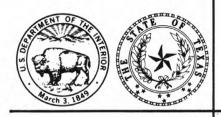
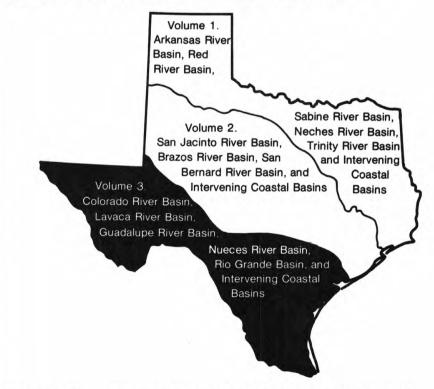


Water Resources Data Texas Water Year 1984

Volume 3. Colorado River Basin, Lavaca River Basin,
Guadalupe River Basin, Nueces River Basin,
Rio Grand Basin, and Intervening Coastal Basin


S. GEOLOGICAL SU

U.S. GEOLOGICAL SURVEY WATER-DATA REPORT TX-84-3
Prepared in cooperation with the State of Texas
and with other agencies


CALENDAR FOR WATER YEAR 1984

																1				
									19	83					1,,,,,,,,,,,					
	(OCT	DBEI	2				l	NOVE	EMBI	ER]	DEC	EMBI	ER		
S	M	Т	W	T	F	S	S	M	T	W	T	F	S	S	M	T	W	T	F	S
9 16 23	17	11 18	12 19	13 20	14 21	1 8 15 22 29	20	14	15 22	9 16 23	10 17 24	18	12 19 26	18	12 19	13 20	14 21	1 8 15 22 29	9 16 23	17 24
									10	O lı									_	
						- 16			19	04				 						
		JANU	JAR	Y				I	FEBI	RUAI	RY					MA	RCH			
S	M	Т	W	T	F	S	S	M	T	W	T	F	S	S	M	T	W	T	F	S
15 22	2 9 16 23 30	10 17 24	11 18 25	12 19 26	20 27	14 21 28	12	6 13 20 27	14 21	15 22	9 16 23	17 24	1 8 25	11 18	19	13 20	14 21	1 8 15 22 29	9 16 23	17 24
		AI	PRII	,					1	MAY						J	UNE			
S	М	T	W	T	F	S	S	М	T	W	T	F	S	S	M	T	W	T	F	S
22	9	10 17	11 18	12 19		14	13 20		15 22	9 16 23	10 17 24	25	12 19 26	10 17	18	12 19	13 20	14	21	23
		J	JLY						AUG	GUS.	Г				SI	EPT	EMBI	ER		
S	M	T	W	T	F	S	S	M	T	W	T	F	S	S	M	T	W	T	F	S
8 15 22	2 9 16 23 30	10 17 24	11 18	12 19	13 20	7 14 21 28	5 12 19 26	13	14 21	15 22	9 16 23	17 24	11 18	9	10 17	11 18	12 19	6 13 20 27	14 21	15 22

Water Resources Data Texas Water Year 1984

Volume 3. Colorado River Basin, Lavaca River Basin,
Guadalupe River Basin, Nueces River Basin,
Rio Grande Basin, and Intervening Coastal Basins
by H.D. Buckner, E.R. Carrillo, and H.J. Davidson

U.S. GEOLOGICAL SURVEY WATER-DATA REPORT TX-84-3 Prepared in cooperation with the State of Texas and with other agencies

UNITED STATES DEPARTMENT OF THE INTERIOR William P. Clark, Secretary

GEOLOGICAL SURVEY

Dallas L. Peck, Director

For additional information write to
District Chief, Water Resources Division
U.S. Geological Survey
300 East 8th Street
Austin, Texas 78701

Preface

This volume of the annual hydrologic data report of Texas is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface— and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. Records of streamflow and quality-of-water data required to provide the hydrologic information needed by State, local and Federal agencies, and the private sector for developing and managing land and water resources in Texas are contained in 3 volumes:

- Volume 1. Arkansas River Basin, Red River Basin, Sabine River Basin, Neches River Basin, Trinity River Basin, and intervening and adjacent Coastal Basins
- Volume 2. San Jacinto River Basin, Brazos River Basin, San Bernard River Basin, and intervening Coastal Basins
- Volume 3. Colorado River Basin, Lavaca River Basin, Guadalupe River Basin, Nueces River Basin, Rio Grande Basin, and intervening Coastal Basins

This report is the culmination of a concerted effort by dedicated personnel of the Texas District, U.S. Geological Survey, who collected, compiled, analyzed, verified, and organized the data, typed, edited, and assembled the report, and who assured that the information contained here in accurate, complete, and adheres to Geological Survey policy and established guidelines.

This report was prepared in cooperation with the State of Texas and other agencies under the supervision of C. W. Boning, District Chief.

	USGS/WRD/HD-85/251	2.	3. Recipient's Accession No.
	a for Texas, Water Year 1		5. Report Date June 1985
Colorado River, Lava	6.		
. Author(s)	nd Intervening Coastal ba	SINS	9 Performing Organization Post No.
. Author(s)			8. Performing Organization Rept. No. USGS-WDR-TX-84-3
9. Performing Organization Name a	nd Address		10. Project/Task/Work Unit No.
	vey, Water Resources Divi	sion	11. Contract(C) or Grant(G) No.
300 East Eighth Stre	et		(C)
Austin, TX 78701			
			(G)
2. Sponsoring Organization Name a	and Address		13. Type of Report & Period Covered
U.S. Geological Surv	vey, Water Resources Divis	sion	Oct. 1, 1983, to
300 East Eighth Stre	et		Sept. 30, 1984
Austin, TX 78701			14.
		in the second	on the contract of the contract of
	scharge, and water qualit		resented in three volumes in each volume consist o
hydrograph partial-repartial-record static part of the systematic surements. Records These data represent	of lakes and reservoirs. record stations, reconnai ons. Additional water tic data collection prografor a few pertinent states.	Also included a sance partial-red data were collected, and are publicions in bordering that was a sance partial water Data S	in each volume consist of anals; and stage, contents are crest-stage and flood cord stations, and low-flooted at various sites, no shed as miscellaneous measured as are also included system operated by the U.S.
hydrograph partial-repartial-record static part of the systemat surements. Records These data represent	of lakes and reservoirs. ecord stations, reconnai ons. Additional water tic data collection prografor a few pertinent state that part of the National collection prografor a few pertinent states.	Also included a sance partial-red data were collected, and are publicions in bordering that was a sance partial water Data S	in each volume consist or anals; and stage, contents are crest-stage and flood cord stations, and low-flooted at various sites, no shed as miscellaneous meas a States are also included system operated by the U.S
hydrograph partial-r partial-record stati part of the systemat surements. Records These data represent	of lakes and reservoirs. ecord stations, reconnai ons. Additional water tic data collection prografor a few pertinent state that part of the National collection prografor a few pertinent states.	Also included a sance partial-red data were collected, and are publicions in bordering that was a sance partial water Data S	in each volume consist or anals; and stage, contents are crest-stage and flood cord stations, and low-flooted at various sites, no shed as miscellaneous meas a States are also included system operated by the U.S.
hydrograph partial-r partial-record stati part of the systemat surements. Records These data represent Geological Survey an	of lakes and reservoirs. record stations, reconnail ons. Additional water tic data collection progrator a few pertinent state that part of the National cooperating State and I	Also included a sance partial-red data were collected, and are publicions in bordering that was a sance partial water Data S	in each volume consist or anals; and stage, contents are crest-stage and flood cord stations, and low-flooted at various sites, no shed as miscellaneous meas a States are also included system operated by the U.S.
hydrograph partial-r partial-record stati part of the systemat surements. Records These data represent Geological Survey an 7. Document Analysis a. Descripto *Texas, *Hydrologic	of lakes and reservoirs. Second stations, reconnail cons. Additional water tic data collection progrator a few pertinent state that part of the National cooperating State and I do data, *Surface water, *	Also included a sance partial-red data were collected am, and are publicions in bordering and Water Data Seederal agencies i	in each volume consist or anals; and stage, contents are crest-stage and flood cord stations, and low-flooted at various sites, no shed as miscellaneous meas a States are also included system operated by the U.S.

c. COSATI Field/Group

18. Availability Statement No restriction on distribution.

National Technical Information Service

This report may be purchased from:

Springfield, VA 22161

19. Security Class (This Report)

20. Security Class (This Page)

UNCLASSIFIED

UNCLASSIFIED

21. No. of Pages

440

22. Price

CONTENTS

	Page
List of gaging stations, in downstream order, for which records	rage
are published	V
Introduction	1
Cooperation	2
Hydrologic conditions	3
Streamflow	3
Water quality	6
Definition of terms	7
Downstream order and station number	17
Special networks and programs	18
Explanation of stage and water-discharge records	18
Collection and computation of data	18
Accuracy of field data and computed results	22
Other data available	23
Records of discharge collected by agencies other than the	23
	23
Geological Survey Explanation of surface-water quality records	23
이 얼마나 되었다. 그는	23
Collection and examination of data	23
Water analysis	24
Water temperature	25
Sediment	
Publications of techniques of water-resources investigations	26
Gaging-station records	29
Discharge at partial-record stations and miscellaneous sites	422
Low-flow partial-record stations	422
Crest-stage partial-record stations	424
Discharge measurements at miscellaneous sites	426
Index	427
ILLUSTRATION	
Figure 1. Area of Texas covered by volume 3 and location of selected	
streamflow and water-quality stations in volume 3	4
2. Comparison of monthly mean discharge at four long-term	
representative gaging stations during the 1984 water year	
with median of the monthly mean discharge for the period	
1951-80	28

	Page
WESTERN GULF OF MEXICO BASINS	
COLORADO RIVER BASIN	
Colorado River:	
Lake J. B. Thomas near Vincent	29
Colorado River near Ira	31
Deep Creek near Dunn	32
Colorado River near Cuthbert	33
Colorado River at Colorado City	39
Morgan Creek:	
Lake Colorado City near Colorado City	43
Champion Creek:	
Champion Creek Reservoir near Colorado City	45
Beals Creek near Coahoma	47
Beals Creek near Westbrook	54
Colorado River above Silver	60
E. V. Spence Reservoir near Robert Lee	66
Colorado River at Robert Lee	72
Colorado River near Ballinger	73
Elm Creek at Ballinger	77
South Concho River (head of Concho River):	
South Concho River at Christoval	80
Middle Concho River above Tankersley	81
Spring Creek above Tankersley	82
Dove Creek at Knickerbocker	83
Twin Buttes Reservoir near San Angelo	84
South Concho River:	
Pecan Creek near San Angelo	86
Lake Nasworthy near San Angelo	87
South Concho River:	
North Concho River at Sterling City	89
North Concho River near Carlsbad	90
O. C. Fisher Lake at San Angelo	91
North Concho River at San Angelo	93
Concho River at San Angelo	94
Concho River at Paint Rock	95
Colorado River near Stacy	99
Colorado River at Winchell	103
Pecan Bayou:	
Lake Clyde near Clyde	105
Jim Ned Creek:	
Hords Creek:	
Hords Creek Lake near Valera	107
Hords Creek near Valera	108
Lake Brownwood near Brownwood	109
Pecan Bayou near Mullin	111

GAGING STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED

COLORADO RIVER BASIN—Continued Colorado River: San Saba River at Menard. San Saba River near Brady. 116 Brady Creek near Eden. 117 Brady Creek at Brady. 118 San Saba River at San Saba. 119 Colorado River near San Saba. 120 Lake Buchanan near Burnet. 124 Colorado River near Junction. 125 Llano River near Junction. 126 Beaver Creek near Mason. 127 Llano River near Mason. 127 Llano River near Mason. 128 Sandy Creek near Kingsland. 131 Pedernales River near Johnson City. 132 Pedernales River near Johnson City. 133 Lake Travis near Austin. 136 Bull Creek at Loop 360 near Austin. 136 Bull Creek at Loop 360 near Austin. 138 Lake Austin at Austin. 140 Colorado River (Town Lake): Barton Creek near Camp Craft Road, Austin. 148 Barton Springs at Austin. 149 Shoal Creek at Northwest Park, Austin. 150 Shoal Creek at Luosy 360, Austin. 151 Shoal Creek at U.S. Highway 183, Austin. 152 Town Lake at Austin. 155 Colorado River below Marsin. 161 Walnut Creek at Dessau Road, Austin. 162 Walnut Creek at Southern Pacific Railroad bridge, Austin. 170 Walnut Creek at Southern Pacific Railroad bridge, Austin. 173 Colorado River below Marsin. 174 Bear Creek below Farm Road 1826 near Driftwood. 177 Bear Creek at Southern Pacific Railroad bridge, Austin. 181 Williamson Creek at Jimmy Clay Road, Austin. 181 Williamson Creek at Jimmy Clay Road, Austin. 182 Big Sandy Creek near Elgin. 183 Big Sandy Creek near McDade 185 Sandor Cround River above Columbus 186 Colorado River above Columbus 186		Pa	age
Colorado River at Menard. 115	WESTERN GULF OF MEXICO BASINSContinued		
San Saba River near Brady 115 San Saba River near Brady 116 Brady Creek near Eden 117 Brady Creek at Brady 118 San Saba River at San Saba 119 Colorado River near San Saba 120 Lake Buchanan near Burnet 124 Colorado River: 125 Llano River near Junction 125 Llano River near Mason 126 Beaver Creek near Mason 127 Llano River at Llano 128 Sandy Creek near Kingsland 131 Pedernales River near Fredericksburg 132 Pedernales River near Johnson City 133 Lake Travis near Austin 135 Colorado River below Mansfield Dam, Austin 135 Colorado River below Mansfield Dam, Austin 136 Bull Creek at Loop 360 near Austin 140 Colorado River Bolow Mansfield Dam, Austin 140 Colorado River Creek at Loop 360, Austin 146 Barton Creek at Loop 360, Austin 148 Barton Springs at Austin 15 Shoal Creek at Northwest Park, Austin 151 Shoal Creek at Northwest Park, Au			
San Saba River near Brady 116			
Brady Creek near Eden. 117 Brady Creek at Brady 118 San Saba River at San Saba 119 Colorado River near San Saba 120 Lake Buchanan near Burnet 124 Colorado River near Junction 125 Llano River near Junction 125 Llano River near Mason 126 Beaver Creek near Mason 127 Llano River at Llano 128 Sandy Creek near Kingsland 131 Pedernales River near Johnson City 133 Pedernales River near Johnson City 133 Lake Travis near Austin 135 Colorado River below Mansfield Dam, Austin 136 Bull Creek at Loop 360 near Austin 136 Bull Creek at Loop 360 near Austin 140 Colorado River (Town Lake): Barton Creek near Camp Craft Road, Austin 146 Barton Creek at Loop 360, Austin 148 Barton Springs at Austin 149 Shoal Creek at Northwest Park, Austin 151 Shoal Creek at Northwest Park, Austin 151 Town Lake at Austin 152 Town Lake at Austin 151 Town Lake at Austin 152 Town Lake at Austin 161 Boggy Creek at U.S. Highway 183, Austin 161 Boggy Creek at Usen Highway 183, Austin 161 Boggy Creek at Southern Pacific Railroad bridge, Austin 170 Walnut Creek at Bessau Road, Austin 173 Colorado River below Austin 175 Onion Creek at Webberville Road, Austin 170 Walnut Creek at Parm Road 1826 near Driftwood 177 Bear Creek below Farm Road 1826 near Driftwood 177 Bear Creek hear Driftwood 177 Bear Creek hear Parm Road 1826 near Driftwood 179 Slaughter Creek at Jimmy Clay Road, Austin 181 Williamson Creek at Jimmy Clay Road, Austin 183 Big Sandy Creek near Elgin 183 Big Sandy Creek near Elgin 193 Colorado River above Columbus 196			1300
Brady Creek at Brady			
San Saba River at San Saba. 119			
Colorado River near San Saba 120			
Lake Buchanan near Burnet. 124 Colorado River: 125 Llano River near Junction. 126 Beaver Creek near Mason. 127 Llano River at Llano. 128 Sandy Creek near Kingsland. 131 Pedernales River near Fredericksburg. 132 Pedernales River near Johnson City. 133 Lake Travis near Austin. 135 Colorado River below Mansfield Dam, Austin. 136 Bull Creek at Loop 360 near Austin. 138 Lake Austin at Austin. 140 Colorado River (Town Lake): 140 Barton Creek near Camp Craft Road, Austin. 146 Barton Springs at Austin. 148 Barton Springs at Austin. 151 Shoal Creek at Northwest Park, Austin. 151 Shoal Creek at 12th Street, Austin. 152 Colorado River at Austin. 155 Colorado River at Austin. 161 Boggy Creek at U.S. Highway 183, Austin. 165 Walnut Creek at Dessau Road, Austin. 170 Walnut Creek at Southern Pacific Railroad bridge, Austin. 173 Colorado River hear Driftwood. 177 <td></td> <td></td> <td></td>			
Colorado River Llano River near Junction 125			
Llano River near Junction. 125			124
Llano River near Mason. 126 Beaver Creek near Mason. 127 Llano River at Llano. 128 Sandy Creek near Kingsland 131 Pedernales River near Fredericksburg 132 Pedernales River near Johnson City 133 Lake Travis near Austin. 135 Colorado River below Mansfield Dam, Austin 136 Bull Creek at Loop 360 near Austin. 136 Bull Creek at Loop 360 near Austin. 138 Lake Austin at Austin 140 Colorado River (Town Lake): Barton Creek near Camp Craft Road, Austin 146 Barton Creek at Loop 360, Austin 148 Barton Springs at Austin 149 Shoal Creek at Northwest Park, Austin 151 Shoal Creek at 12th Street, Austin 152 Town Lake at Austin 155 Colorado River at Austin 155 Colorado River at Austin 161 Boggy Creek at U.S. Highway 183, Austin 161 Walnut Creek at Dessau Road, Austin 168 Walnut Creek at Webberville Road, Austin 170 Colorado River below Austin 173 Colorado River below Austin 175 Onion Creek near Driftwood 177 Bear Creek below Farm Road 1826 near Driftwood 177 Slaughter Creek at Jimmy Clay Road, Austin 181 Williamson Creek at Jimmy Clay Road, Austin 181 Williamson Creek at Jimmy Clay Road, Austin 183 Williamson Creek at Jimmy Clay Road, Austin 189 Big Sandy Creek near Elgin 189 Colorado River at Bastrop 192 Golorado River at Bastrop 194 Colorado River at Bastrop 196 Colorado River above Columbus 196 Colorado River above Columbus 196			125
Beaver Creek near Mason. 127			775.
Llano River at Llano. 128 Sandy Creek near Kingsland. 131 Pedernales River near Fredericksburg. 132 Pedernales River near Johnson City. 133 Lake Travis near Austin. 135 Colorado River below Mansfield Dam, Austin. 136 Bull Creek at Loop 360 near Austin. 138 Lake Austin at Austin. 140 Colorado River (Town Lake): Barton Creek near Camp Craft Road, Austin. 146 Barton Creek at Loop 360, Austin. 148 Barton Springs at Austin. 149 Shoal Creek at Northwest Park, Austin. 151 Shoal Creek at 12th Street, Austin. 152 Town Lake at Austin. 152 Colorado River at Austin. 155 Colorado River at Austin. 161 Boggy Creek at U.S. Highway 183, Austin 165 Walnut Creek at Dessau Road, Austin 168 Walnut Creek at Southern Pacific Railroad bridge, Austin 173 Colorado River below Austin 175 Onion Creek near Driftwood. 177 Bear Creek at Jarm Road 1826 near Driftwood 179 Slaughter Creek at Jimmy Clay Road, Austin 181 Williamson Creek at Jimmy Clay Road, Austin 182 Big Sandy Creek near Elgin. 183 Big Sandy Creek near McDade 192 Big Sandy Creek near McDade 192 Colorado River above Columbus 196 Columins Creek:			
Sandy Creek near Kingsland		트리얼 가는 전 시간 경기가 하는 것으로 가는 것이 되었다면 하는 것이 하는 것이 없는 것이 없는 것이 없다.	
Pedernales River near Fredericksburg. 132 Pedernales River near Johnson City. 133 Lake Travis near Austin. 135 Colorado River below Mansfield Dam, Austin 136 Bull Creek at Loop 360 near Austin. 140 Colorado River (Town Lake): Barton Creek near Camp Craft Road, Austin 144 Barton Creek at Loop 360, Austin 144 Barton Springs at Austin. 149 Shoal Creek at Northwest Park, Austin 151 Shoal Creek at 12th Street, Austin 152 Town Lake at Austin 155 Colorado River at Austin 161 Boggy Creek at U.S. Highway 183, Austin 161 Boggy Creek at U.S. Highway 183, Austin 165 Walnut Creek at Webberville Road, Austin 168 Walnut Creek at Webberville Road, Austin 170 Colorado River below Austin 173 Colorado River below Austin 175 Onion Creek near Driftwood 177 Bear Creek below Farm Road 1826 near Driftwood 177 Slaughter Creek at Jimmy Clay Road, Austin 181 Williamson Creek at Jimmy Clay Road, Austin 182 Big Sandy Creek near McDade 192 Big Sandy Creek near McDade 192 Big Sandy Creek near McDade 193 Colorado River at Bastrop 194 Colorado River at Bastrop 194 Colorado River above Columbus 196			
Pedernales River near Johnson City. 133 Lake Travis near Austin. 135 Colorado River below Mansfield Dam, Austin 136 Bull Creek at Loop 360 near Austin. 138 Lake Austin at Austin. 140 Colorado River (Town Lake): Barton Creek near Camp Craft Road, Austin 146 Barton Creek at Loop 360, Austin 148 Barton Springs at Austin. 149 Shoal Creek at Northwest Park, Austin 151 Shoal Creek at Northwest Park, Austin 152 Town Lake at Austin. 155 Colorado River at Austin 161 Boggy Creek at U.S. Highway 183, Austin 165 Walnut Creek at Dessau Road, Austin 168 Walnut Creek at Southern Pacific Railroad bridge, Austin 173 Colorado River below Austin 175 Onion Creek near Driftwood 177 Bear Creek below Farm Road 1826 near Driftwood 177 Slaughter Creek at Jimmy Clay Road, Austin 181 Williamson Creek at Jimmy Clay Road, Austin 183 Williamson Creek at Jimmy Clay Road, Austin 186 Onion Creek near Briftwoy 183 near Austin 186 Onion Creek at U.S. Highway 183 near Austin 181 Williamson Creek at Jimmy Clay Road, Austin 183 Williamson Creek at Jimmy Clay Road, Austin 186 Onion Creek near Briftwoy 183 near Austin 189 Big Sandy Creek near Elgin 193 Colorado River above Columbus 196 Cummins Creek:		그를 하면 그리고 그렇게 하면 하면 가게 가셨다면 하는데 얼마나가 되었다. 그리고 있는데 아이들에게 되었다면 하는데 다른데 모든데 모든데 되었다.	
Lake Travis near Austin. 135 Colorado River below Mansfield Dam, Austin. 136 Bull Creek at Loop 360 near Austin. 140 Colorado River (Town Lake): Barton Creek near Camp Craft Road, Austin. 146 Barton Creek at Loop 360, Austin. 148 Barton Springs at Austin. 149 Shoal Creek at Northwest Park, Austin. 151 Shoal Creek at 12th Street, Austin. 152 Town Lake at Austin. 155 Colorado River at Austin. 161 Boggy Creek at U.S. Highway 183, Austin. 165 Walnut Creek at Dessau Road, Austin. 168 Walnut Creek at Southern Pacific Railroad bridge, Austin. 170 Walnut Creek at Southern Pacific Railroad bridge, Austin. 173 Colorado River below Austin. 175 Onion Creek near Driftwood. 177 Bear Creek below Farm Road 1826 near Driftwood. 179 Slaughter Creek at Jimmy Clay Road, Austin. 181 Williamson Creek at Jimmy Clay Road, Austin. 183 Williamson Creek at Jimmy Clay Road, Austin. 189 Big Sandy Creek near McDade. 192 Big Sandy Creek near Bastrop. 194 Colorado River above Columbus. 196 Cummins Creek			
Colorado River below Mansfield Dam, Austin		이 이 가는데 이번 이번 경기에서 보일한 가능하는데 살아왔다면서 가는데 보다면서 가능하다고 있다.	
Bull Creek at Loop 360 near Austin			
Lake Austin at Austin			138
Barton Creek near Camp Craft Road, Austin	그는 '하다. 네워워하다'이 마면 그는 어때의 그가 맛이 되는 것들이 없을 것들이 가득했다. 그리고 하는데, 그런 사람이 없는데 살아 그렇게 되어 먹어 먹었다. 그렇게 되어 먹어 그래요?		140
Barton Creek at Loop 360, Austin	Colorado River (Town Lake):		
Barton Creek at Loop 360, Austin	Barton Creek near Camp Craft Road, Austin	1	146
Shoal Creek at Northwest Park, Austin			148
Shoal Creek at 12th Street, Austin	Barton Springs at Austin		149
Town Lake at Austin	Shoal Creek at Northwest Park, Austin		151
Colorado River at Austin	Shoal Creek at 12th Street, Austin		
Boggy Creek at U.S. Highway 183, Austin	Town Lake at Austin		155
Walnut Creek at Dessau Road, Austin			
Walnut Creek at Webberville Road, Austin			
Walnut Creek at Southern Pacific Railroad bridge, Austin			
Colorado River below Austin	그 마다는 그는 것이 되었다면 가게 되었다. 그는 그런 얼마에게 하면 가게 되었다면 그런 하는 그는 그를 하는 것이 되었다면 하는 것이 없는 것이 없는 것이 없는 것이 없다면 하는 것이 없다면 없다면 없다면 하는 것이 없다면	경기가 하다는 것이 하는 것이 되었다. 그 나는 사람들이 가장 하는 것이 없는 것이 없는 것이 없다면 없다.	
Onion Creek near Driftwood			
Bear Creek below Farm Road 1826 near Driftwood			
Slaughter Creek at Farm Road 1826 near Austin			
Williamson Creek at Oak Hill			
Williamson Creek at Jimmy Clay Road, Austin	그는 그들은 이 그렇게 되었다. 이 경우 그는 그렇게 되는 그 사람들이 되었다. 그런 이 모든 그들은 그들은 그들은 그들은 그들은 그들은 그를 보는 것이다.	19 7 FT TUT IT IT MULLING 중 12 12 14 15 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	
Onion Creek at U.S. Highway 183 near Austin			
Big Sandy Creek near McDade	그는 그 사람이 있는 아들은 점이 없는 것이 하는 것이 없었다면 하지만 살아야 하셨다면 얼마를 하셨다면 살아 되었다면 하셨다면 하셨다면 하는데 얼마를 다 먹었다면 하다면 하는데 얼마를 하는데 하는데 하는데 얼마를 하는데	집에 그 대통령 지난 시에서 가고 있어야 하다면 하다면 하는데 아니라 보는데 하게 하다니까지 않는데 때문을 하다.	
Big Sandy Creek near Elgin		(1772년) 및 2014년 전 21. 12. 12. 12. 12. 12. 12. 12. 12. 12.	
Colorado River at Bastrop	그는 그 그렇게 즐겁는 게 어느를 가득하게 되었다. 얼마나 하는데 그 아이들이 얼마나 하는데		
Colorado River above Columbus	그 있다. 이렇게 가득이 얼룩하고 있었다. 그리고 살아보고 하는 것이 되는 것으로 살아야 한다. 그렇게 하네네트 이렇게 되었다면서 하는데 살아 살아 먹었다.		
Cumming Creek:	그는 그렇게 하는 아이들에게 그렇게 되는 아이들이 살아보는 아이들이 얼마나 하는 것이 되었다면 하는 것이 되었다. 그런 그렇게 되었다면 하는 것이 얼마나 없어요. 그렇게 되었다.		
Commend of Cold :	Cumming Creek.		. 70
Redgate Creek near Columbus	Redgate Creek near Columbus		209

GAGING STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED

		Page
W	VESTERN GULF OF MEXICO BASINSContinued	
	COLORADO RIVER BASINContinued	
	Colorado River at Columbus	210
	Colorado River at Wharton	211
	Colorado River near Bay City	216
	TRES PALACIOS RIVER BASIN	
	Tres Palacios River near Midfield	217
	LAVACA RIVER BASIN	
	Lavaca River at Hallettsville	218
	Lavaca River near Edna	219
	Navidad River near Hallettsville	222
	Navidad River near Speaks	223
	Sandy Creek near Louise	224
	Mustang Creek:	
	West Mustang Creek near Ganado	227
	GARCITAS CREEK BASIN	
	Garcitas Creek near Inez	230
	PLACEDO CREEK BASIN	
	Placedo Creek near Placedo	232
	GUADALUPE RIVER BASIN	
	Guadalupe River:	
	North Fork Guadalupe River near Hunt	233
	Guadalupe River at Hunt	234
	Johnson Creek near Ingram	235
	Guadalupe River above Bear Creek at Kerrville	236
	Guadalupe River at Comfort	237
	Guadalupe River near Spring Branch	238
	Canyon Lake near New Braunfels	239
	Guadalupe River at Sattler	240
	Guadalupe River above Comal River at new Braunfels	241
	Comal River at New Braunfels	242
	Guadalupe River below New Braunfels	243
	San Marcos River spring flow at San Marcos	244
	Blanco River at Wimberley	245
	Blanco River near Kyle	246
	San Marcos River at Luling	247
	Plum Creek at Lockhart	249
	Plum Creek near Luling	250
	Sandies Creek near Westhoff	256
	Guadalupe River at Cuero	258
	Guadalupe River at Victoria	260
	Coleto Creek at Arnold Road Crossing near Schroeder	263
	Coleto Creek Reservoir inflow (Guadalupe Diversion) near Schroeder	264
	Perdido Creek at Farm Road 622 near Fannin	265

GAGING STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED

	Page
WESTERN GULF OF MEXICO BASINSContinued	1
GUADALUPE RIVER BASINContinued	
Guadalupe River:	
Coleto Creek Reservoir (Consenser No. 1) near Fannin	266
Coleto Creek Reservoir near Victoria	
Coleto Creek Reservoir (Outlet) near Victoria	
Coleto Creek near Victoria	
San Antonio River:	
Olmos Creek at Dresden Drive, San Antonio	272
Olmos Reservoir at San Antonio	
San Antonio River at San Antonio	
Salado Creek:	
Lorence Creek at Thousand Oaks Boulevard, San Antonio	278
Salado Creek (upper station) at San Antonio	그리다 아내는 아내는 아이가 그 그 때문에 가지
Salado Creek (lower station) at San Antonio	
Medina River at Bandera	
Medina Lake near San Antonio	
Diversion Lake:	
Medina Canal near Riomedina	288
Medina River near Macdona	
Medina River near Somerset	
Culebra Creek:	23.5.13.13.5.5.1
Helotes Creek at Helotes	291
Leon Creek at I.H. 35 at San Antonio	
Medina River at San Antonio	
San Antonio River near Elmendorf	
San Antonio River near Falls City	
Cibolo Creek near Boerne	
Cibolo Creek at Selma	
Cibolo Creek near Falls City	
Ecleto Creek near Runge	
San Antonio River at Goliad	
Guadalupe-Blanco River Authority Calhoun Canal	
Flume No. 1 near Long Mott	318
Guadalupe-Blanco River Authority Calhoun Canal	
Flume No. 2 near Long Mott	319
Guadalupe River near Tivoli	
COPANO CREEK BASIN	
Copano Creek near Refugio	323
MISSION RIVER BASIN	
Mission River at Refugio	325
ARANSAS RIVER BASIN	
Aransas River near Skidmore	328
Chiltipin Creek at Sinton	
	20 Mar 4 S 20 M 27 S M 28 S S S S S S S S S S S S S S S S S S

	Page
WESTERN GULF OF MEXICO BASINSContinued	1
NUECES RIVER BASIN	
Nueces River at Laguna	330
West Nueces River near Brackettville	333
Nueces River below Uvalde	334
Nueces River near Asherton	335
Nueces River at Cotulla	336
San Casimiro Creek near Freer	337
Nueces River near Tilden	338
Frio River at Concan	339
Dry Frio River near Reagan Wells	342
Frio River below Dry Frio River near Uvalde	345
Sabinal River near Sabinal	346
Sabinal River at Sabinal	349
Hondo Creek near Tarpley	350
Hondo Creek at King Waterhole near Hondo	353
Seco Creek at Miller Ranch near Utopia	354
Seco Creek at Rowe Ranch near D'Hanis	357
Frio River near Derby	358
Frio River at Tilden	359
San Miguel Creek near Tilden	361
Atascosa River at Whitsett	363
Nueces River near Three Rivers	364
Lagarto Creek near George West	367
Lake Corpus Christi near Mathis	368
Nueces River near Mathis	369
OSO CREEK BASIN	
Oso Creek at Corpus Christi	372
SAN FERNANDO CREEK BASIN	
San Diego Creek (head of San Fernando Creek) at Alice	374
Chiltipin Creek:	
Lake Alice at Alice	375
San Fernando Creek at Alice	376
RIO GRANDE BASIN	
Rio Grande at El Paso	377
Rio Grande at Foster Ranch near Langtry	379
Pecos River at Red Bluff, NM	381
Delaware River near Red Bluff, NM	384
Red Bluff Reservoir near Orla	385
Pecos River near Orla	386
Reeves County Water Improvement District No. 2 canal near Mentone	390
Ward County Water Improvement District No. 3 canal near Barstow	391
Ward County Irrigation District No. 1 canal near Barstow	392
Toyah Creek:	
Limpia Creek above Fort Davis	393
Pecos County Water Improvement District No. 2	
(upper diversion) canal near Grandfalls	395

GAGING STATION, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED	XI
	Page
WESTERN GULF OF MEXICO BASINSContinued	
RIO GRANDE BASINContinued	
Rio Grande:	
Pecos County Water Improvement District No. 2 canal	
near Imperial	396
Pecos County Water Improvement District No. 3 canal	
near Imperial	397
Ward County Water Improvement District No. 2 canal	000
near Grandfalls	398
Pecos River near Girvin	399
Independence Creek near Sheffield	400
Rio Grande:	401
Pecos River near Langtry	401
Devils River at Pafford Crossing near Comstock	411
Rio Grande at Laredo	412
Rio Grande below Falcon Dam	415
Rio Grande at Fort Ringgold, Rio Grande City	416
Rio Grande near Los Ebanos	417
Rio Grande below Anzalduas Dam	418
Rio Grande near Brownsville	420

WATER RESOURCES DATA, TEXAS, WATER YEAR 1984

VOLUME 3

COLORADO RIVER BASIN, LAVACA RIVER BASIN, GUADALUPE RIVER BASIN, NUECES RIVER BASIN, RIO GRANDE BASIN, AND INTERVENING COASTAL BASINS

INTRODUCTION

Surface-water data for Texas for the 1984 water year are presented in three volumes, appropriately identified by river basins. Data in each volume consist of records of stage, discharge, and water quality of streams and canals; and stage, contents, and water quality of lakes and reservoirs. Records for a few pertinent stations in bordering states are also included. These data represent that part of the National Water Data System operated by the U.S. Geological Survey in cooperation with State and Federal agencies in Texas.

Records of discharge (or stage) of streams and contents (or stage) of lakes and reservoirs were first published in a series of Geological Survey Water-Supply Papers entitled, "Surface Water Supply of the United States." Through water year 1960, these water-supply papers were in an annual series and then in a 5-year series for 1961-65 and 1966-70. Records of chemical quality, water temperature, and suspended sediment were published from 1941 to 1971 in an annual series of water-supply papers entitled, "Quality of Surface Waters of the United States." Water-supply papers may be consulted in the libraries of the principal cities in the United States or may be purchased from Branch of Distribution, U.S. Geological Survey, 1200 South Eads Street, Arlington, Virginia 22202.

For water years 1961 through 1974, streamflow data were released by the Geological Survey in annual reports on a State-boundary basis. Water-quality records for water years 1964 through 1974 were similarly released either in separate reports or in conjunction with streamflow records. Beginning with the 1975 water year, water data for streamflow and water quality are published as an official Survey report on a State-boundary basis. These official Survey reports carry an identification number consisting of the two letter State abbreviation, the last two digits of the water year, and the volume number. For example, this report is identified as "U.S. Geological Survey Water-Data Report TX-84-3." Water-data reports are for sale by the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia 22161.

COOPERATION

Federal agencies that assisted the Geological Survey in the collection of data in this report in the form of funds or services in 1984 are:

Corps of Engineers, U.S. Army.

International Boundary and Water Commission, United States and Mexico, U.S. Section.

National Park Service.

U.S. Bureau of Reclamation.

Organizations that assisted in the collection of data in this report through joint funding agreements through the Texas Department of Water Resources or through direct joint funding agreements with the Gological Survey are:

Texas Department of Water Resources, H. D. Davis, Executive Director; the cities of Abilene, Alice, Arlington, Austin, Brady, Cleburne, Clyde, Corpus Christi, El Paso, Gainesville, Garland, Graham, Houston, Lubbock, Nacogdoches, San Angelo, San Antonio, and Wichita Falls; Athens Municipal Water Authority; Bexar, Medina, and Atascosa Counties Water Control and Improvement District No. 1; Bistone Municipal Water Supply District; Brazos River Authority; Brown County Water Improvement District No. 1; Coastal Bend Council of Governments; Coastal Industrial Water Authority; Colorado River Municipal Water District; Dallas County; Dallas Public Works Department; Dallas/Fort Worth Airport; Dallas Utilities Water Department; Edwards Underground Water District; Franklin County Water District; Galveston County; Greenbelt Municipal and Industrial Water Authority; Guadalupe-Blanco River Authority; Harris County Flood Control District; Harris-Galveston Coastal Subsidence District; Lavaca-Navidad River Authority; Lower Colorado River Authority; Lower Neches Valley Authority; MacKenzie Municipal Water Authority; North Central Texas Municipal Water Authority; Northeast Texas Municipal Water District; Orange County; Pecos River Commission; Red Bluff Water Power Control District; Reeves County Water Improvement District No. 1; Sabine River Authority of Texas; Sabine River Compact Administration; San Antonio City Public Service Board; San Antonio City Water Board; San Antonio River Authority; San Jacinto River Authority; Tarrant County Water Control and Improvement District No. 1; Titus County Fresh Water Supply District No. 1; Trinity River Authority; Upper Guadalupe River Authority; Upper Neches River Municipal Water Authority; Upper Trinity Basin Water Quality Compact; West Central Texas Municipal Water District; Wichita County Water Improvement District No. 2; and Wood County.

HYDROLOGIC CONDITIONS

Large variations in rainfall and runoff characterize the usual hydrologic conditions in Texas. In the eastern part of the State, streams generally are deep with wide alluvial flood plains, and streamflow is perennial. In the western part of the State, streams generally flow through arroyos, and streamflow principally is ephemeral.

Major weather developments in Texas during the 1984 water year include Hurricane Tico, that affected parts of western Texas and the Texas Panhandle during October 1983, and a lingering drought, nurtured by one of the driest spring seasons in Texas history. Hurricane Tico originated in the eastern Pacific Ocean, crossed central Mexico, and entered Texas near the mouth of the Pecos River in mid-October, spreading substantial rainfall along its path through western and northwestern Texas. The extreme drought, that had plagued western Texas during the summer of 1983, spread eastward into south and central Texas by the late spring of 1984, and by late summer had expanded to include north-central and eastern Texas. Much of the southern one-half of Texas received little more than an inch of rain during the entire summer. Scores of communities enforced water rationing to preserve dwindling water supplies in the State's lakes and underground reservoirs. Even though drought conditions existed for much of the 1984 water year, cumulative precipitation was near normal across the State, except for the southern and western extremities, where yearly rainfall totals were actually greater than normal.

Conservation storage in 71 selected reservoirs throughout the State, with a combined conservation capacity of 31,987,890 acre-feet, decreased from 78 percent at the end of September 1983, to 66 percent at the end of September 1984. Records from these 71 reservoirs show that contents increased in only 4, decreased in 66, and remained the same in 1.

Dissolved-solids concentrations in most streams in the State are inversely related to water discharge. During years when precipitation and runoff are deficient, streamflow commonly is much more mineralized than years when precipitation and runoff are normal or excessive. However, for streams where discharge is controlled by reservoirs, the mineralization of the water may remain relatively constant, despite large fluctuations in precipitation and runoff.

The area for which water-resources data are presented in volume 3 cover the entire southwestern one-half of the State and extend from the western tip of the State near El Paso to the central Texas Gulf Coast near Bay City. Normal annual precipitation ranges from less than 8 inches at El Paso to more than 40 inches at Bay City. Average annual runoff ranges from less than 0.1 inch in parts of western Texas to more than 10 inches in some places along the central Gulf Coast. The location of selected streamflow and water-quality stations in the area of Texas covered by volume 3 are shown in figure 1.

Streamflow

For the first one-half of the 1984 water year, streamflow generally was in the normal range throughout the entire area with the exception of the upper northwestern Colorado and southeastern Pecos River basins, where precipitation from the remnants

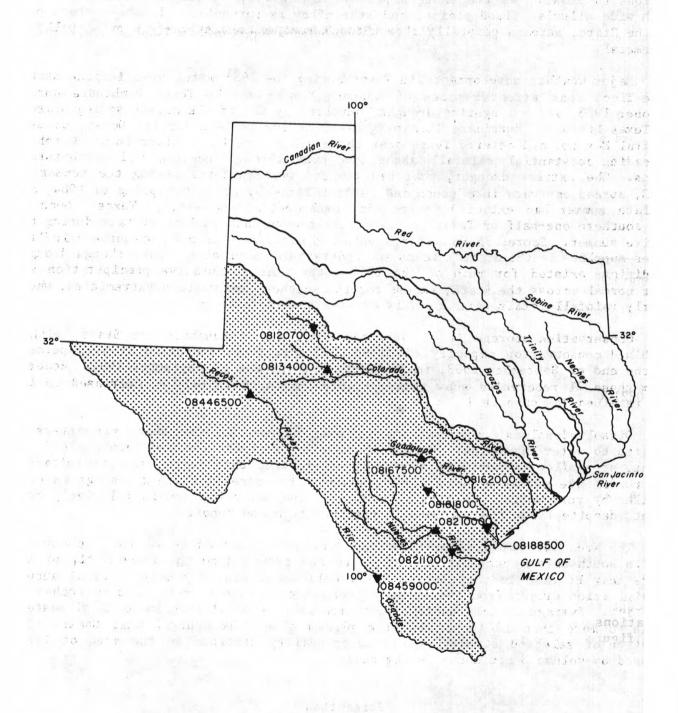


Figure 1.—Area of Texas covered by volume 3 and location of selected streamflow and water-quality stations in volume 3.

of the first of the second of

of Hurricane Tico caused greater than normal runoff in October. Southwestern Texas experienced one of the driest spring seasons in recent history, with streamflow generally deficient throughout the entire area through the last one-half of the 1984 water year.

Runoff for the index station "North Concho River near Carlsbad, Texas" was in excessive range (within the highest 25 percent of record) for the first 6 the months and in the deficient range (within the lowest 25 percent of record) for the remainder of the water year. Runoff for the index station "Guadalupe River near Spring Branch, Texas" was in the deficient range for the entire year. The following table shows a comparison of runoff data for the 1984 water year with runoff for the period of record at four selected stations (fig. 1) in volume 3:

Station	1984 (cub:	arge dur water y ic feet second)	rear	perio (cubi	during record t per)		
		Max.	Min.	Avg.	Max.	Min.	Avg.
*08134000	North Concho River near Carlsbad Tex.	2,920	0	4.44	94,600	0	33.4 (1925-84)
08167500	Guadalupe River near Spring Branch Tex.	3,300	1.1	72.4	160,000	0	307 (1923–84)
a08210000	Nueces River near Three Rivers Tex.	1,660	• 55	82.3	141,000	0	837 (1916-84)
08446500	Pecos River near Girvin Tex.	220	4.5	16.2	20,000	1.9	82.6 (1940-84)

^{*} Hydrologic index station.

At the other two index stations in the State, runoff during the 1984 water year was excessive at Neches River near Rockland for the first 6 months, below normal for the next 3 months, and normal for the remainder of the year. Runoff was deficient at North Bosque River near Clifton for the entire water year except for March, which was normal. Monthly mean discharges for the four index stations in the State are plotted against the median of the long-term monthly means in figure 2.

Conservation storage from 19 selected reservoirs in this area (volume 3) of the State, with a total combined conservation capacity of 8,936,380 acre-feet, decreased from 59 percent at the end of Sepember 1983, to 41 percent at the end of September 1984. Records from the 19 reservoirs show that contents increased in 1, and decreased in 18.

a NASQAN site.

Water Quality

Records of discharge-weighted-average concentrations of dissolved solids for the 1984 water year are compared in the following table with those for the 1979-84 water years for selected long-term daily or continuous stations in the Colorado River, Guadalupe River, Nueces River, and Rio Grande basins:

Station	identification	(cub:	ischarge ic feet second)	concentration (milligra	eighted-average of dissolved solids ms per liter)
		1984	1979-84	1984	1979-84
Color	ado River basin				
08120700	Colorado River near Cuthbert Tex.	7.9	47	2,060	748
08162000	Colorado River at Wharton Tex.	884	1,865	312	246
	the state of the second state of				and the second s
	upe River basin	44200			
08181800	San Antonio River near Elmendorf Tex.	243	425	464	393
08188500	San Antonio River at Goliad Tex.	287	608	602	470
	at Gollad Tex.				
Nuece	es River basin				
08211000	Nueces River near Mathis Tex.	145	562	486	292
Rio	Grande basin				
08459000	Rio Grande at Laredo Tex.	2,690	2,958	635	592

DEFINITION OF TERMS

Terms related to streamflow, water-quality, and other hydrologic data, as used in this report, are defined below. See also the table for converting English units to International System (SI) on the inside of the back cover.

During water year 1978, revisions were made in the terminology used to define 143 of the water-quality parameter codes that have been used by the Geological Survey in its publication of water-quality data in its WATSTORE data system. These revisions were made to achieve consistency in terminology. They do not represent a change in the way the codes have been used in the part or in the association of specific code numbers with identified analytical procedures.

Use of the new terminology began with data for the 1978 water year, and therefore, it first appears in that publication. Definitions on which the terminology is based are included in the "Definitions" sections of this report.

Acre-foot (AC-FT, acre-ft) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to 43,560 cubic feet, about 326,000 gallons, or 1,233 cubic meters.

Algae are mostly aquatic, single-celled, colonial, or multi-celled plants, containing chlorophyll and lacking roots, stems, and leaves.

<u>Bacteria</u> are microscopic unicellular organisms, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants.

Total coliform bacteria are a particular group of bacteria that are used as indicators of possible sewage pollution. They are characterized as aerobic or facultative anaerobic, gram-negative, nonspore-forming, rod-shaped bacteria which ferment lactose with gas formation within 48 hours at 35° C. In the laboratory these bacteria are defined as the organisms which produce colonies with a golden-green metallic sheen within 24 hours when incubated at 35° C \pm 1.0°C on M-Endo medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL (milliliters) of sample.

Fecal coliform bacteria are bacteria that are present in the intestines or feces of warm-blooded animals. They are often used as indicators of the sanitary quality of the water. In the laboratory they are defined as all organisms which produce blue colonies within 24 hours when incubated at $44.5^{\circ}\text{C} + 0.2^{\circ}\text{C}$ on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Fecal streptococcal bacteria are bacteria found in intestines of warm-blooded animals. Their presence in water is considered to verify fecal pollution. They are characterized as gram-positive, cocci bacteria which are capable of growth in brain-heart infusion broth. In the laboratory they are defined as all the organisms which produce red or pink colonies within 48 hours at $35^{\circ}\text{C} + 1.0^{\circ}\text{C}$ on M-enterrococcus medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Bed material is the unconsolidated material of which a streambed, lake, pond, reservoir, or estuary bottom is composed.

<u>Biochemical oxygen demand</u> (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, necessary for the decomposition of organic matter by microorganisms, such as bacteria.

Biomass is the amount of living matter present at any given time, expressed as the mass per unit area or volume of habitat.

Ash mass is the mass or amount of residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of 500°C for 1 hour. The ash mass values of zooplankton and phytoplankton are expressed in g/m³ (grams per cubic meter), and periphyton and benthic organisms in g/m³ (grams per square meter).

<u>Dry mass</u> refers to the mass of residue present after drying in an oven at 60°C for zooplankton and 105°C for periphyton, until the mass remains unchanged. This mass represents the total organic matter, ash and sediment, in the sample. Dry mass values are expressed in the same units as ash mass.

Organic mass or volatile mass of the living substance is the difference between the dry mass and ash mass, and represents the actual mass of the living matter. The organic mass is expressed in the same units as for ash mass and dry mass.

Wet mass is the mass of living matter plus contained water.

Biomass pigment ratio is the ratio of organic mass in mg/m^3 (milligrams per square meter) to the mass of chlorophyll \underline{a} , in mg/m^3 .

Bottom material: See Bed material.

Cells/volume refers to the number of cells of any organisms which is counted by using a microscope and grid or counting cell. Many planktonic organisms are multi-celled and are counted according to the number of contained cells per sample, usually mL or L (liters).

Cfs-day is the volume of water represented by flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, approximately 1.9835 acre-ft, about 646,000 gallons or 2,447 cubic meters.

Chemical oxygen demand (COD) is a measure of the chemically oxidizable material in the water, and furnishes an approximation of the amount of organic and reducing material present. The determined value may correlate with natural water color or with carbonaceous organic pollution from sewage or industrial wastes.

<u>Chlorophyll</u> refers to the green pigments of plants. Chlorophyll \underline{a} and \underline{b} are the two most common pigments in plants.

Color unit is produced by one milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale.

<u>Contents</u> is the volume of water in a reservoir or lake, and unless otherwise indicated is computed on the basis of a level pool. The computation does not include bank storage.

Control designates a feature downstream from a gage that determines the stage-discharge relation at the gage. This feature may be a natural constriction of the channel, an artificial structure, or a uniform cross section over a long reach of the channel.

Cubic foot per second per square mile (CFSM) is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming that the runoff is distributed uniformly in time and area.

Cubic foor per second (FT 3 /S, ft 3 /s) is the rate of discharge representing a volume of 1 cubic foot passing a given point during 1 second. This rate is equivalent to approximately 7.48 gallons per second, 448.8 gallons per minute, or 0.02832 cubic meters per second.

<u>Discharge</u> is the volume of water (or more broadly, volume of fluid plus suspended sediment), that passes a given point within a given period of time.

Mean discharge (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period.

<u>Instantaneous discharge</u> is the discharge at a particular instant of time.

<u>Dissolved</u> refers to that material in a representative water sample which passes through a $0.45~\mu m$ membrane filter. This is a convenient operational definition used by Federal agencies that collect water data. Determinations of "dissolved" constituents are made on subsamples of the filtrate.

<u>Diversity index</u> is a numerical expression of evenness of distribution of aquatic organisms. The formula for diversity index is:

$$\frac{-}{d} = -\sum_{i=1}^{S} \frac{n_i}{n} \log_2 \frac{n_i}{n}$$

where n; is the number of individuals per taxon, n is the total number of individuals, and s is the total number of taxa in the sample of the community. Diversity index values range from zero, when all the organisms in the sample are the same, to some positive number, when some or all of the organisms in the sample are different.

Drainage area of a stream at a specified location is that area, measured in a horizontal plane, enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into the stream above the specified location. Figures of drainage area given herein include all closed basins, or noncontributing areas, within the area unless otherwise noted.

<u>Drainage basin</u> is a part of the surface of the earth that is occupied by a drainage system, which consists of a surface stream or a body of impounded surface water together with all tributary surface streams and bodies of impounded surface water.

Gage height (G.HT.) is the water-surface elevation referred to some arbitrary gage datum. Gage height is often used interchangeably with the more general term "stage," although gage height is more appropriate when used with a reading on a gage.

Gaging station is a particular site on a stream, canal, lake, or reservoir where systematic observations of hydrologic data are obtained.

Hardness of water is a physical-chemical characteristic that is commonly recognized by the increased quantity of soap required to produce lather. It is attributable to the presence of alkaline earths (principally calcium and magnesium) and is expressed as equivalent calcium carbonate (CaCO₃).

Hydrologic unit is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as delineated by the Office of Water Data Coordination on the State Hydrologic Unit Maps; each hydrologic unit is identified by an 8-digit number.

Methylene blue active substance (MBAS) is a measure of apparent detergents. This determination depends on the formation of a blue color when methylene blue dye reacts with synthetic detergent compounds.

Micrograms per gram $(\mu g/g)$ is a unit expressing the concentration of a chemical element as the mass (micrograms) of the element sorbed per unit mass (gram) of sediment.

Micrograms per liter (UG/L, $\mu g/L$) is a unit expressing the concentration of chemical constituents in solution as mass (micrograms) of solute per unit volume (liter) of water. One thousand micrograms per liter is equivalent to one milligram per liter.

Milligrams per liter (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in solution. Milligrams per liter represent the mass of solute per unit volume (liter) of water. Concentration of suspended sediment also is expressed in mg/L, and is based on the mass of sediment per liter of water-sediment mixture.

National Geodetic Vertical Datum of 1929 (NGVD) is a geodetic datum derived from a general adjustment of the first order level nets of both the United States and Canada. It was formerly called "Sea Level Datum of 1929" or "mean sea level" in this series of reports. Although the datum was derived from the average sea level over a period of many years at 26 tide stations along the Atlantic, Gulf of Mexico, and Pacific Coasts, it does not necessarily represent local mean sea level at any particular place.

 $\overline{\text{ND}}$ is used in some of the tables of pesticide data as an abbreviation for "Not $\overline{\text{Detected.}}$ " Analyses in which this term is reported were made by the U.S. Environmental Protection Agency laboratory in Bay Saint Louis, Mississippi.

Organism is any living entity, such as an insect, phytoplankter, or zooplankter.

Organism count/area refers to the number of organisms collected and enumerated in a sample and adjusted to the number per area habitat, usually square meters (m^2) , acres, or hectares. Periphyton benthic organisms, and macrophytes are expressed in these terms.

Organism count/volume refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliliters (mL) or liters (L). Numbers of planktonic organisms can be expressed in these terms.

Total organism count is the total number of organisms collected and enumerated in any particular sample.

<u>Partial-record station</u> is a particular site where limited streamflow and/or water-quality data are collected systematically over a period of years for use in hydrologic analyses.

<u>Particle size</u> is the diameter, in millimeters (mm), of suspended sediment or bed material determined either by sieve or sedimentation methods. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube) determine fall diameter of particles in either distilled water (chemically dispersed) or in native water (the river water at the time and point of sampling).

Particle-size classification used in this report agrees with recommendations made by the American Geophysical Union Subcommittee on Sediment Terminology. The classification is as follows:

Clasification	Size (mm)	Method of analysis
Clay	0.00024 - 0.004	Sedimentation
Silt	.004062	Do.
Sand	.062 - 2.0	Sedimentation or sieve
Gravel	2.0 - 64.0	Sieve

The particle-size ditribution given in this report are not necessarily representative of all particles in transport in the stream. Most of the organic material is removed and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native-water analysis.

Percent composition is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, mass, or volume.

Periphyton is the assemblage of microorganisms attached to and growing upon solid surfaces. While primarily consisting of algae, the assemblage may include bacteria, fungi, protozoa, rotifers, and other small organisms.

Pesticides are chemical compounds used to control undesirable plants and animals. Major categories of pesticides include insecticides and herbicides, which control insects and plants respectively, and are the two categories reported.

<u>Picocurie</u> (PC, pCi) is one trillionth (1 x 10^{-12}) of the amount of radio-activity represented by a curie (Ci). A curie is the amount of radioactivity that yields 3.7 x 10^{10} radioactive disintegrations per second. A picocurie yields 2.22 dpm (disintegrations per minute).

<u>Plankton</u> is the community of suspended, floating, or weakly swimming organisms that live in the open water of lakes and rivers.

Phytoplankton is the plant part of the plankton. They are usually microscopic and their movement is subject to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substances. Because they are able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment, and are commonly known as algae.

Blue-green algae are a group of phytoplankton organisms having a blue pigment, in addition to the green pigment called chlorophyll. Blue-green algae often cause nuisance conditions in water.

 $\underline{\text{Diatoms}}$ are the unicellular or colonial algae having a siliceous shell. Their concentrations are expressed as number of cells/mL of sample.

Green algae have chlorophyll pigments similar in color to those of higher green plants. Some forms produce algal mats of floating "moss" in lakes. Their concentrations are expressed as number of cells/mL of sample.

Zooplankton is the animal part of the plankton. Zooplankton are capable of extensive movements within the water column, and are often large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon baceria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, the zooplankton are a vital part of the aquatic food web. The zooplankton community is dominated by small crustaceans and rotifers.

<u>Polychlorinated biphenyls</u> (PCBs) are industrial chemicals that are mixtures of chlorinated biphenyl compounds having various percentages of chlorine. They are similar in structure to organochlorine insecticides.

Recoverable from bottom material refers to the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of only readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Runoff in inches (IN, in) shows the depth to which the drainage area would be covered if all the runoff for a given time period were uniformly distributed on it.

Sediment is solid material that originates mostly from disintegrated rocks and is transported by, suspended in, or deposited from water; it includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are influenced by environmental factors. Some major factors are degree of slope, length of slope, soil characteristics, land usuage, and quantity and intensity of precipitation.

Suspended sediment is the sediment that at any given time is maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid.

Suspended-sediment concentration is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 ft above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L).

<u>Suspended-sediment discharge</u> (tons/day) is the rate at which dry weight of sediment passes a section of a stream, or is the quantity of sediment, as measured by dry weight or volume, that passes a section during a given time. It is computed by multiplying discharge (ft^3/s) times mg/L times 0.0027.

<u>Suspended-sediment load</u> is quantity of suspended sediment passing a section in a specified period.

Total sediment discharge (tons/day) is the sum of the suspended-sediment discharge and the bed-load discharge. It is the total quantity of sediment, as measured by dry weight or volume, that passes a section during a given time.

Mean concentration is the time-weighted concentration of suspended sediment passing a stream section during a 24-hour day.

Sodium adsorption ratio (SAR) is the expression of relative activity of sodium ions in exchange reactions with soil and is an index of sodium or alkali hazard to the soil. This ratio should be known especially for water used for irrigation.

Solute is any substance derived from the atmosphere, vegetation, soil, or rocks that is dissolved in water.

Specific conductance is a measure of the ability of a water to conduct an electrical current. It is expressed in micromhos per centimeter at 25°C. Specific conductance is related to the type and concentration of ions in solution and can be used for approximating the dissolved-solids content in the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is about 65 percent of the specific conductance (in micromhos). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water.

Stage-discharge relation is the relation between gage height (stage) and volume of water per unit of time, flowing in a channel.

Streamflow is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

Substrate is the physical surface upon which an organism lives.

<u>Natural substrates</u> refers to any naturally occurring emersed or submersed solid surface, such as rock or tree, upon which an organism lived.

Artificial substrate is a device which is purposely placed in a stream or lake for colonization of organisms. The artificial substrate simplifies the community structure by standardizing the substrate from which each sample is taken. Examples of artificial substrates are basket samplers (made of wire cages filled with clean streamside rocks) and multi-plate samplers (made of hardboard) for benthic organism collection, and plexiglass strips for periphyton collection.

Suspended, recoverable refers to the amount of a given constituent that is in solution after the part of a representative water-suspended sediment sample that is retained on a 0.45 μm membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. Determinations of "suspended, recoverable" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total recoverable concentrations of the constituent.

Suspended, total refers to the total amount of a given constituent in the part of a representative water-suspended sediment sample that is retained on a 0.45 μm membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total." Determinations of "suspended, total" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total concentrations of the constituent.

Time-weighted average is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total numbers of days. A time-weighted average represents the composition of water that would be contained in a vessel or reservoir that had received equal quantities of water from the stream each day for the year.

Tons per acre-foot indicates the dry mass of dissolved solids in 1 acre-foot of water. It is computed by multiplying the concentration in milligrams per liter by 0.00136.

Tons per day is the quantity of a substance in solution or suspension that passes a stream section during a 24-hour day.

Total refers to the total amount of a given constituent in a representative water-suspended sediment sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total." (Note that the word "total" does double duty here, indicating both that the sample consists of water-suspended sediment mixture and that the analytical method determines all of the constituent in the sample.)

Total in bottom material refers to the total amount of a given constituent in a representative sample of bottom material. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total in bottom material."

Total load (tons) is the total quantity of any individual constituent, as measured by dry mass or volume, that is dissolved in a specific amount of water (discharge) during a given time. It is computed by multiplying the mean discharge (ft^3/s), times the mg/L of the constituent, times the factor 0.0027, times the number of days.

Total, recoverable refers to the amount of a given constituent that is in solution after a representative water-suspended sediment sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Taxonomy is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchical scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common. For example, the taxonomy of a particular mayfly, Hexagenia limbata is the following:

KingdomAnimal
PhylumArthropoda
ClassInsecta
OrderEphemeroptera
FamilyEphemeridae
GenusHexageria
SpeciesHexagenia limbata

Weighted average is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir.

 $\underline{\mathtt{WDR}}$ is used as an abbreviation for "Water-Data Report" in the REVISED RECORDS paragraph to refer to State annual basic-data reports.

WRD is used as an abbreviation for "Water Resources Data" in the REVISED RECORDS paragraph to refer to State annual basic-data reports published before 1975.

WSP is used as an abbreviation for "Water-Supply Paper" in references to previously published reports.

DOWNSTREAM ORDER AND STATION NUMBER

Since October 1, 1950, the order of listing hydrologic-station records in Survey reports is in a downstream direction along the main stream. All stations on a tributary entering upstream from a main-stream station are listed before that station. A station on a tributary that enters between two main-stream stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary on which a station is situated with respect to the stream to which it is immediately tributary is indicated by an indention in a list of stations in the front of the report. Each indention represents one rank. This downstream order and system of indention show which stations are on tributaries between any two stations and the rank of the tributary on which each station is situated.

As an added means of identification, each hydrologic station has been assigned a station number. These are in the same downstream order used in this report. In assigning station numbers, no distinction is made between partialrecord stations and other stations; therefore, the station number for a partialrecord station indicates downstream-order position in a list made up of both Gaps are left in the series of numbers to allow for new types of stations. stations that may be established; hence, the numbers are not consecutive. The station numbering system is not used at miscellaneous sites where only random water-quality samples or discharge measurements are taken. The complete number for each station consists of eight digits, such as 08123800. The first two digits, 08 or 07, identify the river basin as previously published in the series of water-supply papers on the Surface Water Supply of the United States. The digits 07 indicate the Lower Mississippi River basin, and the digits 08 indicate the Western Gulf of Mexico Basins. The remaining six digits of the station number are sequential in downstream order.

All records for a drainage basin that extends across State boundaries can be arranged in downstream order by assembling the pages from the appropriate State reports by station number.

SPECIAL NETWORKS AND PROGRAMS

Hydrologic bench-mark station is one that provides hydrologic data for a basin in which the hydrologic regimen will likely be governed solely by natural conditions. Data collected at a bench-mark station may be used to separate effects of natural from manmade changes in other basins that have been developed and in which the physiography, climate, and geology are similar to those in the undeveloped bench-mark basin.

National stream-quality accounting network (NASQAN) is a data-collection network designed by the Geological Survey to meet many of the information demands of agencies or groups involved in national or regional water-quality planning and management. Both accounting and broad-scale monitoring objectives have been incorporated into the network design. Areal configuration of the network is based on river-basin accounting units (identified by 8-digit hydrologic-unit numbers) designated by the Office of Water Data Coordination in consultation with the Water Resources Council. Primary objectives of the network are (1) to depict areal variability of streamflow and water-quality conditions nationwide on a year-by-year basis and (2) to detect and assess long-term changes in streamflow and stream quality.

Pesticide program is a network of regularly sampled water-quality stations where samples are collected to determine the concentration and distribution of pesticides in streams where potential contamination could result from the application of the commonly used insecticides and herbicides. Operation of the network is a Federal interagency activity.

Radiochemical program is a network of regularly sampled gaging stations where additional samples are collected monthly or twice a year (at high and low flow) to be analyzed for radioisotopes. The streams that are sampled represent major drainage basins in the conterminous United States.

EXPLANATION OF STAGE AND WATER-DISCHARGE RECORDS

Collection and computation of data

The basic data collected at gaging stations consist of (1) records of stage; (2) measurements of discharge of streams and canals; and (3) stage, surface area, and contents of lakes and reservoirs. In addition, observations of factors affecting the stage-discharge relation or the stage-capacity relation, weather records, and other information are used to supplement basic data in determining the daily flow or volume of water in storage. Records of stage are obtained

from direct readings on a nonrecording gage or from a water-stage recorder that gives either a continuous graph of the fluctuations or a tape punched at 5-, 15-, 30-, or 60-minute intervals. Measurements of discharge are made with a current meter, using the general methods adopted by the Geological Survey on the basis of experience in stream gaging since 1888. These methods are described in standard textbooks, in Water-Supply Paper 888, and in U.S. Geological Survey Techniques of Water Resources Investigations, book 3, chapter A6. Surface areas of lakes or reservoirs are determined from instrument surveys using standard methods. The configuration of the reservoir bottom is often determined by sounding at many points.

For stream-gaging stations, rating tables giving the discharge for any stage are prepared from stage-discharge relation curves. If extensions to the rating curves are necessary to express discharge greater than measured, they are made on the basis of indirect measurements of peak discharge (such as slope-area or contracted-opening mesurements, computation of flow over dams or weirs), step-backwater techniques, velocity-area studies, and logarithmic plotting. The daily mean discharge is computed from gage heights and rating tables; monthly and yearly mean discharges are computed from the daily values. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the daily mean discharge is computed by the shifting-control method, in which correction factors (based on individual discharge measurements and notes by the hydrologists or observers) are used in applying the gage heights to the rating tables.

At some stream-gaging stations, the stage-discharge relation is affected by backwater from reservoirs, tributary streams, or other sources. This necessitates the use of the slope method in which the slope or fall in a reach of the stream is a factor in computing discharge. The slope or fall is obtained by means of an auxiliary gage set at some distance from the base gage. At some stations, the stage-discharge relation is affected by changing stage; at these stations, the rate of change in stage is used as a factor in computing discharge.

For a lake- or reservoir-gaging station, a capacity table giving the contents for any stage is prepared from a stage-area relation curve defined by surveys. The application of the stage to the capacity table gives the contents, from which the daily, monthly, or yearly changes in contents are computed.

If the stage-capacity curve is subject to changes because of deposition of sediment in the reservoir, periodic resurveys of the reservoir are necessary to define new stage-capacity curves. During the period between reservoir surveys, the computed contents may be increasingly in error due to the gradual accumulation of sediment. However, the change in contents is not affected to the same extent.

At some gaging stations, there are periods when no gage-height record is obtained or the recorded gage height is so faulty that it cannot be used to compute daily discharge or contents. For such periods, the daily discharges are estimated on the basis of recorded range in stage, adjoining good record, discharge measurements, weather records, and comparison with other station records from the same or nearby basins. Daily contents may be estimated on the basis of operator's log, adjoining good record, inflow-outflow studies, and other information.

The data in this report generally comprise a description of the station and tabulations of daily and monthly values. For gaging stations on streams or canals, a table showing the daily, monthly, and yearly discharge is given. For a gaging station on a reservoir, a table showing the daily contents is given. Tables of daily or maximum and minimum daily gage heights are included for some gaging stations. Records are published for the water year, which begins on October 1 and ends on September 30. A calendar for the current water year is shown on the inside of the front cover to facilitate finding the day of the week for any date.

