646 6,458 7,610 7,677 8,322 7,812 7,560 7,177 6,799	+.8 +43.3 +57.5 +3.4 +32.2 -26.3 -12.6 -19.1	395.15 395.20 395.70 395.20 395.15 396.45 395.40 394.80	40,410 40,480 41,180 40,480 40,410 42,280 40,760 39,920 39,710	+2.3 +1.2 +11.4 -11.8 -1.1 +31.4 -24.7 -13.6 -3.5
WTR YR 198	34 –	-	+2.8	- 2	-	-2.0	-	-	+.5

RESERVOIRS IN DELAWARE RIVER BASIN--Continued

MONTHEND ELEVATION AND CONTENTS, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

Date	Elevation (feet)	Contents (acre- feet)	Change in contents (equivalent in ft ³ /s)	Gage Height (feet)	Contents (million gallons)	(equivalent	Elevation (feet)	Contents (acre- feet)	Change in contents (equivalent in ft ³ /s)
	01469200	STILL CREEK	RESERVOIR †	014708	370 BLUE	MARSH LAKE †	01472200	GREEN LANE	RESERVOIR +
Sept. 30 Oct. 31 Nov. 30 Dec. 31	1,179.00 1,177.75 1,178.00 1,182.00	7,430 7,080 7,150 8,290	-5.7 +1.2 +18.5	290.16 209.17 285.34 285.58	23,100 18,200 18,000 18,200	-79.7 -3.4 +3.3	282.60 285.26 286.17 286.00	10,760 12,770 13,580 13,430	+32.7 +13.6 -2.4
CAL YR 198	3 -	_	-0.3	-	-	+.9	-	_	+.1
Jan. 31 Feb. 29 Mar. 31 Apr. 30 May 31 June 30 July 31 Aug. 31 Sept. 30	1,182.00 1,182.10 1,182.10 1,182.30 1,182.30 1,182.30 1,181.10 1,181.10 1,180.24	8,290 8,320 8,320 8,320 8,380 8,320 8,020 7,770	0 +.5 0 0 +1.0 0 -5.9 0	285.12 284.73 285.81 290.10 293.95 290.62 289.90 290.19 290.08	17,700 17,400 18,400 23,000 27,800 23,600 22,800 23,100 23,000	-8.1 -5.2 +16.3 +77.3 +78.0 -70.5 -13.0 +4.9 -1.7	285.96 286.12 286.24 286.05 286.47 286.01 286.01 285.97 285.85	13,400 13,540 13,640 13,480 13,850 13,440 13,440 13,410 13,300	5 +2.4 +1.6 -2.7 +6.0 -6.9 0 5
WTR YR 198	4 _	-	+.5	-	-	1	-	-	+3.5

Elevation at 0900 hours on first day of following month. Elevation or gage height at 2400 hours.

DIVERSIONS AND WITHDRAWALS

WITHDRAWALS FROM THE DELAWARE RIVER BASIN

- 01415200 Diversion from Pepacton Reservoir, NY, on East Branch Delaware River to Rondout Reservoir on Rondout Creek, in Hudson River basin, for municipal supply of city of New York. No diversion prior to Jan. 6, 1955. Records furnished by Board of Water Supply and Department of Water Resources, city of New York. REVISIONS (Water Years).--WRD-NY 1972: 1970.

 REVISED RECORDS.--WRD NY-71: 1970. WRD NY-72: 1970. WDR NY-82: 1980.
- 01423900 Diversion from Cannonsville Reservoir, NY, on West Branch Delaware River to Rondout Reservoir on Rondout Creek, in Hudson River basin, for municipal supply of city of New York. No diversion prior to Jan. 29, 1964. Records furnished by Board of Water Supply, city of New York.

 REVISED RECORDS.--WDR NJ-82-2: 1980.
- 01435800 Diversion from Neversink Reservoir, NY, on Neversink River to Rondout Reservoir on Rondout Creek, in Hudson River basin, for municipal supply of city of New York. No diversion prior to Dec. 3, 1953. Records furnished by Board of Water Supply and Department of Water Resources, city of New York.

 REVISED RECORDS.--WDR NJ-82-2: 1976, 1977.
- 01436520 Village of Woodridge, NY, diverts water from East Pond Reservoir, tributary to Neversink River, for municipal supply outside of basin. Records furnished by village of Woodridge.
- 01437360 Diversion from Bear Swamp Reservoir, NY, tributary to Neversink River, by the New York State Training School, Otisville, NY, for water supply outside of basin. Records furnished by Delaware River Basin Commission.
- 01447750 Diversion from Bear Creek, PA, tributary to Lehigh River, by Bear Creek Gas and Water Company for water supply outside of basin. Records furnished by Delaware River Basin Commission.
- 01448830 Diversion from Hazle Creek Watershed by Hazelton Joint Sewerage Authority for municipal water supply. Waste effluent from the municipal water system is released to the Susquehanna River. Records furnished by Delaware River Basin Commission.
- 01460500 Diversion by Delaware and Raritan Canal from Delaware River at Raven Rock, for municipal and industrial use. Water is discharged into the Raritan River at New Brunswick. Records of discharge are collected on the Delaware and Raritan Canal at Kingston, (see station 01460500). Canal closed for dredging Mar. 16 through end of year. REVISED RECORDS.--WDR NJ-82-2: 1981.

WITHDRAWALS BY CITY OF NEW YORK

DIVERSION, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

Month	PEPACTON RESERVOIR 01415200	CANNONSVILLE RESERVOIR 01423900	NEVERSINK RESERVOIR 01435800
October November December	701 688 697	290 224 212	171 161 157
CAL YR 1983	483	168	191
January February March April May June July August September	488 62.0 372 226 471 625 655 696 696	5.19 474 83.1 105 106 165 260 387 170	147 144 115 322 324 301 215 239
WTR YR 1984	534	206	209

DIVERSIONS AND WITHDRAWALS--Continued

MISCELLANEOUS WITHDRAWALS FROM BASIN

	EAST POND RESERVOIR a01436520	BEAR SWAMP RESERVOIR *01437360	BEAR CREEK 01447750	HAZLE CREEK ‡01448830	DELAWARE & RARITAN CANAL 01460500
October	DATA · AVAI		0	DATA NOT AVAILABLE	61.5 99.8 97.9
CAL YR 1983			.1		70.3
January February March April. May June July. August September.			0 0 0 0 0		82.5 81.6 41.2 0 0 0
WTR YR 1984			0		38.7

- a Village of Woodridge has estimated that virtually all the withdrawal from East Pond Reservoir was returned to the Neversink River.
- * Data not available this year but, from past records, monthly withdrawal is approximately 0.5 ft³/s.
 ‡ Data not available this year but, from past records, monthly withdrawal is approximately 4 ft³/s.

DIVERSIONS WITHIN THE DELAWARE RIVER BASIN

- 01463480 Diversion from the Delaware River at the Morrisville Filtration Plant for municipal supply, by the Borough of Morrisville, PA. The water withdrawn at this site is returned to the basin after treatment, only slightly diminished by consumptive uses and losses in transmission. Records furnished by the Borough of Morrisville, PA.
- 01463490 Diversion from the Delaware River just above the Trenton gaging station for municipal supply by the city of Trenton, NJ. The water being withdrawn is returned to the basin after treatment only slightly diminished by consumptive uses and losses in transmission. Records furnished by the City of Trenton.

 REVISED RECORDS.--WDR NJ-82-2: Station number.
- 01467030 Diversion from the Delaware River at the Torresdale Intake for municipal supply, by the City of Philadelphia, PA. The water being withdrawn at this intake is returned to the basin after treatment only slightly diminished by consumptive uses and losses in transmission. Records furnished by the Delaware River Basin Commission.
- 01474500 Diversion from the Schuylkill River at the Belmont and Queen Lanes Intakes for municipal supply, by the City of Philadelphia, PA. The water being withdrawn at these intakes is returned after treatment within the Delaware River basin only slightly diminished by consumptive uses and lossesmission. Records furnished by the Delaware River Basin Commission.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

	WITHDRAWAL BOROUGH OF CITY OF MORRISVILLE TRENTON 01463480 01463490			WITHDRAWAL CITY OF PHILADELPHIA			
Month			DELAWARE RIVER TORRESDALE 01467030	BELMONT	KILL RIVER QUEEN LANE 174500		
October November December	5.92 5.90 5.91	48.8 48.7 49.0	295 291 290	97.9 131 161	157 95.0 95.3		
CAL YR 1983	5.88	51.8	297	107	147		
January February March April May June July August September.	6.16 6.30 5.91 6.27 6.05 6.67 6.44 6.65 6.45	50.5 47.9 46.7 47.2 46.7 52.5 52.6 50.3	295 274 273 249 263 317 293 303 289	169 166 92.8 91.4 94.8 108 99.9 105 97.6	99.6 97.9 161 165 157 176 169 174		
WTR YR 1984	6.28	49.4	286	118	142		

DIVERSIONS AND WITHDRAWALS--Continued

DIVERSIONS IMPORTED INTO BASIN

- 01367630 Water diverted from Morris Lake, tributary to the Wallkill River (Hudson River basin), by the Newton Water and Sewer Authority for municipal use. After use the water is released into the Paulins Kill (Delaware River basin). Records furnished by the Delaware River Basin Commission.
- 01578420 Water diverted from West Branch Octoraro Creek (Susquehanna River basin) at the McCray Plant of the Octoraro Water Co., for municipal use. After use the water is released into the Delaware River basin. Records furnished by the Delaware River Basin Commission.
- 01578450 Water divered from Octoraro Lake (Susquehanna River basin) by Chester Water Authority for municipal use. After use the water is released into the Delaware River basin. Records furnished by the Delaware River Basin Commission.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

Month	MORRIS LAKE 01367630	OCTORARO CREEK			
		OCTORARO WATER CO. 01578420	CHESTER WATER AUTHORITY 01578450		
October November December	1.33 1.18 1.21	1.68 1.69 1.68	42.7 40.3 39.6		
CAL YR 1983	1.4	1.7	40.8		
January. February. March. April. May. June. July. August. September.	1.50 1.44 1.67 1.70 1.39 1.27 1.32 1.27	1.77 2.02 1.77 1.79 1.79 1.97 1.81 2.07	43.0 39.9 40.8 38.9 39.3 42.4 42.1 43.4		
WTR YR 1984	1.4	1.8	41.2		

As the number of streams on which streamflow information is likely to be desired far exceeds the number of stream-gaging stations feasible to operate at one time, the Geological Survey collects limited streamflow data at sites other than stream-gaging stations. When limited streamflow data are collected on a systematic basis over a period of years for use in hydrologic analyses, the site at which the data are collected is called a partial-record station. Data collected at these partial-record stations are usable in low-flow or floodflow analyses, depending on the type of data collected. In addition, discharge measurements are made at other sites not included in the partial-record program. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Records collected at partial-record stations are presented in two tables. The first is a table of discharge measurements at low-flow partial-record stations, and the second is a table of annual maximum stage and discharge at crest-stage stations. Discharge measurements made at miscellaneous sites for both low flow and high flow are given in a third table.

Low-flow partial-record stations

Measurements of streamflow in New Jersey made at low-flow partial-record stations are given in the following table. Most of these measurements were made during periods of base flow when streamflow is primarily from ground-water storage. These measurements, when correlated with the simultaneous discharge of a nearby stream where continuous records are available, will give a picture of the low-flow potentiality of a stream. The column headed "Period of record" shows the water years in which measurements were made at the same, or practically the same, site.

Discharge measurements made at low-flow partial-record stations during water year 1984

	Discharge measure	ments made at low-flow partial-record	stations du	iring water year	1904	
Station number	Station name	Location	Drainage area (mi²)	Period of record	Measur Date	ements Discharge (ft³/s)
		Maurice River basin				
01411450	Still Run at Aura, NJ	Lat 39°40'23", long 75°07'50", Gloucester County, at bridge on Aura-Glassboro Road, 0.4 mi east of Aura, 1.0 mi upstream of Silver Lake, and 2.6 mi southeast of Glassboro.	3.21	1966, 1976-84	9-21-84	1.5
01411456	Little Ease Run near Clayton, NJ	Lat 39°39'32", long 75°04'04", Gloucester County, at bridge on Academy Road, 0.9 mi west of Fries Mill, 1.3 mi east of Clayton, and 1.4 mi downstream from Beaverdam Branch.	9.77	1966, 1976-84	9-21-84	3.0
01411462	Scotland Run at Franklinville, NJ	Lat 39°37'05", long 75°03'36", Gloucester County, at bridge on State Route 538, 0.9 mi east of Franklinville, 2.7 mi upstream of Malaga Lake, and 2.8 mi southeast of Clayton.	14.8	1976-84	9-21-84	13
01411700	Muddy Run at Centerton, NJ	Lat 39°31'28", long 75°10'09", Salem County, 180 ft downstream of unnamed right bank tributary, 200 ft downstream of bridge on State Routes 540 and 553 in Centerton, and 4.7 mi south of Elmer.	36.5	1976-84	9-21-84	17
01411950	Buckshutem Creek near Laurel Lake, NJ	Lat 39°20'51", long 75°03'47", Cumberland County, at bridge on State Route 555 (Dividing Creek Road), 1.3 mi upstream of Gravelly Run, 1.8 mi west of Laurel Lake, and 3.6 mi southwest of Millville.	12.9	1976-77, 1980-84	9-19-84	6.3
01412120	Muskee Creek near Port Elizabeth, NJ	Lat 39°18'56", long 74°57'31", Cumberland County, at bridge on State Route 548, 1.3 mi east of Port Elizabeth, 1.9 mi upstream from mouth, and 2.8 mi northeast of Mauricetown.	13.1	1969, 1976-84	9-19-84	10.0
		Cohansey River basin				
01412405	Cohansey River near Beals Mill, NJ	Lat 39°31'29", long 75°15'59", Cumberland County, at bridge on Beals Mill Road, 1,300 ft down- stream of Beals Mill and Bostwick Lake, and 1.6 mi west of Deerfield Street.	9.44	1976-84	9-19-84	7.1
01413010	Barrett Run near Bridgeton, NJ	Lat 39°26'58", long 75°15'42", Cumberland County, at bridge on Mary Elmer Drive, 1,800 ft upstream from Mary Elmer Lake, and 2.1 mi northwest of the intersection of State Routes 49 and 77 in Bridgeton.	7.02	1966, 1976-84	9-19-84	3.1

DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

Discharge measurements made at low-flow partial-record stations during water year 1984--Continued

	•	** ** ** ** ** ** ** ** ** ** ** ** **				
Station number	Station name	Location	Drainage area (mi²)	Period of record	Measure Date	ements Discharge (ft³/s)
		Cohansey River basinCont	inued			
01413020	Indian Fields Branch at Bridgeton, NJ	Lat 39°26'04", long 75°13'08", Cumberland County, at bridge on Manheim Avenue in Bridgeton, 1,300 ft upstream of East Lake.	4.64	1976-84	9-19-84	7.2
		Stow Creek basin				
01413080	Raccoon Ditch at Davis Mill, NJ	Lat 39°25'26", long 75°22'01" Cumberland County, at bridge on County Highway 90 at Davis Mill, 2.8 mi upstream from mouth, and 4.3 mi southwest of Shiloh.	3.19	1976-78, 1980-84	9-19-84	3.4
		Delaware River basin				
01443475	Trout Brook near Middleville, NJ	Lat 41°03'03", long 74°51'23", Sussex County, at bridge on County Highway 612, 0.4 mi upstream from mouth, 0.5 mi southeast of Middleville, and 5.1 mi west of Newton.	24.0	1979-84	9-12-84	6.8
01445800	Honey Run near Ramseyburg, NJ	Lat 40°53'44", long 75°01'04", Warren County, at bridge on Hope-Delaware Road, 2.3 mi northeast of Ramseyburg, 2.8 mi southwest of Hope, and 3.1 mi upstream from mouth.	2.21	1981-84	9-12-84	0.40
01455230	Merrill Creek at Coopersville, NJ	Lat 40°42'25", long 75°06'54", Warren County, at bridge on Lows Hollow Road at Coopers- ville, 0.9 mi north of Stewarts- ville, 2.1 mi upstream from mouth, and 3.3 mi east of Phillipsburg.	3.85	1981-84	9-12-84	2.7
01455780	Lubbers Run at Lockwood, NJ	Lat 40°55'36", long 74°43'09", Sussex County, at bridge on U.S. Route 206 at Lockwood, 1.0 mi upstream from mouth, and 1.5 mi northwest of Stanhope.	16.3	1982-84	9-11-84	5.8
01465884	Sharps Run at Route 541 at Medford, NJ	Lat 39°54'18", long 74°49'30", Burlington County, at bridge on Route 541 (Argonne Highway) in Medford, 0.7 mi upstream from mouth, 1.2 mi northeast of Oliphants Mills, and 2.6 mi northwest of Medford Lakes.	" 4.4 1	1982-84	9-18-84	.63
01465898	Little Creek near Lumberton, NJ	Lat 39°56'16", long 74°47'38", Burlington County, at bridge on Eayrestown Road, 0.6 mi upstream from mouth, 1.9 mi southeast of Lumberton, and 3.0 mi northeast of Medford.	19.2	1982-84	9-18-84	4.3
01467317	South Branch Newton Creek at 13th Avenue, at Haddon Heights, NJ	Lat 39°52'45", long 75°04'26", Camden County, at bridge on 13th Avenue in Haddon Heights, 2.4 mi southwest of Haddonfield, and 2.6 mi south of Collingswood.	0.63	1964-68, 1971,77, 1982-84	3-14-84	3.5
01483010	Deep Run near Alloway, NJ	Lat 39°32'34", long 75°21'18", Salem County, at bridge on Telegraph Road, 0.8 mi upstream from Elkinton Mill Pond, 1.3 mi south of Alloway and 2.5 mi northwest of Pecks Corner.	5.30	1979-84	9-19-84	4.4

^{*} Also a crest-stage partial-record station.

CREST-STAGE PARTIAL-RECORD STATIONS

The following table contains annual maximum discharges for crest-stage stations. A crest-stage gage is a device which will register the peak stage occurring between inspections of the gage. A stage-discharge relation for each gage is developed from discharge measurements made by indirect measurements of peak flow or by current meter. The date of the maximum discharge is not always certain but is usually determined by comparison with nearby continuous-record stations, weather records, or local inquiry. Only the maximum discharge for each water year is given. Information on some lower stages may have been obtained, and discharge measurements may have been made for purposes of establishing the stage-discharge relation, but these are not published herein. The years given in the period of record represent water years for which the annual maximum has been determined. The gage heights are heights on the upstream side of the bridge, above the dam or at the discontinued continuous-record gaging station unless otherwise noted.