The description of the gaging stations, except those partial-record stations published in tabular form in the back of the report, gives the location, drainage area, period of record, type and history of gages, average discharge, extremes of discharge or contents, general remarks, and notations of revisions of previously published records. The location of the gaging stations and the drainage areas are obtained from the most accurate maps available. River mileage, given under "LOCATION" for some stations, is that determined and used by the Corps of Engineers or other agencies (U.S. Water Resources Council, 1968). Periods for which there are published records for the present station or for stations generally equivalent to the present one are given under "PERIOD OF RECORD."

Previously published streamflow records for some stations have been found to be in error on the basis of data or information later obtained. Revisions of such records are usually published along with the current records in one of the annual or compilation reports. In order to make it easier to find such revised records, a paragraph headed "REVISED RECORDS" has been added to the description of all stations for which revised records have been published. Listed therein are all the reports in which revisions have been published, each followed by the water years for which figures are revised in that report. In listing the water years only one number is given; for instance, 1965 stands for the water year October 1, 1964, to September 30, 1965. If no daily, monthly, or annual figures of discharge are affected by the revision, the fact is brought out by notations after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; "(m)" that only the instantaneous minimum was revised; "(P)" that only peak discharges were revised. If the drainage area has been revised, the report in which the revised figure was first published is given. It should be noted that for all stations for which cubic feet per second per square mile and runoff in inches are published, a revision of the drainage area necessitates corresponding revision of all figures based on the drainage area. Revised figures of cubic feet per second per square mile and runoff in inches resulting from a revision of the drainage area only are usually not published in the annual series of reports.

The type of gage currently in use, the datum of the present gage referred to National Geodetic Vertical Datum, and a condensed history of the types, locations, and datums of previous gages used during the period of record are given under "GAGE." National Geodetic Vertical Datum is explained in "DEFINITIONS OF TERMS" on page 11.

Information pertaining to the accuracy of the discharge records and to conditions which affect the natural flow at the gaging station is given under "REMARKS." For reservoir stations, information on the dam forming the reservoir, the capacity, outlet works and spillway, and purpose and use of the reservoir is given under "REMARKS."

The average discharge for the number of years indicated is given under "AVERAGE DISCHARGE"; it is not given for stations having fewer than 5 complete years of record or for stations where changes in water development during the period of record cause the statistic to have little significance. Under "EX-TREMES" are given first, the extremes for the period of record, second, information available outside the period of record, and last, those for the current year. Unless otherwise qualified, the maximum discharge (or contents) is the instantaneous maximum corresponding to the maximum stage obtained by use of a water-stage recorder (graphic or digital), a crest-stage gage, or a nonrecording gage read at the time of the crest. If the maximum gage height did not occur on the same day as the maximum discharge, it is given separately. Similarly, the minimum is the instantaneous minimum unless otherwise qualified. For some stations additional peak discharges are listed under EXTREMES FOR THE CURRENT YEAR; if they are all independent peaks above a selected base. The time of occurrence of the peaks and corresponding gage heights are also listed. The base discharge, which is given in the table heading, is selected so that an average of about three peaks a year will be presented. Peak discharges are not published for any canals, ditches, drains, or for any stream for which the peaks are subject to substantial control by man. Time of day is expressed in 24-hour local standard time; for example, 12:30 a.m. is 0030, 1:30 p.m. is 1330. The minimums for these stations are published in separate paragraphs following the table of peaks.

The daily table for stream-gaging stations gives the mean discharge for each day and is followed by monthly and yearly summaries. In the monthly summary below the daily table, the line headed "TOTAL" gives the sum of the daily figures. The line headed "MEAN" gives the average flow in cubic feet per second during the month. The lines headed "MAX" and "MIN" give the maximum and minimum daily mean discharges, respectively, for the month. Discharge for the month also may be expressed in cubic feet per second per square mile (line headed "CFSM"), or in inches (line headed "IN"), or in acre-feet (line headed "AC-FT"). Figures for cubic feet per second per square mile and runoff in inches are generally omitted if there is extensive regulation or diversion, if the drainage area includes large noncontributing areas, or if the average annual rainfall over the drainage basin is usually less than 20 inches. In the yearly summary below the monthly summary, the figures shown are the significant statistics for the calendar and water years.

Footnotes to the table of daily discharge are introduced by the word "NOTE." Footnotes are used to indicate periods for which the discharge is computed or estimated by special methods because of no gage-height record, backwater from various sources, or other unusual conditions. Periods of no gage-height record are indicated if the period is continuous for a month or more or includes the

maximum discharge for the year. Periods of backwater from an unusual source, of indefinite stage-relation, or of any other unusual condition at the gage site are indicated only if they are a month or more in length and the accuracy of the records is affected. Days on which the stage-discharge relation is affected by ice are not indicated. The methods used in computing discharge for various unusual conditions have been explained in preceding paragraphs.

Data collected at partial-record stations follow the information for continuous-record sites. Data for partial-record discharge stations are presented in two tables in the back of the report. The first is a table of discharge measurements at low-flow partial-record stations, and the second is a table of annual, maximum stage and (or) discharge at crest-stage stations. The tables of partial-record stations are followed by a listing of discharge measurements made at sites other than continuous-record or partial-record stations. Occasionally, a series of discharge measurements are made and samples collected within a short time period to investigate the seepage and (or) pollutant gains or losses along a reach of a stream or to determine the low-flow characteristics of an area. Such measurements and analyses are also given in special tables following the tables of partial-record stations.

Accuracy of field data and computed results

The accuracy of discharge data depends primarily on (1) the stability of the stage-discharge relation, or if the control is unstable, the frequency of discharge measurements; and (2) the accuracy of observations of stage, measurements of discharge, and interpretation of records.

The station description under "REMARKS" states the degree of accuracy of the records. "Excellent" means that about 95 percent of the daily discharges are within 5 percent; "good", within 10 percent; and "fair" within 15 percent. "Poor" means that daily discharges have less than "fair" accuracy.

Figures of daily mean discharge in this report are shown to the nearest hundredth of a cubic foot per second for discharges of less than 1 $\rm ft^3/s$; to tenths between 1.0 and 10 $\rm ft^3/s$; to whole numbers between 10 and 1,000 $\rm ft^3/s$; and to 3 significant figures above 1,000 $\rm ft^3/s$. The number of significant figures used is based solely on the magnitude of the figure. The same rounding rules apply to discharge figures listed for partial-record stations.

Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff because of the effects of diversion, municipal and industrial effluents consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. For such stations, values for cubic feet per second per square mile and runoff in inches are not published unless satisfactory adjustments can be made. Adjustments for evaporation from a reservoir are not included in the published changes in reservoir contents, unless it is so stated.

Other data available

Information of a more detailed nature than that published for most of the gaging stations, such as observations of water temperatures, discharge measurements, gage-height records, and rating tables, is on file in the Texas District Office in Austin. Most gaging-station records are available in computer-usable form, and many statistical analyses have been made.

Records of discharge collected by agencies other than the Geological Survey

The International Boundary and Water Commission, United States and Mexico, operates all gaging stations on the Rio Grande and near the mouth of its principal tributaries at and below El Paso, Texas. Records collected at these stations are published in annual bulletins by the Commission and may be obtained from the International Boundary and Water Commission, United States Section, 4171 N. Mesa, Building C Suite 310, El Paso, Texas 79902.

EXPLANATION OF SURFACE-WATER QUALITY RECORDS

Collection and examination of data

Surface-water samples for analyses usually are collected at or near gaging stations. The quality-of-water records are given immediately following the discharge records at these stations.

The descriptive heading for water-quality records gives the period of record for all water-quality data; the period of daily record for parameters that are measured on a daily basis (specific conductance, pH, dissolved oxygen, water temperature, sediment discharge, etc.); extremes for the period of daily record; extremes for the current year; and general remarks.

Water analysis

Most methods for collecting and analyzing water samples are described in U.S. Geological Survey Techniques of Water Resources Investigations listed below.

One sample can define adequately the water quality at a given time if the mixture of solutes throughout the stream cross section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled through several vertical sections to obtain a representative sample needed for an accurate mean concentration and for use in calculating loads.

Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. In the rare case where an apparent inconsistency exists between the reported pH value and the relative abundance of carbon dioxide species (carbonate and bicarbonate), the inconsistency is probably the result of a slight uptake of carbon dioxide from the air by the sample between measurement of pH in the field and determination of carbonate and biocarbonate.

At stream-gaging stations where daily samples are obtained, tables are included to show monthly and annual weighted averages of specific conductance; weighted average concentrations of dissolved solids, chloride, sulfate, hardness; and loads of dissolved solids, chloride, and sulfate. The weighted averages have been computed by using the daily records of specific conductance and developing regression relationships between each water-quality parameter and specific conductance.

For chemical-quality stations equipped with digital monitors, the records consist of daily maximum, minimum, and mean value for each constituent measured and are based upon hourly punches beginning at 0100 hours and ending at 2400 hours for the day of record. More detailed records (hourly values) may be obtained from the district office.

At some stations where continuous or daily records of specific conductance are obtained, concentrations of selected chemical constituents have been computed from regression relationships between specific conductance and the chemical constituents. The weighted average, monthly and annual concentrations and/or loads of these constituents may be published in this report. For each station where this has been done, a statement so indicating has been included in the remarks section of the station description.

Water temperature

Water temperatures are measured at most of the water-quality stations. Water temperatures are also taken at time of discharge measurements at gaging stations. At sites at which daily samples are taken, the water temperature is taken about the same time each day. Large streams have a small diurnal temperature change; but small, shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams and reservoirs may be affected by waste-heat discharges.

At stations where digital recording thermographs are present, the records published consist of maximum, minimum, and mean temperatures for each day and the monthly averages.

Sediment

Suspended-sediment concentrations are determined from samples collected by using depth-integrating samplers. Samples usually are obtained at several verticals in the cross section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross section.

During periods of rapidly changing flow or rapidly changing concentration, samples may have been collected twice daily or, in some instances, hourly. The published values of sediment discharges for days of rapidly changing flow or concentrations were computed by the subdivided-day method (time-discharge weighted average). Therefore, for those days in which the published value of sediment discharge differs from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided-day method. For periods when no samples were collected, daily loads of suspended sediment were estimated on the basis of water-sediment discharge relations, sediment concentrations observed immediately before and after periods, and suspended-sediment loads for other periods of similar discharge.

At other stations, suspended-sediment samples were collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observations, such data are useful in establishing seasonal relations between quality and streamflow and in estimating long-term sediment-discharge characteristics of the stream.

In addition to the records of the quantities of suspended sediment, records of the periodic measurements of the particle-size distribution of the suspended sediment and bed material are included.

PUBLICATIONS OF TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS

Thirty-seven manuals by the U.S. Geological Survey have been published to date in the series on techniques describing procedures for planning and executing specialized work in water-resources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, Section A of Book 3 (Applications of Hydraulics) is on surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises. The reports listed below are for sale by the U.S. Geological Survey, Branch of Distribution, 604 South Pickett Street, Alexandria, VA 22304 (authorized agent of the Superintendent of Documents, Government Printing Office).

- NOTE: When ordering any of these publications, please give the title, book number, chapter number, and "U.S. Geological Survey Techniques of Water-Resources Investigations".
- 1-D1. Water temperature-influential factors, field measurements, and data presentation, by H. H. Stevens, Jr., J. F. Ficke, and G. F. Smoot: USGS-TWRI Book 1, Chapter D1. 1975. 65 p.
- 3-Al. General field and office procedures for indirect measurements, by M. A. Benson and Tate Dalrymple: USGS--TWRI Book 3, Chapter Al. 1967. 30 p.
- 3-A2. Measurement of peak discharge by the slope-area methods, by Tate Dalrymple and M. A. Benson: USGS--TWRI Book 3, Chapter A2. 1967. 12 p.
- 3-A3. Measurement of peak discharge at culverts by indirect methods, by G. L. Bodhaine: USGS--TWRI Book 3, Chapter A3. 1968. 60 p.
- 3-A4. Measurement of peak discharge at width contractions by indirect methods, by H. F. Matthai: USGS-TWRI Book 3, Chapter A4. 1967. 44 p.
- 3-A5. Measurement of peak discharge at dams by indirect methods, by Harry Hulsing: USGS--TWRI Book 3, Chapter A5. 1967. 29 p.
- 3-A6. General procedure for gaging streams, by R. W. Carter and Jacob Davidian: USGS--TWRI Book 3, Chapter A6. 1968. 13 p.
- 3-A7. Stage measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3, Chapter A7. 1968. 28 p.
- 3-A8. Discharge measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3, Chapter A8. 1969. 65 p.
- 3-A9. Measurement of time of travel and dispersion in streams by dye tracing, by E. F. Hubbard, F. A. Kilpatrick, L. A. Martens, and J. F. Wilson, Jr.: USGS-TWRI Book 3. Chapter A9. 1982. 44 p.
- 3-All. Measurement of discharge by moving-boat method, by G. F. Smoot and C. E. Novak: USGS--TWRI Book 3, Chapter All. 1969. 22 p.
- 3-C1. Fluvial sediment concepts, by H. P. Guy: USGS--TWRI Book 3, Chapter C1. 1970. 55 p.
- 3-C2. Field methods for measurement of fluvial sediment, by H. P. Guy and V. W. Norman: USGS-TWRI Book 3, Chapter C2. 1970. 59 p.
- 3-C3. Computation of fluvial-sediment discharge, by George Porterfield: USGS-TWRI Book 3, Chapter C3. 1972. 66 p.
- 4-Al. Some statistical tools in hydrology, by H. C. Riggs: USGS--TWRI Book 4, Chapter Al. 1968. 39 p.

- 4-A2. Frequency curves, by H. C. Riggs: USGS--TWRI Book 4, Chapter A2. 1968.
- 4-B1. Low-flow investigations, by H. C. Riggs: USGS--TWRI Book 4, Chapter B1. 1972. 18 p.
- 4-B2. Storage analyses for water supply, by H. C. Riggs and C. H. Hardison: USGS--TWRI Book 4, Chapter B2. 1973. 20 p.
- 4-B3. Regional analyses of streamflow characteristics, by H. C. Riggs: USGS--TWRI Book 4, Chapter B3. 1973. 15 p.
- 5-Al. Methods for determination of inorganic substances in water and fluvial sediments, by M. W. Skougstad and others: USGS--TWRI Book 5, Chapter Al. 1979. 626 p.
- 5-A2. Determination of minor elements in water by emission spectroscopy, by P. R. Barnett and E. C. Mallory, Jr.: USGS--TWRI Book 5, Chapter A2. 1971. 31 p.
- 5-A3. Methods for analysis of organic substances in water, by D. F. Goerlitz and Eugene Brown: USGS--TWRI Book 5, Chapter A3. 1972. 40 p.
- 5-A4. Methods for collection and analysis of aquatic biological and microbiological samples, edited by P. E. Greeson, T. A. Ehlke, G. A. Irwin, B. W. Lium, and K. V. Slack: USGS--TWRI Book 5, Chapter A4. 1977. 332 p.
- 5-A5. Methods for determination of radioactive substances in water and fluvial sediments, by L. L. Thatcher, V. J. Janzer, and K. W. Edwards: USGS-TWRI Book 5, Chapter A5. 1977. 95 p.
- 5-C1. Laboratory theory and methods for sediment analysis, by H. P. Guy: USGS-TWRI Book 5, Chapter C1. 1969. 58 p.
- 8-B2. Calibration and maintenance of vertical-axis type current meters, by G. F. Smoot and C. E. Novak: USGS--TWRI Book 8, Chapter B2. 1968. 15 p.



FIGURE 2.--COMPARISON OF MONTHLY MEAN DISCHARGE AT FOUR LONG-TERM REPRESENTATIVE GAGING STATIONS DURING THE 1984 WATER YEAR WITH MEDIAN OF THE MONTHLY MEAN DISCHARGE FOR THE PERIOD 1951-80.

08118000 LAKE J. B. THOMAS NEAR VINCENT, TX

LOCATION.--Lat 32°35'09", long 101°12'18", Borden County, Hydrologic Unit 12080002, at Big Spring pump station on south side of lake, 4.0 mi upstream from dam on Colorado River, 7.3 mi north of Vincent, 12.5 mi west of Ira, and at mile 841.0.

DRAINAGE AREA.--3,389 mi 2 , of which 2,371 mi 2 probably is noncontributing. Drainage area includes 455 mi 2 above Bull Creek diversion dam, of which 38 mi 2 probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1953 to current year.

REVISED RECORDS. -- WRD TX-81-3: Drainage area.

GAGE.--Water-stage recorder and nonrecording gage read once daily. Datum of gage is National Geodetic Vertical Datum of 1929. Nov. 4, 1953, to Feb. 7, 1955, Colorado River Municipal Water District nonrecording gage located 4.0 mi downstream at same datum.

REMARKS.—The lake is formed by a rolled earthfill dam, 14,500 ft long. Storage began in July 1952 and the dam was completed in September 1952. There was no appreciable storage prior to July 1953. The capacity curve is based on surveys made in 1948 and 1950. There are two uncontrolled emergency spillways, both cut through natural ground and located as follows: The first is a 500-foot wide cut located at the left end of dam, and the second cut is 1,600 ft wide located at the right end of dam. These spillways are designed to discharge 161,000 ft³/s (elevation, 2,275.0 ft). An uncontrolled rectangular concrete drop inlet, 38.0 by 53.0 ft at the crest, discharges into two 10.0-foot concrete conduits. In addition, there is an outlet that can release water through a 24-inch gate into a 30-inch concrete pipe. The dam was built by the Colorado River Municipal Water District to impound water for municipal and industrial supply for the cities of Big Spring, Odessa, and Snyder. A diversion dam on Bull Creek diverts water through a 13,000-foot-long gravity canal into Lake J. B. Thomas. These diversions began in November 1953. Figures given herein represent total contents. Data regarding the dam and lake are given in the following table:

Elevation

Capacity

(feet)

(acre-feet)

	(feet)	(acre-feet)
Top of dam	2,280.0	
Crest of right spillway (south)	2,267.0	283,600
Crest of left spillway (north)	2,264.0	255,000
Crest of drop inlet (top of conservation pool)	2,258.0	203,600
Lowest gated outlet (invert)	2,200.0	1,300

COOPERATION.--Area and capacity curves were furnished by the Colorado River Municipal Water District. Daily elevation record was furnished by the Colorado River Municipal Water District and reviewed by the Geological Survey.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 218,600 acre-ft Sept. 8, 1962 (elevation, 2,259.85 ft); minimum since first appreciable storage, 4,960 acre-ft May 28, 1971 (elevation, 2,206.43 ft).

EXTREMES FOR CURRENT YEAR.--Maximum contents observed, 39,270 acre-ft Nov. 7 (elevation, 2,225.03 ft); minimum, 19,690 acre-ft Sept. 25 (elevation, 2,216.70 ft).

Capacity table (elevation, in feet, and total contents, in acre-feet)

2,216.0 18,340 2,223.0 33,870 2,220.0 26,640 2,226.0 41,990

CONTENTS, IN ACRE-FEET, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 INSTANTANEOUS OBSERVATIONS AT 2400

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4	32670 32620 32560	38890 38890 38890	37670 37670 37620	36270 36250 36250	35180 35120 35070	33520 33470 33420	31610 31560 31460	29090 29020 28950	27470 27400 27310	25090 24910 24860	22810 22720 22640	21160 21080 21000
5	32460 32460	38970 39110	37560 37510	36220 36110	34990 34970	33370 33320	31410 31310	28900 28860	27240 27150	24820 24780	22600 22510	20940 20880
6	32310 32210	39250 39270	37480 37430	36090 36060	34910 34890	33270 33220	31260 31220	28770 28720	27100 27010	24690 24550	22470 22360	20840 20760
8	32110	39190	37350	36110	34810	33170	31140	28580	26920	24420	22260	20680
9	32060	39050	37320	36090	34760	33090	31070	28490	26780	24340	22220	20590
10	31960	39000	37240	36040	34730	33020	30970	28400	26690	24230	22140	20740
11	31860	38950	37210	36010	34680	32920	30880	28300	26600	24120	22080	20700
12	31810	38890	37160	35960	34600	32870	30830	28260	26510	24040	22080	20660
13	31760	38810	37100	35980	34570	32870	30780	28160	26420	23950	22020	20590
14	31610 31410	38760 38680	37020 37020	35910 35830	34500 34440	32820 32820	30690 30590	28070 27980	26370 26280	23870 23780	21930 21850	20530 20470
	31410	30000	3/020	33830	34440	32820	30390	2/980	20200	23/60	21030	
16	31360	38590	36970	35830	34390	32770	30440	27890	26200	23700	21770	20390
17	31310	38540	37080	35830	34290	32720	30350	27800	26150	23660	21690	20310
18	31260	38460	36810	35700	34290	32670	30300	27800	26020	23610	21650	20230
19	31220	38350	36810	35620	34180	32560	30160	27800	25930	23570	21570	20190
20	36830	38300	36830	35590	34080	32510	30160	27750	25890	23570	21490	20120
21	37020	38270	36810	35540	34000	32460	30060	27700	25820	23490	21450	20040
22	37210	38240	36810	35540	33970	32360	29990	27660	25750	23510	21330	19980
23	37290	38160 38110	36810	35510	33920	32290	29910	27560	25660	23280	21240 21200	19850
24 25	37510 38210	38080	36810 36810	35490 35460	33840 33770	32210 32110	29820 29670	27520 27430	25530 25490	23190 23150	21200	19770 19690
	36210	36060	30010	33460	33//0	32110	290/0	27430	23490	23130	21200	
26	38860	37920	36830	35410	33720	32060	29620	27330	25400	23130	21120	19830
27	39030	37840	36750	35380	33620	32010	29530	27240	25310	23130	21450	20080
28	39030 39000	37840 37780	36720	35330	33570	31910	29480	27190	25220 25170	23110 23060	21490 21450	20190 20270
29 30	38950	37750	36720 36720	35310 35230	33570	31860 31760	29380 29240	27470 27560	25170	22980	21410	20270
31	38920	37730	36430	35200		31660	29240	27520	23170	22890	21290	20270
MAX	39030	39270	37670	36270	35180	33520	31610	29090	27470	25090	22810	21160
MIN	31220	37750	36430	35200	33570	31660	29240	27190	25170	22890	21120	19690
(†) (‡)	2224.90 +6150	2224.47	2223.98	2223.51	2222.88	2222.12	2221.12	2220.38	2219.34	2218.28	2217.50 -1600	2217.00 -1020
(+)	+0130	-11/0	-1320	-1230	-1630	-1910	-2420	-1720	-2350	-2280	-1600	-1020

CAL YR 1983 MAX 55180 MIN 31220 ‡ -18620 WTR YR 1984 MAX 39270 MIN 19690 ‡ -12500

t Elevation, in feet, at end of month.

t Change in contents, in acre-feet.

08118000 LAKE J. B. THOMAS NEAR VINCENT, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical analyses: October 1969 to September 1984 (discontinued).

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
MAY 01	1755	686	21.5	150	0	42	12	87
			2,10	130				
	SODIUM	POTAS-	ALKA-		CHLO-	FLUO-	SILICA.	SOLIDS, SUM OF
	AD-	SIUM,	LINITY	SULFATE	RIDE,	RIDE,	DIS-	CONSTI-
	SORP- TION	DIS- SOLVED	FIELD (MG/L	DIS- SOLVED	DIS- SOLVED	DIS- SOLVED	SOLVED (MG/L	TUENTS, DIS-
	RATIO	(MG/L	AS	(MG/L	(MG/L	(MG/L	AS	SOLVED
DATE		AS K)	CACO3)	AS SO4)	AS CL)	AS F)	SI02)	(MG/L)
MAY								
01	3	6.1	180	68	62	.80	1.7	390

31 08119500 COLORADO RIVER NEAR IRA, TX

LOCATION.--Lat 32°32'18", long 101°03'12", Scurry County, Hydrologic Unit 12080002, on right bank 530 ft downstream from bridge on State Highway 350, 3.8 mi downstream from Bluff Creek, 4 mi upstream from Willow Creek, 4.5 mi southwest of Ira, and at mile 826.3.

DRAINAGE AREA. -- 3,483 mi2, of which 2,371 mi2 (corrected) probably is noncontributing.

PERIOD OF RECORD.--October 1947 to September 1952 (monthly records only 1950-52), October 1958 to current year. Water-quality records: Chemical analyses: November 1958 to September 1970, November 1974 to September 1982.

REVISED RECORDS. -- WRD TX-81-3: Drainage area.

GAGE .-- Water-stage recorder and concrete control. Datum of gage is 2,134.15 ft National Geodetic Vertical Datum of 1929. Oct. 1-30, 1947, nonrecording gage at site 75 ft upstream at same datum.

REMARKS. -- Records good. Since July 1952, flow has largely been regulated by Lake J. B. Thomas (station U8118000) 11

AVERAGE DISCHARGE. -- 5 years (water years 1948-52) prior to completion of Colorado River Dam, 50.5 tt 3/s (36,590 acreft/yr); 26 years (water years 1959-84) partially regulated, 9.78 ft3/s (7,090 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 20,500 ft³/s July 6, 1948 (gage height, 21.35 ft), from rating curve extended above 9,600 ft³/s by slope-conveyance method; maximum gage height, 22.84 ft May 15, 1980 (from shift in rating); no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 16, 1913 (gage height, 32 ft), was the greatest since at least that date, from information by local resident. Flood in May 1947 reached a stage of 25.1 ft, from floodmark at site of former bridge 269 ft upstream from gage.

EXTREMES FOR CURRENT YEAR .-- Maximum discharge, 567 ft3/s Aug. 26 at 0915 hours (gage height, 8.57 ft); no flow for many

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 MEAN VALUES DAY OCT NOV DEC JAN FEB APR MAY JUN JUL AUG SEP . 00 .65 .00 .26 . 22 . 01 .67 . 22 . 26 .00 .22 .12 1.50 .25 .26 .29 0 .00 .03 .36 2 .01 .19 .00 . 01 .00 .17 4.70 .23 .27 .23 .25 . 09 4 .00 -34 .16 7.50 .25 -26 . 01 0 .00 .00 5 25.00 . 22 0 . 00 .00 . 07 .00 6.80 . 22 . 01 .15 . 26 .00 6 24.00 0 - 00 .15 2.20 .22 .22 .27 . 01 .00 - 06 2.80 .15 1.40 .20 .23 .34 . 00 . 02 - 00 - 01 () . 00 .00 .00 .00 . 22 .00 .00 .17 . 22 . 29 0 . 00 . 00 . 01 10 .00 . 55 .16 .92 .20 .22 .28 .00 0 .00 .00 .00 .00 11 .00 .37 .14 .70 . 22 . 22 .30 .00 0 . 08 .00 .00 .57 . 03 12 .00 .26 .14 .21 .22 .27 .00 0 .00 . 01 13 .00 .17 .00 -14 -21 . 22 -25 - 00 0 .00 .37 .22 .23 .00 .20 .00 .00 .00 15 .00 . 07 .14 0 .35 .20 . 22 .00 .00 .00 .00 .00 . 07 0 16 .26 .31 .17 .22 .20 .00 .00 .00 .00 17 .00 .08 .26 .34 .19 . 22 .19 .00 .00 .00 .00 .00 .08 .34 .22 18 . 02 25 .20 .17 0 .00 - 00 - 00 78.00 Ö 19 . 07 .00 .00 .26 .18 .00 . 22 . 00 20 125.00 .06 .26 .31 .21 0 .00 .00 .17 .00 .18 .00 21 16.00 - 06 .17 . 31 .20 .00 0 - 00 . 00 . 00 .18 . 16 22 1.40 .14 .15 .22 0 .00 .00 . 00 .41 .19 .15 .00 23 . 25 .00 .00 .00 .18 .00 .00 .00 24 .14 .11 1.40 .20 .16 .14 0 .00 - 00 25 33.00 78.00 .12 . 09 1.40 . 22 .18 . 09 . 00 0 1.30 6.30 26 .12 19.00 .13 . 09 1.30 .29 . 07 .00 0 314.00 194.00 3.70 .11 .15 .26 26.00 27 1.10 .18 . 04 .00 0 24.00 27.00 0 3.70 . 01 68.00 .64 .17 .00 29 .48 .10 .26 0 5.00 1.20 .26 .18 . 01 . 00 .26 .12 30 .36 .36 .02 .00 0 39.00 .60 .62 31 .26 .41 ----26 ---. 22 .00 .25 1.50 ---TOTAL. 324.72 57.97 5.73 39.42 6.32 6.44 5.81 . 07 0 96.47 396.78 260.13 .19 MEAN 10.5 1.93 .18 1.27 .22 .21 . 002 .000 3.11 12.8 8.67 125 314 194 .34 . 01 .00 68 MIN 00 .06 . 09 . 01 .00 .00 .16 AC-FT 644 11 78 13 13 .00 191 787 516 12

CAL YR 1983 TOTAL WTR YR 1984 TOTAL MEAN 1.54 MAX 125 MIN .00 AC-FT 1120 1199.86 MEAN 3.28 .00

08120500 DEEP CREEK NEAR DUNN, TX

LOCATION.--Lat 32°34'25", long 100°54'27", Scurry County, Hydrologic Unit 12080002, at center of downstream side of bridge on Farm Road 1606, 1.5 mi northwest of Dunn, 2.7 mi upstream from Sulphur Draw, and 9.6 mi upstream from mouth.

DRAINAGE AREA. -- 198 mi², of which 10 mi² probably is noncontributing.

PERIOD OF RECORD .-- April 1953 to current year.

REVISED RECORDS. -- WSP 1922: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 2,172.17 ft National Geodetic Vertical Datum of 1929. Prior to Apr. 21, 1955, nonrecording gage at same site and datum.

REMARKS . -- Records good .

AVERAGE DISCHARGE. -- 31 years (water years 1954-84), 11.8 ft3/s (0.85 in/yr), 8,550 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 20,700 ft³/s Aug. 14, 1972 (gage height, 31.28 ft, from floodmarks), from rating curve extended above 12,000 ft³/s by velociy-area study; no flow for many days each year.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum discharge since at least 1881, 36,400 ft³/s June 19, 1939, by slope-area measurement at site 8.0 mi upstream from gage. Flood in 1892 reached about same stage as that of June 19, 1939, from information by local residents.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 373 ft³/s Sept. 26 at 0600 hours (gage height, 6.13 ft), no peak above base of 850 ft³/s; no flow for many days.

DISCHARGE IN CURIC FEFT DEP SECOND WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

		DISC	HARGE, IN	N CUBIC FI		ECOND, WA' EAN VALUE:	TER YEAR O	CTOBER 19	83 TO SEP.	TEMBER 19	84	1944
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.00 .00 .00 .00	1.7 1.9 1.9 1.8	1.6 2.0 2.0 1.5 2.5	3.9 4.3 4.2 3.4 2.8	.78 1.5 1.7 1.4 1.6	1.8 1.4 1.2 1.0	1.8 1.7 1.9 1.5	.15 .14 .15 .15	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00 .00
6 7 8 9	.00 .00 .00 .00	3.5 1.8 1.7 1.8 1.7	2.6 2.8 3.4 3.5 3.4	2.7 2.8 3.2 5.8 3.2	1.9 2.0 2.0 2.1 2.1	.63 .86 .59 .43	.67 1.3 1.1 1.1 .68	.07 .08 .07 .08	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
11 12 13 14 15	.00 .00 .00	1.7 1.7 1.7 1.6 1.7	3.2 2.9 3.8 3.0 2.1	2.4 2.3 2.1 2.0 2.0	2.1 2.0 1.9 1.9	1.2 1.3 1.6 1.2 1.4	.56 .27 .25 .26 .23	.05 .03 .03 .03 .03	.00 .00 .00 .00	.00 .00 .00 .00	.01 .00 .00 .00	.00 .00 .00 .00
16 17 18 19 20	.00 .25 .44 2.9	1.6 1.5 1.6 1.7	2.9 3.7 3.7 3.4 3.4	2.0 1.7 1.3 1.4	1.8 1.9 2.0 2.0 2.2	1.1 .86 1.0 1.6 1.7	.15 .13 .08 .08	.03 .03 .03 .03	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
21 22 23 24 25	5.5 .74 .05 6.5	1.9 1.9 2.9 2.3	3.4 3.6 3.6 3.6 3.6	1.6 2.0 2.1 2.0 2.0	2.2 2.0 2.2 1.9 2.4	2.0 1.5 1.6 1.8 1.8	.08 .08 .08 .08	1.7 .08 .03 .01	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00 .00
26 27 28 29 30 31	6.1 3.0 2.0 1.7 1.7	1.4 1.3 1.4 1.6	3.6 3.6 3.6 3.8 3.8	1.9 .96 .21 .15 .25	2.7 3.7 2.0 1.6	1.8 1.8 1.4 .91 .60	.13 .15 .08 .11 .15	.01 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 2.1 .16 .02 .00	180 19 5.4 4.1 2.8
TOTAL MEAN MAX MIN CFSM IN. AC-FT	156.58 5.05 73 .00 .03 .03 .311	64.0 2.13 12 1.3 .01 .01	97.2 3.14 3.8 1.5 .02 .02	68.51 2.21 5.8 .15 .01 .01	57.38 1.98 3.7 .78 .01 .01	39.64 1.28 2.0 .43 .007 .01	15.83 .53 1.9 .08 .003 .00	5.07 .16 1.9 .00 .001 .00	.00 .000 .00 .00 .000	.00 .000 .00 .00 .000 .000	2.59 .084 2.1 .00 .000 .00	211.30 7.04 180 .00 .04 .04 419

CAL YR 1983 TOTAL 957.40 MEAN 2.62 MAX 73 MIN .00 CFSM .01 IN .19 AC-FT 1900 WTR YR 1984 TOTAL 718.10 MEAN 1.96 MAX 180 MIN .00 CFSM .01 IN .14 AC-FT 1420

33 COLORADO RIVER BASIN 08120700 COLORADO RIVER NEAR CUTHBERT, TX

LOCATION.--Lat 32°28'38", long 100°56'58", Mitchell County, Hydrologic Unit 12080002, on left bank at downstream side of bridge on Farm Road 1808, 4.0 mi downstream from Deep Creek, 4.8 mi east of Cuthbert, 8.0 mi northwest of Colorado City, and at mile 810.0.

DRAINAGE AREA .-- 3,912 mi2, of which 2,381 mi2 probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- March 1965 to current year.

REVISED RECORDS. -- WDR TX-81-3: Drainage area.

GAGE. -- Water-stage recorder. Datum of bage is 2,073.49 ft National Geodetic Vertical Datum of 1929.

REMARKS .-- Water-discharge records good. Flow is partly regulated by Lake J. B. Thomas (station 08118000).

AVERAGE DISCHARGE.--19 years (water years 1966-84), 35.6 ft³/s (25,790 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 11,500 ft³/s Au_b. 14, 1972 (gage height, 25.99 ft); maximum gage height, 27.18 ft Sept. 29, 1980; no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Floods in 1941 and 1946 reached a stage of 36.1 ft, from State Department of Highways and Public Transportation bridge plans.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,010 ft3/s Aug. 12 at 1400 hours (base height, 9.68 ft); no flow for many days.

STATIO	N NUMBER	08120700	- C	OLORADO RIV	ER NR	CUTHBERT, TE	х.		STR	EAM S	OURCE AGE	NCY USGS
		DISCH	HARGE, IN	CUBIC FEET		SECOND, WATER MEAN VALUES	YEAR	OCTOBER 198	3 TO SEP	TEMBER 1	984	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.0	4.5	3.1	4.1	2.9	5.2	2.80	.66	0	.00	.06	4.10
2	.0	3.9	3.4	4.4	3.3		3.50	.53	ŏ	.00	.00	1.60
3	.0	3.4	4.0	4.8	3.6		3.50	.78	Ö	.00	.00	.86
2 3 4	.0	3.6	4.6	5.2	4.0		3.40	.73	Ö	.00	.00	.46
5	.0	3.8	4.2	5.6	4.1		3.30	.56	Ö	.00	.00	.28
6	.0	39.0	3.6	5.5	3.9	3.8	2.30	.50	0	.00	.00	.19
7 8	.0	36.0	3.7	5.3	3.6		2.50	.44	0	.00	.00	.15
8	.0	17.0	3.8	6.0	3.9		3.80	. 34	0	.00	.00	.09
9	.0	10.0	3.9	9.8	4.2		3.10	.28	0	.00	.00	.07
10	.0	6.9	3.9	14.0	4.3		2.90	.24	0	.00	.00	.05
11	.0	5.7	4.0	8.5	4.5	3.6	2.70	.18	0	.00	.00	.03
12	.0	5.0	4.0	7.3	4.9	5.0	2.40	.15	0	.00	506.00	.02
13	.0	4.2	4.0	6.4	5.0		2.20	.10	0	.00	87.00	.01
14	.0	3.8	3.9	5.9	4.8		1.90	.07	0	.00	7.00	.00
15	.0	3.4	3.8	5.6	4.7		1.80	.07	0	.00	1.90	.00
16	.0	3.1	3.6	5.5	4.5	4.7	1.60	.05	0	.00	.77	.00
17	.0	2.7	3.6	5.5	4.2		1.50	.04	0	.00	.39	.00
18	.0	2.5	3.6	5.1	4.2		1.50	.03	0	.00	.24	.00
19	2.8	2.5	3.6	3.2	4.2		1.40	.03	0	.00	.15	.00
20	77.0	2.5	3.6	3.4	4.0		1.30	.03	0	.00	.11	.00
21	97.0	2.7	3.7	3.6	3.8	2.9	1.30	.01	0	.00	.08	.00
22	62.0	2.9	3.6	4.4	3.8		1.40	. 18	0	.00	.04	.00
23	44.0	4.3	3.6	4.9	4.0		1.20	.68	0	.00	.03	.00
24	30.0	6.4	3.4	5.2	4.0		1.10	.44	0	.00	.02	.00
25	68.0	4.5	2.9	5.5	4.0		1.00	.28	0	.00	.02	3.70
26	94.0	4.0	3.1	5.5	5.0	3.0	.84	.16	0	.00	2.70	266.00
27	51.0	3.8	3.8	5.3	6.0		.74	.08	0	.00	252.00	233.00
28	25.0	3.4	4.6	4.5	7.5		.66	.03	0	.00	35.00	44.00
29	14.0	3.1	4.6	3.9	6.3		.66	.01	0	.08	8.00	16.00
30	8.4	3.1	4.0	3.4			.70	.00	0	1.70	4.40	10.00
31	5.5		4.0	3.0				.00		.32	25.00	
TOTAL	578.7	201.7	117.2	170.3	127.2	121.5	59.00	7.68	0	2.10	930.91	580.61
MEAN	18.7	6.72	3.78	5.49	4.39	3.92	1.97	.25	.000	.068	30.0	19.4
MAX	97	39	4.6	14	7.5	5.2	3.8	.78	.00	1.7	506	266
MIN	.00	2.5	2.9	3.0	2.9	2.7	.66	.00	.00	.00	.00	.00
AC-FT	1150	400	232	338	252		117	15	.00	4.2	1850	1150
CAL YR WTR YR		TAL 2788.7		7.64 MAX 7.92 MAX	97 506		AC-FT AC-FT					

08120700 COLORADO RIVER NEAR CUTHBERT, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical analyses: March 1965 to current year.

PERIOD OF DAILY RECORD. --SPECIFIC CONDUCTANCE: March 1965 to current year.

WATER TEMPERATURES: March 1965 to May 1980, April to September 1983.

INSTRUMENTATION. -- Since March 1965, specific conductance is recorded continuously at this station. Since April 1983, water temperature is recorded continuously at this station.

REMARKS . -- Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and regression relationships between each chemical constituent and specific conductance. Regression equations developed for this station may be obtained from the Geological Survey District office upon request.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 70,000 micromhos Nov. 17, 1968; minimum daily, 102 micromhos Sept. 28, 1980.
WATER TEMPERATURES (1965-84): Maximum daily, 30.0°C Aug. 29, 1984; minimum daily, 0.0°C on many days during winter

EXTREMES FOR CURRENT YEAR .--SPECIFIC CONDUCTANCE: Maximum daily, 18,100 micromhos July 31; minimum daily, 400 micromhos Oct. 25, Aug. 12. WATER TEMPERATURES: Maximum daily, 30.0°C Aug. 29; minimum daily, 0.5°C on several days during December.

DATE	T IME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
NOV									
02	09 05	3.8	2930	18.5	450	350	120	36	420
FEB 15	0805	4.6	5160	9.0	1100	860	260	120	740
MAR	0003	4.0	3100	3.0	1100	800	200	120	740
28	1305	3.7	5440	14.0	980	710	210	110	850
MAY									
02	1345	.49	6570	20.0	1400	1100	310	140	970
JUL									
31	1030	.29	18100	23.5	1900	1800	480	160	3400
SEP									
11	1255	.02	10100	26.3	990	860	250	88	1800

SODIUM AD- SORP- TION RATIO	POTAS - SIUM, DIS - SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)
9	6.7	100	300	710	.30	5.8	1700
10	8.3	280	880	1100	1.0	5.0	3300
12	7.8	270	950	1200	1.2	7.2	3500
12	9.3	290	1100	1600	1.2	11	4300
							1000
36	17	79	1400	5800	.50	4.9	11000
50	.,	,,,	1400	5000	.50	4.,	11000
26	11	130	650	3000	.40	7.8	5900
	AD- SORP- TION RATIO	AD- SORP- TION DIS- TION SOLVED (MG/L AS K) 9 6.7 10 8.3 12 7.8 12 9.3 36 17	AD- SORP- DIS- TION RATIO 9 6.7 10 8.3 280 12 7.8 270 12 9.3 290 36 17 79	AD- SORP- DIS- TION RATIO 9 6.7 10 8.3 280 880 12 7.8 270 950 12 9.3 290 1100 36 17 79 1400	AD- SORP- DIS- FIELD DIS- TION SOLVED (MG/L AS K) P 6.7 100 10 10 10 10 12 7.8 270 10 10 12 9.3 290 1100 1600 36 17 79 1400 5800 RAD- SOLVED DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS	AD- SORP- DIS- TION SOLVED (MG/L SOLVED SOLVED SOLVED SOLVED (MG/L AS K) CACO3) AS SO4) AS CL) AS F) 9 6.7 100 300 710 .30 10 8.3 280 880 1100 1.0 12 7.8 270 950 1200 1.2 12 9.3 290 1100 1600 1.2 36 17 79 1400 5800 .50	AD- SORP- DIS- FIELD DIS- TION SOLVED (MG/L AS K) CACO3) AS SO4) AS CL) AS F) SIUM, CACO3) AS SOLVED SOLVED SOLVED SOLVED SOLVED SOLVED SOLVED SOLVED (MG/L AS K) CACO3) AS SO4) AS CL) AS F) SIO2) 9 6.7 100 300 710 .30 5.8 10 8.3 280 880 1100 1.0 5.0 12 7.8 270 950 1200 1.2 7.2 12 9.3 290 1100 1600 1.2 11 36 17 79 1400 5800 .50 4.9

COLORADO RIVER BASIN

08120700 COLORADO RIVER NEAR CUTHBERT, TX--Continued

MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1983 TO SEPTEMBER 1984

MONTH	YEAR	DISCHARGE (CFS-DAYS)	S PECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS - SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
OCT.	1983	578.70	3210	2000	3120	700	1100	490	764	600
NOV.	1983	201.7	3450	2150	1170	750	407	530	289	650
DEC.	1983	117.2	3820	2380	752	840	267	580	182	710
JAN.	1984	170.3	4940	3070	1410	1100	518	720	330	890
FEB.	1984	127.2	5160	3210	1100	1200	407	740	256	920
MAR.	1984	121.5	5450	3380	1110	1300	414	780	255	970
APR.	1984	59.00	5880	3650	581	1400	220	820	131	1000
MAY	1984	7.68	5910	3660	76	1400	29	820	17	1000
JUNE	1984	0.00	*	*	0.00	*	0.00	*	0.00	*
JULY	1984	2.10	16000	9730	55	5000	28	1300	7.2	*
AUG.	1984	930.91	2230	1390	3490	470	1180	350	890	430
SEPT	1984	580.61	3360	2090	3280	730	1150	510	805	630
TOTAL		2896.90	**	**	16100	**	5720	**	3930	**
WTD.AV	/G.	7.9	3320	2060	**	730	**	500	**	610

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		ОСТОВЕ	ER		NOVEMBE	R		DECEMBE	R		JANUAR	XY.
1				2800	2600	2690	31 00	3000	3010	5500	5400	5420
2				2800	2700	2760	3100	3000	3060	5400	5300	5360
3				2930	2700	2780	3200	2900	3060	5400	5200	5360
4				2800	2700	2770	3200	3000	3100	5400	5300	5350
5				2900	1500	2480	3200	3000	3120	5400	5300	5340
,				2900	1300	2400	3200	3000	3120	5400	3300	3340
6				3800	1400	3040	3200	3000	3100	5400	5200	5260
7				3900	3700	3800	3100	3000	3050	5300	4700	4850
8				3900	3700	3840	3100	3000	3080	4700	4600	4650
9				4000	3800	3910	3200	3100	3110	4		4510
10			14-4	4000	3900	3930	3200	3000	3100			4030
								20.22		4111		
11				3900	3800	3840	3300	3100	3190	5100	4500	4770
12				3900	3800	3870	3300	3100	3210			4820
13				3900	3700	3830	3300	3100	3200			4900
14				3800	3700	3800	3200	3100	3200			4940
15				3900	3700	3790	3300	3100	3200			4990
16			444	3800	3700	3700	3300	3200	3230			5040
17				3700	3600	3680	3300	3200	3240			5100
18				3700	3500	3630	3400	3200	3300	1222		5130
19			8300	3600	3500	3580	3700	3400	3560	15221		5210
20	8300	2800	5560	3600	3500	3570	3700	3600	3690			5190
20	8300	2000	3360	3600	3300	33/0	3/00	3600	3690			3190
21	5700	1300	3660	3500	3400	3460	3800	3700	3700			5160
22	4400	4000	4180			3450	3900	3600	3740			5100
23	3900	3700	3800	3500	3300	3390	4200	3800	4010			4990
24	3700	3500	3600	3400	3200	3320	5000	4200	4550			4970
25	3500	400	1290	3400	3200	3290	5400	5000	5230			4920
26	2200	1300	1740	2200	21.00	2000	F700	5500	5610			4050
				3300	3100	3200	5700	5500	5610			4950
27	2600	2200	2460	3300	3100	3210	5700	5600	5660			5010
28	2700	2600	2650	3200	3000	3100	5700	5400	5570			5080
29	2800	2600	2700	31 00	2900	3000	5600	5400	5500	1222		5120
30	2800	2700	2740	3000	2900	2960	5500	5400	5480			5170
31	2700	2600	2660				5500	5400	5430			5210
MONTH	8300	400	3490	4000	1400	3390	5700	2900	3820	5500	4500	5030

COLORADO RIVER BASIN

08120700 COLORADO RIVER NEAR CUTHBERT, TX--Continued

	SPECIFIC	CONDUCTA	NCE (M	ICROMHOS/CM	AT 25	DEG. C),	WATER YEAR	ОСТОВЕ	R 1983	TO	SEPTEMBER	1984-	Continued
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN		MAX	MIN	MEAN
		FEBRUAR	Y		MAR	СН		APRII	115			MAS	
1			5240	5400	5000	5180	5000	E 700	E750		6700		
2			5190	5300			5800 5800	5700 5600	5750 5700		6700 6700	6500 5400	6600 6150
3 4			5130	5200		5140	5900	5600	5750		5700	5600	5650
5			5060 5030	5200 5400			6000 5900	5700 5700	5840 5850		5700 5600	5500 5400	5610 5530
6													
7			5050 5070	5400 5400	5100 5100		5900 5700	5600 5600	5850 5640		5600 5600	5400	5530
8			5040	5400			5900	5500	5670		5700	5200 5300	5330 5450
10			5000	5400	5200	5300	5900	5600	5690		5700	5500	5590
			4990	5500	5200	5390	5900	5500	5630		5800	5500	5610
11 12			4960	5500	5400		5700	5600	5660		5700	5600	5630
13			4940 4920	5500 5600	5300 5300		5900 6000	5700 5600	5730		5800	5600	5670
14			5000	5800	5400	5530	5900	5700	5760 5870		5800 5800	5600 5700	5700 5740
15	5200	4900	5060	5600	5500	5530	6100	6000	6040		5800	5700	5780
16	5400	5100	5280	5700	5500	5610	6200	6000	6060		5800	5700	5740
17	5400	5000	5240	5700	5600	5670	6200	6000	6100		5800	5700	5710
18 19	5400 5500	5100 5300	5280 5370	5700 5900	5500	5550	6200	6100	6160		5800	5600	5700
20	5500	5300	5370	5800	5500 5400	5670 5610	6200 6300	6100 6100	6180 6200		5800 5900	5700 5700	5730 5830
21	5500	5200											
22	5500	5200 5200	5360 5330	5700 5600	5500 5500	5590 5570	6200 6200	6000	6140 6130		5900	5700	5830
23	5400	5200	5300	5700	5400	5590	6200	6000	6090		6400 6500	5800 6400	5950 6480
24 25	5400 5400	5200	5300	5800	5500	5640	6200	6000	6100		6600	6400	6470
23	3400	5100	5300	5700	5500	5610	6300	6100	6150		6600	6400	6500
26	5400	5100	5270	5800	5500	5600	6500	6200	6330		6800	6400	6500
27 28	5400 5400	5100 5000	5270 5230	5600 5700	5500 5400	5550	6500	6400	6500		6700	6500	6560
29	5400	5100	5230	5800	5600	5560 5670	6600 6600	6500 6400	6560 6560		6800 6900	6200 6700	6640 6830
30 31				5800	5600	5710	6700	6500	6580				
				5800	5600	5730							
MONTH	5500	4900	5170	5900	5000	5470	6700	5500	6010		6900	5200	5930
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN		MAX	MIN	MEAN
		JUNE			JULY			AUGUST			1	SEPTEMB	ER
. 1							17000						
2							17900	17500	17700				3930 4380
3													4930
5				16.77		1 122							5460
													6000
6 7													6540
8													7260 7880
9 10													8520
10													9260
11													9780
12 13							7200	400	1410		9900	9700	9800
14				111			2700 3000	1400 2700	2230 2810		10200	9700	9870
15							3100	2900	3020				
16							3300	3100	3180				
17							3500	3200	3350	100			
18 19			100				3700	3400	3560				
20							3900 4000	3700 3800	3770 3900				
21			0.17										
22		0.	9				4100 4200	3900 4000	4000 4120				
23		,					4200	4100	4170				
24 25					\		4300	4100	4200				
				100	100		4300	4100	4210				7490
26 27							4300	4200	4210		9700	500	4420
28							3800	3700	3420 3750		2800 2400	1300 2300	2280
29						17500	3700	3500	3620		2400	2300	2350 2840
30 31		,		16400 18100	15400 16300	15700 17200	3600	3400	3450				3250
							3400	3300	3330				
MONTH				18100	15400	16800	17900	400	4160		10200	500	6120

COLORADO RIVER BRAZOS

08120700 COLORADO RIVER NEAR CUTHBERT, TX--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

				E, WATER (L							MIN	MEAN
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN JANUAR	
		ОСТОВ	ER	425	NOVEMBE		15-2	DECEMBE		2.0	1.0	1.5
1 2	===			18.0 18.5	17.0 17.0	17.5 18.0	7.5 9.0	7.0 7.5	7.0 8.0	3.0	1.5	2.0
3 4				18.0	17.0 18.0	17.5 18.0	17.0 17.0	9.0 8.5	10.5 12.0	3.5 6.0	3.0	4.5
5				18.5	15.5	17.0	12.0	9.5	11.0	6.0	3.5	5.0
6 7				17.5 17.0	15.0 15.0	16.0	11.0	8.0 6.5	9.0 8.0	7.0	5.0	6.5
8				18.5	16.0	17.0	9.0	6.5 7.5	8.0			
9 10				17.5 14.0	14.0	15.5	9.5	7.5	8.5			
11				12.5	10.0	11.5	10.0	8.5	9.5	12.5	4.0	6.5
12 13				13.5	11.0	12.5	10.5	8.0	9.5	12.5 12.0	5.0	10.0
14 15				14.0 13.0	12.0	13.0	10.0	8.0 6.5	9.0 7.5	10.5	1.5	5.5
16				11.5	9.5	10.5	6.5	5.0	5.5	9.0	1.0	6.5
17				12.5 12.5	10.5	11.5	6.0	4.5 5.0	5.5	9.5 8.0	6.0 5.5	8.5 7.5
18 19	21.5	19.5	20.5	12.5	10.0	11.5	4.5	1.5	3.0	7.5 8.0	4.0 3.5	5.5 7.0
20	19.5	16.5	17.5	10.0	7.5	8.5	2.5	1.5	5.0			
21 22	18.0	16.0	17.0 16.5	11.0	9.0 11.0	10.0	7.0 7.5	3.0	5.5	11.5	1.0	5.5
23 24	19.0	16.0	17.0 18.0	11.5 9.5	9.0 7.0	10.0	5.0 6.0	3.5 4.5	4.5 5.0	12.0	1.5	6.0
25	19.5	15.0	16.5	9.0	6.0	7.5	6.0	.5	1.5	13.0	2.5	7.5
26 27	16.5	14.0	15.0	9.0 7.5	8.0	8.5	1.5	.5	1.0	13.0	2.5 4.0	7.0 7.5
28	17.5	15.0	16.0	5.5	3.5	4.5	2.5	.5	1.5	13.5 14.0	4.0	8.5
29 30	18.0	15.5	16.5 17.0	9.0 8.0	7.5	5.5 8.0	2.0	.5	1.0	15.5 15.0	5.5	10.0
31	18.0	16.5	17.5				1.5	.5	6.0	15.5	1.0	6.5
MONTH	21.5	14.0	17.0	19.0	3.5	12.0	17.0	.5	6.0	13.3	1.0	0.5
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUAL	RY		MARCH	1		APRIL			MAY	44.6
1 2	13.5	4.0	8.0	10.0	6.0 7.5	8.0	15.5	11.5	13.5	18.0	15.0	16.5
3 4	13.0	4.0	8.5	12.5	9.5	11.0	16.5 16.5	11.5	14.0	21.0 21.5	16.5 17.0	18.5
5	10.5 15.0	5.0	7.0 9.5	11.0	8.0	9.0	15.5	11.5	13.5	22.5	17.5	20.0
6	15.5	5.0	9.5	10.0	6.0	7.5	16.0	13.0	14.5 15.5	22.5	17.0	20.5
7	15.5	5.5 6.5	9.5 8.5	11.0 14.5	7.0	8.5 10.0	16.0 18.0	13.5	15.5	19.0	14.0	16.0
9 10	15.5	6.5	10.5 11.0	14.5	7.5 9.5	10.0	19.5	14.5	16.0	25.0 19.0	15.0	16.5
11	17.0	8.0	10.0	11.0	8.0	9.0	17.5	14.5	16.0	21.5	17.0	19.0
12 13	12.5	7.5 7.0	10.0 9.5	13.0 16.5	9.0	10.0	18.5 18.0	15.0	16.5 16.5	22.0	18.5	20.0
14 15	14.5 11.5 12.0	7.5 8.0	9.5	15.5	11.5	13.5 15.5	17.0 17.0	14.5	16.0 14.5	21.0	18.0 19.0	19.5
			10.0	17.0	14.0	15.0	17.0	13.0	14.5	19.5	18.5	19.0
16 17	14.5	6.5 7.5 9.0	11.0	14.5	13.0	13.5	16.5	12.5	15.0	19.5	18.0 18.0	19.0
18 19	15.5	7.5 7.0	11.5	15.5 15.5	13.5	14.0 12.5	17.0 18.0	14.5	16.5	20.5	19.0	19.5
20	11.0		9.5	14.0	10.0	12.5	18.0	16.5	17.0		16.0	13.0
21 22	9.0	5.0 5.5	7.5 7.5	14.5	11.0	13.0	19.0 18.0	14.5	17.0 16.0	20.5	18.0	20.0
23	11.0	7.0 7.0	9.0 8.5	15.0 14.0	13.0	14.0	18.5 18.5	13.5 14.5	16.0 16.5	23.5	22.0	22.5
24 25	12.0	7.5	9.5	15.0	12.0	13.5	19.0	17.0	18.0	24.0	22.0	23.0
26	11.0	8.0	9.5	14.5	12.0	13.5	19.0 19.0	17.0 14.5	18.0 17.0	24.5 23.5	21.0	22.5
27 28	9.0	5.5	7.5 7.0	14.5 15.5	12.5	13.5	18.5	15.5	16.5	22.0 17.5	18.0 15.0	19.5
29 30	9.0	5.0	7.0	16.0 16.0	9.5 11.5	13.0	16.0 17.0	14.0	15.0 15.5			
31				16.5	12.0	14.5				25.0	12.5	10.5
MONTH	17.0	4.0	9.0	17.0	6.0	12.0	19.5	11.5	15.5	25.0	13.5	19.5

COLORADO RIVER BASIN

08120700 COLORADO RIVER NEAR CUTHBERT, TX--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984--Continued

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEME	BER
		002							13.			06.0
1							25.0	21.5	23.0	27.5	24.5	26.0
										26.5	24.0	25.5
2 3 4										26.5	24.0	25.0
4										25.5	20.5	23.0
5										25.0	20.0	22.5
6										24.0	20.0	22.0
				100						24.0	20.0	22.0
7 8										26.0	22.0	23.5
0										26.5	23.5	25.0
9										26.5	23.0	24.5
										27.0	23.0	24.5
11							21.5	19.0	20.5	27.0	22.5	24.5
12							26.5	21.0	23.5	26.5	21.5	23.5
13							27.5	23.0	25.0	20.3		
14 15							26.5	24.0	25.0			
13												
16							27.0	23.0	25.0			
17							27.0	22.5	24.5			
18							28.0	23.0	25.0			
19	,						29.0	24.0	26.5			
20							29.5	24.5	26.5	1.0		100
21							28.5	24.5	26.5			
22							29.0	24.5	26.5			
23							28.5	25.0	27.0			
24							27.5	24.5	26.0			
25							28.0	24.0	26.0	23.5	11.0	18.5
26							28.5	24.5	26.0	17.0	12.0	14.5
							28.5	24.5	26.0	13.0	11.5	12.5
27							29.5	24.5	26.5	16.0	12.5	14.5
28				20.0	20.5	24.5	30.0	25.5	27.5	17.5	11.5	15.0
29				28.0		25.5	29.0	25.0	26.5	17.5	11.5	15.5
30 31				28.0 24.5	24.0	23.0	28.5	24.5	26.5			
MONTH				28.0	20.5	24.5	30.0	19.0	25.5	27.5	11.0	21.0

LOCATION.--Lat 32°23'33", long 100°52'42", Mitchell County, Hydrologic Unit 12080002, on right bank at Colorado City, 3,517 ft upstream from bridge on State Highway 377, 4,100 ft upstream from the Texas and Pacific Railroad Co. bridge, 1.3 mi downstream from bridge on Interstate Highway 20 and U.S. Highway 80, 1.6 mi upstream from Lone Wolf Creek, and at mile 796.3.

DRAINAGE AREA. -- 3,966 mi², of which 2,381 mi² probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- November 1923 to August 1925 (published as "at Colorado"), May 1946 to current year.

REVISED RECORDS.--WSP 1512: 1946(M). WRD TX-81-3: Drainage area.

CAL YR 1983 TOTAL

WTR YR 1984 TOTAL 1889.35

MEAN 6.02

MEAN 5.16

MAX 130

MAX 365

MIN .00

MIN

.00

AC-FT 4360

AC-FT 3750

GAGE.--Water-stage recorder and concrete control. Datum of bage is 2,030.16 ft National Geodetic Vertical Datum of 1929. Nov. 28, 1923, to Aug. 31, 1925, nonrecording gage at site 1.4 mi downstream at different datum. May 9 to Aug. 5, 1946, nonrecording bage at site 185 ft upstream at present datum.

REMARKS.--Water-discharge records good. Some regulation since 1952 by Lake J. B. Thomas (station 08118000). Numerous diversions from Lake J. B. Thomas for municipal use and oilfield operation.

AVERAGE DISCHARGE.--6 years (water years 1947-52) prior to completion of Lake J. b. Thomas, 85.4 ft^3/s (61,870 acreft/yr); 32 years (water years 1953-84) regulated, 37.9 ft^3/s (27,460 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 24,900 ft³/s July 6, 1948 (gage height, 22.37 ft, from floodmark); maximum gage height, 27.81 ft Sept. 29, 1980, backwater from salt cedar; no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1910, 35.9 ft June 20, 1939, present site and datum, based on floodmarks 1,000 ft upstream and 3,740 ft downstream from gage; discharge, 66,000 ft³/s, by slope-area measurement of peak flow at site 2.5 mi upstream from gage.

EXTREMES FOR CURRENT YEAR. -- Maximum discharge, 698 ft 3/s Aug. 12 at 0130 hours (bage height, 7.48 ft); no flow for many days.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 7.90 0 .00 .08 .17 .24 .10 .01 . 38 6.80 .23 .25 7.10 .42 .32 .22 .00 .05 7.40 .24 .09 .01 .00 3 .20 6.70 .54 .31 6.80 .24 .27 .02 0 .04 .00 .24 8.10 . 39 .40 7.00 .25 .25 -08 .02 0 .00 5 0 .00 .20 1.70 .29 .02 .00 .36 7.50 .24 .31 .05 6 .24 0 -02 .17 3.40 . 30 7.30 .15 .41 .07 .02 -00 .03 .17 1.20 - 31 .24 7-20 .09 .29 .08 - 01 0 .00 .24 8 .15 26.00 .41 .05 .00 .00 .08 .12 6.30 16.00 .12 .14 .41 .97 .88 .00 0 -00 -05 10 .15 7.80 .36 .37 .37 .15 .19 .07 .00 0 .00 .04 .00 11 .45 .24 .00 0 .02 .11 12 .46 .43 .24 .27 .21 .23 .05 .00 0 98.00 .01 13 .41 0 293.00 .00 .10 .29 .24 .24 .19 .24 -05 .00 . 22 3.30 .16 .24 .24 .00 .00 . 04 15 .15 .00 0 .00 .41 .41 .24 .30 .17 .09 .03 16 .15 .48 .43 .24 .24 .20 .09 .03 .00 0 .00 .19 .62 .52 .24 .26 .23 .10 .04 .00 .00 18 .24 .53 .51 . 25 .35 .24 .15 .04 .00 0 -09 -00 9.80 .00 19 .45 .41 .28 .24 . 19 .14 . 11 .00 0 .09 20 79.00 .36 .45 6.90 .24 .00 0 .08 .00 .11 .07 .10 21 111.00 .41 .44 .03 .00 0 -08 -00 8.00 .24 .15 .10 22 1.70 . 34 .19 .55 8.00 -24 .14 - 08 -03 .00 0 .10 23 1.20 .21 2.00 8.30 .24 .09 .02 .00 .55 24 . 33 40 8 40 .24 .10 . 02 .00 0 .03 2.40 25 120.00 .41 48.00 .24 8.90 .24 .15 .06 .02 .00 0 .03 26 73.00 .41 .31 9.00 .02 .00 0 .04 70.00 .04 27 9.00 96.00 365.00 13.00 .41 .72 .60 .17 .04 .02 .00 0 .41 28 28.00 .45 .01 .00 0 25.00 .24 .20 .09 29 .24 .19 .01 15.00 .33 8.50 .15 .05 .00 18.00 .13 30 12.00 .24 .24 7.60 .01 .00 0 .79 .05 31 9.10 ---.24 7.20 ---.20 ---.02 ---0 .09 ---TOTAL. 475.39 95.85 11.85 105.40 63.04 5.48 4.89 0 517.09 608.80 MEAN .38 2.17 .18 .000 16.7 15.3 3.20 3.40 .16 .047 .004 20.3 120 9.1 MAX 26 .02 365 .41 .11 .00 MIN .10 .09 .04 .01 .00 AC-FT 943 190 24 209 125 9.7 2.9 .00 1030 1210 11 . 2

08121000 COLORADO RIVER AT COLORADO CITY, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical analyses: May 1946 to September 1954, November 1956 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: May 1946 to September 1954, November 1956 to current year. WATER TEMPERATURES: November 1952 to September 1954, November 1956 to current year.

REMARKS .-- Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and regression relationships between each chemical constituent and specific conductance. Regression equations developed for this station may be obtained from the Geological Survey District office upon request.

EXTREMES FOR PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE: Maximum daily, 67,400 micromhos May 14, 17, 1961; minimum daily, 240 micromhos Sept. 29, 1980. WATER TEMPERATURES: Maximum daily, 37.0°C July 29, 1960, July 9, 1965, July 1, 1973, and June 29, 1979; minimum daily, 0.0°C on many days during winter months.

EXTREMES FOR CURRENT YEAR .--

SPECIFIC CONDUCTANCE: Maximum daily, 36,500 micromhos June 7; minimum daily, 1,400 micromhos Sept. 27. WATER TEMPERATURES: Maximum daily, 35.0°C Aug. 20, 24-27; minimum daily, 0.0°C Dec. 19-23.

DATE		TIM	FLO INS	EAM- OW, IAN- EOUS FS)	SPE CIF CON DUC ANC (UMH	IC T- T E	EMPER- ATURE DEG C)	HAR NES (MG AS CAC	S /L	HAR NESS NONCA BONA (MG CAC	S, AR- TE /L	CALC: DIS- SOLV (MG, AS (IUM S D VED SO L (M	GNE- IUM, IS- LVED G/L MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
NOV 30 JAN		093	0	.20	9	260	7.0		960		740	220	10	0	1600
11		165	5	.26	19	300	10.5	1	900	1	600	430	19	0	4200
MAR 28		161	0	.22	20	500	19.5	1	800	1	700	390	21	0	4100
MAY 02		1610	0	.09	28	500	25.0	2	300	2	100	490	2.5	0	5900
SEP 12		073	0	.00	11	600	24.0	1	100		990	220	13	0	2300
	DATI	E	SODIUM AD- SORP- TION RATIO	SI DI SOI	CAS- LUM, IS- LVED G/L K)	ALKA LINIT FIEL (MG/I AS CACO	Y SUL D DI L SO (M	FATE S- LVED G/L SO4)	(MC	DE,	RI D SO (M	UO- DE, IS- LVED G/L F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	CON TUI SO	LIDS, 4 OF NSTI- ENTS, DIS- DLVED
	NOV 30. JAN		23	8	3.1	22	20 120	00	2500)		.60	1.5		5800
	11.	• •	44	12		2	10 19	00	6100)		.60	4.1	1	3000
	MAR 28.		43	13	3	13	50 230	00	6100)		.80	1.0	1	13000
	MAY 02.		56	19)	1	10 27	00	9000)		.60	1.9	1	8000
	SEP 12.		31	13	3	10	00 120	00	3400)		.60	3.7		7300

COLORADO RIVER BASIN 41
08121000 COLORADO RIVER AT COLORADO CITY, TX--Continued

MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1983 TO SEPTEMBER 1984

YEAR	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
1983	475.39	4210	2720	3490	1200	1490	530	684	510
1983	95.85	4060	2610	675	1100	277	550	143	530
1983	11.85	14000	9070	290	4100	130	1600	51	*
1984	105.40	10300	6670	1900	2900	825	1300	358	*
1984	63.04	8690	5600	954	2400	407	1100	188	1100
1984	5.48	15900	10300	152	4700	70	1700	26	*
1984	4.89	23900	15500	204	7500	99	2200	29	*
1984	1.45	30200	19700	77	10000	39	2300	9.0	*
1984	0.11	36000	23500	7.0	12500	3.7	2300	0.7	*
1984	0.00	*	*	0.00	*	0.00	*	0.00	*
1984	517.09	3700	2380	3330	980	1360	510	707	480
1984	608.80	2330	1500	2460	610	998	320	533	310
	1889.35	**	**	13500	**	5700	**	2730	** *
G.	5.2	4120	2650	**	1100	**	530	**	510
	1983 1983 1984 1984 1984 1984 1984 1984 1984 1984	YEAR (CFS-DAYS) 1983 475.39 1983 95.85 1983 11.85 1984 105.40 1984 63.04 1984 5.48 1984 1.45 1984 0.11 1984 0.00 1984 517.09 1984 608.80 1889.35	YEAR DISCHARGE (MICRO-MHOS) 1983 475.39 4210 1983 95.85 4060 1983 11.85 14000 1984 105.40 10300 1984 63.04 8690 1984 5.48 15900 1984 4.89 23900 1984 1.45 30200 1984 0.11 36000 1984 0.11 36000 1984 0.00 * 1984 517.09 3700 1984 608.80 2330 1889.35 **	YEAR DISCHARGE (MICRO- SOLIDS OLIDS (CFS-DAYS) MHOS) (MG/L) 1983 475.39 4210 2720 1983 95.85 4060 2610 1984 105.40 10300 6670 1984 63.04 8690 5600 1984 5.48 15900 10300 1984 4.89 23900 15500 1984 0.11 36000 23500 1984 0.00 * * 1984 0.00 * * 1984 1984 0.11 36000 23500 1984 0.00 * * 1984 0.11 36000 23500 1984 0.00 * * 1984 0.11 36000 23500 1984 0.00 * *	YEAR DISCHARGE (MICRO- SOLIDS SOLVED SOLIDS) 1983 475.39 4210 2720 3490 1983 95.85 4060 2610 675 1983 11.85 14000 9070 290 1984 105.40 10300 6670 1900 1984 63.04 8690 5600 954 1984 5.48 15900 10300 152 1984 4.89 23900 15500 204 1984 0.11 36000 23500 7.0 1984 0.00 * * 0.00 1984 517.09 3700 2380 3330 1984 608.80 2330 1500 2460 1889.35 ** ** 13500	YEAR DISCHARGE (CFS-DAYS) ANCE (MICRO-SOLIDS SOLIDS SOLIDS SOLIDS (MG/L) SOLVED SOLIDS SOLIDS SOLIDS SOLIDS SOLIDS SOLIDS (MG/L) SOLVED CHLORIDE CHLORIDE CHLORIDE (MG/L) 1983 475.39 4210 2720 3490 1200 1983 95.85 4060 2610 675 1100 1984 105.40 10300 6670 1900 2900 1984 63.04 8690 5600 954 2400 1984 5.48 15900 10300 152 4700 1984 4.89 23900 15500 204 7500 1984 1.45 30200 19700 77 10000 1984 0.11 36000 23500 7.0 12500 1984 0.00 * * 0.00 * 1984 0.11 36000 23500 7.0 12500 1984 517.09 3700 2380 3330 980 1984 517.09 3700 2380	YEAR DISCHARGE (CFS-DAYS) ANCE (MICRO-SOLIDS SOLIDS SOLIDS SOLIDS SOLIDS SOLIDS SOLIDS CHLORIDE CHLORIDE (CFS-DAYS) SOLVED SOLIDS SOLIDS CHLORIDE CHLORIDE CHLORIDE (TONS) 1983 475.39 4210 2720 3490 1200 1490 1983 95.85 4060 2610 675 1100 277 1983 11.85 14000 9070 290 4100 130 1984 105.40 10300 6670 1900 2900 825 1984 63.04 8690 5600 954 2400 407 1984 5.48 15900 10300 152 4700 70 1984 4.89 23900 15500 204 7500 99 1984 1.45 30200 19700 77 10000 39 1984 0.11 36000 23500 7.0 12500 3.7 1984 0.13 36000 23500 7.0 12500 3.7 1984 517.09	YEAR DISCHARGE (MICRO- SOLIDS SOLVED SOLVED (CFS-DAYS) (MICRO- SOLIDS SOLIDS (THORIDE CHLORIDE (TONS) (MG/L) (TONS) (MG/L) (TONS) (MG/L) (TONS) SOLVED SULFATE (TONS) (MG/L) (TONS) (MG/L) (TONS) SULFATE (TONS) (MG/L) (MG/L) (TONS) (MG/L) (MG/L) (TONS) (MG/L) (MG/L	YEAR DISCHARGE (MICRO- SOLIDS SOLVED SOLVED SOLVED CHIORIDE CHIORIDE (TONS) SULFATE SULFATE (TONS) 1983 475.39 4210 2720 3490 1200 1490 530 684 1983 95.85 4060 2610 675 1100 277 550 143 1984 105.40 10300 6670 1900 2900 825 1300 358 1984 63.04 8690 5600 954 2400 407 1100 188 1984 5.48 15900 10300 152 4700 70 1700 26 1984 4.89 23900 15500 204 7500 99 2200 29 1984 1.45 30200 19700 77 10000 39 2300 9.0 1984 0.11 36000 23500 7.0 12500 3.7 2300 0.7 1984 0.00 * * 0.00 * 0.00 1984 517.09 3700 2380 3330 980 1360 510 707 1984 608.80 2330 1500 2460 610 998 320 533 1889.35 ** ** 13500 ** 5700 ** 5700 ** 2730

	SPECIFIC	CONDUC	CTANCE	(MICROMHOS/CM		DEG. C), JIVALENT M		OCTOBER	1983 TO	SEPTEMBER	1984	
DAY	OCT	NOV	DE	C JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	19200	4020	990	0 17800	8620	10700	20900	28200	36100			7970
2	19800	4480	1050	0 18200	8610	10800	21600	28500	36400			8550
3 4	19400	4840	1030	0 18300	8640	11100	21800	28900	36000			9360
4	19000	5290	1040	15900	8550	11500	21900	29100	35700			
5	19600	5340	1110	18100	8670	12000	22000	29600	35900			
*												
6	22300	3990	1150	0 18300	8740	12300	23000	29100	36000			10900
7	24500	7320	1180	19400	8330	12500	23400	28800	36500			10700
8	26000	2950	1220		9110	13000	23200	29300				11000
9	28200	2840	1240		8740	13900	23400	29500				11100
10	28000	3590	1270		8460	14500	23700	29000				11400
11	28700	5360	1310	19200	8370	14800	24000	29400				11900
12	29100	4930	1330	19800	8360	15700	23900	29700			3820	11800
13	29300	4290	1400		8450	15600	24100	29900			2450	
14	28800	5540	1380		8550	15500	25000	30100			4790	
15	29100	4620	1410		8780	15800	25200	30200			6730	
16	31400	5260	1390	18600	8730	16100	25300	30300			11300	
17	30600	5940	1410	21200	8780	16800	25500	29700			12000	
18	30200	6340	1460		8910	17800	25300	29800			12300	
19	28500	6890	1540	18900	8950	17300	24900	28400			13700	
20	8000	8080	1580		9130	17500	25600	32600			14400	
21	2150	7170	1540	11700	9080	17700	27000	34400	122		15600	
22	2980	7800	1660	10600	9100	18000	27500	35300			15800	10500
23	3560	7600	1750	9700	9160	18300	27000	36100			15400	9350
24	4570	7410	1690		9340	18600	26000	36200			15600	8990
25	3100	8600	1730	9000	9450	19000	27000	35900			16500	6500
26	2000	8450	1700	8900	9710	19300	28400	35700			17400	2250
27	2580	8330	1510	9700	9720	20200	28300	35600			6900	1400
28	3060	8830	1600		10100	20100	27200	35800			5070	2930
29	3550	9000	1720		10400	20600	27500	36100			6180	4800
30	3720	9370	1760			21400	27900	36200			6540	6200
31	3740		1810			20700		35900			7230	
MEAN	17200	6150	1420	15400	8950	16100	24900	31700	36100		10500	8290

COLORADO RIVER BASIN

08121000 COLORADO RIVER AT COLORADO CITY, TX--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 ONCE-DAILY SEP MAY JUN JUL AUG DAY OCT NOV DEC JAN FEB MAR APR 31.0 22.0 20.0 27.0 9.0 11.0 10.0 27.0 21.5 14.0 18.0 ------30.0 16.0 11.0 2 19.0 ---26.0 12.0 ---------21.0 10.0 13.0 17.0 19.0 21.0 ------5 ---22.0 12.5 10.0 16.0 8.0 24.0 27.0 22.0 ---6 18.0 11.0 11.0 19.0 15.0 26.5 78 ---20.0 10.5 7.0 14.0 17.0 20.0 ------27.0 16.0 18.5 18.0 ------15.0 12.0 8.0 16.0 29.0 10 18.0 12.0 8.0 14.0 29.0 27.0 10.0 12.0 10.0 18.0 32.0 11 ---21.0 30.0 29.0 3.0 12 ---19.0 14.0 19.0 13.0 33.0 ---26.0 ---19.0 12.0 31.0 ---13 5.0 20.0 19.0 30.0 30.0 22.0 14 3.0 19.0 15 17.0 26.0 ---31.0 8.0 3.0 16.0 32.0 16.0 32.0 ---16 17 32.0 19.0 6.0 19.0 33.0 ---5.0 18.0 ---23.0 29.0 22.5 5.0 19.0 17.0 4.0 ---27.0 18.0 3.0 18.0 17.5 27.0 .0 ---19 22.0 18.5 4.0 14.0 19.5 ---35.0 ---12.0 .0 28.0 20 16.0 21.0 ---14.5 32.0 .0 29.0 21 22 23 24 25 16.0 18.0 5.0 19.5 24.0 25.5 ---30.0 33.0 18.0 10.0 .0 4.0 21.0 ---33.0 .0 25.0 32.0 20.0 13.0 24.0 18.0 15.0 18.5 23.0 ---31.0 35.0 31.0 ---13.0 9.0 17.0 23.0 35.0 35.0 26 27 28 29 23.0 9.0 4.0 == 20.0 16.0 10.0 9.0 9.5 24.0 ---17.0 ---33.0 18.0 9.0 13.0 21.0 18.0 12.0 12.0 18.0 21.0 ---24.5 30.0 24.0 ---30 9.5 19.0 25.0 32.0 22.0 ---31 19.0 ------19.0 ------30.5 26.0 MEAN 23.0 16.5 8.0 9.0 17.0 19.0 25.5 30.0

08123000 LAKE COLORADO CITY NEAR COLORADO CITY. TX

LOCATION.--Lat 32°20'41", long 100°55'10", Mitchell County, Hydrologic Unit 12080002, on left bank at municipal waterintake structure, 1.7 mi upstream from Colorado City Dam on Morgan Creek, 2.2 mi downstream from the Texas and Pacific Railway Co. bridge, 2.5 mi upstream from mouth, and 4.0 mi southwest of Colorado City.

DRAINAGE AREA. -- 344.7 mi2, of which 42.7 mi2 probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- April 1949 to current year.

REVISED RECORDS. -- WRD TX-81-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929. Prior to Aug. 23, 1950, non-recording gages at or near powerplant about 0.7 mi downstream at same datum.

REMARKS.--The lake is formed by a rolled earthfill dam 4,800 ft long. Storage began in April 1949, and the dam was completed in September 1949. The dam and lake are owned by the Texas Electric Service Co. to operate their thermal electric powerplant. The uncontrolled emergency spillway is an excavated cut channel through natural ground 1,200 ft wide located 600 ft upstream and to the left of left end of dam. The spillway is designed to discharge 150,000 ft³/s at the maximum design flood elevation. The service spillway is an uncontrolled rectangular drop inlet located 100 ft upstream from dam with two uncontrolled openings of 10.0 by 12.0 ft. The spillway is designed for a maximum discharge of 5,000 ft³/s. A service outlet is provided for small releases downstream through a 30-inch valve-controlled concrete pipe. Records furnished by the Texas Electric Service Co. will show pumpage from Champion Creek Reservoir (station 08123600) into Lake Colorado City. Figures given herein represent total contents. Data regarding the dam and lake are given in the following table:

	Elevation (feet)	(acre-feet)
Top of dam	2,090.0	
Design flood	2,086.7	70,700
Crest of spillway	2,073.7	37,850
Crest of service spillway (top of conservation pool)	2,070.2	31,810
Lowest gated outlet (invert)	2,024.3	316

COOPERATION.--Capacity curve was furnished by the Texas Electric Service Co. Record of diversions for municipal use was furnished by the city of Colorado City.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 40,280 acre-ft Sept. 7, 1962 (elevation, 2,075.10 ft); minimum since first appreciable storage, 5,800 acre-ft Apr. 11-13, 1950 (elevation, 2,045.72 ft).

EXTREMES FOR CURRENT YEAR.--Maximum contents, 20,270 acre-ft Oct. 25 at 0100 hours (elevation, 2,061.97 ft); minimum, 16,880 acre-ft Sept 16 (elevation, 2,059.00 ft).

Capacity table (elevation, in feet, and total contents, in acre-feet)

2,059.0 16,880 2,061.0 19,120 2,060.0 17,980 2,062.0 20,310

CONTENTS, IN ACRE-FEET, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 INSTANTANEOUS OBSERVATIONS AT 2400

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	19190	20130	19560	19050	18720	18100	17470	17690	17600	17530	17210	17090
2	19210	20120	19560	19050	18690	18090	17480	17690	17630	17530	17190	17080
3	19240	20140	19540	19050	18680	18070	17480	17700	17640	17490	17190	17070
4	19230	20150	19520	19050	18660	18040	17500	17700	17650	17480	17210	17050
5	19230	20150	19510	19060	18640	18000	17510	17720	17670	17500	17190	17040
6 7 8 9	19230 19240 19250 19260 19280	20140 20130 20100 20060 20030	19500 19490 19470 19460 19450	18980 18980 19030 19040 19030	18620 18590 18580 18570 18540	17980 17950 17920 17910 17890	17540 17550 17570 17590 17590	17720 17680 17690 17670 17680	17640 17650 17630 17630 17640	17470 17450 17440 17420 17390	17190 17180 17170 17160 17170	17030 17000 16990 16970 16950
11	19260	20010	19430	19000	18530	17890	17610	17670	17620	17380	17180	16930
12	19250	19980	19410	18980	18510	17850	17610	17680	17620	17380	17220	16920
13	19250	19960	19380	18970	18470	17840	17620	17670	17610	17340	17240	16920
14	19230	19910	19360	18960	18460	17830	17620	17630	17610	17320	17220	16910
15	19230	19900	19330	18950	18430	17820	17620	17640	17600	17320	17210	16890
16	19250	19880	19330	18920	18410	17820	17620	17650	17600	17310	17240	16890
17	19310	19850	19310	18920	18410	17800	17620	17650	17610	17290	17210	16890
18	19310	19820	19280	18890	18370	17750	17630	17750	17600	17290	17210	16890
19	19640	19780	19270	18880	18340	17700	17680	17710	17600	17300	17220	16890
20	20010	19760	19260	18850	18320	17670	17670	17700	17610	17280	17210	16900
21	20100	19720	19210	18840	18290	17650	17670	17650	17590	17270	17190	16900
22	20160	19760	19200	18820	18270	17610	17680	17670	17590	17260	17180	16910
23	20200	19730	19180	18820	18260	17580	17680	17680	17580	17240	17180	16890
24	20260	19710	19140	18810	18240	17540	17700	17700	17570	17260	17180	16890
25	20240	19690	19140	18800	18210	17530	17690	17690	17570	17250	17160	17030
26 27 28 29 30 31	20220 20200 20180 20150 20130 20140	19660 19640 19600 19590 19570	19130 19120 19070 19060 19060 19050	18790 18770 18760 18740 18730 18730	18230 18160 18130 18120	17490 17440 17400 17420 17430 17440	17680 17640 17690 17670 17650	17700 17680 17650 17640 17640 17620	17530 17550 17550 17540 17530	17250 17260 17250 17240 17240 17240	17150 17140 17130 17130 17100 17100	17100 17400 17480 17490 17510
MAX	20260	20150	19560	19060	18720	18100	17700	17750	17670	17530	17240	17510
MIN	19190	19570	19050	18730	18120	17400	17470	17620	17530	17240	17100	16890
(†)	2061.86	2061.38	2060.94	2060.66	2060.13	2059,52	2059.71	2059.68	2059.60	2059.33	2059.21	2059.58
(‡)	+950	-570	-520	-320	-610	-680	+210	-30	-90	-290	-140	+410

WTR YR 1984 MAX 20260 MIN 16890 ‡ -1680

[†] Elevation, in feet, at end of month.
‡ Change in contents, in acre-feet.

08123000 LAKE COLORADO CITY NEAR COLORADO CITY, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical analyses: October 1969 to current year.

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
MAY 02	1715	2170	20.0	560	380	120	64	260
DATE	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)
MAY 02	5	17	180	530	320	.80	4.4	1400

08123600 CHAMPION CREEK RESERVOIR NEAR COLORADO CITY, TX

LOCATION.--Lat 32°16'53", long 100°51'30", Mitchell County, Hydrologic Unit 12080002, in service outlet structure at Champion Creek Dam on Champion Creek, 1.0 mi upstream from mouth, 4.8 mi downstream from State Highway 208, and 7.2 mi south of Colorado City.

DRAINAGE AREA .- - 206.8 mi2, of which 20.8 mi2 probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1959 to current year.

REVISED RECORDS .-- WRD TX-81-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929. Prior to Sept. 29, 1959, non-recording gages at same site and datum.

REMARKS.--The lake is formed by a rolled earthfill dam about 6,800 ft long. The dam was completed on Apr. 30, 1959. Closure and storage began in February 1959. The capacity curve is based on Geological Survey topographic map surveyed in 1950; excavation for borrow, estimated not to exceed 1,200 acre-ft, is not included. The dam and reservoir are owned and operated by the Texas Electric Service Company. Water may be pumped from the reservoir through a 24-inch pipeline to Lake Colorado City (station 08123000) for municipal use and for cooling operations of a steam generating powerplant. There are two spillways. The uncontrolled emergency spillway, 450 ft wide and 800 ft long, is located at the right end of dam. The controlled service spillway, is a cut channel 50 ft wide, about 1,800 ft long, and 8 ft deep, and cut into the emergency spillway at the extreme right end. There is a controlled drop-inlet structure, 4.0 by 5.0 ft, with a side opening of 1.5 by 3.0 ft. Figures given herein represent total contents. Data regarding the dam and reservoir are given in the following table:

	(feet)	(acre-feet)
Top of dam	2,109.0	
Design flood	2,104.0	90,020
Crest of spillway	2,091.0	56,800
Crest of spillway (top of conservation pool)	2,083.0	42,500
Lowest gated outlet (invert)	2,020.0	800

COOPERATION. -- Record of diversions into Lake Colorado City may be obtained from Texas Electric Service Co.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 47,060 acre-ft June 29, 1982 (elevation, 2,085.79 ft); minimum 1,600 acre-ft Oct. 1, 1959 (elevation, 1,025.90 ft).

EXTREMES FOR CURRENT YEAR.--Maximum contents, 34,430 acre-ft Nov. 5-7 (elevation 2,077.34 ft); minimum, 22,020 acre-ft Sept. 30 (elevation 2,066.26 ft).

Capacity table (elevation, in feet, and total contents, in acre-feet)

2,066.0 21,780 2,075.0 31,440 2,071.0 26,830 2,078.0 35,300

CONTENTS, IN ACRE-FEET, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 INSTANTANEOUS OBSERVATIONS AT 2400

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	32540	34350	34030	33800	33920	33830	33370	31370	29480	27470	25440	23550
2	32480	34350	34050	33810	33930	33830	33300	31290	29420	27440	25380	23520
3	32420	34390	34060	33810	33930	33830	33240	31250	29350	27400	25300	23360
4	32350	34420	34050	33830	33930	33830	33170	31170	29280	27330	25260	23380
5	32280	34430	34060	33830	33930	33810	33100	31110	29210	27270	25220	23320
6 7 8 9	32220 32140 32080 32020 31940	34430 34430 34420 34390 34350	34010 34010 34020 34020	33840 33840 33890 33950 33940	33920 33920 33920 33920 33920	33800 33790 33790 33770 33760	33050 33000 32940 32870 32810	31030 31030 30930 30860 30760	29150 29070 29010 28940 28880	27200 27130 27050 26970 26900	25150 25070 25010 24950 24880	23240 23160 23100 23040 22970
11	31890	34320	34010	33930	33920	33760	32740	30690	28800	26820	24810	22900
12	31780	34320	33990	33940	33920	33760	32670	30640	28720	26760	24780	22850
13	31690	34310	33990	33940	33920	33770	32620	30610	28650	26710	24730	22790
14	31600	34310	33970	33930	33920	33770	32530	30570	28590	26640	24670	22730
15	31550	34270	33980	33930	33920	33790	32470	30500	28520	26570	24610	22650
16	31500	34240	33950	33920	33900	33790	32390	30420	28440	26500	24560	22580
17	31490	34230	33940	33920	33890	33800	32330	30360	28370	26330	24500	22520
18	31490	34220	33920	33920	33900	33800	32270	30330	28310	26370	24430	22470
19	31600	34190	33900	33900	33900	33790	32220	30340	28250	26320	24370	22420
20	33450	34160	33890	33900	33880	33760	32150	30330	28170	26240	24310	22360
21	33520	34150	33890	33900	33880	33750	32080	30310	28100	26160	24240	22320
22	33490	34160	33880	33890	33860	33730	31990	30250	28030	26090	24180	22250
23	33460	34160	33860	33900	33860	33720	31930	30180	27960	26020	24120	22190
24	33490	34150	33840	33900	33850	33700	31870	30110	27890	25960	24060	22140
25	34380	34140	33830	33920	33850	33680	31790	30050	27820	25900	24000	22130
26 27 28 29 30 31	34380 34380 34380 34380 34380 34360	34140 34100 34090 34070 34060	33810 33830 33830 33800 33800 33800	33920 33920 33930 33930 33940 33930	33860 33860 33850 33840	33670 33660 33620 33550 33490 33440	31720 31640 31590 31500 31430	30000 29900 29820 29730 29650 29550	27750 27730 27680 27610 27530	25850 25780 25720 25650 25580 25510	23930 23860 23790 23730 23670 23600	22130 22120 22110 22080 22020
MAX	34380	34430	34060	33950	33930	33830	33370	31370	29480	27470	25440	23550
MIN	31490	34060	33800	33800	33840	33440	31430	29550	27530	25510	23600	22020
(†)	2077.29	2077.06	2076.86	2076.96	2076.89	2076.58	2074.99	2073.42	2071.64	2069.76	2067.90	2066.26
(‡)	-1760	-300	-260	+130	-90	-400	-2010	-1880	-2020	-2020	-1910	-1580

CAL YR 1983 MAX 40270 MIN 31490 ‡ -5860

WTR YR 1984 MAX 34430 MIN 22020 # -10580

[†] Elevation, in feet, at end of month.
‡ Change in contents, in acre-feet.

08123600 CHAMPION CREEK RESERVOIR NEAR COLORADO CITY, TX--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical analyses: October 1969 to current year.

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
MAY 03	0740	877	16.5	310	170	74	30	61
03	0740	077	10.3	310	170		30	
	SODIUM	POTAS-	ALKA-		CHLO-	FLUO-	SILICA.	SOLIDS, SUM OF
	AD-	SIUM,	LINITY	SULFATE	RIDE,	RIDE,	DIS-	CONSTI-
	SORP-	DIS-	FIELD	DIS-	DIS-	DIS-	SOLVED	TUENTS,
	TION	SOLVED	(MG/L	SOLVED	SOLVED	SOLVED	(MG/L	DIS-
DATE	RATIO	(MG/L AS K)	AS CACO3)	(MG/L AS SO4)	(MG/L AS CL)	(MG/L AS F)	AS S102)	SOLVED (MG/L)
MAY								
03	2	8.0	140	200	69	.50	.1	530

08123720 BEALS CREEK NEAR COAHOMA, TX

LOCATION.--Lat 32°14'56", long 101°21'42", Howard County, Hydrologic Unit 12080007, on left bank near left end of county road bridge, 1.9 mi south of Interstate Highway 20, at Midway, on Moss Creek Lake Road, and 4.7 mi southwest of Coahoma.

DRAINAGE AREA. -- 1,569 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- July 1983 to current year.

GAGE.--Water-stage recorder. Altitude of gage is 2,323 ft, from topographic map.

REMARKS.--Water-discharge records good. Low flow is affected at times by diversions upstream from station.

EXTREMES FOR PERIOD JULY TO SEPTEMBER 1983.--Maximum discharge, 222 ft 3/s Sept. 16 at 1530 hours (gage height, 3.67 ft); minimum daily, 0.82 ft 3/s Sept. 7.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 532 ft 3/s Sept. 25 at 2115 hours (gage height, 5.56 ft); minimum daily, 1.5 ft 3/s Aug. 24.

			DISCHARGE,	IN CUBIC	FEET	PER SECOND, MEAN VALUES	JULY	то	SEPTEMBER	1983			
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR		MAY	JUN	JUL	AUG	SEP
1 2 3 4 5											3.0 3.0 3.0 2.7 2.9	3.5 17 4.5 3.9 3.9	3.3 4.3 3.6 3.4 3.3
6 7 8 9 10											3.1 3.0 3.1 3.2 3.2	3.7 3.6 3.7 6.0	3.4 .82 2.2 3.0 3.2
11 12 13 14 15											3.2 3.2 3.4 3.3 3.5	13 4.8 3.7 3.4 3.7	3.2 3.1 4.1 19
16 17 18 19 20											3.7 3.5 3.5 3.5 3.5	4.4 3.4 3.2 3.6 3.7	102 16 8.0 6.2 5.7
21 22 23 24 25											3.5 3.0 3.0 3.0 3.0	5.7 3.8 2.2 3.0 3.0	5.3 5.4 5.8 6.1
26 27 28 29 30 31											3.0 3.0 3.0 3.0 3.0 3.0	2.9 2.8 2.8 2.7 2.7 3.0	6.4 7.3 8.0 6.8 4.5
TOTAL MEAN MAX MIN AC-FT											98.0 3.16 3.7 2.7 194	141.3 4.56 17 2.2 280	277.72 9.26 102 .82 551

WTR YR 1983 TOTAL - MEAN - MAX - MIN - AC-FT -

COLORADO RIVER BASIN

08123720 BEALS CREEK NEAR COAHOMA, TX--Continued

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 MEAN VALUES MAR JUL AUG SEP JUN DEC FEB APR MAY DAY OCT NOV JAN 2.5 3.3 3.5 3.3 3.9 5.0 5.0 5.1 5.0 5.6 5.4 4.6 5.2 3.7 4.3 4.1 11.0 11.0 2.3 4.8 3 4.5 5.0 2.2 6.2 4.8 2.0 6.1 4 1.6 8.3 5.6 4.4 3.8 4.2 8.3 4.3 4.3 9.6 6.4 5.0 5.7 5.2 5.1 1.9 3.7 9.6 1.7 4.3 67 6.2 5.1 3.7 4.0 1.8 5.6 4.5 5.4 4.1 6.8 5.0 6.6 5.4 11.0 4.4 5.6 5.8 3.8 3.7 8.3 3.8 8.9 6.0 4.0 4.0 3.7 5.5 2.0 7.8 10 6.3 7.0 2.3 5.0 4.9 4.9 8.4 8.4 7.9 5.3 5.2 5.3 6.5 6.3 5.8 6.1 4.3 3.1 4.0 11 3.9 4.6 2.8 4.4 4.5 4.7 7.7 2.0 6.7 3.6 12 13 6.6 3.0 3.0 5.3 5.8 5.0 5.9 4.1 2.1 2.5 4.2 3.0 15 3.7 7.5 5.4 2.4 2.7 2.3 2.4 1.9 2.9 4.3 2.9 3.5 6.9 16 3.6 5.8 5.6 3.6 4.0 7.0 6.8 2.7 7.0 5.8 6.1 5.6 17 2.9 14.0 1.9 18 2.0 8.6 3.0 7.0 4.8 6.6 4.1 3.1 4.2 3.2 20 6.9 5.7 6.2 5.2 2.3 2.3 1.7 2.9 2.5 6.5 5.4 6.3 4.0 3.9 3.6 21 22 23 24 25 52.0 5.6 2.5 17.0 5.9 4.1 6.3 5.1 3.9 3.3 6.4 6.9 2.8 13.0 8.6 2.6 1.5 6.5 6.0 6.8 4.4 2.4 7.5 8.1 80.0 6.0 7.0 5.8 3.3 3.4 3.7 6.9 8.5 11.0 5.9 5.4 5.4 3.2 3.2 20.0 272.0 5.0 5.0 5.5 5.5 5.5 5.2 6.9 4.3 26 27 8.9 4.2 3.6 3.2 2.3 47.0 3.1 3.3 3.8 28 3.5 3.2 3.4 5.5 5.1 8.8 5.4 4.4 29 14.0 2.3 2.7 3.3 3.5 6.9 30 4.3 6.0 9.6 130.3 TOTAL 364.4 212.9 203.5 180.8 181.5 156.5 117.8 130.0 126.8 489.8 4.77 4.20 16.3 272 11.8 5.83 5.05 3.93 4.09 MEAN 6.56 14 6.7 4.7 8.6 162 14 11 14 3.6 723 5.0 4.8 4.9 MIN 258 972 404 359 360 310 234 284 252 258 AC-FT MEAN 6.66 MIN 1.5 AC-FT 4830 WTR YR 1984 TOTAL 2437.3 MAX 272

08123720 BEALS CREEK NEAR COAHOMA, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical analyses: June 1983 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: June 1983 to September 1984. WATER TEMPERATURES: June 1983 to Septemer 1984.

INSTRUMENTATION .-- Beginning June 1983, specific conductance and water temperature are recorded continuously at this station.

REMARKS.--Interruptions in the record were due to malfunctions of the instrument. Where maximum or minimum specific conductance values are not shown, mean value is eatimated. Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and regression relationships between each chemical constituent and specific conductance. Regression equations developed for this station may be obtained from the Geological Survey District office upon request.

EXTREMES FOR CURRENT YEAR . --

SPECIFIC CONDUCTANCE: Maximum daily, 15,900 micromhos May 18; minimum daily, 600 micromhos Sept. 25.
WATER TEMPERATURES: Maximum daily, 33.0°C on several days during June and July; minimum daily, 0.0°C on several days during December and January.

DATE		STREAM- FLOW, INSTAN- IANEOUS	ANCE	TEMPER- ATURE (DEG C)		HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
OCT									
07	1220	4.2	7280	25.0	1600	1400	260	220	1100
20 NOV	1215	285	2430	22.0	530	430	100	67	310
28 MAY	1425	5.3	10900	9.0	2100	1900	320	320	1500
16 JUL	1020	3.2	8600	20.0	2000	1700	330	280	1300
30	1325	2.5	7680	28.0	1600	1300	260	220	1100
DATE	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVE (MG/L AS CL	(MG/L	SILICA, DIS- SOLVED (MG/L AS SIO2)	CONST	F I- S, ED
OCT									
07	12	33	190		1700	.80			
NOV NOV	6	16	100	360	510	.30	7.7	14	00
28 MAY	14	42	210	2000	2200	.70	13	650	00
16 JUL	13	34	260	1400	2200	.90	15	570	00
30	12	40	220	1200	2000	.90	13	500	00

08123720 BEALS CREEK NEAR COAHOMA, TX--Continued

MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1983 TO SEPTEMBER 1984

MONTH	I YEAR		DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT - ANCE (MICRO - MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS - SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
							2 1				
OCT.	1983		364.4	5040	3310	3260	1300	1240	820	809	1200
NOV.	1983		212.9	9550	6070	3490	2200	1270	1700	963	2000
DEC.	1983		203.5	10700	6700	3680	2400	1320	1900	1050	*
JAN.	1984		180.8	11200	7000	3420	2500	1220	2000	992	*
FEB.	1984		181.5	10700	6730	3300	2400	1180	1900	944	*
MAR.	1984		156.5	10700	6740	2850	2400	1020	1900	816	*
APR.	1984		117.8	10600	6650	2120	2400	761	1900	603	*
MAY	1984		130.0	9070	5790	2030	2100	743	1600	555	1900
JUNE	1984	- 6	143.0	8190	5270	2040	2000	753	1400	541	1800
JULY	1984		126.8	6470	4250	1450	1600	551	1100	362	1500
AUG.	1984	5.79	130.3	6710	4390	1540	1700	583	1100	389	1500
SEPT	1984		489.8	3240	2170	2870	840	1110	500	667	770
TOTAL			2437.3	**	**	32000	**	11800	**	8690	**
WTD.A	VG.		6.7	7620	4870	**	1800	**	1300	**	1600

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		остовн	R		NOVEMB	ER		DECEMBI	ER		JANUA	RY
1			7130	10200	9300	9460	10800	10300	10600	10500	9900	10200
2			7160	9700	9400	9540	10500	9500	10100	10600	10300	10400
3			7180	9700	9500	9600	10500	9400	9880	10900	10600	10700
4			7220	10200	9600	9910	11600	10300	11000	12700	10700	11100
5			7160	11900	10200	10600	10300	10100	10200	12600	10700	11600
6			7200	11700	9500	10000			10100	10700	10200	10500
7			7280	9800	9200	9480			10300	10900	10500	10700
8			7340	10200	9700	9920	10800	10300	10500	11000	10500	10700
ğ			7400	10200	9600	9910	10500	10100	10300	12700	9400	11500
10			7390	9900	9500	9660	10600	10300	10400	12100	11500	11800
11			7370	9800	9400	9520	10300	9800	10000	11600	11400	11500
12			7420	9900	9500	9660	10000	9800	9900	11700	11500	11600
13			7460	9800	9700	9750	10200	9900	10000	11700	11500	11700
14			7450	9900	9500	9700	10400	10000	10200	11700	11600	11700
15			7470	9700	9500	9570	10600	10400	10500	11600	11400	11500
16			7500	9800	9300	9560	10500	9900	10200	11400	11200	11300
17			7520	10000	9300	9550	11600	10500	11100	11500	11200	11400
18			7430	9500	9200	9390	11600	11000	11300	11700	11400	11700
19			6550	9500	9200	9340	11200	10700	10900	11800	11500	11700
20			2430	9300	9000	9200	10700	10500	10600	12000	11500	11800
21			5060	9700	9000	9230	11000	10400	10800	11900	11300	11600
22			6660	9600	8700	9030	11900	11000	11500	11300	10900	11100
23	8700	5700	8070			7850	12600	11400	12000	11300	10900	11100
24	8900	8700	8820			8460	11800	11300	11500	11100	11000	11100
25	9700	8700	9030			9070	11400	10800	11100	11400	11100	11300
26	9900	9200	9580			9680	11100	10400	10700	11300	10000	10900
27	9400	9100	9200			10300	12400	10400	11700	11100	9800	10800
28	9500	9200	9340			10900	11600	10300	10800	11000	9800	10700
29	9600	9100	9310	10400	10000	10100	10800	10500	10600	11100	9800	10700
30	9800	9300	9460	10500	10000	10300	10700	10000	10300	10900	10500	10700
31	9800	9200	9500				10700	9900	10200	10900	9800	10400
MONTH	9900	5700	7580	11900	8700	9610	12600	9400	10600	12700	9400	11100

COLORADO RIVER BASIN

08123720 BEALS CREEK NEAR COAHOMA, TX--Continued

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984--Continued

	SPECIFIC	CONDUCTA	NCE (MI	CROMHOS/CM AT	25 DEG.	C), WATER	YEAR OCTO	BER 1983	TO SEPTEMBER	1984	Continue	1
DAY '	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUAR	RY		MARCH			APRIL			MAY	
1 2 3 4 5	10800 11000 11300 11100 11100	9800 10600 10900 9900 10600	10500 10800 11100 10700 10900	13400 13300 11200	10500 10800 10600	11400 11900 12200 11700 10900	10300 10800 10700 10300 10400	9800 10000 10000 9900 9900	1 0000 1 05 00 1 03 00 1 01 00 1 01 00	=======================================	===	8930 8760 8720 8650 8680
6 7 8 9 10	10800 10800 10700 10700 10700	10500 9800 10200 10200 10200	10600 10700 10500 10400 10400	12400 11300 10600 10700 10900	11100 10600 10300 9900 10200	11700 10900 10500 10300 10500	10500 10900 11100 10800 10900	10100 10200 10400 10400 10300	1 02 00 1 06 00 1 08 00 1 06 00 1 07 00			8340 8270 8330 8350 8360
11 12 13 14 15	10700 11000 10800 10900 10600	10300 10500 10100 10100 10100	10500 10800 11000 10400 10300	10800 11200 11500 11300 11100	10400 10600 10700 10200 10400	10600 11000 11100 10800 10700	11700 12000 12000 10900 10700	1 05 00 1 09 00 1 03 00 1 05 00 1 04 00	11000 11300 11200 10700 10500	===	===	8400 8450 8480 8370 8400
16 17 18 19 20	13400 10400 10500 10900 10700	10200 9800 10000 9900 9900	11300 10200 10200 10200 10200	11000 11000 10900 11400 12400	10200 10300 10500 10200 10400	10600 10600 10700 10800 11300	10800 10900 11000 11200 11400	10500 10600 10700 10900 11000	10700 10800 10900 11000 11200	8700 8900 15900 14300 11600	7900 8000 9000 11700 9800	8430 8380 12600 12800 10400
21 22 23 24 25	10600 10500 12800 12000 10000	9900 10100 10100 9700 9600	10200 10300 11200 10400 9870	1 09 00 1 07 00 1 05 00 1 1 4 00 1 06 00	10200 10100 9900 10000 9900	1 05 00 1 04 00 1 02 00 1 06 00 1 02 00	11400 11100 11200	1 04 00 1 07 00 1 08 00	11200 11000 11000 10600 10400	9900 9300 8800 8500 8300	9100 8700 8300 6100 6000	9670 8940 8550 8070 7290
26 27 28 29 30 31	10400 14800 13400 11700	10000 10500 10900 10100	10200 12800 11600 11000	10400 11100 10100 10400	9600 9600 9700 9700	10100 10300 9970 10200 9890 9980			10500 10200 9750 9300 9090	8200 8200 11100 10800 8900 8500	5800 6000 6600 8800 8100 8000	7820 7510 8780 9820 8650 8210
MONTH	14800	9600	10700	13400	9600	10700	12000	9800	10500	15900	5800	8820
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEMB	ER
1 2 3 4 5	8300 8100 12600 12300 10800	7800 2800 5400 9800 9300	8020 7150 10300 10900 9930	6500 6400 6400 6500 6500	6100 6100 6000 6100 6000	6270 6240 6190 6330 6190	7300 7100 7200 7100 7800	6900 6800 6800 6700 6600	7130 6980 6990 6890 6850	8200 8100 8000 8000 7900	8000 8000 7900 7900 7800	8090 8040 8000 7930 7880
6 7 8 9 10	10900 9500 9300 8700 8200	8700 8700 8700 8200 7700	9720 9180 9080 8540 8010	6400 6500 6600 6500 6500	6100 6000 6100 6100 6000	6140 6220 6300 6240 6210	6900 6500 	6500 6100 	6650 6370 6590 6830 7040	7900 7800 7900 7800 7800	7800 7700 7700 7700 7100	7820 7790 7790 7750 7670
11 12 13 14 15	8000 7800 7900 7700 7800	7600 7600 7300 7300 7400	7820 7650 7620 7530 7680	6700 	6100	6340 6420 6400 6280 6300	8400 8400 	6300 6700 	7230 7240 7410 7520 7500	7600 7300 7300 7300 7200	7200 7100 7100 7000 7000	7400 7200 7140 7100 7090
16 17 18 19 20	8000 8100 7700 7100 7100	7300 7300 7000 6700 6700	7760 7800 7330 6980 6960	===	===	6420 6510 6190 6270 6430	===	=======================================	7470 7400 7490 7480 7610	7000 6800 7300 7400 6800	66 00 66 00 68 00 67 00 66 00	6740 6660 7070 7130 6680
21 22 23 24 25	7200 7100 6700 6700 6700	7000 6700 6600 6400 6400	7060 6970 6960 6550 6450			6560 6680 6650 6770 6890	===	===	7580 7600 7830 7990 5500	6700 7200 7200 7600 7200	6500 6600 6800 6800 600	6600 6970 7030 6940 5460
26 27 28 29 30 31	6500 6500 6700 6600 6500	6300 6200 6200 6300 6200	6330 6310 6380 6390 6340	7400	7000	7050 7230 7120 7460 7680 7290	7600 7800 8200 8200 8200	7300 7500 7900 8100 8100	6250 7400 7660 8080 8110 8100	3700 2600 3400 3800 4300	11 00 1400 26 00 35 00 37 00	1890 2220 2980 3680 3990
MONTH	12600	2800	7720	7400	6000	6560	8400	6100	7250	8200	600	6560

08123720 BEALS CREEK NEAR COAHOMA, TX--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

		T	EMPERATURE,	WATER (D	EG. C),	WATER YEAR	OCTOBER	1983 TO S	EPTEMBER			
DAY '	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBE	R		NOVEMBI	ER		DECEMBE	R		JANUAR'	
1 2 3 4 5	26.5 28.0	21.0 21.0	23.0 24.0 	20.0 20.0 18.5 20.5 18.0	16.0 16.0 16.0 17.0	17.5 17.5 17.0 18.5 17.5	7.5 10.0 12.5 12.5 12.5	5.0 7.0 9.0 8.5 7.0	6.5 8.5 10.0 10.0 9.5	4.5 4.5 6.5 9.0 8.0	1.0 2.5 4.0 5.5 5.5	2.5 3.5 5.5 6.5 6.0
6 7 8 9	28.5 26.5 26.0 27.0	23.5 21.5 21.0 21.0	25.0 25.0 24.0 22.5 23.0	19.0 19.0 20.0 17.0 14.0	15.0 15.0 15.0 12.5 10.0	17.0 16.5 17.0 15.0	8.5 8.0 10.5 10.5 11.5	5.0 7.0	6.0 5.5 7.5 8.5 9.0	10.5 9.0 8.0 9.5 7.5	5.5 7.0 5.5 7.0 4.5	8.0 7.5 7.0 8.0 6.0
11 12 13 14	25.5 23.5 21.5 21.5	20.0 16.5 15.5 15.0	22.0 19.5 17.5 17.5	14.5 15.0 15.5 15.5	9.5 10.5 11.0 12.0 10.0	11.0 12.5 13.0 13.5 12.0	12.0 11.0 10.5 10.0 8.5	6.5 7.0	9.0 8.5 8.0 7.5 5.5	7.0 8.0 5.5 4.5 4.5	3.5 4.0 2.5 2.0 2.0	5.0 5.5 4.0 2.5 3.0
16 17 18 19 20	18.0	15.0	16.5	14.0 14.5 14.5 12.5 11.5	9.5 9.5 10.0 9.0 7.0	11.0 11.5 12.0 11.0 9.0	6.0 7.0 4.5 1.0	3.0 .5 .0	4.0 4.5 2.5 .5	3.0 3.5 2.0 1.0	1.5 2.0 .0 .0	2.5 3.0 1.0 .0
21 22 23 24 25	19.0 19.5 19.0 20.5 19.5	14.5 15.0 15.0 17.0 14.5	16.5 17.0 17.0 18.5 17.0	14.0 15.0 11.5 10.0 10.5	7.5 10.0 9.0 7.0 6.5	10.0 12.0 10.0 8.0 8.0	1.5 .0 .0	.0	.5 .0 .0	4.0 6.0 7.5 8.0 9.0	1.5 3.5 3.5 4.0	1.5 3.0 5.0 5.0 5.5
26 27 28 29 30 31	17.5 19.0 19.0 19.0 19.0 20.0	13.5 14.5 14.5 15.0 15.0	15.5 16.0 16.5 17.0 17.0	10.5 7.5 8.0 10.0 9.5	7.5 4.5 3.5 4.5 6.5	9.5 6.0 5.0 6.5 7.5	.0 .5 .5 .0 .0	.0	.0 .0 .0 .0	9.5 10.5 11.0 11.0 10.0 8.0	4.5 5.0 5.0 6.0 6.5 5.0	6.5 7.5 7.5 7.5 7.5 6.0
MONTH	28.5	13.5	19.5	20.5	3.5	12.0	12.5	.0	4.5	11.0	.0	5.0
DAY	MAX	MIN FEBRUAF	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN L	MAX	MIN MAY	MEAN
1 2 3 4 5	11.0 11.0 10.0 11.0	5.0 7.0 5.5 5.0 6.0	7.5 8.5 7.5 7.5 8.0	14.5 15.5 18.0 17.0 10.5	4.0 5.5 10.5 10.0 6.5	8.0 10.0 13.5 13.0 8.5	16.0 18.5 19.0 19.5 20.0	11.5 11.0 10.5	13.0 14.5 14.5 14.0 14.5	17.5 	12.0	13.5
6 7 8 9	11.5 11.5 12.5 13.5 12.5	5.5 5.5 7.5 7.5 7.5	8.0 8.0 9.0 9.5 10.0	12.5 14.5 14.5 15.0 10.5	4.0 5.5 7.5 7.0 8.5	7.5 9.5 10.0 10.0 10.0	17.5 20.5 21.0 22.5 20.0	15.0 13.5 14.0	15.0 16.5 16.5 17.5 16.0			===
11 12 13 14 15	15.0 13.0 13.0 14.5 13.0	10.0 7.0 6.5 6.0 8.5	11.5 10.0 9.0 10.0 10.5	10.0 17.0 17.5 21.0 21.0	8.0 9.5 11.5 12.0 15.5	9.0 12.5 14.0 16.5 18.0	22.0 23.0 23.0 21.5 20.5	14.0 13.5 14.0	16.5 17.5 17.5 16.5 15.0			
16 17 18 19 20	13.5 16.5 15.0 11.0 10.0	7.0 8.0 9.5 7.5 6.5	9.5 11.5 11.5 8.5 8.0	18.0 19.0 19.0 15.5 18.0	14.0 13.0 11.5 9.5 9.0	15.5 15.5 15.5 12.0 12.5	21.5 22.0 20.0 24.0 23.0	12.0 14.0 14.0	16.0 16.5 16.5 18.0 18.5	22.0 24.5 23.0 25.0 27.5	20.0 19.0 19.5 20.5 19.5	21.0 20.5 21.0 22.0 22.5
21 22 23 24 25	12.0 14.0 14.0 14.5 14.5	5.0 6.5 8.0 8.0	7.5 9.0 10.0 10.5 11.0	19.5 19.5 18.5 18.0 17.5	10.5 12.0 11.5 9.5 11.0	14.0 15.0 14.5 13.0 13.5	21.0 22.0 24.0 20.0 21.0	12.0 12.5 13.5	16.5 16.5 17.5 16.0 17.5	30.0 30.5 30.0 31.0 31.0	19.5 20.5 22.0 22.0 22.0	24.0 25.0 25.5 26.0 25.5
26 27 28 29 30	12.0 9.0 11.0 8.0	6.5 4.5 5.5 1.5	9.5 6.5 7.5 5.5	17.0 15.5 16.5 17.5 18.5 20.0	11.0 10.5 8.5 8.5 10.0 11.0	12.5	22.5 22.5 19.6 17.5 21.6	12.0 13.0 11.0 10.0	17.5 16.5 15.5 14.5 15.0	31.0 32.0 27.5 27.0 27.5 28.5	22.0 22.0 20.5 17.5 17.5	26.0 26.0 23.0 21.5 21.5 22.0
31 MONTH	16.5	1.5	9.0	21.0	4.0		24.		16.0	32.0	12.0	22.5

COLORADO RIVER BASIN

08123720 BEALS CREEK NEAR COAHOMA, TX--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984--Continued

		TEMPERA	TURE, WATE	R (DEG. C)	, WATER	YEAR OCTOR	ER 1983 TO	SEPTEMB	ER 1984C	Olicinaea		
DAY '	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEMB	ER
1 2 3 4 5	29.5 27.0 24.0 25.5 29.5	18.0 21.0 21.0 19.5 20.0	22.5 23.0 22.0 22.0 24.0	32.0 29.0 30.0 31.0 33.0	23.5 24.0 22.5 22.5 24.0	27.0 26.0 26.0 26.0 27.0	28.5 29.5 26.0 30.0 31.5	21.5 23.0 23.5 22.5 23.5	24.5 25.5 24.5 25.5 26.5	27.0 27.5 27.0 28.0 29.0	24.0 24.0 22.5 21.0 20.0	25.0 25.0 24.5 23.5 23.5
6 7 8 9	27.5 28.0 32.0 33.0 31.0	22.0 23.0 22.5 23.5 24.0	24.5 25.5 26.5 27.0 26.5	33.0 33.0 32.0 32.0 32.5	24.0 23.5 22.5 22.5 22.5	27.5 27.5 27.0 26.5 27.0	32.0 32.0 29.0 29.5 28.0	23.0 23.5 24.0 23.5 24.0	26.5 26.5 26.0 25.5 25.5	27.0 26.5 28.5 29.5 30.0	20.0 20.0 21.0 22.0 22.5	22.5 22.5 24.0 25.0 25.0
11 12 13 14 15	31.0 31.0 31.0 27.0 30.5	23.5 22.5 22.5 23.5 22.0	26.0 26.0 26.0 25.0 26.0	32.5 33.0 31.0 32.0 33.0	24.5 24.5 23.5 23.5 22.5	27.5 27.0 27.0 27.0 27.0	26.5 28.0 31.5 31.0 29.0	23.5 23.0 24.0 23.5 22.5	24.5 25.0 27.0 26.5 24.5	28.5 29.0 29.0 28.5 26.0	22.5 23.0 22.5 22.0 20.5	24.5 25.0 25.0 24.5 22.5
16 17 18 19 20	30.5 28.5 30.5 28.0 28.5	23.5 23.5 22.0 23.5 23.0	26.5 25.5 28.0 25.5 24.5	33.0 32.0 32.5 32.5 33.0	23.5 24.0 21.0 23.5 24.0	27.5 27.5 26.0 27.0 27.5	28.5 29.5 31.5 32.5 32.0	22.0 22.0 22.5 23.5 23.0	24.5 25.0 26.0 27.0 26.5	24.5 25.5 27.5 26.5 25.5	20.5 19.5 20.5 19.5 19.5	21.5 21.5 22.5 22.5 22.0
21 22 23 24 25	30.5 32.0 32.5 33.0 32.0	22.5 23.5 22.5 23.5 25.0	26.0 27.0 27.0 27.5 28.0	32.5 30.5 32.0 29.5 29.5	24.5 24.0 22.5 24.0 22.5	27.5 26.5 27.0 25.5 25.5	31.5 32.0 31.0 30.0 30.5	23.5 23.5 24.0 22.0 22.0	26.5 27.0 27.0 26.0 26.0	25.0 26.5 26.0 28.0 26.0	20.0 20.5 21.0 22.0 10.0	22.0 23.0 23.0 24.5 20.0
26 27 28 29 30 31	33.0 31.0 32.0 32.5 33.0	24.0 25.0 23.5 23.5 24.5	28.0 27.0 27.0 27.5 28.0	31.0 30.5 29.5 30.0 30.0 26.0	22.5 23.5 23.0 24.0 22.5 22.0	26.0 26.0 26.0 25.5 23.5	27.0 30.0 30.0 30.0 28.0 27.0	22.0 25.5 24.5 25.0 24.5 24.0	24.5 27.5 26.5 27.0 25.5 25.0	12.5 17.0 16.5 12.5 16.5	10.5 12.0 12.5 11.0 11.5	11.5 14.0 14.0 12.0 14.0
MONTH	33.0	18.0	26.0	33.0	21.0	26.5	32.5	21.5	26.0	30.0	10.0	21.5

08123800 BEALS CREEK NEAR WESTBROOK, TX

LOCATION.--Lat 32°11'57", long 101°00'49", Mitchell County, Hydrologic Unit 12080007, on left bank at downstream side of bridge on State Highway 163, 2.1 mi downstream from Hackberry Creek, 10.8 mi south of Westbrook, 15.7 mi southwest of Colorado City, and 19.1 mi upstream from mouth.

DRAINAGE AREA. -- 9,802 mi2, of which 7,814 mi2 probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1958 to current year.

REVISED RECORDS.--WRD TX-72-1: 1971. WDR TX-81-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 2,048.74 ft National Geodetic Vertical Datum of 1929.

REMARKS .-- Water-discharge records good. Low flow is affected by diversion upstream from station.

AVERAGE DISCHARGE. -- 26 years, 23.6 ft3/s (17,100 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 8,780 ft³/s May 19, 1961 (gage height, 21.65 ft m); maximum gage height, 21.94 ft Sept. 29, 1980; no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum stage since 1908, about 24.5 ft in 1922, from information by local resident.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,010 ft³/s Oct. 20 at 2000 hours (gage height, 9.56 ft), no other peak above base of 900 ft³/s; minimum daily, 0.02 ft³/s Sept. 18, 19.

		DISC	HARGE, IN	CUBIC FE		ECOND, WAT EAN VALUES	ER YEAR O	CTOBER 19	83 TO SEF	TEMBER 19	084	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.50 1.80 1.50 2.00 2.00	4.7 4.6 4.4 5.2 18.0	4.1 4.2 4.6 4.3 4.3	5.0 5.8 6.5 6.1 6.0	4.4 4.3 4.0 4.1 4.2	4.7 6.5 4.9 2.9 2.3	3.9 3.6 3.4 3.5 3.3	1.6 2.1 1.8 2.0 1.9	1.50 1.20 14.00 6.10 4.50	.67 .81 1.40 1.20 .82	1.60 1.10 .61 1.30 .76	3.20 3.70 3.90 3.70 3.40
6 7 8 9 10	1.80 1.10 .87 1.30 1.40	28.0 8.3 6.8 4.8 4.3	4.7 4.4 4.3 4.4 4.3	6.1 6.0 6.0 6.4 5.9	4.1 4.0 3.9 4.1 3.7	3.1 3.1 2.9 3.2 3.8	2.8 3.1 3.2 3.3 3.1	1.6 1.7 1.5 2.4 2.4	4.30 3.10 2.50 4.00 2.40	.57 .48 .52 .46 .29	.47 1.10 1.00 3.40 5.20	2.90 1.70 1.70 .67
11 12 13 14 15	1.40 1.40 1.30 1.30 1.10	4.1 3.9 3.8 3.8 3.8	4.4 4.3 3.9 3.9 4.1	8.8 6.6 5.5 5.4 5.4	3.6 3.5 3.4 3.5 3.2	3.2 4.0 4.2 4.2 4.2	2.7 2.7 2.5 2.4 2.2	2.5 1.5 1.1 1.1	1.50 1.10 .79 .86	.18 .18 .20 .14 .22	5.00 5.30 5.30 6.00 4.30	.10 .34 .34 .29
16 17 18 19 20	.78 1.20 1.70 13.00 522.00	3.8 3.5 3.5 3.4 3.4	4.5 4.6 4.5 4.8 4.9	5.5 5.6 5.6 5.7 4.8	3.3 3.5 3.7 3.6 3.5	4.2 4.2 4.1 3.7 3.8	2.0 1.6 1.7 2.2 1.6	1.3 1.6 1.8 36.0 5.4	1.00 1.10 1.30 .95 1.00	.69 1.00 1.10 14.00 5.80	3.00 3.50 2.10 1.60 1.60	.08 .04 .02 .02 .62
21 22 23 24 25	307.00 57.00 25.00 15.00 128.00	3.5 3.6 4.7 3.9 6.0	4.8 4.7 3.5 3.5 3.4	5.0 5.1 5.7 5.5 5.4	3.4 3.3 3.4 3.5 3.7	3.9 3.6 3.8 3.7 3.6	2.0 2.0 1.8 2.0 1.9	4.1 3.7 2.6 1.9	.91 1.00 .94 1.00	3.60 1.60 1.10 .94 .88	1.30 1.20 1.10 .53	.89 .62 .70 1.20 16.00
26 27 28 29 30 31	20.00 7.70 5.60 5.30 5.10 4.90	5.4 4.3 4.1 4.4 4.3	3.3 4.0 4.7 4.7 4.9 4.8	5.3 5.0 4.9 4.8 4.5	4.1 4.0 3.9 4.7	3.4 3.5 3.6 3.6 3.5	1.6 1.5 1.8 1.5	1.4 1.1 1.3 1.2 1.0	.94 .80 1.00 1.10 1.00	.82 .75 1.40 .80 .69	.71 2.90 10.00 4.90 3.10 2.50	230.00 160.00 80.00 31.00 18.00
TOTAL MEAN MAX MIN AC-FT	1141.05 36.8 522 .78 2260	170.3 5.68 28 3.4 338	133.8 4.32 4.9 3.3 265	174.4 5.63 8.8 4.5 346	109.6 3.78 4.7 3.2 217	116.9 3.77 6.5 2.3 232	72.5 2.42 3.9 1.5 144	93.6 3.02 36 1.0 186	63.69 2.12 14 .79 126	44.81 1.45 14 .14 89	82.98 2.68 10 .47 165	565.49 18.8 230 .02 1120

CAL YR 1983 TOTAL 2619.13 MEAN 7.18 MAX 522 MIN .01 AC-FT 5200 WTR YR 1984 TOTAL 2769.12 MEAN 7.57 MAX 522 MIN .02 AC-FT 5490

08123800 BEALS CREEK NEAR WESTBROOK, TX--Continued

WATER-OUALITY RECORDS

PERIOD OF RECORD. -- Chemical analyses: November 1958 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: November 1958 to current year. WATER TEMPERATURES: November 1958 to current year.

INSTRUMENTATION .-- Beginning Mar. 5, 1981, specific conductance and water temperature are recorded continuously at this

REMARKS.--Interruptions in the record were due to malfunctions of the instrument. Where maximum or minimum specific conductance values are not shown, mean value is estimated. Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and regression relationships between each chemical constituent and specific conductance. Regression equations developed for this station may be obtained from the Geological Survey District office upon request.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 22,800 micromhos June 2, 1969; minimum daily, 219 micromhos Sept. 13, 1964.
WATER TEMPERATURES: Maximum daily, 37.0°C June 28, 1960, and July 3, 1976; minimum daily, 0.0°C on many days during

EXTREMES FOR CURRENT YEAR .--

winter months.