ANNUAL MAXIMUM DISCHARGE AT CREST-STAGE PARTIAL-RECORD STATIONS

					Annual	maximum	
Station No.	Station name	Location	Drainage area (mi²)	Period of record	Date	Gage height (feet)	Discharge (ft³/s)
		Cohansey River	oasin				
01412500	West Branch Cohansey River at Seeley, NJ	Lat 39°29'06, long 75°15'33", Cumberland County, on right bank 15 ft upstream from count; bridge, Highway 31, at Seeley, 450 ft upstream from mouth and 4.1 mi northwest of Bridgeton. Datum of gage is 42.23 ft National Geodetic Vertical Datum of 1929.	2.58 y	1952-67‡, 1968-84	1-25-84	e<2.08	f
		Delaware River	basin				
*01445000	Pequest River at Huntsville, NJ	Lat 40°58'52", long 74°46'36", Sussex County, on right bank, 20 ft upstream from highway bridge in Huntsville, and 0.4 mi downstream from East Branch. Datum of gage is 553.81 ft National Geodetic Vertical Datum of 1929.	31.0	1940-62‡, 1963-84	5-30-84	4.29	408
01445430	Pequest River at Townsbury, NJ	Lat 40°51'06", long 74°56'02", Warren County, upstream of highway bridge in Townsbury, 2.8 mi northeast of Pequest and 8.7 mi west of Hackettstow Altitude of gage is 480 ft, from topographic map.	92.5 n.	1977-80‡, 1981-84	4-06-84	4.51	1,850
*01446000	Beaver Brook near Belvidere, NJ	Lat 40°50'40", long 75°02'48, Warren County, on right bank, 2,000 ft upstream from mouth, and 2 mi east Belvidere. Datum of gage is 303.36 ft National Geodetic Vertical Datum of 1929.	36.7	1922-61‡, 1963-84	5-30-84	4.07	636
*0145520	Pohatcong Creek at New Village, NJ	Lat 40°42'57", long 75°04'20", Warren County, at bridge on Edison Road, 0.4 mi southeast of New Village, and 4.3 mi upstream from Merrill Creek. Datum of gage is 308.32 ft National Geodetic Vertical Datum of 1929.	33.3	1960-69‡, 1970-84	7-07-84	5.97	1,530
01455500	Musconetcong River at outlet of Lake Hopatcong, NJ	Lat 40°55'00", long 74°39'55", Morris County, on left bank just upstream of highway bridge 300 ft downstream from Lake Hopatcong Dam in Landing. Datum of gage is 904.99 ft National Geodetic Vertical Datum of 1929.	25.3	1929-75‡, 1976-84	4-07-84	4.52	425

DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS

CREST-STAGE PARTIAL-RECORD STATIONS

ANNUAL MAXIMUM DISCHARGE AT CREST-STAGE PARTIAL-RECORD STATIONS--CONTINUED

Station Station name				D d a d	Annua		
Station No.	Station name	Location	Drainage area (mi²)	Period of record	Date	Gage height (feet)	Discharge (ft³/s)
		Delaware River basi	nContinue	d			
01456000	Musconetcong River near Hackettstown, NJ	Lat 40°53'17", long 74°47'53" Warren County, on right bank 75 ft upstream from Saxton Falls Dam, 0.5 mi upstream from Erie-Lackawanna Railway bridge, and 3.0 mi northeast of Hackettstown. Datum of gage is 630.93 ft National Geodetic Vertical Datum of 1929.	68.9	1921-73‡, 1974-84	5-30-84	3.46	1,630
01457500	Delaware River at Riegelsville, NJ	Lat 40°35'36", long 75°11'17", Warren County, just upstream of suspension bridge at Riege ville, 600 ft upstream from Musconetcong River (flow of which is included in the rece for this station since Oct. 1931). Datum of gage is 125. National Geodetic Vertical Da 1929.	ls- rds ,12 ft	1906-71‡, 1972-84	5-30-84	24.46	140,000
01463610	Assunpink Creek at Edinburg, NJ	Lat 40°15'28", long 74°37'05", Mercer County, on left bank, downstream side of bridge on Old Trenton Road (Route 535), 0.1 mi west of Edinburg, G.1 upstream from Bridegroom Run and 3.0 mi north of Robbins- ville. Datum of gage is 63.4 National Geodetic Vertical Da of 1929.	mi 6 ft	1979-84	7-07-84	e<6.35	f
01464400	Crosswicks Creek at New Egypt, NJ	Lat 40°04'03", long 74°31'57", Ocean County, at upstream side of bridge on State Route 528 in New Egypt, and 300 ft downstream from Oakford Lake Dam. Datum of gage is 43.46 ft National Geodetic Vertical Datum of 1929.	41.2	1968-84	5-30-84	b23.3	1,360
01464515	Doctors Creek at Allentown, NJ	Lat 40°10'37", long 74°35'57", Monmouth County, at bridge on Breza Road in Allentown, and 0.8 mi downstream from Conines Millpond dam. Datum of gage is 50.98 National Geodetic Vertical Datum of 1929.	17.4	1968-84	5-30-84	b5.54	675
01464530	Blacks Creek at Mansfield Square, NJ	Lat 40°07'02", long 74°41'58", Burlington County, at bridge on Mansfield Square-Crosswick Road, 0.4 mi east of Mansfiel Square, and 3.4 mi upstream from mouth. Datum of gage is 12.44 ft National Geodetic Vertical Datum of 1929.	.d	1978-84	5-30-84	b8.87	1,000
01464538	Crafts Creek at Columbus, NJ	Lat 40°04'44", long 74°43'07", Burlington County, at bridge on Columbus-Mansfield road, 0.4 mi north of Columbus, and 6.0 mi northeast of Mount Holly. Datum of gage is 33.71 ft National Geodetic Vertical Datum of 1929.	5•38	1978-84	5-30-84	b7.12	228

DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES CREST-STAGE PARTIAL-RECORD STATIONS

ANNUAL MAXIMUM DISCHARGE AT CREST-STAGE PARTIAL-RECORD STATIONS--Continued

					Annual maximum			
Station No.	Station name	Location D	rainage area (mi²)	Period of record	Date	Gage height (feet)	Discharge (ft³/s)	
		Delaware River basin-	-Continue	d				
01464582	Assiscunk Creek near Columbus, NJ	Lat 40°03'13", long 74°44'34", Burlington County, at bridge on Petticoat Bridge Road, 1.7 mi southwest of Columbus, 4.0 mi northeast of Mount Holly, and 0.1 mi downstream from Assiscunk Branch.	10.9	1978-84	5-30-84	b6.59	370	
01465850	South Branch Rancocas Creek at Vincentown, NJ	Lat 39°56'22", long 74°45'50", Burlington County, on left bank 150 ft downstream from highway bridge on Lumberton- Vincentown road, 0.8 mi west of Vincentown, 2.9 mi southeast of Lumberton, and 3.1 mi up- stream from Southwest Branch. Datum of gage is 13.17 ft National Geodetic Vertical Datum of 1929.	64.5	1962-75‡, 1976-84	5-31-84	7.30	1,010	
*01465880	Southwest Branch Rancocas Creek at Medford, NJ	Lat 39°53'43", long 74°49'26", Burlington County, at bridge on Argonne Highway (State Route 541), 0.6 mi south of intersection of Argonne Highway and State Highway 70 at Medford, and 5.3 mi upstream from mouth.	47.2	1983-84	5-31-84	10.64	600	
01467057	Pompeston Creek at Cinnaminson, NJ	Lat 40°00'11", long 74°59'00", Burlington County, at U.S. Route 130 bridge, 0.7 mi northwest of Cinnaminson, 1.7 mi upstream from mouth, and 2.1 mi east of Palmyra. Datum of gage is 11.36 ft National Geodetic Vertical Datum of 1929.	5.77	1975-84	8-05-84	b4.92	685	
01467069	North Branch Pennsauken Creek near Moorestown, NJ	Lat 39°57'07", revised, long 74°58'10", Burlington County, at bridge on Route 41 (Kings Highway), and 1.7 mi southwest of Moores- town. Datum of gage is 5.9 ft National Geodetic Vertical Datum of 1929.	12.8	1975-84	5-29-84	5.04	565	
*01467160	North Branch Cooper River near Marlton, NJ	Lat 39°53'20", long 74°58'08", Camden County, at bridge on blacktop road to Spring- dale, 2.5 mi west of Marlton. Datum of gage is 36.36 ft National Geodetic Vertical Datum of 1929.	5.34	1964-84	4-05-84	b2.74	320	
*01467305	Newton Creek at Collingswood, NJ	Lat 39°54'30", long 75°03'13", Camden County, at bridge on Park Avenue in Collingswood, 0.3 mi east of Cuthbert Avenue. Datum of gage is 18.74 ft National Geodetic Vertical Datum of 1929.	1.33	1964-84	5-30-84	3.18	148	
01467317	South Branch Newton Creek at Haddon Heightë, NJ	Lat 39°52'45", long 75°04'26", Camden County, at bridge on Haddon Heights Park in Haddon Heights, and 2.6 mi south of Collingswood. Datum of gage is 23.34 ft National Geodetic Vertical Datum of 1929.	0.63	1964-84	5-30-84	3.24	92	

ANNUAL MAXIMUM DISCHARGE AT CREST-STAGE PARTIAL-RECORD STATIONS--Continued

			5 ·		Annua	l maximum	
Station No.	Station name	Location I	Orainage area (mi²)	Period of record	Date	Gage height (feet)	Discharge (ft³/s)
		Delaware River basin-	Continue	ed.			
*01467330	South Branch Big Timber Creek at Blackwood, NJ	Lat 39°48'17", long 75°04'33", Camden County, at bridge on Lower Landing Road, in Black- wood, and 3.0 mi upstream from mouth. Datum of gage is 8.41 ft National Geodetic Vertical Datum of 1929.	20.9	1964-84	5-30-84	ъ4.48	440
01467351	North Branch Big Timber Creek at Laurel Road at Laurel Springs, NJ	Lat 39°49'07", long 75°00'56", Camden County, at bridge on Laurel Road in Laurel Springs, and 2.5 mi upstream from confluence with the South Branch. Datum of gage is 26.89 ft National Geodetic Vertical Datum of 1929.	7.17	1975-84	5-30-84	2.00	415
01475000	Mantua Creek at Pitman, NJ	Lat 39°44'14", long 75°06'53 Gloucester County, on left abutment of Wadsworth Dam, 0.9 mi east of Pitman, and 2.0 mi upstream from Porch Branch. Datum of gage is 68.51 ft National Geodetic Vertical Datum of 1929.	6.05	1940-76‡, 1977-84	4-05-84	2.13	240
01475019	Mantua Creek at Salina, NJ	Lat 39°46'13", long 75°07'59", Gloucester County, at bridge on Salina-Sewell Road, 0.2 mi downstream of Bees Branch, and 0.5 mi west of Salina. Datum of gage is 11.67 ft National Geodetic Vertical Datum of 1929.	14.1	1975-84	5-30-84	6.10	420
01477110	Raccoon Creek at Mullica Hill, NJ	Lat 39°44'10", long 75°13'30", Gloucester County, at bridge on State Routes 45 and 77 in Mullica Hill, 1,200 ft downstream of Mullica Hill Pond, and 5.5 mi west of Pitman. Datum of gage is 21.91 ft National Geodetic Vertical Datum of 1929.	15.6	1978-84	4-05-84	b3.14	655
01477480	Oldmans Creek near Harrisonville, NJ	Lat 39°41'20", revised, long 75°18'38", Salem County, at bridge on Harrisonville Station Road, 2.4 mi west of Harrisonville, and 2.8 mi north of Woodstown. Datum of gage is 16.58 ft National Geodetic Vertical Datum of 1929.	13.8	1975-84	7-07-84	5.46	450

Also a low-flow partial-record station.
Operated as a continuous-record gaging station.
Gage height is less than following figure.
Downstream side of bridge.
Peak did not reach bottom of gage.
Peak discharge for the period was less than the minimum recordable discharge.

DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

DISCHARGE MEASUREMENT AT MISCELLANEOUS SITES

Measurements of streamflow at points other than gaging stations are given in the following table. Those that are measurements of base flow are designated by an asterisk (*); measurements of peak flow by a dagger (†).

DISCHARGE MEASUREMENTS MADE AT MISCELLANEOUS SITES DURING WATER YEAR 1984

			Dundmann	Measured	Meas	urements
Stream	Tributary to	Location	Drainage area (mi²)	previously (water years)	Date	Discharge (ft³/s)
		Delaware River basin				
01446400 Pequest River	Delaware River	Lat 40°49'45", long 75°04'44", Warren County, at bridge on State Route 519, in Belvidere, 1,400 ft upstream of mouth.	157	1950,53, 1955,74, 1977-82, 1984	11-01-83 12-08-83 3-23-84 6-05-84	*70.9 372 475 656

The following table contains annual maximum stages for tidal crest-stage stations. The information is obtained from a crest-stage gage or a water-stage recorder located at each site. A crest-stage gage is a device which will register the peak stage occurring between inspections of the gage. All stages are elevations above National Geodetic Vertical Datum of 1929 unless otherwise noted. Only the maximum stage is given. Information on some other high stages may have been obtained but is not published herein. The years given in the period of record represent water years for which the annual maximum has been determined.

ANNUAL MAXIMUM STAGES AT TIDAL CREST-STAGE PARTIAL-RECORD STATIONS

					A	
Station No.	Station name	Location	Period of record	Date	Annual	maximum Elevation NGVD* (feet)
01411409	Delaware Bay at Reeds Beach, NJ	Lat 39°06'32", long 074°53'39", Cape May County, at boat ramp in Cooks Beach, 0.2 mi south of Reeds Beach, 4.8 mi north- west of Cape May Court House, and 5.8 mi north of Villas.	1979-84	3-29-84		6.57
01412150	Maurice River at Bivalve, NJ	Lat 39°13'42", long 75°02'12", Cumberland County, on right bank on bulkhead piling on the south side of Bivalve, and 1.3 mi south of Port Norris.	1965-84	3-29-84		7.00
01413038	Cohansey River at Greenwich, NJ	Lat 39°23"02", long 075°20'58" Cumberland County, at Green- wich Pier, 0.7 mi southwest of Greenwich, and 5.8 mi southwest of Shiloh.	1979-84	3-29-84		6.31
01464040	Delaware River at Marine Terminal, Trenton, NJ	Lat 40°11'21", long 74°45'22", Mercer County, on left bank at downstream end of wharf at Marine Terminal, Trenton, 1.6 mi downstream from toll bridge on U.S. Route 1, 2.0 mi downstream from Assunpink Creek, and at mile 131.80.	1921-46‡, 1951-54‡, 1957-84‡a	b		b
01477050	Delaware River at Chester, PA	Lat 39°49'52", long 75°19'58", Gloucester County, on left bank on floodgate at mouth of Repaupo Creek 2.2 mi northeast of Bridgeport, 5.5 mi north of Swedesboro, and at mile 84.00 mi, prior to October 1980 located at Reynolds Aluminum Company pier in Chester, PA at mile 82.30 mi.	1972-77‡, 1979-84	12-04-84		6.29
01483050	Alloway Creek at Hancocks Bridge, NJ	Lat 39°30'31" long 75°27'39", Salem County, on left bank at downstream side of Mill Street bridge in Hancocks Bridge, 0.4 mi downstream from Lower Alloway Creek, and 4.0 mi south of Salem.	1980-84	3-29-84		6.06

National Geodetic Vertical Datum of 1929.

Operated as a continuous-record gaging station. Operated by National Ocean Survey since March 1975.

Not available

395150074284201. Local I.D., Lebanon State Forest 23-D Obs. NJ-WRD Well Number, 05-0689. LOCATION.--Lat 39°51'52", long 74°28'48", Hydrologic Unit 02040202, in Lebanon State Forest, Woodland Township. Owner: U.S. Geological Survey.

Owner: U.S. Geological Survey.

AQUIFER.--Kirkwood-Cohansey aquifer system of Miocene age.

WELL CHARACTERISTICS.--Drilled water-table observation well, diameter 8 in, depth 33 ft, open-end cement casing.

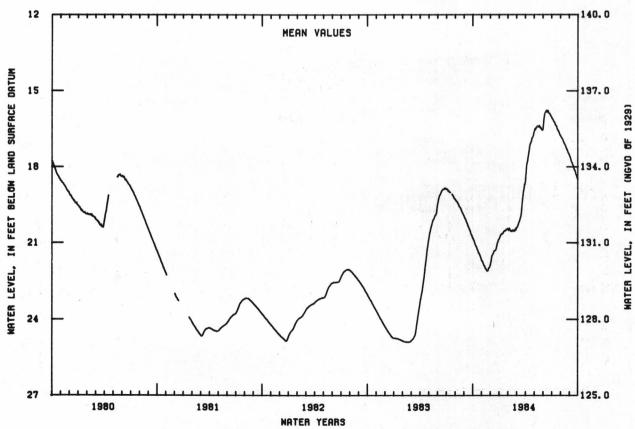
INSTRUMENTATION.--Water-level recorder.

DATUM.--Land-surface datum is 152.02 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Top of 8 inch casing, 0.70 ft above land-surface datum.

REMARKS.--Water-quality records for 1984 are published elsewhere in this report.

PERIOD OF RECORD.--September 1955 to April 1975, January 1979 to current year. Records for 1955 to 1975 are unpublished and are available in files of New Jersey District Office.


EXTREMES FOR PERIOD OF RECORD.--Highest water level, 14.37 ft below land-surface datum, Sept. 11, 1958; lowest, 25.80 ft below land-surface datum, Feb. 19-20, 1966.

EXTREMES FOR CURRENT YEAR.--Highest water level, 15.75 ft below land-surface datum, June 14 and 18; lowest, 22.11 ft below land-surface datum, Nov. 19-20.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 MEAN VALUES

DAY	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	20.91 21.09 21.21 21.36 21.48 21.67	21.77 21.90 22.02 22.10 21.98 21.88		20.70 20.63 20.57 20.53 20.46 20.45	20.42 20.54 20.49 20.50 20.46 20.40	20.34 20.19 20.01 19.58 19.02 18.65	17.98 17.65 17.26 17.04 16.85 16.67	16.55 16.45 16.40 16.38 16.49	16.04 15.82 15.80 15.82 15.89 16.01	16.11 16.23 16.36 16.49 16.61 16.76	16.86 16.98 17.10 17.23 17.38 17.52	17.70 17.85 17.99 18.15 18.34 18.51
MEAN	21.24	21.94	21.29	20.58	20.50	19.72	17.38	16.47	15.93	16.39	17.14	18.03
WTR YR	1984	MEAN	18.88	HIGH 15	.76 JUN 1	4 AND OTH	ERS	LOW	22.10 N	OV 19 AND	OTHERS	

MEASURED WATER LEVEL

SEPT. 28, 1984

127.84

BURLINGTON COUNTY

395525074502601. Local I.D., Medford 4 Obs. NJ-WRD Well Number, 05-0262. LOCATION.--Lat 39°55'24", long 74°50'25", Hydrologic Unit 02040202, at Medford Public Shooting Grounds, Medford

JULY 23, 1984 TO SEPT. 28, 1984

Owner: U.S. Geological Survey.

AQUIFER.--Lower aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 1,145 ft, screened 1,125 to 1,145 ft.

INSTRUMENTATION.--Water-level extremes recorder, February 1977 to current year. Water-level recorder, January 1968 to July 1975.

WATER-LEVEL EXTREMES

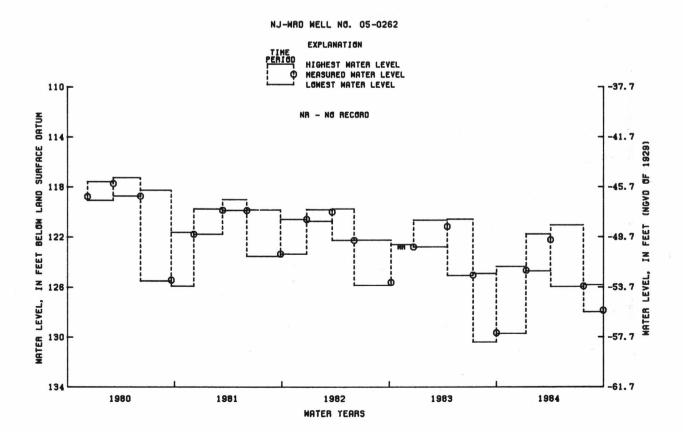
to July 1975.

DATUM.--Land-surface datum is 72.32 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 2.56 ft above land-surface datum.

PERIOD OF RECORD.--January 1968 to July 1975, February 1977 to current year. Records for 1968 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 94.24 ft below land-surface datum, Mar. 13, 1968; lowest, 130.38 ft below land-surface datum, between July 12 and Sept. 30, 1983.


EXTREMES FOR CURRENT YEAR.--Highest water level, 121.02 ft below land-surface datum, between Apr. 2 and July 23; lowest, 129.70 ft below land-surface datum, between September 30, 1983 and January 9, 1984.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

LOWEST HIGHEST WATER WATER PERIOD LEVEL LEVEL DATE LEVEL SEPT. 30, 1983 TO JAN. 9. 1984 124.33 129.70 JAN. 9. 1984 124.65 JAN. 9, 1984 TO APR. 2, 1984 122.21 2, 1984 121.74 124.69 APR. 2, 1984 TO JULY 23, 1984 121.02 125.94 JULY 23, 1984 125.90

127.96

125.79

395525074502505. Local I.D., Medford 5 Obs. NJ-WRD Well Number, 05-0261. LOCATION.--Lat 39°55'25", long 74°50'25", Hydrologic Unit 02040202, at Medford Public Shooting Grounds, Medford Township.

Owner: U.S. Geological Survey.

AQUIFER.--Middle aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 750 ft, screened 740 to 750 ft.

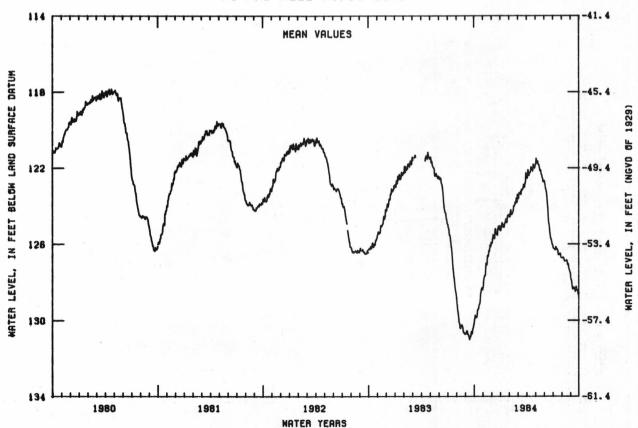
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 750 ft, screened 740 to 750 ft.

INSTRUMENTATION.--Water-level recorder.

DATUM.--Land-surface datum is 72.60 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Top edge of recorder shelf, 3.60 ft above land-surface datum.

PERIOD OF RECORD.--January 1968 to March 1975, March 1977 to current year. Records for 1968 to 1977 are unpublished and are available in files of New Jersey District Office.


EXTREMES FOR PERIOD OF RECORD.--Highest water level, 94.46 ft below land-surface datum, Mar. 1, 1968; lowest, 131.05 ft below land-surface datum, Sept. 16, 1983.

EXTREMES FOR CURRENT YEAR.--Highest water level, 121.46 ft below land-surface datum, May 4; lowest, 130.23 ft below land-surface datum, Oct. 1.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 MEAN VALUES

DAY												
DRI	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	129.73 129.85 129.43 129.14 128.52 128.32	127.73 127.30 126.94 126.48 126.05 125.98	125.72 125.69 125.27 125.51 125.16 125.31	124.97 124.99 124.95 124.80 124.49 124.43	124.21 124.42 123.99 123.80 123.58 123.40	123.46 123.36 123.21 123.03 122.91 122.55	122.10 122.31 122.11 122.12 121.87 121.83	121.66 121.75 121.98 122.14 122.52 122.65	123.03 123.46 124.47 125.29 125.73 126.03	126.24 126.25 126.28 126.57 126.53 126.72	126.69 126.89 126.88 126.96 127.24 127.56	128.10 128.26 128.28 128.22 128.40 128.56
MEAN WTR YR	129.25	126.92 MEAN 12	125.45	124.85 HIGH 121	124.07	123.11	122.15 LOW	122.09 130.18 OCT	124.45	126.38	126.98	128.31

NJ-WRD WELL NO. 05-0261

395524074502501. Local I.D., Medford 1 Obs. NJ-WRD Well Number, 05-0258. LOCATION.--Lat 39°55'24", long 74°50'25", Hydrologic Unit 02040202, at Medford Public Shooting Grounds, Medford Township.

Owner: U.S. Geological Survey.

AQUIFER.--Upper aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 410 ft, screened 400 to 410 ft.

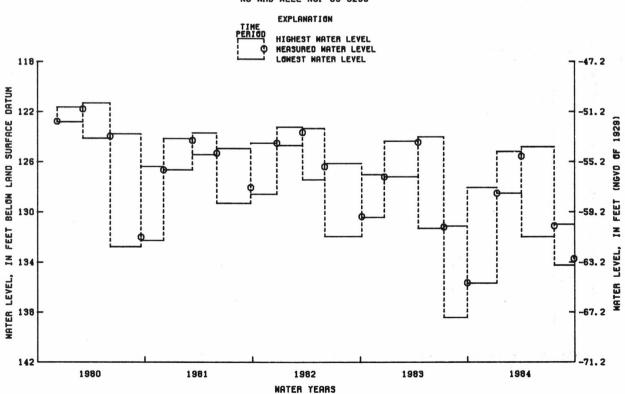
INSTRUMENTATION.--Water-level extremes recorder, February 1977 to current year. Water-level recorder, October 1963 to August 1975.

DATUM.--Land-surface datum is 70.77 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 2.87 ft above land-surface datum.

PERIOD OF RECORD.--October 1963 to August 1975, February 1977 to current year. Records for 1963 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 85.22 ft below land-surface datum, Feb. 16-19, 1964; lowest, 138.42 ft below land-surface datum, between July 12 and Sept. 30, 1983.


EXTREMES FOR CURRENT YEAR.--Highest water level, 124.82 ft below land-surface datum, between Apr. 2 and July 23; lowest, 135.69 ft below land-surface datum, between September 30, 1983 and January 9, 1984.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

WATER-LEVEL EXTREMES MEASURED WATER LEVEL

		PER	IOD				HIGHEST WATER LEVEL	LOWEST WATER LEVEL		DATI	E	WATER LEVEL
SEP	T. 30,	1983	то	JAN.	9,	1984	128.06	135.69	JAN.	9,	1984	128.52
JAN	. 9,	1984	TO	APR.	2,	1984	125.19	128.52	APR.	2,	1984	125.57
APR	. 2,	1984	TO	JULY	23,	1984	124.82	131.99	JULY	23,	1984	131.12
JUL	Y 23,	1984	TO	SEPT.	28,	1984	130.99	134.26	SEPT.	28,	1984	133.74

NJ-WRD WELL NO. 05-0258

395524074502502. Local I.D., Medford 2 Obs. NJ-WRD Well Number, 05-0259. LOCATION.--Lat 39°55'24", long 74°50'25", Hydrologic Unit 02040202, at Medford Public Shooting Grounds, Medford Township.

Owner: U.S. Geological Survey. AQUIFER.--Englishtown aquifer of Cretaceous age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 263 ft, screened 253 to 263 ft. INSTRUMENTATION.--Water-level extremes recorder, February 1977 to current year. Water-level recorder, October 1963 to August 1975.

to August 1975.

DATUM.--Land-surface datum is 72.92 ft above National Geodetic Vertical Datum of 1929.

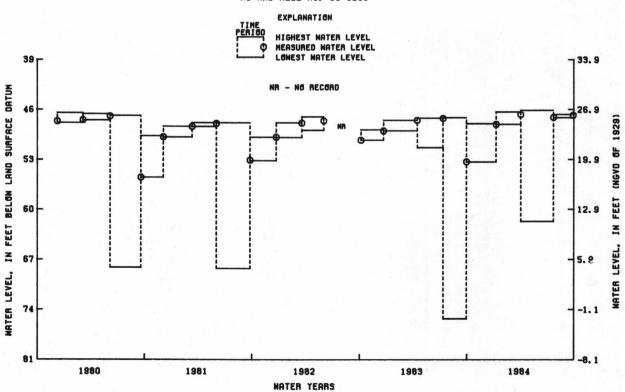
Measuring point: Front edge of cutout in recorder housing, 3.40 ft above land-surface datum.

REMARKS.--Water level affected by nearby pumping.

PERIOD OF RECORD.--October 1963 to August 1975, February 1977 to current year. Records for 1963 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 45.42 ft below land-surface datum, Apr. 27, 1973; lowest, 111.96 ft below land-surface datum, July 9, 1964.

EXTREMES FOR CURRENT YEAR. -- Highest water level, 46.11 ft below land-surface datum, between Apr. 2 and July 23; lowest, 61.68 ft below land-surface datum, between Apr. 2 and July 23.


WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

WATER-LEVEL EXTREMES

MEASURED WATER LEVEL

		PERI	OD				HIGHEST WATER LEVEL	LOWEST WATER LEVEL		DATI	E	WATE	
SEPT.	30,	1983	то	JAN.	9,	1984	47.98	53.34	JAN.	9,	1984	48.0	09
JAN.	9,	1984	то	APR.	2,	1984	46.32	48.09	APR.	2,	1984	46.7	72
APR.	2,	1984	то	JULY	23,	1984	46.11	61.68	JULY	23,	1984	47.1	13
JULY	23.	1984	то	SEPT.	28.	1984	46.68	47.15	SEPT.	28,	1984	46.8	81

NJ-WRD WELL NO. 05-0259

400010074521601. Local I.D., Willingboro 2 Obs. NJ-WRD Well Number, 05-0645.
LOCATION.--Lat 40°00'10", long 74°52'16", Hydrologic Unit 02040202, near intersection of Bridge Street and Tiffany Lane, Willingboro.

Owner: Willingboro Municipal Utilities Authority.

AQUIFER.--Middle aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.

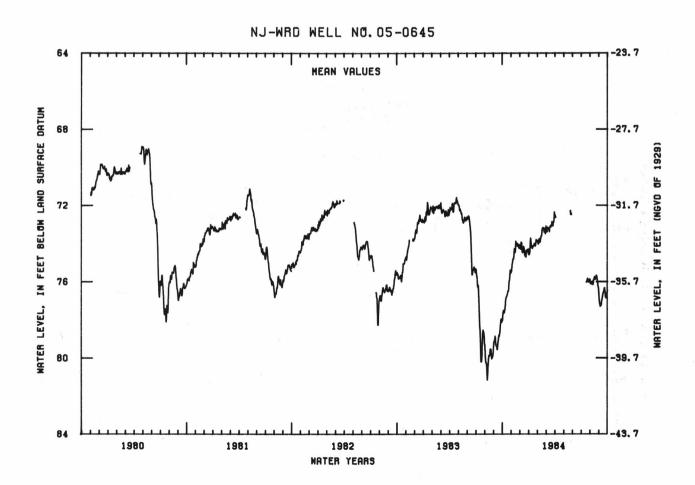
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 441 ft, screened 431 to 441 ft.

INSTRUMENTATION.--Water-level recorder.

INSTRUMENTATION.--Water-level recorder.

DATUM.--Land-surface datum is 40.30 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Top edge of recorder shelf, 2.00 ft below land-surface datum.


REMARKS.--Water level affected by tidal fluctuation and nearby pumping.

PERIOD OF RECORD.--March 1966 to September 1975, March 1977 to current year. Records for 1966 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 49.79 ft below land-surface datum, June 21, 1967; lowest, 81.29 ft below land-surface datum, Aug. 10, 1983.

EXTREMES FOR CURRENT YEAR.--Highest water level, 72.07 ft below land-surface datum, Mar. 29; lowest, 78.13 ft below land-surface datum, Oct. 1.

		WATER L	EVEL, IN	FEET BELOW	LAND SURF	ACE DATUM MEAN VA		YEAR OCTOBER	1983 I	О ЅЕРТЕМВЕ	R 1984	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	77.49 77.38 76.76 76.47 75.94 75.48	74.95 74.51 74.24 74.07 74.04 74.18	74.45 74.31 74.69 74.43		73.73 73.71 73.21 73.17 73.21 73.17	73.21 73.19 73.12 73.04 72.95 72.49		72.48		75.98 75.92 75.85	76.12 76.15 75.81 75.78 75.88 76.59	77.29 77.00 76.55 76.33 76.85 76.45
MEAN	76.71	74.42	74.36	74.07	73.50	73.05				,	75.98	76.80
WTR YR	1984	MEAN	74.85	HIGH 7	2.28 MAY 2	:4	LOW	77.99 OCT	1			

400213074510801. Local I.D., Willingboro 1 Obs. NJ-WRD Well Number, 05-0063. LOCATION.--Lat 40°02'13", long 74°51'08", Hydrologic Unit 02040202, on the west side of Rancocas Road about 2 mi north of Rancocas.

WATER-LEVEL EXTREMES

Owner: Willingboro Municipal Utilities Authority.

AQUIFER.--Middle aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 294 ft, screened 284 to 294 ft.

INSTRUMENTATION.--Jater-level extremes recorder, February 1977 to current year. Water-level recorder, March 1966 to September 1975.

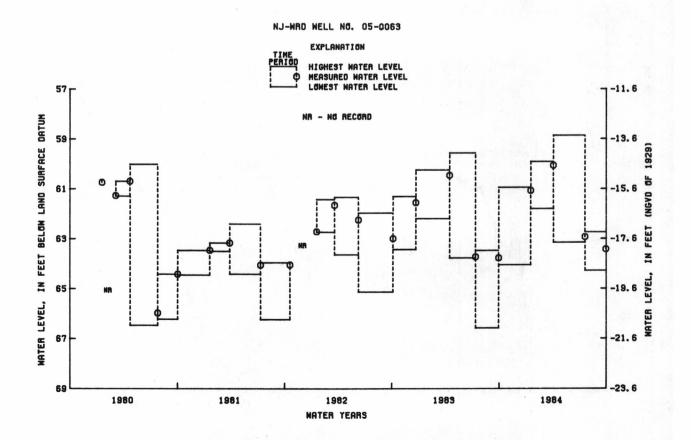
DATUM .-- Land-surface datum is 45.45 ft above National Geodetic Vertical Datum of 1929.

DATUM.--Land-surface datum is 45.45 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 0.76 ft above land-surface datum.

REMARKS.--Water level affected by nearby pumping.

PERIOD OF RECORD.--March 1966 to September 1975, February 1977 to current year. Records for 1966 to 1975 are unpublished and are available in files of New Jersey District Office.


EXTREMES FOR PERIOD OF RECORD.--Highest water level, 46.25 ft below land-surface datum, Mar. 19, 1966; lowest, 68.47 ft below land-surface datum, between July 12 and Sept. 22, 1977.

EXTREMES FOR CURRENT YEAR.--Highest water level, 58.87 ft below land-surface datum, between Apr. 2 and July 19; lowest, 64.29 ft below land-surface datum, between July 19 and Sept. 28.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

MEASURED WATER LEVEL

			an I	CIV-DD V	LL L.	ATREMEO						
		PER	IOD				HIGHEST WATER LEVEL	LOWEST WATER LEVEL		DATI	Ē	WATER LEVEL
SEPT	. 29,	1983	то	JAN.	16,	1984	60.95	64.06	JAN.	16,	1984	61.08
JAN.	16,	1984	TO	APR.	2,	1984	59.92	61.81	APR.	2,	1984	60.07
APR.	2,	1984	TO	JULY	19,	1984	58.87	63.16	JULY	19,	1984	62.94
JULY	19,	1984	TO	SEPT.	28,	1984	62.74	64.29	SEPT.	28,	1984	63.43

MEASURED WATER LEVEL

BURLINGTON COUNTY

400242074422301. Local I.D., Rhodia Corp. 1 Obs. NJ-WRD Well Number, 05-0440. LOCATION.--Lat 40°02'42", long 74°42'23", Hydrologic Unit 02040201, on the lands of Rhodia Corporation near Jobstown. Owner: Rhodia Corporation.

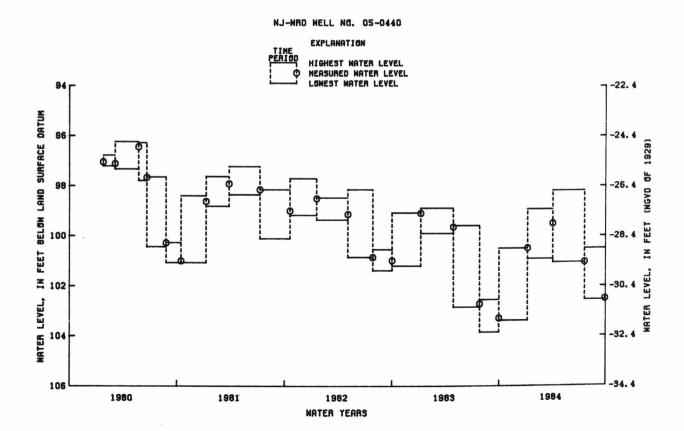
AQUIFER.--Middle aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 8 in, depth 615 ft, screened 603 to 613 ft.
INSTRUMENTATION.--Water-level extremes recorder, April 1977 to current year. Water-level recorder, December 1968 to

WATER-LEVEL EXTREMES

DATUM.--Land-surface datum is 71.65 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 2.22 ft above land-surface datum.

PERIOD OF RECORD.--December 1968 to March 1975, April 1977 to current year. Records for 1968 to 1975 are unpublished and are available in files of New Jersey District Office.


EXTREMES FOR PERIOD OF RECORD.--Highest water level, 86.55 ft below land-surface datum, Dec. 31, 1969; lowest, 104.13 ft below land-surface datum, between Apr. 28 and Aug. 8, 1977.

EXTREMES FOR CURRENT YEAR.--Highest water level, 98.18 ft below land-surface datum, between Apr. 2 and July 20; lowest, 103.39 ft below land-surface datum, between September 30, 1983 and January 6, 1984.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

HIGHEST LOWEST WATER WATER WATER PERIOD LEVEL DATE LEVEL LEVEL SEPT. 30, 1983 TO JAN. 6. 1984 100.50 103.39 JAN. 6, 1984 100.50

6, 1984 TO APR. JAN. 2, 1984 98.93 100.92 APR. 2, 1984 99.51 APR. 2, 1984 TO JULY 20, 1984 98.18 101.06 JULY 20, 1984 101.05 JULY 20, 1984 TO SEPT. 28, 1984 SEPT. 28, 1984 102.52 100.50 102.56

394922074563301. Local I.D., Elm Tree Farm 2 Obs. NJ-WRD Well Number, 07-0412.
LOCATION.--Lat 39°49'22", long 74°56'30", Hydrologic Unit 02040202, about 200 ft northeast of Thomas Road and about 2 mi northwest of Berlin.
Owner: New Jersey Water Company.
AQUIFER.--Lower aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 1,092 ft, screened 1,082 to 1,092 ft.
INSTRUMENTATION.--Water-level extremes recorder, February 1977 to current year. Water-level recorder, January 1963 to June 1975.

to June 1975.