SPECIFIC CONDUCTANCE: Maximum daily, 19,900 micromhos July 7; minimum daily, 420 micromhos Oct. 25.
WATER TEMPERATURES: Maximum daily, 32.0°C Nov. 2, June 24, 27; minimum, 0.0°C on many days during December and Jan-

DATE	1	TREAM- CONTROL OF LOW, NSTAN- DANEOUS A	NCE A	MPER- (MG/L H	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS - SOLVED (MG/L AS NA)
OCT 05	1125	2.0	6700	20.0	1400	1300	240	200	970
NOV	1123	2.0	6700	20.0	1400	1300	240	200	970
01 FEB	1310	4.7	3160	19.0	780	690	130	110	400
13 MAY	0945	3.5	11300	8.5	2600	2400	340	420	1900
01 JUN	1020	1.4	13060	18.5	3000	2900	410	480	2000
18 JUL	1050	1.5	4210	25.5	790	600	160	96	590
30	1040	.63	2900	25.5	480	380	75	72	410
DATE	SODIU AD- SORP- TION RATIO	SIUM, DIS-	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	DIS-	RIDE DIS D SOLV (MG/	DIS- SOLVED (MG/ L AS	CONS ED TUEN L DI SOL	OF TI-
OCT 05 NOV	11	31	130	1000	1600		80 1	.6 4	100
01 FEB	6	11	89	450	770		50 4	.5 1	900
13 MAY	17	39	180	2000	3300		80 7	.1 8	100
01 JUN		45	150	2100	3500		70 1	.8 8	600
18 JUL	9	12	200	410	1100		80 1	.5 2	500
30	8	20	100	390	640		80 1	.8 1	700

08123800 BEALS CREEK NEAR WESTBROOK, TX--Continued

MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1983 TO SEPTEMBER 1984

NOV. 1983	MONTH	YEAR	DIS CHARGE (CFS - DAYS)	S PEC IF IC CONDUCT - ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
NOV. 1983	ОСТ	1083	1141.05	1610	1000	3090	380	1180	240	745	350
DEC. 1983											1700
JAN. 1984 174.4 10600 7080 3330 2800 1340 1700 811 FEB. 1984 109.6 11100 7430 2200 3000 887 1800 535 MAR. 1984 116.9 10700 7140 2250 2900 908 1700 548 APR. 1984 72.5 12200 8230 1610 3300 655 2000 393 MAY 1984 93.6 8200 5440 1370 2200 550 1300 334 18 JUNE 1984 63.69 7850 5190 893 2100 357 1300 217 17 JULY 1984 44.81 8980 6090 736 2500 300 1500 179 20 AUG. 1984 82.98 7130 4630 1040 1800 409 1100 251 16 SEPT 1984 565.49 2250 1410 2150 540 822 340 518 44 TOTAL 2769.12 ** ** 23600 ** 9400 ** 5740						2690	3000	1090	1800	654	*
MAR. 1984 116.9 10700 7140 2250 2900 908 1700 548 APR. 1984 72.5 12200 8230 1610 3300 655 2000 393 MAY 1984 93.6 8200 5440 1370 2200 550 1300 334 18 JUNE 1984 63.69 7850 5190 893 2100 357 1300 217 17 JULY 1984 44.81 8980 6090 736 2500 300 1500 179 20 AUG. 1984 82.98 7130 4630 1040 1800 409 1100 251 16 SEPT 1984 565.49 2250 1410 2150 540 822 340 518 44 TOTAL 2769.12 ** ** 23600 ** 9400 ** 5740		1984	174.4	10600	7080	3330	2800	1340	1700	811	*
APR. 1984 72.5 12200 8230 1610 3300 655 2000 393 MAY 1984 93.6 8200 5440 1370 2200 550 1300 334 18 JUNE 1984 63.69 7850 5190 893 2100 357 1300 217 17 JULY 1984 44.81 8980 6090 736 2500 300 1500 179 20 AUG. 1984 82.98 7130 4630 1040 1800 409 1100 251 16 SEPT 1984 565.49 2250 1410 2150 540 822 340 518 44 TOTAL 2769.12 ** ** 23600 ** 9400 ** 5740	FEB.	1984	109.6	11100	7430	2200	3000	887	1800	535	*
MAY 1984 93.6 8200 5440 1370 2200 550 1300 334 18 JUNE 1984 63.69 7850 5190 893 2100 357 1300 217 17 JULY 1984 44.81 8980 6090 736 2500 300 1500 179 20 AUG. 1984 82.98 7130 4630 1040 1800 409 1100 251 16 SEPT 1984 565.49 2250 1410 2150 540 822 340 518 44 TOTAL 2769.12 ** ** 23600 ** 9400 ** 5740	MAR.	1984	116.9	10700	7140	2250	2900	908	1700	548	*
JUNE 1984 63.69 7850 5190 893 2100 357 1300 217 17 JULY 1984 44.81 8980 6090 736 2500 300 1500 179 20 AUG. 1984 82.98 7130 4630 1040 1800 409 1100 251 16 SEPT 1984 565.49 2250 1410 2150 540 822 340 518 44 TOTAL 2769.12 ** ** 23600 ** 9400 ** 5740	APR.	1984	72.5	12200	8230	1610	3300	655	2000	393	*
JULY 1984 44.81 8980 6090 736 2500 300 1500 179 20 AUG. 1984 82.98 7130 4630 1040 1800 409 1100 251 16 SEPT 1984 565.49 2250 1410 2150 540 822 340 518 44 TOTAL 2769.12 ** ** 23600 ** 9400 ** 5740	MAY	1984	93.6	8200	5440	1370	2200	550	1300	334	1800
AUG. 1984 82.98 7130 4630 1040 1800 409 1100 251 16 SEPT 1984 565.49 2250 1410 2150 540 822 340 518 4 TOTAL 2769.12 ** ** 23600 ** 9400 ** 5740	JUNE	1984	63.69	7850	5190	893	2100	357	1300	217	1700
SEPT 1984 565.49 2250 1410 2150 540 822 340 518 4 TOTAL 2769.12 ** ** 23600 ** 9400 ** 5740	JULY	1984	44.81	8980	6090	736	2500	300	1500	179	2000
TOTAL 2769.12 ** ** 23600 ** 9400 ** 5740	AUG.	1984	82.98	7130	4630	1040	1800	409	1100	251	1600
TOTAL 2/69.12 ** ** 23600 ** 9400 *** 5740	SEPT	1984	565.49	2250	1410	2150	540	822	340	518	490
WTD.AVG. 7.6 4820 3160 ** 1300 ** 770 ** 11	TOTAL		2769.12	**	**	23600	**	9400	**	5740	**
	WID.A	VG.	7.6	4820	3160	**	1300	**	770	**	1100

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1983 TO SEP	EPTEMBER 198	34
--	--------------	----

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		ОСТОВЕ	R		NOVEMBE	ER		DECEMBE	ER		JANUAI	RY
1	5480	5320	5400	3900	2620	3120	10100	9940	10000	11900	10300	11300
2	5720	5440	5600	7940	4040	6130	9960	9800	9900	10500	9680	10200
3	6060	5780	5930	8780	8040	8510	9980	9820	9880	9580	9120	9220
4	6440	6040	6230	8900	8640	8790	10700	9980	10200	10200	9160	9690
5	6860	6420	6670	9340	7220	8720	11500	10800	11300	10200	10100	10100
6	7280	6860	7060	9060	4960	6570	11300	10400	10800	10100	9460	9700
7	7600	7260	7440	6680	1140	4220	10400	10000	10200	9660	9360	9560
8	7800	7540	7670	1520	960	1110	10600	10000	10300	9340	8700	9050
9	8100	7800	7940	2800	1600	2370	11000	10600	10800	8900	8460	8610
10	8740	8140	8470	2900	2800	2840	11100	11000	11100	9120	8840	8950
11	9160	8720	8970	2960	2820	2920	11100	10900	11000	10300	9160	9750
12	9220	9080	9170	3720	2760	3040	11000	10900	11000	10800	10300	10500
13	9200	9060	9150	7000	3840	5220	11200	11000	11100	10900	10800	10800
14	9120	8900	9020	9360	7160	8510	11300	11200	11300	11600	10900	11200
15	8900	8760	8850	10300	9400	9920	11300	10700	11000	11700	10600	11100
16	8800	8620	8740	11100	10300	10700	11000	10600	10700	10600	10400	10500
17	8640	8320	8490	11800	11200	11600	11600	11000	11400	10700	10500	10600
18	8420	8240	8350	11700	10900	11300	11500	11100	11200	11000	10700	10900
19	8280	5280	7900	10900	10400	10600	11300	11100	11200	12400	11100	11600
20	2660	540	979	10400	10300	10300	11400	11200	11300	13000	12400	12800
21	2840	700	1660	10600	10300	10500	11200	11100	11200	12500	11500	12100
21 22	2460	2020	2280	10600	10300	10600	11600	11300	11500	11500	10700	11200
23	3340	2480	2850	10400	9100	10100	11800	11500	11700	11400	11100	11300
24	4300	3360	3920	10000	9100	9780	11800	11500	11600	11500	11400	11500
24 25	4320	420	1490	10400	9740	10100	11800	11500	11600	11500	11300	11400
26	1220	760	986	10400	10200	10300	11800	11500	11700	11300	11100	11200
27	1620	1240	1430	10200	9840	10000	11700	11100	11500	11200	11100	11200
28	1860	1620	1750	10400	10200	10300	11800	11100	11200	11400	11100	11200
29	1940	1880	1920	10200	10100	10200	12600	11900	12500	11500	11400	11500
30	2140	1960	2040	10100	9980	10000	12600	11700	12100	11400	11200	11300
31	2580	2140	2280				12100	11800	12000	11400	11200	11300
MONTH	9220	420	5500	11800	960	7950	12600	9800	11100	13000	8460	10700

COLORADO RIVER BASIN

08123800 BEALS CREEK NEAR WESTBROOK, TX--Continued

	SPECIFIC	CONDUCT	ANCE (N	IICROMHOS/CM	AT 25	DEG. C).	WATER YEAR	OCTOBER	1983	то ѕертемве	R 1984-	-Continued
DAY	MAX	MIN	MEAN	• MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUA	RY		MAR		1000	APRIL			MAY	
1 2 3 4 5	11500 11100 11100 11200 11400	11100 10900 10900 11100 11200	11300 10900 11000 11200 11300	11000 10400 10300 10100 10100	10400 10300 10100 10000 9980	10600 10400 10200 10100 10000	12600 12600 12600 12900 12900	12500 12500 12500 12600 12600	12500 12500 12600 12700 12800	13300 13300 13600 13700 14000	12700 13100 13100 13300 13500	13000 13200 13300 13500 13700
6 7 8 9 10	11500 11400 11200 11200 11200	11400 11200 11200 11100 11100	11400 11300 11200 11200 11100	10300 10900 10700 10100 9880	9960 10400 10100 9780 9720	10100 10700 10400 9910 9830	12600 12300 12200 12300 12200	12000	12500 12200 12100 12100 12100	13900 13700 13400 13300 13500	13600 13400 13200 13100 13200	13700 13500 13300 13200 13300
11 12 13 14 15	11100 11100 11200 11400 11600	11000 10900 10900 11200 11400	11100 11000 11100 11300 11500	9960 12100 12300 11400 11100	9820 10000 11400 11000 10400	9870 10900 11900 11200 10600	11900 11500 11500 11700 11900	11300 11300 11400	11700 11400 11400 11600 11700	13500 13700 13600 13500 13400	13300 13300 13300 13200 13200	13400 13500 13500 13400 13300
16 17 18 19 20	11600 11400 11200 11100 11100	11400 11100 11100 11000 11000	11500 11300 11100 11100 11100	11100 11800 11800 11200 10800	10300 11100 11200 10800 10500	10600 11600 11500 10900 10700	11800 11900 11800 11900 12100	11500 11600 11700	11800 11700 11700 11800 11900	13300 13100 13000 12100 4280	13100 12800 12900 3260 3580	13200 13000 13000 5750 3900
21 22 23 24 25	11100 10900 10900 10900 10900	10900 10800 10800 10900 10900	11000 10900 10900 10900 10900	10500 9960 9500 9320 9300	10000 9520 9280 9180 9220	10300 9750 9370 9270 9260	12200 12500 12400 12300 12500	12200 12100 11800	12100 12400 12300 12100 12300	4900 5120 6620 7040 6960	4280 4780 5160 6640 6800	4530 4900 5950 6890 6870
26 27 28 29 30 31	10900 10800 10700 11200	10700 10700 10500 10500	10800 10700 10600 10900	9600 12600 12700 12700 12600 12600	9240 9580 12600 12500 12500 12500	9410 11200 12600 12600 12500 12500	12600 12700 12600 12800 12900	12400 12300 12500	12300 12500 12500 12700 12800	6880 7020 7180 7180 7040 6660	6720 6800 7000 7080 6680 6080	6800 6900 7090 7140 6840 6380
MONTH	11600	10500	11100	12700	9180	10700	12900	11300	12200	14000	3260	10300
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY	Z.		AUGUST			SEPTEM	BER
1 2 3 4 5	6040 5500 9600 9560 8840	5540 5100 4800 8860 8380	5790 5290 6550 9180 8600	=======================================	===	20700 20800 20200 20100 20300	3380 4160 4640 5020 5140	2740 3420 4160 4640 4960	3010 3820 4410 4870 5040	8540 8440 8220 7840 7240	8420 8260 7860 7280 5520	8490 8340 8010 7630 6310
6 7 8 9	8340 7920 7360 6300 4900	7940 7400 6380 4920 4460	8120 7690 6880 5470 4690	19900 19300 18500 17700	19300 18600 17800 16800	20000 19700 19000 18200 17200	5240 5300 5440 6560 7300	5020 5120 5200 5480 6560	5120 5190 5320 6140 7000	5460 4560 4240 4200 4640	4580 4240 4160 4100 4100	5000 4380 4190 4140 4390
11 12 13 14 15	4440 4100 3920 3880 3840	4100 3960 3820 3780 3740	4240 4030 3870 3800 3790	16700 15900 15100 14300 13700	16000 15100 14400 13800 13100	16400 15500 14700 14000 13400	8220 8320 7420 8100 8180	6600 7420 6560 6600 8040	7030 7930 7070 7470 8110	==	=======================================	4640 4600 4650 4810 4990
16 17 18 19 20	3920 4100 4640 5220 6620	3800 3920 4060 4660 5280	3860 4000 4450 4910 5810	13100 12300 11300 10200 7480	12400 11400 10300 7520 5300	12800 11900 10800 9030 6460	8100 7800 6440 5480 4980	7820 6520 5520 5040 4200	8010 7310 5930 5260 4730	=======================================		5160 6240 7130 8000 7450
21 22 23 24 25	8900 11200 13100 14200 14800	6680 8980 11200 13200 14200	7830 10200 12300 13800 14500	5220 3440 3540 3520 3520	3500 3060 3120 3120 3380	4280 3220 3320 3270 3440	4140 4340 5260 5740 6060	3780 3840 4380 5280 5660	3860 4040 4850 5540 5840	=	=======================================	7030 7200 7110 6880 5320
26 27 28 29 30 31	15600 16900 19400	14800 15600 16900	15200 16200 18200 20100 20400	3680 3540 3360 3320 2860 2760	3480 3200 2980 2720 2620 2600	3550 3410 3210 3070 2770 2680	6520 7220 9860 9480 8920 8600	6040 6480 7140 8960 8480 8460	6300 6730 8810 9170 8670 8520	=======================================	=	1750 1910 2030 2200 2320
MONTH	19400	3740	8660	19900	2600	11500	9860	2740	6160	8540	4100	5410

COLORADO RIVER BASIN

08123800 BEALS CREEK NEAR WESTBROOK, TX--Continued

TEMPERATURE WATER (DEG. C). WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

		T	EMPERATU	RE, WATER (DEG. C),	WATER YEA	R OCTOBER	1983 TO S	EPTEMBER	1984		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBE	R		NOVEMBI	ER		DECEMBE	ER		JANUAR	Y
1	25.0	19.5	22.0				7.5	6.0	7.0	2.0	.0	1.5
2	25.0	20.0	22.0	32.0	27.5 28.0	30.0 30.0	9.5 12.5	7.5 9.0	8.5 10.5	2.5 4.5	2.0	3.5
3	26.0 25.5	20.5	23.0	31.5	29.0	30.5	13.0	8.5	10.5	8.0	4.0	6.0
5			22.0	29.5	28.0	28.5	12.5	9.5	11.0	7.5		
6				30.0	26.0	28.0	10.0	7.0	8.5 7.5	9.5 9.0	6.0	7.5
7				29.5 29.5	26.0 24.0	27.5 27.0	9.0	6.0	8.5	8.0	7.0	7.5
9				27.5	22.0	25.0	11.0	8.0	9.0	9.0 7.5	6.5 4.5	8.0 6.0
10				23.0	18.5	20.5	11.5	8.0				
11				22.5	17.5	20.0	11.5	8.0 7.5	9.5	7.0 7.5	3.5 4.0	5.0
12 13				23.0 24.0	17.5	21.0	10.5	7.5	9.0	6.0	4.0	5.0
14				24.5	20.5	22.0	10.0	7.5 5.5	8.5 6.5	4.0	2.5	3.5
15				22.5	18.5						2.0	2.5
16				21.5 21.5	16.0 16.0	18.5 18.5	6.0 7.0	4.0 3.5	5.0 5.5	3.0 3.0	2.0	3.0
17 18				21.5	17.5	19.5	5.5	.5	2.5	2.0	.0	.5
19				19.5	14.5	17.5 15.0	1.0	.0	.5	2.0	.0	.5
20				17.5	13.0							1.0
21				18.5 19.5	13.0	15.5 17.0	1.5	.0	.5	3.0 5.5	.0	3.0
22 23				16.0	13.5	14.5	.5	.0	.0	7.0	2.5	4.5 5.5
24				15.0	11.5	13.0 12.5	.5	.0	.0	7.5 8.0	3.0 4.0	6.0
25				14.5							4.5	6.5
26				14.5 11.5	11.5	13.5 9.5	1.0		.0	9.0	5.5	7.5
27 28				9.0	6.5	7.5	.0	.0	.0	10.0	6.0	8.0
29				10.0	5.0	7.5	.5		.0	11.0	7.0	8.0
30 31				9.5	7.0	8.0	1.0		.5	9.5	5.5	7.5
		10.5	00 5	22 0	5.0	19.0	13.0	.0	5.0	11.0	.0	5.0
MONTH	26.0	19.5	22.5	32.0	5.0	19.0	13.0		3.0	- / 19/		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	MIN FEBRUAR		MAX	MIN MARC		MAX	MIN APRI		MAX	MIN	MEAN
		FEBRUAR	XY.		MARC	н	MAX	APRI		20.5	MAY 16.5	18.5
DAY	MAX	6.0 7.5	8.5 9.0	13.0 14.5	7.5 9.5	10.0 12.0	15.0 17.5	APRI 12.5 13.0	14.0 15.0	20.5	MAY 16.5 18.0	18.5 19.5
1 2 3	11.0 11.0 11.0	6.0 7.5 6.0	8.5 9.0 8.5	13.0 14.5 16.5	7.5 9.5 11.5	10.0 12.0 13.5	15.0 17.5 18.5	12.5 13.0 12.0	14.0 15.0 15.0	20.5	MAY 16.5	18.5 19.5 20.5 22.0
1 2	11.0	6.0 7.5	8.5 9.0	13.0 14.5	7.5 9.5	10.0 12.0	15.0 17.5	12.5 13.0 12.0 11.5	14.0 15.0	20.5 21.5 23.5	MAY 16.5 18.0 18.0	18.5 19.5 20.5
1 2 3 4 5	11.0 11.0 11.0 11.0	6.0 7.5 6.0 6.5 6.5	8.5 9.0 8.5 9.0 8.5	13.0 14.5 16.5 15.0	7.5 9.5 11.5 11.5 8.0	10.0 12.0 13.5 13.5 9.5	15.0 17.5 18.5 18.5	APRI 12.5 13.0 12.0 11.5 12.0	14.0 15.0 15.0 15.0	20.5 21.5 23.5 25.0 26.0	MAY 16.5 18.0 18.0 19.0 20.0	18.5 19.5 20.5 22.0 23.0
1 2 3 4 5	11.0 11.0 11.0 11.0 11.0 11.0	FEBRUAR 6.0 7.5 6.0 6.5 6.5 6.0 7.0	8.5 9.0 8.5 9.0 8.5 9.0	13.0 14.5 16.5 15.0 11.0	7.5 9.5 11.5 11.5 8.0	10.0 12.0 13.5 13.5 9.5 8.5	15.0 17.5 18.5 18.5 18.5 17.5	12.5 13.0 12.0 11.5 12.0	14.0 15.0 15.0 15.0 15.5	20.5 21.5 23.5 25.0 26.0 27.0 24.5	MAY 16.5 18.0 18.0 19.0 20.0 21.0 20.5	18.5 19.5 20.5 22.0 23.0
1 2 3 4 5	11.0 11.0 11.0 11.0 11.0 11.0	6.0 7.5 6.0 6.5 6.5 6.5	8.5 9.0 8.5 9.0 8.5 9.0 8.5	13.0 14.5 16.5 15.0 11.0 12.0 13.5 14.0	7.5 9.5 11.5 11.5 8.0 5.5 7.0 8.5	10.0 12.0 13.5 13.5 9.5 8.5 10.5	15.0 17.5 18.5 18.5 18.5 17.5 20.5	APRI 12.5 13.0 12.0 11.5 12.0 14.0 16.0 14.0	14.0 15.0 15.0 15.0 15.5	20.5 21.5 23.5 25.0 26.0	MAY 16.5 18.0 18.0 19.0 20.0 21.0 20.5 17.0	18.5 19.5 20.5 22.0 23.0 23.5 22.5 20.0 19.5
1 2 3 4 5	11.0 11.0 11.0 11.0 11.0 11.0	FEBRUAR 6.0 7.5 6.0 6.5 6.5 6.0 7.0	8.5 9.0 8.5 9.0 8.5 9.0	13.0 14.5 16.5 15.0 11.0	7.5 9.5 11.5 11.5 8.0	10.0 12.0 13.5 13.5 9.5 8.5	15.0 17.5 18.5 18.5 18.5 17.5	12.5 13.0 12.0 11.5 12.0 14.0 16.0 14.0	14.0 15.0 15.0 15.0 15.5 16.0 17.5	20.5 21.5 23.5 25.0 26.0 27.0 24.5 23.0	MAY 16.5 18.0 18.0 19.0 20.0 21.0 20.5 17.0	18.5 19.5 20.5 22.0 23.0 23.5 22.5 20.0
1 2 3 4 5 6 7 8 9	11.0 11.0 11.0 11.0 11.0 11.0 12.0 12.0	6.0 7.5 6.0 6.5 6.5 6.5 8.5 8.0	8.5 9.0 8.5 9.0 8.5 9.5 10.0 10.5	13.0 14.5 16.5 15.0 11.0 12.0 13.5 14.0	7.5 9.5 11.5 11.5 8.0 5.5 7.0 8.5	10.0 12.0 13.5 13.5 9.5 8.5 10.5 11.0 10.5	15.0 17.5 18.5 18.5 18.5 17.5 20.5 21.5	APRI 12.5 13.0 12.0 11.5 12.0 14.0 16.0 15.0 15.0	14.0 15.0 15.0 15.5 16.0 17.5 17.5 18.5	20.5 21.5 23.5 25.0 26.0 27.0 24.5 23.0 22.0 23.0	MAY 16.5 18.0 18.0 19.0 20.0 21.0 20.5 17.0 17.0 17.0	18.5 19.5 20.5 22.0 23.0 23.5 22.5 20.0 19.5 20.0
1 2 3 4 5 6 7 8 9 10	11.0 11.0 11.0 11.0 11.0 11.0 12.0 12.0	6.0 7.5 6.0 6.5 6.5 6.5 6.0 7.0 8.5 8.0 8.5	8.5 9.0 8.5 9.0 8.5 9.0 8.5 10.0 10.5 11.0	13.0 14.5 16.5 15.0 11.0 12.0 13.5 14.0 12.0	7.5 9.5 11.5 8.0 5.5 7.0 8.5 8.5 9.5	H 10.0 12.0 13.5 13.5 9.5 8.5 10.5 11.0 10.5 10.0 13.0	15. 0 17. 5 18. 5 18. 5 18. 5 17. 5 20. 5 21. 5 20. 5	APRI 12.5 13.0 12.0 11.5 12.0 14.0 16.0 15.0 15.0	14.0 15.0 15.0 15.5 16.0 17.5 17.5 17.5 18.5 17.5	20.5 21.5 23.5 25.0 26.0 27.0 24.5 23.0 22.0 23.0	MAY 16.5 18.0 18.0 19.0 20.0 21.0 20.5 17.0 17.0 19.0 21.5	18.5 19.5 20.5 22.0 23.0 23.5 22.5 20.0 19.5 20.0
1 2 3 4 5 6 7 8 9 10	11.0 11.0 11.0 11.0 11.0 11.0 12.0 13.0 13.0 15.0 13.5 13.0	FEBRUAR 6.0 7.5 6.0 6.5 6.5 6.0 7.0 8.5 8.0 8.5	8.5 9.0 8.5 9.0 8.5 9.0 10.0 10.5 11.0	13.0 14.5 16.5 15.0 11.0 12.0 13.5 14.0 12.0	7.5 9.5 11.5 11.5 8.0 5.5 7.0 8.5 9.5 9.0 10.0 12.5	H 10.0 12.0 13.5 13.5 9.5 10.5 10.5 10.0 10.5 10.0 15.0	15.0 17.5 18.5 18.5 18.5 17.5 20.5 20.5 20.5	APRI 12.5 13.0 12.0 11.5 12.0 14.0 16.0 15.0 15.0 16.0 16.0	14.0 15.0 15.0 15.5 16.0 17.5 17.5 18.5 17.5	20.5 21.5 23.5 25.0 26.0 27.0 24.5 23.0 22.0 23.0 25.5 26.5 27.0 26.0	MAY 16.5 18.0 18.0 19.0 20.0 21.0 20.5 17.0 17.0 17.0 19.0 21.5 21.5	18.5 19.5 20.5 22.0 23.0 23.5 22.5 20.0 19.5 20.0 23.5 24.0 24.0
1 2 3 4 5 6 7 8 9 10	11.0 11.0 11.0 11.0 11.0 11.0 12.0 12.0	6.0 7.5 6.0 6.5 6.5 6.5 6.0 7.0 8.5 8.0 8.5	8.5 9.0 8.5 9.0 8.5 9.0 8.5 10.0 10.5 11.0	13.0 14.5 16.5 15.0 11.0 12.0 13.5 14.0 12.0	7.5 9.5 11.5 8.0 5.5 7.0 8.5 8.5 9.5	H 10.0 12.0 13.5 13.5 9.5 8.5 10.5 11.0 10.5 10.0 13.0	15.0 17.5 18.5 18.5 18.5 20.5 20.5 21.5 22.0 23.5	APRI 12.5 13.0 12.0 11.5 12.0 14.0 16.0 15.0 15.0 16.0 16.0 16.0 16.0	14.0 15.0 15.0 15.5 16.0 17.5 18.5 17.5 18.0 19.0	20.5 21.5 23.5 25.0 26.0 27.0 24.5 23.0 22.0 23.0 25.5 26.5	MAY 16.5 18.0 19.0 20.0 21.0 20.5 17.0 17.0 17.0 19.0 21.5 21.5	18.5 19.5 20.5 22.0 23.0 23.5 22.5 20.0 19.5 20.0 23.5 22.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	11.0 11.0 11.0 11.0 11.0 12.0 13.0 13.0 15.0 13.0 14.0 13.0	FEBRUAR 6.0 7.5 6.0 6.5 6.5 6.0 7.0 8.5 8.0 8.5 10.5 9.0 10.0	8.5 9.0 8.5 9.0 8.5 9.0 10.0 10.5 11.0 12.5 11.5 11.5	13.0 14.5 16.5 15.0 11.0 12.0 13.0 12.0 11.0 16.5 17.5 20.5 22.0	7.5 9.5 11.5 11.5 8.0 5.5 7.0 8.5 8.5 9.5 9.0 10.0 12.5 14.0	H 10.0 12.0 13.5 13.5 9.5 8.5 10.5 10.0 10.0 13.0 15.0 17.0	15.0 17.5 18.5 18.5 18.5 20.5 20.5 21.5 22.0 23.5 20.0	APRI 12.5 13.0 12.0 11.5 12.0 14.0 16.0 15.0 15.0 15.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16	14.0 15.0 15.0 15.5 16.0 17.5 17.5 18.5 17.5 18.0 19.0 17.5 16.5	20.5 21.5 23.5 25.0 26.0 27.0 24.5 23.0 22.0 23.0 25.5 26.5 27.0 26.0 24.5	MAY 16.5 18.0 19.0 20.0 21.0 20.5 17.0 17.0 17.0 21.5 21.5 21.5	18.5 19.5 20.5 22.0 23.0 23.5 22.5 20.0 19.5 20.0 23.5 24.0 24.0 23.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	11.0 11.0 11.0 11.0 11.0 12.0 12.0 13.0 13.0 13.5 13.0 14.0 13.0	FEBRUAR 6.0 7.5 6.0 6.5 6.5 6.0 7.0 8.5 8.0 8.5 10.5 9.0 10.0 8.5 9.5	8.5 9.0 8.5 9.0 8.5 9.5 10.0 10.5 11.0 12.5 11.5	13.0 14.5 16.5 15.0 11.0 12.0 13.5 14.0 12.0 11.0 16.5 17.5 20.5 22.0	7.5 9.5 11.5 8.0 5.5 7.0 8.5 9.5 9.0 10.0 12.5 14.0 17.0	H 10.0 12.0 13.5 13.5 9.5 8.5 10.5 10.0 10.0 13.0 15.0 17.5 16.5	15. 0 17. 5 18. 5 18. 5 18. 5 17. 5 20. 5 21. 5 20. 5 21. 5 20. 0 21. 0 21. 0 21. 0	APRI 12.5 13.0 12.0 11.5 12.0 14.0 16.0 15.0 15.0 15.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16	14.0 15.0 15.0 15.0 15.5 16.0 17.5 17.5 18.5 17.5 18.0 19.0 17.5 16.5	20.5 21.5 23.5 25.0 26.0 27.0 24.5 23.0 22.0 23.0 25.5 27.0 26.5 27.0 26.5 27.0 26.5	MAY 16.5 18.0 18.0 19.0 20.0 21.0 20.5 17.0 17.0 17.0 19.0 21.5 21.5 21.5 20.5	18.5 19.5 20.5 22.0 23.0 23.5 22.5 20.0 19.5 20.0 23.5 24.0 23.0 24.0 23.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	11.0 11.0 11.0 11.0 11.0 12.0 13.0 13.0 13.0 14.0 13.0 14.0 13.0	FEBRUAR 6.0 7.5 6.0 6.5 6.5 6.0 7.0 8.5 8.0 8.5 10.5 9.0 10.0 8.5 10.5	8.5 9.0 8.5 9.0 8.5 9.0 10.0 10.5 11.0 11.5 11.5 11.5	13.0 14.5 16.5 15.0 11.0 12.0 13.5 14.0 12.0 11.0 16.5 17.5 20.5 22.0	7.5 9.5 11.5 11.5 8.0 5.5 7.0 8.5 8.5 9.0 10.0 12.5 14.0 17.0	H 10.0 12.0 13.5 13.5 9.5 10.5 10.0 10.5 10.0 17.0 17.0 17.5 17.5 16.5 17.0	15.0 17.5 18.5 18.5 18.5 20.5 20.5 21.5 22.0 23.5 20.0 19.5	APRI 12.5 13.0 12.0 11.5 12.0 14.0 16.0 15.0 15.0 16.0 16.0 16.0 14.5 14.5	14.0 15.0 15.0 15.5 16.0 17.5 17.5 18.5 17.5 18.0 19.0 17.5 16.5	20.5 21.5 23.5 25.0 26.0 27.0 24.5 23.0 22.0 23.0 25.5 26.5 27.0 26.0 24.5	MAY 16.5 18.0 19.0 20.0 21.0 20.5 17.0 17.0 17.0 21.5 21.5 21.5 20.0 20.0 21.0	18.5 19.5 20.5 22.0 23.0 23.5 22.5 20.0 19.5 20.0 23.5 24.0 23.0 24.0 23.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	11.0 11.0 11.0 11.0 11.0 12.0 12.0 13.0 13.0 13.5 13.0 14.0 13.0	FEBRUAR 6.0 7.5 6.0 6.5 6.5 6.0 7.0 8.5 8.0 8.5 10.5 9.0 10.0 8.5 9.5	8.5 9.0 8.5 9.0 8.5 9.5 10.0 10.5 11.0 12.5 11.5	13.0 14.5 16.5 15.0 11.0 12.0 13.5 14.0 12.0 11.0 16.5 17.5 20.5 22.0	7.5 9.5 11.5 8.0 5.5 7.0 8.5 9.5 9.0 10.0 12.5 14.0 17.0	H 10.0 12.0 13.5 13.5 9.5 8.5 10.5 10.0 10.0 13.0 15.0 17.5 16.5	15.0 17.5 18.5 18.5 18.5 20.5 21.5 20.5 21.5 22.0 23.5 20.0 19.5 21.5 21.5 21.5 21.5 21.5	APRI 12.5 13.0 12.0 11.5 12.0 14.0 16.0 15.0 15.0 15.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0	14.0 15.0 15.0 15.5 16.0 17.5 18.5 17.5 18.0 19.0 17.5 16.5	20.5 21.5 23.5 25.0 26.0 27.0 24.5 23.0 22.0 23.0 26.0 24.5 27.0 26.0 24.5	MAY 16.5 18.0 19.0 20.0 21.0 20.5 17.0 17.0 19.0 21.5 21.5 21.5 20.5 20.0	18.5 19.5 20.5 22.0 23.0 23.5 22.5 20.0 19.5 20.0 23.5 24.0 24.0 23.0 21.5 21.0
1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20	11.0 11.0 11.0 11.0 11.0 12.0 13.0 13.0 13.0 14.0 13.0 14.5 14.5 11.5	FEBRUAR 6.0 7.5 6.0 6.5 6.5 6.0 7.0 8.5 8.0 8.5 10.5 9.0 10.0 8.5 10.5 9.0 8.5	8.5 9.0 8.5 9.0 8.5 9.0 10.0 10.5 11.0 12.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5	13.0 14.5 16.5 15.0 11.0 12.0 13.5 14.0 13.0 12.0 11.0 16.5 20.5 22.0 18.5 16.0 19.5	7.5 9.5 11.5 11.5 8.0 5.5 7.0 8.5 8.5 9.5 9.0 10.0 12.5 14.0 17.0	H 10.0 12.0 13.5 13.5 9.5 8.5 10.5 10.0 10.0 15.0 17.0 19.5 17.5 16.5 17.0 13.0 13.0 13.0	15.0 17.5 18.5 18.5 18.5 20.5 20.5 21.5 20.5 21.5 22.0 23.5 20.0 21.5 21.5 22.0 23.0 21.5 22.0 23.0 20.0 21.5 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20	APRI 12.5 13.0 12.0 11.5 12.0 14.0 16.0 15.0 15.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16	14.0 15.0 15.0 15.5 16.0 17.5 17.5 18.5 17.5 18.0 19.0 17.5 16.5	20.5 21.5 23.5 25.0 26.0 27.0 24.5 23.0 22.0 23.0 25.5 27.0 26.0 24.5 22.0 23.0 24.5	MAY 16.5 18.0 19.0 20.0 21.0 20.5 17.0 17.0 17.0 21.5 21.5 21.5 21.5 20.0 20.0 21.0 20.0	18.5 19.5 20.5 22.0 23.0 23.5 22.5 20.0 19.5 20.0 23.5 24.0 23.0 21.5 21.0 21.5 22.0 23.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	11.0 11.0 11.0 11.0 11.0 12.0 12.0 13.0 13.0 13.0 13.5 13.0 14.5 14.5 14.5 11.5	FEBRUAR 6.0 7.5 6.0 6.5 6.5 6.0 7.0 8.5 8.0 8.5 10.5 9.0 10.0 8.5 9.0 10.0	8.5 9.0 8.5 9.0 8.5 9.0 10.5 11.0 12.5 11.0 10.5 11.5 11.5 11.5 11.5 10.5	13.0 14.5 16.5 15.0 11.0 12.0 13.5 14.0 11.0 16.5 17.5 20.5 22.0 18.5 18.0 19.5 16.0 19.5	7.5 9.5 11.5 8.0 5.5 7.0 8.5 9.5 9.0 10.0 12.5 14.0 17.0	H 10.0 12.0 13.5 13.5 9.5 10.5 10.0 10.0 13.0 17.0 19.5 17.5 16.5 17.0 14.5 15.5 16.5	15.0 17.5 18.5 18.5 18.5 19.5 20.5 21.5 20.5 21.5 22.0 23.5 20.0 21.5 22.0 22.0 22.0 22.0	APRI 12.5 13.0 12.0 11.5 12.0 14.0 16.0 15.0 15.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16	14.0 15.0 15.0 15.0 15.5 16.0 17.5 17.5 18.5 17.5 18.0 19.0 17.5 16.5	20.5 21.5 23.5 25.0 26.0 27.0 24.5 23.0 22.0 23.0 26.5 27.0 26.5 27.0 26.5 22.0 23.0 24.5	MAY 16.5 18.0 18.0 19.0 20.0 21.0 20.5 17.0 17.0 19.0 21.5 21.5 21.5 21.5 20.0 20.0 21.0 20.0	18.5 19.5 20.5 22.0 23.0 23.5 22.5 20.0 29.5 20.0 23.5 24.0 23.0 21.5 21.0 21.5 22.0 22.5
1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	11.0 11.0 11.0 11.0 11.0 12.0 13.0 13.0 13.0 13.0 14.0 13.0 14.5 11.5 11.5 11.5	FEBRUAR 6.0 7.5 6.0 6.5 6.5 6.0 7.0 8.5 8.0 8.5 10.5 9.0 10.0 8.5 9.5 10.5 9.0 8.5	8.5 9.0 8.5 9.0 8.5 9.0 10.5 11.0 12.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5	13.0 14.5 16.5 15.0 11.0 12.0 13.5 14.0 13.0 12.0 11.0 16.5 20.5 22.0 18.5 16.0 19.5	7.5 9.5 11.5 11.5 8.0 5.5 7.0 8.5 9.5 9.0 10.0 12.0 16.0 13.0 10.0	H 10.0 12.0 13.5 13.5 9.5 8.5 10.5 10.0 10.0 13.0 17.0 19.5 17.5 16.5 17.0 14.5 15.5	15.0 17.5 18.5 18.5 18.5 20.5 20.5 21.5 20.5 21.5 22.0 23.5 20.0 21.5 21.5 22.0 23.0 21.5 22.0 23.0 20.0 21.5 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20	APRI 12.5 13.0 12.0 11.5 12.0 14.0 16.0 15.0 15.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 18.0	14.0 15.0 15.0 15.5 16.0 17.5 17.5 18.5 17.5 18.5 17.5 18.0 19.0 17.5 18.5 17.5 18.0 17.5 18.5	20.5 21.5 23.5 25.0 26.0 27.0 24.5 23.0 22.0 23.0 25.5 27.0 26.0 24.5 22.0 23.0 24.5	MAY 16.5 18.0 19.0 20.0 21.0 20.5 17.0 17.0 17.0 21.5 21.5 21.5 21.5 21.5 20.0 20.0 21.0 23.0 24.0 23.5	18.5 19.5 20.5 22.0 23.0 23.5 22.5 20.0 19.5 20.0 23.5 24.0 23.0 21.5 21.0 22.0 22.5 21.5 22.0 22.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	11.0 11.0 11.0 11.0 11.0 12.0 12.0 13.0 13.0 13.0 13.5 13.0 14.5 14.5 14.5 11.5	FEBRUAR 6.0 7.5 6.0 6.5 6.5 6.0 7.0 8.5 8.0 8.5 10.5 9.0 10.0 8.5 9.0 10.0	8.5 9.0 8.5 9.0 8.5 9.0 10.5 11.0 12.5 11.0 10.5 11.5 11.5 11.5 11.5 10.5	13.0 14.5 16.5 15.0 11.0 12.0 13.5 14.0 13.0 12.0 11.0 16.5 17.5 20.5 22.0 18.5 18.0 19.5 16.0 19.5	7.5 9.5 11.5 11.5 8.0 5.5 7.0 8.5 8.5 9.5 9.0 10.0 12.5 14.0 15.0 15.0 10.0 10.0	H 10.0 12.0 13.5 13.5 9.5 10.5 10.0 10.0 15.0 17.0 19.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5	15.0 17.5 18.5 18.5 18.5 20.5 21.5 20.5 21.5 22.0 23.5 20.0 21.5 21.5 22.0 22.0 22.0	APRI 12.5 13.0 12.0 11.5 12.0 14.0 15.0 15.0 15.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16	14.0 15.0 15.0 15.0 15.5 16.0 17.5 18.5 17.5 18.5 17.5 18.0 19.0 17.5 16.5 17.5 18.5 20.0	20.5 21.5 22.5 25.0 26.0 27.0 24.5 23.0 22.0 23.0 26.0 24.5 27.0 26.0 22.0 23.0 24.5 22.0 24.5	MAY 16.5 18.0 19.0 20.0 21.0 20.5 17.0 17.0 19.0 21.5 21.5 21.5 21.5 21.5 20.0 21.0 20.0 21.0 23.0	18.5 19.5 20.5 22.0 23.0 23.5 22.5 20.0 19.5 20.0 23.5 24.0 24.0 23.0 21.5 21.0 21.5 22.0 22.5
1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	11.0 11.0 11.0 11.0 11.0 12.0 13.0 13.0 13.0 14.0 13.0 14.5 14.5 11.5 11.5 11.5	FEBRUAR 6.0 7.5 6.0 6.5 6.5 6.0 7.0 8.5 8.0 8.5 10.5 9.0 10.0 8.5 7.0 9.0 10.0	8.5 9.0 8.5 9.0 8.5 9.0 10.5 11.0 12.5 11.0 11.5 11.5 11.5 11.5 11.5 11.5	13.0 14.5 16.5 15.0 11.0 12.0 13.5 14.0 13.0 12.0 11.0 16.5 17.5 22.0 18.5 18.0 19.5 19.0 19.5 19.5 19.5	7.5 9.5 11.5 11.5 8.0 5.5 7.0 8.5 9.5 9.0 10.0 17.0 16.0 13.0 10.0 10.5 12.0 13.5 14.0 12.5	H 10.0 12.0 13.5 13.5 9.5 10.5 10.0 10.0 15.0 17.0 19.5 17.5 16.5 17.0 14.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5 16	15. 0 17. 5 18. 5 18. 5 18. 5 20. 5 20. 5 21. 5 22. 0 23. 5 21. 5 21. 5 21. 5 21. 5 21. 5 22. 0 21. 5 22. 0 22. 5 22. 0 23. 5 21. 5 22. 5 22. 5 23. 5 24. 5 25. 5 26. 5 27. 5 27. 5 28. 5 29. 5	APRI 12.5 13.0 12.0 11.5 12.0 14.0 16.0 15.0 15.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16	14.0 15.0 15.0 15.5 16.0 17.5 17.5 18.5 17.5 18.5 17.5 18.0 19.0 17.5 18.5 17.5 18.0 17.5 18.0 17.5 18.0 17.5 18.0 17.5 18.0 17.5 18.0 19.0 17.5 18.0 19.0 19.0 17.5 18.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19	20.5 21.5 23.5 25.0 26.0 27.0 24.5 23.0 22.0 23.0 25.5 27.0 26.0 24.5 22.0 23.0 24.5 22.0 23.0 24.5	MAY 16.5 18.0 19.0 20.0 21.0 20.5 17.0 17.0 17.0 21.5 21.5 21.5 21.5 21.5 20.0 20.0 21.0 23.0 24.0 23.0 24.0 23.5 23.5	18.5 19.5 20.5 22.0 23.0 23.5 22.5 20.0 19.5 20.0 23.5 24.0 23.0 21.5 22.0 21.5 22.0 22.5 25.0 25.0 25.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 25 26 27 27 27 27 27 27 27 27 27 27 27 27 27	11.0 11.0 11.0 11.0 11.0 12.0 12.0 13.0 13.0 13.0 14.0 14.5 14.5 14.5 11.5 11.5 11.5 11.5 11.5	FEBRUAR 6.0 7.5 6.0 6.5 6.5 6.0 7.0 8.5 8.0 8.5 10.5 9.0 10.0 8.5 10.5 9.0 10.0 8.6 6.5 6.5 6.5 6.6 7.0 8.0 8.0 8.6 8.5	8.5 9.0 8.5 9.0 8.5 9.0 10.5 11.0 12.5 11.0 10.5 11.5	13.0 14.5 16.5 15.0 11.0 12.0 13.5 14.0 12.0 11.0 16.5 20.5 22.0 18.5 18.0 19.5 19.0 19.5 19.0 19.5 17.0	7.5 9.5 11.5 8.0 5.5 7.0 8.5 9.5 9.0 10.0 12.5 14.0 13.0 13.5 14.0 12.5 12.5	H 10.0 12.0 13.5 13.5 9.5 10.5 10.0 10.0 13.0 17.0 19.5 17.5 16.5 17.0 14.5 16.5 16.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15	15. 0 17. 5 18. 5 18. 5 18. 5 20. 5 20. 5 21. 5 20. 5 21. 5 22. 0 21. 5 22. 0 22. 0	APRI 12.5 13.0 12.0 11.5 12.0 14.0 16.0 15.0 15.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16	14.0 15.0 15.0 15.0 15.5 16.0 17.5 18.5 17.5 18.5 17.5 18.0 17.5 18.0 17.5 18.0 17.5 18.0 17.5 18.0 17.5 18.0 17.5 18.0 17.5 18.0 17.5 18.0 19.0 19.0 17.5 18.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19	20.5 21.5 23.5 25.0 26.0 27.0 24.5 23.0 22.0 23.0 25.5 27.0 26.0 24.5 27.0 22.0 23.0 24.5 27.5 22.0 23.0 24.5 27.0 24.5 27.0 26.0 27.5 27.0 27.5 26.0 27.5 27.0 27.5 28.0 27.5 27.0 27.5 27.0 27.5 27.0 27.5 27.0 27.5 27.0 27.5 27.0 27.5 27.0 27.5 27.0 27.5 27.0 27.5 27.0 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5	MAY 16.5 18.0 18.0 19.0 20.0 21.0 20.5 17.0 17.0 17.0 21.5 21.5 21.5 21.5 21.5 20.0 20.0 21.0 20.0 21.0 23.0 24.0 23.0 24.5 23.5	18.5 19.5 20.5 22.0 23.0 23.5 22.5 20.0 19.5 20.0 23.5 24.0 23.0 21.5 21.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	11.0 11.0 11.0 11.0 11.0 12.0 13.0 13.0 13.0 13.0 14.0 13.0 14.5 11.5 11.5 11.5 11.5 11.5 11.5	FEBRUAR 6.0 7.5 6.0 6.5 6.5 6.0 7.0 8.5 8.0 8.5 10.5 9.0 10.0 8.5 7.0 9.0 10.0 8.6 6.5 6.5 6.6 6.6 6.0 6.0	8.5 9.0 8.5 9.0 8.5 9.0 10.5 11.0 12.5 11.0 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5	13.0 14.5 16.5 15.0 11.0 12.0 13.5 14.0 11.0 16.5 17.5 22.0 18.5 18.0 19.5 19.5 19.0 19.5 19.5 19.0 19.5 19.0	7.5 9.5 11.5 11.5 8.0 5.5 7.0 8.5 9.5 9.0 10.0 12.5 14.0 17.0 16.0 13.0 10.0 11.0 12.5 12.5 12.5 12.5 12.5 12.5	H 10.0 12.0 13.5 13.5 9.5 10.5 10.0 10.0 15.0 17.0 19.5 17.5 16.5 17.0 14.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5 16	15. 0 17. 5 18. 5 18. 5 18. 5 20. 5 21. 5 20. 5 21. 5	APRI 12.5 13.0 12.0 11.5 12.0 14.0 16.0 15.0 15.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16	14.0 15.0 15.0 15.5 16.0 17.5 18.5 17.5 18.5 17.5 18.5 17.5 18.0 19.0 17.5 18.5 20.0 17.5 18.5 20.0	20.5 21.5 23.5 25.0 26.0 27.0 24.5 23.0 22.0 23.0 24.5 26.0 24.5 22.0 23.0 24.5 22.0 23.0 24.5	MAY 16.5 18.0 19.0 20.0 21.0 20.5 17.0 17.0 17.0 21.5 21.5 21.5 21.5 21.5 20.0 20.0 21.0 23.0 24.0 23.5 23.5 23.5 22.0	18.5 19.5 20.5 22.0 23.0 23.5 22.5 20.0 19.5 20.0 23.5 24.0 23.0 21.5 22.0 22.5 22.0 22.5 22.0 23.5 22.0 23.5 24.0 23.0
1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	11.0 11.0 11.0 11.0 12.0 13.0 13.0 13.0 14.5 14.5 11.5 11.5 11.5 13.0 14.0 13.0	FEBRUAR 6.0 7.5 6.0 6.5 6.5 6.0 7.0 8.5 8.0 8.5 10.5 9.0 10.0 8.5 9.0 10.0 8.6 6.5 6.0 6.0 6.0 6.0	8.5 9.0 8.5 9.0 8.5 9.0 10.5 11.0 12.5 11.0 10.5 11.5 11.5 11.5 12.5 11.5 12.5 11.5 12.5 11.5 12.5 11.0 10.5 11.5	13.0 14.5 16.5 15.0 11.0 12.0 13.5 14.0 13.0 12.0 11.0 16.5 20.5 22.0 18.5 18.0 19.5 18.5 19.0 19.5 19.5 18.5 17.0	7.5 9.5 11.5 8.0 5.5 7.0 8.5 9.5 9.0 10.0 12.5 14.0 13.0 13.5 14.0 11.5 12.0 9.5 12.0 9.5	H 10.0 12.0 13.5 13.5 9.5 8.5 10.5 10.0 10.0 13.0 17.0 19.5 17.5 16.5 17.0 14.5 15.5 16.5 16.5 17.0 15.0 15.0 15.0	15. 0 17. 5 18. 5 18. 5 18. 5 20. 5 20. 5 21. 5 22. 0 23. 5 20. 5 21. 5 21. 5 22. 0 21. 5 21. 5 22. 0 22. 0	APRI 12.5 13.0 12.0 11.5 12.0 14.0 16.0 15.0 15.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16	14.0 15.0 15.0 15.0 15.5 16.0 17.5 18.5 17.5 18.5 17.5 18.0 17.5 18.0 17.5 18.0 17.5 18.0 17.5 18.5 17.5 18.0 17.5 18.5 18.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19	20.5 21.5 23.5 25.0 26.0 27.0 24.5 23.0 23.0 25.5 27.0 24.5 27.0 24.5 27.0 23.0 24.5 27.5 26.0 27.5 26.0 27.5 26.0 27.5 26.0 27.5 26.0 27.5 26.0 27.5 26.0 27.0 27.0 28.0 29.0 27.5 26.0 27.5 26.0 27.5 26.0 27.5 26.0 27.5 26.0 27.5 26.0 27.5 28.0 29.0	MAY 16.5 18.0 19.0 20.0 21.0 20.5 17.0 17.0 17.0 21.5 21.5 21.5 21.5 21.5 20.0 20.0 21.0 22.0 21.0 23.0 24.0 23.5 23.5 22.0 18.5	18.5 19.5 20.5 22.0 23.0 23.5 22.5 20.0 19.5 20.0 23.5 24.0 23.0 21.5 22.5 24.0 23.5 22.5 24.0 23.0 21.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	11.0 11.0 11.0 11.0 11.0 12.0 13.0 13.0 13.0 14.0 13.0 14.5 11.5 11.5 11.5 11.5 11.5 11.5	FEBRUAR 6.0 7.5 6.0 6.5 6.5 6.0 7.0 8.5 8.0 8.5 10.5 9.0 10.0 8.5 7.0 9.0 10.0 8.6 6.5 6.5 7.0 9.0 10.0	8.5 9.0 8.5 9.0 8.5 9.0 10.5 11.0 12.5 11.0 11.5	13.0 14.5 16.5 15.0 11.0 12.0 13.5 14.0 11.0 16.5 17.5 22.0 18.5 18.0 19.5 19.0 19.5 17.0 18.5 17.0	7.5 9.5 11.5 11.5 8.0 5.5 7.0 10.0 10.0 11.0 13.5 14.0 13.5 14.0 13.5 12.0 13.5 12.0 9.5	10.0 12.0 13.5 13.5 9.5 8.5 10.5 10.0 10.0 15.0 17.0 19.5 17.5 16.5 17.0 13.0 14.5	15. 0 17. 5 18. 5 18. 5 18. 5 20. 5 21. 5 20. 5 21. 5	APRI 12.5 13.0 12.0 11.5 12.0 14.0 16.0 15.0 15.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16	14.0 15.0 15.0 15.5 16.0 17.5 18.5 17.5 18.5 17.5 18.5 17.5 18.0 19.0 17.5 18.5 20.0 17.5 18.5 20.0	20.5 21.5 23.5 25.0 26.0 27.0 24.5 23.0 22.0 23.0 24.5 26.0 24.5 22.0 23.0 24.5 22.0 23.0 24.5	MAY 16.5 18.0 19.0 20.0 21.0 20.5 17.0 17.0 17.0 21.5 21.5 21.5 21.5 21.5 20.0 20.0 21.0 23.0 24.0 23.5 23.5 23.5 22.0	18.5 19.5 20.5 22.0 23.0 23.5 22.5 20.0 19.5 20.0 23.5 24.0 23.0 21.5 22.0 22.5 22.0 22.5 22.0 23.5 22.0 23.5 24.0 23.0

COLORADO RIVER BASIN 08123800 BEALS CREEK NEAR WESTBROOK, TX--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 -- Continued MAX MIN MEAN MAX MIN MEAN MAX MIN MEAN MAX MIN MEAN DAY SEPTEMBER AUGUST JUNE JULY 25.5 28.5 28.0 26.0 23.5 24.0 25.0 27.0 27.5 25.5 25.0 23.5 22.5 29.0 20.0 1 2 24.0 26.0 21.5 23.5 26.0 23.0 27.0 24.5 25.5 29.0 28.0 25.0 26.5 28.5 24.5 23.0 29.5 24.0 26.5 27.0 21.0 24.0 22.0 4 23.5 21.0 23.5 26.0 21.5 23.5 30.0 25.0 27.5 31.0 24.5 27.5 27.0 5 23.5 26.5 27.5 20.5 27.5 27.0 27.0 28.5 29.5 27.5 30.5 24.5 24.5 25.0 6 23.0 29.5 30.5 29.0 27.5 24.5 24.5 24.5 27.0 24.5 27.0 23.5 25.0 26.5 29.0 21.5 24.5 24.0 26.0 24.5 27.0 25.5 26.5 26.0 30.0 22.5 26.5 24.5 29.0 24.5 28.5 22.0 25.5 24.5 30.0 24.0 26.5 27.0 24.5 25.5 29.0 10 27.5 27.0 23.0 24.5 26.0 24.0 25.0 27.0 30.5 27.0 24.0 25.5 24.5 25.5 25.5 24.5 25.0 27.0 26.5 23.5 23.5 24.5 ---------23.5 12 27.5 27.0 ---29.5 29.0 24.0 27.0 24.0 ------26.5 14 23.5 23.5 26.0 ------27.0 28.0 24.5 26.0 30.0 24.0 15 27.0 23.0 25.0 ---26.5 28.5 23.0 25.0 ---30.0 25.0 27.5 16 27.0 23.5 25.0 ------27.0 22.5 25.5 26.0 27.0 23.5 25.0 29.0 25.0 23.5 26.5 ------25.5 26.5 30.5 18 ------19 25.0 24.5 27.0 31.0 26.0 24.0 ------31.5 25.0 28.0 ---28.0 20 26.5 23.5 25.0 30.5 26.0 28.0 ---25.0 31.0 21 28.5 23.5 26.0 30.0 26.5 28.0 31.0 25.5 28.0 ---::: ---26.5 28.5 25.5 27.5 29.0 24.0 ---27.5 28.0 30.5 24.5 23 30.0 ---32.0 29.5 25.0 26.0 25.0 24 ---27.5 ------25.0 25 30.0 27.5 27.0 24.0 25.5 27.5 31.0 25.0 27.5 29.5 24.0 26.5 26 30.0 25.5 24.5 ---------32.0 28.0 27.0 27 27.0 25.5 26.5 29.5 25.0 === ::: 28.0 24.5 26.5 28 29.0 24.0 29.0 ---25.0 27.0 30.5 26.0 28.5 24.5 29.0 29 30.5 ::: 26.5 ---30 30.0 25.0 29.0 24.5 27.0 28.5 23.5 26.0 ------24.5 31 26.5 23.0 32.0 22.5 26.5 30.0 20.0 24.5

23.0

30.5

30.5

MONTH

20.0

25.5

27.0

08123850 COLORADO RIVER ABOVE SILVER, TX (National stream-quality accounting network)

LOCATION.--Lat 32°03'13", long 100°45'42", Coke County, Hydrologic Unit 12080008, on right bank 25 ft downstream from a Pan American Oil Co. bridge, 4.7 mi west of Silver, and at mile 756.0.

DRAINAGE AREA. -- 14,910 mi2, of which 10,260 mi2 probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- August 1967 to current year.

REVISED RECORDS. -- WRD TX-81-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,907.66 ft National Geodetic Vertical Datum of 1929. Prior to Oct. 4, 1972, water-stage recorder at site 0.5 mi downstream at same datum.

REMARKS.--Water-discharge records good. Low flow is affected by upstream diversions, see stations 08121000 and 0812372 Some regulation by Lake J. B. Thomas, Lake Colorado City, and Champion Creek Reservoir (see stations 08118000, 08123000, and 08123600).

AVERAGE DISCHARGE. -- 17 years, 74.0 ft 3/s (53,610 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 18,900 ft 3/s Sept. 9, 1980 (gage height, 22.73 ft); no flow at times.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 3,450 ft 3/s Oct. 20 at 0900 hours (gage height, 10.81 ft); no flow for many days.

		DISCHAI	RGE, IN C	UBIC FEE	T PER SECO	ND, WATER MEAN VALUE	YEAR OCTO	OBER 1983	3 TO SEPTER	MBER 1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	. 04	24.0	9.4	11.0	19.0	8.8	4.40	1.10	. 03	0	.00	.0
2	. 02	20.0	9.4	11.0	18.0	9.4	3.80	.57	.00	0	.00	.0
3	. 02	18.0	9.4	11.0	17.0	9.6	3.70	.39	.00	0	.00	. 0
3	.01	23.0	10.0	11.0	17.0	10.0	3.70	.35	.00	0	.00	.0
5	. 01	24.0	10.0	11.0	16.0	11.0	3.90	. 31	.00	0	.00	. 0
6	.00	28.0	10.0	11.0	17.0	9.5	4.30	.20	.00	0	.00	.0
7	.00	42.0	10.0	11.0	18.0	7.3	4.80	. 08	. 03	0	.00	.0
8	.00	21.0	10.0	12.0	19.0	6.1	4.60	. 02	2.30	. 0	.00	.0
9	.00	16.0	11.0	18.0	18.0	5.9	4.30	. 02	1.80	0	.00	.0
10	.00	16.0	9.9	16.0	18.0	6.2	2.70	. 01	1.20	0	.00	.0
11	.00	22.0	8.0	13.0	17.0	6.4	3.70	.00	.81	0	.00	.0
12	.00	19.0	8.2	13.0	14.0	6.9	2.70	.00	.43	0	.00	.0
13	.00	15.0	7.3	11.0	11.0	7.5	2.90	.00	. 16	0	.00	.0
14	.00	11.0	7.1	11.0	10.0	7.5	2.20	.00	. 05	0	.00	.0
15	.00	9.4	7.1	10.0	7.8	7.6	1.70	.00	. 03	0	.00	.0
16	.00	8.6	7.1	9.4	8.2	7.9	1.80	.00	.01	0	.00	.0
17	.00	7.7	7.1	9.4	9.0	9.3	2.20	.00	.00	0	.00	. 0
18	.00	6.9	7.1	8.4	8.8	8.1	2.00	.00	.00	0	.00	.0
19	. 01	6.6	7.1	8.2	8.8	5.3	2.40	.00	.00	0	.00	.0
20	1810.00	6.1	7.1	8.2	8.5	5.6	2.40	8.00	.00	0	. 05	.0
21	811.00	6.5	7.1	8.8	8.2	6.2	1.70	22.00	.00	0	.14	.0
22	307.00	6.9	7.0	8.8	8.2	5.8	2.10	9.80	.00	0	. 05	.0
23	140.00	9.9	6.5	9.7	8.2	5.3	2.40	5.70	.00	0	. 02	.0
24	69.00	10.0	6.5	13.0	8.2	5.3	2.50	4.10	.00	0	. 02	.0
25	1550.00	10.0	7.0	16.0	8.5	5.7	2.40	2.60	.00	0	. 02	9.9
26	440.00	10.0	7.2	17.0	6.6	5.8	1.40	1.90	.00	0	. 02	173.0
27	111.00	10.0	7.5	18.0	5.9	5.6	.88	1.40	.00	0	.00	229.0
28	56.00	11.0	8.0	18.0	7.3	4.5	1.00	.37	.00	0	.00	198.0
29	32.00	10.0	8.1	19.0	8.1	3.5	1.20	.20	.00	0	.00	150.0
30	31.00	9.4	11.0	19.0		3.8	1.30	.11	.00	0	.00	61.0
31	28.00		10.0	19.0		3.7		. 06		0	.00	
TOTAL	5385.11	438.0	258.2	390.9	349.3	211.1	81.08	59.29	6.85	0	.32	820.9
MEAN	174	14.6	8.33	12.6	12.0	6.81	2.70	1.91	. 23	.000	.010	27.4
MAX	1810	42	11	19	19	11	4.8	22	2.3	.00	-14	229
MIN	.00	6.1	6.5	8.2	5.9	3.5	. 88	.00	.00	.00	.00	.00
AC-FT	10680	869	512	775	693	419	161	118	14	.00	.6	1630
CAL YR WTR YR					MAX 1810 MAX 1810	MIN .00 MIN .00	AC-FT AC-FT	19530 15870				

08123850 COLORADO RIVER ABOVE SILVER, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical analyses: December 1967 to current year. Chemical and biochemical analyses: November 1977 to current year. Pesticide analyses: October 1970 to September 1981.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: December 1967 to current year. WATER TEMPERATURES: December 1967 to current year.

INSTRUMENTATION. -- Beginning June 22, 1981, specific conductance and water temperature are recorded continuously at this station.

REMARKS.--Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and regression relationships between each chemical constituent and specific conductance. Regression equations developed for this station may be obtained from the Geological Survey District office upon request.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 17,300 micromhos June 13, 1984; minimum daily, 180 micromhos June 28, 1982.
WATER TEMPERATURES: Maximum daily, 34.5°C July 4, 1981; minimum daily, 0.0°C on many days during winter months.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum daily, 17,300 micromhos June 13; minimum daily, 240 micromhos Oct. 25.
WATER TEMPERATURES: Minimum daily, 0.0°C on several days during December and January.

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	1	TREAM- FLOW, NSTAN- ANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER ATURE (DEG C	- B	ID- TY	XYGEN, DIS- SOLVED (MG/L)	OXYGEI DIS- SOLVI (PER- CEN' SATUI ATIOI	- DI ED I	XYGEN EMAND, BIO- CHEM- ICAL, DAY (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	FE KF (CC	CREP- COCCI ECAL, AGAR DLS. PER ML)	HARD- NESS (MG/L AS CACO3)
DEC 13	0930	7.7	7670	8.0	9.	0	7.4	12.1	1	13	6.1	58		120	1800
FEB 22	1100	9.4	8830	7.4	9.	0	4.5	11.1	10	06	9.1	40		K12	2100
APR 17	0900	2.4	10800	7.9	14.	5 1	9	11.2	12	22	6.6	56		100	2600
JUN 13	1115	.04	16700	8.5	24.	5	7.9	9.4	12	27	12	К4		K20	4400
AUG 21	1130	.88	3680	8.2	29.	5 1	1	7.5	10	7	5.6	29		26	870
SEP 26	1050	201	340		12.	0								2.5	130
DATE	HARD- NESS, NONCAR BONATE (MG/L CACO3	- DIS- SOLV (MG/	DI VED SOL 'L (MG	UM, SODI S- DIS VED SOLV /L (MC	UM, S- S VED	ODIUM AD- ORP- TION ATIO	POTAS SIUM DIS- SOLVE (MG/L AS K)	LINIT	Y SULD I	JLFATE DIS- SOLVEI (MG/L S SO4)	DIS- SOLV (MG)	E, RII - DI VED SOI /L (MC	DE, IS- IVED	SILIC DIS- SOLV (MG/ AS SIO2	ED L
DEC 13 FEB	170	0 360	230	1100		11	22	1	30	1400	2000		.60	1	.2
22	200	0 400	260	1300	i.	13	19		97	500	2200		.60	1	.0
APR 17	240	0 480	330	1600		14	29	1	20 2	2300	2700		.70	9	. 9
JUN 13	430	0 860	540	2600	10	18	19		54 3	3700	4600		.70	2	. 6
AUG 21	83	0 220	77	470		7	12		46	720	830		.40	5	.0
SEP 26	4	9 44	5	.9 15		.6	4.6		85	48	23		.10	6	.4
DATE	SOLIDS RESIDU AT 180 DEG. DIS- SOLVE (MG/L	E SUM CONSTC TUENT DIS D SOLV	F GE I- NO2+ S, DI S- SOL ED (MG	N, GE NO3 AMMO S- DI VED SOI /L (MO	N, GENIA MONIS ORCIVED TO	ITRO- N,AM- NIA + GANIC OTAL MG/L S N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS PHORU DIS SOLV (MG/ AS E	S- PH IS, C I- I VED SC IL (N	PHOS- HORUS, DRTHO, DIS- DLVED MG/L S P)		r, CHAI SU DED PEN	T, S- GE, IS- IDED	SED SUS: SIEVI DIAI % FIN: THAI	P. E M. ER N
DEC 13	553	0 52	00 <	.10	030	1.1	.090		10	<.010		20 4	.2		90
FEB 22					630	1.4	.160		50	.020		11	.28		97
APR 17					340	2.1	.340		40	.020		40	.26		9 <i>7</i> 37
JUN 13					490	4.4	.120		30	.010		12	.00		83
AUG 21					080	1.8	.100			<.010		12	.03		90
SEP 26			00	.10 .		1.8	-100		10				.03		
20	-		00	-								7.5			

08123850 COLORADO RIVER ABOVE SILVER, TX--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DAT	TIME E	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COBALT, DIS- SOLVED (UG/L AS CO)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB)
FEB 22.	1100	2	<100	<10	<1	<1	<1	<1	50	<1
JUN 13.	1115	2	300	<10	<1	<1	<1	3	170	<1
AUG 21.	1130	2	200	<10	2	<1	<1	2	40	<1
DAT	LITHIUM DIS- SOLVED (UG/L AS LI)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO)	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	VANA- DIUM, DIS- SOLVED (UG/L AS V)	ZINC, DIS- SOLVED (UG/L AS ZN)
FEB 22. JUN	180	160	<.1	27	<1	<1	<1	5600	66	50
13. AUG	380	150	<.1	24	4	<1	<1	16000	88	70
21.	50	40	<.1	8	7	<1	1	3700	17	<10

MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1983 TO SEPTEMBER 1984

MONTH	YEAR	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT - ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
OCT.	1983	5385.11	1330	799	11600	290	4170	210	3110	270
NOV.	1983	438.0	3910	2460	2910	900	1060	670	788	840
DEC.	1983	258.2	7300	4780	3330	1800	1230	1300	912	1600
JAN.	1984	390.9	7820	5150	5430	1900	2010	1400	1490	1700
FEB.	1984	349.3	9230	6200	5850	2300	2180	1700	1610	2100
MAR.	1984	211.1	9540	6420	3660	2400	1370	1800	1010	2200
APR.	1984	81.08	10200	6950	1520	2600	570	1900	420	*
MAY	1984	59.29	12800	9040	1450	3400	547	2500	403	*
JUNE	1984	6.85	14700	10700	197	4100	75	3000	55	*
JULY	1984	0.00	*	*	0.00	*	0.00	*	0.00	*
AUG.	1984	0.32	8780	5850	5.1	2200	1.9	1600	1.4	2000
SEPT	1984	820.90	2 900	1800	3980	650	1450	490	1080	610
TOTAL		8001.05	**	**	40000	**	14700	**	10900	**
WTD.AV	/G.	22	2890	1850	**	680	**	500	**	630

COLORADO RIVER BASIN

08123850 COLORADO RIVER ABOVE SILVER, TX--Continued

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

		960 20 12		(, 0 2	J DEG. 0),	WILLIAM THE	I OCTOBE	1 1 705 10	DELLECTOR	1704	
DAY .	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOR	BER		NOVEMB	ER		DECEMB	ER		JANUA	RY
1 2 3 4 5	9500 9280 9700 9700 9700	9040 9040 9120 9220 8490	9230. 9110 9320 9450 9520	2380 1960 2240 2260 2260	1960 1880 1860 1180 1660	2100 1930 2060 2030 2100	5000 4940 5000 5600 6100	4940 4740 4700 5000 5620	4990 4850 4800 5370 5840	=	=======================================	7920 7950 7970 8000 8010
6 7 8 9	=======================================	=======================================	===	2660 3000 3240 3180 6020	2280 2700 3020 2900 3120	2460 2810 3150 3000 4330	6980 7680 7720 7600 7520	6140 7120 7560 7420 7440	6600 7440 7660 7510 7490	=	===	7990 8030 7970 7490 7450
11 12 13 14 15	===	===	===	6960 6740 6840 6520 5860	6140 6600 6560 5880 5400	6710 6680 6740 6230 5620	7660 7660 7600 7660 7800	7520 7520 7540 7560 7660	7600 7600 7570 7610 7720	8520 8560 8480	8440 8480 8180	7670 7880 8480 8520 8340
16 17 18 19 20	9600 6800	7660 400	9090 1610	5400 5260 5200 5220 5220	5240 5140 5140 5140 5140	5310 5200 5170 5180 5170	7800 7640 7820 7940 8020	7640 7500 7540 7820 7740	7700 7570 7680 7900 7910	8180 7860 7540 7600 7780	7880 7520 7300 7160 7300	8050 7700 7410 7370 7590
21 22 23 24 25	1000 2340 2620 3880 4320	360 1020 2300 2460 240	714 1530 2390 3050 1140	5140 5220 4900 5040 4920	5100 4820 4780 4860 4700	5130 5080 4850 4970 4830	7760 8100 8400 8620	7620 7700 8160 8340	7700 7870 8280 8480 8410	8180 8100 7800 7720 7640	7820 7780 7620 7460 7380	7970 7940 7700 7620 7490
26 27 28 29 30 31	1640 1440 2100 3760 4640 3700	400 840 1460 2180 3440 2180	82 9 10 50 182 0 30 50 40 00 2 8 4 0	4660 4220 4260 4720 5000	4220 3940 3940 4280 4760	4460 4050 4070 4520 4890		===	8380 8340 8220 8200 7970 7950	8120 8420 8260 7700 7600 7380	7660 8160 7640 7600 7360 7280	7920 8330 7930 7650 7460 7340
MONTH	9700	240	4430	6960	1180	4360	8620	4700	7390	8560	7160	7840
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUA	RY		MARCH	I		APRII	Ľ		MAY	
1 2 3 4 5	7280 7880 11000 12100 11700	7140 7300 7940 11100 10900	7230 7530 9330 11800 11300	9680 9680 9780 9780 9840	9520 9440 9640 9520 9620	9630 9620 9710 9670 9720	9560 9480 9580 9720 9680	9340 9340 9440 9580 9580	9380 9410 9520 9620 9620	11500 11600 13600 11900 12000	11100 11200 11300 11500 11600	11300 11400 11800 11800 11900
6 7 8 9	10 900 10400 10000 962 0 92 80	10400 10000 9620 9280 9080	10600 10200 9840 9450 9190	9860 9860 9860 9900 9840	9720 9760 9800 9820 9720	9790 9810 9820 9870 9770	9800 9740 9920 10300 10500	9580 9600 9700 9880 10200	9650 9670 9820 10100 10400	12000 12000 12200 12100 12300	11700 11700 11700 11800 11800	11900 11900 12000 12000 12100
11 12 13 14 15	9080 8940 8960 8860 8860	8800 8800 8780 8740 8600	8970 8890 8870 8800 8680	9700 9460 9540 9800 10000	9480 9320 9340 9360 9660	9610 9380 9430 9600 9840	10600 10700 10600 10500 10600	10400 10600 10400 10400 10400	10500 10600 10500 10500 10500	===	===	=======================================
16 17 18 19 20	8680 8540 8460 8380 8600	8520 8420 8340 8260 8280	8610 8500 8410 8320 8450	9980 9900 9540 9360 9180	9860 9580 9240 9160 8920	9900 9710 9350 9230 9110	10600 10800 10800 10800 10900	10400 10500 10600 10600 10700	10500 10700 10700 10700 10800	12 700	9460	10700
21 22 23 24 25	8660 8890 9000 9140 9260	8540 8560 8720 8820 9040	8610 8650 8870 9020 9190	9180 9180 9320 9300 9240	8940 8960 9040 9060 9140	9080 9120 9160 9200 9200	11000 10900 10800 11000 11100	10800 10700 10600 10700 10900	10900 10800 10800 10800 11000	14000 13900 14100 14000 14300	9020 13200 13700 13500 13900	12700 13400 13800 13900 14000
26 27 28 29 30 31	9380 9480 9580 9660	9180 9240 9400 9460	92 80 93 60 94 90 95 70	9300 9460 9420 9570 9460 9500	8980 9220 9180 9260 9340 9340	9180 9340 9360 9370 9400 9400	11200 11300 11100 11100 11400	10800 11000 10900 10900 10900	11000 11100 11100 11000 11200	14300 14500 14500 14600 14600 15000	14000 14200 14300 14200 14300 14400	14200 14300 14400 14400 14500 14600
MONTH	12100	7140	9140	10000	8920	9500	11400	9340	10400	15000	9020	12 900

DAY

MAX

18.0 19.5 19.5 20.5 18.5 21.0

27.0

26 27

MONTH

14.5 15.0 15.5 16.0 16.5 15.5

10.5

16.0 17.0 17.5 18.0 17.5

17.5

19.5

08123850 COLORADO RIVER ABOVE SILVER, TX--Continued

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984--Continued

DAY .	MAX	MIN	MEAN	MAX	MIN MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY		AUGUST			SEPTEMB	ER
1	15000	14600	14800								
2											
3											
4											
5								•••	•		
6											
7	15400	14300	15100						***		
8	13900	12000	12800							310	
9	15600	13600	14600					•••			
10			15900						•		
11			16900								
12			17100						1100		
13			17300								
14			16900						A		
15			17000					***			
16			17100								
17											
18											
19									***		
20								8990	441 13		
21								8640			
22								8700			
23								8810			
24								8900			
25								9020	-	V	
26								9090	3880	260	1520
27									5800	620	3690
28									2160	1100	1460
29									6700	2640	5120
30									5240	2580	3520
31									7		
MONTH	15600	12000	16000					8880	6700	260	3060

		OCTOBE	ER		NOVEMBE	ER		DECEMBE	R		JANUAR	Y
1	25.0	21.5	23.0	21.5	16.0	18.5	8.5	6.5	8.0			
2	26.0	21.5	23.5	21.5	18.5	19.5	10.5	7.5	9.0			
3	27.0	23.0	25.0	21.0	18.5	20.0	13.5	9.5	11.0			
4	26.0	23.0	24.5	22.0	19.5	20.5	15.0	8.5	11.5			
5	26.5	21.0	24.0	20.5	18.5	19.5	14.0	10.0	12.0			
6				22.5	13.5	18.5	12.0	7.0	9.5			
7				21.5	16.5	19.0	11.5	6.0	9.0			
8				21.5	16.0	18.5	12.5	6.5	9.5			
9				18.5	14.0	16.5	12.5	8.0	10.5			
10				17.0	12.0	14.0	13.0	7.0	10.0			311
11				17.0	12.0	14.0	13.0	8.0	10.5			
12				17.5	12.0	14.5	11.5	7.5	10.0	9.0	5.0	7.5
13				18.5	14.0	16.0	11.0	7.0	9.0	7.5	4.0	5.5
14				18.5	14.5	16.0	11.5	7.0	9.0	5.5	3.0	4.0
15				18.0	12.5	14.5	9.5	5.5	7.5	5.0	3.0	3.5
16				16.5	11.0	13.5	7.0	4.0	5.5	4.0	2.0	3.0
17				17.0	10.5	13.5	8.5	3.5	6.0	3.5	2.5	3.0
18				17.5	12.0	15.0	6.5	.0	2.5	2.5	.0	1.0
19	22.0	19.0	21.0	15.0	11.0	13.0	1.5	.0	.5	2.5	.0	1.0
20	21.5	14.0	18.0	14.5	9.0	11.5	1.5	.0	.5	1.5	.0	.5
21	18.5	17.0	17.5	16.0	10.0	13.0	2.0	.0	.5	4.0	.0	1.5
22	19.5	14.5	17.5	18.0	13.5	15.5	.5	.0	.0	6.0	.5	3.0
23	21.5	16.5	19.0	14.0	11.0	12.5	.5	.0	.0	9.5	2.0	5.0
24	22.5	17.0	20.0	13.5	8.5	11.0	.0	.0	.0	10.5	4.0	6.5
25	21.0	10.5	14.5	13.5	8.0	11.0				11.0	5.0	7.0

11.0 7.5 7.5 8.5 9.0

14.5

15.0

.0

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

MAX

MIN MEAN

11.5 12.0 13.0 13.5 11.0

10.5

13.5 .0

6.5

5.5 6.5 7.0 7.0 7.5

8.0 9.0 9.5 9.5

8.0

MAX MIN MEAN

9.5 5.5 5.0 5.0

8.0

5.0

12.0

10.5 12.5 10.5

22.5

MIN MEAN

COLORADO RIVER BASIN

08123850 COLORADO RIVER ABOVE SILVER, TX--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984--Continued

		10.11 0		K (000. 0)	, WALLIN	THIR OUTUB	ER 1983 TO	SEI LE.ID				
DAY .	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUAR	Y		MARCH			APRIL			MAY	
1	13.0	6.5	9.0	16.0	6.0	11.0	16.5	11.0	15.5	22.0	14.0	18.0
2	12.5	8.5	10.0	17.0	8.5	12.5	18.5 18.5	13.5	15.5	21.0	15.5	19.0
2 3 4 5	13.0	6.0 7.5	9.0 9.5	19.0	11.5	15.0 14.0	18.0	10.5	14.5			
5	12.5	7.0	9.0	12.0	8.0	10.0	19.5	11.5	15.5			
6	14.0	7.0	9.5	15.0	5.5	10.0	17.5	13.0	15.5			
6 7 8	14.0	7.5	10.0	15.5	6.5 7.0	9.5	20.0	14.5	17.5 17.0			
9	13.0	8.0 9.0	9.5	12.5 11.5	6.0 9.5	10.0	22.0 18.5	15.0 12.5	18.5 16.5			
									17.5			
11 12	17.0 15.0	10.0	13.0	12.0 17.5	9.0	10.5	22.0	13.5 13.5	18.0			
13	16.0	7.0	11.5	19.5	10.5	14.5	23.5	15.5 15.0	19.0 17.0			
14 15	16.0	7.5 8.0	12.0	22.5	13.5 13.5	18.0 18.0	17.5	11.5	15.0			
16	15.0	6.5	11.0	21.0	15.5	18.0	20.0	12.5	16.0			
17	16.0	8.0	12.0	18.0	10.0	16.5	22.0 19.0	13.0 14.0	17.5 16.5			
18 19	15.5	9.5 7.5	13.0	20.0 15.5	10.5	16.0	22.5	14.0	18.0			
20	12.5	7.5	10.0	17.5	9.0	12.5	24.0	13.0	19.5			
21	14.0	6.0	9.5	19.5	10.5	15.0	19.0 19.0	14.0	16.5 14.5		111	
22 23	15.0 15.0	6.5 8.0	11.0	20.5 17.5	12.5	16.5 15.0	22.0	13.5	16.5			
24 25	16.0 15.5	8.0 10.0	12.0	17.0 16.0	9.0	11.5	23.0	10.5 14.5	18.0			
26	14.0	6.5	10.0	18.0	11.5	14.0	24.5	15.0	21.0			
27	10.5	4.5	7.5	16.0	11.0	14.0	23.5	14.5	20.0			
28 29	11.5	4.5	8.0	15.5 18.0	8.0	11.5	21.0 19.0	11.5 13.5	18.0 17.5			
30				17.0	7.0	13.0	22.0	13.5	18.0			
31				19.5	11.5	16.0						
MONTH	17.0	4.5	10.5	22.5	5.5	13.5	24.5	10.0	17.0	22.0	14.0	18.5
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	MIN JUNE	MEAN	MAX	MIN JULY	MEAN	MAX	MIN AUGUST		MAX	MIN SEPTEMB	
1	MAX		MEAN	MAX		MEAN	MAX			MAX		ER
1	MAX		MEAN	MAX		MEAN	MAX				SEPTEMB	ER
1	MAX		MEAN	MAX		MEAN	MAX				SEPTEMB	ER
	MAX		MEAN	MAX		MEAN	MAX			=	SEPTEMB	ER
1 2 3 4 5	MAX		MEAN	MAX		MEAN	MAX				SEPTEMB	ER
1 2 3 4 5	MAX		MEAN	MAX		MEAN	MAX				SEPTEMB	ER
1 2 3 4 5	MAX		MEAN	MAX		MEAN	MAX				SEPTEMB	ER
1 2 3 4 5 6 7 8 9	MAX		MEAN	MAX		MEAN	MAX				SEPTEMB	ER
1 2 3 4 5 6 7 8 9	MAX		MEAN	MAX		MEAN	MAX				SEPTEMB	ER
1 2 3 4 5 6 7 8 9 10	MAX		MEAN	MAX		MEAN	MAX				SEPTEMB	ER
1 2 3 4 5 6 7 8 9 10	MAX		MEAN	MAX		MEAN	MAX				SEPTEMB	ER
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	MAX		MEAN	MAX		MEAN	MAX				SEPTEMB	ER
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	MAX		MEAN	MAX		MEAN	MAX				SEPTEMB	ER
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	MAX		MEAN	MAX		MEAN	MAX				SEPTEMB	ER
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	MAX		MEAN	MAX		MEAN	MAX				SEPTEMB	ER
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	MAX		MEAN	MAX		MEAN	MAX				SEPTEMB	ER
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	MAX		MEAN	MAX		MEAN	MAX				SEPTEMB	ER
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	MAX		MEAN	MAX		MEAN	MAX				SEPTEMB	ER
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	MAX		MEAN	MAX		MEAN	MAX				SEPTEMB	ER
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	MAX		MEAN	MAX		MEAN	MAX				SEPTEMB	ER
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 223 24 25 26 27 28	MAX		MEAN	MAX		MEAN	MAX				SEPTEMB	ER
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	MAX		MEAN	MAX		MEAN	MAX				SEPTEMB	ER
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	MAX		MEAN	MAX		MEAN	MAX				SEPTEMB	ER

08123950 E. V. SPENCE RESERVOIR NEAR ROBERT LEE, TX

LOCATION.--Lat 31°52'46", long 100°31'01", Coke County, Hydrologic Unit 12080008, in outlet works of Robert Lee Dam on the Colorado River, 2.2 mi west of Robert Lee, and at mile 712.4.

DRAINAGE AREA. -- 15,278 mi², approximately, of which 10,260 mi² probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- December 1968 to current year.

REVISED RECORDS. -- WDR TX-81-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929. Prior to June 24, 1969, nonrecording gage at same site and datum.

REMARKS.--The reservoir is formed by a rolled earthfill dam 21,500 ft long. Closure was made Dec. 30, 1968, and dam was completed in June 1969. The dam is the property of the Colorado River Municipal Water District, which has a permit to divert 50,000 acre-ft annually for municipal, mining, and industrial uses. Inflow to reservoir is partially regulated by Lake J. B. Thomas, Lake Colorado City, and Champion Creek Reservoir (stations 08118000, 08123000, and 08123600). There are two spillways: The service and emergency spillways. The controlled service spillway is a morning-glory type that is partially controlled by 12 lift gates, 14.48 by 22.0 ft, and discharges through a 28.0-foot-diameter concrete conduit. The uncontrolled emergency spillway is a 3,200-foot-wide cut through natural ground near the right end of dam. Figures given herein represent total contents. Data regarding the dam and reservoir are given in the following table:

	(feet)	(acre-feet)
Top of dam	1,928.0	
Crest of spillway	1,908.0	653,400
Top of gates	1,900.0	519,300
Top of conservation pool	1,898.0	488,800
Crest of spillway	1,878.0	262,900
Lowest gated outlet (invert)	1,815.85	4,000

COOPERATION. -- Capacity table (dated March 1972) was furnished by the Colorado River Municipal Water District. Records of diversions may be obtained from the city of San Angelo and the Colorado River Municipal Water District.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 342,900 acre-ft July 15, 1982 (elevation, 1,885.90 ft); minimum since first appreciable storage in June 1969 (not from recorder), about 330 acre-ft May 29, 1971.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 267,000 acre-ft Nov. 9 at 0600 hours (elevation, 1,878.45 ft); minimum, 204,600 acre-ft Sept. 23, 24 (elevation, 1,871.02 ft).

Capacity table (elevation, in feet, and total contents, in acre-feet)

1,871.0 204,400 1,877.0 253,900 1,874.0 227,900 1,879.0 272,000

CONTENTS, IN ACRE-FEET, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 INSTANTANEOUS OBSERVATIONS AT 2400

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4	255400 255300 255300 254900	266000 265900 265900 266200	262600 262800 262700 262800	258600 258600 258600 258600	257100 257100 256900 256800	254000 253800 253600 253500	249000 248700 248500 248300	242100 241800 241800 241700	234000 233700 233400 233300	226700 226400 226000 225600	217400 217100 216800 216700	210200 210000 209700 209400
5	254400	266500	262900	258500	256600	253200	248200	241400	233000	225100	216500	209100
6	254300 254200	266500 266300	262500 262500	258400	256500	253000	248100	241300	232900	224900 224500	216100 215900	208900 208600
8	253800	266300	262900	258300 259300	256300 256300	252800 252600	248200 247800	240300 240300	232800 232500	224100	215700	208300
9	253500	266100	262300	259900	256200	252500	247400	240000	232300	223800	215500	208100
10	253300	265600	262700	259300	256200	252200	247400	239800	231800	223500	215100	207800
11	253200	265200	262200	259000	256300	252100	247500	239500	231700	223300	214900	207600
12	252600	265200	262700	259000	256000	252100	247100	239100	231300	222900	214800	207400
13 14	252500 251700	265200	261700	258900	255900	252000	246800	238800	231000	222600	214700 214500	207200 207100
15	251700	264800 264700	261600 261600	258800 258700	255800 255600	251900 251800	246300 246100	238200 237800	231000 230700	.1200 221900	214100	206400
16	251400	264800	261200	258600	255400	251800	245800	237600	230500	221700	214000	206200
17	251300	264700	261200	258600	255700	251700	245700	237500	230300	221300	213700	206100
18	251200	264500	261000	258400	255300	251600	245500	237400	230000	220900	213700	206000
19 20	251400 260600	264200 264200	260600 260400	258100 258100	255000 254900	251300 251100	245400 245100	237500 237300	229800 229500	220700 220500	213700 213200	205500 205300
21	261700	263800	260500	257900	254700	250900	244600	237200	229200	219900	212900	204900
22	262100	264300	260000	257900	254500	250900	244500	236900	229100	219700	212800	205000
23	262300	264000	259900	257900	254400	250800	244400	236700	228900	219500	212500	204600
24	262500	263800	259800	257800	254400	250500	244000	236500	228500	219300	212300	204600
25	265200	263600	259300	257600	254400	250500	243700	236400	228200	219100	211900	205100
26 27	266400	264200	259300	257800	254400	250300	243500	235800	227900	218900	211800	205600
28	266400 266300	263400 263000	259700 259300	257500 257400	254300 254200	250000 249800	243100 242800	235700 235200	227600	218600 218500	211500 211300	205800 206200
29	266300	263100	259000	257700	254100	249800	242700	234800	227300	218100	211100	206300
30	266100	262800	258900	257200	234100	249300	242300	234500	227000	217800	210600	206200
31	266000		258800	257100		249100		234200		217600	210400	
MAX	266400	266500	262900	259900	257100	254000	249000	242100	234000	226700	217400	210200
MIN	251200	262800	258800	257100	254100	249100	242300	234200	227000	217600	210400	204600
(†) (‡)	1878.34 +10400	1877.99 -3200	1877.54 -4000	1877.36 -1700	1877.02 -3000	1876.47 -5000	1875.71 -6800	1874.79 -8100	1873.89 -7200	1872.71 -9400	1871.80 -7200	1871.24 -4200

CAL YR 1983 MAX 306700 MIN 251200 ‡ -46900 WTR YR 1984 MAX 266500 MIN 204600 ‡ -49400

t Elevation, in feet, at end of month.

[#] Change in contents, in acre-feet.

08123950 E. V. SPENCE RESERVOIR NEAR ROBERT LEE, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: October 1969 to current year. Biochemical analyses: October 1977 to September 1978, October 1979 to current year.

315235100312201 E. V. SPENCE RESERVOIR SITE AK
WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
JAN							
23	1150	1.00	2830	8.3	5.0	10.0	84
23	1152	10.0	2830	8.4	4.5	10.0	83
23	1154	20.0	2830	8.4	4.5	10.0	83
23	1156	30.0	2830	8.3	4.5	10.0	83
23	1158	40.0	2840	8.3	4.5	10.0	83
23	1200	50.0	2840	8.3	4.5	10.0	83
23	1202	55.0	2840	8.3	4.5	10.0	83
MAY							
08	1128	1.00	2890	8.4	21.0	6.4	76
08	1130	10.0	2890	8.3	20.5	6.4	76
08	1132	20.0	2870	8.3	20.0	6.4	75
08	1134	30.0	2870	8.3	19.0	6.0	69
08	1136	40.0	2870	8.2	18.0	5.4	61
08	1138	53.0	2870	8.1	18.0	5.1	57
AUG					45.00		127
06	1202	1.00	3110	8.1	26.5	6.3	84
06	1204	10.0	3110	8.1	26.5	6.3	84
06	1206	20.0	3110	8.0	26.0	6.0	80
06	1208	30.0	3110	7.9	26.0	5.1	68
06	1210	40.0	3090	7.6	25.0	.6	8
06	1212	45.0	3060	7.6	24.5	. 2	3

315335100312401 E. V. SPENCE RESERVOIR SITE AC WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	TIME	SAM- PLING DEPTH (FEET)	S PE - CIFIC CON- DUCT - ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS - PAR - ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS - SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)
JAN									
23	1110	1.00	2810	8.3	5.0	2.00	10.0	84	590
23	1112	10.0	2810	8.3	4.5		10.0	83	
23	1114	20.0	2810	8.3	4.5		10.0	83	
23	1116	30.0	2810	8.3	4.5		10.0	83	
23	1118	40.0	2810	8.3	4.5		10.0	83	
23	1120	50.0	2810	8.3	4.5		10.0	83	
23	1122	60.0	2810	8.3	4.5		10.0	83	
23	1124	70.0	2810	8.3	4.5		10.0	83	
23	1126	80.0	2810	8.3	4.0		10.0	82	
23	1128	90.0	2810	8.3	4.0		10.0	82	560
MAY									
08	1035	1.00	2820	8.3	20.5	1.40	6.7	79	600
08	1037	10.0	2820	8.3	20.5		6.7	79	
08	1039	20.0	2800	8.3	20.0		6.3	74	
08	1041	30.0	2800	8.2	18.5		5.7	65	
08	1043	40.0	2800	8.2	17.5		5.5	61	
08	1045	50.0	2800	8.2	17.5		5.3	59	
08	1047	60.0	2800	8.1	17.5		5.1	57	
08	1049	73.0	2800	8.0	17.0		4.3	47	600
AUG	2.7	1.0	100	17.1					
06	1124	1.00	3010	8.0	27.0	2.00	6.3	85	640
06	1126	10.0	3010	8.0	26.5		6.3	84	
06	1128	20.0	3010	8.0	26.5		6.0	80	
06	1130	30.0	3010	7.9	26.0		6.0	80	
06	1132	40.0	3020	7.4	24.5		.2	3	
06	1134	50.0	2940	7.4	22.0		. 2	2	
06	1136	60.0	2900	7.4	20.5		.2	2	
06	1138	70.0	2900	7.4	19.5		. 2	2	
06	1140	82.0	2900	7.4	19.5		. 2	2 2	630

E. V. SPENCE RESERVOIR NEAR ROBERT LEE, TX--Continued

315335100312401 E. V. SPENCE RESERVOIR SITE AC--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	DIS-	GODIUM, DIS- GOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	FIELD (MG/L AS	ULFATE DIS - SOLVED (MG/L S SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
JAN								The state of	
23	470	130	65	390	7	11	120	470	610
23									
23									
23							4		
23									
23									
23									
23	440	120	64	270	7	11	120	430	620
MAY	440	120	04	370	7	11	120	430	020
08	480	130	67	380	7	13	120	450	660
08									
08		2.11-			10	F 74.			
08						- 1 1			
08								- 11	
08		7							
08	470	130	67	380	7	13	130	440	640
AUG			• ,	500					
06	520	140	71	420	7	13	120	460	710
06									
06									
06									
06									
06							19		
06									
06	470	140	67	390	7	13	160	420	630
DATE	FLUO- RIDE, DIS- SOLVEI (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	CONSTI-	NITRO- GEN, NO2+NO3 TOTAL (MG/L	MONIA +	PHOS -	IRON, DIS- SOLVED (UG/L AS FE)	MANGA NESE, DIS- SOLVE (UG/L AS MN	D

JAN 23	40	5.2	1800	<.10	.60	<.01	70	<1	0
23						1.01		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
23						-		-	-
23								-	
23				<.10		<.01		<1	0
23									- 19
23									
23								100	
23		5.2	1700	<.10	.50	. 010	50	<1	0
MAY		1500				III was	3 198.3		
08	40					. 020			
08									
08									
08									
08									
08				200				-	
08 AUG						. 040			
06				1					
06								-	
06				<.10	.60	. 020			
06					1.1	.02			
06								Strain Co	
06								-	-
06			1000			104			
06		7.0	1800	<.10	1.7	.120	90	76	U

E. V. SPENCE RESERVOIR NEAR ROBERT LEE, TX--Continued

315413100312501 E. V. SPENCE RESERVOIR SITE AL WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS - SOLVED (PER - CENT SATUR - ATION)
JAN							
23	1040	1.00	2850	8.3	4.0	10.1	83
23	1042	10.0	2850	8.3	4.0	10.1	83
23	1044	20.0	2850	8.2	4.0	10.1	83
23	1 046	30.0	2850	8.2	4.0	10.0	82
23	1048	40.0	2850	8.2	4.0	10.0	82
23	1050	47.0	2850	8.2	4.0	10.0	82
MAY							
08	1010	1.00	2820	8.3	20.5	6.7	79
08	1012	10.0	2820	8.3	20.0	6.7	78
08	1014	20.0	2820	8.3	19.5	6.5	75
08	1016	30.0	2820	8.3	19.0	6.0	69
08	1018	40.0	2820	8.1	17.5	5.4	60
08	1020	46.0	2820	8.1	17.5	5.3	59
AUG							
06	1046	1.00	3130	8.1	27.0	7.1	96
06	1048	10.0	3130	8.1	27.0	7.0	95
06	1050	20.0	3130	8.0	26.5	6.4	86
06	1052	30.0	31 00	8.0	26.0	4.8	64
06	1054	43.0	2960	7.4	24.0	. 2	3

315558100342601 E. V. SPENCE RESERVOIR SITE BC
WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	TIMI	SAM- PLIN DEPT (FEE	H ANCE	- (STAI	D	TEMPER- ATURE (DEG C)	DISK)	OXYGE I DIS	- CEN	/ED /ED /T /T
JAN										
23	. 1222	1.	00 28	00	8.4	4.0	1.7		. 3	85
23					3.4	4.0			.3	85
23					8.4	4.0			. 2	84
23					3.4	4.0		- 10		83
23					8.4	4.0		- 10		83
23	. 1232	2 51.	0 28	00	3.3	4.0	-	- 10	.1	83
MAY										70
08					3.4	19.5			. 3	73
08					3.3	18.5			. 1	69
08					3.3	18.5			.9	67
08					3.3	18.0			.9	66
08					3.3	18.0			. 8	65
08	. 1208	3 47.	0 28	50	3.2	18.0	-	- 5	.5	62
AUG	100		00 01	0.0		00		. 7		98
06					3.2	28.0			.1	
06					3.2	27.5			.0	96 91
06					3.1	27.5			.9	66
06					3.0	27.0		- 4	.3	4
06					7.5	26.0			.2	3
06	. 1240	46.	0 30	/0	7.5	24.1	-	7	. 2	3
DATE	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SO:	DIUM, IS- LVED MG/L S NA)	SODIUM AD- SORP- TION RATIO	POTAS - SIUM, DIS - SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)
JAN										
23	540	420	120	58	3	80	7	11	120	420
23										
23										
23										
23										
23 MAY	550	440	120	62	3	90	7	11	120	430
08	600	470	130	67	3	80	7	12	130	460
08										
08										
08										
08										
08	600	470	130	67	3	70	7	13	130	450
AUG										
06	650	530	140	73	4.	30	8	13	120	480
06										
06		1.55								
06										
06									150	
06	630	480	140	69		10	7	14	150	440

E. V. SPENCE RESERVOIR NEAR ROBERT LEE, TX--Continued

315558100342601 E. V. SPENCE RESERVOIR SITE BC--CONTINUED WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS - PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
JAN								
23	600	5.1	1700	<.10	.40	.010	50	<10
23							117	
23								31
23				<.10	.50	<.010	20	10
23								- Section
23	600	5.2	1700	<.10	.50	.010	20	<10
MAY								
08	650	5.1	1800	<.10	.70	.010	40	<10
08								4 2
08				<.10	.80	.010	40	<10
08								
08								
08	640	5.2	1800	<.10	.80	. 030	20	10
AUG								
06	720	6.6	1900	<.10	.70	.020	70	40
06								Branch
06			1.00					12 13 1
06				<.10	.60	. 020	80	80
06				<.10	.60	.020	50	150
06	680	6.9	1900	<.10	1.1	.050	260	1700

315619100335601 E. V. SPENCE RESERVOIR SITE BL
WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS - SOLVED (PER- CENT SATUR- ATION)
JAN				119			
23	1250	1.00	2820	8.4	5.0	10.2	86
23	1252	10.0	2820	8.4	4.0	10.3	85
23	1254	20.0	2820	8.4	4.0	10.2	84
23	1256	30.0	2850	8.4	4.0	10.1	83
23	1258	35.0	2850	8.4	4.0	10.1	83
MAY							
08	1226	1.00	2900	8.4	19.5	6.3	73
08	1228	10.0	2900	8.3	19.0	6.2	71
08	1230	20.0	2880	8.3	18.5	5.8	66
08	1232	30.0	2880	8.2	18.5	5.7	65
AUG							
06	1256	1.00	3220	8.2	28.0	7.2	99
06	1258	10.0	3190	8.2	28.0	7.2	99
06	1300	20.0	3190	8.2	27.5	6.9	94
06	1302	30.0	3190	8.1	27.5	6.4	87
06	1304	37.0	3270	7.6	27.5	3.0	41

315712100352001 E. V. SPENCE RESERVOIR SITE CC WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	TIME	SAM- PLING DEPTH (FEET)	S PE - C IF IC CON - DUCT - ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
JAN							
23	1310	1.00	2820	8.3	4.5	10.3	86
23	1312	10.0	2820	8.4	3.5	10.3	84
23	1314	20.0	2820	8.4		10.3	84
23	1316	30.0	2820	8.4	3.5	10.3	84
23	1318	38.0	2820	8.4	3.5	10.3	84
MAY.							
08	1245	1.00	2950	8.3	19.5	6.0	69
08	1247	10.0	2940	8.3	19.0	5.7	65
08	1249	20.0	2920	8.2	18.5	5.5	62
08	1251	34.0	2910	8.2	18.5	5.5	62
AUG							
06	1316	1.00	3230	8.2	28.5	7.4	103
06	1318	10.0	3230	8.2	28.0	6.8	94
06	1320	20.0	3230	8.1	27.5	6.4	87
06	1322	30.0	3320	7.9	27.5	3.7	51
06	1324	34.0	3320	7.7	27.5	3.4	46

E. V. SPENCE RESERVOIR NEAR ROBERT LEE, TX--Continued

315810100364901 E. V. SPENCE RESERVOIR SITE DC WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	TIME	SAM- PLING DEPTI (FEE)	G I H A	SPE- CIFIC CON- DUCT- ANCE JMHOS)	,	PH STAN ARD NITS		TEMPER ATURE (DEG C	-	TRANS - PAR - ENCY (SECCHI DISK) (M)	5	YGEN DIS- SOLVE (MG/I	i,	DIS DIS SOLV (PER CEN SATU AT IO	ED T R-
JAN	100		0.0	0670											0.2
23	1336			2670 2670			.3	3.		1.30		10.			83 83
23				2690			. 2	3.				10.			81
23				3940			. 1	4.	500	044		6.			54
MAY						-				No.					74
08				3200 3240			.3	22.		.50		6.			69
08				3650			.7	19.				2.			27
AUG			,	3030		,	• /	13.	,				-		76
06	1344	10.0	0	3330 3400		7	. 2	27. 27.	0	.60	3	7.	0		00 41
06	1346	20.	0	3320		7	. 8	26.	5			2.	1		36
DATE	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCI DIS- SOLV (MG/ AS C	IUM /ED 'L	MAGI SII DIS SOL' (MG AS I	UM, S- VED /L	SOI (N	DIUM, IS- LVED AG/L S NA)	SO	DIUM AD- RP- ION TIO	POTA SIU DIS SOLV (MG/ AS M	JM, - ZED L	ALK LINI FIE (MC AS CAC	TY LLD G/L	SULFATE DIS - SOLVED (MG/L AS SO4)
AN	510	100	100		5.0					-				120	200
23	540	420	120	0.0	59		36	0		7	11			120	380
23		- 22													
23 AY	890	750	190		100		59	90		9	12			140	590
08	680	550	150		75		44	0		8	12			130	500
08			4-4												
08	770	620	170		84		47	70		8	13			150	620
UG 06	660	550	140		75		45	. 0		8	14			110	500
06			140		15		4.				17				
06	670	550	140		77		45	0		8	14			120	510
DATE	CHLO- RIDE, DIS- SOLVE (MG/L AS CI	DIS- SOLVE D (MG/1 AS	A, SU CO ED TU L S	LIDS, M OF NSTI- ENTS, DIS- OLVED	NO	OZ+NOTA (MG/AS N	03 L L	NITRO- GEN, AM- MONIA - ORGANIC TOTAL (MG/L AS N)	+	PHOS- PHORUS, TOTAL (MG/L AS P)	S	RON, DIS- OLVE UG/L S FE	D	MANG NESE DIS SOLV (UG/ AS M	ED L
JAN															
23	560	4.	9	1600		<.	10	.40	0	<.010)	2	0		10
23	-		-										-		
23	-			0500		<.	10	.40	0	<.010			0		50
23 MAY	960	3.	. 4	2500		<.	10	1.2		. 090		4	0	1.	50
08	720	4.	6	2000		<.	10	.70	0	. 030)	4	0		20
08	100					<.	10	.60		. 010		11	0		70
08	850	5.	. 0	2300		<.	10	1.7		.090		6	0	3	00
AUG 06	750	5	0	2000		<.	10	.70	0	.040		10	00		60
06			-	2000		₹:		.80		.060			0		70
06			6	2000		<.		1.3		.110		55			60

08124000 COLORADO RIVER AT ROBERT LEE, TX

LOCATION.--Lat 31°53'07", long 100°28'49", Coke County, Hydrologic Unit 12080008, on left bank 190 ft upstream from bridge on State Highway 208 in Robert Lee, 0.4 mi upstream from Mountain Creek, 2.7 mi downstream from Messbox Creek, 3.7 mi downstream from Robert Lee Dam, and at mile 712.4.

DRAINAGE AREA. -- 15,307 mi², of which 10,260 mi² probably is noncontributing.

WTR YR 1984 TOTAL 1762.70 MEAN 4.82 MAX 191 MIN .00 AC-FT 3500

PERIOD OF RECORD.--October 1923 to December 1927, April 1939 to May 1956, October 1968 to current year. Prior to December 1927, published as "near Robert Lee".

REVISED RECORDS. -- WSP 1723: 1925(M). WRD TX-81-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,771.70 ft National Geodetic Vertical Datum of 1929. Prior to Dec. 31, 1927, nonrecording gage at site 9 mi downstream at different datum. Apr. 18 to Sept. 26, 1939, nonrecording gage, and Sept. 27, 1939, to May 9, 1956, water-stage recorder at site 200 ft downstream at same datum.

REMARKS.--Records good. Flow affected since April 1949 by Lake Colorado City and since July 1952 by Lake J. B. Thomas. Since December 1968, flow has been regulated by E. V. Spence Reservoir (station 08123950). Many diversions above station for municipal, cooling, mining, agricultural, and industrial uses. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--19 years (water years 1924-27, 1940-55) prior to completion of Robert Lee Dam, 207 ft 3 /s (150,000 acre-ft/yr); 16 years (water years 1969-84) regulated, 3.68 ft 3 /s (2,670 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 32,500 ft³/s Sept. 6, 1926 (gage height, 20.20 ft, site and datum then in use), from rating curve extended above 15,000 ft³/s; maximum gage height, 20.63 ft Sept. 9, 1980; no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1907, 26.7 ft Oct. 13, 1957, from floodmarks. Flood in April 1922 reached a stage of 25.5 ft, present datum, from information by local resident.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 980 ft³/s July 20 at 2400 hours (gage height, 7.07 ft); no flow May 11, June 17 to July 2.

		DISCHA	RGE, IN	CUBIC FEET	PER	SECOND, WATER MEAN VALUES	YEAR	OCTOBER 1983	TO SI	EPTEMBER 198	34	
DAY	OCT	NOV	DEC	JAN	FEI	s MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.27	.11	.20	.16	.07	.11	.08	.02	.01	.00	.14	.01
2	.37	.10	.16	.16	.07	.09	.09	.02	.01	.00	.11	.01
3	.53	.10	.16	.13	.06	.11	.08	.02	.01	13.00	.11	.01
4	.69	.11	.24	.13	.06		.07	.02	.01	184.00	.10	.01
5	.90	.12	.26	.13	.06		.07	.02	.01	191.00	.10	.01
6	1.00	.10	.36	.12	.06	.09	.07	.01	.01	3.70	.11	.01
7	1.30	.09	.36	.12	.06	.08	.06	.01	.02	75.00	.10	.01
8	1.40	.09	.23	.33	.07	.08	.05	.01	.02	. 38	.09	.01
9	1.60	.10	.17	.39	.08	.07	.05	.01	.02	.16	.12	.01
10	1.60	.10	.17	.12	.07	.04	.04	.01	.02	.12	.12	.01
11	1.50	.10	.25	.09	.07		.04	.00	.02	70.00	.11	.01
12	1.80	.10	.46	.07	.06	.05	.04	38.00	.01	64.00	.12	.01
13	1.80	.10	.62	.07	.07	.05	.04	160.00	.01	94.00	.12	.01
14	1.70	.10	.83	.06	.07	.05	.04	137.00	.01	99.00	.10	.01
15	1.90	.11	.94	.07	.06	.04	.04	1.80	.01	1.50	.10	.01
16	2.10	.11	.74	.07	.06	.04	.04	.09	.01	.16	149.00	.01
17	2.10	.12	.48	.07	.07	.05	.04	.05	.00	.09	26.00	.01
18	2.10	.13	.36	.07	.07	.06	.04	.06	.00	.05	.13	.01
19	2.40	.13	.34	.08	.07	.07	.05	.05	.00	.03	.05	.01
20	66.00	•16	.28	.07	.07	.11	.04	.04	.00	81.00	.03	.01
21	3.40	.17	.19	.07	.08	.11	.03	.04	.00	79.00	.02	.01
22	.29	.22	.24	.07	.08	.11	.03	.04	.00	.25	.02	.01
23	.09	.30	.16	.07	.07	.12	.04	.04	.00	.02	.01	.01
24	.07	.13	.17	.08	.07		.03	.04	.00	.01	.01	.01
25	.09	.12	.16	.07	.07	.10	.02	.03	.00	.01	.01	.02
26	.07	.10	.18	.07	.06	.06	.02	.03	.00	33.00	.01	.49
27	.06	.10	.16	.06	.08	.07	.02	.03	.00	133.00	.01	.13
28	.05	.12	.16	.07	.09	.06	.02	.02	.00	4.40	.01	.05
29	.06	.16	.22	.07	.11	.08	.02	.01	.00	.19	.01	.05
30	.06	.16	.25	.07		.08	.02	.01	.00	.02	.01	.04
31	.06		.16	.07		.07		.01		.05	.01	
TOTAL	97.36	3.76	9.66	3.28	2.04	2.38	1.32	337.54	.21	1127.14	176.99	1.02
MEAN	3.14	.13	.31	.11	.070		.044	10.9	.007	36.4	5.71	.034
MAX	66	.30	.94	.39	.11	.12	.09	160	.02	191	149	.49
MIN	.05	.09	.16	.06	.06		.02	.00	.00	.00	.01	.01
AC-FT	193	7.5	19	6.5	4.0		2.6	670	.4	2240	351	2.0
CAL YR	1983 TOTAL	1073.65	MEAN	2.94 MAX	187	MIN .00	AC-FT	2130				

08126380 COLORADO RIVER NEAR BALLINGER, TX

LOCATION.--Lat 31°42'55", long 100°01'34", Runnels County, Hydrologic Unit 12090101, at left downstream end of bridge on Farm Road 2111, 0.4 mi upstream from Rocky Creek, 5.0 mi northwest of Ballinger, and at mile 665.8.

DRAINAGE AREA. -- 16,358 mi2, approximately, of which 10,260 mi2 probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--June 1907 to September 1979 (published as "at Ballinger", station 08126500), October 1979 to current year. Monthly discharge only for some periods published in WSP 1312. Gage-height records collected in this vicinity from 1903-29 are contained in reports of the National Weather Service.

REVISED RECORDS.--WSP 1118: Drainage area. WSP 1512: 1916-17, 1919-20, 1921(M), 1922-25, 1928(M), 1930(M). WSP 1712: 1935, 1954-55(M). WDR TX-78-3: 1975-77.

GAGE.--Water-stage recorder. Datum of gage is 1,606.51 ft National Geodetic Vertical Datum of 1929. Prior to Nov. 29, 1930, nonrecording gages at several sites and at various datums near site 5.4 mi downstream. Nov. 29, 1930, to May 1, 1975, water-stage recorder at site 6.2 mi downstream and May 1, 1975, to Sept. 30, 1979, water-stage recorder at site 5.4 mi downstream, both at datum 12.77 ft lower.

REMARKS.--Water-discharge records good. Diversions above station for irrigation, municipal supplies, and oilfield operation. Flow is affected by E. V. Spence and Oak Creek Reservoirs (see stations 08123950 and 08125500) and at times by discharge from floodwater-retarding structures in the Kickapoo and Valley Creeks drainage basins.

AVERAGE DISCHARGE.--61 years (water years 1908-68) prior to completion of Robert Lee Dam, 336 ft³/s (243,400 acre-ft/yr); 16 years (water years 1969-84) partially regulated, 46.9 ft³/s (33,980 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 75,400 ft³/s Sept. 18, 1936 (gage height, 28.6 ft, at former site and datum); no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1882, about 36 ft sometime in 1884, at former site and datum, from information by local residents. Flood of Aug. 6, 1906, reached a stage of about 32.0 ft, at former site and datum, from floodmarks (backwater from Elm Creek).

EXTREMES FOR CURRENT YEAR. -- Maximum discharge, 1,560 ft3/s Sept. 29 at 0330 hours (gage height, 10.78 ft); no flow at times.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984
MEAN VALUES OCT NOV DEC MAY JUN JUL AUG SEP DAY JAN FEB MAR APR .19 .00 3.0 2.70 2.30 2.00 0 43 2.7 1.50 . 36 2.70 2.7 1.50 0 .00 .39 2.7 2.40 1.20 3 .50 2.6 2.70 2.30 1.60 1.10 .05 .00 0 0 .00 2.8 0 7.80 4 5 .45 356.0 2.60 2.40 2.10 1.00 .19 .00 2.50 2.20 0 0 20.00 .40 239.0 1.30 1.30 .08 .00 2.20 0 0 20.00 1.30 112.00 6 .51 131.0 2.5 2.10 1.20 .11 2.4 2.20 0 0 21.00 .52 2.50 11.00 38.0 1.00 .16 2.50 4.9 2.00 2.10 .09 0 20.00 15.0 1.50 1.40 91.0 2.00 1.10 1.50 . 24 0 0 15.00 .95 0 10 .21 4.7 .98 41.0 1.80 .92 2.00 .50 .63 0 1.80 1.30 0 0 .06 1.00 12 .55 2.9 1.20 .48 .55 .33 1.80 23.0 1.60 0 0 .09 Õ 0 .08 1.40 14.0 1.40 .57 0 10.0 1.10 1.10 .39 15 .62 2.5 2.40 2.50 .27 .36 .33 0 0 .10 8.3 .88 .05 .63 2.70 .60 .30 16 2.60 2.4 2.70 1.50 .27 .38 0 0 .04 6.4 .82 .90 18 .80 2.4 2.80 5.5 .85 1.30 .21 26.00 .41 0 0 .02 .71 2.60 19 0 .72 . 27 .46 .00 1.30 9.90 20 29.00 1.9 2.50 4.5 .93 1.20 .34 2.50 .47 0 Ŏ .00 0 .00 21 379.00 2.2 2.70 0 4.2 .78 1.00 . 21 .83 .35 22 119.00 2.4 2.70 3.8 1.20 .36 .00 .02 .84 .38 2.6 23 65.00 2.50 3.7 1.40 3.30 . 33 .20 .00 0 0 .03 24 2.6 29.00 2.50 3.6 1.00 4.00 .44 .35 .00 0 0 -04 2.40 59.00 .00 0 0 .10 6.4 1.00 1.40 -45 .41 2.40 2.50 2.70 26 27 35.00 6.3 5.5 1.20 .87 .20 .33 .00 0 0 5.80 2.30 0 12.00 4.4 5.2 1.20 .08 .33 .00 0 14.00 6.20 3.0 4.00 .00 15.00 1.80 .26 6.20 29 2.8 2.70 4.2 2.50 2.70 .48 .27 .04 0 0 160.00 2.7 3.8 .16 30 5.10 2.70 2.90 .15 .02 0 0 13.00 3.80 2.00 31 2.70 ---0 0 ---TOTAL. 72.21 758.42 857.5 0 0 314.07 325.0 44.06 54.49 22.54 47.94 130.75 .000 .000 MEAN 24.5 28.6 2.33 10.5 .75 1.55 10.5 1.52 1.76 4.36 379 356 MAX 2.8 91 2.5 4.0 26 112 .00 .00 160 MIN 21 1 0 . 93 2.4 .72 87 .08 .05 - 00 .00 00 1500 AC-FT 1700 143 645 87 108 45 95 259 .00 .00 623

CAL YR 1983 TOTAL 3859.34 MEAN 10.6 MAX 379 MIN .00 AC-FT 7650 WTR YR 1984 TOTAL 2626.98 MEAN 7.18 MAX 379 MIN .00 AC-FT 5210

08126380 COLORADO RIVER NEAR BALLINGER, TX -- Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Chemical analyses: October 1961 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1961 to current year. WATER TEMPERATURES: October 1961 to current year. SUSPENDED SEDIMENT DISCHARGE: January 1978 to September 1981.

REMARKS.--Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and regression relationships between each chemical constituent and specific conductance. Regression equations developed for this station may be obtained from the Geological Survey District office upon request.

EXTREMES FOR PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE: Maximum daily, 13,500 micromhos May 3, 1963; minimum daily, 244 micromhos Sept. 9, 1980. WATER TEMPERATURES: Maximum daily, 39.0°C July 3, 1977; minimum daily, 0.0°C Jan. 9-11, 1973. SEDIMENT CONCENTRATIONS (1978-81): Maximum daily mean, 3,740 mg/L Sept. 9 1980; minimum daily mean, 4 mg/L Feb. 2,

1980.
SEDIMENT LOADS (1978-81): Maximum daily, 94,100 tons Aug. 3, 1978; minimum daily, 0 tons on many days during 1978 and 1980-81.

EXTREMES FOR CURRENT YEAR .--

SPECIFIC CONDUCTANCE: Maximum daily, 5,160 micromhos May 5; minimum daily, 350 micromhos Oct. 21, Nov. 4. WATER TEMPERATURES: Maximum daily, 35.0°C June 29; minimum daily, 1.0°C Dec. 19, Jan. 21.

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE		STREAM- (FLOW, (INSTAN- I CANEOUS A	NCE	CEMPER- ATURE		HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
OCT 19 FEB	1215	.70	4790	23.0	2200	2100	550	210	360
23	1335	1.8	3700	14.0	1700	1500	430	150	250
MAR 28 MAY	1130	3.5	3670	15.5	1500	1400	370	150	300
02 JUN	1355	.48	4890	22.0	2400	2200	600	220	390
13 SEP	1130	.26	2790	30.0	1200	1000	320	100	170
11	1045	.10	4240	27.0	1700	1500	440	140	390
DATE	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	DIS- SOLVE (MG/L	RIDE, DIS- D SOLVE (MG/L	DIS- SOLVEI D (MG/L AS	CONST	F I- S, - ED
ОСТ 19	3	6.3	190	1900	670	•5	0 9.9	38	00
FEB 23	3	5.8	190		450	.5			
MAR 28	3	7.6	150	1400	510	.4	0 3.8	3. 28	00
MAY 02 JUN	4	6.9	210	2000	690	.5	0 8.8	40	00
13 SEP	2	6.1	180	920	330	.5	0 13	20	00
11	4	9.1	160	1300	730	.6	0 15	31	00

COLORADO RIVER BASIN 75

08126380 COLORADO RIVER NEAR BALLINGER, TX--Continued

MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1983 TO SEPTEMBER 1984

MONTH	YEAR	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
OCT.	1983	758.42	661	415	851	100	204	140	295	210
NOV.	1983	857.5	524	299	693	82	189	82	189	140
DEC.	1983	72.21	1970	1270	248	290	57	470	91	660
JAN.	1984	325.0	2190	1430	1260	320	285	540	472	740
FEB.	1984	44.06	3230	2320	276	460	55	1000	121	1300
MAR.	1984	54.49	4000	3030	446	560	82	1400	212	1800
APR.	1984	22.54	4260	3290	200	590	36	1600	98	1900
MAY	1984	47.94	4450	3490	452	610	79	1700	224	2100
JUNE	1984	130.75	587	349	123	90	32	110	37	170
JULY	1984	0.00	*	*	0.00	*	0.00	*	0.00	*
AUG.	1984	0.00	*	*	0.00	*	0.00	*	0.00	*
SEPT	1984	314.07	2520	1830	1560	360	304	820	697	1000
TOTAL		2626.98	**	**	6100	**	1320	**	2440	**
WTD.A	VG.	7.2	1270	860	**	190	**	340	**	460

	SPECI	FIC CONDU	CTANCE	(MICROMHOS/CM	AT 25	DEG. C), IVALENT	WATER YEAR	R OCTOBER	1983 TO S	SEPTEMBER	1984	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	4870	1370	1980	2700	2630	3920	3920	4900	4600			
2	4900	1410	2040	2640	2650	3650	3940	4970	4680			
2 3	4940	1500	2130	2 72 0	2660	3680	3970	4900				
4	4930	350	1750	2660	2670	3720	3980	4950				5090
5	4920	400	1450	2 72 0	2740	3740	4100	5160				4590
6	4910	520	1640	2830	2750	3790	4210	5120	400			4540
7	4900	650	1600	2850	2800	3 82 0	4050	5060	1050			4430
8	4810	720	2040	2720	2860	3850	4100	5070	1380			4340
9	4860	780	2700	2040	2930	3890	4140	5110	1850			4210
10	4810	930	2830	2180	3010	3910	4250	5100	2260			4140
11	4900	1040	2900	2250	3080	3920	4590	5130	2550			4370
12	4880	1190	1810	2490	3120	3940	4540	5110	2760			4490
13	4890	1170	2380	2520	3160	4010	4700	5140	3110			4570
14	4860	1390	2580	2560	3340	4030	4640	5150	3000			4670
15	4880	1500	2640	2010	3430	4150	4630	5140	3060			4680
16	4870	1780	1630	1600	3540	4280	4660	5150	3240			4740
17	4840	2020	1870	1500	3570	4400	4640	5140	3400			4760
18	4800	2050	2230	1590	3600	4440	4660	4500	3540			4770
19	4810	2030	2770	1670	3610	4510	4620	3990	3660			4//0
20	3990	2210	1860	1780	3610	4540	4640	4200	3650			
21	350	2220	1380	1850	3600	4600	4690	4380	3810			
22	360	2280	1460	1990	3660	4560	4600	4420				4820
23	400	2320	1540	2020	3700	3870	4670	4470				4840
24	740	2460	1670	2050	3830	3900	4650	4510				4790
25	790	2540	1750	2070	3940	4150	4690	4540				4770
26	820	1750	1860	2150	3990	4320	4740	4530				4130
27	1010	1580	1470	2330	4060	4170	4790	4580				3340
28	1140	1560	1310	2320	4180	3670	4810	4590				3040
29	1180	1650	2040	2410	4270	4010	4840	4580	4500			1150
30	1250	1770	2850	2530		3830	4880	4630	4650			1200
31	1310		2710	2620		3890	4000	4650	4030			1200
MEAN	3420	1500	2030	2270	3340	4040	4480	4800	3060			4190

COLORADO RIVER BASIN

08126380 COLORADO RIVER NEAR BALLINGER, TX--Continued

		TEM	IPERATURE,	WATER	(DEG. C),	WATER YEAR ONCE-DAILY	OCTOBER	1983 TO	SEPTEMBER	1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	27.0	21.0		5.0	12.5		23.0	22.0	29.0			
2	27.5		8.5	4.5	12.0	15.5	18.5	25.0	27.0			
3	28.5		8.0	6.0	13.0	16.0	20.0	27.0				
4	28.0	19.0		8.5	13.0	15.5	20.0	27.0				28.0
5	27.0	18.0	9.5	10.0	12.0	12.0		29.5				27.5
6	27.0	19.0	10.0	11.5	13.0	15.0		30.0	25.5			27.0
7	27.5		11.0		13.0	18.0		22.0				28.0
8	25.0	19.0	12.0		13.0	16.0	23.0	21.5	29.0			31.0
9	22.5	17.0	12.0	9.0	14.5	16.0	25.0	25.0				
10	24.0	14.5	11.0	8.0	16.0	14.0	24.0	26.5	30.0			31.0
11	22.5	15.0		8.5	18.5	16.0	24.0	26.0	29.0			31.0
12	20.0	17.0	11.0	8.0	17.0	21.0		26.0	29.0			31.5
13	21.5	19.0	11.0	5.0	17.0	20.0		30.0	29.0			31.5
14	22.0	16.0	10.5	4.5	16.0	20.0	21.0	29.0	29.0			31.0
15	17.5	15.5	9.5		16.0	21.0	21.0	25.0	29.0			28.0
16	22.0	15.0	7.0	3.0	16.0	18.0	21.0	24.0	29.5			24.0
17	23.0	15.0	7.0	3.0	15.0	18.0	23.0	25.0	29.5			28.0
18	22.0			3.0	15.0		25.0	25.0				
19	22.0	13.5	1.0	2.0	14.5		26.0	27.5	31.0			
20	19.5	14.0		1.5	14.5		23.0	28.5	31.5			
21	23.5	14.0		1.0	15.0			28.0				
22	22.0	13.0		4.5				30.0				27.5
23	22.0	12.5		10.0		20.0	23.0	29.0				27.5
24	15.0	11.0		10.0	15.0		27.5	27.0				25.5
25	17.5	11.0		10.5	14.5	2	28.0	28.0				
26	20.0		4.0	12.5			28.0	28.0				18.0
27	18.5	9.5	4.0	12.5			28.0	28.0				20.5
28	19.0	9.0	2.0	14.0	11.0	16.0	27.0	28.0				17.0
29	20.0	8.5	2.0	14.0	12.5	18.0	27.0	28.5	35.0			16.0
30	20.0	8.0	4.0	10.0		18.0	24.0	28.5	31.5			18.0
31	20.0		4.0	11.0		21.0		28.5				
MEAN	22.5	14.5	7.5	7.5	14.5	17.5	24.0	27.0	29.5			26.0

COLORADO RIVER BASIN 08127000 ELM CREEK AT BALLINGER, TX

LOCATION.--Lat 31°44'57", long 99°56'51", Runnels County, Hydrologic Unit 12090101, on right bank 1,000 ft upstream from storage dam at Ballinger and 1.9 mi upstream from mouth.

DRAINAGE AREA. -- 450 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- April 1932 to current year.

REVISED RECORDS.--WSP 1442: 1935, 1946, 1954. WRD TX-81-3: Drainage area.

GAGE .-- Water-stage recorder and masonry dam control. Datum of gage is 1,617.72 ft National Geodetic Vertical Datum

REMARKS.--Water-discharge records good except those below 100 ft³/s, which are fair. Stage-discharge relation during period of low flow affected by wind action and occasional accumulation of drift on dam. The city of Winters diverts water for municipal use from Lake Winters (capacity, 8,374 acre-ft at elevation 1,790 ft). Prior to June 1982, capacity was 3,060 acre-ft.

AVERAGE DISCHARGE. -- 52 years (water years 1933-84), 45.9 ft3/s (1.39 in/yr), 33,250 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD .-- Maximum discharge, 50,000 ft3/s Oct. 13, 1957 (gage height, 14.20 ft, from floodmark); no flow at times.

Highest stage, not affected by backwater from the Colorado River since at least 1904, was that of Oct. 13, 1957, from information by local residents.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood in August 1906 reached a stage of 14.5 ft, affected by backwater from Colorado River.

EXTREMES FOR CURRENT YEAR .-- Maximum discharge, 469 ft3/s Sept. 26 at 0630 hours (gage height, 4.44 ft); no flow for many days.

		DISCHARGE,	, IN CUB	IC FEET		ND, WATER YEAR	ROCTOBER	1983	TO SEPTEMBER	1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	.00	.16	.90	.97	1.1	.46	.00	.00	.00	.00	.00
2	.00	.00	.20	1.0	1.1	1.2	.53	.00	.00	.00	.00	.00
3	.00	.00	.31	1.2	1.0	1.1	.46	.00	.00	.00	.00	.00
3	.00	.00	.33	1.4	1.0	1.2	.43	.00	.00	.00	.00	.00
5	.00	.00	.39	1.4	1.0	1.2	.41	.00	:00	.00	.00	.00
6	.00	.00	.35	1.5	.84	1.0	.44	.00	23	.00	.00	.00
7	.00	.00	.33	1.6	.77	1.0	.58	.00	6.5	.00	.00	.00
8	.00	.00	.33	2.6	.72	.89	.69	.00	1.2	.00	.00	.00
9	.00	.02	.39	11	.81	.74	.63	.00	.52	.00	.00	.00
10	.00	.01	.43	6.7	.84	.69	.52	.00	.34	.00	.00	.00
11	.00	.00	. 44	5.0	. 91	.80	.35	.00	.26	.00	.00	.00
12	.00	.01	.43	2.6	.80	1.2	.26	.00	.16	.00	.00	.00
13	.00	.02	.50	1.7	.74	.96	.19	.00	.06	.00	.00	.00
14	.00	.03	.41	1.5	.72	.98	.14	.00	.02	.00	.00	.00
15	.00	.02	.43	1.4	.67	1.2	.09	.00	.00	.00	.00	.00
16	.00	.02	.53	1.4	.49	1.1	.05	.00	.00	.00	.00	.00
17	.00	.02	.57	1.4	.53	1.0	.03	.00	.00	.00	.00	.00
18	.00	.03	.64	1.3	.65	.93	.01	.00	.00	.00	.00	.00
19	.00	.04	.62	1.2	.61	.59	.00	.00	.00	.00	.00	.00
20	.00	.03	.68	1.2	.85	.41	.00	.00	.00	.00	.00	.00
21	.00	.03	.81	1.1	.92	.43	.00	.00	.00	.00	.00	.00
22	.00	.04	.86	1.2	.88	.41	.00	.00	.00	.00	.00	.00
23	.00	.08	.94	1.2	.95	1.1	.00	.00	.00	.00	.00	.00
24	.00	.09	.86	1.4	.95	2.9	.00	.00	.00	.00	.00	.00
25	.00	.09	.84	1.4	.95	5.2	.00	.00	.00	.00	.00	.00
						5.2	.00	.00		.00	.00	
26 27	.00	.12	.93	1.4	1.3	2.6	.00	.00	.00	.00	.00	145
	.00		1.1	1.4	.86	1.2	.00	.00	.00	.00	.00	20
28	.00	.11	1.0	1.4	.89	.34	.00	.00	.00	.00	.00	3.6
29	.00	.12	. 93	1.4	1.0	.39	.00	.00	.00	.00	.00	1.2
30	.00	.15	.85	1.1		.46	.00	.00	.00	.00	.00	. 47
31	.00		.80	.95		. 51		.00		.00	.00	
TOTAL	.00		18.39	61.95	24.72	34.83	6.27	.00	32.06	.00	.00	170.27
MEAN	.000	.040	.59	2.00	.85	1.12	. 21	.000	1.07	.000	.000	5.68
MAX	.00	.15	1.1	11	1.3	5.2	.69	.00	23	.00	.00	145
MIN	.00	.00	.16	.90	.49	.34	.00	.00	.00	.00	.00	.00
CFSM	.000	.000	.001	.004	.002	.002	.000	.000	.002	.000	.000	.01
IN.	.00	.00	.00	.01	.00	.00	.00	.00	.00	.00	.00	.01
AC-FT	.00	2.4	36	123	49	69	12	.00	64	.00	.00	338
CAL YR	1983 TOTA	AL 1628.82	MEAN	4.46	MAX 124	MIN .00 C	FSM .01	IN.	.13 AC-FT	3230		

WTR YR 1984 TOTAL MAX 145 349.69 IN .03 MEAN .96 MIN .00 CFSM .002

08127000 ELM CREEK AT BALLINGER, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Chemical analyses: October 1957 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1967 to current year. WATER TEMPERATURES: October 1967 to current year.

REMARKS.--Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and regression relationships between each chemical constituent and specific conductance. Regression developed for this station may be obtained from the Geological Survey District office upon request.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 4,220 micromhos Sept. 12, 17, 1970; minimum daily, 244 micromhos Aug. 4, 1978.
WATER TEMPERATURES: Maximum daily 34.5°C Aug. 14, 1973; minimum daily, 0.0°C Jan. 8, 1968, Jan. 10, 13, 1973, and Jan. 11, 14, 1982.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum daily, 3,470 micromhos Apr. 16, 18; minimum daily, 730 micromhos Sept. 30.
WATER TEMPERATURES: Maximum daily, 29.0°C June 8, 10; minimum daily, 1.0°C Dec. 23, 24.

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	TIME	STRE FLO INST TANE (CF	OW, CON CAN- DUC COUS AND	FIC N- CT- TE CE A	MPER- TURE PEG C)	HARD- NESS (MG/L AS CACO3)	HAR NES NONC BONA (MG CAC	S, AR- TE /L	CALC DIS SOL (MG AS	VED SOL	UM, SODIUM, S- DIS- VED SOLVED /L (MG/L
JAN 23 MAR	1150) 1	.2 2	980	6.0	930		750	160	130	270
08 JUN	0950)	.37	3250	15.5	1100		890	180	150	310
13	1225	5	.05	3360	30.0	1000		900	170	150	320
DA	.TE	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3	SULF DIS SOI (MG	FATE R S- D VED SO	HLO- IDE, IS- OLVED MG/L S CL)	RII Di SOI	JO- DE, IS- LVED G/L F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)
JAN 23 MAR		4	6.3	19	0 53	0 5	90		.70	8.5	1800
		4	5.7	18	0 59	0 6	70		.40	3.7	2000
	• • •	4	6.9	14	0 60	0 7	10		.80	3.7	2000

MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1983 TO SEPTEMBER 1984

MONTH	YEAR	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)		DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
OCT.	1983	0.00	*	*		0.00	*	0.00	*	0.00	*
NOV.	1983	1.20	2920	1740		5.7	620	2.0	420	1.4	880
DEC.	1983	18.39	2960	1780		88	630	31	430	21	890
JAN.	1984	61.95	2850	1700		285	600	101	410	68	860
FEB.	1984	24.72	3010	1810		121	650	43	440	29	910
MAR.	1984	34.83	3140	1890		177	680	64	460	44	950
APR.	1984	6.27	3370	2040		35	750	13	510	8.6	1000
MAY	1984	0.00	*	*		0.00	*	0.00	*	0.00	*
JUNE	1984	32.06	3110	1870		162	670	58	460	40	940
JULY	1984	0.00	*	*		0.00	*	0.00	*	0.00	*
AUG.	1984	0.00	*	*		0.00	*	0.00	*	0.00	*
SEPT	1984	170.27	1120	640		294	190	90	130	60	320
TOTAL		349.69	**	**	1	200	**	402	**	272	**
WTD.AV	/G.	0.96	2090	1240		**	430	**	290	**	620

08127000 ELM CREEK AT BALLINGER, TX--Continued

	SPECIFIC	CONDUCT	ANCE	(MICROMHOS/CM	AT 25	DEG. C)	WATER YEAR	OCTOBER	1983 TO	SEPTEMBER	1984	
DAY	OCT	NOV	DEC	JAN	FEB	UIVALENT MAR	MEAN APR	MAY	JUN	JUL	AUG	SEP
1			3000	2860	3050	3030	3300					
2	4		3020 3060	2830 2800	3030 3010	3070 2810	3310 3350					
3			3010	2950	3000	3080	3360					
5			3040	2960	3020	3090	3370					
6			3050 2950	2970 2960	3030 3020	3100	3380		3030 3310			
7			3040	2950	3040	3110 3100	3360 3370		3320			
9		2960 2990	3030 3050	2500 2750	3030 3020	31 00 3070	3380 3400		3320 3310			
11 12		2960	3060 3050	2910 2930	2980 3010	2840 3070	3390 3400		3320 3330			
13		2930	3070	3010	3030	3120	3420		3360			
14 15		2910 2940	3090 3070	3000 2980	3050 3060	3130 3140	3440 3450		3340			
16		2910	3060	2960	3080	3120	3470					
17		2890	3070	2950	3070	3110	3460					
18		2860	3080	2940 2930	3050 3060	3130	3470					
19 20		2840 2880	3090 2590	2950	3040	3090 3160						
21		2900	1920	2960	3060	3190						
22		2910 2920	1800	2970 2980	3050 3080	3180						
23 24		2930	2760 3060	2990	2840	3140 3080						
25		2940	3220	3000	2810	3260						
26		2920	3210	3030	2820	3280						1130
27 28		2950 2870	3170 3190	3040 3020	3080 3060	3270 3280						1120 950
29		2950	3200	3000	3080	3250						890
30 31		2910	3190 3180	3010 3020		3270 3280						730
MEAN		2920	2980	2940	3020	3130	3390		3290			964
		TEMPE	RATURI	E, WATER (DEG	. C),	WATER YEA	AR OCTOBER 1	983 TO SE	PTEMBER	1984		
DAY	OCT	NOV	DEC	JAN	FEB	ONCE-DA:	I LY APR	MAY	JUN	JUL	AUG	SEP
1			12.0	5.0	11.0	11.0	11.0					
2			13.0	6.0	10.0	11.0						
3			15.0	5.0 8.0	11.0	11.0 11.0	18.0 17.0					
2 3 4 5			13.0	9.0	10.0	13.0	20.0					
6			12.0	8.0	9.0	12.0	16.0					
7			10.0	8.0	10.0	13.0	19.0		28.0 29.0			
6 7 8 9			12.0	8.0 7.0	11.0	13.0 11.0	18.0 20.0		27.0			
10			13.0	7.0	11.0	11.0	17.0		29.0			
11			14.0	9.0	10.0	15.0	19.0		27.0			
12			15.0	7.0 8.0	11.0	14.0	17.0		27.0			
14 15			14.0	9.0 8.0	10.0	16.0 16.0	19.0 20.0		26.0			
16 17			8.0 5.0	7.0 8.0	10.0	12.0 15.0	19.0 19.0					
18			3.0	5.0	11.0	16.0	21.0					
19 20		16.0	4.0 3.0	5.0 6.0	11.0	11.0 12.0						
21		17.0	2.0	6.0		12.0						
22		16.0	2.0	9.0	10.0							
23		14.0	1.0	8.0 10.0	10.0	15.0 14.0						
24 25		13.0	3.0	10.0	11.0	15.0						
26		14.0	3.0	10.0	10.0	14.0						16.0
27 28		14.0	3.0	10.0	10.0	15.0 15.0	111					16.0 17.0
29		12.0	4.0	10.0		14.0						15.0
30 31		14.0	4.0	9.0		16.0 16.0						15.0
			3.0		10.5	10.0			07.5			16.0

8.0 10.5 13.5 18.0

27.5

16.0

14.5

8.0

MEAN

08128000 SOUTH CONCHO RIVER AT CHRISTOVAL, TX

LOCATION.--Lat 31°11'15", long 100°30'06", Tom Green County, Hydrologic Unit 12090102, on left bank 1,000 ft downstream from U.S. Highway 277 bridge, 9.5 mi upstream from Twin Buttes Dam, and 24.7 mi upstream from mouth.

DRAINAGE AREA. -- 412.6 mi², of which 58.6 mi² probably is noncontributing.

PERIOD OF RECORD .-- February 1930 to current year.

REVISED RECORDS.--WSP 1118: 1943(M). WDR TX-81-3: Drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 2,010.22 ft National Geodetic Vertical Datum of 1929. Prior to July 17, 1930, nonrecording gage at same site and datum. July 17, 1930, to Nov. 15, 1977, water-stage recorder at site 160 ft upstream at same datum.

REMARKS.--Records good. Low flow is materially affected by diversion to South Concho Irrigation Co.'s canal (station 08127500) 900 ft upstream from station. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE. -- 54 years, 32.3 ft3/s (23,400 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 100,000 ft³/s July 23, 1938 (bage height, 21.95 ft, from floodmark), from rating curve extended above 15,100 ft³/s on basis of slope-area measurement of 80,100 ft³/s; no flow Feb. 28, Mar. 1, 1955.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1882, about 23 ft Aug. 6, 1906 (discharge, 115,000 ft³/s), from rating curve extended as noted above, from information by local residents.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 9.7 ft^3/s Nov. 17 at 0030 hours (gage height, 1.91 ft), no peak above base of 160 ft^3/s ; minimum daily, 2.3 ft^3/s June 12-22.

		DISC	HARGE, II	CUBIC FE		COND, WAS		OCTOBER 19	83 TO SEP	TEMBER 19	984	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	4.6 5.1 5.1 5.1	4.3 3.6 3.6 4.0 5.4	8.3 8.3 8.3 8.3	8.3 8.3 8.3 8.3	6.9 6.9 6.9 6.9	8.3 7.6 6.9 8.3	8.2 6.9 6.9 8.0 8.3	5.7 5.5 5.1 5.1 4.8	2.6 2.3 2.3 3.1 3.6	2.7 2.7 2.7 2.7 2.7	3.6 3.8 4.6 4.6	4.0 4.0 3.6 3.6 3.6
6 7 8 9	5.1 5.1 5.1 5.7 5.7	5.9 5.1 5.1 5.1	8.3 8.3 8.3 8.3	8.1 7.6 8.2 9.0 6.9	6.9 6.9 6.9 6.9	8.3 7.6 7.6 7.6 7.6	8.3 7.9 5.3 5.1 4.5	4.5 4.0 3.6 3.6 3.6	3.6 3.6 3.2 3.1 3.1	2.7 2.7 2.7 2.7 2.7	4.1 3.6 3.6 3.6 3.6	3.6 3.5 3.1 3.1
11 12 13 14 15	5.7 5.7 5.1 5.1	5.1 5.1 5.1 5.1 5.5	8.3 8.3 8.3 8.3	6.9 6.9 6.9 6.9	6.9 6.9 6.9 6.9	7.6 7.6 7.6 7.6	4.0 4.0 5.1 5.1	3.1 3.6 4.0 4.0	2.4 2.3 2.3 2.3 2.3	2.7 2.7 2.7 2.8 2.8	3.6 3.6 3.6 3.6 4.1	3.1 3.1 3.1 3.1
16 17 18 19 20	5.7 5.4 4.6 6.2	7.7 9.6 7.2 6.9	8.3 8.3 8.3 8.3	6.9 6.9 6.9 6.9	6.9 6.9 6.9 6.9	6.9 6.9 6.9 5.7	5.1 5.1 5.1 5.1	4.0 4.0 4.0 4.0	2.3 2.3 2.3 2.3 2.3	2.8 2.9 2.9 2.9 2.9	5.3 4.1 3.6 3.6 3.6	3.1 3.1 3.1 3.1 3.1
21 22 23 24 25	5.1 5.1 5.1 5.1	6.9 7.0 8.3 8.3 7.9	8.3 8.3 8.3 8.3	6.9 6.9 6.9 6.9	6.9 6.9 6.9 6.9	5.1 6.9 7.6 6.9 6.9	5.1 5.1 5.1 5.1	4.0 4.0 4.0 4.0 3.8	2.3 2.3 2.7 2.7 2.7	3.0 3.0 3.1 3.1 3.1	3.6 3.6 3.6 3.6	2.7 2.7 2.7 2.7 2.7
26 27 28 29 30 31	5.1 5.1 4.6 4.6 4.6	7.6 7.6 8.0 8.3 8.3	8.3 8.3 8.3 8.3 8.3	6.9 6.9 6.9 6.9	8.3 7.6 7.6 7.6	6.9 6.2 5.6 6.1 7.6 8.3	5.1 5.1 5.1 5.1	3.1 3.1 5.3 4.7 4.0 3.5	2.7 2.7 2.7 2.7 2.7	3.1 3.8 4.0 4.0 4.0	3.6 4.0 4.0 4.0 4.0	2.7 2.7 3.0 3.6 3.6
TOTAL MEAN MAX MIN AC-FT	160.1 5.16 6.2 4.6 318	189.6 6.32 9.6 3.6 376	257.3 8.30 8.3 8.3 510	226.2 7.30 9.0 6.9 449	203.6 7.02 8.3 6.9 404	221.6 7.15 8.3 5.1 440	169.5 5.65 8.3 4.0 336	126.8 4.09 5.7 3.1 252	79.8 2.66 3.6 2.3 158	93.3 3.01 4.0 2.7 185	119.0 3.84 5.3 3.6 236	95.8 3.19 4.0 2.7 190
CAL YR WTR YR						6 MIN 2	2.2 AC-F	T 6850 FT 3850				

81 08128400 MIDDLE CONCHO RIVER ABOVE TANKERSLEY. TX

LOCATION.--Lat 31°25'38", long 100°42'39", Irion County, Hydrologic Unit 12090103, on left bank 0.3 mi upstream from East Rocky Creek, 0.5 mi southwest of Tullos Ranch Headquarters, 6.7 mi northwest of Tankersley, and 20.9 mi upstream from mouth.