DATUM.--Land-surface datum is 148.68 ft above National Geodetic Vertical Datum of 1929.

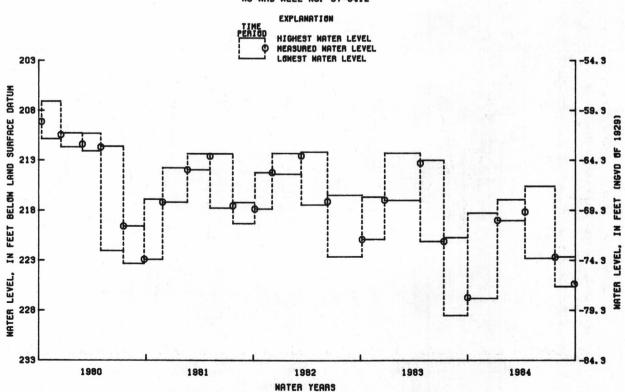
Measuring point: Front edge of cutout in recorder housing, 1.76 ft above land-surface datum.

REMARKS.--Well was originally screened 1,217 to 1,227 ft; rehabilitated August 1969.

PERIOD OF RECORD.--January 1963 to June 1975, February 1977 to current year. Records for 1963 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 166.06 ft below land-surface datum, July 21, 1965; lowest, 228.51 ft below land-surface datum, between July 11 and Sept. 30, 1983.

EXTREMES FOR CURRENT YEAR.--Highest water level, 215.61 ft below land-surface datum, between Apr. 12 and July 23; lowest 226.81 ft below land-surface datum between September 30, 1983 and January 9, 1984.


WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

lowest, 226.81 ft below land-surface datum, between September 30, 1983 and January 9, 1984.

WATER-LEVEL EXTREMES MEASURED WATER LEVEL

		PER	OD				HIGHEST WATER LEVEL	LOWEST WATER LEVEL		DAT	E	WATER LEVEL
SEPT.	30,	1983	TO	JAN.	9,	1984	218.26	226.81	JAN.	9,	1984	219.00
JAN.	9,	1984	TO	APR.	12,	1984	216.93	219.03	APR.	12,	1984	218.16
APR.	12,	1984	то	JULY	23,	1984	215.61	222.80	JULY	23,	1984	222.70
JULY	23,	1984	то	SEPT.	27,	1984	222.66	225.64	SEPT.	27,	1984	225.37

NJ-HRD WELL NO. 07-0412

394922074563302. Local I.D., Elm Tree Farm 3 Obs. NJ-WRD Well Number, J7-0413. LOCATION.--Lat 39°49'22", long 74°56'30", Hydrologic Unit 02040202, about 200 ft northeast of Thomas Road and about 2 mi northwest of Berlin.

Owner: New Jersey Water Company.

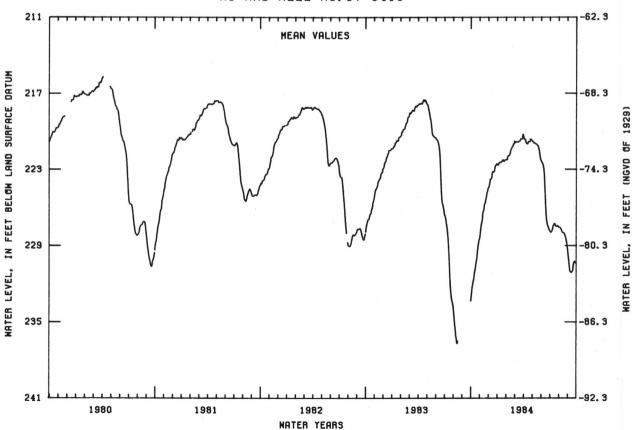
AQUIFER.--Middle aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 717 ft, screened 706 to 717 ft. INSTRUMENTATION. -- Water-level recorder.

DATUM. -- Land-surface datum is 148.73 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Top edge of recorder shelf, 0.60 ft above land-surface datum.

PERIOD OF RECORD.--December 1963 to April 1975, March 1977 to current year. Records for 1963 to 1977 are unpublished and are available in files of New Jersey District Office.


EXTREMES FOR PERIOD OF RECORD.--Highest water level, 174.21 ft below land-surface datum, Feb. 6, 1964; lowest, 236.70 ft below land-surface datum, Aug. 15, 1983.

EXTREMES FOR CURRENT YEAR.--Highest water level, 220.19 ft below land-surface datum, Mar. 29-30; lowest, 233.40 ft below land-surface datum, Oct. 1.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	232.41 231.74 230.97 230.21 229.25 228.43	227.52 226.84 226.12 225.57 224.87 224.43	224.05 223.72 223.17 223.16 222.66 222.61	222.55 222.45 222.40 222.23 222.28 222.22	221.99 221.91 221.51 221.25 220.98 220.77	220.88 220.83 220.79 220.71 220.62 220.28	220.63 220.89 220.99 220.80 220.60 220.72	220.80 220.93 220.99 221.11 221.52 222.28	222.52 222.97 225.03 227.01 227.51 227.81	227.94 227.69 227.33 227.37 227.46 227.52	227.57 227.77 227.97 228.02 228.40 229.23	230.34 231.07 231.03 230.54 230.23 230.39
MEAN	230.77	226.13	223.33	222.39	221.55	220.69	220.74	221.20	225.11	227.55	228.06	230.56
WTR YR	1984	MEAN 22	24.85	HIGH 220	.21 MAR	30	LOW	233.32 OCT	1			

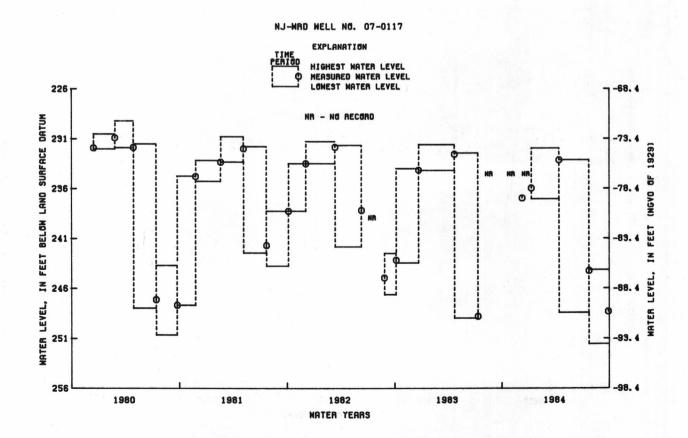
395229074571201. Local I.D., Hutton Hill 1 Obs. NJ-WRD Well Number, 07-0117.
LOCATION.--Lat 39°52'29", long 74°57'12", Hydrologic Unit 02040202, about 800 ft northeast of intersection of Kresson and Cropwell Roads, Cherry Hill Township.
Owner: New Jersey Water Company.
AQUIFER.--Middle aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 562 ft, screened 552 to 562 ft.
INSTRUMENTATION.--Water-level extremes recorder, February 1977 to current year. Water-level recorder, August 1967 to

April 1975.

DATUM.--Land-surface datum is 157.61 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 1.89 ft above land-surface datum.

PERIOD OF RECORD.--August 1967 to April 1975, February 1977 to current year. Records for 1967 to 1975 are unpublished and are available in files of New Jersey District Office.


EXTREMES FOR PERIOD OF RECORD.--Highest water level, 200.77 ft below land-surface datum, Mar. 23, 1968; lowest, 251.56 ft below land-surface datum, between July 23 and Sept. 27, 1984.

EXTREMES FOR CURRENT YEAR.--Highest water level, 231.95 ft below land-surface datum, between Jan. 9 and Apr. 12; lowest, 251.56 ft below land-surface datum, between July 23 and Sept. 27.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

MEASURED WATER LEVEL

WATER-LEVEL EXTREMES HIGHEST LOWEST WATER WATER WATER PERIOD LEVEL DATE LEVEL LEVEL SEPT. 30, 1983 TO DEC. DEC. 236.97 9, 1983 9, 1983 DEC. 9, 1983 TO JAN. 9. 1984 JAN. 9, 1984 235.98 ___ ___ JAN. 9, 1984 TO APR. 12, 1984 231.95 237.05 APR. 12, 1984 233.15 APR. 12, 1984 TO JULY 23, 1984 233.15 248.43 JULY 23, 1984 244.27 JULY 23, 1984 TO SEPT. 27, 1984 244.16 251.56 SEPT. 27, 1984 248.32

395246075043301. Local I.D., Egbert Station Obs. NJ-WRD Well Number, 07-0283.
LOCATION.--Lat 39°52'46", long 75°04'34", Hydrologic Unit 02040202, in Camden County Park, about 400 ft south of the corner of Dallas and Sylvan Avenues, Haddon Heights.

New Jersey Water Company.

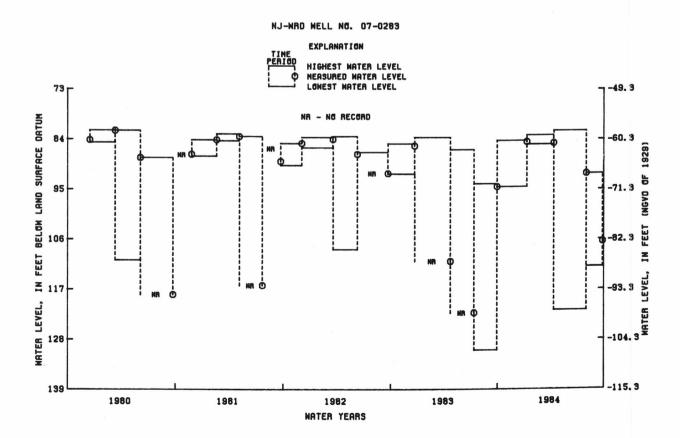
AQUIFER.--Lower aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 455 ft, screened 445 to 455 ft.
INSTRUMENTATION.--Water-level extremes recorder, February 1977 to current year. Water-level recorder, July 1963 to August 1975.

DATUM.--Land-surface datum is 23.66 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 3.16 ft above land-surface datum.

REMARKS.--Water level affected by nearby pumping.

PERIOD OF RECORD.--July 1963 to August 1975, February 1977 to current year. Periodic manual measurements, September 1975 to January 1977. Records for 1963 to 1982 are unpublished and are available in files of New Jersey District Office.


EXTREMES FOR PERIOD OF RECORD.--Highest water level, 61.93 ft below land-surface datum, Apr. 8, 1964; lowest, 130.41 ft below land-surface datum, between July 12 and Sept. 29, 1983.

EXTREMES FOR CURRENT YEAR.--Highest water level, 82.13 ft below land-surface datum, between Apr. 11 and Aug. 1;

lowest, 121.65 ft below land-surface datum, between Apr. 11 and Aug. 1.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

MEASURED WATER LEVEL WATER-LEVEL EXTREMES HIGHEST LOWEST WATER WATER WATER PERIOD LEVEL LEVEL DATE LEVEL 84.64 SEPT. 29, 1983 TO JAN. 9, 1984 84.32 94.50 JAN. 9, 1984 APR. 11, 1984 84.91 JAN. 9, 1984 TO APR. 11, 1984 83.12 85.16 11, 1984 TO AUG. 1, 1984 82.13 121.65 AUG. 1984 91.57 AUG. 1, 1984 TO SEPT. 26, 1984 91.56 112.10 SEPT. 26. 1984 106.53

385616074580001. Local I.D., Traffic Circle Obs. NJ-WRD Well Number, 09-0020. LOCATION.--Lat 38°56'16", long 74°58'00", Hydrologic Unit 02040206, about 2,000 ft south of Sunset Boulevard at the traffic circle in Cape May Point.

Owner: U.S. Geological Survey.

AQUIFER.--Cape May Formation of Pleistocene age.

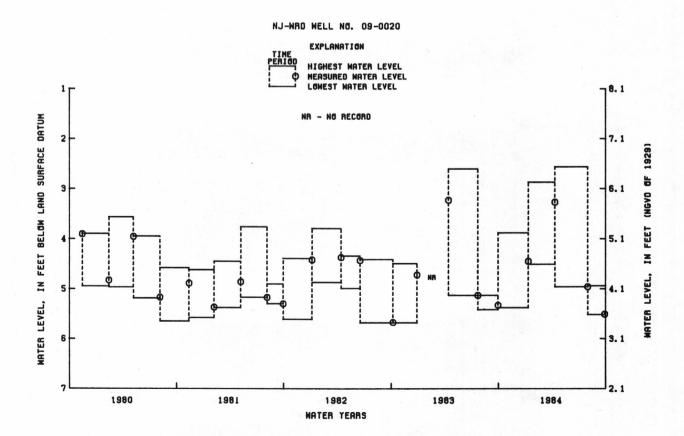
WELL CHARACTERISTICS. -- Drilled water-table observation well, diameter 6 in, depth 20 ft, screened 15 to 20 ft. INSTRUMENTATION. -- Water-level extremes recorder, May 1977 to current year. Water-level recorder, January 1967 to

INSTRUMENTATION.--Water-level extremes recorder, May 1977 to current year. Water-level recorder, January 1967 to April 1977.

DATUM.--Land-surface datum is 9.12 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 3.17 ft above land-surface datum.

REMARKS.--Water level affected by stage of Lake Lilly.


PERIOD OF RECORD.--January 1967 to September 1984 (discontinued). Periodic manual measurements, January 1963 to December 1966. Records for 1963 to 1982 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 2.45 ft below land-surface datum, between Nov. 11, 1977 and Feb. 21, 1978; lowest, 6.12 ft below land-surface datum, Nov. 5-6, 1968.

EXTREMES FOR CURRENT YEAR.--Highest water level, 2.56 ft below land-surface datum, between Apr. 10 and July 31; lowest, 5.52 ft below land-surface datum, between July 31 and Sept. 27.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

				WATE	R-LE	VEL EXT	TREMES			MEAS	JRED	WATER L	EVEL
		PER	IOD					HIGHEST WATER LEVEL	LOWEST WATER LEVEL		DATE	Ē	WATER LEVEL
SEPT.	29,	1983	TO	JAN.	10,	1984		3.88	5.38	JAN.	10,	1984	4.45
JAN.	10,	1984	TO	APR.	10,	1984		2.87	4.51	APR.	10,	1984	3.27
APR.	10,	1984	TO	JULY	31,	1984		2.56	4.96	JULY	31,	1984	4.96
JULY	31,	1984	то	SEPT.	27,	1984		4.94	5.52	SEPT.	27,	1984	5.51

385607074555201. Local I.D., West Cape May 1 Obs. NJ-WRD Well Number, 09-0150. LOCATION.--Lat 38°56'07", long 74°55'56", Hydrologic Unit 02040206, on the north side of Sunset Boulevard, West Cape

Owner: U.S. Geological Survey.

AQUIFER.--Cohansey Sand of Miocene age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 293 ft, screened 283 to 293 ft.

INSTRUMENTATION.--Water-level extremes recorder, May 1977 to current year. Water-level recorder, July 1957 to December 1972.

DATUM.--Land-surface datum is 6.60 ft above National Geodetic Vertical Datum of 1929.

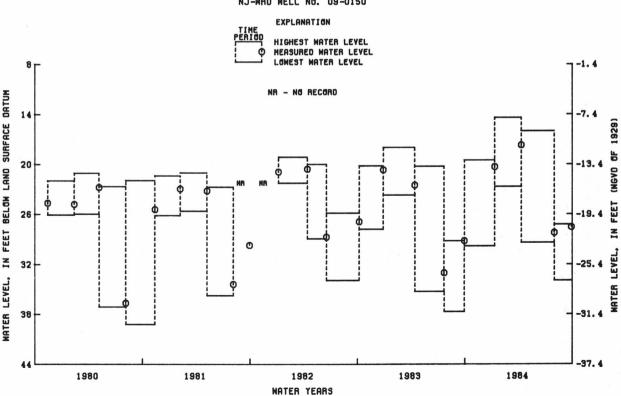
Measuring point: Front edge of cutout in recorder housing, 2.88 ft above land-surface datum.

REMARKS.--Water level affected by tidal fluctuation and nearby pumping.

PERIOD OF RECORD.--July 1957 to December 1972, May 1977 to current year. Periodic manual measurements, February 1973 to September 1976. Records for 1957 to 1982 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 14.38 ft below land-surface datum, between Jan. 10 and Apr. 10, 1984; lowest, 41.30 ft below land-surface datum, Sept. 3, 1963.

EXTREMES FOR CURRENT YEAR.--Highest water level, 14.38 ft below land-surface datum, between Jan. 10 and Apr. 10; lowest, 33.94 ft below land-surface datum, between July 31 and Sept. 27.


WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

WATER-LEVEL EXTREMES

MEASURED WATER LEVEL

PERIOD								HIGHEST WATER LEVEL	LOWEST WATER LEVEL		DATE	:	WATER LEVEL
	SEPT.	29,	1983	TO	JAN.	10,	1984	19.49	29.82	JAN.	10,	1984	20.30
	JAN.	10,	1984	TO	APR.	10,	1984	14.38	22.67	APR.	10,	1984	17.70
	APR.	10,	1984	TO	JULY	31,	1984	15.99	29.41	JULY	31,	1984	28.24
	JULY	31,	1984	то	SEPT.	27,	1984	27.22	33.94	SEPT.	27,	1984	27.55

NJ-WRD WELL NO. 09-0150

385804074574201. Local I.D., Higbee Beach 3 Obs. NJ-WRD Well Number, 09-0049. LOCATION.--Lat 38°58'04", long 74°57'42", Hydrologic Unit 02040206, on the north bank of the west end of the Cape May Canal, Lower Township.

OWNER: U.S. Geological Survey.

AQUIFER.--Cohansey Sand of Miocene age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 250 ft, screened 241 to 250 ft.

INSTRUMENTATION.--Water-level extremes recorder, May 1977 to current year. Water-level recorder, June 1965 to September 1975.

WATER-LEVEL EXTREMES

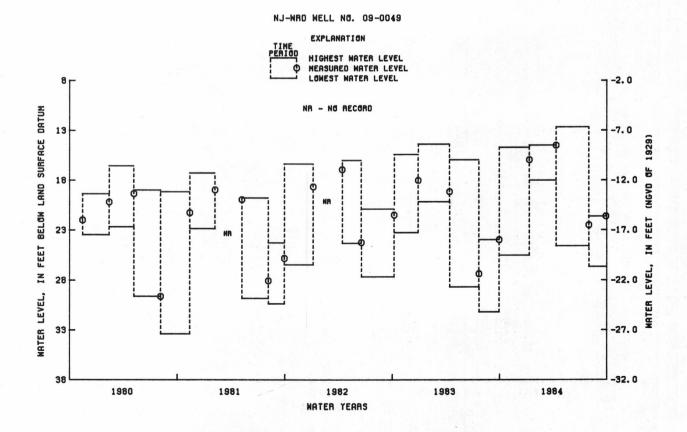
September 1975.

DATUM.--Land-surface datum is 6.00 ft above National Geodetic Vertical Datum of 1929.

Measuring Point: Front edge of cutout in recorder housing, 3.00 ft above land-surface datum.

REMARKS.--Water level affected by tidal fluctuation.

PERIOD OF RECORD.--June 1965 to September 1975, May 1977 to current year. Records for 1975 to 1980 are unpublished and are available in files of New Jersey District Office.


EXTREMES FOR PERIOD OF RECORD.--Highest water level, 12.65 ft below land-surface datum, between Apr. 10 and July 31, 1984; lowest, 34.22 ft below land-surface datum, July 31, 1974.

EXTREMES FOR CURRENT YEAR.--Highest water level, 12.65 ft below land-surface datum, between Apr. 10 and July 31; lowest, 26.67 ft below land-surface datum, between July 31 and Sept. 27.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

MEASURED WATER LEVEL

HIGHEST LOWEST WATER WATER WATER PERIOD LEVEL LEVEL DATE LEVEL SEPT. 29, 1983 TO JAN. 10, 1984 14.69 25.53 JAN. 10, 1984 15.94 14.50 JAN. 10, 1984 TO APR. 10, 1984 14.47 APR. 10, 1984 18.01 10, 1984 TO JULY 31, 1984 22.52 12.65 24.60 JULY 31, 1984 JULY 31, 1984 TO SEPT. 27, 1984 SEPT. 27, 1984 21.63 21.63 26.67

390425074544601. Local I.D., Oyster Lab 4 Obs. NJ-WRD Well Number, 09-0089. LOCATION.--Lat 39°04'25", long 74°54'46", Hydrologic Unit 02040206, at the Rutgers Oyster Laboratory near Green Creek, Middle Township.

Creek, Middle Township.

Owner: U.S. Geological Survey.

AQUIFER.--Cohansey Sand of Miocene age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 210 ft, screened 195 to 210 ft.

INSTRUMENTATION.--Water-level extremes recorder, May 1977 to current year. Water-level recorder, August 1957 to

DATUM .-- Land-surface datum is 7.37 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 3.95 ft above land-surface datum.

REMARKS.--Water level affected by tidal fluctuation.

PERIOD OF RECORD.--August 1957 to August 1975, May 1977 to current year. Periodic manual measurements, September 1975 to April 1977. Records for 1957 to 1982 are unpublished and are available in files of New Jersey District

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 2.07 ft below land-surface datum, Apr. 3, 1958; lowest, 14.10 ft below land-surface datum, between Aug. 28, 1980 and Feb. 6, 1981.

EXTREMES FOR CURRENT YEAR.--Highest water level, 4.29 ft below land-surface datum, between Jan. 10 and Apr. 10; lowest, 14.09 ft below land-surface datum, between July 31 and Sept. 27.

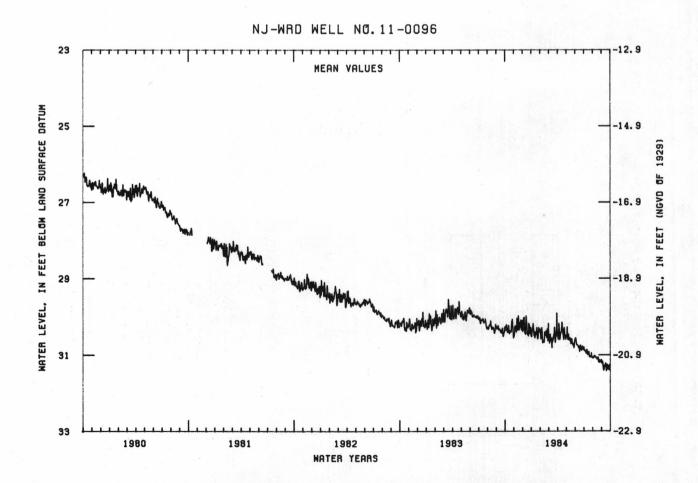
WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

WATER-LEVEL EXTREMES

MEASURED WATER LEVEL

		PERI	OD				HIGHEST WATER LEVEL	LOWEST WATER LEVEL		DATE	WATER LEVEL
SEPT.	29,	1983	то	JAN.	10,	1984	5.31	11.12	JAN.	10, 1984	7.63
JAN.	10,	1984	то	APR.	10,	1984	4.29	9.72	APR.	10, 1984	7.12
APR.	10,	1984	TO	JULY	31,	1984	4.58	13.38	JULY	31, 1984	10.32
JULY	31,	1984	то	SEPT.	27,	1984	9.60	14.09	SEPT.	27, 1984	9.62

NJ-WRD WELL NO. 09-0089


EXPLANATION TIME PERIOD HIGHEST WATER LEVEL MEASURED WATER LEVEL LOWEST WATER LEVEL -1 1 8. 4 DATUM 2 5.4 SURFACE 늄 2. 4 LAND BELOW FEET Z LEVEL, Z 11 LEVEL, MATER 14 -6. 6 17 -9.6 1980 1981 1983 1984 WATER YEARS

CUMBERLAND COUNTY

391828075120902. Local I.D., Jones Island 2 Obs. NJ-WRD Well Number, 11-0096.
LOCATION.--Lat 39°18'29", long 75°12'08", Hydrologic Unit 02040206, about 1.7 mi south of Cedarville at Jones Island, Lawrence Township.
Owner: Cumberland County.
AQUIFER.--Piney Point aquifer of Eocene age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 4 in, depth 375 ft, screened 365 to 375 ft.
INSTRUMENTATION.--Water-level recorder.
DATUM.--Land-surface datum is 10.10 ft above National Geodetic Vertical Datum of 1929.
Measuring point: Top edge of recorder shelf, 1.90 ft above land-surface datum.
PERIOD OF RECORD.--March 1977 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 19.99 ft below land-surface datum, Mar. 22, 1977; lowest, 31.50 ft below land-surface datum, Sept. 17 and 27, 1984.
EXTREMES FOR CURRENT YEAR.--Highest water level, 29.62 ft below land-surface datum, Mar. 29; lowest, 31.50 ft below land-surface datum, Sept. 17 and 27.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

						MEAN V	ALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	30.20 30.41 30.43 30.37 30.11 30.50	30.23 30.18 30.16 30.21 30.08 30.30	30.43 30.19 30.46 30.37	30.28	30.28 30.66 30.39 30.36 30.35 30.33	30.54 30.65 30.64 30.47 30.53 30.43	30.17 30.48 30.25 30.47 30.42 30.48	30.51 30.59 30.62 30.58 30.74 30.58	30.72 30.76 30.84 30.84 30.76 30.80	30.87 30.92 30.99 31.06 31.06	31.05 31.06 31.10 31.09 31.20 31.12	31.25 31.28 31.21 31.24 31.27 31.24
MEAN	30.32	30.25	30.31	30.39	30.48	30.51	30.43	30.61	30.77	30.96	31.10	31.30
WTR YR	1984	MEAN	30.62	HIGH 29	.90 MAR 2	9	I.OW	31.42 SEP	17			

MEASURED WATER LEVEL

CUMBERLAND COUNTY

LOCATION.--Lat 39°22'19", long 75°01'13", Hydrologic Unit 02040206, about 0.2 mi northeast of Route 47 on Orange Street, Millville.

Owner: Millville City Water Department.

AQUIFER.--Kirkwood-Cohansey aquifer system of Miocene age.

WELL CHARACTERISTICS.--Drilled water-table observation well, diameter 12 in, depth 149 ft, screened 114 to 149 ft. INSTRUMENTATION .-- Water-level extremes recorder, March 1977 to current year. Water-level recorder, October 1962 to September 1975.

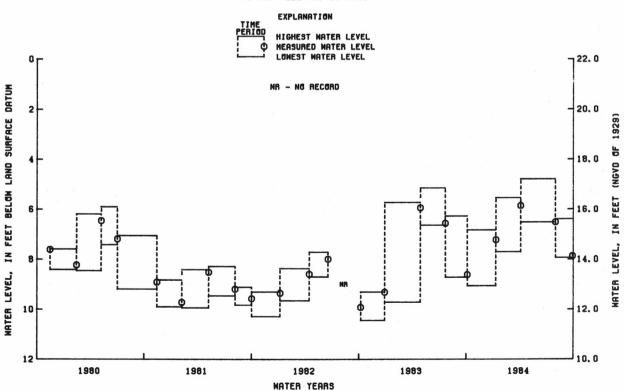
WATER-LEVEL EXTREMES

September 1975.

DATUM.--Altitude of land-surface datum is 22 ft, from topographic map.

Measuring point: Front edge of cutout in recorder housing, 4.26 ft above land-surface datum.

PERIOD OF RECORD.--October 1962 to September 1975, March 1977 to September 1984 (discontinued). Records for 1962 to 1980 are unpublished and are availabe in files of New Jersey District Office.


EXTREMES FOR PERIOD OF RECORD.--Highest water level, 4.79 ft below land-surface datum, between Apr. 4 and July 31, 1984; lowest, 11.37 ft below land-surface datum, Feb. 10, 1966.

EXTREMES FOR CURRENT YEAR.--Highest water level, 4.79 ft below land-surface datum, between Apr. 4 and July 31; lowest, 9.06 ft below land-surface datum, between Oct. 5 1983 and Jan. 10, 1984.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

HIGHEST LOWEST WATER WATER WATER DATE PERIOD LEVEL. LEVEL LEVEL. OCT. 5, 1983 TO JAN. 10, 1984 9.06 10, 1984 7.23 6.83 JAN. JAN. 10, 1984 TO APR. 4, 1984 5.54 7.71 APR. 4, 1984 5.86 APR. 4, 1984 TO JULY 31, 1984 4.79 6.52 JULY 31, 1984 6.52 JULY 31, 1984 TO SEPT. 27, 1984 SEPT. 27, 1984 6.39 7.94 7.87

CUMBERLAND COUNTY

392442075191601. Local I.D., Sheppards 1 Obs. NJ-WRD Well Number, 11-0072. LOCATION.--Lat 39°24'42", long 75°19'16", Hydrologic Unit 02040206, near the south end of Sheppards Mill Pond, about 3.5 mi south of Shiloh. Owner: Cumberland County.

AQUIFER.--Wenonah-Mount Laurel aquifer of Cretaceous age. AQUIFER.--Wenonah-Mount Laurel aquifer of Cretaceous age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 4 in, depth 638 ft, screened 603 to 623 ft.

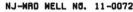
INSTRUMENTATION.--Water-level extremes recorder, May 1977 to current year.

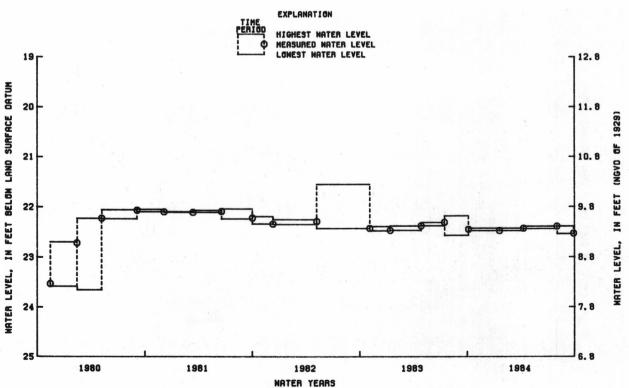
DATUM.--Land-surface datum is 31.80 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 1.75 ft above land-surface datum.

PERIOD OF RECORD.--May 1977 to September 1984 (discontinued). Periodic manual measurements, March 1973 to June 1975.

Records for 1973 to 1981 are unpublished and are available in files of New Jersey District Office.


EXTREMES FOR PERIOD OF RECORD.--Highest water level, 21.44 ft below land-surface datum, between May 11 and Aug. 12, 1977; lowest, 24.08 ft below land-surface datum, between Sept. 13 and Nov. 14, 1979.


EXTREMES FOR CURRENT YEAR.--Highest water level, 22.39 ft below land-surface datum, between Apr. 9 and Sept. 26; lowest, 22.54 ft below land-surface datum, between Aug. 1 and Sept. 26.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

WATER-LEVEL EXTREMES MEASURED WATER LEVEL

		PERIO	DD .				HIGHEST WATER LEVEL	LOWEST WATER LEVEL		DATI	ī	WATER LEVEL
OCT.	5,	1983	ro .	JAN.	18,	1984	22.43	22.48	JAN.	18,	1984	22.48
JAN.	18,	1984	01	APR.	9,	1984	22.43	22.48	APR.	9,	1984	22.43
APR.	9,	1984	ro .	AUG.	1,	1984	22.39	22.44	AUG.	1,	1984	22.39
AUG.	1.	1984	го	SEPT.	26.	1984	22.39	22.54	SEPT.	26.	1984	22.53

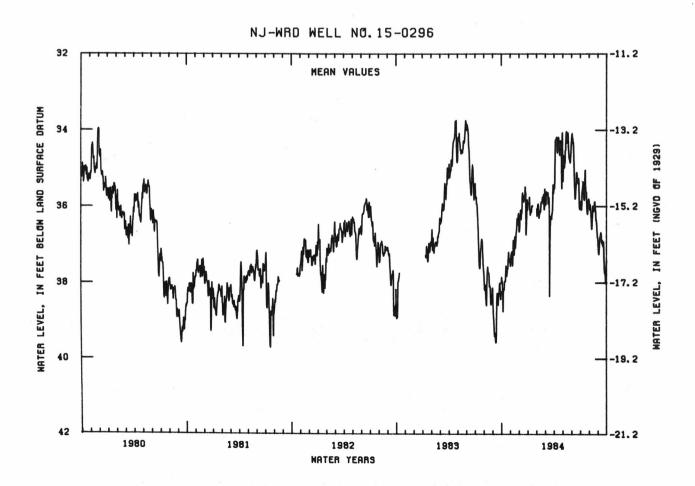
GLOUCESTER COUNTY

394942075131701. Local I.D., Shell Chemical 5 Obs. NJ-WRD Well Number, 15-0296. LOCATION.--Lat 39°49'42", long 75°13'17", Hydrologic Unit 02040202, near the intersection of Mantua Grove Road and Route 295, West Deptford Township.

Owner: Shell Chemical Company.

AQUIFER.--Lower aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 327 ft, screened 321 to 326 ft. WELL CHARACTERISTICS. -- Drifted a cestain observation well, discussed and supervaled well, discussed well, discusse


PERIOD OF RECORD.-June 1962 to current year. Records for 1962 to 1977 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 27.75 ft below land-surface datum, Dec. 6, 1962; lowest, 40.63 ft below land-surface datum, July 21, 1977.

EXTREMES FOR CURRENT YEAR.--Highest water level, 33.58 ft below land-surface datum, May 14; lowest, 39.09 ft below

land-surface datum, Oct. 7.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 37.22 37.23 37.10 36.31 36.18 35.72 35.93 36.20 35.89 34.66 34.97 34.53 34.26 34.22 36.09 36.03 36.99 38.04 35.87 35.72 10 36.58 38.19 35.72 35.79 35.21 35.43 36.68 36.09 34.18 37.97 37.78 34.31 35.59 35.84 36.89 15 36.02 20 36.84 35.83 36.45 34.55 34.17 35.26 35.63 35.87 37.09 37.75 25 37.32 36.31 36.75 35.77 36.20 34.56 34.74 35.26 36.18 36.36 EOM 37.38 36.50 36.02 36.07 35.65 35.59 34.06 34.36 36.04 35.85 36.87 37.42 MEAN 37.81 36.95 36.06 36.02 35.97 36.06 34.58 34.60 35.15 35.76 36.25 37.20 WTR YR 1984 MEAN 36.04 HIGH 34.03 MAY 14 LOW 38.76 OCT 7

GLOUCESTER COUNTY

395232075094201. Local I.D., Eagle Point 3 Obs. NJ-WRD Well Number, 15-0323. LOCATION.--Lat 39°52'35", long 75°09'50", Hydrologic Unit 02040202, at the Texaco Eagle Point Refinery, West Deptford Township.

Owner: Texaco Incorporated.

AQUIFER.--Lower aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 8 in, depth 276 ft, screened 255 to 275 ft.

INSTRUMENTATION . -- Water-level extremes recorder, April 1981 to current year. Water-level recorder, November 1949 to July 1975.

DATUM.--Land-surface datum is 20.96 ft above National Geodetic Vertical Datum of 1929.

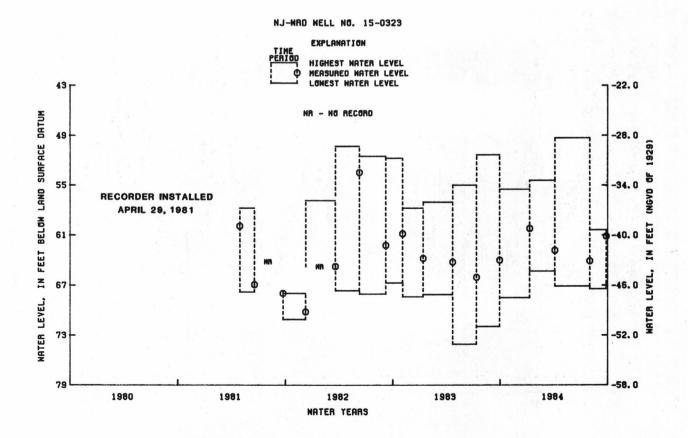
WATER-LEVEL EXTREMES

Measuring point: Top of casing, 3.00 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Top of casing, 3.00 ft above land-surface datum.

REMARKS.--Water level affected by tidal fluctuation and nearby pumping.

PERIOD OF RECORD.--November 1949 to July 1975, April 1981 to current year. Periodic manual measurements, October 1976 to March 1981. Records for 1975 to 1981 are unpublished and are available in files of New Jersey District Office.


EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 37.70 ft below land-surface datum, Nov. 25, 1950; lowest, 87.30 ft below land-surface datum, June 28, 1963.

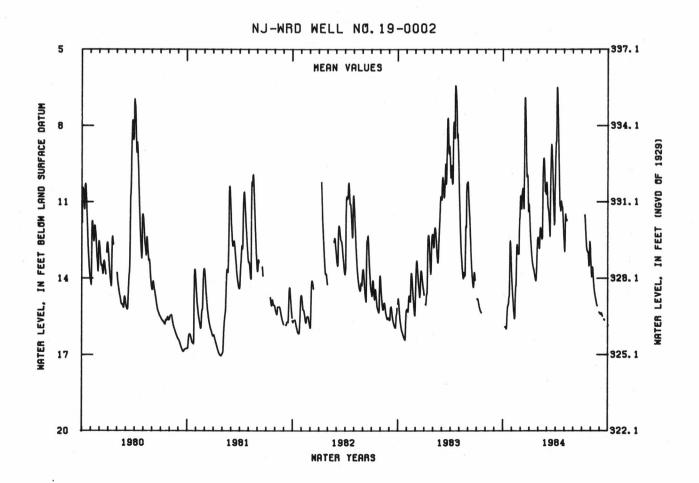
EXTREMES FOR CURRENT YEAR .-- Highest water level, 49.29 ft below land-surface datum, between Apr. 4 and Aug. 1; lowest, 68.48 ft below land-surface datum, between Sept. 29, 1983 and Jan. 9, 1984.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

MEASURED WATER LEVEL

HIGHEST LOWEST WATER WATER WATER PERIOD LEVEL DATE LEVEL SEPT. 29, 1983 TO JAN. 60.22 9, 1984 55.47 68.48 JAN. 9. 1984 JAN. 9, 1984 TO APR. 4, 1984 54.41 65.31 APR. 4, 1984 62.83 49.29 1, 1984 APR. 4, 1984 TO AUG. 1, 1984 67.11 AUG. 64.10 61.15 AUG. 1, 1984 TO SEPT. 26, 1984 60.36 67.43 SEPT. 26, 1984

HUNTERDON COUNTY


402644074563601. Local I.D., Bird Obs. NJ-WRD Well Number, 19-0002. LOCATION.--Lat 40°26'44", long 74°56'36", Hydrologic Unit 02040105, near U.S. Post Office, Sergeantsville. Owner: Phillip Fleming.