DRAINAGE AREA. -- 2,084 mi2, of which 968 mi2 probably is noncontributing.

PERIOD OF RECORD .-- March 1961 to current year.

REVISED RECORDS. -- WDR TX-81-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,986.47 ft National Geodetic Vertical Datum of 1929.

REMARKS .-- Records good. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE .-- 23 years, 14.9 ft3/s (10,800 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD .-- Maximum discharge, 15,500 ft3/s Sept. 21, 1974 (gage height, 24.98 ft); no flow at

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1900, 29.5 ft Sept. 26, 1936. A flood in 1900 reached the same stage, from information by local resident.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 1,700 ft3/s and maximum (*):

Dat	е	Time	Discharge (ft ³ /s)	Gage height (ft)
Oct. Sept.	7.7	1830 0600	*2,760 2,010	13.39 12.21

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

Minimum discharge, no flow for many days.

					ME	AN VALUES	3	0102211 17				
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	15.0	1.2	1.9	1.9	2.1	1.70	.36	0	.0	0	.00
2	.00	15.0	1.2	2.1	1.9	2.1	1.70	.39	0	.0	0	.00
3	.00	15.0	1.3	2.5	1.9	2.1	1.60	.54	0	.0	0	.00
4	.00	26.0	1.6	2.6	1.9	2.1	1.30	.54	0	.0	0	.00
5	.00	37.0	1.7	2.8	1.9	2.2	1.20	• 52	0	.0	0	.00
6	.00	51.0	1.9	3.0	1.9	2.2	1.20	.56	0	.0	0	.00
7	.00	25.0	2.1	3.0	1.9	2.2	1.30	. 52	0	.0	0	.00
8	.00	13.0	2.1	3.9	1.9	2.2	1.50	.51	0	.0	0	.00
9	134.00	14.0	2.3	6.2	1.9	2.2	1.30	.44	0	.0	0	.00
10	10.00	9.2	2.5	6.7	1.9	2.2	1.20	.36	0	.0	0	.00
11	3.80	7.4	2.5	5.8	2.0	2.3	1.00	.32	0	.0	0	.00
12	1.50	6.8	2.8	4.2	2.1	2.3	1.00	.31	0	.0	0	.00
13	.65	7.5	2.8	3.4	1.9	2.3	.90	.28	0	.0	0	.00
14	.33	9.9	2.8	3.2	1.8	2.3	.90	.27	0	.0	0	.00
15	.14	9.3	3.0	3.3	2.0	2.3	. 82	.20	0	.0	0	.00
16	.04	8.2	3.2	3.0	2.1	2.3	.81	.18	0	.0	0	.00
17	.09	6.8	3.0	3.0	2.1	2.4	. 74	.24	0	.0	0	.00
18	39.00	5.7	3.1	3.0	2.0	2.4	.62	.28	0	.0	0	.00
19	7.10	5.3	2.8	3.0	2.1	2.4	. 52	.28	0	.0	0	.00
20	1210.00	4.6	2.5	2.8	2.0	2.4	.48	.24	0	.0	0	.00
21	378.00	3.9	2.0	2.8	1.3	2.4	.33	.25	0	.0	0	.00
22	74.00	4.1	1.9	2.6	1.3	2.4	.32	.27	0	.0	0	.00
23	37.00	4.2	1.8	2.6	1.3	2.4	.28	.21	0	.0	0	.00
24	26.00	3.5	1.8	2.6	1.2	2.5	.28	.22	0	.0	0	.00
25	84.00	3.0	1.9	2.7	1.2	2.5	.24	.17	0	.0	0	.00
26	56.00	2.8	1.7	2.9	2.2	2.5	.23	.12	0	.0	0	431.00
27	29.00	2.4	1.7	2.4	2.5	2.5	.18	.06	0	.0	0	3.50
28	22.00	1.9	1.9	2.2	2.1	2.5	.18	.02	0	6.2	0	1.00
29	19.00	1.5	1.7	2.2	2.1	1.9	.18	.03	0	.0	0	1.30
30	17.00	1.2	1.8	2.2		1.9	.38	.00	0	.0	0	.48
31	16.00		1.9	1.9		1.9	1400	.00		•0	0	
TOTAL	2164.65	325.2	66.5	96.5	54.3	70.4	24.39	8.69	0	6.2	0	437.28
MEAN	69.8	10.8	2.15	3.11	1.87	2.27	.81	.28	.000	.20	.000	14.6
MAX	1210	51	3.2	6.7	2.5	2.5	1.7	.56	.00	6.2	.00	431
MIN	.00	1.2	1.2	1.9	1.2	1.9	.18	.00	.00	.00	.00	.00
AC-FT	4290	645	132	191	108	140	48	17	.00	12	.00	867

CAL YR 1983 TOTAL 2900.13 WTR YR 1984 TOTAL 3254.11 MEAN 7.95 .00 AC-FT 5750 MEAN 8.89 MAX 1210 MIN

08129300 SPRING CREEK ABOVE TANKERSLEY, TX

LOCATION.--Lat 31°19'48", long 100°38'24", Tom Green County, Hydrologic Unit 12090102, on right bank at downstream side of bridge on Farm Road 2335, 1.4 mi south of Tankersley, 2.5 mi upstream from Dove Creek, and 10.4 mi upstream from mouth.

DRAINAGE AREA .- - 424.7 mi2, of which 19.7 mi2 probably is noncontributing.

PERIOD OF RECORD .-- October 1960 to current year.

REVISED RECORDS. -- WDR TX-81-3: Drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 1,964.72 ft National Geodetic Vertical Datum of 1929. Prior to Nov. 10, 1960, nonrecording gage at same site and datum.

REMARKS .-- Records good. Many small diversions above station for irrigation. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE .-- 24 years, 13.4 ft3/s (9,710 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 30,400 ft3/s Aug. 12, 1971 (gage height, 16.57 ft); no flow at times most years.

EXTREMES OUTSIDE PERIOD OF RECORD.--Outstanding floods since at least 1853 occurred in 1882 and 1884. Flood of Oct. 3, 1959, reached a stage of 18.4 ft, from floodmarks. At former gage near Tankersley 8 mi downstream, the flood of Oct. 3, 1959, had a discharge of 82,100 ft³/s and was found to be about 3 ft lower than the 1882 flood, the greatest at that location since at least 1853.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 97 ft³/s Oct. 20 at 0900 hours (gage height, 4.64 ft), no peak above base of 400 ft³/s; no flow Oct 1-16, Aug. 9 to Sept. 30.

		DISC	HARGE, IN	CUBIC	FEET PER	SECOND, WA MEAN VALUE	TER YEAR	OCTOBER 19	83 TO SEI	PTEMBER 198	34	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
- 1	.00	7.4	4.0	8.4	8.5	5.50	1.10	.42	.37	.25	.04	0
2	.00	7.4	4.3	7.9	7.4	5.70	4.10	.42	.30	.23	.03	0
2 3 4	.00	7.9	4.4	7.9	6.6		1.50	.40	.31	.23	.05	0
4	.00	9.0	3.8	6.9	5.4		1.20	.30	.35	.19	.07	0
5	.00	9.6	3.6	5.2	6.5		. 70	.26	.37	.17	.05	0
6	.00	7.4	2.4	3.8	8.7	5.00	.95	.26	.48	.17	.04	0
7	.00	6.0	1.9	2.8	9.3		3.40	.26	3.00	.16	.03	0
8	.00	6.0	1.8	7.4	8.8	4.50	2.50	.23	1.50	.16	.02	0
9	.00	4.1	1.4	19.0	7.5	4.50	5.10	.21	1.00	.14	.00	0
10	.00	4.8	1.9	12.0	6.4	4.40	5.30	.17	.59	.13	.00	0
11	.00	5.5	2.4	12.0	6.4	4.80	2.40	.19	.43	.13	.00	0
12	.00	6.9	3.8	10.0	7.3	5.00	2.00	.21	.31	.13	.00	0
13	.00	6.0	4.1	10.0	6.3	5.00	1.40	.21	.25	.13	.00	0
14	.00	6.0	4.0	11.0	4.2	5.00	1.20	.21	.28	.12	.00	0
15	.00	5.2	4.5	11.0	4.8	4.60	.98	.18	.31	.12	.00	0
16	.00	5.5	4.2	11.0	2.5	4.50	.86	.17	.32	.11	.00	0
17	.80	5.5	4.8	13.0	4.0	5.20	.76	.18	.28	.11	.00	0
18	.70	6.0	4.8	12.0	4.1	8.40	.85	.21	.27	.10	.00	0
19	.15	6.0	5.2	12.0	5.7	8.40	.86	.23	.28	.11	.00	0
20	30.00	5.5	6.0	12.0	4.1	7.50	.70	.34	.26	.12	.00	0
21	2.20	6.0	6.4	9.6	3.7	6.00	.75	2.80	.23	.11	.00	0
22	2.40	6.4	6.4	9.6	5.3		.67	2.50	.23	.09	.00	0
23	3.00	5.2	6.9	9.6	5.5	4.40	.54	2.50	.21	.09	.00	0
24	4.10	3.2	6.9	9.4	4.7	1.80	.51	5.10	.21	.10	.00	0
25	9.00	2.4	7.4	9.6	7.4	1.40	.50	3.90	.20	.10	.00	0
26	8.40	3.3	7.4	9.9	10.0	3.40	.48	1.60	.20	.09	.00	0
27	6.90	2.5	10.0	10.0	5.2	4.40	.46	1.10	.22	.09	.00	0
28	6.00	3.1	9.6	10.0	6.2	1.10	.40	1.10	.34	.08	.00	0
29	6.00	4.3	9.6	11.0	6.3	.67	1.20	1.10	.38	.07	.00	0
30	6.40	4.1	9.0	9.1		.50	.75	.81	.30	.07	.00	0
31	6.90		7.9	9.7		.66		.66		.05	.00	
TOTAL	92.95	168.2	160.8	302.8	178.8	140.33	44.12	28.23	13.78	3.95	.33	0
MEAN	3.00	5.61	5.19	9.77	6.17	4.53	1.47	.91	.46	.13	.011	.000
MAX	30	9.6	10	19	10	8.4	5.3	5.1	3.0	.25	.07	.00
MIN	.00	2.4	1.4	2.8	2.5		.40	.17	.20	.05	.00	.00
AC-FT	184	334	319	601	355		88	56	27	7.8	.7	.00
CAL YR				5.06	MAX 86	MIN .00	AC-FT 3	670				
WTR YR	1984 TOT	AL 1134.2	29 MEAN	3.10	MAX 30	MIN .00	AC-FT 2	250				

83 08130500 DOVE CREEK AT KNICKERBOCKER. TX

LOCATION.--Lat 31°16'24", long 100°37'45", Tom Green County, Hydrologic Unit 12090102, on right bank at right end of bridge on Farm Road 2335, 0.4 mi west of Knickerbocker, and 5.7 mi upstream from mouth.

DRAINAGE AREA .-- 226.43 mi2, of which 8.43 mi2 probably is noncontributing.

PERIOD OF RECORD .-- October 1960 to current year.

REVISED RECORDS. -- WDR TX-81-3: Drainage area.

GAGE .-- Water-stage recorder. Datum of gage is 2,001.45 ft National Geodetic Vertical Datum of 1929. Prior to Nov. 10, 1960, nonrecording gage at present site and datum.

REMARKS.--Records good. Flow is partly regulated by storage and diversion from two small channel dams upstream and by small diversions upstream for irrigation. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE. -- 24 years, 17.2 ft 3/s (12,460 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD .-- Maximum discharge, 17,500 ft 3/s Aug. 12, 1971 (gage height, 20.66 ft); no flow at

EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum stage since at least 1882, 30.4 ft in 1906 and Oct. 3, 1959; floods in 1882 and 1884 reached about the same stage, from information by local resident.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 84 ft 3/s Oct. 20 at 0930 hours (gage height, 4.64 ft), no peak above base of 100 ft 3/s; minimum daily, 0.02 ft 3/s July 24.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 MEAN VALUES AUG SEP JUI. DAY OCT NOV DEC JAN FEB MAR APR MAY THIN 7.5 8.2 9.1 3.1 4.3 11.0 11.0 10.0 5.9 3.4 5.60 3.2 4.1 8.6 2 3.2 4.3 10.0 7.1 10.0 6.0 3.4 5.90 3.1 3.6 6.30 3.1 3.4 3.3 7.2 5.7 3.4 3 5.0 11.0 6.4 3.6 11.0 9.4 5.3 4.8 3.2 5.0 5.9 7.3 3.6 4.80 4.7 7.5 7.0 6.2 4.9 5.6 3.0 4.50 3.6 4.5 67 3.9 8.7 7.2 7.1 4.2 7.2 3.0 5.10 3.0 3.1 4.8 8 4.7 5.3 9.6 9.5 7.5 6.0 5.3 5.7 2.8 5.10 3.0 3.4 5.7 5.3 16.0 2.8 3.0 9.5 6.4 8.4 7.8 5.3 3.0 5.60 10 3.7 9.1 6.0 6.4 6.6 4.6 5.2 5.0 3.9 5.3 3.2 2.8 5.7 6.6 10.0 6.3 4.0 5.60 11 6.0 3.1 9.5 3.3 6.20 12 5.9 6.0 7.2 7.5 6.2 3.6 5.30 2.8 2.6 13 5.8 6.6 14 5.8 5.8 6.3 5.3 6.2 2.6 4.50 4.0 2.2 15 5.0 5.8 5.0 9.7 7.9 1.6 4.40 3.6 16 5.3 5.2 9.7 1.9 7.2 5.9 1.3 4.10 2.7 2.2 5.8 6.1 5.4 2.0 17 5.9 6.0 9.7 8.7 2.1 1.2 3.70 3.6 9.5 6.2 11.0 8.0 1.6 3.20 3.8 2.0 18 6.3 6.5 10.0 6.1 11.0 20 24.0 7.0 6.6 9.7 11.0 11.0 4.8 2.6 2.10 2.0 4.8 2.0 21 8.9 10.0 2.9 8.8 6.8 11.0 .92 3.4 2.0 22 9.1 10.0 11.0 6.3 5.4 2.3 23 2.6 9.7 6.8 10.0 11.0 9.4 8.7 5.1 2.2 . 02 3.1 24 1.9 9.4 9.4 4.8 2.1 6.8 10.0 11.0 25 3.2 6.6 9.6 10.0 9.3 7.9 . 04 3.4 1.9 3.8 3.3 3.3 26 10.0 6.8 7.2 3.5 .34 4.6 9.3 11.0 9.7 4.3 3.5 10.0 8.6 11.0 8.2 6.6 3.8 3.1 6.9 7.3 28 10.0 7.5 8.4 10.0 10.0 3.4 1.90 4.4 1.9 3.4 7.3 8.0 9.5 7.2 3.4 8.5 29 11.0 11.0 2.40 4.3 1.9 11.0 2.60 3.6 1.9 30 2.90 TOTAL 157.4 95.6 109.94 106.8 82.0 157.6 213.2 236.9 291.4 251.2 212.3 212.8 7.11 3.19 3.55 3.45 2.73 MEAN 5.08 7.64 9.40 6.85 7.09 5.08 8.66 4.6 24 11 16 12 11 6.2 8.5 6.3 5.0 2.6 7.0 4.3 5.0 1.6 4.2 1.2 02 1.9 MIN 6.0 3.4 218 AC-FI 423 470 578 422 312 190 163 498 421

MEAN 9.76 MEAN 5.81 3563.10 2127.14 .00 CAL YR 1983 TOTAL MAX 1060 MIN AC-FT 7070 WTR YR 1984 TOTAL AC-FT 4220 MAX 24 MIN . 02

08131200 TWIN BUTTES RESERVOIR NEAR SAN ANGELO, TX

LOCATION.--Lat 31°22'55", long 100°32'17", Tom Green County, Hydrologic Unit 12090102, in outlet control tower at Twin Buttes Dam on Middle Concho River, Spring Creek, and South Concho River, 3.8 mi upstream from Lake Nasworthy Dam, 8.1 mi southwest of San Angelo, and 75.0 mi upstream from mouth.

DRAINAGE AREA. -- 3,868 mi2, of which 1,055 mi2 probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1962 to current year.

REVISED RECORDS. -- WDR TX-81-3: Drainage area.

GAGE.--Water-stage recorder on Middle Concho-Spring Creek pool and nonrecording gage on South Concho pool. Datum of gages is National Geodetic Vertical Datum of 1929.

REMARKS.--The reservoir is formed by a rolled earthfill dam 8.1 mi long, including a 200-foot-wide uncontrolled off-channel concrete gravity spillway with ogee weir section. Outlet works consist of three 15.5-foot concrete conduits, each controlled by a 12.0- by 15.0-foot fixed-wheel gate and a 12.0- by 15.0-foot radial gate, located in the Middle Concho-Spring Creek pool. Low-flow releases are made through 2.0- by 2.0-foot gates located in the center of three fixed-wheel gates. The South Concho and Middle Concho-Spring Creek pools are connected by a 3.22-mile equalizing channel. At an elevation of 1,926.5 ft, the two pools join to form one lake. Below elevation 1,926.5 ft, daily contents are obtained from capacity tables for South Concho and Middle Concho-Spring Creek pools and summed to obtain combined daily contents. Lake level elevations below 1,926.5 ft represent Middle Concho-Spring Creek pool only. Deliberate impoundment of water began on Dec. 1, 1962; dam was completed Feb. 13, 1963. Capacity curve is based on a survey made in 1958. Reservoir was built for flood control, irrigation, and municipal uses. Figures given herein represent total contents. Data regarding the dam and reservoir are given in the following table:

Elevation Capacity

	(feet)	(acre-feet)
Top of dam	1,991.0	
Crest of spillway	1,969.1	640,600
Top of conservation storage	1,940.2	186,200
Bottom of equalizing channel (Middle Concho-Spring Creek pool)	1,926.5	86,480
Dead storage in South Concho pool	1,926.5	5,440
Lowest gated outlet (invert at Middle Concho-Spring Creek pool)	1.885.0	3.750

COOPERATION .-- Capacity curve furnished by the U.S. Bureau of Reclamation.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 205,200 acre-ft May 12, 1975 (elevation, 1,942.20 ft); minimum since first appreciable storage, 2,120 acre-ft Apr. 15, 1971.

EXTREMES FOR CURRENT YEAR .-- Maximum combined daily contents, 43,570 acre-ft Nov. 8; minimum, 18,670 acre-ft Sept. 25.

CONTENTS,	IN	ACRE-FEET,	WATER	YEAR	OCTOBER	1983	TO	SEPTEMBER	1984
		TNCTAN	PANFOII	ORGI	PUATTONS	TA S	2/100	1	

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	40250	43120	42300	41720	43460	42860	41610	37500	32680	28950	24880	20660
2	40100	43140	42330	41730	43450	42770	41510	37360	32630	28890	24710	20530
3	40010	43210	42350	41760	43480	42770	41350	37240	32550	28800	24590	20410
4	39890	43300	42360	41780	43460	42750	41260	37070	32490	28720	24460	20310
5	39760	43420	42340	41800	43440	42750	41150	36920	32390	28620	24290	20160
6	39660	43470	42350	41790	43430	42750	41060	36790	32340	28540	24120	20040
7	39530	43520	42340	41790	43400	42750	40950	36510	32220	28400	23960	19890
8	39420	43570	42350	42060	43390	42700	40800	36410	32140	28250	23840	19750
9	39320	43500	42350	42360	43370	42700	40670	36260	32020	28100	23650	19570
10	39280	43400	42330	42480	43360	42680	40460	36080	31930	27960	23520	19430
11	39110	43320	42290	42590	43340	42680	40320	35880	31790	27790	23390	19280
12	39000	43250	42310	42620	43310	42560	40180	35730	31620	27620	23270	19140
13	38900	43210	42240	42620	43290	42530	40030	35580	31450	27430	23160	19010
14	38710	43090	42200	42650	43270	42530	39860	35420	31260	27230	23050	18880
15	38660	43080	42110	42670	43200	42520	39740	35230	31090	27050	22920	18840
16	38410	42990	42090	42730	43140	42500	39610	35060	30910	26840	22830	18810
17	34190	42900	42040	42800	43160	42470	39470	34930	30720	26640	22680	18790
18	34170	42850	42020	42830	43100	42420	39240	34790	30520	26460	22570	18780
19	34190	42720	41960	42860	43050	42350	39110	34720	30350	26290	22470	18750
20	36600	42630	41930	42880	43070	42330	38960	34570	30170	26150	22360	18750
21	37810	42540	41900	42970	43070	42260	38800	34460	30000	26000	22110	18740
22	37950	42540	41910	43030	43050	42220	38680	34300	29850	25870	21970	18740
23	37990	42580	41820	43080	43000	42200	38570	34150	29690	25730	21870	18710
24	38040	42540	41810	43120	42990	42160	38430	33960	29530	25660	21740	18690
25	42950	42500	41770	43170	43010	42120	38310	33800	29360	25630	21610	18670
26	43100	42480	41780	43210	42990	42070	38190	33610	29170	25610	21500	18940
27	43110	42450	41750	43260	42970	41960	38050	33410	29010	25530	21370	18980
28	43110	42340	41720	43310	42950	41870	37940	33260	29010	25420	21250	19020
29	43120	42340	41730	43320	42770	41800	37830	33080	29120	25310	21110	19050
30	43110	42290	41730	43340		41740	37640	32940	29040	25170	20960	19040
31	43120		41720	43380		41620		32800		25030	20810	
MAX	43120	43570	42360	43380	43480	42860	41610	37500	32680	28950	24880	20660
MIN	34170	42290	41720	41720	42770	41620	37640	32800	29010	25030	20810	18670
(†)	1911.22	1910.78	1910.45	1911.20	1910.94	1910.47	1908.72	1906.38	1904.28	1901.90	1899.12	1897.96
(‡)	+2760	-830	-570	+1660	-610	-1150	-3980	-4840	-3760	-4010	-4220	-1770

CAL YR 1983 MAX 70220 MIN 34170 ‡ -25370 WTR YR 1984 MAX 43570 MIN 18670 ‡ -21320

t Elevation, in feet, at end of month.

t Change in contents, in acre-feet.

08131200 TWIN BUTTES RESERVOIR NEAR SAN ANGELO, TX--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical analyses: October 1969 to September 1984 (discontinued).

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
APR 30	1400	1190	21.0	310	140	61	38	110
DATE	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)
APR 30	3	5.0	170	90	220	.50	11	640

COLORADO RIVER BASIN

08131400 PECAN CREEK NEAR SAN ANGELO, TX

LOCATION.--Lat 31°18'32", long 100°26'44", Tom Green County, Hydrologic Unit 12090102, on left bank 200 ft upstream from U.S. Highway 277, 3.7 mi upstream from mouth, and 10.5 mi south of San Angelo.

DRAINAGE AREA .-- 81.1 mi2.

PERIOD OF RECORD .-- June 1961 to current year.

REVISED RECORDS. -- WDR TX-75-3: 1971, 1972(M). WRD TX-81-3: Drainage area.

GAGE.--Water-stage recorder, crest-stage gages, and concrete control. Datum of gage is 1,930.72 ft National Geodetic Vertical Datum of 1929. Prior to Apr. 30, 1968, at site 1.2 mi downstream at datum 20.21 ft lower.

REMARKS.--Records good except those below 5 $\rm ft^3/s$, which are fair. No known diversions above station. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE. -- 23 years, 2.19 ft3/s (0.37 in/yr), 1,590 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 25,600 ft³/s Sept. 8, 1980 (gage height, 10.63 ft); maximum gage height, 11.15 ft Sept. 24, 1964, site and datum then in use; no flow most of time each year.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1908, 14.36 ft, former site and datum, Sept. 15, 1936 (discharge, 30,500 ft³/s, by slope-area measurement).

EXTREMES FOR CURRENT YEAR .-- No flow for entire year.

		DISCHA	ARGE, I	N CUBIC FE	ET PER	SECOND, WAT MEAN VALUES	ER YEAR	OCTOBER 198	3 TO SEPTE	EMBER 19	84	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
2	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
3	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
2 3 4	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
5	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
6	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
6 7	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
8	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
9	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
10	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
11	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
12	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
13	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
14	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
15	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
16	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
17	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
18	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
19	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
20	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
21	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
22	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
23	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
24	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
25	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
26	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
27	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
28	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
29	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
30	.00	.00	.00	.00		.00	.00	.00	.00	.00	.00	.00
31	.00		.00	.00		.00		.00		.00	.00	
TOTAL	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
MEAN	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
MAX	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
MIN	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
CFSM	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
IN.	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
AC-FT	•00	.00	.00	•00	.00	.00	.00	.00	.00	.00	.00	.00
CAL YR WTR YR		127.76	MEAN MEAN	.35 MAX .000 MAX	.00	MIN .00 MIN .00	CFSM .C			253		

08132000 LAKE NASWORTHY NEAR SAN ANGELO, TX

LOCATION.--Lat 31°23'19", long 100°28'41", Tom Green County, Hydrologic Unit 12090102, on left bank 250 ft upstream from Nasworthy Dam on South Concho River, 3.8 mi downstream from Twin Buttes Dam, 6.0 mi southwest of San Angelo, and 68.9 mi upstream from mouth.

DRAINAGE AREA. -- 3,975 mi², of which 3,868 mi² is above Twin Buttes Reservoir and 1,055 mi probably is noncontributing. WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- March 1930 to current year. Prior to October 1969, monthend contents only.

REVISED RECORDS. -- WDR TX-81-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,840.00 ft National Geodetic Vertical Datum of 1929.

REMARKS.--The lake is formed by a 6,090-foot dam with a 5,590-foot earthen section that has an earthen spillway 300 ft long, a concrete spillway 475 ft long with a bank of fifteen 25.0- by 18.0-foot tainter gates, and a 25.0- by 3.0-foot collapsible floodgate. The dam was completed and storage began Mar. 28, 1930. Since July 1966, West Texas Utilities Co. has operated a steam generating powerplant on the lake. Since September 1962, the lake has been almost totally controlled by releases or pumpage from Twin Buttes Reservoir (station 08131200). Siltation surveys in December 1938 and May 1953 by the Soil Conservation Service show that 1,191 acre-ft of silt was deposited from March 1930 to December 1938 and an additional 1,023 acre-ft was deposited from December 1938 to May 1953, totaling 2,214 acre-ft. Water is used for part of San Angelo municipal supply and for irrigation east of San Angelo. The capacity curve is based on a survey by the Soil Conservation Service in 1953 and has been used since 1955. Figures given herein represent total contents. Data regarding the dam and lake are given in the following table:

Gage height

Capacity able: Capacity feet) Gage height

	(feet)	(acre-feet)
Top of dam	43.5	
Crest of spillway (300 ft)	39.1	27,810
Top of gates	33.2	13,990
Top of collapsible floodgate	32.2	12,390
Lowest outlet to canal (invert)	27.5	6,370
Crest of spillway (tainter gates sill)	15.3	435
Lowest gated outlet (invert)	-4.0	0

EXTREMES FOR PERIOD OF RECORD. -- Maximum contents, 26,900 acre-ft Sept. 15, 1936 (gage height, 38.36 ft); minimum, 209 acre-ft Aug. 22, 1964 (gage height, 13.21 ft).

EXTREMES FOR CURRENT YEAR .-- Maximum contents, 11,060 acre-ft Jan. 11 (gage height, 31.37 ft); minimum, 9,700 acre-ft Sept. 25 (gage height, 30.44 ft).

Capacity table (gage height, in feet, and total contents, in acre-feet)

32.0 12,070

CONTENTS, IN ACRE-FEET, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 INSTANTANEOUS OBSERVATIONS AT 2400

0470 0470 0470 0460 0440 0440 0410 0430	10400 10360 10400 10390 10440 10410 10390	10520 10520 10500 10500 10470	10500 10520 10570 10570 10570	10400 10340 10340 10340 10330	10470 10460 10470 10430	10290 10300 10270 10290	10440 10430 10410	10580 10520	10660 10660	10340 10340	10370 10400
0470 0470 0460 0440 0440 0440 0410 0430	10360 10400 10390 10440 10410 10390	10520 10500 10500 10470	10570 10570 10570	10340 10340	10470 10430	10270				10340	10400
0470 0460 0440 0440 0440 0410 0430	10400 10390 10440 10410 10390	10500 10500 10470	10570 10570 10570	10340 10340	10470 10430	10270					
0460 0440 0440 0440 0410 0430	10390 10440 10410 10390	10500 10470 10470	10570 10570	10340	10430			10410	10610	10430	10440
0440 0440 0440 0410 0430	10440 10410 10390	10470 10470	10570				10410	10460	10580	10470	10430
0440 0440 0410 0430	10410 10390	10470		10330		10320	10400	10550	10530	10500	10440
0440 0410 0430	10390		10 to 5 to 5 to 5		10440	10320	10400	10330	10330	10300	10440
0440 0410 0430	10390		10570	10340	10430	10330	10400	10600	10500	10530	10440
0410 0430		10460	10570	10340	10410	10410	10320	10600	10470	10550	10440
0430	10330	10440	10810	10340	10370	10460	10360	10570	10430	10550	10460
	10300	10410	10920	10360	10390	10520	10330	10550	10390	10520	10440
	10320	10410	10920	10370	10400	10530	10320	10490	10340	10520	10440
0430	10320	10410	10920	10370	10400	10330	10320	10490	10340	10520	
0390	10340	10370	11060	10390	10430	10570	10270	10460	10340	10520	10430
0390	10340	10400	10870	10360	10580	10580	10270	10440	10390	10500	10440
0400	10390	10360	10840	10340	10600	10580	10260	10460	10400	10500	10490
0370	10390	10390	10840	10370	10600	10550	10260	10490	10410	10490	10490
0370	10410	10360	10820	10360	10610	10520	10230	10530	10430	10470	10390
0370	10410	10300	10020	10300	10010	10320	10250	.0330			
0390	10440	10370	10810	10370	10610	10500	10260	10570	10440	10490	10330
0530	10470	10360	10790	10410	10600	10520	10360	10600	10460	10470	10260
0520	10500	10370	10770	10390	10600	10610	10490	10610	10500	10460	10190
0470	10500	10370	10760	10360	10530	10610	10630	10600	10570	10440	10120
0770	10580	10400	10730	10390	10500	10610	10680	10570	10580	10440	10040
									40500	10/00	0050
0710	10550	10370	10710	10390	10470	10570	10730	10570	10580	10400	9950
0660	10650	10400	10690	10390	10430	10570	10690	10580	10580	10390	9910
0630			10680	10370	10430	10550	10690	10580			9840
0580							10710	10550	10580	10370	9780
0660	10650	10410	10650	10390	10410	10520	10710	10550	10500	10360	9700
							40660	10500	10/10	10260	9830
0630											
0600											9780
0530	10550	10460	10530	10330	10290	10440					9850
0500	10530	10460	10490	10490	10270	10410	10680	10820			9840
0470			10460		10290	10410	10710	10760	10360	10360	9830
0430		10490	10410		10270		10680		10340	10360	
			11000	10100		10610	10700	10000	10660	10550	10490
0770											
0370											9700
10.97	31.03	31.01									30.54
-40	+90	-30	-80	+80	-220	+140	+270	+80	-420	+20	-530
000000000000000000000000000000000000000	1630 1580 1660 1630 1660 1530 1500 1470 1430 1770 1370 197	1630 10630 1580 10610 1660 10650 1630 10600 1630 10550 1530 10550 1500 10530 1470 10520 1470 10650 1370 10300 1.97 31.03	1630 10630 10390 1580 10610 10400 1660 10650 10410 16630 10600 10430 16530 10550 10460 1530 10550 10460 1530 10520 10470 1430 10490 1770 10650 10520 10770 10650 10520 10370 10300 10360 1.97 31.03 31.01 -40 +90 -30	1630 10630 10390 10680 1580 10610 10400 10660 1660 10650 10410 10650 1630 10600 10430 10600 1630 10570 10460 10570 1530 10550 10460 10530 1500 10530 10460 10490 1470 10520 10470 10460 1630 10490 10410 16770 10650 10520 11060 16770 10650 10520 11060 16770 10300 10360 10410 1679 31.03 31.01 30.96 -40 +90 -30 -80	1630 10630 10390 10680 10370 1580 10610 10400 10660 10370 1660 10650 10410 10650 10390 1630 10600 10430 10600 10370 1600 10570 10460 10570 10340 1530 10550 10460 10530 10330 1500 10530 10460 10490 10490 1470 10520 10470 10460 16770 10650 10520 11060 10490 10370 10300 10360 10410 10330 3.97 31.03 31.01 30.96 31.01 -40 +90 -30 -80 +80	1630 10630 10390 10680 10370 10430 1580 10610 10400 10660 10370 10410 1660 10650 10410 10660 10390 10410 1633 10600 10430 10600 10370 10390 1650 10570 10460 10570 10340 10330 1650 10550 10460 10570 10340 10330 1530 10550 10460 10490 10490 10270 1470 10520 10470 10460 10290 1430 10490 10410 10270 1370 10650 10520 11060 10490 10610 1370 10300 10300 10410 10330 10270 10-97 31.03 31.01 30.86 -40 +90 -30 -80 +80 -220	1630 10630 10390 10680 10370 10430 10550 1580 10610 10400 10660 10370 10410 10530 1660 10650 10410 10650 10390 10410 10520 1630 10600 10430 10600 10370 10390 10460 1650 10570 10460 10570 10340 10330 10430 1530 10550 10460 10530 10330 10290 10440 1530 10530 10460 10490 10490 10270 10410 1670 10520 10470 10460 10290 10410 1630 10490 10410 10270 16770 10650 10520 11060 10490 10610 10610 16770 10300 10360 10410 10330 10270 10270 1679 31.03 31.01 30.96 31.01 30.86 30.96 -40 +90 -30 -80 +80 -220 +140	1630 10630 10390 10680 10370 10430 10550 10690 1580 10610 10400 10660 10370 10410 10530 10710 1660 10650 10410 10650 10390 10410 10520 10710 1633 10600 10430 10600 10370 10390 10460 10660 1650 10570 10460 10530 10330 10430 10660 1530 10550 10460 10530 10330 10290 10440 10650 1530 10530 10460 10490 10490 10270 10410 10680 1670 10520 10470 10460 10290 10410 10710 1630 10520 10470 10460 10290 10410 10710 1630 10520 10410 10290 10410 10710 1630 10520 11060	1630 10630 10930 10680 10370 10430 10550 10690 10580 10580 10610 10400 10660 10370 10410 10520 10710 10550 10660 10660 10650 10410 10650 10390 10410 10520 10710 10550 10660 10570 10400 10570 10400 10570 10400 10570 10400 10570 10400 10570 10400 10570 10400 10570 10400 10550 10530 10550 10460 10530 10330 10290 10440 10650 10810 10500 10530 10400 10400 10490 10270 10410 10680 10820 10470 10520 10470 10460 10290 10410 10710 10760 10430 10490 10410 10270 10680 10770 10650 10520 11060 10490 10490 10270 10410 10710 10760 10430 10300 10360 10410 10330 10270 10230 10410 10730 10820 10370 10300 10360 10410 10330 10270 10270 10230 10410 10.97 31.03 31.01 30.96 31.01 30.86 30.96 31.13 31.18 -40 +90 -30 -80 +80 -220 +140 +270 +80	1630 10630 10390 10680 10370 10430 10550 10690 10580 10600 1580 10610 10400 10660 10370 10410 10530 10710 10550 10580 1660 10650 10410 10650 10390 10410 10520 10710 10550 10580 1630 10600 10430 10600 10370 10390 10460 10520 10410 1630 10570 10460 10570 10340 10330 10430 10660 10530 10390 1530 10550 10460 10530 10330 10290 10440 10650 10810 10370 1530 10530 10460 10490 10490 10270 10440 10650 10810 10370 1500 10530 10460 10490 10490 10270 10410 10710 10760 10360 1470 10520 10470	1630 10630 10930 10680 10370 10440 10550 10580 10660 10370 10410 10550 10580 10580 10610 10400 10660 10370 10410 10520 10710 10550 10580 10370 10660 10660 10660 10650 10390 10410 10520 10710 10550 10580 10370 10660 10570 10410 10550 10580 10370 10660 10570 10460 10570 10340 10330 10430 10660 10530 10390 10360 10550 10550 10460 10550 10330 10390 10440 10650 10810 10370 10390 10360 10500 10530 10460 10530 10330 10290 10440 10650 10810 10370 10340 10500 10530 10460 10490 10490 10270 10410 10680 10820 10360 10340 10470 10520 10470 10460 10290 10410 10710 10760 10360 10360 10340 10430 10490 10410 10270 10680 10340 10360

WTR YR 1984 MAX 11060 MIN 9700 ‡

Elevation, in feet, at end of month. Change in contents, in acre-feet.

COLORADO RIVER BASIN

08132000 LAKE NASWORTHY NEAR SAN ANGELO, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: October 1969 to September 1984 (discontinued).

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
APR	4420				4.50			
30	1430	1380	21.0	330	150	62	42	150
							4	SOLIDS,
	SODIUM	POTAS-	ALKA-		CHLO-	FLUO-	SILICA,	SUM OF
	AD- SORP-	SIUM, DIS-	LINITY	SULFATE DIS-	RIDE,	RIDE,	DIS- SOLVED	CONSTI-
	TION	SOLVED	FIELD (MG/L	SOLVED	DIS- SOLVED	DIS- SOLVED	(MG/L	DIS-
	RATIO	(MG/L	AS	(MG/L	(MG/L	(MG/L	AS	SOLVED
DATE		AS K)	CACO3)	AS S04)	AS CL)	AS F)	SI02)	(MG/L)
APR								
30	4	5.6	180	110	270	.60	16	760

LOCATION.--Lat 31°49'48", long 100°59'36", Sterling County, Hydrologic Unit 12090104, on right bank 100 ft upstream from bridge on State Highway 163, 0.5 mi south of Sterling City, 4.0 mi upstream from Sterling Creek, 5.1 mi downstream from Lacy Creek, and at mile 57.2.

DRAINAGE AREA .-- 588 mi2, of which 19.6 mi2 probably is noncontributing.

PERIOD OF RECORD .-- September 1939 to current year.

REVISED RECORDS. -- WSP 1512: 1945, 1948. WRD TX-81-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 2,242.36 ft National Geodetic Vertical Datum of 1929. Prior to Dec. 6, 1939, nonrecording gage at same site and datum.

REMARKS.--Records good. Small diversions above station for irrigation. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE .-- 45 years, 7.97 ft3/s (5,770 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD .-- Maximum discharge, 16,300 ft3/s July 6, 1948 (gage height, 23.70 ft); no flow at times each year. Maximum stage since at least 1891, that of July 6, 1948.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 338 ft 3 /s Oct. 20 at 0430 hours (gage height, 7.82 ft) - other peak above base of 300 ft 3 /s; no flow for many days.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP -00 0 0 -00 .00 0 0 0 .00 0 .00 0 0 0 0 0 0 -00 0 0 .00 .00 0 .00 .00 0 0 .00 .00 0 5 .00 0 0 .00 0 0 0 .00 0 0 0 0 6 .00 0 0 .00 0 0 0 0 .00 0 0 .00 0 .00 0 0 .00 0 0 0 .01 0 0 .00 0 0 ŏ .00 .00 10 .00 0 0 .00 0 0 0 0 0 0 0 .00 .00 0 0 .00 0 0 .00 0 0 0 12 .00 .00 .00 13 -00 0 0 .00 0 0 .00 0 0 0 .00 0 0 0 .00 0 .00 0 0 0 0 .00 Õ 15 0 0 0 .00 0 0 0 0 .00 0 16 .00 0 0 0 .00 0 0 .00 0 0 0 0 .00 0 0 .00 0 0 0 .00 0 0 0 0 .00 .00 0 .00 19 .00 0 0 .00 0 0 1.30 0 20 98.00 0 0 .00 0 0 0 2.80 0 0 0 0 21 15.00 0 0 .00 0 0 0 0 0 0 .04 22 23 .39 0 0 .00 0 .00 Ö .00 0 0 0 .00 0 0 0 .00 0 .00 0 25 .00 0 0 .00 0 0 26 .00 0 0 .00 0 0 0 0 0 0 0 -00 27 .00 .00 0 .00 28 .00 n 0 .00 0 0 .00 0 0 .00 0 n -00 0 0 .00 0 0 0 .00 .00 0 0 0 0 .00 0 31 .00 0 .00 0 .00 0 0 TOTAL 113.39 0 .01 0 4.14 0 0 0 0 MEAN .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .13 MAX 98 .00 .00 .01 .00 .00 .00 .00 .00 .00 .00 MIN .00 .00 .00 -00 .00 .00 .00 .00 .00 .00 .00 .00 225 AC-FT .00 .00 .02 .00 .00 .00 8.2 .00 -00 -00 .00

CAL YR 1983 TOTAL 310.97 WTR YR 1984 TOTAL 117.54 MEAN .85 MAX 98 MIN .00 MEAN .32 MAX 98 MIN .00 AC-FT 233

CULORADO RIVER BASIN

08134000 NORTH CONCHO RIVER NEAR CARLSBAD, TX

LOCATION.--Lat 31°35'33", long 100°38'12", Tom Green County, Hydrologic Unit 12090104, near left bank on downstream side of bridge on county road, 0.6 mi southeast of Carlsbad, 1.5 mi upstream from Mule Creek, 2.5 mi upstream from Grape Creek, 16.2 mi upstream from 0. C. Fisher Dam, and 21.3 mi upstream from mouth.

DRAINAGE AREA. -- 1,266 mi2, of which 75.1 mi2 probably is noncontributing.

PERIOD OF RECORD.--March 1924 to current year.
Water-quality records: Chemical and biochemical analyses: October 1980 to September 1982.

REVISED RECORDS.--WSP 1512: 1924(M), 1925, 1926(M), 1928, 1930, 1932(M), 1935, 1937-38(M), 1941(M), 1945(M), 1947-49(M). WRD TX-81-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,968.02 ft National Geodetic Vertical Datum of 1929. Prior to Feb. 4, 1925, and Sept. 27, 1936, to Feb. 7, 1937, nonrecording gage; Feb. 4, 1925, to Sept. 26, 1936, and Feb. 8, 1937, to Nov. 6, 1955, water-stage recorder, all at site 2.5 mi upstream at datum 32.76 ft higher.

REMARKS .-- Records good. Diversions by pumping above station.

AVERAGE DISCHARGE.--60 years, 33.4 ft^3/s (24,200 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 94,600 ft³/s Sept. 26, 1936 (gage height, 16.0 ft, at former site, 29.1 ft at present site, from floodmarks), by slope-area measurement of peak flow at former site; no flow at times. Maximum stage since 1853, that of Sept. 26, 1936.

EXTREMES OUTSIDE PERIOD OF RECORD .-- Stage unknown for major flood in June 1853.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2,920 ft³/s Oct. 20 at 1900 hours (gage height, 11.51 ft), no other peak above base of 1,500 ft³/s; no flow for many days.

DISCHARGE IN CURIC FEET DED SECOND WATER VEAD OCTORED 1083 TO SEPTEMBER 1984

		DISC	HARGE, IN	CUBIC FE		ECOND, WAT EAN VALUES	ER YEAR (OCTOBER 198	3 TO SEPT	TEMBER 198	4	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.0 .0 .0	.64 .54 .45 .75	1.70 1.70 2.60 3.20 3.20	2.4 2.9 2.9 3.2 3.2	2.6 3.2 3.2 3.2 3.2	2.9 3.2 3.5 3.5 3.5	.55 3.20 2.90 2.60 2.60	2.60 2.40 2.90 2.40 1.90	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
6 7 8 9	.0 .0 .0	3.20 3.20 1.90 1.00	3.20 3.20 3.50 3.20 3.50	3.5 3.8 4.5 7.2 4.1	3.2 3.2 3.2 3.5 3.5	3.2 2.9 2.9 2.9 2.9	2.90 3.20 2.90 2.60 2.60	1.70 1.70 1.50 1.30 1.50	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
11 12 13 14 15	.0 .0 .0	2.10 1.70 1.90 1.50 1.20	3.80 4.10 3.50 4.10 4.10	2.6 2.4 2.4 2.1 2.4	3.2 3.5 3.5 3.8 3.5	2.6 2.6 2.4 2.4 2.6	2.40 2.10 2.10 1.70 1.70	1.50 1.00 .64 .45	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
16 17 18 19 20	.0 .0 .0 .0 811.0	.87 .75 1.00 1.00	4.10 4.10 4.10 4.10 4.10	2.4 2.9 2.9 2.6 2.6	4.1 3.8 3.5 2.9 2.1	2.9 3.2 3.3 3.1 2.1	1.70 1.70 1.70 2.40 2.60	.14 .10 .06 .06	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
21 22 23 24 25	187.0 26.0 12.0 6.4 28.0	.64 .45 .87 1.30 1.20	3.50 2.90 2.90 2.60 2.60	2.6 2.9 3.2 3.2 3.2	1.9 2.1 2.4 2.9 2.9	2.4 2.9 5.9 3.8 3.2	2.90 2.10 2.60 2.60 2.60	.03 .03 .01 .01	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
26 27 28 29 30 31	24.0 7.6 4.1 2.6 1.9	1.20 1.20 1.20 1.90 2.40	2.60 3.20 3.50 2.10 .75	3.2 2.9 3.2 3.5 2.9 2.6	3.5 3.8 3.5 3.2	2.9 2.9 2.9 2.6 2.6	2.90 2.90 2.90 2.60 2.90	.00 .00 .00 .00	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0
TOTAL MEAN MAX MIN AC-FT	1111.8 35.9 811 .00 2210	40.21 1.34 3.2 .45 80	96.75 3.12 4.1 .75 192	96.4 3.11 7.2 2.1 191	92.1 3.18 4.1 1.9 183	92.0 2.97 5.9 1.3 182	73.15 2.44 3.2 .55 145	24.21 .78 2.9 .00 48	.000 .00 .00	.000 .00 .00	.000 .00 .00	.000 .000 .00

CAL YR 1983 TOTAL 2036.76 MEAN 5.58 MAX 811 MIN .00 AC-FT 4040 WTR YR 1984 TOTAL 1626.62 MEAN 4.44 MAX 811 MIN .00 AC-FT 3230

08134500 O. C. FISHER LAKE AT SAN ANGELO. TX

LOCATION.--Lat 31°29'04", long 100°28'53", Tom Green County, Hydrologic Unit 12090104, in intake structure of O. C. Fisher Dam on North Concho River, 3.1 mi northwest of San Angelo, and 6.6 mi upstream from mouth.

DRAINAGE AREA. -- 1,488 mi2, of which 105 mi2 probably is noncontributing.

PERIOD OF RECORD.--February 1952 to current year. Published as San Angelo Reservoir prior to October 1970, and as San Angelo Lake, October 1970 to September 1974.

REVISED RECORDS. -- WSP 1922: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929. Prior to May 12, 1953, non-recording gage at same site and datum.

REMARKS.--The lake is formed by a rolled earthfill dam 40,885 ft long, including spillway. Closure was completed Mar. 7, 1951, and the dam was completed May 3, 1951. Deliberate impoundment began Feb. 1, 1952. The lake is operated for flood control and recreation with part as municipal supply for the city of San Angelo. The spillway is an uncontrolled off-channel concrete gravity dam with ogee weir section 1,150 ft wide located to the right and upstream from the right end of dam. The spillway is designed to discharge 356,000 ft³/s at maximum design flood level. The control outlet works consist of six gate-controlled outlets, 7.5 by 14.5 ft, opening into two 18.0-foot-diameter concrete conduits, and two 2.5-foot gate-controlled outlets for water-supply outlets. Since February 1973, the capacity is based on a survey made in 1962. Prior to 1973, the capacity was based on a survey made in 1944. Gage-height telemeter at station. Figures given herein represent total contents. Data regarding the dam and lake are given in the following table: the following table:

	(feet)	(acre-feet)
Top of dam	1,964.0	
Design flood	1,958.0	690,000
Crest of spillway	1,938.5	392,700
Top of conservation pool	1,908.0	115,700
Lowest gated outlet (invert)	1.840.0	0

COOPERATION .-- Records furnished by the Corps of Engineers and reviewed by the Geological Survey.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 174,100 acre-ft Oct. 14, 1957 (elevation, 1,916.47 ft); minimum since first appreciable storage, lake dry July 16, 1970, to Apr. 15, 1971.

EXTREMES FOR CURRENT YEAR.--Maximum daily contents, 25,810 acre-ft Nov. 5 at 2400 hours (elevation, 1,881.17 ft); minimum daily, 14,570 acre-ft Sept. 25 (elevation, 1,874.01 ft). Capacity table (elevation, in feet, and total contents, in acre-feet)

1,874.0	14,560 17,160	1,878.0 1,880.0	20,080 23,560	1,881.0 1,882.0	25,480 27,480
	CONTENTS,		OCTOBER 1983 TO VATIONS AT 2400	SEPTEMBER 1984	

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	23690 23640 23470 23340 23280	25590 25590 25710 25710 25810	25120 25120 25120 25120 25100 25080	24620 24640 24640 24660 24660	25100 25100 25100 25100 25080 25080	24870 24870 24870 24870 24850	24430 24430 24390 24350 24330	23410 23340 23340 23270 23230	22070 22040 21980 21960 21950	20020 19960 19860 19830 19770	18070 18030 18040 17980 17940	16170 16110 16050 15980 15920
6 7 8 9	23270 23230 23210 23190 23160	25790 25790 25790 25750 25710	25080 25040 25040 25010 25010	24660 24660 24950 25140 25120	25060 25040 25040 25040 25040	24830 24830 24790 24790 24790	24330 24370 24330 24310 24260	23210 23160 23080 23030 22970	21930 21860 21840 21770 21770	19690 19650 19570 19490 19420	17900 17860 17770 17680 17630	15840 15760 15680 15600 15520
11 12 13 14 15	23100 23040 22990 22940 22880	25690 25650 25610 25570 25550	24990 24950 24930 24890 24870	25120 25120 25100 25100 25120	25020 25020 25020 25020 25020 24990	24610 24810 24810 25810 24810	24240 24200 24160 24120 24070	22920 22860 22810 22770 22720	21650 21540 21440 21330 21230	19370 19280 19200 19140 19100	17590 17540 17480 17450 17370	15450 15370 15310 15260 15200
16 17 18 19 20	22860 22860 22840 22830 24030	25510 25490 25470 25420 25340	24850 24850 24910 24890 24890	25120 25140 25120 25120 25100	24970 24990 24970 24970 24970	24830 24810 24830 24830 24760	24010 23970 23940 23940 23900	22740 22720 22740 22740 22680	21160 21100 21040 20960 20890	19050 18950 18860 18810 18770	17300 17220 17150 17090 17020	15120 15050 14990 14920 14850
21 22 23 24 25	24930 25010 25020 25020 25610	25320 25320 25320 25340 25320	24760 24740 24740 24700 24680	25080 25100 25100 25100 25100	24950 24950 24930 24930 24950	24740 24700 24740 24720 24720	23860 23790 23790 23750 23690	22660 22610 22570 22540 22500	20830 20810 20730 20650 20470	18680 18620 18530 18500 18460	16940 16860 16780 16700 16640	14800 14750 14680 14630 14570
26 27 28 29 30 31	25650 25670 25670 25650 25630 25610	25300 25240 25200 25180 25160	24660 24680 24660 24660 24640 24620	25100 25080 25100 25100 25100 25100	25060 24950 24910 24890	24700 24660 24560 24540 24500 24490	23660 23580 23520 23470 23410	22460 22430 22340 22270 22200 22160	20300 20260 20210 20160 20120	18420 18390 18330 18270 18230 18130	16580 16510 16430 16360 16310 16230	14720 14690 14780 14750 14730
MAX MIN (†) (‡)	25670 22830 1881.07 +1880	25810 25160 1880.84 -400	25120 24620 1880.55 -540	25140 24620 1880.81 +480	25100 24890 1880.70 -210	25810 24490 1880.49 -400	24430 23410 1978.92 -1080	23410 22160 1879.23 -1250	22070 20120 1878.02 -2040	20020 18130 1876.70 -1990	18070 16230 1875.31 -1900	16170 14570 1874.14 -1500

CAL YR 1983 WTR YR 1984 MAX 30620 MAX 25810 MIN 22830 -5570 MIN 14570 -9000

[†] Elevation, in feet, at end of month.
‡ Change in contents, in acre-feet.

08134500 O. C. FISHER LAKE AT SAN ANGELO, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical analyses: October 1969 to September 1984 (discontinued).

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
MAY 04	1015	943	19.5	290	120	55	36	66
DATE	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)
MAY 04	2	18	170	64	160	.40	7.7	510

93 08135000 NORTH CONCHO RIVER AT SAN ANGELO, TX

LOCATION.--Lat 31°27'57", long 100°26'51", Tom Green County, Hydrologic Unit 12090104, near left bank on downstream side of pier of Sixth Street Bridge in San Angelo, 3.2 mi upstream from confluence with South Concho River, and

DRAINAGE AREA .-- 1,525 mi2, of which 75.1 mi2 probably is noncontributing.

3.4 mi downstream from O. C. Fisher Dam.

PERIOD OF RECORD.--October 1915 to June 1928, February 1929 to September 1931, July 1947 to current year. Water-quality records.--Chemical and biochemical analyses: October 1980 to September 1982.

REVISED RECORDS. -- WSP 568: 1916, 1918-22. WSP 1512: 1916(M), 1917-13, 1919-21(M). WRD TX-81-3: Drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 1,813.42 ft National Geodetic Vertical Datum of 1929. Prior to Sept. 1, 1920, nonrecording gage, and Sept. 1, 1920, to Feb. 11, 1929, water-stage recorder at site 1.6 mi downstream at datum 11.02 ft lower. Feb. 12, 1929, to Sept. 30, 1931, water-stage recorder at site 1.6 mi downstream at datum 13.02 ft lower.

REMARKS .-- Records poor. Since October 1951, flow regulated by O. C. Fisher Lake (station 08134500).

AVERAGE DISCHARGE.--17 years (water years 1917-27, 1930-31, 1948-51), prior to completion of O. C. Fisher Dam, 54.5 ft³/s (39,490 acre-ft/yr); 33 years (water years 1952-84) regulated, 7.93 ft³/s (5,750 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD .-- Maximum discharge, about 47,000 ft3/s June 13, 1930 (gage height, 22.52 ft, site and datum then in use); no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Sept. 17, 1936, reached a stage of 34.6 ft, from floodmarks (discharge, 184,000 ft $^3/s$), by slope-area measurement. The flood in 1936 was the greatest since flood in June 1853 (stage unknown).

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 553 ft³/s June 6 at 0030 hours (gage height, 2.97 ft); maximum gage height, 5.50 ft Oct. 3 at 2100 hours; no flow Oct. 1, 2, 7-15.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 20.0 19.0 .00 1.2 1.20 1.00 1.00 1.10 .92 .73 .20 9.4 2 10.0 .00 9.4 1.3 1.30 1.10 1.10 1.00 1.00 .81 3.10 16.0 8.2 19.00 1.30 1.00 1.30 .93 .67 6.80 21.0 1.30 1.00 69.00 8.9 7.00 8.0 8.9 16.0 1.00 .88 5 2.20 5.6 1.30 .93 1.00 1.30 .89 .59 16.00 8.4 6.0 17.0 6 .03 1.7 .89 1.10 1.20 .87 .57 36.00 9.1 6.2 17.0 .94 1.4 2.00 12.0 5.4 .00 1.20 2.20 1.20 1.40 .56 17.0 .00 8 18.0 1.30 2.30 .98 1.30 1.50 -45 1.40 1.10 1.30 .41 1.30 20.0 1.10 10 .00 1.2 1.30 1.20 .96 .98 .41 1.00 9.2 21.0 20.0 11 .00 1.5 1.20 .99 1.20 .92 .42 .84 14.0 9.1 19.0 19.00 12 .00 2.00 1.10 1.10 1.40 .90 .53 17.0 7.9 18.0 13 .00 1.2 1.40 1.20 1.00 1.10 .89 . 44 40.00 6.9 7.4 18.0 .00 14 .99 1.20 1.40 1.00 .84 . 38 26.00 6.1 6.5 16.0 1.00 .00 21.00 6.4 13.0 15.0 1.60 .98 .37 .81 16 1.10 15.0 .19 1.60 1.00 20.0 1.6 1.10 .80 - 50 14.00 6.1 1.30 3.7 .70 20.0 1.20 1.60 1.00 1.30 12.00 16.0 .79 18 2.10 4.0 1.20 1.50 1.00 .75 .77 10.00 25.0 17.0 16.0 1.40 19 1.40 3.8 1.20 .96 1.20 .72 4.30 9.10 17.0 17.0 20 40.00 3.1 1.20 11.0 20.0 17.0 1.40 1.20 .81 1.10 9.00 21 2.60 1.4 1.20 1.40 1.50 1.20 .95 8.00 8.6 20.0 17.0 22 1.80 .72 7.70 3.7 1.20 1.50 1.10 1.10 .81 10.0 21.0 16.0 12.00 23 1.50 2.8 1.20 1.70 1.00 21.0 14.0 .50 12.0 24 1.40 1.20 1.60 .72 .36 20.0 25 66.00 1.3 1.30 1.50 1.10 1.10 .75 .27 49.00 9.8 19.0 15.0 26 1.50 5.70 1.00 65.00 7.9 18.0 58.0 .76 .20 27 1.50 1.4 1.20 1.20 17.00 18.0 1.70 1.00 .68 .18 28 1.40 1.3 1.20 1.10 1.10 .85 .65 14.00 7.7 20.0 8.1 29 1.20 1.4 .94 1.10 10.00 20.0 25.0 1.00 .83 .69 .23 6.3 30 1.30 1.3 .89 7.0 .89 .63 .26 10.00 31 1.20 .94 .97 ---.94 .25 14.0 19.0 ---TOTAL 218.02 38.27 320.6 65.0 37.21 46.40 25.81 19.53 439.54 485.8 526.3 MEAN 7.03 2.17 1.23 1.28 1.34 1.50 .86 .63 14.7 10.3 17.5 58 7.0 MAX 69 8.9 2.0 2.3 5.7 12 1.5 4.3 65 25 22 .00 MIN .89 .89 .20 6.1 .94 .83 .63 .17 5.4 AC-FT 432 129 76 82 92 51 636

CAL YR 1983 TOTAL 1149.55 MEAN 3.15 MAX 69 MIN .00 AC-FT 2280 WTR YR 1984 TOTAL 2264.07 MEAN 6.19 AC-FT 4490 MAX 69 MIN .00

08136000 CONCHO RIVER AT SAN ANGELO, TX

LOCATION.--Lat 31°27'16", long 100°24'37", Tom Green County, Hydrologic Unit 12090105, on left bank 0.4 mi downstream from confluence of North and South Concho Rivers, 1.8 mi southeast of Tom Green County Courthouse, and 61.9 mi upstream from mouth.

DRAINAGE AREA. -- 5,542 mi2, of which 1,131 mi2 probably is noncontributing.

PERIOD OF RECORD. -- September 1915 to current year. Prior to October 1969, published as "near San Angelo".

REVISED RECORDS.--WSP 568: 1915-16, 1919-22. WSP 1148: 1916-22(M), 1924(M), 1925-26, 1929(M), 1930-32, 1935-37. WSP 1512: 1917-18. WSP 1712: 1936. WRD TX-81-3: Drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 1,776.79 ft National Geodetic Vertical Datum of 1929. Prior to Aug. 11, 1917, nonrecording gage at same site and datum. Aug. 11, 1917, to May 15, 1963, water-stage recorder on right bank at same datum.

REMARKS.--Records good. Many diversions upstream from station for irrigation, industrial, and municipal supply. Flow is regulated by Twin Buttes Reservoir (station 08131200) on the South Concho River and by O. C. Fisher Lake (station 08134500) on the North Concho River. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--47 years (water years 1916-62) prior to construction of Twin Buttes Dam, 158 ft³/s (114,500 acre-ft/yr); 22 years (water years 1963-84) regulated, 22.2 ft³/s (16,080 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 230,000 ft³/s Sept. 17, 1936 (gage height, 46.6 ft, from floodmarks), from rating curve extended above 105,000 ft³/s on basis of slope-area measurements of 167,000 and 230,000 ft³/s; no flow at times in 1921, 1952-53, 1965, and 1971.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1853, 47.5 ft Aug. 6, 1906 (discharge, about 246,000 ft³/s), from information by local resident. Other large floods are known to have occurred in June 1853, August 1882, and April 1900.

EXTREMES FOR CURRENT YEAR. -- Maximum discharge, 740 ft3/s Sept. 26 at 0600 hours (gage height, 3.89 ft); minimum daily, 0.02 ft3/s Apr. 24, 25.

			DISCHA	RGE, IN	CUBIC		SECOND, WAS		OCTOBER	1983 TO SE	PTEMBER 1	984	
DAY	OC'	r N	ov	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.19 .22 .12 .11	2 17. 2 10.	00	.08 .08 .11 .14	.11 .08 .08 .10	.13 .14 .10	4.50 3.50 4.10 4.50 1.10	4.80 3.50 .13 .08	.09 .07 .05	.31 .19 .19 .34 .24	.43 .44 59.00 21.00 5.60	.30 5.00 40.00 36.00 11.00	.13 .13 .17 2.20 12.00
6 7 8 9	.09 .09 .10 .16		06 05 04 04 04	.08 .07 .06 .05	.10 .07 45.00 162.00 22.00	.09 .09 .35	.11 .38 4.50 4.10 4.80	.06 .07 .07 .05	.04 .04 .05	242.00 66.00 31.00 23.00 22.00	.29 .31 .31 .29 .33	9.00 3.50 .19 .19 8.30	3.60 2.40 .21 .33 1.70
11 12 13 14 15	.12 .09 .09	3.	04 07 43 00 80	.04 .04 .10 .06	9.00 6.10 5.20 5.20 5.60	.05 .05	3.00 1.00 .80 .40	.06 .04 .03 .03	.09 .08 .09	21.00 19.00 18.00 8.00 5.50	.33 20.00 18.00 6.00 8.10	16.00 9.70 .22 .11	8.10 .21 .17 .11
16 17 18 19 20	.22 .18 .16 .17		08 08 08 14 20	.05 .05 .05 .05	.89 .08 .05 .04	.05 .10 .06	.20 .10 .10 .05	.09 .06 .06 .05	6.10	1.90 1.60 .29 .28 .26	.71 .37 2.30 5.80	12.00 9.00 7.30 11.00 8.10	.11 .11 .09 .09
21 22 23 24 25	30.00 7.30 7.00 4.20 214.00) 2. 7.	50	.06 .12 .13 1.20 1.60	.04 .05 .08 .06	.06 .09 .22	.05 .05 2.00 1.50 .20	.03 .03 .03 .02	.16 .13 .17	2.40 .21 .19 .19 .21	.07 .05 .05 .61 14.00	4.70 4.70 2.00 1.60 4.60	.09 .10 .11 .11
26 27 28 29 30 31	25.00 20.00 20.00 19.00 18.00	3.		.11 .25 .08 .05 .04	.06 .05 .05 .04 .04	7.50 4.80 4.50	.20 .18 .16 .15 .12 2.00	.04 .06 .09 .06	.19 .25 4.10	55.00 3.30 13.00 8.40 .51	5.40 3.40 7.50 9.90 3.90	.54 .22 .22 .20 .13	355.00 190.00 105.00 78.00 63.00
TOTAL MEAN MAX MIN AC-FT	553.20 17.8 214 .09	2.:		5.03 .16 1.6 .04 10.0	262.54 8.47 162 .04 521	1.43 21 .05	44.20 1.43 4.8 .05 88	9.82 .33 4.8 .02	6.1	544.51 18.2 242 .19 1080	194.74 6.28 59 .05 386	206.07 6.65 40 .11 409	823.59 27.5 355 .09 1630
CAL YR WTR YR			968.72 777.39		8.13 7.59	MAX 214 MAX 355	MIN .04 MIN .02	AC-FT AC-FT					

COLORADO RIVER BASIN 95
08136500 CONCHO RIVER AT PAINT ROCK, TX

LOCATION.--Lat 31°30'57", long 99°55'09", Concho County, Hydrologic Unit 12090105, near left bank on downstream end of pier of bridge on U.S. Highway 83, 0.5 mi north of Concho County Courthouse in Paint Rock, 2.7 mi downstream from Kickapoo Creek, and 20.0 mi upstream from mouth.

DRAINAGE AREA. -- 6,574 mi2, of which 1,131 mi2 probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- September 1915 to current year. Prior to October 1970, published as "near Paint Rock".

REVISED RECORDS.--WSP 458: 1915-16. WSP 568: 1919-20. WSP 1712: 1922(M). WSP 1732: 1918(M), 1923(M). WDR TX-81-3: Drainage area.

GAGE.--Water-stage recorder with masonry dam control. Datum of gage is 1,574.36 ft National Geodetic Vertical Datum of 1929. See WSP 1922 for history of changes prior to Jan. 15, 1940.

REMARKS.--Water-discharge records good. Many diversions above station for irrigation and municipal supply. Regulation is the same as that for Concho River at San Angelo (station 08136000). Flow is affected at times by discharge from flood-detention pools of two floodwater-retarding structures with a combined detention capacity of 2,690 acre-ft. These structures control runoff from 16.5 mi² in the Willow Creek drainage basin.

AVERAGE DISCHARGE.--47 years (water years 1916-62) prior to construction of Twin Buttes Dam, 210 ft³/s (152,100 acreft/yr); 22 years (water years 1963-84) regulated, 57.2 ft³/s (41,440 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 301,000 ft³/s Sept. 17, 1936 (gage height, 43.4 ft, from flood-marks), from rating curve extended above 98,000 ft³/s on basis of slope-area measurements of 144,000 and 301,000 ft³/s; no flow at times.

Maximum stage since at least 1853, that of Sept. 17, 1936.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in August 1882 reached a stage of about 39.9 ft, and flood in August 1906 reached a stage of 39.5 ft, from information by local resident.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 331 ft³/s Oct. 26 at 1700 hours (gage height, 13.44 ft); minimum daily, 0.03 ft³/s for many days.