AQUIFER.--Stockton Formation of Triassic age.

AQUIFER.--Stockton Formation of Triassic age.
WELL CHARACTERISTICS.--Dug water-table observation well, diameter 3 ft, depth 21 ft, lined with stone.
INSTRUMENTATION.--Water-level recorder.
DATUM.--Land-surface datum is 342.08 ft above National Geodetic Vertical Datum of 1929.
Measuring point: Top edge of recorder shelf, 1.50 ft above land-surface datum.
PERIOD OF RECORD.--June 1965 to July 1970, May 1977 to current year. Periodic manual measurements, September 1970 to September 1976. Records for 1965 to 1976 are unpublished and are available in files of New Jersey District Office.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 6.37 ft below land-surface datum, Apr. 18, 1983; lowest, 17.04 ft below land-surface datum, Jan. 26-28, 1981.
EXTREMES FOR CURRENT YEAR.--Highest water level, 6.43 ft below land-surface datum, Apr. 6-7; lowest, 15.99 ft below land-surface datum, Oct. 12-13.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5		14.89	10.70	12.54	12.45	11.10	7.34	11.70			13.95	15.39
10	15.92	15.59	10.82	13.31	12.22	11.72	7.94	11.69			13.92	15.46
15	15.46	14.27	6.91	13.63	10.89	9.87	10.77		12	.17	14.56	
20	14.98	12.86	9.07	13.96	9.41	9.12	11.14		12	.88	14.88	
25	12.67	13.04	10.01	13.69	10.50	10.92	11.22			.29		
EOM	13.89	10.76	11.31	12.41	10.32	10.02	12.35		12	.76	15.34	15.83
MEAN	14.65	13.68	10.00	13.16	11.21	10.65	9.92		12	.71	14.33	
WTR YR	1984	MEAN	12.34	HIGH	6.50 APR	6 AND OT	HERS	LOW	15.98 OCT 1	2		

SALEM COUNTY

393348075275701. Local I.D., Salem 1 Obs. NJ-WRD Well Number, 33-0251.
LOCATION.--Lat 39°33'48", long 75°27'55", Hydrologic Unit 02040206, about 300 ft south of the intersection of Elm and Magnolia Streets, Salem.

Owner: U.S. Geological Survey.

AQUIFER.--Middle aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 709 ft, screened 699 to 709 ft.

INSTRUMENTATION.--Water-level extremes recorder, May 1977 to current year. Water-level recorder, December 1965 to

August 1975.

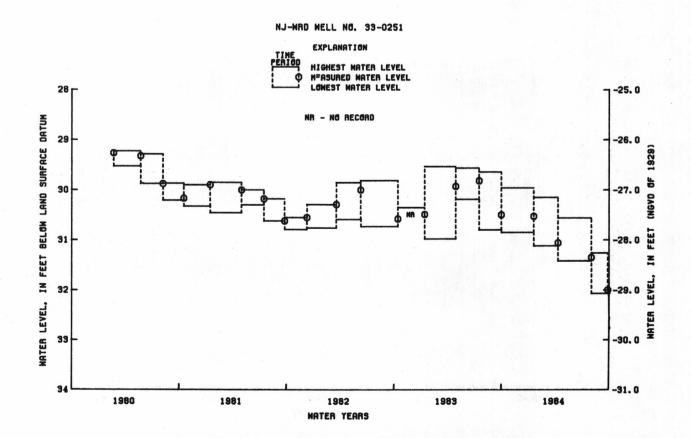
WATER-LEVEL EXTREMES

August 1975.

DATUM.--Land-surface datum is 3.00 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 2.87 ft above land-surface datum.

PERIOD OF RECORD.--December 1965 to August 1975, May 1977 to current year. Records for 1965 to 1980 are unpublished and are available in files of New Jersey District Office.


EXTREMES FOR PERIOD OF RECORD.--Highest water level, 14.97 ft below land-surface datum, Dec. 13, 1965; lowest, 32.07 ft below land-surface datum, between Aug. 1 and Sept. 26, 1984.

EXTREMES FOR CURRENT YEAR.--Highest water level, 29.96 ft below land-surface datum, between Sept. 29, 1983 and Jan. 17, 1984; lowest, 32.07 ft below land-surface datum, between Aug. 1 and Sept. 26.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

MEASURED WATER LEVEL

		PER	IOD				HIGHEST WATER LEVEL	LOWEST Water Level		DAT	E	WATER LEVEL
SEPT.	29,	1983	TO	JAN.	17,	1984	29.96	30.85	JAN.	17,	1984	30.53
JAN.	17,	1984	TO	APR.	9,	1984	30.15	31.12	APR.	9,	1984	31.06
APR.	9,	1984	TO	AUG.	1,	1984	30.56	31.42	AUG.	1,	1984	31.35
AUG.	1,	1984	TO	SEPT.	26,	1984	31.26	32.07	SEPT.	26,	1984	32.00

MEASURED WATER LEVEL

SALEM COUNTY

393348075275703. Local I.D., Salem 3 Obs. NJ-WRD Well Number, 33-0253. LOCATION.--Lat 39°33'48", long 75°27'55", Hydrologic Unit 02040206, about 300 ft south of the intersection of Elm and Magnolia Streets, Salem.

WATER-LEVEL EXTREMES

Owner: U.S. Geological Survey.

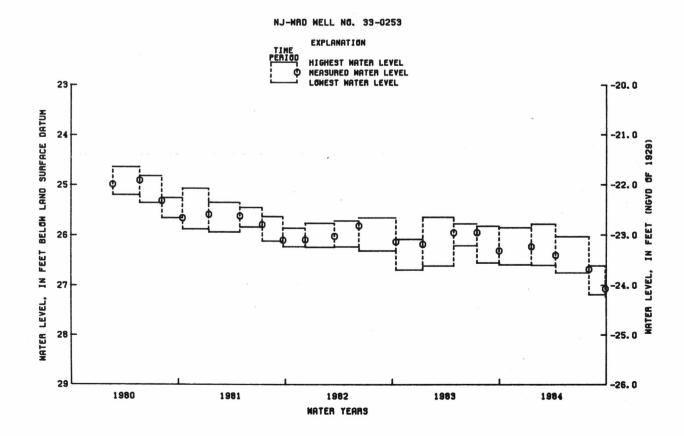
AQUIFER.--Upper aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 340 ft, screened 335 to 340 ft.

INSTRUMENTATION.--Water-level extremes recorder, May 1977 to current year. Water-level recorder, November 1965 to August 1975.

DATUM.--Land-surface datum is 3.00 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 2.30 ft above land-surface datum.


PERIOD OF RECORD.--November 1965 to August 1975, May 1977 to current year. Records for 1965 to 1981 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 12.28 ft below land-surface datum, Feb. 13, 1966; lowest, 27.19 ft below land-surface datum, between Aug. 1 and Sept. 26, 1984.

EXTREMES FOR CURRENT YEAR.--Highest water level, 25.78 ft below land-surface datum, between Jan. 17 and Apr. 9; lowest, 27.19 ft below land-surface datum, between Aug. 1 and Sept. 26.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

HIGHEST LOWEST WATER WATER WATER PERIOD LEVEL DATE LEVEL SEPT. 29, 1983 TO JAN. 17, 1984 25.85 26.59 JAN. 17, 1984 26.23 JAN. 17, 1984 TO APR. 25.78 APR. 9, 1984 26.40 9, 1984 26.60 APR. 9, 1984 TO AUG. 1, 1984 26.03 26.75 AUG. 1, 1984 26.68 AUG. 1, 1984 TO SEPT. 26, 1984 SEPT. 26, 1984 27.07 26.61 27.19

SALEM COUNTY

WATER-LEVEL EXTREMES

393348075275702. Local I.D., Salem 2 Obs. NJ-WRD Well Number, 33-0252. LOCATION.--Lat 39°33'48", long 75°27'55", Hydrologic Unit 02040206, about 300 ft south of the intersection of Elm and Magnolia Streets, Salem.

Owner: U.S. Geological Survey.

AQUIFER.--Wenonah-Mount Laurel aquifer of Cretaceous age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 4 in, depth 96 ft, screened 91 to 96 ft.

INSTRUMENTATION.--Water-level extremes recorder, May 1977 to current year. Water-level recorder, November 1965 to

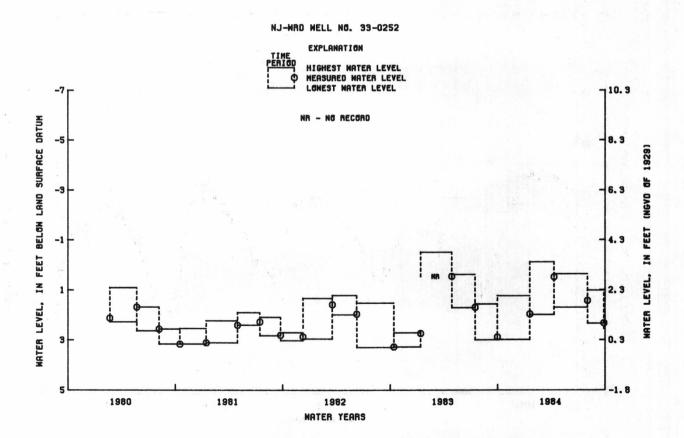
INSTRUMENTATION.--Water-level extremes recorder, May 1977 to current year. Water-level recorder, November 1965 to July 1975.

DATUM.--Land-surface datum is 3.25 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 2.77 ft above land-surface datum.

PERIOD OF RECORD.--November 1965 to July 1975, May 1977 to current year. Records for 1965 to 1981 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 0.51 ft above land-surface datum, between Jan. 12 and Apr. 27, 1983; lowest, 6.45 ft below land-surface datum, Sept. 9, 1966.


EXTREMES FOR CURRENT YEAR.--Highest water level, 0.12 ft above land-surface datum, between Jan. 17 and Apr. 9; lowest, 2.99 ft below land-surface datum, between Sept. 29, 1983 and Jan. 17, 1984.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

MEASURED WATER LEVEL

SEPT. 29, 1983 TO JAN. 17, 1984 1.23 2.99 JAN.	DATE WATE LEVE	
	17, 1984 1.9	7
JAN. 17, 1984 TO APR. 9, 1984 -0.12* 1.99 APR.	9, 1984 0.4	9
APR. 9, 1984 TO AUG. 1, 1984 0.36 1.70 AUG.	1, 1984 1.4	3
AUG. 1, 1984 TO SEPT. 26, 1984 1.01 2.34 SEPT. 2	26, 1984 2.3	3

*Water level above land surface.

SALEM COUNTY

394037075191501. Local I.D., Point Airy Obs. NJ-WRD Well Number, 33-0187.
LOCATION.--Lat 39°40'37", long 75°19'14", Hydrologic Unit 02040206, at intersection of Point Airy and Woodstown-Swedesboro Roads, 1 mi north of Woodstown Borough boundary.
Owner: U.S. Geological Survey.
AQUIFER.--Middle aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 672 ft, screened 664 to 672 ft.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter oin, depth of 2 to, screened out to 0,2 to.

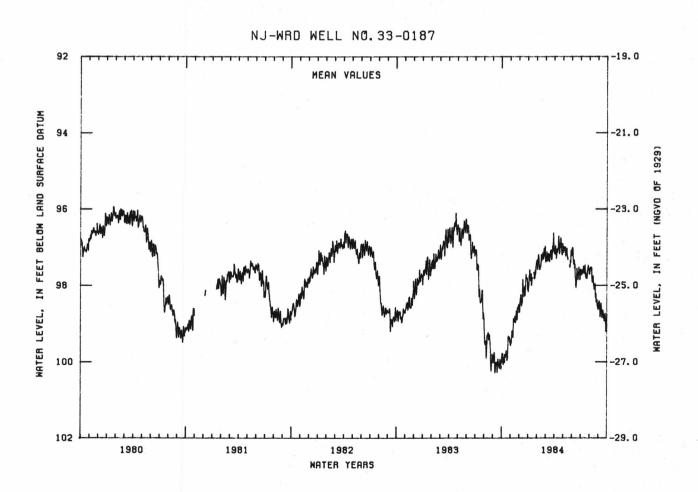
INSTRUMENTATION.--Water-level recorder.

DATUM.--Land-surface datum is 72.97 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Top of 6 inch casing, 1.80 ft above land-surface datum.

REMARKS.--Water level affected by nearby pumping.

PERIOD OF RECORD.--February 1959 to August 1975, March 1977 to current year.


EXTREMES FOR PERIOD OF RECORD.--Highest water level, 78.55 ft below land-surface datum, Mar. 6, 1959; lowest, 100.52 ft below land-surface datum, Aug. 6-7, 1977.

EXTREMES FOR CURRENT YEAR.--Highest water level, 96.54 ft below land-surface datum, Mar. 29; lowest, 100.19 ft below land-surface datum. Oct. 7.

land-surface datum, Oct. 7.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

						MEAN VA	ALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	99.78 99.89 99.87 99.96 99.33 99.44	99.29 99.14 98.96 98.76 98.58 98.71	98.22	97.72 97.78 97.80 97.66 97.61 97.33	97.19 97.59 97.19 97.14 97.02 97.11	97.20 97.33 97.38 97.16 97.08	96.95 97.11 96.85 96.99 96.96 96.90	97.05 97.22 97.20 97.53 97.07	97.31 97.55 98.06 97.67 97.52 97.71	97.61 97.65 97.60 97.81 97.60 97.69	97.58 97.92 97.99 97.95 98.37 98.63	98.61 98.46 98.66 98.83 98.92 98.75
MEAN	99.74	98.97	98.17	97.74	97.31	97.19	97.03	97.17	97.58	97.64	98.01	98.74
WTR YR	1984	MEAN	97.96	HIGH 9	6.62 MAR	29	LOW	100.07 OCT	7			

WARREN COUNTY

405050075033201. Local I.D., Hoffmann LaRoche 4 Obs. NJ-WRD Well Number, 41-0013.
LOCATION.--Lat 40°50'50", long 75°03'32", Hydrologic Unit 02040105, 1 mi northeast of Belvidere on Route 46.
Owner: Hoffmann LaRoche, Incorporated.
AQUIFER.--Stratified drift of Pleistocene age.
WELL CHARACTERISTICS.--Drilled semi-artesian observation well, diameter 8 in, depth 87 ft, screened 67 to 87 ft.

INSTRUMENTATION .-- Water-level recorder .

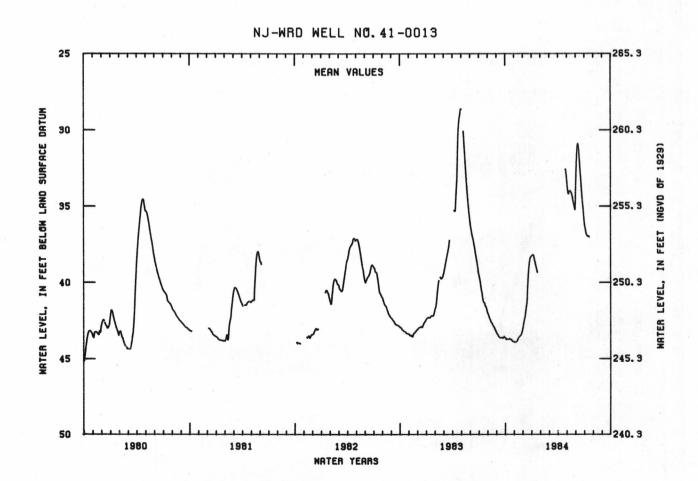
INSTRUMENTATION.--water-level recorder.

DATUM.--Land-surface datum is 290.30 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Top edge of recorder shelf, 2.20 ft above land-surface datum.

REMARKS.--water level affected by stage of Delaware River.

PERIOD OF RECORD.--September 1960 to July 1984 (discontinued).


EXTREMES FOR PERIOD OF RECORD.--Highest water level, 28.59 ft below land-surface datum, Apr. 30, 1983; lowest, 46.59 ft below land-surface datum, Sept. 18, 1977.

EXTREMES FOR CURRENT YEAR.--Highest water level, 30.88 ft below land-surface datum, June 8; lowest, 43.92 ft below land-surface datum, Nov. 1.2

land-surface datum, Nov. 1-3.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	43.70	43.91	42.40	38.20				34.14	31.25	36.64		
10	43.72	43.83	41.79	38.60				34.02	31.08	36.96		
15	43.67	43.59	40.70					34.08	32.35	36.96		
20	43.73	43.50	39.08					34.40	33.70			
25	43.86	43.33	38.38					34.88	34.92			
EOM	43.90	42.91	38.23				33.18	34.08	36.03			
MEAN	43.75	43.58	40.34					34.32	33.01			
WTR YR	1984	MEAN	38.62	HIGH 3	0.89 JUN	8	LOW	43.92 NOV	1 AND	OTHERS		

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

BURLINGTON COUNTY

NJ-WRD WELL NUMBER	LOCAI I DENTIF		Li	TITUDE	LONGI	D	ELEV. OF LAND SURFACE ATUM (FT. ABOVE NGVD)	SCREENED INTERVAL (FT)		DATE OF SAMPLE	TEMPER- ATURE (DEG C)	ANCE	PH (STAND- ARD UNIT)
05 - 0689 05 - 0648	USGS-LEB ST FO WILLINGBORO 3	OR OBS		51 52 01 03	074 2 074 5		152 35	33 * 306 - 316	121CKKD 211MRPAM			52 250	6.6 7.1
:	LOCAL IDENTIFIER		HARD- NESS (MG/L AS CACO3)	CALC DIS SOL (MG AS	IUM - VED S /L (AGNE- SIUM, DIS- OLVED MG/L S MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	AS	CAR- BONATE FET-FLD (MG/L AS CO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
USGS-LEI WILLING	B ST FOR OBS 23 BORO 3	3-D	18 82		. 6	.31 4.8	1.6 6.1	.20 5.4	12 110		14 92	9.1 34	3.5 2.4
	LOCAL IDENTIFIER		FLUO- RIDE, DIS- SOLVEI (MG/L AS F)	SILI DIS SOL (MG AS	CA, RE - AT VED D /L	LIDS, SIDUE 180 EG. C DIS- OLVED MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	AMMONÍA	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)
USGS-LEI WILLING	B ST FOR OBS 23 BORO 3	3-D	.10		2.9 8.1	48 138	.070 <.010	<.10 <.10	.160 .150	.16 .50		<.010 .120	70 10
	LOCAL IDENTIFIER			IS- VED S 'L (ADMIUM DIS- OLVED UG/L S CD)	CHRO MIUM DIS- SOLVE (UG/L AS CR	DIS- D SOLVEI (UG/L	DIS- D SOLVED (UG/L	DIS- SOLVED (UG/L	DIS-	MERCUF DIS- SOLVED (UG/L AS HG))	
	EB ST FOR OBS 2 GBORO 3	23 - D	,	1	2 <1	<1 2	22 <1	4 7000	2 5	29 110	.2 <.1		
			LO IDENT				ZINC, DIS-	(MG/L	PHENOLS TOTAL UG/L)				
			S-LEB ST LINGBORO		S 23-D		38 <3	1.1 .50	<1 3				

^{*} Total depth of well

¹²¹CKKD - Kirkwood-Cohansey aquifer system
211MRPAM - Middle aquifer, Potomac-Raritan-Magothy aquifer system

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

CAPE MAY COUNTY

NJ-WRD WELL NUMBER	SITE OWNER	LOCAL IDENTIFIER	LATITUDE L	(1	ELEV. OF LAND SURFACE FT. ABOVE NGVD)	SCREENED INTERVAL (FT)	AQUIFER UNIT
09-0027 09-0028 09-0036 09-0052 09-0054 09-0067 09-0070 09-0072	CAPE MAY CITY WD HARB-WALK REF CO CAPE MAY CITY WD LOWER TWP MUA WILDWOOD WD WILDWOOD WD WILDWOOD WD WILDWOOD WD WILDWOOD WD	CMCWD 1 HW 2 CMCWD 2 LTMUA 1 LTMUA 2 RIO GRANDE 36 RIO GRANDE 31 RIO GRANDE 29	385643 385641 385701 385851 385905 390135 390137 390138 390139	745533 745749 745528 745515 745625 745352 745352 745350 745349	7 10 10 18 14 10 10 10	277 - 306 235 - 265 174 - 282 241 - 262 212 - 247 461 - 590 48 - 63 108 - 135 191 - 231	121CNSY 121CNSY 121CNSY 122KRKDU 112CPMY
NJ-WRD WELL NUMBER	SITE OWNER	LOCAL IDENTIFIER	DATE OF Sample	TEMPER- ATURE (DEG C)	SPE- CIFIC CONDUCT ANCE (UMHOS)	PH (UNITS)	CHLORIDE DIS- SOLVED (MG/L AS CL)
09-0027 09-0028 09-0036 09-0052 09-0054 09-0067 09-0070 09-0072	CAPE MAY CITY WD HARB-WALK REF CO CAPE MAY CITY WD LOWER TWP MUA LOWER TWP MUA WILDWOOD W D	CMCWD 1 HW 2 CMCWD 2 LTMUA 1 LTMUA 2 RIO GRANDE 38 RIO GRANDE 36 RIO GRANDE 31 RIO GRANDE 29	10/14/1983 10/14/1983 10/14/1983 10/14/1983 10/13/1983 10/13/1983 10/13/1983 10/13/1983	15.5 15.5 15.5 15.0 17.0 15.0	600 1,000 460 255 250 350 235 192 169	7.4 7.5 7.8 7.8 8.4 6.2 7.7	100.0 220.0 66.0 11.0 14.0 26.0 27.0 11.0

¹¹²CPMY - Cape May Formation, Undifferentiated
112ESRNS - Cape May Formation, Estuarine Sand Facies
121CNSY - Cohansey Sand
122KRKDU - Rio Grande water-bearing zone of the Kirkwood Formation

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

CUMBERLAND COUNTY

NJ-WRD WELL LOCAL NUMBER IDENTIFIER	LATITUDE L	S DA	LEV. OF LAND URFACE TUM (FT. ABOVE NGVD)	SCREENED INTERVAL (FT)	AQUIFER UNIT	OF	SPE- CIFIC CON- CEMPER- DUCT- ATURE ANCE DEG C) (UMHOS)	PH (STAND- ARD UNIT)
11-0161 CUMBER CO-FAIRGROUNDS 11-0044 CUMBER CO-VOCATION SC		75 06 43 75 09 24	80 82	171-186 361-376	121CKKD 124PNPN	84-06-26 84-06-26	13.5 25 15.5 510	5.2 8.7
LOCAL IDENTIFIER	HARD- CALCIUM NESS DIS- (MG/L SOLVED AS (MG/L CACO3) AS CA)	DIS-	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	(MG/L F	CAR- LIN BONATE FI ET-FLD (M (MG/L A	KA- IITY SULFATE ELD DIS- IG/L SOLVED IS (MG/L ICO3) AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
CUMBER CO-FAIRGROUNDS 1 CUMBER CO-VOCATION SCH 3	3 .79 42 8.4	.32 5.1	1.3 95	.80 9.4	5 270	5	5 5.1 222 4.5	2.4 45
LOCAL IDENTIFIER	FLUO- SILICA, RIDE, DIS- DIS- SOLVED SOLVED (MG/L (MG/L AS AS F) SIO2)		NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	GEN, G AMMONIA M DIS- O SOLVED (MG/L	ONÍA + G RGANIC DI DIS. SOL (MG/L (M	TRO- PHOS- EN PHORUS, S- DIS- LVED SOLVED G/L (MG/L S N) AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)
CUMBER CO-FAIRGROUNDS 1 CUMBER CO-VOCATION SCH 3	<.10 10 .90 11	38 346	.050 .070	<.10 <.10	.140	.40 .30	<.010 050	100 30
LOCAL IDENTIFIER	ARSENIC CADM DIS- DI SOLVED SOLV (UG/L (UG/L AS AS) AS C	S- DIS- ED SOLVED L (UG/L	COPPER DIS- SOLVED (UG/L	DIS-	LEAD, DIS- SOLVED (UG/L AS PB)	DIS- SOLVED (UG/L	MERCURY DIS- SOLVED (UG/L AS HG)	
CUMBER CO-FAIRGROUNDS 1 CUMBER CO-VOCATION SCH 3		(1	2		<1 <1	11 2	<.1 .1	
	LOCAL IDENTIFIER BER CO-FAIRGROUND BER CO-VOCATION S	S 1	ZINC, O DIS- SOLVED S (UG/L	(MG/L	HENOLS TOTAL UG/L) <1 <1			

Aquifer unit:

121CKKD - Kirkwood-Cohansey aquifer system 124PNPN - Piney Point aquifer

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

GLOUCESTER COUNTY

NJ-WRD WELL NUMBER	SITE OWNER	LOCAL IDENTIFIER	LATITUDE L	(ELEV. OF LAND SURFACE FT. ABOVE NGVD)	SCREENE INTERVA		AQUIFER UNIT
15-0001 15-0003 15-0361 15-0360 15-0385 15-0129 15-0137 15-0137 15-0144 15-0191 15-0192 15-0194 15-0195 15-0275 15-0166 15-0283 15-0284 15-0283 15-0284 15-0207 15-0079 15-0079 15-0079 15-0207 15-0373 15-0220 15-0373 15-0220 15-0373 15-0207 15-0318	CLAYTON WD CLAYTON WD CLAYTON WD GLASSBORO WD GLASSBORO WD PITMAN WD SO JERSEY WC SWEDESBORO WD PURELAND WC PURELAND WC PURELAND WC MANTUA TWP MUA MANTUA TWP MUA MANTUA TWP MUA MONSANTO CHEM WENONAH WD PENNS GROVE WSC MONSANTO CHEM C GREENWICH TWP WD SHELL CHEM CO SHELL CHEM CO PAULSBORO WD E I DUPONT E I DUPONT E I DUPONT E I DUPONT COMOBIL OIL CO MOBIL OIL CO	CWD 3 CWD 4-1973 GWD 5 GWD 5 GWD 3 PWD P4 SJWC 1 SBWD 3 PURE 2 PURE 1-1973 PURE 1-1973 MTMUA 2 MTMUA 5 MTMUA 4 BRIDGEPORT E1 WWD 2 BRIDGEPORT 2 3 SHELL 3 SHELL 3 SHELL 46-1973 REPAUNO 6 MOBIL 45 MOBIL 47 OLIN 1 WDTWD 7 NPWD 2 EAGLE POINT 2	393913 394015 394141 394206 394345 394409 394434 394535 394613 394629 394641 394736 394751 394755 394756 394919 394919 394919 394919 394919 394919 394919 395036 395036 395126 395126	750517 750559 750710 750758 75071843 751330 751843 752054 752129 752129 752129 751037 752129 75109 75109 75109 751256 751256 751256 751256 751417 751734 751734 751734 751530 751053 751053 751053 751053 751053 751053	133 140 140 150 125 37 77 60 88 10 150 5 10 30 15 10 28 30 17	746 - 80 670 - 74 610 - 65 562 - 61 51 241 - 31 158 - 20 81 - 13 836 - 36 315 - 33 233 - 26 56 - 8 65 - 8 65 - 9 205 - 24 358 - 38 127 - 15 185 - 10 95 - 11 220 - 24 234 - 25 323 - 36 241 - 28 259 - 28	22222222222222222222222222222222222222	11MRPAU 11MRPAU 11MRPAU 11MRPAU 11MRPAU 11MRPAU 11MRPAM 11MRPAM 11MRPAM 11MRPAM 11MRPAM 11MRPAM 11MRPAU 11MRPAU 11MRPAU 11MRPAU 11MRPAU 11MRPAU 11MRPAU 11MRPAM 11MRPAM 11MRPAM 11MRPAM 11MRPAM 11MRPAM 11MRPAU 11MRPAL 11MRPAL 11MRPAL 11MRPAL 11MRPAL 11MRPAL
NJ-WRD WELL Number	SITE OWNER	LOCAL IDENTIFIER	DATE OF SAMPLE	TEMPER- ATURE (DEG C)	ANCE	PH (UNITS)	SODIUM DIS- SOLVED (MG/L AS NA)	CHLORIDE DIS- SOLVED (MG/L AS CL)
15-0001 15-0003 15-0361 15-0360 15-0385 15-0129 15-0137 15-0137 15-0137 15-0144 15-0191 15-0194 15-0199 15-0275 15-0284 15-0284 15-02079 15-02079 15-0210 15-02079 15-02079 15-02079 15-02079 15-02079 15-02079 15-02079 15-02079 15-02079 15-02079 15-0373 15-02077 15-0318	CLAYTON WD CLAYTON WD CLASBORO WD GLASSBORO WD PITMAN WD SO JERSEY WC SWEDESBORO WD PURELAND WC PURELAND WC PURELAND WC PURELAND WC MANTUA TWP MUA MANTUA TWP MUA MANTUA TWP MUA MANTUA TWP MUA MONSANTO CHEM WENONAH WD PENNS GROVE WSC MONSANTO CHEM E GREENWICH TWP WD SHELL CHEM CO SHELL CHEM CO SHELL CHEM CO PAULSBORO WD E I DUPONT MOBIL OIL CO MOBIL OIL CO MOBIL OIL CO ESSEX CHEM CO W DEPTFORD TWP WD NATIONAL PARK WD TEXAS OIL CO	CWD 3 CWD 4-1973 GWD 5 GWD 3 PWD P4 SJWC 1 SBWD 3 PURE 2 PURE 2 PURE 1-1973 PURE 1-1973 PURE 1-1973 MTMUA 2 MTMUA 5 MTMUA 4 BRIDGEPORT E1 WWD 2 BRIDGEPORT 2 3 SHELL 3 SHELL 3 SHELL 3 SHELL 4 6-1973 REPAUNO 3 REPAUNO 3 REPAUNO 3 REPAUNO 3 REPAUNO 1 WD 2 MOBIL 45 MOBIL 47 OLIN 1 WDTWD 7 NPWD 2 EAGLE POINT 2	9/25/1984 9/25/1984 9/25/1984 9/25/1984 9/25/1984 9/25/1984 10/11/1983 9/26/1984 9/26/1984 9/20/1984 9/20/1984 9/26/1984 9/26/1984 9/26/1984 9/26/1984 9/26/1984 9/26/1984 9/26/1984 9/20/1984	20.05.50.50.50.50.50.50.50.50.50.50.50.50	1,050 902 6505 7578 850 3817 2502 1625 1655 1655 1655 1655 1750 1750 1750 1750 1750 1750 1750 17	8.444432358702214005975833207507 6.568886856777556566776.	210.0 190.0 140.0 150.0 190.0 190.0 23.0 23.0 83.0 100.0 67.0 10.0 140.0 34.0 26.0 280.0 75.0 48.0 48.0	140.0 110.0 62.0 69.0 45.0 170.0 45.0 23.0 34.0 37.0 24.0 170.0 53.0 150.0 150.0 100.0 110.0 110.0 110.0 28.0 29.0

^{*} Total depth of well

²¹¹MRPAU - Upper aquifer, Potomac-Raritan-Magothy aquifer system 211MRPAM - Middle aquifer, Potomac-Raritan-Magothy aquifer system 211MRPAL - Lower aquifer, Potomac-Raritan-Magothy aquifer system

QUALITY OF GROUND WATER

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

MERCER COUNTY

NJ-WRD WELL NUMBER	LOCAL IDENTIFIER	LATITUDE LO	I SUI DATI AI	RFACE UM (FT.	TOTAL DEPTH OF WELL (FT)	AQUIFER UNIT	DATE OF SAMPLE	TEMPER- ATURE (DEG C)	ANCE	PH (STAND- ARD UNIT)
21-0028	NJ CIVIL DEFENSE OBS	1 40 15 52 0	74 50 18	123	330	231SCKN	84-09-1	8 12.5	505	6.9
I	LOCAL DENTIFIER	HARD- CALCIUM NESS DIS- (MG/L SOLVED AS (MG/L CACO3) AS CA)	DIS- 1 SOLVED SO (MG/L	ODIUM, DIS- OLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	AS	CAR- BONATE FET-FLD (MG/L AS CO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
NJ CIVIL	DEFENSE OBS 1	210 51	20	11	1.0	160		128	63	23
	LOCAL IDENTIFIER	FLUO- SILICA, RIDE, DIS- DIS- SOLVED SOLVED (MG/L (MG/L AS AS F) SIO2)	RESIDUÉ AT 180 NI DEG. C DIS- SOLVED	NITRO- GEN, ITRITE N DIS- SOLVED (MG/L AS N)	NITRO- GEN, IO2+NO3 DIS- SOLVED (MG/L AS N)	AMMONÍA	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)
NJ CIVI	L DEFENSE OBS 1	.10 14	313	.020	7.6	<.010	.40		<.010	<10
	LOCAL IDENTIFIER	ARSENIC CADM DIS- DI SOLVED SOLVI (UG/L (UG/L AS AS) AS CI	S- DIS- ED SOLVED . (UG/L	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	DIS- SOLVED (UG/L	DIS-	MERCUR DIS-		
NJ CIV	IL DEFENSE OBS 1	<1	(1 <1	1	10	4	15	<.1	Ļ ·	
		LOCAL IDENTIFIER) S(()	INC, OR DIS- D OLVED SO UG/L (MG/L	HENOLS TOTAL UG/L)				

7 .50

Aquifer unit:

231SCKN - Stockton Formation

NJ CIVIL DEFENSE OBS 1

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

OCEAN COUNTY

NJ-WRD WELL NUMBER	LOC.		LATITU	JDE LONGI	D.	ELEV. OF LAND SURFACE ATUM (FT. ABOVE NGVD)	SCREENED INTERVAL (FT)	AQUIFER UNIT	DATE OF SAMPLE	TEMPER- ATURE (DEG C)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNIT)
29-0772	LEBAN SF GOO	SE POND	1-83 39 54	51 074 2	27 02	135	31- 41	121CKKD	84-09-1	1 13.0	23	4.5
	LOCAL IDENTIFIER		NESS I (MG/L S AS (ALCIUM DIS- BOLVED S MG/L (MAGNE- SIUM, DIS- SOLVED MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	AS	CAR- BONATE FET-FLD (MG/L AS CO3)	FIELD (MG/L AS	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
LEBAN S	SF GOOSE POND	1-83	1	•33	.15	1.6	.30				2.1	4.4
	LOCAL IDENTIFIER		RIDE, II DIS- S SOLVED (MG/L	ILICA, REDIS- AT BOLVED ING/L AS S	DLIDS, ESIDUE 180 DEG. C DIS- BOLVED	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	AMMONIA	NITRO- GEN, AM- MONIA + DRGANIC DIS. (MG/L AS N)	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)
LEBAN :	SF GOOSE POND	1-83	<.10	6.1	16	<.010	<.10	.040	.20		<.010	<10
	LOCAL IDENTIFIER		ARSENIC DIS- SOLVED (UG/L AS AS)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVEI (UG/L AS CR)	DIS- D SOLVED (UG/L	DIS-	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA NESE, DIS- SOLVED (UG/L AS MN)	MERCUR DIS- SOLVED (UG/L		
LEBAN	SF GOOSE POND	1-83	<1	<1	<1	<1	1300	2	5	<.1		
			LOCAL IDENTIFIE	3		ZINC, O DIS- SOLVED S (UG/L	(MG/L	HENOLS TOTAL UG/L)				
		LEI	BAN SF GOOSE	POND 1-83	3	15	.50	<1				

Aquifer unit:

121CKKD - Kirkwood-Cohansey aquifer system

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

SALEM COUNTY

NJ-WRD WELL NUMBER	SITE OWNER	LOCAL IDENTIFIER	LATITUDE LO	(F	LEV. OF LAND SURFACE T. ABOVE NGVD)	SCREENED INTERVAL (FT)	
33-0354 33-0362 33-0118 33-0119 33-0122 33-0125 33-0127 33-0345 33-0346 33-0083 33-0085 33-0086	WOODSTOWN WD WOODSTOWN WD PENNSVILLE TWP WD PENNSVILLE TWP WD ATL CITY ELEC ATL CITY ELEC E I DUPONT PENNS GROVE WSC PENNS GROVE WSC B F GOODRICH CO B F GOODRICH CO	WWD 2 WWD 3 PTWD 1 PTWD 2 DEEPWATER 3R DEEPWATER 6 DRINKWATER 8 2B LAYNE 1 9 (PW-1) 6 (PW-2) 4 (PW-3)	393904 393926 393958 394009 394045 394051 394100 394112 394247 394256 394547 394556 394557	751946 751927 753045 753043 753018 753030 753030 753028 752714 752714 752718 752535 752530 752523	45 60 8 7 10 10 10 14 19 19 10 10	670 - 705 692 - 712 213 - 238 210 - 230 165 - 235 149 - 219 158 - 188 317 - 347 45 - 58 317 - 357 93 - 133 109 - 129 169 - 189	211MRPAM 211MRPAM 211MRPAM 211MRPAM 211MRPAM 211MRPAL 211MRPAL 211MRPAL 211MRPAL 211MRPAL 211MRPAM
NJ-WRD WELL NUMBER	SITE OWNER	LOCAL IDENTIFIER	DATE OF SAMPLE	TEMPER- ATURE (DEG C)	SPE- CIFIC CONDUCT ANCE (UMHOS)		HLORIDE DIS- SOLVED (MG/L AS CL)
33-0354 33-0362 33-0118 33-0119 33-0122 33-0127 33-0127 33-0137 33-0345 33-0085 33-0085 33-0086	WOODSTOWN WD WOODSTOWN WD PENNSVILLE TWP WD PENNSVILLE TWP WD ATL CITY ELEC ATL CITY ELEC ATL CITY ELEC E I DUPONT PENNS GROVE WSC PENNS GROVE WSC B F GOODRICH CO B F GOODRICH CO	WWD 2 WWD 3 PTWD 1 PTWD 2 DEEPWATER 3R DEEPWATER 5 DEEPWATER 6 DRINKWATER 8 2B LAYNE 1 9 (PW-1) 6 (PW-2) 4 (PW-3)	11/ 3/1983 11/ 3/1983 11/ 3/1983 11/ 3/1983 11/ 3/1983 11/ 3/1983 11/ 4/1983 11/ 4/1983 11/ 4/1983 11/ 4/1983 11/ 4/1983	16.5 14.0 14.5 14.5 15.0 15.0 14.5 13.0	1,000 875 430 600 417 495 465 515 200 950 111 165 1,240	8.0 7.1 7.0 6.9 7.7 5.1 7.5 6.0 7.2	200.0 160.0 67.0 120.0 56.0 82.0 74.0 77.0 14.0 220.0 12.0 21.0 290.0