		DISCHARGE	, IN	CUBIC FEET	PER SECO	OND, WATER MEAN VALU		OBER 1983	TO SEPTE	MBER 1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	10.0 9.5 8.1 8.4 8.1	55 55 55 83 84	27 27 27 25 23	33	40 27 24 23 21	28.0 27.0 26.0 19.0 14.0	6.60 6.80 5.90 4.50 4.20	.44 .40 .05 .04	.03 .03 .03 .03	.03 .03 .05 1.70	.10 .08 .06 .03	.20 2.20 74.00 23.00 12.00
6 7 8 9	12.0 13.0 10.0 13.0 16.0	50 41 33 29 24	22 19 20 23 24	20 20	22 22 22 23 23	20.0 21.0 18.0 16.0 16.0	3.80 5.80 8.70 6.00 4.00	.05 .04 .03 .03	.03 .03 .03 .03	1.80 .30 .04 .03	.03 .03 .03 .03	8.40 6.20 5.00 2.20 2.20
11 12 13 14 15	17.0 16.0 14.0 13.0	24 24 25 26 25	24 25 22 24 24	131 55 38 31 29	23 22 21 21 20	18.0 21.0 22.0 21.0 18.0	5.10 4.20 3.90 2.10 1.20	.03 .03 .03 .03	.03 .03 .03 .03	.04 .05 .04 .04	.03 .03 13.00 13.00 14.00	.97 1.40 .00 .03
16 17 18 19 20	11.0 16.0 17.0 20.0 24.0	25 26 29 28 25	22 18 19 18 21	27 25 25 24 24	17 17 17 15 15	15.0 12.0 8.9 5.2 5.3	1.30 1.60 2.10 2.50 2.00	.03 .03 .03 .03	.03 .03 .03 .03	.04 .04 .09 .05	13.00 9.60 7.20 2.20 1.20	.00 .00 .00
21 22 23 24 25	47.0 135.0 59.0 40.0 57.0	24 25 24 24 22	22 22 22 22 22 22	24 24 24 24 25	19 22 18 17	5.0 4.9 20.0 15.0 12.0	.64 .67 1.20 2.10 1.70	.03 .03 .03 .03	.03 .03 .03 .03	.03 .03 .03 .10	.76 1.20 .76 .76	.00 .00 .00
26 27 28 29 30 31	149.0 143.0 66.0 49.0 54.0 55.0	23 29 27 27 27	22 22 24 24 24 24	26 25 25 25 25 25 24	18 21 20 25	20.0 25.0 14.0 11.0 11.0 8.8	1.30 .38 .63 .82 .22	.03 .03 .03 .03 .03	.03 .03 .03 .03	.10 .05 .40 .40 .20	.39 .20 .20 .20 .20	.00 6.80 68.00 27.00 58.00
TOTAL MEAN MAX MIN AC-FT	1121.1 36.2 149 8.1 2220	84 22	704 22.7 27 18 1400	968 31.2 131 20 1920	612 21.1 40 15 1210	498.1 16.1 28 4.9 988	91.96 3.07 8.7 .22 182	1.78 .057 .44 .03 3.5	.90 .030 .03 .03	6.67 .22 1.8 .03	78.97 2.55 14 .03 157	297.60 9.92 74 .00 590

CAL YR 1983 TOTAL 9898.10 MEAN 27.1 MAX 185 MIN .02 AC-FT 19630 WTR YR 1984 TOTAL 5399.08 MEAN 14.8 MAX 149 MIN .00 AC-FT 10710

08136500 CONCHO RIVER AT PAINT ROCK, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical and biochemical analyses: October 1967 to current year. Pesticide analyses: October 1967 to September 1981.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1967 to current year. WATER TEMPERATURES: October 1967 to current year. SUSPENDED SEDIMENT DISCHARGE: February 1978 to September 1981.

REMARKS.--Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and regression relationships between each chemical constituent and specific conductance. Regression equations developed for this station may be obtained from the Geological Survey District office upon request.

EXTREMES FOR PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE: Maximum daily, 3,690 micromhos June 28, Aug. 12, 1984; minimum daily, 268 micromhos Sept. 9,

WATER TEMPERATURES (1967-73, 1975-84): Maximum daily, 35.0°C on several days during summer months; minimum daily, 0.0°C on many days during winter months.

SEDIMENT CONCENTRATIONS (1978-81): Maximum daily mean, 4,190 mg/L Sept. 9, 1980; minimum daily mean, 3 mg/L Feb. 2,

SEDIMENT LOADS (1978-81): Maximum daily, 269,000 tons Sept. 9, 1980; minimum daily, 0.0 tons on several days during September 1980.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum daily, 3,690 micromhos June 28, Aug. 12; minimum daily, 1,470 micromhos Nov. 5, 9.
WATER TEMPERATURES: Maximum daily, 32.0°C July 14; minimum daily, 4.0°C Dec. 22, 25.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	HARD- NESS (MG/L AS CACO3)
OCT 19	1600	14	2910	8.1	22.5	. 5	20	9.5	116	2.8	940
15	0940	24	2480	7.7	9.5	<1	15	12.1	111	1.1	770
JAN 23	1020	24	2670		5.0						750
FEB 23	1730	19	2550	7.7	14.5	<1	8.8	10.3	108	2.3	740
APR 17	1830	1.2	2620	8.1	22.0	40	20	8.3	102	2.7	770
JUN 14	0845	.03	3180	7.7	26.0	7	27	7.2	94	5.1	930
AUG 22	1510	6.2	2360	8.0	30.5	40	16	9.1	129	3.6	740
DATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)
OCT 19	820	180	120	270	4	5.8	120	530	640	.70	24
DEC 15 JAN	560	170	85	240	4	4.7	220	310	530	.70	17
23	540	170	80	250	4	4.9	210	290	560	.60	17
FEB 23	550	160	83	240	4	4.8	190	340	520	.70	13
APR 17	610	160	90	240	4	5.3	160	370	550	. 70	10
JUN 14	790	190	110	310	5	6.1	140	450	710	.70	23
AUG 22	650	150	89	210	3	6.5	92	360	510	.50	30

08136500 CONCHO RIVER AT PAINT ROCK, TX--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO GEN, NO2+NO TOTAI (MG/I	GE 3 AMMO TOT (MG	N, NIA AL	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 19	1800	21	1	.38	.020		. 0	040	1.2	1.2	.160	6.2
DEC 15	1500	62		9.3	.050	9.3		010	1.2	1.2	.010	3.0
JAN 23	1500											
FEB 23	1500	24	<2		<.010		. 0	290	.41	.70	.020	3.7
APR 17	1500	23	5	3.2	.050	3.2		150	.95	1.1	.040	4.9
JUN 14	1900				.090	<.		090	1.1	1.2	.060	6.3
AUG 22	1400	33	19		.030	<.		060	1.1	1.2	.070	11
		DATE	TIME	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	CADMII DIS- SOLVI (UG/I AS CI	DIS ED SOL	M, VED	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)		
		DEC 15 JUN	0940	2	200		(1	<10	5	80		
		14	0845	4	200		3	<10	2	40		
		DE	SC SC SC SC	EAD, NI DIS- I DIVED SO JG/L (U B PB) AS	DIS- DLVED S JG/L (S MN) A	RCURY DIS- OLVED UG/L S HG)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SO1 (UC	IS- D LVED SO G/L (U AG) AS	NC, DIS- DLYED G/L ZN)		
		1	4	<1	30	<.1	1		<1	<10		

MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1983 TO SEPTEMBER 1984

MONTH	YEAR	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
OCT.	1983	1121.1	2640	1550	4690	570	1720	340	1040	800
NOV.	1983	1018	1890	1090	2980	380	1050	210	578	560
DEC.	1983	704	2400	1390	2650	500	958	300	563	720
JAN.	1984	968	2600	1520	3980	560	1450	330	874	790
FEB.	1984	612	2430	1420	2340	510	846	300	499	730
MAR.	1984	498.1	2570	1500	2020	550	738	330	443	780
APR.	1984	91.96	2630	1540	383	560	140	340	85	800
MAY	1984	1.78	2 740	1620	7.8	590	2.9	360	1.8	840
JUNE	1984	0.90	3270	1960	4.8	740	1.8	480	1.2	1000
JULY	1984	6.67	3420	2060	37	790	14	520	9.3	1100
AUG.	1984	78.97	2690	1580	338	580	124	360	76	820
SEPT	1984	297.60	2290	1330	1070	480	383	2 80	222	690
TOTAL		5399.08	**	**	20500	**	7430	**	4390	**
WTD.AV	/G.	15	2410	1410	**	510	**	300	**	730

MEAN

23.5

21.0

08136500 CONCHO RIVER AT PAINT ROCK, TX--Continued

	SPECI	FIC CONDU	CTANCE (M	ICROMHOS/	CM AT 25	DEG. C), N	WATER YEAR	R OCTOBER	1983 TO S	SEPTEMBER	1984	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	2830 2780 2790 2770 2760	2450 2460 2450 1820 1470	2200 2220 2210 2190 2250	2660 2640 2600 2610 2620	2420 2450 2390 2350 2400	2590 2590 2510 2580 2530	2620 2660 2650 2650 2660	2550 2740 2770 2800 2770	3100 3120 3110 3090 3140	3560 3600 3580 3450 3420	3550 3620 3550 3450 3340	2630 2560 2210 2160 2250
6 7 8 9 10	2800 2790 2800 2810 2840	1660 1720 1810 1470 2160	2190 2290 2160 2140 2330	2590 2690 2710 2630 2590	2340 2320 2360 2380 2360	2550 2570 2600 2510 2590	2680 2630 2620 2610 2640	2660 2720 2850 2860 2870	3160 3120 3460 3130 3320	3610 3540 3550 3580 3530	3420 3480 3380 3630 3650	2340 2220 2170 2200 2220
11 12 13 14 15	2810 2860 2890 2910 2820	1920 1980 1580 1550 1600	2400 2380 2460 2490 2510	2380 2690 2620 2670 2610	2370 2400 2440 2430 2470	2580 2600 2590 2560 2590	2610 2620 2610 2600 2590	2890 2910 2920 2910 2900	3300 3200 3390 3150 3000	3560 3530 3350 3550 3530	3670 3690 2450 2390 2550	22 90 21 60 22 20 21 60 21 70
16 17 18 19 20	2930 2880 2870 2960 2920	1680 1630 1740 1920 2010	2400 2290 2170 2560 2100	2650 2680 2710 2670 2610	2490 2470 2510 2480 2450	2570 2600 2630 2650 2640	2640 2600 2630 2660 2640	2890 2910 2920 2940 2960	3090 3150 3210 3030 3160	3540 3530 3360 3550 3540	32 80 2 930 2460 2 850 3200	2190 2180 2190 2220 2180
21 22 23 24 25	2 93 0 2 8 1 0 2 4 3 0 2 8 4 0 2 9 4 0	2000 1780 1750 1990 1560	2280 2410 2550 2620 2650	2600 2610 2700 2640 2710	2510 2400 2460 2500 2510	2630 2660 2450 2540 2590	2650 2660 2630 2610 2670	2720 2670 2630 3010 2900	32 80 3430 3440 3450 3460	3560 3590 3620 3360 3380	3610 2410 2390 2550 2480	2200 2210 2190 2220 2550
26 27 28 29 30 31	2430 2250 2510 2710 2350 2680	2080 1860 2000 2160 2180	2620 2590 2540 2690 2760 2670	2650 2600 2540 2560 2550 2570	2500 2430 2470 2580	2510 2610 2620 2550 2610 2640	2680 2700 2680 2630 2730	2910 2890 2880 2870 2600 3000	3420 3340 3690 3600 3520	3390 3440 2700 2950 3340 3540	2400 2450 2430 2400 2410 2390	2890 2790 2250 2620 2300
MEAN	2760	1880	2400	2620	2440	2580	2640	2830	32 70	3460	2980	2300
		TEM	DED A MUDIE	HAMED (D	70 O) I		O CETON ED	1000 mo di	angun en	1004		
DAY	OCT	NOV	DEC.	JAN	FEB	VATER YEAR ONCE-DAILY MAR		MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	24.0 26.0 25.0 24.0	23.0 24.0 23.0 22.0 23.0	17.0 20.0 19.0 18.0 19.0	7.0 8.0 8.0 8.0	12.0 11.0 12.0 13.0 12.0	15.0 14.0 13.0 14.0 15.0	21.0 20.0 21.0 19.0 21.0	22.0 23.0 23.0 23.0	27.0 27.0 25.0 27.0	29.0 27.0 29.0 27.0	29.0 29.0 29.0 28.0	30.0 29.0 30.0 29.0
6 7 8 9	25.0 25.0 26.0 25.0 24.0	24.0 22.0 23.0 20.0 21.0	19.0 18.0 17.0 15.0 18.0	7.0 8.0 9.0 8.0	13.0 13.0 14.0 13.0 14.0	14.0 15.0 15.0 16.0 16.0	22.0 23.0 24.0 25.0 22.0	26.0 25.0 23.0 25.0 25.0	26.0 27.0 26.0 28.0 25.0	29.0 31.0 30.0 31.0 30.0	29.0 30.0 29.0 29.0 30.0	28.0 26.0 27.0 29.0 30.0
11 12 13 14 15	22.0 23.0 22.0 20.0 24.0	22.0 20.0 21.0 22.0	17.0 16.0 18.0 17.0 16.0	7.0 9.0 9.0 8.0 7.0	15.0 13.0 14.0 15.0 15.0	16.0 16.0 17.0 20.0	20.0 20.0 22.0 21.0 22.0	26.0 26.0 26.0 26.0	27.0 27.0 25.0 25.0 29.0	31.0 30.0 31.0 32.0 30.0	31.0 29.0 30.0 29.0 28.0	28.0 30.0 29.0 28.0 29.0
16 17 18 19 20	25.0 24.0 24.0 24.0 24.0	20.0 21.0 20.0 21.0 20.0	18.0 16.0 7.0 6.0 7.0	6.0 6.0 7.0 6.0 5.0	15.0 16.0 17.0 16.0 17.0	22.0 21.0 19.0 19.0	20.0 21.0 25.0 24.0 25.0	25.0 23.0 25.0 23.0 22.0	28.0 27.0 28.0 28.0	31.0 30.0 29.0 30.0 31.0	28.0 30.0 31.0 29.0	22.0 24.0 25.0 27.0
21 22 23 24 25	25.0 24.0 25.0 26.0 22.0	20.0 19.0 19.0 20.0 21.0	5.0 4.0 7.0 5.0 4.0	7.0 9.0 8.0 9.0	13.0 15.0 15.0 16.0 17.0	23.0 21.0 22.0 20.0 21.0	26.0 27.0 26.0 27.0	24.0 27.0 27.0 26.0 25.0	29.0 27.0 28.0 27.0	29.0 28.0 29.0	29.0 30.0 30.0 31.0	25.0 28.0 26.0 27.0
26 27 28 29 30 31	22.0 20.0 22.0 21.0 22.0 23.0	20.0 18.0 19.0 20.0 18.0	6.0 6.0 5.0 5.0 5.0	9.0 10.0 10.0 10.0	14.0 13.0 15.0 15.0	21.0 20.0 19.0 20.0 21.0	27.0 25.0 23.0 22.0 20.0	23.0 23.0 24.0 27.0 28.0	30.0 28.0 29.0 27.0	30.0 29.0 29.0 28.0	30.0 31.0 29.0 29.0	24.0

12.0 8.0 14.0 18.0 23.0 25.0 27.0 29.5 29.5 27.0

99

08136700 COLORADO RIVER NEAR STACY, TX

LOCATION.--Lat 31°29'37", long 99°34'25", Coleman County, Hydrologic Unit 12090106, on left bank at downstream side of bridge on Farm Road 503, 1.2 mi upstream from Bois d'Arc Creek, 1.8 mi northeast of Stacy, 24 mi downstream from Concho River, and at mile 604.8.

DRAINAGE AREA. -- 24,193 mi2, approximately, of which 11,391 mi2 probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- March 1968 to current year. Prior to October 1970, published as "at Stacy".

REVISED RECORDS .-- WRD TX-81-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,394.66 ft National Geodetic Vertical Datum of 1929 (State Department of Highways and Public Transportation bridge plans).

REMARKS.--Water-discharge records good. Many diversions above station for irrigation, municipal, and oilfield opera-tion uses. Effluent from numerous sewage plants is returned to the river. Flow is affected by reservoirs upstream (see stations 08126380 and 08136000) and at times by discharge from the flood-detention pools of 42 floodwaterretarding structures with a combined detention capacity of 56,730 acre-ft. These structures control runoft from 277 mi2.

AVERAGE DISCHARGE. -- 16 years (water years 1969-84), 206 ft³/s (149,200 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 45,000 ft³/s Sept. 10, 1980 (gage height, 28.00 ft); no flow at times in 1974, 1980, 1983, and 1984.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since since at least 1882, 356,000 ft³/s Sept. 18, 1936 (gage height, 64.59 ft), by slope-area measurement of peak flow. The flood of Sept. 18, 1936, was 4 ft higher than the 1906 flood and 7 to 8 ft higher than the 1882 flood, from information by local resident.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 4,440 ft 3/s Sept. 3 at 1100 hours (gage height, 9.78 ft); no flow for many days.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP .00 31.0 21.00 .00 2 44 29 35 30 11.00 .00 0 0 .00 1400.00 3 31 42 . 00 0 43 31 35 30.0 8.90 0 0 . 00 43 32 0 35 0 0 .00 254.00 31.0 8.40 .00 5 0 85 31 35 36 32.0 8.40 .00 0 0 .00 105.00 6 0 344 30 8.00 0 0 .00 53.00 34 31 31.0 .00 0 189 34 29 .00 25.00 28 26.0 7.20 . 00 0 0 8 0 127 26 34 29 22.0 7.20 0 .00 14.00 .00 0 81 26 27 40 29 19.0 8.00 0 0 . 00 8.90 10 0 0 55 29 .00 39 19.0 6.10 .00 0 6.50 11 0 45 28 27 20.0 5.80 .00 0 0 .00 5.00 69.00 26 26 3.80 12 0 39 28 171 20.0 5.20 .00 0 0 13 32 28 0 98 19.0 0 0 187.00 4.90 . 00 14 0 29 29 26 18.0 4.60 .00 34.00 15 0 28 29 63 22 18.0 0 0 12.00 1.20 .00 16 0 27 0 30 54 21 20.0 3.10 .00 0 6.90 .70 17 0 50 22.0 2.90 0 .37 26 30 23 .00 4.60 .00 2.90 3.40 .23 18 0 24 30 46 26 19.0 0 0 ŏ 20 30 24 0 45 13.0 . 00 20 0 20 29 22 12.0 2.00 .00 0 0 .15 21 0 19 27 41 22 11.0 1.20 . 00 0 0 1.70 .13 20 22 40 21 1.00 .00 0 0 . 42 .10 8.4 23 108 20 24 312.0 .29 . 85 .00 .08 .00 24 141 19 24 37 18 106.0 .63 0 0 - 15 - 07 25 94 18 30 36 20 40.0 .37 .00 0 0 - 07 - 05 . 03 26 79 18 30 35 24 27.0 .33 .00 0 0 . 01 27 .00 105 18 30 34 22 16.0 .17 0 0 . 01 . 01 185 34 23 .00 19 31 11.0 .15 0 0 .00 .00 29 108 20 28 33 31 . 07 . 01 .00 .00 .00 33 34 30 70 24 32 18.0 . 03 .00 0 0 27.00 31 51 32 ---0 ---24.0 ---. 00 ---. 00 TOTAI. 941 1541 892 1465 760 1035.4 136.90 . 01 0 0 325.17 1910.78 .000 MEAN 30.4 51.4 28.8 47.3 26.2 33.4 4.56 .000 - 000 10.5 63.7 34 344 MAX 42 .00 . 01 .00 22 MIN . 03 .00 .00 . 00 18 .00 AC-FT 1870 3060 1770 2910 1510 2050 272 .00 645 3790 . 02 .00

CAL YR 1983 TOTAL 14650.86 MEAN 40.1 MAX 344 MIN .00 AC-FT 29060 WTR YR 1984 TOTAL 9007.26 MEAN 24.6 MAX 1400 .00

08136700 COLORADO RIVER NEAR STACY, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical analyses: April 1968 to current year. Sediment analyses: October 1974 to September 1979.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: April 1968 to current year. WATER TEMPERATURES: April 1968 to current year.

REMARKS.--Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and regression relationships between each chemical constituent and specific conductance. Regression equations developed for this station may be obtained from the Geological Survey District office upon request.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 4,030 micromhos Oct. 29, 1983; minimum daily, 188 micromhos July 29, 1971.
WATER TEMPERATURES (1968-83): Maximum daily, 35.0°C July 1, 1980; minimum daily, 0.0°C Feb. 9, 10, 1981.

EXTREMES FOR CURRENT YEAR .--SPECIFIC CONDUCTANCE: Maximum daily, 4,030 micromhos Oct. 29; minimum daily, 240 micromhos Sept. 3.

DATE	I	STREAM- FLOW, INSTAN- TANEOUS (CFS)	ANCE	TEMPER- ATURE (DEG C)		HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
NOV 16	1550	27	1690	17.5	480	370	110	50	160
JAN	1330	27	1030	17.5	400	370	110	30	
05	0950	31	850	4.5	220	160	53	22	64
FEB 02 APR	1000	30	2440	10.5	780	610	180	80	220
16	1035	2.9	2330	17.5	720	600	160	77	220
AUG 22	1400	.40	1390	34.5	510	430	130	44	120
DATE	SODIUM AD- SORP- TION RATIO	POTAS SIUM DIS- SOLVE (MG/L AS K)	, LINITY FIELD D (MG/L AS	SULFATE DIS- SOLVEI (MG/L	DIS- SOLVE (MG/L	(MG/I	DIS- SOLVE ED (MG/I	CONST ED TUENT DIS SOLV	OF CI- CS, G- VED
NOV				0 000	222		40 10	10	100
16 JAN	3	5.6	11	0 280	330	• 4	40 10	10	100
05 FEB	2	2.0	6	0 110	140	.2	20 3.	.7 4	30
02 APR	4	4.8	17	0 440	450	•	50 8	.8 15	000
16 AUG	4	5.1	12	0 430	450	• 5	50 4.	.3 14	00
22	2	6.6	7:	2 370	200		40 17	9	30

MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1983 TO SEPTEMBER 1984

08136700 COLORADO RIVER NEAR STACY, TX--Continued

MONTH	YEAR	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
	*									
OCT.	1983	941.00	3300	2110	5360	710	1800	680	1740	1100
NOV.	1983	1541	2010	1200	4990	380	1600	330	1360	610
DEC.	1983	892	1750	1020	2460	320	778	260	634	520
JAN.	1984	1465	2090	1250	4930	400	1580	340	1340	640
FEB.	1984	760	2470	1500	3080	490	1000	430	884	770
MAR.	1984	1035.4	1510	896	2500	2 90	798	240	672	460
APR.	1984	136.90	2130	1270	470	410	151	350	129	650
MAY	1984	0.01	2320	1400	0.04	450	0.01	3 90	0.01	720
JUNE	1984	0.00	*	*	0.00	*	0.00	*	0.00	*
JULY	1984	0.00	*	*	0.00	*	0.00	*	0.00	*
AUG.	1984	325.17	776	434	381	130	116	95	83	220
SEPT	1984	1910.78	312	170	875	50	260	33	169	86
TOTAL		9007.26	**	**	25100	**	8070	**	7010	**
WTD.AV	VG.	25	1710	1030	**	330	**	290	**	530

	SPECI	FIC CONDU	CTANCE	(MICROMHOS/CM		DEG. C), IVALENT		OCTOBER	1983 TO S	SEPTEMBER	1984	
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1		3180	1650	2160	2380	2560	1750	2320				
2		3010	1460	2270	2430	2540	1900					
3		2890	1730	2150	2400	2490	1990					240
4		2770	1760	2010	2410	2460	2090					450
5		2630	1820	1590	2390	2430	2120					535
6		2140	1800	2040	2420	2400	2220				242	620
7		2050	1790	2090	2410	2390	2260					610
8		1810	1780	2070	2430	2370	2300					600
9		1550	1710	2040	2440	2380	2280					620
10		1560	1690	2010	2440	2390	2310					630
11		1600	1670	1910	2460	2470	2300					620
12		1560	1660	1720	2450	2400	2280				1100	630
13		1690	1650	2170	2470	2410	2290				540	650
14		1710	1640	2250	2480	2420	2320				1020	680
15		1670	1650	2230	2480	2440	2300				1100	700
16		1630	1630	2220	2510	2470	2270				1140	715
17		1610	1640	2200	2480	2410	2280				1220	700
18		1570	1670	2160	2450	2460	2260				1210	710
19		1580	1720	2130	2490	2490	2280				1200	720
20		1560	1550	2140	2510	2490	2270				1220	725
21		1580	1720	2130	2520	2500	2260				1220	733
22		1590	1810	2150	2530	2510	2250				1230	740
23	2250	1600	1800	2140	2560	650	2260				1240	721
24	2040	1620	1890	2110	2600	500	2270				1260	700
25	2770	1610	1780	2120	2550	750	2270				1250	720
26	3730	1620	1860	2150	2500	800	2280				1270	770
27	4020	1630	1930	2180	2610	1000	2330				1260	740
28	3830	1640	1650	2210	2600	1140	2310					
29	4030	1640	1920	2300	2590	1290	2320					760
30	3850	1660	2000	2380		1300	2330					450
31	3660		2050	2420		1500						
MEAN	3350	1870	1740	2120	2480	2030	2230	2320			1160	648

COLORADO RIVER BASIN

08136700 COLORADO RIVER NEAR STACY, TX--Continued

	-	TEM	PERATURE,	WATER	(DEG. C),	WATER YEAR ONCE-DAIL		1983 TO	SEPTEMBER	1984		
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1			11.0		11.0	13.0		21.0				
2			10.0	11.0	13.0	15.0	19.0					
3			12.0	3.0	12.0	15.0	19.0					
4				2.0	13.0		19.0					25.0
5			14.0	5.0	12.0	13.0	19.0					27.0
6			13.0	10.0		14.0	20.0					28.0
7			12.0	9.0		14.0	20.0					28.0
8			13.0			15.0						29.0
9		20.0	13.0	10.0		13.0	23.0					
10		19.0	14.0	8.0	14.0	14.0	23.0					30.0
11				9.0	15.0	20.0	24.0					30.0
12		17.0	14.0	8.0		16.0	22.0				25.0	30.0
13			13.0	8.0	15.0	17.0	24.0					31.0
14		19.0	12.0	6.0	15.0	20.0	21.0				27.0	31.0
15		18.0	11.0		15.0	21.0						27.0
16		18.0		1.0		21.0	21.0				30.0	
17		17.0	8.0	1.0	15.0		21.0				31.0	27.0
18		17.0		5.0	16.0		20.0				30.0	26.0
19		16.0	6.0	4.0		18.0	22.0					26.0
20			4.0	4.0		19.0	23.0				33.0	26.0
21		17.0	4.0	3.0		19.0	21.0				32.0	29.0
22		18.0	1.0		14.0	20.0					31.0	26.0
23		16.0	1.0		15.0	19.0	24.0				32.0	
24	21.0		1.0	7.0	15.0	15.0	25.0				31.0	26.0
25	21.0	13.0		6.0			25.0				33.0	28.0
26	19.0	15.0		9.0		19.0	25.0					22.0
27	21.0		2.0		12.0	18.0	23.0				32.0	22.0
28	19.0	12.0	1.0	10.0		17.0	23.0					
29	21.0	13.0			11.0	18.0						15.0
30		11.0		10.0		16.0	21.0					
31	23.0		5.0	10.0		18.0						
MEAN	20.5	16.0	8.5	6.5	13.5	17.0	22.0	21.0			30.5	27.0

103 COLORADO RIVER BASIN 08138000 COLORADO RIVER AT WINCHELL, TX

LOCATION.--Lat 31°28'04", long 99°09'43", McCulloch-Brown County line, Hydrologic Unit 12090106, near left bank on downstream end of pier of bridge on U.S. Highway 377, 0.3 mi south of Winchell, 5.9 mi downstream from Home Creek, and at mile 560.7.

DRAINAGE AREA. -- 25,179 mi², approximately, of which 11,391 mi² probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. --November 1923 to September 1934 (published as "near Milburn"), June 1939 to current year.

REVISED RECORDS. -- WDR TX-81-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,264.86 ft National Geodetic Vertical Datum of 1929. November 1923 to September 1934, nonrecording gage at site 4.2 mi downstream at datum 10.14 ft lower. Jan. 13, 1939, to Mar. 24, 1940, nonrecording gage at present site and datum.

REMARKS.--Water-discharge records good. Many diversions above station for irrigation, municipal supply, and oilfield operation. Flow is affected by reservoirs upstream (see stations 08126380 and 08136000) and at times by discharge from the flood-detention pools of 89 floodwater-retarding structures with a combined detention capacity of 105,100 acre-ft. These structures control runoff from 512 mi2.

AVERAGE DISCHARGE.--39 years (water years 1925-34, 1940-68) prior to completion of Robert Lee Dam, 628 ft³/s (455,000 acre-ft/yr); 16 years (water years 1969-84) partially regulated, 250 ft³/s (181,100 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD .-- Maximum discharge, 76,100 ft3/s Oct. 15, 1930 (gage height, 51.8 ft, present site and datum); no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Highest stages since 1882 were 62.2 ft Sept. 19, 1936, and 56.2 ft Aug. 8, 1906, at railway bridge 1,000 ft upstream and converted to present site and datum, from information by Gulf, Colorado, and Santa Fe Railway Co.

EXTREMES FOR CURRENT YEAR .-- Maximum discharge, 2,780 ft3/s Sept. 4 at 0300 hours (gage height, 8.79 ft); no flow for many days.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP .00 20 26 25 65 16.00 0 -00 53 31 .00 27 .00 0 0 .13 15.00 0 3 .00 47 29 29 30 339.00 .00 .00 47 30 30 30 30 20.00 n 0 n 00 1520.00 5 70 .00 30 31 29 28 19.00 0 0 0 .00 444.00 6 .00 82 31 31 36 30 15.00 0 0 0 .00 234.00 32 32 135.00 .00 313 32 31 38 12.00 0 0 0 .00 33 8 .00 193 32 31 0 0 .00 11.00 0 .00 32 32 9.20 .00 10 .00 97 31 37 31 26 0 0 0 35.00 7.90 .00 11 70 28 .00 37 30 7.00 0 0 0 .00 24.00 24 12 .00 56 26 38 29 80 0 127.00 6.70 17.00 25 23 13 .00 47 153 29 98 6.00 0 0 0 185.00 10.00 .00 40 0 133 28 0 49 4.60 0 249.00 7.00 15 .00 33 21 95 27 34 4.00 0 0 0 92.00 4.60 16 .00 31 21 77 25 27 3.00 0 0 0 65.00 3.10 23 .00 28 23 25 64 2.60 0 0 0 41.00 18 .00 26 23 2.40 20.00 19 .00 24 23 49 27 24 2.40 0 0 0 14.00 2.00 20 22 23 .00 45 26 23 2.00 0 0 0 9.30 1.70 22 21 .00 24 43 28 21 1.40 0 0 0 5.90 3.60 22 .00 21 24 41 28 20 1.10 0 0 0 3.20 4.30 23 .00 21 24 41 26 1150 0 2.50 . 73 0 0 2.00 24 .00 21 21 25 .00 20 18 39 23 199 .26 0 0 0 2.00 1.40 26 .00 20 101 .09 0 0 1.70 1.10 27 .02 20 19 35 128 56 .03 0 1.10 1.40 84.00 .73 28 19 22 34 54 36 .01 0 0 0 1.70 29 24 34 164.00 20 34 .00 0 0 0 . 59 3.00 126.00 20 32 0 0 25 .00 0 2.40 .46 31 87.00 25 31 19 0 .35 TOTAL 461.02 1686 769 1459 1002 3002 188.88 0 0 0 823.23 2937.52 MEAN 14.9 56.2 24.8 47.1 34.6 96.8 6.30 .000 .000 .000 26.6 97.9 MAX 164 313 32 153 128 1150 20 .00 .00 .00 249 1520 .00 18 MIN 2.5 23 19 .00 .00 -00 .00 -00 914 3340 1530 1990 5950 375 .00 1630 5830 .00 .00

CAL YR 1983 TOTAL WTR YR 1984 TOTAL .00 17329.22 MEAN 47.5 MAX 1130 MIN AC-FT 34370 12328.65 MEAN 33.7 MAX 1520 MIN .00 AC-FT 24450

08138000 COLORADO RIVER AT WINCHELL, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical analyses: November 1967 to current year.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
NOV									
15 DEC	1605	33	2540	16.5	690	570	140	82	270
28 FEB	1240	23	1850	3.0	500	360	110	54	180
01 MAR	1150	31	2200	10.0	700	540	160	72	190
14 APR	0840	53	1500	16.5	420	320	98	42	150
16 AUG	1640	2.6	1640	21.0	490	370	120	47	140
22	0840	2.9	1010	28.5	250	160	65	21	94

	SODIUM	POTAS-	ALKA-		CHLO-	FLUO-	SILICA.	SOLIDS, SUM OF	
DATE	AD- SORP- TION RATIO	SIUM, DIS- SOLVED (MG/L AS K)	LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	CONSTI- TUENTS, DIS- SOLVED (MG/L)	
			0.10037		11.5.4	117 300	,	(110, 2)	
NOA									
15 DEC	5	5.4	120	400	550	.60	16	1500	
28 FEB	4	5.4	140	270	360	, .50	8.6	, 1100	
01 MAR	3	4.7	160	350	430	.10	9.7	1300	
14 APR	3	5.2	98	240	280	.10	3.1	880	
16 AUG	3	6.1	120	250	300	.40	5.2	940	
22	3	6.3	90	100	200	.30	10	550	

08140600 LAKE CLYDE NEAR CLYDE, TX

LOCATION.--Lat 32°19'05", long 99°28'43", Callahan County, Hydrologic Unit 12090107, at Clyde pump station, 0.6 mi west of dam on North Prong Pecan Bayou, 2.1 mi downstream from bridge on Farm Road 604, and 7.0 mi southeast of Clyde.

DRAINAGE AREA. -- 36.9 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- January 1970 to current year.

REVISED RECORDS. -- WDR TX-81-3: Drainage area.

GAGE .-- Nonrecording gage. Datum of gage is National Geodetic Vertical Datum of 1929.

REMARKS.--The lake is formed by a rolled earthfill dam, 3,950 ft long. Appreciable storage began in April 1970, and the dam was completed in May 1970. The uncontrolled emergency spillways are two 200-foot-wide cut channels through natural ground located at left end of dam. The service spillway is an uncontrolled 3.5- by 10.5-foot reinforced concrete drop inlet connected to a 42-inch concrete outlet pipe. A 14-inch controlled drain pipe is connected to the drop inlet. There are four 4.83- by 3.50-foot rectangular slots, two on each side, divided by a 10-inch concrete web. Figures given herein represent total contents. Data regarding the dam and lake are given in the following table: ing table:

	(feet)	(acre-feet)
Top of dam	1,888.9	16,530
Crest of spillway	1,881.4	10,840
Crest of spillway (invert of drop inlet)	1,872.0	5,720
Lowest gated outlet (invert)	1,842.2	60

COOPERATION .-- Record of lake elevations furnished by the city of Clyde. Capacity table was furnished by the Soil Conservation Service.

EXTREMES (AT 0700) FOR PERIOD OF RECORD.--Maximum contents, 10,580 acre-ft Oct. 14, 1971 (elevation, 1,881.0 ft); minimum, 917 acre-ft Sept. 27-30, 1984 (elevation, 1,855.5 ft).

EXTREMES (AT 0800) FOR CURRENT YEAR.--Maximum contents observed, 2,510 acre-ft Oct. 1-4 (elevation, 1,863.2 ft); minimum observed, 917 acre-ft Sept. 27-30 (elevation, 1,855.5 ft).

Capacity table (elevation, in feet, and total contents, in acre-feet)

1,855.0	851	1,861.0	1,940
1,858.0	1,310	1,864.0	2,740

CONTENTS, IN ACRE-FEET, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 INSTANTANEOUS OBSERVATIONS AT 0800

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2510	2430	2320	2210	2160	2060	1990	1850	1630	1390	1170	1080
2	2510	2430	2320	2210	2160	2060	1990	1850	1630	1390	1170	1080
2 3 4 5	2510	2430	2320	2210	2160	2060	1990	1830	1630	1370	1170	1080
4	2510	2430	2320	2210	2160	2060	1990	1830	1610	1370	1170	1060
5	2480	2430	2320	2210	2160	2060	1970	1830	1610	1350	1160	1050
6 7	2480	2430	2320	2210	2160	2040	1970	1830	1590	1350	1160	1030
	2480	2430	2320	2210	2160	2040	1970	1830	1590	1330	1160	1030
8	2480	2430	2320	2210	2160	2040	1970	1800	1590	1330	1160	1030
10	2480	2430	2290	2210	2160	2040	1970	1800	1590	1310	1160	1020
10	2450	2430	2290	2210	2140	2060	1940	1780	1570	1310	1140	1020
11	2450	2430	2290	2210	2140	2060	1940	1780	1570	1310	1140	1020
12	2430	2400	2290	2210	2140	2060	1940	1780	1540	1290	1140	1000
13	2430	2400	2290	2210	2140	2060	1940	1760	1540	1290	1140	987
14	2430	2400	2290	2210	2140	2060	1920	1760	1540	1290	1140	987
15	2430	2400	2290	2210	2110	2060	1920	1760	1540	1280	1140	987
16	2400	2400	2290	2210	2110	2040	1920	1760	1520	1280	1140	973
17	2400	2370	2270	2210	2110	2040	1900	1740	1520	1280	1140	973
18	2400	2370	2270	2210	2110	2040	1900	1740	1520	1260	1120	973
19	2370	2370	2270	2210	2110	2040	1900	1740	1500	1240	1120	959
20	2430	2370	2270	2210	2110	2040	1900	1740	1500	1240	1120	959
21	2450	2370	2270	2210	2110	2040	1900	1710	1480	1220	1120	945
22	2450	2370	2270	2210	2090	2040	1900	1710	1460	1220	1120	945
23	2450	2370	2270	2210	2090	2040	1900	1710	1440	1210	1110	945
24	2480	2370	2270	2190	2090	2040	1900	1690	1440	1220	1110	931
25	2450	2370	2240	2190	2090	2040	1870	1690	1420	1220	1110	931
26	2450	2340	2240	2190	2090	2010	1870	1690	1420	1210	1110	931
27	2450	2340	2240	2190	2060	2010	1870	1690	1400	1210	1110	917
28	2450	2340	2240	2190	2060	2010	1850	1670	1400	1210	1090	917
29	2450	2340	2240	2190	2060	2010	1850	1670	1400	1190	1090	917
30	2450	2320	2240	2190		2010	1850	1650	1400	1190	1090	917
31	2450		2240	2190		2010		1650		1190	1080	
MAX	2510	2430	2320	2210	2160	2060	1990	1850	1630	1390	1170	1080
MIN	2370	2320	2240	2190	2060	2010	1850	1650	1400	1190	1080	917
(†)	1862.9	1862.4	1862.1	1861.9	1861.4	1861.2	1860.4	1859.5	1858.2	1857.3	1856.6	1855.5
(‡)	-60	-130	-80	-50	-130	-50	-160	-200	-250	-210	-110	-163

CAL YR 1983 MAX 4050 MIN 2240 MAX 2510 MIN

Elevation, in feet, at end of month. Change in contents, in acre-feet.

08140600 LAKE CLYDE NEAR CLYDE, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical analyses: October 1974 to September 1984 (discontinued).

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
APR 12	1510	689	18.0	170	50	50	11	64
DATE	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)
APR 12	2	7.6	120	44	110	.40	2.1	360

08141000 HORDS CREEK LAKE NEAR VALERA, TX

LOCATION.--Lat 31°49'58", long 99°33'38", Coleman County, Hydrologic Unit 12090108, at outlet-works structure near right end of dam on Hords Creek, 5.6 mi north of Valera, and 8.8 mi west of Coleman.

DRAINAGE AREA .-- 48 mi2, approximately.

PERIOD OF RECORD. -- April 1948 to current year. Prior to October 1970, published as Hords Creek Reservoir.

GAGE .- - Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929.

REMARKS.--The lake is formed by a rolled earthfill dam 6,800 ft long, including spillway. Deliberate impoundment of water began Apr. 7, 1948, and the dam was completed in June 1948. The spillway is an excavated channel through natural ground, 500 ft wide, located about 600 ft from the right end of dam. The spillway consists of three concrete conduits; two controlled by 5.0- by 6.0-foot slide gates, and a third uncontrolled ogee spillway 4.0 ft wide and 19.5 ft high. The lake is operated for flood control and municipal water supply for the city of Coleman. The capacity table of August 1974 is based on a sedimentation survey made in 1948. Flow is affected at times by discharge from the flood-detention pool of one floodwater-retarding structure with a detention capacity of 1,370 acreft. This structure controls runoff from 6.82 mi² in the Jim Ned Creek drainage basin. Figures given herein represent total contents. Data regarding the dam and lake are given in the following table:

	(feet)	(acre-feet)
Top of dam	1,939.0	
Design flood	1,933.6	-
Crest of spillway	1,920.0	24,730
Crest of spillway (top of conservation pool)	1,900.0	8,110
Lowest gated outlet (invert)	1,856.0	3

COOPERATION.--Records furnished by Corps of Engineers and reviewed by the Geological Survey.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 12,790 acre-ft May 1, 1956 (elevation, 1,906.86 ft); minimum since first appreciable storage in June 1951, 1,550 acre-ft Sept. 2, 1984 (elevation, 1,878.01 ft).

EXTREMES FOR CURRENT YEAR.--Maximum daily contents, 2,580 acre-ft Oct. 1 at 0015 hours (elevation, 1,883.77 ft); minimum daily, 1,550 acre-ft Sept. 2 (elevation, 1,878.01 ft).

Capacity table (elevation, in feet, and total contents, in acre-feet)

1,878	.0 1,550)	1,882.0	2,240	
1,880	.0 1,880)	1,884.0	2,630	
CONTENTS, I				TO SEPTEMBER	1984
	INSTANTAN	VEOUS OBSER	VATIONS AT 24	00	

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2580	2460	2370	2290	2250	2180	2120	1990	1840	1740	1610	1550
2	2570	2460	2370	2280	2240	2170	2120	1980	1830	1740	1610	1570
2 3 4	2570	2460	2370	2280	2240	2170	2120	1980	1830	1730	1610	1580
4	2560	2450	2370	2280	2240	2160	2120	1970	1820	1730	1600	1580
5	2560	2460	2370	2280	2240	2160	2110	1970	1830	1720	1600	1580
,	2300	2400	2370	2200	2240	2100	2110	1370	1030	1720	1000	1300
6	2560	2460	2360	2280	2230	2160	2100	1960	1850	1710	1590	1570
7	2550	2460	2360	2270	2230	2160	2110	1960	1850	1710	1590	1570
8	2540	2460	2360	2280	2230	2160	2100	1960	1840	1700	1590	1570
8 9	2540	2450	2360	2280	2230	2160	2100	1650	1840	1700	1580	1560
10	2540	2450	2350	2280	2230	2150	2100	1950	1830	1690	1580	1560
10	2340	2430	2330	2200	2230	2130	2100	1930	1830	1090	1500	1300
11	2530	2440	2350	2280	2220	2170	2090	1940	1830	1680	1580	1560
12	2520	2440	2340	2280	2220	2170	2080	1930	1820	1670	1610	1560
13	2520	2430	2340	2280	2220	2170	2080	1920	1820	1670	1610	1560
14	2510	2430	2340	2280	2210	2160	2070	1920	1810	1660	1610	1550
15	2510	2430	2340	2280	2210	2160	2070	1910	1800	1650	1610	1550
	2310	2430	2340	2200	2210	2100	2070	1310	1000	1030	1010	1330
16	2510	2420	2340	2270	2210	2160	2060	1900	1800	1650	1610	1550
17	2500	2420	2340	2270	2210	2160	2060	1910	1790	1640	1600	1550
18	2500	2420	2330	2270	2200	2160	2050	1910	1790	1650	1600	1550
19	2500	2410	2330	2270	2200	2150	2050	1910	1780	1640	1590	1550
20	2510	2410	2330	2270	2200	2150	2040	1900	1780	1640	1590	1550
	2310	2110	2330	2270	2200	2130	2040	1300	1700	1040	1330	1330
21	2510	2400	2330	2260	2200	2150	2040	1900	1770	1630	1580	1570
22	2500	2400	2330	2260	2190	2150	2040	1900	1760	1630	1580	1570
23	2500	2400	2330	2260	2190	2160	2030	1900	1750	1620	1570	1570
24	2500	2400	2330	2260	2190	2150	2030	1890	1750	1630	1580	1560
25	2490	2400	2320	2260	2180	2150	2020	1880	1740	1630	1570	1560
						1.7365				1000		
26	2490	2390	2320	2260	2180	2150	2010	1880	1730	1630	1570	1560
27	2490	2390	2320	2260	2180	2140	2010	1870	1740	1630	1560	1570
28	2480	2390	2310	2250	2180	2140	2000	1870	1750	1620	1560	1570
29	2480	2380	2300	2250	2180	2130	2000	1860	1750	1620	1560	1570
30	2480	2370	2300	2250		2130	1990	1860	1750	1610	1560	1570
31	2480		2290	2250		2120	1550	1850		1610	1560	
31	2400		2290	2230		2120		1000		1010	1300	
MAX	2580	2460	2370	2290	2250	2180	2120	1990	1850	1740	1610	1580
MIN	2480	2370	2290	2250	2180	2120	1990	1650	1730	1610	1560	1550
(†)	1833.24	1882.72	1882.29	1882.06	1881.69	1881.38	1880.68	1879.83	1879.21	1878.36	1878.03	1978.10
(‡)	-100	-110	-80	-40	-70	-60	-130	-140	-100	-140	-50	+10
, , ,			30			30	.50	. 10			30	

CAL YR 1983 3570 MIN 2290 MAX ± -1280 2580 MIN 1550

Elevation, in feet, at end of month. Change in contents, in acre-feet.

08141500 HORDS CREEK NEAR VALERA, TX

LOCATION.--Lat 31°50'03", long 99°32'26", Coleman County, Hydrologic Unit 12090108, on right bank 74 ft downstream and 50 ft south of bridge on Farm Road 503, 1.1 mi downstream from Hords Creek Dam, 5.7 mi north of Valera, 7.5 mi west of Coleman, and 27.4 mi upstream from mouth.

DRAINAGE AREA. -- 54.2 mi2, approximately, of which 49.3 mi2 is above Hords Creek.

PERIOD OF RECORD.--April 1947 to current year.

Water-quality records.--Chemical and bichemical analyses: October 1980 to September 1982.

REVISED RECORDS. -- WRD TX-81-3: Drainage area.

WTR YR 1984 TOTAL 6.20

MEAN .017 MAX 2.5

GAGE.--Water-stage recorder. Datum of gage is 1,826.72 ft National Geodetic Vertical Datum of 1929 (Corps of Engineers bench mark). Prior to Oct. 1, 1979, at site 0.5 mi downstream at datum 6.84 ft lower.

REMARKS.--Records good except those above 10 ft3/s, which are fair. Flow is regulated by Hords Creek Lake (station 08141000).

AVERAGE DISCHARGE. -- 37 years, 1.51 ft3/s (1,090 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 3,860 ft³/s Apr. 30, 1956 (gage height, 14.73 ft), at site 0.5 mi downstream at datum 6.84 ft lower, from rating curve extended above 1,900 ft³/s; no flow at times each year.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1900, 23.0 ft July 3, 1932, from information by local residents (discharge not determined). Flood in July or September 1900 reached a stage 3.7 ft higher than that of July 1932, at site 12 mi downstream from station, from information by local residents.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 16 ft³/s Nov. 1 at 1530 hours (gage height, 1.44 ft); no flow for most of year.

		DISC	HARGE, IN	CUBIC FE		COND, WAT AN VALUES	TER YEAR OC	TOBER 19	83 TO SEP	TEMBER 198	84	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	0	2.50	0	.00	.01	.04	.04	0	0	0	0	0
2	0	.40	0	.01	.01	.04	.06	0	0	0	0	0
3	0	.04	0	.01	.01	.04	.07	Ö	0	0	0	0
2 3 4	0	.03	0	.01	.01	.04	.07	Ö	Ö	Ö	0	Ö
5	0	.04	0	.01	.01	.04	.08	0	0	0	0	0
6	0	.03	0	.01	.01	.04	.08	0	0	0	0	0
7	0	.03	0	.01	.01	.04	.09	0	0	0	0	0
8	0	.03	0	.01	.01	.04	.10	0	0	0	0	0
9	0	.03	0	.01	. 01	.04	.10	0	0	0	0	0
10	. 0	.03	0	.01	.01	.04	.10	0	0	0	0	0
11	0	.03	0	.01	.01	.04	.08	0	0	0	0	0
12	0	.03	0	.01	.01	.02	.07	0	0	0	0	0
13	0	.03	0	.01	.01	.02	.06	0	0	0	0	0
14	0	.03	0	.01	.01	.02	.01	0	0	0	0	0
15	0	.01	0	.01	.01	.02	.01	0	0	0	0	0
16	0	.01	0	.01	.01	.02	.01	0	0	0	0	0
17	0	.01	0	.01	.02	.02	.01	0	0	0	0	0
18	0	.01	0	.01	.02	.02	.01	0	0	0	0	0
19	0	.00	0	.01	.02	.03	.01	0	0	0	0	0
20	0	.00	0	.01	.02	.02	.01	0	0	0	0	0
21	0	.00	0	.01	.02	.02	.01	0	0	0	0	0
22	0	.00	0	.01	.02	.02	.01	0	0	0	0	0
23	0	.00	0	.01	.03	.02	.01	0	0	0	0	0
24	0	.00	0	.01	.03	.02	.01	0	0	0	0	0
25	0	.00	0	.01	.03	.02	.01	0	0	0	0	0
26	. 0	.00	0	.01	.04	.02	.01	0	0	0	0	0
27	0	.00	0	.01	.04	.03	.00	0	0	0	0	0
28	0	.00	0	.01	.04	.03	.00	0	0	0	0	0
29	0	.00	0	.01	. 04	.03	.00	0	0	0	0	0
30	0	.00	0	.01		.04	.00	0	0	0	0	0
31	0		0	.01		.04		0		0	0	
TOTAL	0	3.32	0	.30	.53	.92	1.13	0	0	0	0	0
MEAN	.000	.11	.000	.010	.018	.030	.038	.000	.000	.000	.000	.000
MAX	.00	2.5	.00	.01	.04	.04	.10	.00	.00	.00	.00	.00
MIN	.00	.00	.00	.00	.01	.02	.00	.00	.00	.00	.00	.00
AC-FT	.00	6.6	.00	.6	1.1	1.8	2.2	.00	.00	.00	.00	.00
CAL YR		AL 32.61	MEAN .O			IN .00	AC-FT 65					

08143000 LAKE BROWNWOOD NEAR BROWNWOOD, TX

LOCATION.--Lat 31°50'13", long 99°00'13", Brown County, Hydrologic Unit 12090107, at outlet structure for irrigation canal just upstream from right end of dam on Pecan Bayou, 0.2 mi downstream from Jim Ned Creek, 8 mi north of Brownwood, and 57.1 mi upstream from mouth.

DRAINAGE AREA. -- 1.565 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--July 1933 to May 1941, November 1944 to current year. Fragmentary records July 1934 to April 1935, and October 1940 to May 1941. Prior to October 1970, published as Brownwood Reservoir.

REVISED RECORDS. -- WSP 1212: 1948-50. WDR TX-81-3: Drainage area.

GAGE.--Nonrecording gage read once daily. Datum of gage is 0.50 ft below National Geodetic Vertical Datum of 1929.

Prior to November 1944, nonrecording gages or water-stage recorder at various sites at dam at same datum.

REMARKS.--The lake is formed by a rolled earthfill dam, 1,580 ft long. The dam was completed in 1933 and deliberate impoundment began in July 1933. The capacity table is based on a 1959 survey. The uncontrolled emergency spillway is a broad-crested weir 479 ft long located 800 ft to left of dam. The controlled service spillway consists of two-12-foot horseshoe-shaped concrete conduits. Water is used for irrigation, municipal, and industrial supply by the city of Brownwood (see station 08142500). Flow is affected at times by discharge from the flood-detention pools of 59 floodwater-retarding structures with a combined capacity of 73,310 acre-ft. These structures control runoff from 353 mi² in the Jim Ned Creek and Pecan Bayou drainage basins. Figures given herein represent total contents. Data regarding the dam and lake are given in the following table:

	(feet)	(acre-feet)
Top of dam	1,450.0	•
Crest of spillway	1,425.1	143,400
Lowest gated outlet (invert)	1 330.0	_

COOPERATION.--Record of daily gage heights were furnished by Brown County Water Improvement District No. 1. Capacity table was furnished by the Corps of Engineers and by the Soil Conservation Service.

EXTREMES (AT 1800) FOR PERIOD OF RECORD. -- Maximum contents, 192,300 acre-ft May 2, 1956 (gage height, 1,431.4 ft); minimum, 11,900 acre-ft July 15, 1934 (gage height, 1,389.5 ft).

EXTREMES (AT 1800) FOR CURRENT YEAR. -- Maximum contents observed, 109,700 acre-ftOct. 10-14 (gage height, 1,420.0 ft); minimum, 81,310 acre-ft Sept 28, 29 (gage height, 1,414.8 ft).

Capacity table (gage height, in feet, and total contents, in acre-feet)

77,530 92,430 109,700 1,414.0 1.417.0 1.420.0

CONTENTS, IN ACRE-FEET, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 INSTANTANEOUS OBSERVATIONS AT 1800

DAY	OCT	NOV	DEC	JAN	F	EB MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3	106700 106700 106700	107300 107300 107300	104300 104300 103700	101300	1007 1007 1007	00 99530	102500 102500 102500	98970 98970 98410	91910 91390 91390	97300 97300 96750	90350 89830 89830	83740 83740 84230
4	106700	107300	103700		1007		102500	98410	90870	96750	89830	85730
5	106700	107300	103700		1007		102500	97850	90870	96750	89310	85730
6	106700	107300	103100		1007		101900	97850	91390	96210	89310	85730 85230
8	106100 106100	107300 106700	103100		1007		101900	97850	102500 102500	96210 95670	88790 88790	85230 85230
9	105500	106700	103100		1007		101900	97850 97850	102500	95670	88790	84730
10	109700	106700	103100		1007		101900	97300	102500	95130	88790	84730
11	109700	106700	103100	100700	1007		101900	97300	102500	94590	88790	84730
12	109700	106700	103100		1007		101900	96750	101900	94590	88270	84230
13	109700	106700	103100		1007		101900	96750	101900	94050	88270	84230
14	109700	106100	103100		1007		101900	96750	101900	94050	88270	84230
15	109100	106100	102500	100700	1001	00 97850	101900	96210	101300	93510	88270	83740
16	109100	106100	102500	100700	1001	00 97850	101300	96210	101300	93510	87750	83250
17	109100	106100	102500		1001	00 97850	101300	95670	100700	93510	87750	83250
18	108500	106100	102500		1001		101300	95670	100700	92970	87750	82760
19	108500	106100	102500	100700	1001		101300	95670	100100	92430	87230	82760
20	108500	105500	102500	100700	1001	00 97850	101300	95130	99530	92430	87230	82760
21	108500	105500	102500	100700	1001		100700	94590	99530	91910	87230	82760
22	108500	104900	102500	100700	1001		100700	94590	98970	91910	86730	82270
23	108500 108500	104900	102500	100700	1001		100700	94050	98970	91910	86730	82270
24 25	107900	104900 104900	102500 102500	100700	1001		100700	94050	98410	91910	86230	82270 82270
	10/900	104900	102300	100700	1001	00 103100	100100	93510	98410	91390	85730	82270
26	107900	104300	102500	100700	1001		100100	92970	97850	91390	85230	81790
27	107900	104300	102500	100700	1001		99530	92970	97850	91390	85230	81790
28	107900	104300	102500	100700	1001		99530	92970	97850	90870	84730	81310
29	107300	104300	101900	100700	1001		99530	92430	97850	90870	84730	81310
30	107300	104300	101900	100700		102500	98970	91910	97300	90870	84230	81790
31	107300		101900	100700	-	102500		91910		90350	84230	
MAX	109700	107300	104300	101300	1007	00 103100	102500	98970	102500	97300	90350	85730
MIN	105500	104300	101900	100700	1001		98970	91910	90870	90350	84230	81310
(†)	1419.6	1419.1	1418.7	1418.5	1418		1418.2	1416.9	1417.9	1416.6	1415.4	1414.9
(‡)	0	-3000	-2400	-1200	-6		-3530	-7060	+5390	-6950	-6120	-2440
CAL Y	R 1983 MA	X 128700	MIN	101900	± -15	600						

WTR YR 1984 MAX 109700 MIN 81300 ‡ -25510

[†] Elevation, in feet, at end of month.
‡ Change in contents, in acre-feet.

08143000 LAKE BROWNWOOD NEAR BROWNWOOD, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical analyses: October 1969 to September 1984 (discontinued).

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
APR 16	1830	542	16.0	170	56	50	10	37
DATE	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)
APR 16	1	5.9	110	34	72	.30	6.1	280

08143600 PECAN BAYOU NEAR MULLIN. TX

LOCATION.--Lat 31°31'02", long 98°44'25", Mills County, Hydrologic Unit 12090107, on right bank 44 ft downstream from bridge on Farm Road 573, 0.6 mi downstream from Blanket Creek, 5.5 mi southwest of Mullin, and 13.6 mi upstream from mouth.

DRAINAGE AREA .-- 2,073 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1967 to current year.

REVISED RECORDS. -- WRD TX-81-3: Drainage area.

GAGE .-- Water-stage recorder. Datum of gage is 1,202.93 ft National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good. Flow is affected by Lake Brownwood 47 mi upstream (see station 08143000). At end of year, flow from 152 mi above this station and below Lake Brownwood was partly controlled by 41 floodwater-retarding structures with a combined detention capacity of 34,420 acre-ft below the flood-spillway crests.

AVERAGE DISCHARGE. -- 17 years, 107 ft3/s (77,520 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 13,700 ft3/s Jan. 23, 1968 (gage height, 29.26 ft); no flow for many days in 1974, 1978, 1980-81, and 1984.

EXTREMES FOR CURRENT YEAR. -- Maximum discharge, 1,520 ft 3/s Mar. 23 at 2200 hours (babe height, 6.02 ft); no flow for many days.

		DISC	HARGE, IN	CUBIC F		ECOND, WA	TER YEAR O	CTOBER 198	3 TO SEE	TEMBER 1	984	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1.60	5.1	4.4	3.8	4.9	9.4	5.90	.37	0	.0	1.30	5.60
2	.99	3.9	4.5	3.6	5.3	8.3	4.70	.37	0	.0	1.40	15.00
3	.75	3.0	3.5	3.6	5.3	5.8	4.90	.34	0	.0	.85	11.00
4	.75	2.5	2.1	4.1	6.7	4.9	4.70	.27	0	.0	.64	28.00
5	.62	2.8	2.8	4.1	6.2	4.9	5.50	. 28	0	.0	.79	19.00
6	.35	15.0	4.7	4.1	5.8	5.3	6.20	.35	0	.0	.91	7.10
7	.49	31.0	4.5	3.5	5.3	6.2	6.60	.31	0	.0	.64	4.00
8	.85	14.0	4.2	3.8	5.3	6.7	7.80	.31	0	.0	.69	2.70
9	30.00	8.7	3.2	11.0	5.3	6.7	12.00	. 31	0	.0	.40	2.00
10	14.00	6.1	3.0	13.0	4.5	6.7	12.00	.29	0	.0	.22	.84
1.1	20.00	4.9	3.6	16.0	4.5	337.0	8.90	.22	0	.0	.10	.68
12	9.30	3.6	2.7	8.8	4.5	33.0	6.70	.15	0	.0	.03	.53
13	9.20	3.1	1.9	6.3	4.9	13.0	4.40	.11	0	.0	.01	. 48
14	6.90	2.6	1.7	4.9	4.1	16.0	2.80	.06	0	.0	.01	.27
15	5.40	2.2	1.7	4.4	4.5	12.0	2.40	.02	0	.0	.00	.46
16	17.00	2.2	2.9	4.1	3.7	9.5	1.90	.00	0	.0	.00	.31
17	15.00	2.2	4.3	4.1	3.0	7.6	2.00	.00	0	.0	.00	.13
18	13.00	2.3	4.5	4.1	2.7	7.2	2.10	.00	0	.0	.00	.14
19	9.60	2.8	4.5	4.1	1.9	8.6	1.30	.00	0	.0	.00	.12
20	7.40	2.3	5.2	4.1	1.5	7.9	.63	.00	0	.0	.00	.10
21	6.10	1.8	4.9	4.1	3.7	4.8	.45	.00	0	.0	.53	17.00
22	5.80	1.9	5.6	4.5	5.3	4.5	.49	.00	0	.0	.71	14.00
23	5.90	4.9	5.1	4.6	7.7	535.0	.64	.00	0	.0	.64	3.20
24	8.90	3.0	4.7	5.7	7.2	415.0	.72	.00	0	172.0	.73	1.50
25	9.40	2.4	3.9	5.8	6.7	70.0	.58	.00	0	17.0	.55	4.00
26	8.80	3.7	3.4	6.2	7.2	29.0	.54	.00	0	23.0	.49	2.50
27	7.40	2.5	3.4	6.2	73.0	18.0	.54	.00	0	28.0	.34	2.30
28	6.50	2.2	5.1	7.0	53.0	11.0	. 54	.00	0	17.0	.31	4.80
29	5.90	2.0	5.6	6.3	14.0	11.0	.47	.00	0	8.0	.31	12.00
30	5.50	3.1	4.8	4.6		7.8	.37	.00	0	3.3	153.00	4.00
31	5.30		4.4	4.7		6.3		.00		1.5	5.40	
TOTAL	238.70	147.8	120.8	175.2	267.7	1629.1	108.77	3.76	0	269.8	171.00	163.76
MEAN	7.70	4.93	3.90	5.65	9.23	52.6	3.63	.12	.000	8.70	5.52	5.46
MAX	30	31	5.6	16	73	535	12	.37	.00	172	153	28
MIN	.35	1.8	1.7	3.5	1.5	4.5	.37	.00	.00	.00	.00	.10
AC-FT	473	293	240	348	531	3230	216	7.5	.00	535	339	325
							216		.00	535	339	

CAL YR 1983 TOTAL 7630.95 WTR YR 1984 TOTAL 3296.39 MEAN 20.9 MAX 2490 MIN .03 AC-FT 15140 MEAN 9.01 MAX 535 MIN -00 AC-FT 6540

08143600 PECAN BAYOU NEAR MULLIN, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Chemical analyses: October 1967 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1967 to current year. WATER TEMPERATURES: October 1967 to current year.

REMARKS.--Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and regression relationships between each chemical constituent and specific conductance. Regression equations developed for this station may be obtained from the Geological Survey District office upon request.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 2,230 micromhos May 14, 1978; minimum daily, 200 micromhos July 24, 1984.
WATER TEMPERATURES (1967-82): Maximum daily, 37.0°C July 18, 1979; minimum daily, 0.5°C Feb. 7, 1979.

EXTREMES FOR CURRENT YEAR.-- SPECIFIC CONDUCTANCE: Maximum daily, 1,960 micromhos Jan. 3; minimum daily, 200 micromhos July 24.

DATE	1	FLOW, CONSTAN- DEANEOUS A	NCE .	EMPER- ATURE		HARD- NESS, O NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
OCT O5 NOV	0925	.68	1460	22.5	240	79	66	18	200
16	1010	2.1	902	14.0	210	65	63	14	98
FEB 01	0835	4.9	1700	7.0	270	87	77	18	200
MAR 13	1435	11	592	15.0	120	38	38	7.3	63
AUG 21	1410	.67	1360	29.0	250	55	74	17	170
DATE	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	DIS-	RIDE, DIS- D SOLVEI (MG/L	SILICA, DIS- SOLVED (MG/L AS SIO2)	CONST	F I- S, - ED
OCT 05	6	13	160	69	310	.40	3.2	7	80
NOV 16 FEB	3	9.7	150	51	170	.30	3.5	5	00
01 MAR	6	14	180	88	330	.40	5.8	8	40
13	3	5.8	87	29	110	.20	5.2	3	10
AUG 21	5	12	200	54	290	.40	9.2	7	50

MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1983 TO SEPTEMBER 1984

08143600 PECAN BAYOU NEAR MULLIN, TX--Continued

MONTH	YEAR	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
OCT.	1983	238.70	1020	562	362	180	113	73	47	250
NOV.	1983	147.8	1020	562	224	170	69	73	29	250
DEC.	1983	120.8	1170	646	211	210	70	82	27	270
JAN.	1984	175.2	1390	773	366	270	129	97	46	300
FEB.	1984	267.7	1240	689	498	240	172	87	63	270
MAR.	1984	1629.1	389	215	946	57	249	29	126	110
APR.	1984	108.77	480	265	78	67	20	36	10	140
MAY	1984	3.76	668	369	3.7	100	1.0	49	0.5	180
JUNE	1984	0.00	*	*	0.00	*	0.00	*	0.00	*
JULY	1984	269.80	358	198	144	52	38	26	19	100
AUG.	1984	171.00	397	220	101	58	27	29	14	110
SEPT	1984	163.76	716	396	175	110	49	52	23	190
TOTAL		3296.39	**	**	3100	**	937	**	404	**
WTD.A	VG.	9.0	631	349	**	110	**	45	**	160

	SPECI	FIC CONDU	CTANCE	(MICROMHOS/CM		DEG. C)		OCTOBER	1983 TO			
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1440	1270	1010		1700	1370	540	631			1120	650
2	1460	1290	970	1950	1600	1530	550	637			1160	530
3	1450	1280	1030	1960	1630	1560	500	642			1200	610
4	1460	1300	1110		1640	1700	52.5	646			1230	500
5	1470	1240	1050		1660	1750	490	650			1240	750
6	1450	1050	730		1650	1730	475	642			1260	900
7	1460	940	800	1620	1680	1710	480	651			1280	980
8	1440	1010	840	1500	1690	1720	465	660			1300	1000
9	930	990	1020	1050	1700	1680	370	665			1340	1030
10	1130	930	1190	960	1710	1610	400	710			1360	1050
11	560	890	1060	770	1710	350	490	735			1380	1090
12	636	880	1120	1000	1720	520	480	760			1400	1110
13	750	895	1220	1240	1700	590	500	775			1420	1120
14	1100	905	1260	1450	1720	630	520	790			1440	1130
15	1130	904	1350	1560	1710	660	510	815				1140
16	840	902	1270	1650	1690	620	520					1150
17	1000	920	950	1500	1680	590	521					1170
18	1070	907	910	1360	1650	640	532					1160
19	1150	898	930	1420	1660	620	544					1180
20	1110	933	900	1480	1700	660	550					1190
21	1080	970	1020	1530	1660	670	565				1420	940
22	1050	990	870	1550	1670	650	578				1340	1000
23	1100	920	1020	1560	1660	250	589				1410	850
24	1140	970	1230	1580	1690	310	600			200	1390	720
25	1170	1080	1300	1570	1710	440	595			360	1400	490
26	1200	1040	1370	1530	1680	500	600			320	1410	530
27	1230	1140	1460	1580	750	550	607			650	1420	540
28	1280	1190	1720	1500	890	530	610			1000	1410	500
29	1260	1220	1780	1540	1200	540	62.5	202		1040	1440	630
30	1270	1250	1840	1570	1200	530	640			1060	310	710
31	1260		1920	1600		520				1070	800	
MEAN	1160	1040	1170	1510	1600	895	532	694		713	1280	878

COLORADO RIVER BASIN 08143600 PECAN BAYOU NEAR MULLIN, TX--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 ONCE-DAILY DAY NOV OCT DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 23.0 9.0 20.0 27.0 27.0 25.0 19.0 10.0 16.0 20.0 ---11.0 23.0 3 5.0 ---21.0 8.0 15.0 20.0 26.0 28.0 8.0 12.0 19.0 5 23.0 20.0 13.0 6.0 18.0 27.0 67 24.0 26.0 ---28.0 ---------== 23.0 22.0 19.0 30.0 26.0 8 20.0 10.0 5.0 10.0 17.0 23.0 30.0 27.0 16.0 7.0 19.0 11.0 14.0 30.0 10 21.0 14.0 6.0 27.0 16.0 14.0 14.0 17.0 ---------11 12 13 14 15 15.0 6.0 15.0 23.0 ---19.0 8.0 27.0 === 16.0 ------------12.0 17.0 13.0 25.0 ---------19.0 15.0 9.0 12.0 19.0 ---28.0 19.0 ---14.0 21.0 ------26.0 16 ---8.0 4.0 12.0 20.0 ::: 17 18 22.0 15.0 7.0 3.0 15.0 20.0 ---------------14.0 ------23.0 12.0 ---24.0 20 3.0 11.0 18.0 21.0 24.0 21 20.0 4.0 12.0 18.0 ---28.0 15.0 3.0 ------22.0 22 23 24 25 ---21.0 16.0 1.0 11.0 19.0 20.0 ---7.0 ------11.0 18.0 28.0 13.0 23.0 24.0 1.0 12.0 15.0 21.0 ------19.0 8.0 ------------26 27 28 29 30 16.0 6.0 4.0 ---25.0 ---27.0 18.0 20.0 29.0 4.0 21.0 11.0 ::: ------28.0 17.0 21.0 ---28.0 30.0 10.0 18.0 7.0 18.0 17.0 4.0 12.0 ---------19.0 27.0 ---3.0 19.0 8.0 26.0 18.0 MEAN 20.5 16.5 6.5 5.5 12.0 17.0 20.5 24.0 26.5 28.5 25.0

115

08144500 SAN SABA RIVER AT MENARD, TX

LOCATION.--Lat 30°55'08", long 99°47'07", Menard County, Hydrologic Unit 12090109, on downstream side of bridge on U.S. Highway 83 in Menard, 1.1 mi downstream from Las Moras Creek, 1.9 mi upstream from Volkmann Draw, and 116.3 mi upstream from mouth.