²¹¹MRPAU - Upper aquifer, Potomac-Raritan-Magothy aquifer system 211MRPAM - Middle aquifer, Potomac-Raritan-Magothy aquifer system 211MRPAL - Lower aquifer, Potomac-Raritan-Magothy aquifer system

	PAGE		PAGE
Accuracy of field data and computed results	13	Computations accuracy of results	13
Acknowledgments	2	Computations, accuracy of results	4
Acre-foot, definition of	3	Continuing record station, definition of	4
Adenosine triphosphate, definition of	3	Control, definition of	4
Algal growth potential (AGP), definition of	3	Control structure, definition of	110
Allentown, Doctors Creek at	94.143	Cooper River at Haddonfieldat Lawnside	119
Alloway Creek at Hancocks Bridge	147	at Norcross Road at Lindenwold	115
Alloway, Deep Run near	141	North Branch near Marlton	144
Aquifer code list and geologic names	3	Cooperation	141
Aquifer, definition of	3	Coopersville, Merrill Creek at	143
Artificial substrate	8	Crest-stage partial-record stations	142
Ash mass, definition of	4	Crosswicks Creek at Extonville	91
Assiscunk Creek near Columbus	144	at New Egypt	143
Assumpink Creek at Edinburgat Trenton	143 90	Cubic feet per second per square mile, definition of	5
near Clarksville	88	Cubic foot per second, definition of	5
Aura, Still Run at	140	Cumberland County, ground-water levels	164
		ground-water quality	177
Bacteria, definition of	3	Davis Mill Passes Ditab at	1111
Balesville, Paulins Kill at	50 140	Davis Mill, Raccoon Ditch at Deep Run near Alloway	141
Beals Mills, Cohansey River near	140	Defintion of terms	3
Bear Creek, PA, diversions	138	Delaware and Raritan Canal at Kingston	71
Bear Swamp Reservoir, NY, diversions	138	Delaware and Raritan Canal, diversions	138
Beattystown, Musconetcong River at	66	Delaware Bay at Reeds Beach	147
Beaver Brook near Belvidere	142	Delaware River at Belvidere at Burlington	57 96
Bed material, definition of	4	at Chester, PA	147
Beltzville Lake	133	at Lumberville	72
Belvidere, Beaver Brook near	142	at Marine Terminal, Trenton	147
Delaware River at	57	at Montague	45
Bethlehem, PA, Lehigh River at	59	at Northampton Street at Easton, PAat Palmyra	58 109
North Branch at Laurel Road at Laurel Springs.	145	at Port Jervis, NY	41
South Branch, at Blackwood	145	at Portland, PA	48
South Branch, at Blackwood Terrace	120	at Riegelsville	143
Biochemical oxygen demand, definition of	4	at Trenton	78
Biomass, definition of	4 169	at Washington Crossingbelow Christina River at Wilmington, DE	76 126
Bivalve, Maurice River at	147	below Tocks Island Damsite, near Delaware	120
Blacks Creek at at Mansfield Square	143	Water Gap	47
Blackwood, South Branch Big Timber Creek at	145	Delaware River basin, crest-stage partial-record	
Blackwood Terrace, South Branch Big Timber Creek	120	stations in	143
at	120 52	Discharge measurements at miscellaneous sites in	146
Yards Creek near	55	Discharge measurements at low-flow partial-	1.10
Bloomsbury, Musconetcong River near	68	record stations in	141
Blue green algae, definition of	7	Diversions and withdrawals in	137
Blue Marsh Lake, PA	134	Reservoirs in,	131
Bridgeton, Barrett Run near	140	Delaware Water Gap, PA, Delaware River below Tocks Island Damsite, near	47
Indians Fields Branch at	141	Diatoms, definition of	7
Browns Mills, North Branch Rancocas Creek at	99	Discharge, definition of	5
Buckshutem Creek near Laurel Lake	140	Discharge measurements at miscellaneous sites	146
Burlington, Delaware River at	96	Dissolved, definition of	137
ground-water quality	148	Diversions and withdrawals	5
B. dana-wade. quarroy	175	Doctors Creek at Allentown	
Camden County, ground-water levels	156	Downstream order and station numbers	10
Cannonsville Reservoir	131	Drainage area, definition of	5 5
Cape May County, ground-water levels ground-water quality	160	Drainage basin, definition of	4
Cells/volume, definition of	176	Dry mass, definition of	· · · · · · · · · · · · · · · · · · ·
Centerton, Muddy Run at	140	Eagle Point 3 observation well	168
CFS-day, definition of	4	East Pond Reservoir, NY, diversions	138
Chemical oxygen demand, definition of	4	Easton, PA, Delaware River at Northampton Street	
Cherry Hill, South Branch Pennsauken Creek at Chester, PA, Delaware River at	112 147	at Edinburg, Assunpink Creek at	58 143
Chlorophyll, definition of	174	Egbert Station observation well	159
Cinnaminson, Pompeston Creek at	144	Elm Tree Farm 2 observation well	156
Clarksville, Assunpink Creek near	88	Elm Tree Farm 3 observation well	157
Clayton, Little Ease Run at	140	Extonville, Crosswicks Creek at	91
Cohansey River at Greenwich	132 147	Fecal coliform bacteria, definition of	4
at Seeley	38	Fecal streptococcal bacteria, definition of	4
near Beals Mills	140	Flat Brook near Flatbrookville	46
West Branch, at Seeley	142	Franklinville, Scotland Run at	140
Cohansey River basin	38 142	Gage height, definition of	5
discharge measurements at low flow partial-	176	Gaging station, definition of	5
record stations in	140	Records	30
Collection and computation of data	11	Gloucester County, ground-water levels	167
Collection and examination of data	14	ground-water quality	178 44
Color unit, definition of	144	Green algae, definition of	7
Columbus, Assiscunk Creek near	144	Green Lane Reservoir, PA	134
Crafts Creek at	143	Greenwich, Cohansey River at	147

INDEX 183

	PAGE		PAGE
Ground-water level records	148	Medford 4 observation well	149
Collection of the data	16	Medford 5 observation well	150
Explanation of	16	Menantico Creek near Millville	36
Ground-water quality records	175	Mercer County, ground-water quality	179
	.,,	Merrill Creek at Coopersville	141
Hackettstown, Musconetcong River near	143	Metamorphic stage, definition of	5
Haddon Heights, South Branch Newton Creek at141	-	Methylene blue active substance, definition of	5
Haddonfield, Cooper River at	119	Micrograms per gram, definition of	6
Hancocks Bridge, Alloway Creek at	147	Micrograms per liter, definition of	6
Hardness, definition of	5	Middleville, Trout Brook near	141
Harrisonville, Oldmans Creek near	145	Milligrams per liter, definition of	6
Hazel Creek, PA, diversions	138	Millville, Menantico Creek near	36
Higbee Beach 3 observation well	162	Montague, Delaware River at	45
High tide, definition of	5	Moorestown, North Branch Pennsauken Creek near11	0,144
Hoffman LaRoche observation well	174	Morrisville, PA, Borough of, diversions	138
Honey Run near Ramseyburg	141	Muddy Run at Centerton	140
Hopatcong, Lake	133	Mullica Hill, Raccoon Creek at	145
Hunterdon County, ground-water levels	169	Musconetcong River at Beattystown	66
Huntsville, Pequest River at	142	at Lockwood	64
Hutton Hill 1 observation well	158	at outlet of Lake Hopatcong	2,142
Hydrologic bench-mark station, definition of	10	at Riegelsville	69
Hydrologic conditions	2	near Bloomsbury	68
Hydrologic station records	30	near Hackettstown	143
Hydrologic unit, definition of	5	Muskee Creek near Port Elizabeth	140
Indian Fields Branch at Bridgeton	141	National Geodetic Vertical Datum of 1929	
Instantaneous discharge, definition of	5	(NGVD of 1929)	6
Introduction	1	National stream-quality accounting network	,
		(NASQAN), definition of	10
Jadwin, General Edgar, Reservoir, PA	131	Natural substrate	8
Jones Island 2 observation well	164	Neversink Reservoir, NY	132
		Neversink River at Godeffroy, NY	44
Kingston, Delaware and Raritan Canal at	71	New Egypt, Crosswicks Creek at	143
		Newton Creek at Collingswood	144
Lake Hopatcong, Musconetcong River at outlet of. 62	,142	South Branch, at Haddon Heights14	1,144
Lakes and reservoirs:		New Village, Pohatcong Creek at 6	0,142
Beltzville Lake	133	NJ-WRD well number	6
Blue Marsh Lake, PA	134	Nockamixon Reservoir, PA	133
Cannonsville reservoir, NY	131	Norma, Maurice River at	30
Cliff Lake, NY	132	Numbering system for wells and miscellaneous	inc.
Green Lane Reservoir, PA	134	sites	10
Hopatcong, Lake	133		
Jadwin, General Edgar, Reservoir, PA	131	Ocean County, ground-water quality	180
Neversink Reservoir, NY	132	Oldmans Creek at Porches Mill	125
Nockamixon Reservoir, PA	133	near Harrisonville	145
Penn Forest Reservoir, PA	133	Orange Street observation well	165
Pepacton Reservoir, NY	131	Organic mass, definition of	4
Prompton Reservoir, PA	131	Organism, definition of	6
Still Creek Reservoir, PA	133	Organism count/area, definition of	6
Swinging Bridge Reservoir, NY	132	Organism count/volume, definition of	6 13
Toronto Reservoir, NY	132	Other data available	
Wallenpaupack, Lake, PA	131	Oyster Lab. 4 observation well	163
Wild Creek Reservoir, PA	132 133	Palmyra, Delaware River at	109
Land-surface datum	5	Partial-record stations, crest-stage	142
Laurel Lake, Buckshutem Creek near	140	Definition	6
Laurel Springs, North Branch Big Timber Creek at	145	Low-flow	140
Lawnside, Cooper River at	117	Tidal crest-stage	147
Lebanon State Forest, McDonalds Branch in	100	Particle size, definition of	6
Lebanon State Forest 23D observation well	148	Particle-size classification	6
Lehigh River at Bethlehem, PA	59	Paulins Kill at Balesville	50
Lindenwold, Cooper River at Norcross Road at	115	at Blairstown	52
Little Ease Run near Clayton	140	Pemberton, North Branch Rancocas Creek at	106
Little Creek near Lumberton	141	Penn Forest Reservoir, PA	133
Lockwood, Lubbers Run at	141	Pennsauken Creek, North Branch, near Moorestown.11	
Musconetcong River at	64	South Branch at Cherry Hill	112
Low-flow partial-record stations	140	Pepacton Reservoir, NY	131
Low tide, defintion of	5	Pequest River at Huntsville	142
Lubbers Run at Lockwood	141	at Pequest	56
Lumberton, Little Creek near	141	at Townsbury	142
Lumberville, Delaware River at	72	Percent composition, definition of	6
Mansfield Square, Blacks Creek at	143	Periphyton, definition of	10
Mantua Creek at Pitman	145	Pesticides, definition of	6
at Salina	145	Philadelphia, PA, Schuylkill River at	122
Marlton, North Branch Cooper River near	144	Phytoplankton, definition of	6
Maurice River basin	30	Picocurie, definition of	6
Discharge measurements at low-flow partial-	-	Pitman, Mantua Creek at	145
record stations in	140	Plankton, definition of	6
Maurice River at Bivalve	147	Pohatcong Creek at New Village 6	
at Norma	30	Point Airy observation well	173
McDonalds Branch in Lebanon State Forest	100	Polychlorinated biphenyls, definition of	7
Mean concentration, definition of	8	Pompeston Creek at Cinnaminson	144
Mean discharge, definition of	5	Porches Mill, Oldmans Creek at	125
Mean high or low tide, definition of	5	Port Elizabeth, Muskee Creek near	140
Medford, SW Branch Rancocas Creek at	144	Port Jervis, NY, Delaware River at	41
Sharps Run at Route 541 at	141	Portland, PA, Delaware River at	48
Medford 1 observation well	151	Primary productivity, definition of	121
HOWALOW C ONDEL AUGUSTON METT *******************	152	Prompton Reservoir, PA	131

	PAGE		PAGE
Publications, ground water	16	Suspended recoverable, definition of	8
Surface water			8
	13	Suspended sediment, definition of	8
Water quality	16	Suspended-sediment concentration, definition of.	
Techniques of water-resources investigations	20	Suspended-sediment discharge, definition of	8
D (4 11 -	Suspended-sediment load, definition of	8
Raccoon Creek at Mullica Hill	145	Suspended, total, definition of	8
near Swedesboro	123	Swedesboro, Raccoon Creek near	123
Raccoon Ditch at Davis Mill	141	Swinging Bridge Reservoir, NY	132
Radiochemical program, definition of	11		
Radioisotopes, definition of	7	Taxonomy, definition of	9
Ramseyburg, Honey Run near	141	Terms, definition of	3
Rancocas Creek, North Branch, at Browns Mills	99	Thermograph, definition of	9
at Pemberton	106	Tidal crest-stage stations	147
South Branch at Vincentown		Time-weighted average, definition of	9
	144	Talks Taland demaits Delayers Diver below	,
Southwest Branch, at Medford	100	Tocks Island damsite, Delaware River below,	11.77
Records collected by other agencies	14	near Delaware Water Gap, PA	47
Recoverable from bottom material	7	Tons per acre-foot	9
Reeds Beach, Delaware Bay at	147	Tons per day, definition of	9
Remark codes for water-quality data	15	Toronto Reservoir, NY	132
Reservoirs: See Lakes and reservoirs		Total, definition of	9
Rhodia Corp. 1 observation well	155	Total coliform bacteria, definition of	3
Riegelsville, Delaware River at	143	Total in bottom material, definition of	9
Musconetcong River at	69	Total load, definition of	9
River mile, definition of	7	Total organism count	9
Runoff in inches, definition of	7	Total, recoverable, definition of	9
		Total sediment discharge, definition of	8
Salem County, ground-water levels	170		142
		Townsbury, Pequest River at	160
ground-water quality	181	Traffic Circle observation well	
Salem 1 observation well	170	Trenton, Assunpink Creek at	90
Salem 2 observation well	172	City of, diversions	138
Salem 3 observation well	171	Delaware River at	78
Salem River at Woodstown	127	Delaware River at Marine Terminal at	147
Salina, Mantua Creek at	145	Trout Brook near Middleville	141
Schuylkill River at Philadelphia	122		
Screened interval, definition of	7	Vincentown, South Branch Rancocas Creek at	97,144
Scotland Run at Franklinville	140		
Sediment	15	Wallenpaupack, Lake, PA	131
Sediment, definition of	7	Walter, Francis E., Reservoir, PA	132
Seeley, Cohansey River at	38	Warren County, ground-water levels	174
West Branch Cohansey River at	142	Washington Crossing, Delaware River at	76
Selected references	17	Water Quality Records, explanation of	14
Sharps Run at Route 541 at Medford	141		15
		Water temperature	9
Shell Chemical 5 observation well	167	WDR, definition of	
Sheppards 1 observation well	166	Weighted average, definition of	9
Solute, definition of	8	West Cape May 1 observation well	161
Special networks and programs	10	Wet mass, definition of	4
Specific conductance, definition of	8	Wickecheoke Creek at Stockton	74
Stage and water discharge records, explanation		Wild Creek Reservoir, PA	133
of	11	Willingboro 1 observation well	154
Stage-discharge relation, definition of	8	Willingboro 2 observation well	153
Still Creek Reservoir, PA	133	Wilmington, DE, Delaware River below	
Still Run at Aura	140	Christina River at	126
Stockton, Wickecheoke Creek at	74	Withdrawals from the Delaware River Basin	137
Stow Creek basin, discharge measurements at	17	Woodstown, Salem River at	127
low-flow partial-record stations in	141	WSP, definition of	9
Streamflow, definition of	8	HOI, GOIZHIOION OILLIANNIN	,
Substrate, definition of	8	Yards Creek near Blairstown	55
		Talda oleek ileal Draft 200 Miles	,,,
Surface area, definition of	8		-
Surficial bed material	8	Zooplankton, definition of	7

FACTORS FOR CONVERTING INCH-POUND UNITS TO INTERNATIONAL SYSTEM UNITS (SI)

The following factors may be used to convert the inch-pound units published herein to the International System of Units (SI). This report contains both the inch-pound and SI unit equivalents in the station manuscript descriptions.

Multiply inch-pound units	Ву	To obtain SI units
	Length	
inches (in)	2.54x10 ¹	millimeters (mm)
6 4 (6)	2.54x10 ⁻²	meters (m)
feet (ft)	3.048x10 ⁻¹	meters (m)
miles (mi)	1.609x10°	kilometers (km)
	Area	
acres	4.047x10 ³	square meters (m ²)
	4.047x10 ⁻¹	square hectometers (hm²)
	4.047×10^{-3}	square kilometers (km ²)
square miles (mi ²)	2.590x10°	square kilometers (km²)
	Volume	
gallons (gal)	3.785x10°	liters (L)
(8)	3.785x10°	cubic decimeters (dm ³)
	3.785×10^{-3}	cubic meters (m ³) cubic meters (m ³)
million gallons	3.785×10^3	cubic meters (m ³)
	3.785×10^{-3}	cubic hectometers (hm ³)
cubic feet (ft ³)	2.832x10 ¹	cubic decimeters (dm³)
	2.832x10 ⁻²	cubic meters (m ³)
cfs-days	2.447×10^{3}	cubic meters (m ³)
	2.447×10^{-3}	cubic hectometers (hm ³)
acre-feet (acre-ft)	1.233×10^{3}	cubic meters (m ³)
	1.233×10^{-3}	cubic hectometers (hm ³)
	1.233x10 ⁻⁶	cubic kilometers (km³)
	Flow	
cubic feet per second (ft ³ /s)	2.832x101	liters per second (L/s)
1	2.832×10^{1}	cubic decimeters per second (dm ³ /s)
	2.832x10 ⁻²	cubic meters per second (m³/s)
gallons per minute (gal/min)	6.309x10 ⁻²	liters per second (L/s)
	6.309x10 ⁻²	cubic decimeters per second (dm ³ /s)
	6.309x10 ⁻⁵	cubic meters per second (m ³ /s)
million gallons per day	4.381x10 ¹	cubic decimeters per second (dm ³ /s)
	4.381x10 ⁻²	cubic meters per second (m³/s)
	Mass	
tons (short)	9.072x10 ⁻¹	megagrams (Mg) or metric tons

U.S. DEPARTMENT OF THE INTERIOR Geological Survey, 430 Federal Building 402 East State Street Trenton, NJ 08608

OFFICIAL BUSINESS PENALTY FOR PRIVATE USE \$300 SPECIAL 4TH CLASS BOOK RATE