DRAINAGE AREA. -- 1,335 mi2, of which 6.6 mi2 probably is noncontributing.

PERIOD OF RECORD .-- September 1915 to current year.

REVISED RECORDS.--WRD TX-81-3: Drainage area. WSP 1512: 1918-20, 1922-25, 1926(M), 1927-32, 1934(M), 1936, 1938(M).

GAGE.--Water-stage recorder. Datum of gage is 1,863.05 ft National Geodetic Vertical Datum of 1929. Sept. 14, 1915, to Mar. 12, 1924, nonrecording gage at site 635 ft downstream at datum 2.20 ft lower. Mar. 13, 1924, to Feb. 21, 1939, nonrecording gage at site 1,000 ft upstream at datum 2.00 ft higher. Feb. 22, 1939, to Jan. 25, 1940, nonrecording gage at present site and datum. Jan. 26, 1940, to Sept. 19, 1957, water-stage recorder at site 240 ft to right at present datum. Feb. 8, 1962, to Jan. 22, 1963, nonrecording gage at site 600 ft downstream at present datum. datum.

REMARKS.--Records good except those for Mar. 17 to May 4, which are fair. Since and datum about 1890, low flow during irrigation season regulated by diversions to Noyes Canal 4.5 mi upstream and diversions by pumping at several locations upstream. Records of the Texas Department of Water Resources show that permits have been granted to irrigate 3,338 acres above station. See record for (station 08144000). Several observations of water temperature were made during the year.

AVERAGE DISCHARGE. -- 69 years, 63.1 ft 3/s (45,720 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 130,000 ft³/s July 23, 1938 (gage height, 22.2 ft, from floodmark), present site and datum, from rating curve extended above 56,000 ft³/s on basis of slope-area measurement of peak flow; no flow at times as result of upstream diversion to Noyes Canal (station 08144000).

EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum stage since at least 1880, 23.3 ft June 6, 1899, present site and datum, from information by local resident.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 44 ft³/s May 27 at 1000 hours (gage height, 4.34 ft), no peak above base of 670 ft³/s; minimum daily, 0.43 ft³/s June 29. DISCHARGE IN CURTO DOES DED COCOUR LAMED VEAR OCTORED 1002 TO SUPERMED 1004

		DISCHARG	E, IN	CUBIC FEET	PER SECO	ND, WATER MEAN VALU	YEAR OCT	OBER 1983	3 TO SEPTE	MBER 1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	3.0 2.5 2.4 2.4 2.3	11.0 10.0 9.7 11.0 24.0	13 13 14 14 14	16 18 18 19	17 17 18 17 17	15.0 16.0 16.0 16.0 17.0	15.0 15.0 18.0 19.0 17.0	8.6 7.5 8.1 7.8 6.9	11.00 6.80 5.60 4.40 5.20	1.9 22.0 3.4 4.0 6.3	6.5 6.0 6.5 6.5	2.5 6.5 6.9 8.3
6 7 8 9	1.3 5.4 8.2 8.9 10.0	24.0 19.0 16.0 15.0 14.0	14 14 14 14 14	19 18 20 27 28	17 17 17 17 17	17.0 17.0 17.0 16.0 16.0	16.0 15.0 13.0 13.0 13.0	5.6 6.2 1.6 1.3 2.6	5.10 4.40 3.90 4.00 3.60	6.4 8.3 5.5 4.2 3.9	5.6 5.2 4.1 3.8 2.9	12.0 7.7 5.1 4.2 4.0
11 12 13 14	9.8 8.8 7.7 7.2 7.3	13.0 13.0 13.0 13.0 13.0	14 13 12 13 13	24 21 20 18 18	16 16 16 16 15	16.0 18.0 18.0 19.0 18.0	12.0 13.0 15.0 15.0	3.8 3.9 3.9 4.0 4.1	4.90 2.10 4.10 4.10 3.40	3.4 3.0 2.8 2.6 2.5	2.4 2.2 2.0 1.8 1.5	3.9 3.6 3.4 3.3 3.1
16 17 18 19 20	8.4 9.0 9.1 8.3 13.0	14.0 13.0 9.9 10.0 10.0	13 13 13 14 14	19 19 19 19	15 15 23 19 17	17.0 16.0 15.0 15.0	15.0 14.0 13.0 13.0	4.1 4.4 4.1 4.5 4.1	3.20 3.10 3.30 3.10 3.10	2.8 2.6 2.5 2.4 2.3	1.3 1.5 1.3 1.3	2.8 2.3 2.1 2.0 2.1
21 22 23 24 25	15.0 12.0 10.0 9.2 9.0	10.0 10.0 11.0 11.0	15 15 15 15 15	20 20 20 20 20	17 17 17 16 16	16.0 16.0 9.7 6.0 13.0	13.0 13.0 12.0 11.0 10.0	3.9 4.1 4.6 5.5 6.3	3.00 3.10 2.50 2.20 1.90	2.3 3.1 3.0 4.2 3.7	1.3 1.5 1.3 1.5	2.7 3.2 3.1 3.0 3.1
26 27 28 29 30 31	9.2 9.2 9.3 9.8 11.0	11.0 13.0 13.0 13.0 13.0	15 15 16 13 15	20 20 19 19 18 17	17 17 16 16	13.0 13.0 15.0 15.0 15.0	9.2 9.2 8.6 8.1 8.1	10.0 27.0 19.0 15.0 11.0 9.8	1.40 .63 .45 .43 .81	5.1 7.5 7.5 7.5 7.0 7.0	1.5 1.8 1.8 1.8 1.9	3.1 3.5 4.6 7.2 10.0
TOTAL MEAN MAX MIN AC-FT	249.7 8.05 15 1.3 495	391.6 13.1 24 9.7 777	435 14.0 16 12 863	611 19.7 28 16 1210	488 16.8 23 15 968	476.7 15.4 19 6.0 946	394.2 13.1 19 8.1 782	213.3 6.88 27 1.3 423	104.82 3.49 11 .43 208	150.7 4.86 22 1.9 299	88.2 2.85 6.5 1.3 175	140.3 4.68 12 2.0 278

CAL YR 1983 TOTAL 5712.50 WTR YR 1984 TOTAL 3743.52 AC-FT 11330 MEAN 15.7 MAX 36 MIN 1.3 MAX 28 MEAN 10.2 AC-FT MIN .43 7430

08144600 SAN SABA RIVER NEAR BRADY, TX

LOCATION.--Lat 31°00'14", long 99°16'07", McCulloch County, Hydrologic Unit 12090109, on right bank at downstream side of bridge on U.S. Highways 87 and 377, 0.4 mi upstream from Hudson Branch, and 8.4 mi southeast of Brady, and 72.9 mi upstream from mouth.

DRAINAGE AREA. -- 1.633 mi2, of which 6.60 mi2 probably is noncontributing.

PERIOD OF RECORD .-- July 1979 to current year.

GAGE.--Water-stage recorder and crest-stage gages. Datum of gage is 1,530.98 ft National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. Diversions above station for irrigation (see station 08144000). Several observations of water temperature were made during the year.

AVERAGE DISCHARGE. -- 5 years, 68.4 ft 3/s (49,560 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 66,000 ft³/s Sept. 8, 1980 (gage height, 25.50 ft); minimum, 0.24 ft³/s Aug. 1, 1980.

EXTREMES OUTSIDE PERIOD OF RECORD.--Highest stage since June 1899, 33.8 ft July 23, 1938, from high-water mark on left bank 150 ft upstream from present site.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 110 ft³/s July 24 at 2000 hours (gage height, 2.70 ft), no peak above base of 1,000 ft³/s; minimum daily, 0.02 ft³/s Sept. 13-19.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

		DIDONA	NOD, IN O	0010 1001	1 210 0 2000	MEAN VALU						
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4	7.1 6.7 5.6	16 20 18	30 32 37	36 40 40	37 38 38	37 37 34	25.0 27.0 25.0 19.0	4.30 6.30 9.20	3.90 3.00 2.40 2.10	.11 .08 .05	4.30 5.50 6.40 6.00	.08 .08 .10
5	4.8 3.9	18 28	38 35	40 39	38 38	29 23	16.0	8.60 6.80	2.20	.05	5.90	.12
6 7 8 9	3.3 4.7 4.7 5.1 4.8	64 40 39 36 32	35 33 33 34 29	39 40 38 43 45	38 38 36 35 35	24 27 29 27 30	16.0 16.0 21.0 28.0 27.0	5.80 7.70 5.80 4.70 3.70	1.70 1.10 .83 .73	. 05 . 04 . 03 . 03 . 76	6.10 7.10 5.10 3.80 2.70	.10 .08 .08 .08
11 12 13 14	4.0 4.9 8.3 6.3 6.7	30 30 30 30 30 28	32 34 35 33 31	43 43 40 40 41	35 33 33 29 24	34 34 35 35 35	27.0 25.0 25.0 18.0 15.0	2.60 2.00 1.50 1.20	.74 .54 .40 .28	1.00 .81 .51 .34	2.20 1.90 4.20 2.70 1.70	. 04 . 03 . 02 . 02 . 02
16 17 18 19 20	7.5 7.4 11.0 9.3 13.0	28 28 28 30 28	33 33 33 31 30	41 40 40 40 40	24 25 28 27 29	29 32 27 23 22	15.0 17.0 16.0 16.0 13.0	.71 .71 .87 1.30 2.00	.18 .14 .08 .07	.16 .12 .09 .07	1.40 .85 .81 .64	.02 .02 .02 .02 .03
21 22 23 24 25	18.0 16.0 13.0 17.0 24.0	28 27 24 22 20	33 34 36 36 36	40 43 41 44 43	38 34 36 37 37	22 24 20 16 18	13.0 10.0 9.1 8.9 8.6	9.30 26.00 19.00 13.00 12.00	. 08 . 08 . 07 . 07 . 07	.08 .08 .08 17.00 52.00	.31 .22 .14 .10 .08	.06 .12 .13 .09
26 27 28 29 30 31	24.0 22.0 18.0 16.0 15.0	23 25 25 26 29	34 36 40 36 43 35	41 36 33 37 35 34	41 41 38 37 	25 23 21 21 21 21 24	10.0 7.8 6.3 6.7 4.9	9.10 6.60 7.50 8.40 5.00 4.20	.07 .09 .16 .20 .17	17.00 8.90 6.50 4.30 6.10 6.00	.07 .07 .05 .04 .05	.03 .03 .10 .29 .14
TOTAL MEAN MAX MIN AC-FT	324.1 10.5 24 3.3 643	850 28.3 64 16 1690	1062 34.3 43 29 2110	1235 39.8 45 33 2450	997 34.4 41 24 1980	836 27.0 37 16 1660	492.3 16.4 28 4.9 976	196.79 6.35 26 .71 390	22.51 .75 3.9 .07 45	122.69 3.96 52 .03 243	71.05 2.29 7.1 .04 141	2.21 .074 .29 .02 4.4

CAL YR 1983 TOTAL 10226.17 MEAN 28.0 MAX 90 MIN .43 AC-FT 20280 WTR YR 1984 TOTAL 6211.65 MEAN 17.0 MAX 64 MIN .02 AC-FT 12320

COLORADO RIVER BASIN

08144800 BRADY CREEK NEAR EDEN, TX

LOCATION.--Lat 31°11'03", long 99°50'27", Concho County, Hydrologic Unit 12090110, on right bank at upstream side of bridge on U.S. Highway 83, 0.8 mi downstream from Fitzgerald Creek, 2.2 mi south of Eden, 2.4 mi upstream from Hardin Branch, and 63.8 mi upstream from mouth.

DRAINAGE AREA. -- 101 mi2.

PERIOD OF RECORD. -- April 1962 to current year.

REVISED RECORDS. -- WRD TX-81-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 2,000.99 ft National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. Flow is affected at times by discharge from flood-detention pools upstream from station. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--22 years, 0.99 ft3/s (717 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,110 ft 3/s Apr. 28, 1966 (gage height, 7.08 ft); no flow for many days most years.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1884, 15.8 ft in July 1938, from information by local resident.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 333 ft 3/s Aug. 12 at 1300 hours (gage height, 3.14 ft); no flow for many days.

						MEAN VALU	ES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	. 05	.10	.13	.20	.20	.06	. 07	0	0	.00	0
2	.00	. 06	.14	.13	.20	.17	. 06	. 07	0	0	.00	0
3	.00	. 07	.20	.13	.20	.17	. 07	. 07	0	0	.00	0
4	.00	. 08	.20	.13	.20	.17	. 08	. 07	0	0	.00	0
5	.00	1.10	.18	.13	.20	.17	. 08	. 07	0	0	.00	0
6	.00	.34	.17	.13	.20	.17	. 08	. 05	0	0	.00	0
7	.00	.11	.17	.13	.20	.16	. 08	. 04	0	0	.00	0
8	.00	. 08	.17	.13	.20	.15	. 08	. 02	0	0	.00	0
9	.00	. 06	.17	.13	.20	.15	. 08	. 02	0	0	.00	0
10	.00	. 04	.17	.13	.20	.15	. 08	. 02	0	0	.00	0
11	.00	. 04	.16	.13	.20	.15	. 08	. 01	0	0	.00	0
12	.00	. 05	.15	.13	.20	.17	. 08	.00	0	0	25.00	0
13	.00	. 07	.15	.11	.20	.17	. 08	.00	0	0	.30	0
14	.00	.08	.15	.11	.20	.16	. 08	.00	0	0	.15	0
15	. 04	. 07	.15	.11	.20	.11	. 08	.00	0	0	.14	0
16	.08	.05	.15	.11	.20	.11	.08	.00	0	0	. 09	0
17	.11	. 04	.13	.11	.23	.11	. 08	.00	0	0	. 08	0
18	.13	. 05	.15	.11	.27	.11	. 08	. 02	0	0	. 05	0
19	.24	. 05	.15	.11	.29	.11	. 08	. 06	0	0	. 02	0
20	.59	. 05	.15	.12	.29	.11	.08	. 07	0	0	. 01	0
21	.62	. 05	.15	.12	.32	.11	.08	. 07	0	0	.00	0
22	.47	.06	.15	.12	.31	.11	. 07	. 07	0	0	.00	0
23	. 45	. 08	.15	.12	. 25	. 35	. 07	. 06	. 0	0	.00	0
24	.44	.08	.15	.13	.22	.37	. 07	. 06	0	0	.00	0
25	. 48	. 08	.15	.13	. 22	. 21	.07	. 04	0	0	.00	0
26	.49	.08	.15	.13	.30	.12	. 07	. 02	0	0	.00	0
27	.16	. 08	.15	.15	. 32	.11	. 07	.00	0	0	.00	0
28	.11	.08	.15	.15	. 27	. 09	. 07	.00	0	0	.00	0
29	.24	. 09	.13	.17	.24	. 06	. 07	.00	0	0	.00	0
30	. 27	. 09	.13	.20		. 06	. 07	.00	0	0	.00	0
31	. 05		.13	.20		.06		.00		0	.00	
OTAL	4.97	3.31	4.75	4.07	6.73	4.62	2.26	.98	0	0	25.84	0
EAN	.16	.11	.15	.13	.23	.15	.075	. 032	.000	.000	.83	.000
AX	.62	1.1	.20	.20	.32	.37	.08	. 07	.00	.00	25	.00
IN	.00	. 04	.10	.11	.20	. 06	. 06	.00	.00	.00	.00	.00
C-FT	9.9	6.6	9.4	8.1	13	9.2	4.5	1.9	.00	.00	51	.00

CAL YR 1983 TOTAL 121.70 MEAN .33 MAX 22 MIN .00 AC-FT 241 WTR YR 1984 TOTAL 57.53 MEAN .16 MAX 25 MIN .00 AC-FT 114

08145000 BRADY CREEK AT BRADY, TX

LOCATION.--Lat 31°08'17", long 99°20'05", McCulloch County, Hydrologic Unit 12090110, on left bank just upstream from bridge on U.S. Highway 377 on North Bridge Street in Brady, 0.4 mi downstream from Live Oak Creek, and 30.4 mi wistream from mouth.

DRAINAGE AREA. -- 588 mi2.

PERIOD OF RECORD .-- May 1939 to current year.

REVISED RECORDS. -- WSP 1512: 1941(M), 1951(M). WRD TX-81-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,646.50 ft National Geodetic Wertical Datum of 1929. Prior to July 9, 1940, nonrecording gage at site 3,600 ft upstream at datum 8.24 ft higher.

REMARKS.--Records good except those above 5 ft³/s, which are fair. The city of Brady returns sewage effluent downstream from the gage. Since May 22, 1962, flow largely controlled by Brady Creek Reservoir (station 08144900) and partly controlled by several floodwater-retarding structures upstream. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--23 years (water years 1940-62) prior to completion of Brady Creek Reservoir, 25.2 ft³/s (18,260 acre-ft/yr); 22 years (water years 1963-84) regulated, 9.10 ft³/s (6,590 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD .-- Maximum discharge, 39,100 ft3/s Sept. 10, 1952 (gage height, 24.80 ft); no flow at times most years.

EXTREMES OUTSIDE PERIOD OF RECORD. --Maximum stage since at least 1882, 29.1 ft July 23, 1938, present site and datum (discharge at sit ε 5 mi downstream, 86,000 ft³/s), by slope-area measurement. Flood of Oct. 6, 1930 (second highest since 1882), reached a stage of 25.9 ft (discharge, 50,300 ft³/s, present site and datum), from information by local

EXTREMES FOR CURRENT YEAR. -- Maximum discharge, 201 ft3/s Aug. 12 at 1300 hours (gage height, 7.60 ft); no flow for many days.

DISCHARGE IN CHRIC PERT DER CECOND HATER VEAR OCTORER 1002 TO SERTEMBER 1004

			DISCHARGE,	IN CUBIC	FEET		WATER YEAR IN VALUES	OCTOBER	1983 T	O SEPTEMBER	1984		
D	PAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
	1	.00	.00	0	.00	.00	0	0	.00	.00	.00	.00	.14
	2	.00	.00	0	.00	.00	0	0	.00	.00	.00	.00	.08
	2 3 4	.00	.00	0	.00	.00	0	0	.00	.00	.00	.00	.00
	5	.00	1.30	Ö	.00	.00	ő	ő	.01	.00	.00	.00	.00
	6	.00	.17	0	.00	.00	0	0	.01	.00	.00	.00	.00
	7	.00	.06	0	.00	.00	0	0	.02	.00	.00	.00	.00
	8	.00	.05	0.	.00	.00	0	0	.02	.00	.00	.00	.00
	9	.00	.04	0	.03	.04	0	0	.02	.00	.00	.00	.00
	10	.00	.03	0	.00	.11	0	0	.03	.00	.00	.00	.00
	11	.00	.03	0	.00	.09	0	0	.03	.00	.00	.00	.00
	12	.00	.02	0	.00	.07	0	0	.02	.00	.00	42.00	.00
	13	.00	.01	0	.00	.06	0	0	.02	.00	.00	4.30	.00
	14	.00	.00	0	.00	.06	0	0	.00	.00	.00	.44	.00
	15	.00	.00	0	.00	.06	0	0	.00	.00	.00	.12	.00
	16	.00	.00	0	.00	.06	0	0	.00	.00	.00	.04	.00
	17	.00	.00	0	.00	.06	0	0	.02	.00	.00	.03	.00
	18	.00	.00	0	.00	.77	0	0	.01	.00	.00	.04	.00
	19	.00	.00	0	.00	.31	0	0	.10	.00	.00	.04	.00
	20	.16	.00	0	.00	.03	0	0	.17	.00	.00	.03	.00
	21	.01	.00	0	.00	.05	0	0	.13	.00	.00	.03	.00
	22	.00	.00	0	.00	.05	0	0	.09	.00	.00	.03	.00
	23	.00	.00	0	.00	.13	0	0	.06	.00	.00	.03	.00
	24	.00	.00	0	.00	.21	0	0	.05	.00	2.20	.02	.00
	25	.00	.00	0	.00	.10	0	0	.04	.00	.73	.02	.00
	26	.00	.00	0	.00	.00	0	0	.02	.00	.12	.00	.00
	27	.00	.00	0	.00	.00	. 0	0	.01	.00	2.90	.00	.00
	28	.00	.00	0	.00	.00	0	0	.81	.00	.20	.00	.05
	29	.00	.00	0	.00	.00	0	0	.05	.01	.02	.00	.09
	30	.00	.00	0	.00		0	0	.01	.01	.02	.00	.04
	31	.00		0	.00		0		.00	•••	.01	.00	
	COTAL	.17	1.71	0	.03	2.26	0	0	1.75	.02	6.20	47.17	.49
	IEAN	.005	.057	.000	.001	.078	.000	.000	.056	.001	.20	1.52	.016
	IAX	.16	1.3	.00	.03	.77	.00	.00	.81	.01	2.9	42	.14
	IIN	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
A	AC-FT	.3	3.4	.00	.06	4.5	.00	.00	3.5	.04	12	94	1.0

CAL YR 1983 TOTAL 175.59 MEAN .48 MAX 116 MIN .00 AC-FT 348 WTR YR 1984 TOTAL 59.80 MEAN .16 MAX 42 MIN .00 AC-FT 119

119 08146000 SAN SABA RIVER AT SAN SABA, TX

LOCATION.--Lat 31°12'47", long 98°43'09", San Saba County, Hydrologic Unit 12090109, on right bank at downstream side of bridge on State Highway 16, 1.2 mi north of San Saba, 2.7 mi upstream from Mill Creek, 4.8 mi downstream from China Creek, and 16.8 mi upstream from mouth.

DRAINAGE AREA .-- 3,046 mi2, of which 6.6 mi2 probably is noncontributing.

PERIOD OF RECORD. --December 1904 to December 1906 (gage heights only), September 1915 to current year. Published as "near San Saba" December 1904 to December 1906 and September 1915 to August 1930.

REVISED RECORDS. -- WSP 458: 1915-16. WSP 1282: WRD TX-81-3: Drainage area. WSP 1512: 1918-19(M), 1922, 1931(M), 1935 WSP 1922: 1917.

GAGE.--Water-stage recorder. Datum of gage is 1,162.16 ft National Geodetic Vertical Datum of 1929. See WSP 1922 for history of changes prior to July 8, 1953. Since Oct. 1, 1956, supplementary water-stage recorder 2,780 ft to right of main-channel gage used for floodflows.

REMARKS.--Records good. Many diversions above station for irrigation and municipal use affect low flow. Flow partly affected by Brady Creek Reservoir (see station 08144900), capacity 90,300 acre-ft. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE. -- 69 years, 230 ft3/s (166,600 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 203,000 ft³/s July 23, 1938 (gage height, 39.3 ft, present site and datum), from rating curve extended abovic 41,000 ft³/s on basis of slope-area measurement of peak flow, no flow at times in P{18, 1930, 1954-56, 1963-64, and 1984.

Maximum stage since at least 1899, that of July 23, 1938.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 6, 1899, reached a stage of 36.7 ft, present site and datum, from information by local residents.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 484 ft 3 /s Aug. 16 . ϵ t 0230 hours (gage height, 4.97 ft), no peak above base of 3,000 ft 3 /s', no flow at times.

		DISCHARGE,	IN CUBI	C FEET		, WATER YEAR EAN VALUES	остове	R 1983	TO SEPTEMBER	1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	20 20	38 36	41 40 45	53 60	46 45	49 47	32 36	19.0	13.00	4.80 4.80 5.80	9.70 9.20 12.00	29.0 19.0 21.0
2 3 4 5	21 20 19	37 35 50	46 50	59 59 57	45 47 46	48 50 50	35 35 31	16.0 12.0 15.0	7.10 4.80 7.60	7.90 7.90	11.00	17.0 14.0
6 7	20 20	59 86	51 48	57 59	45 45	51 45	31 29	17.0 19.0	8.90 12.00	5.40	11.00	12.0 12.0
8	20	84	47	56	46	40	32	17.0	13.00	1.40	5.70	12.0
9 10	30 29	64 52	47 47	67 69	48 47	38 40	33 32	12.0 7.0	7.90 6.80	2.80 4.60	2.10	10.0 7.9
11 12	33 32	51 49	46 46	67 67	46 42	47 45	30 30	7.0 7.9	6.60	2.10	.13 5.20	6.5
13	26	47	41	62	43	48	27	9.5	6.70	.43	11.00	5.1
14 15	25 24	45 44	43 47	62 64	43 44	49 46	31 32	11.0 7.6	4.90 4.30	.14	32.00 70.00	4.2 4.5
16 17	24 25	42 41	48 47	64 61	42 38	44 43	32 28	5.6	6.50	.00	180.00	4.9
18	25	42	47	58	36	42	26	12.0	6.90	.01	25.00	5.2
19 20	27 28	42 40	41 40	56 55	39 41	42 34	26 27	13.0	6.50 4.40	.00	20.00 18.00	2.8 3.7
21 22	27 26	40 44	43	54 54	45 43	33 29	27 26	11.0	1.10	.00	15.00	4.4 9.1
23	28	45	50	57	43	158	25	3.8	.08	.00	16.00	18.0
24	29	44	50	58	44	53	23	4.2	.20	.00	15.00	17.0
25	31	41	57	58	41	43	21	4.1	. 90	.00	15.00	12.0
26 27	33 30	38 38	47 55	58 61	52 58	37 32	17 16	3.6 4.2	.91	4.70	14.00	8.6 10.0
28	32	37	61	58	53	28	15	8.9	.46	6.90	8.90	13.0 18.0
29 30	40 42	38 41	55 69	51 45	50	30 31	18 18	12.0		78.00 34.00	9.50 11.00	20.0
31	41		48	43		30		10.0		16.00	19.00	
TOTAL MEAN	847 27.3	1390 46.3	1490 48.1	1809 58.4	1302 44.9	1402 45.2	821 27.4	319.3	159.18 1 5.31	90.60	626.84	332.0
MAX	42	86	69	69	58	158	36	19	13	78	180	29
MIN	19	35	40	43	36	28	15	3.6	.08	.00	.13	2.8
AC-FT	1680	2760	2960	3590	2580	2780	1630	633	316	378	1240	659
CAL YR WTR YR					MAX 881 MAX 180			43680 21200				

08147000 COLORADO RIVER NEAR SAN SABA, TX (National stream-quality accounting network)

LOCATION.--Lat 31°13'04", long 98°33'51", San Saba-Lampasas County line, Hydrologic Unit 12090201, near left bank at downstream side of pier of bridge on U.S. Highway 190, 5.2 mi downstream from San Saba River, 9.2 mi east of San Saba, and at mile 474.3.

DRAINAGE AREA. -- 31,217 mi2, approximately, of which 11,398 mi2 probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1915 to October 1922 (published as "near Chadwick"), October 1923 to August 1930 (published as "near Tow"), September 1930 to current year. Monthly discharge only for some periods, published in WSP 1312.

REVISED RECORDS.--WSP 458: 1916. WSP 858: 1900(M), 1936(M). WRD TX-81-3: Drainage area. WSP 1512: 1916-18(M), 1936. WSP 1732: 1925-26(M).

GAGE.--Water-stage recorder. Datum of gage is 1,096.22 ft National Geodetic Vertical Datum of 1929. See WSP 1922 for history of changes prior to May 23, 1940.

REMARKS.--Water-discharge records good. Many diversion above station for irrigation, municipal use, and for oilfield operation. Flow is affected by four reservoirs upstream from Winchell and one reservoir in the San Saba River and Pecan Bayou basins; combined capacity, 1,973,000 acre-ft. Flow is affected at times by discharge from the flood-detention pools of 187 floodwater-retarding structures with a combined detention capacity of 205,700 acre-ft. These structures control runoff from 944 mi². Gage-height telemeter at this station.

AVERAGE DISCHARGE.--50 years (water years 1917-19, 1921-22, 1924-68) prior to completion of Robert Lee Dam, 1,340 ft³/s (970,100 acre-ft/yr); 16 years (water years 1969-84) partially regulated, 608 ft³/s (440,500 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 224,000 ft³/s July 23, 1938 (gage height, 63.2 ft, present site), based on floodmarks at site then in use; no flow Aug. 27-31, 1954; Aug. 3-13, 1963; July 20 to Aug. 8, Aug. 11-14, 1964.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage during period 1878 to July 22, 1938, 58.4 ft Sept. 25, 1900, discharge, 184,000 ft³/s present site, from floodmarks at former site.

EXTREMES FOR CURRENT YEAR. -- Maximum discharge, 3,490 ft 3/s Mar. 24 at 1500 hours (gage height, 6.38 ft); no flow July 21-23.

		DISC	HARGE, IN	CUBIC FE		SECOND, WATER	R YEAR	OCTOBER 198	3 TO SE	PTEMBER 1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	26 25 26 27 27	50 81 106 93 104	57 61 64 67 73	83 90 102 105 105	91 92 88 89 90	171 128 108 94 84	87 83 79 80 78	20.0 25.0 26.0 22.0 17.0	8.70 7.50 8.50 8.70 8.80	.22 .17 .14 .17	108 106 105 108 115	146.0 124.0 85.0 68.0 1010.0
6 7 8 9	26 26 28 38 39	111 112 167 354 249	74 76 80 83 86	105 105 112 147 125	90 88 85 84 85	78 78 79 74 71	70 69 67 65 74	12.0 13.0 15.0 17.0 16.0	6.20 5.30 6.40 8.10 9.70	2.70 4.30 4.20 2.80 1.60	116 116 113 107 101	798.0 381.0 256.0 171.0 118.0
11 12 13 14 15	57 60 50 39 33	192 161 136 114 102	87 87 84 79 79	133 127 130 128 145	92 85 81 84 82	70 104 898 245 166	73 67 57 51 49	12.0 8.7 6.8 5.7 5.4	8.50 6.20 4.70 3.30 2.40	.96 .59 .37 .29	94 116 79 76 122	83.0 61.0 46.0 34.0 23.0
16 17 18 19 20	31 31 30 31 34	92 85 80 73 66	79 75 68 66 68	234 203 177 160 140	72 66 68 57 60	148 118 100 87 82	49 48 45 41 39	6.6 7.5 7.9 8.9 13.0	1.90 1.70 1.50 1.20 1.30	.16 .12 .09 .06	203 124 77 87 49	14.0 11.0 8.0 6.0 4.8
21 22 23 24 25	32 31 29 29 32	63 63 67 64 64	70 72 76 78 81	129 122 119 118 83	71 79 73 63 64	70 60 769 2870 1380	38 31 29 31 27	16.0 15.0 11.0 6.7 4.4	2.30 2.80 2.80 2.10 1.40	.00 .00 .00 .02	30 29 29 29 29	4.8 4.1 3.8 7.0 41.0
26 27 28 29 30 31	32 38 37 35 43 50	65 64 60 58 58	81 83 87 90 83 78	90 102 113 113 106 96	72 84 171 193	537 304 200 148 118	24 22 17 13 11	3.5 3.2 4.3 5.3 5.1 8.1	.86 .67 .55 .40 .29	.02 58.00 21.00 10.00 90.00 122.00	25 20 14 13 11 12	30.0 18.0 14.0 22.0 25.0
TOTAL MEAN MAX MIN AC-FT	1072 34.6 60 25 2130	3154 105 354 50 6260	2372 76.5 90 57 4700	3847 124 234 83 7630	2499 86.2 193 57 4960	9538 308 2870 60 18920	1514 50.5 87 11 3000	348.1 11.2 26 3.2 690	124.77 4.16 9.7 .29 247	321.08 10.4 122 .00 637	2361 76.2 203 11 4680	3617.5 121 1010 3.8 7180

CAL YR 1983 TOTAL 56500.50 MEAN 155 MAX 6220 MIN 6.8 AC-FT 112100 WTR YR 1984 TOTAL 30768.45 MEAN 84.1 MAX 2870 MIN .00 AC-FT 61030

08147000 COLORADO RIVER NEAR SAN SABA, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: September 1947 to current year. Chemical and biochemical analyses: October 1969 to current year. Pesticide analyses: January 1968 to September 1982.

PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: October 1947 to current year.
WATER TEMPERATURES: October 1947 to current year.
SUSPENDED SEDIMENT DISCHARGE: December 1950 to September 1962.

REMARKS.--Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and regression relationships between each chemical constituent and specific conductance. Regression equations developed for this station may be obtained from the Geological Survey District office upon request.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 5,660 micromhos June 28, 1962; minimum daily, 150 micromhos Sept. 14, 1981.
WATER TEMPERATURES: Maximum daily, 37.0°C Aug. 3, 1956; minimum daily, 0.0°C Jan. 29, 1948, Jan. 30, 1951.

EXTREMES FOR CURRENT YEAR .--

SPECIFIC CONDUCTANCE: Maximum daily, 1,980 micromhos Nov. 10; minimum daily, 410 micromhos July 28. WATER TEMPERATURES: Maximum daily, 34.0°C July 15; minimum daily, 2.0°C Dec. 30, 31.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	
NOV 08	1050	164	930	7.6	20.5	10	8.2	94	1.0	150	
JAN 04	1105	90	1450	7.7	7.0	2.9	9.2	77	3.8	21	
MAR 13	1020	920	1800	7.6	16.0	32	8.3	87	.6	68	
MAY 08	1025	14	685	7.8	20.0	55	9.2	104	.8	2400	
JUL 10	1035	1.5	850	7.8	28.5	27	9.4	126	.6	53	
AUG 28	1040	14	730	7.6	28.0	1.9	9.0	120	1.8	24	
			1.5		2010					-	
DATE	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	
NOV 08	110	330	120	75	35	66	2	4.9	210	80	
JAN 04	25	490	260	110	53	110	2	4.0	230	200	
MAR 13	60	450	330	99	49	190	4	7.4	120	230	
MAY 08	5200	270	19	53	33	39	1	3.4	250	25	
JUL 10	170	270	40	45	38	67	2	4.7	230	23	
AUG 28							2				
20	45	240	63	49	29	55	. 2	5.4	180	47	
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	
NOV	120	20			700			2.0			
08 JAN	130	.30	8.1	471	530		<.020	.20	.15	.110	
04 MAR	230	1.6	9.9	873	860		<.010	.40	.41	<.010	
13 MAY	370	.40	5.4	1090	1000	.56	.040	.60	.56	.030	
08 JUL	66	.20	9.2	372	380		.010	<.10	<.10	.130	
10 AUG	120	.30	12	434	450		•010	<.10	<.10	.090	
28	99	.20	12	402	410		.020	<.10	<.10	.100	

08147000 COLORADO RIVER NEAR SAN SABA, TX--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

	DATE	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	ORG TO (M	EN,	GEN MON ORO TO	GANIC P OTAL MG/L	PHOS- HORUS, FOTAL (MG/L AS P)	PH Si	HOS- ORUS, DIS- OLVED MG/L S P)	PHO OF DI SOI (MO	HOS- DRUS, RTHO, IS- LVED G/L P)	ME! SU: PE!	DI- NT, S- NDED G/L)	ME CHA S PE	DI- ENT, DIS- RGE, SUS- ENDED DAY)	SII SII DI % FI	AM.
N	ov																
	08	.040		.79		.90	.030		<.010		(.010		30	- 1	3		90
	AN 04	<.010		THE YEAR		.50	.030		.010		.020		62	1	5		91
M	AR					0.00											00
	13 AY	<.010		1.2		1.2	.070		.010		.020		16	4	0		99
	08	.150		.67		.80	.100		.020		.020		120		4.5		70
	UL 10	.100		.71		.80	.060		.020		.020		44		.18		93
	UG 28	.110		1.2		1.3	.070		.010		.010		37		1.4		96
											11113						
DATE	TIMI	SOL (UG	S- VED /L	BARIU DIS- SOLVE (UG/ AS B	D	BERYL- LIUM, DIS- SOLVE (UG/L AS BE)	CADN DI SOI (UG	IUM S- VED S/L CD)	SOL (UG	M, VED	COBAI DIS- SOLVE (UG/ AS (D L	COPPI DIS- SOLY (UG) AS	VED /L	DI	S- VED /L	LEAD, DIS- SOLVED (UG/L AS PB)
			,		-/		AS	OD,	AU	OK,		,,,		,			
08	1050)	1	1	80	<.	5	<1		<1	1518	<3		1		12	<1
MAR 13 JUL	1020)	<1	1.	30	<.:	5	<1		1		<3		2		16	<1
10 AUG	1035	5	3	1-	40	<1.0)	<1		<1		<3		<1		8	<1
28	1040)	2	14	40	<1.0)	<1		1		<3		2		21	6
DATE	LITHIU DIS- SOLVI (UG/I AS LI	DI ED SOL (UG	E, S- VED /L	MERCU DIS SOLV (UG/	ED L	MOLYB- DENUM DIS- SOLVE (UG/L AS MO)	DIS D SOI (UG	VED		M, S- VED /L	SILVE DIS SOLV (UG/ AS A	ED L	STRO TIU DIS SOLV (UG/ AS S	JM, S- VED /L	VAN DIU DI SOL (UG AS	M, S- VED /L	ZINC, DIS- SOLVED (UG/L AS ZN)
NOV																	
08	3	33	2		. 2	<10)	1		<1		1		810		<6	16
13 JUL	(51	3	<	. 1	<10)	<1		1		<1	20	000		<6	13
10	1 2	27	3	<	. 1	<10)	<1		<1		<1	- 1	420		<6	12
AUG 28	2	20	11	<	. 1	<10)	2		<1		<1		440		<6	<3
															THE !		

MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1983 TO SEPTEMBER 1984

MONTH	YEAR	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
OCT.	1983	1072	587	324	938	64	186	39	113	220
NOV.	1983	3154	1390	805	6860	250	2140	200	1680	410
DEC.	1983	2372	1430	823	5270	250	1610	200	1250	430
JAN.	1984	3847	1340	766	7950	220	2310	170	1770	420
FEB.	1984	2499	1050	591	3990	150	1020	110	735	350
MAR.	1984	9538	827	467	12000	120	3040	84	2170	280
APR.	1984	1514	717	399	1630	85	349	55	226	260
MAY	1984	348.1	698	388	365	82	77	53	50	250
JUNE	1984	124.77	768	428	144	94	32	62	21	270
JULY	1984	321.08	653	363	315	76	66	49	42	240
AUG.	1984	2361	749	418	2660	93	592	61	392	270
SEPT	1984	3617.5	907	510	4980	120	1210	86	842	310
TOTAL		30768.45	**	**	47100	**	12600	**	9300	**
WTD.AV	/G.	84	999	567	**	150	**	110	**	330

08147000 COLORADO RIVER NEAR SAN SABA, TX--Continued

	SPECI	FIC CONDU	CTANCE (M	IICROMHOS/C		DEG. C), W		R OCTOBER	1983 TO	SEPTEMBER	1984	
DAY	OCT	NOV	DEC	JAN	FEB	IVALENT ME MAR	AN APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	610 615 612 609 607	625 590 580 570 700	1350 1210 1050 1300 1430	1520 1430 1420 1380 1410	1160 1120 1100 1080 1060	1370 1350 1290 1230 1140	760 750 710 720 735	680 670 675 680 685	730 745 730 760 750	800 810 815 820 840	800 820 830 860 890	800 1240 1170 1090 830
6 7 8 9	610 527 582 585 590	810 890 960 1950 1980	1140 950 740 875 1270	1440 1300 1370 1460 1180	1030 1040 1030 1040 965	1080 1010 918 1020 1130	750 730 700 715 680	680 640 670 690 700	740 765 770 780 770	820 800 840 845 850	880 900 950 965 970	750 810 840 1220 1360
11 12 13 14 15	587 583 537 617 560	1550 1100 1090 1220 1430	1330 1400 1890 1770 1620	1320 1530 1270 1380 1400	1000 1020 970 1060 1050	1120 1830 1580 1520 1550	720 730 735 740 745	710 720 715 710 730	780 785 780 785 790	840 850 860 865 860	960 720 620 610 570	1350 1340 1270 1190 1160
16 17 18 19 20	570 579 588 568 530	1640 1680 1660 1740 1680	1640 1500 1390 1480 1400	1220 1440 1650 1570 1510	1030 970 900 920 810	1410 1040 1000 965 925	740 670 715 680 700	740 735 730 740 720	795 810 805 815 810	875 880 870 880 870	505 550 575 582 591	1120 1100 1080 1060 1030
21 22 23 24 25	569 565 562 597 600	1620 1740 1700 1680 1650	1220 1590 1740 1790 1650	1370 1290 1220 1150 1100	850 940 1000 960 985	890 842 620 450 510	695 700 715 700 670	700 720 730 735 740	790 800 790 795 805	875 850	610 680 707 730 728	1020 1000 980 1000 750
26 27 28 29 30 31	604 610 603 591 605 619	1540 1710 1580 1590 1490	1670 1620 1540 1450 1520 1570	1080 1110 1100 1100 1120 1200	945 860 1190 1390	750 1150 1020 820 770 765	650 665 670 680 690	730 735 720 710 720 710	810 805 800 790 795	827 530 410 420 550 820	730 720 700 670 650 630	670 860 870 850 880
MEAN	587	1360	1420	1320	1020	1070	709	709	783	792	732	1020
		TEM	PERATURE,	WATER (DE	G. C), W	ATER YEAR	OCTOBER	1983 TO SE	PTEMBER.	1984		
DAY	OCT	NOV	DEC	JAN	FEB	ONCE-DAILY MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	26.0 27.0 26.0	23.0 22.0 23.0	10.0 14.0 15.0 15.0	5.0 7.0 8.0 10.0 11.0	12.0 12.0 13.0 13.0	16.0 16.0 12.0	18.0 20.0 19.0 18.0	21.0 25.0 25.0 27.0	25.0 26.0 26.0 26.0	29.0 29.0 30.0 30.0 30.0	20.0 29.0 30.0 	30.0 29.0 28.0 27.0 26.0
6 7 8 9	26.0 25.0 25.0 24.0	23.0 20.0 19.0 18.0	12.0 14.0 15.0 15.0	11.0 11.0 10.0 10.0 9.0	12.0 11.0 15.0 16.0	14.0 15.0 15.0 14.0	19.0 19.0 21.0 23.0 23.0	28.0 28.0 23.0 24.0 24.0	28.0 25.0 28.0 28.0	31.0 31.0 31.0	30.0 30.0 30.0 30.0 29.0	27.0 29.0 30.0 29.0
11 12 13 14 15	22.0 20.0 21.0 21.0	17.0 22.0 20.0 18.0	15.0 14.0 13.0 12.0 11.0	10.0 10.0 9.0 	15.0 15.0 16.0 16.0	14.0 18.0 18.0 20.0 21.0	23.0 22.0 22.0 22.0	25.0 27.0 28.0 28.0 26.0	28.0 27.0 29.0 29.0 30.0	31.0 31.0 31.0 30.0 34.0	28.0 27.0 30.0 29.0 30.0	28.0 29.0 29.0 26.0
16 17 18 19 20	26.0 26.0 25.0	17.0 18.0 18.0 18.0	9.0 6.0 5.0 4.0	8.0 5.0 7.0 4.0	19.0 19.0 14.0 11.0	22.0 20.0 18.0 18.0	19.0 20.0 22.0 23.0 24.0	25.0 24.0 24.0 26.0	30.0 29.0 30.0	31.0 29.0 29.0 30.0	31.0 32.0	24.0 25.0 25.0 25.0 25.0
21 22 23 24 25	23.0 23.0 22.0	20.0	4.0 3.0	6.0 5.0 8.0 9.0	14.0 14.0 15.0 15.0	19.0 20.0 20.0 16.0 18.0	24.0 23.0 23.0 24.0	27.0 30.0 28.0 29.0	30.0 30.0 30.0 30.0 31.0	27.0 29.0	30.0 31.0 31.0 31.0	27.0 27.0 27.0 28.0
26 27 28 29 30 31	20.0 20.0 20.0 21.0	15.0	5.0 2.0 2.0	11.0 12.0 13.0 14.0 10.0	16.0 12.0 12.0 14.0	19.0 20.0 18.0 19.0	25.0 25.0 25.0 24.0	30.0 25.0 24.0 26.0 25.0	31.0 30.0 30.0 31.0	26.0 29.0 28.0 28.0 29.0	31.0 32.0 31.0 32.0 30.0 29.0	27.0 23.0 19.0 20.0
MEAN	23.0	19.0	10.0	9.0	14.0	17.5	22.0	26.0	28.5	29.5	29.5	26.5

08148000 LAKE BUCHANAN NEAR BURNET, TX

LOCATION.--Lat 30°45'04", long 98°25'06", Burnet County, Hydrologic Unit 12090201, in powerhouse at Buchanan Dam on Colorado River, 1.3 mi upstream from bridge on State Highway 29, 11 mi west of Burnet, and at mile 413.6.

DRAINAGE AREA. -- 31,910 mi2, approximately, of which 11,398 mi2 probably is noncontributing.

PERIOD OF RECORD .-- May 1937 to current year. Prior to Oct. 1, 1968, published as Buchanan Reservoir.

REVISED RECORDS .-- WSP 1118: Drainage area.

GAGE.--Nonrecording gage. Datum of gage is 0.48 ft National Geodetic Vertical Datum of 1929 (levels run by Lower Colorado River Authority). Prior to July 1938, temporary staff and float gages at same site and datum.

REMARKS.--The lake is formed by two reinforced concrete multiple-arch sections, three banks of tainter gates, a 1,100foot uncontrolled emergency concrete spillway, and natural ground. A net opening of 1,270 ft is controlled by
thirty 33- by 15-foot and by seven 40- by 15-foot tainter gates. The dam was completed and storage began May 20,
1937. Water is used for power development and for irrigation below Columbus. The power generating features consist
of three generating units, each with a 12,677 kilowatt capacity. A pump-back unit, with a capacity of 840 ft³/s,
returns water from Inks Lake to Lake Buchanan during off-peak power demand periods. Inflow is largely regulated
by twelve major reservoirs with a combined capacity of 2,438,000 acre-ft, of which 1,091,000 acre-ft is for flood
control. For statement regarding regulation by Soil Conservation Service floodwater-retarding structures, see
station 08147000. The capacity table is based on a 1925 survey. Figures given herein represent total contents.
Data regarding the dam and lake are given in the following table:

	(feet)	(acre-feet)
Top of dam	1,025.5	-
Crest of gravity overflow spillway (top of conservation storage)	1,020.0	992,000
Crest of spillway (15 ft gates)	1,005.0	678,000
Crest of spillway (25 ft gates)	995.0	505,000
Invert of three 12-foot-diameter penstocks	937.0	36,800

COOPERATION .-- Capacity curve and gage-height record were furnished by the Lower Colorado River Authority.

EXTREMES (AT 2400) FOR PERIOD OF RECORD.--Maximum contents, 1,010,000 acre-ft Jan. 24, 1968 (gage height, 1,020.8 ft); minimum after initial filling of lake in July 1938, 340,800 acre-ft Sept. 8-10, 1952 (gage height, 983.4 ft).

EXTREMES (AT 2400) FOR CURRENT YEAR.--Maximum contents observed, 835,300 acre-ft Oct. 11 (gage height, 1,012.92 ft); minimum, 397,200 acre-ft Sept. 30 (gage height, 987.69 ft).

Capacity table (gage height, in feet, and total contents, in acre-feet)

987.0 387,000 1,004.0 659,000 995.0 587,700 1,013.0 837,000

CONTENTS, IN ACRE-FEET, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 INSTANTANEOUS OBSERVATIONS AT 2400

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	833200	827300	823400	792400	794400	790200	804900	796100	740200	659800	563900	477600
2	832600	825000	823400	793000	795000	791000	805300	794800	737400	656100	560500	474600
3	832400	825000	823600	793000	794800	790800	805100	793600	734400	652000	558700	470100
4	832400	825700	823400	793000	795000	791800	804900	791400	736400	647500	555600	465200
5	832200	827100	823800	793000	795000	791800	804500	790800	745200	644200	553000	460800
,	032200	02/100	023000	733000	733000	731000	004300	730000	743200	044200	333000	400000
6	831500	827100	823100	793200	794600	791600	804000	789600	743400	640100	550800	457400
7	831300	827100	822300	791000	794200	791600	805100	790200	740600	636100	547600	453800
8	831100	827100	822500	793000	794400	791600	805100	788200	737400	632000	545300	450900
9	833200	826900	822500	793200	794600	791200	804500	786000	734100	628900	541000	447900
10	833200	826100	822700	793200	794200	791600	804900	784000	732200	624100	539900	444800
11	835300	825200	822700	792800	795000	791400	804500	782200	728500	620500	538000	441000
12	834100	825700	820000	793200	795200	791800	804500	780800	725300	617200	535400	438000
13	833200	825900	817500	793200	795200	791800	804500	779600	723000	613100	533000	434400
14	832600											
		826100	815800	793200	795000	793200	804200	778000	719400	609100	530300	431100
15	832400	825700	816000	793200	795400	793800	803200	775800	716400	605000	527900	429000
16	832200	825500	815600	793200	795000	794000	802800	774600	712600	601400	524700	425200
17	832000	825200	815200	793600	794200	794200	802400	773200	708600	599100	522000	421400
18	831800	825200	815400	793800	793800	795000	802100	771600	706700	596400	520000	418100
19	831500	825200	814700	793800	793800	794600	802100	770000	702500	592900	517500	414600
20	831300	824800	814300	793800	793800	794200	801700	768000	699500	590200	515600	412500
									31.300			
21	830700	824600	814700	793600	792200	794200	802100	766000	695500	588200	513500	410900
22	830500	825500	810500	793800	791800	794200	801500	763600	692300	585600	510000	408900
23	830100	825000	810500	794000	791600	796300	800700	761800	688300	583500	508000	406200
24	829900	824800	806800	794200	791400	798600	799800	759400	684500	584900	505500	404300
25	829700	823800	801700	794200	790600	803400	799600	755000	681200	582500	502100	402100
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,	000100	,,,,,,,,					
26	829200	824200	799400	794200	793600	805100	799600	755000	676900	580000	499100	399700
27	829000	824400	799000	794400	791200	807200	799800	753000	673400	578000	496400	397900
28	828400	824000	798400	794400	790600	805500	799000	753800	671500	575200	492500	398200
29	828400	823600	795000	794400	790400	805300	798800	748400	667200	572400	489000	397800
30	828200	824000	792400	794600		805100	797900	745800	664100	569800	486300	397200
31	827800		792000	794400		805500	777700	743200		566900	482600	
٥.	027000		732000	734400		003300		743200		300300	402000	
MAX	835300	827300	823800	794600	795400	807200	805300	796100	745200	659800	563900	477600
MIN	827800	823600	792000	791000	790400	790200	797900	743200	664100	566900	482600	397200
(†)	1012.56	1012.38	1010.85	1010.97	1010.77	1011.50	1011.14	1008.41	1004.27	998.80	993.57	987.69
(‡)	-5800	-3800	-32000	+2400	-4000	+15100	-7600	-54700	-79100	-97200	-84300	-85400

CAL YR 1983 MAX 932100 MIN 792000 ‡ -39500 WTR YR 1984 MAX 835300 MIN 397200 ‡ -436400

t Elevation, in feet, at end of month.

[‡] Change in contents, in acre-feet.

125

LOCATION.--Lat 30°30'15", long 99°44'03", Kimble County, Hydrologic Unit 12090204, on right bank 960 ft upstream from low-water crossing, 1.0 mi east of Junction, 2.6 mi downstream from bridge on Interstate Highway 10, 2.8 mi downstream from confluence of North and South Llano Rivers, 5.3 mi upstream from Johnson Fork, and 114.8 mi upstream

from mouth.

DRAINAGE AREA. -- 1,854.14 mi2, of which 5.14 mi2 probably is noncontributing.

PERIOD OF RECORD .-- September 1915 to current year.

REVISED RECORDS.--WSP 568: 1915-16, 1918-20, 1922. WRD TX-81-3: Drainage area. WSP 1922: 1920, 1923.

GAGE.--Water-stage recorder. Datum of gage is 1,636.32 ft National Geodetic Vertical Datum of 1929. Prior to Aug. 14, 1925, nonrecording gage, and Aug. 14, 1925, to May 17, 1940, and Aug. 18, 1944, to Oct. 12, 1981, water-stage recorder at site 5,330 ft downstream at datum 6.0 ft lower, designated as regular gage (destroyed by flood of Oct. 13, 1981).

REMARKS. -- Records good. Diversions above station for irrigation. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE. -- 69 years, 192 ft3/s (1.41 in/yr), 139,100 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 319,000 ft³/s June 14, 1935 (gage height, 43.3 ft at regular gage, 41.4 ft at former gage 5,330 ft downstream, from floodmarks), from rating curve extended above 54,000 ft³/s on basis of slope-area measurements of 154,000 and 319,000 ft³/s; minimum, 3.1 ft³/s Aug. 16, 17, 1956.

Maximum stage since at least 1875, that of June 14, 1935.

EXTREMES OUTSIDE PERIOD OF RECORD .-- There was a major flood in 1889 which was the highest known prior to June 14, 1935.

EXTREMES FOR CURRENT YEAR .-- Maximum discharge, 213 ft3/s Nov. 6 at 0600 hours (gage height, 1.86 ft), no peak above base of 1,500 ft3/s; minimum daily, 49 ft3/s July 16-18, Sept. 14, 26.

		DISCHARGE,	IN CUBIC	FEET	PER SECOND, MEA	WATER YEAR N VALUES	OCTOBER	1983 TO	SEPTEMBER	1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	67 67 66 67 66	80 81 81 82 140	95 97 99 96 95	88 93 95 93 90	85 86 84 84 82	82 81 82 82 83	76 77 75 73 73	61 62 58 57 57	52 51 52 53 58	65 63 64 61 63	69 69 67 67 65	52 51 57 62 57
6 7 8 9	66 65 66 73 76	185 137 119 111 105	93 93 93 94 94	89 88 91 103 97	84 83 82 83 82	82 82 82 82 82	74 78 78 73 71	57 56 51 51 51	57 55 55 56 52	62 62 62 60 57	63 60 57 58 58	56 55 55 57 53
11 12 13 14 15	74 73 70 70 71	102 101 102 100 99	92 91 90 90	92 89 88 87 87	84 83 82 80 81	82 83 81 80 80	70 69 69 68 66	52 52 52 54 53	53 55 54 53 53	57 56 54 52 52	57 58 58 54 54	51 51 50 49 51
16 17 18 19 20	71 72 72 73 85	98 99 100 100 97	89 89 90 89 91	87 88 87 86 87	80 81 83 81 82	80 80 80 77 75	66 66 66 66	53 62 71 85 77	53 52 51 52 52	49 49 49 52 56	54 52 52 53 54	51 51 51 51 50
21 22 23 24 25	84 80 78 78 78	97 99 99 97 97	90 89 89 88 87	87 87 87 87 86	84 84 83 83 82	76 76 79 78 76	62 63 64 64 64	68 63 60 59 57	52 52 52 52 52	56 56 52 65 73	54 51 50 53 54	51 57 56 51 51
26 27 28 29 30 31	79 80 80 80 80 80	98 98 97 96 97	89 89 89 87 87	85 85 84 84 84 84	83 80 80 80	76 76 73 74 75 76	63 61 61 61 61	55 54 53 53 53 51	52 54 67 84 73	95 93 87 79 77 74	53 54 52 51 51 52	49 52 60 71 70
TOTAL MEAN MAX MIN AC-FT	2287 73.8 85 65 4540	3094 103 185 80 6140	2822 91.0 99 87 5600	2745 88.5 103 84 5440	2391 82.4 86 80 4740	79.1 83 73	2042 68.1 78 61 4050	1798 58.0 85 51 3570	1659 55.3 84 51 3290	1952 63.0 95 49 3870	1753 56.5 69 50 3480	1629 54.3 71 49 3230

CAL YR 1983 TOTAL 32807 MEAN 89.9 MAX 185 MIN 56 WTR YR 1984 TOTAL 26625 MEAN 72.7 MAX 185 MIN 49 AC-FT 52810

08150700 LLANO RIVER NEAR MASON, TX

LOCATION.--Lat 30°39'38", long 99°06'32", Mason County, Hydrologic Unit 12090204, on right bank 98 ft downstream from downstream bridge on U.S. Highway 87, 1.0 mi upstream from Beaver Creek, 9.1 mi southeast of Mason, 10.2 mi downstream from James River, and 61.1 mi upstream from mouth.

DRAINAGE AREA. -- 3,247.14 mi², of which 5.14 mi² probably is noncontributing.

PERIOD OF RECORD. -- March 1968 to current year.

REVISED RECORD. -- WDR TX-75-3: 1968(P). WRD TX-81-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,230.36 ft National Geodetic Vertical Datum of 1929. Prior to Jan. 19, 1971, at site 190 ft upstream at same datum.

REMARKS .-- Records good. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--16 years (water years 1969-84), 324 ft3/s (1.36 in/yr), 234,700 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 260,000 ft³/s Sept. 8, 1980 (gage height, 37.00 ft, from floodmark), from rating curve extended above 151,000 ft³/s on basis of slope-area measurement and discharge measurement of 145,000 ft³/s; minimum, 16 ft³/s July 23, 1971.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1875, about 46 ft June 14, 1935, from information by State Department of Highways and Public Transportantion; discharge, about 380,000 ft³/s; at site 17.0 mi downstream discharge was 388,000 ft³/s by slope-area measurement.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 367 ft³/s May 20 at 0600 hours (gage height, 1.94 ft), no peak above base of 3,000 ft³/s; minimum, 7.0 ft³/s July 17 (result of pumping).

DISCHARGE IN CURIC FEET DER SECOND. WATER VEAR OCTORER 1983 TO SEPTEMBER 1984

		DISCHARGE,	IN CUBIC	FEET	PER SECO	ND, WATER MEAN VALU	YEAR	OCTOBER	1983 T	O SEPTEME	ER 1984		
DAY	OCT	NOV	DEC	JAN	FEE	MAR.		APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	62 62 62 63 61	84 84 85 87 140	108 109 113 114	115 115 115 116 114	103 103 106	92 95 98		73 74 76 72 74	59 62 61 56 56	54 53 48 49 51	69 71 62 52 45	84 80 79 71 67	36 31 36 44 44
6 7 8 9	59 60 60 67 78	159 211 223 170 140	111 106 104 104 106	120 122 130 147 130	104 100 101	100 100 96		76 79 85 86 83	52 53 51 46 47	51 48 51 51 48	43 42 38 35 33	63 58 53 47 45	49 48 45 41 36
11 12 13 14 15	75 74 74 71 68	128 121 115 112 110	104 104 103 101 101	140 136 128 120 118	104 96 96	98 99 97		83 81 81 76 72	43 41 40 39 40	50 51 48 41 41	31 28 25 21 17	43 45 44 45 60	34 34 33 31 28
16 17 18 19 20	68 69 71 76 78	107 103 103 102 100	100 99 102 105	117 117 117 116 114	94 97 99	94 92 91		69 70 69 71 70	39 47 57 62 288	39 38 37 34 30	15 10 12 64 57	50 45 43 42 38	27 27 26 27 29
21 22 23 24 25	87 82 87 88 82	102 104 103 100	108 111 111 125 100	110 110 113 114 114	98 98 96	83 84 83		65 63 64 65 64	166 103 84 73 65	30 25 27 22 18	52 43 34 51 206	38 38 36 30 31	38 52 39 35 36
26 27 28 29 30 31	79 76 79 80 81 82	101 106 104 106 107	112 116 120 118 115	110 108 106 106 103 103	95 94 91 92	70 65 68		65 64 59 58 59	60 55 53 52 49 48	18 19 158 157 86	127 112 95 112 106 92	29 24 22 27 30 41	36 36 41 63 62
TOTAL MEAN MAX MIN CFSM IN. AC-FT	2261 72.9 88 59 .02 .03 4480	3518 117 223 84 .04 .04 6980	3355 108 125 99 .03 .04 6650	3644 118 147 103 .04 .04 7230	2856 98.5 106 91 .03 .03 5660	89.0 101 65 .03 .03	7	146 1.5 86 58 .02 .02	2047 66.0 288 39 .02 .02 4060	1473 49.1 158 18 .02 .02	1800 58.1 206 10 .02 .02	1448 46.7 84 22 .01 .02 2870	1144 38.1 63 26 .01 .01 2270
CAL YR WTR YR			MEAN 11 MEAN 7	5.7	MAX 438 MAX 288	MIN 36 MIN 10	CFSM CFSM		IN .48 IN .33		83350 56430		

08150800 BEAVER CREEK NEAR MASON. TX

LOCATION.--Lat 30°38'36", long 99°05'44", Mason County, Hydrologic Unit 12090204, on left bank at downstream side of downstream bridge on U.S. Highway 87, 1.8 mi upstream from Llano River, 6.4 mi downstream from Spring Creek, and 11.1 mi southeast of Mason.

DRAINAGE AREA. -- 215 mi2.

PERIOD OF RECORD .-- July 1963 to current year.

REVISED RECORDS. -- WSP 2122: 1964-65. WRD TX-81-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,253.24 ft National Geodetic Vertical Datum of 1929. Prior to Aug. 3, 1978, at site 300 ft upstream at same datum.

REMARKS .-- Records good. No known regulation or diversion above station. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE .-- 21 years, 16.8 ft3/s (1.06 in/yr), 12,170 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 66,900 ft³/s Aug. 3, 1978 (gage height, 24.0 ft, from floodmarks), from rating curve extended above 7,400 ft³/s on basis of slope-area measurements of 20,100 and 66,900 ft³/s; no flow at times most years.

EXTREMES FOR CURRENT YEAR. -- Maximum discharge, 7,380 ft3/s Nov. 5 at 1430 hours (gage height, 7.60 ft), no other peak above base of 1,000 ft3/s; no flow at times.

DISCHARGE IN CURIC PERT DEP SECOND LIATED VEAD OCTORED 1983 TO SEPTEMBER 1984

		DISCHARGE	, IN CUBI	C FEET	PER SECON	ND, WATER Y MEAN VALUES	YEAR OCTOBE	R 1983 TO	SEPTEMB	ER 1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.49 .54 .52 .51	3.2 3.3 3.3 3.4 392	1.8 1.7 2.7 2.8 2.3	2.6 3.7 4.8 5.0 3.5	1.4 1.6 1.6 1.6	.94 1.1 1.3 1.3	1.2 1.2 1.2 .81	.15 .16 .10 .09	2.8 1.4 .69 .53 .38	.02 .00 .00 .00	.69 .51 .25 .20	.03 .02 11 3.2 1.7
6 7 8 9	.43 .40 .36 .64	64 23 10 6.2 4.1	1.6 1.2 1.2 1.2 1.3	2.8 2.5 2.6 7.7	1.4 1.4 1.4 1.5	3.2 3.2 2.6 1.8 1.6	.73 .83 .97 1.3	.04 .04 .03 .03	.24 .22 .17 .13	.00 .00 .00 .00	.14 .10 .07 .06 .04	1.3 .87 .53 .35 .25
11 12 13 14 15	1.4 4.2 3.4 3.5 2.4	3.0 2.5 2.2 2.0 1.5	1.3 1.2 .99 .84 .84	6.0 3.7 2.8 2.4 2.4	1.7 1.8 2.1 2.3 1.7	1.6 1.6 1.6 1.6	.89 .59 .39 .24 .27	.03 .03 .03 .03	.07 .05 .03 .03	.00 .00 .00 .00	.04 .04 .04 .03	.19 .16 .14 .14
16 17 18 19 20	1.7 1.3 1.3 1.5 5.3	1.3 1.2 1.2 1.2 1.2	.84 .95 1.1 1.3 1.6	2.4 2.4 2.4 2.3 2.2	1.0 .93 1.2 1.2	1.2 1.4 1.6 1.7	.24 .24 .25 .23	.04 .07 .12 .09	.02 .01 .00 .00	.00 .00 .00 .00	.03 .02 .02 .01	.12 .11 .12 .12
21 22 23 24 25	22 13 7.3 5.2 4.2	.84 .94 1.8 3.2 3.0	1.9 2.0 2.1 6.4 1.6	1.9 2.3 2.6 2.6 2.5	1.2 1.5 1.5 1.3 1.2	.95 .78 .85 1.0	.11 .18 .21 .18	.04 .03 .03 .03	.00 .00 .00	.00 .00 .00 .31	.00 .00 .00 .00	.61 .40 .20 .15
26 27 28 29 30 31	3.4 3.1 2.8 2.6 2.8 2.9	2.1 2.2 2.1 2.1 2.0	1.7 2.4 2.2 2.6 1.8 2.0	2.3 2.0 1.8 1.8 1.5	1.3 1.0 .84 .84	1.1 .91 .63 .52 .49	.14 .12 .14 .20 .14	.03 .03 .03 34 16 6.3	.00 .00 .30 .05 .04	.04 .05 .71 6.2 3.0 1.5	.00 .00 .00 .00	.09 .11 .75 .72 .33
TOTAL MEAN MAX MIN CFSM IN. AC-FT	100.08 3.23 22 .36 .02 .02	549.83 18.3 392 .84 .09 .10 1090	55.46 1.79 6.4 .84 .008 .01	97.9 3.16 11 1.4 .02 .02	40.81 1.41 2.3 .84 .007 .01	42.62 1.37 3.2 .35 .006 .01 85	14.74 .49 1.3 .11 .002 .00 29	57.82 1.87 34 .02 .009 .01 115	7.29 .24 2.8 .00 .001 .00	11.90 .38 6.2 .00 .002 .00 24	2.55 .082 .69 .00 .000	24.09 .80 11 .02 .004 .00 48
CAL YR WTR YR		AL 2673.56 AL 1005.09			MAX 392 MAX 392	MIN .00 MIN .00	CFSM .03 CFSM .01	IN .46 IN .17	AC-FT AC-FT			

08151500 LLANO RIVER AT LLANO, TX (National stream-gaging accounting network)

LOCATION.--La: 30°45'04", long 98°40'10", Llano County, Hydrologic Unit 12090204, on right bank in Llano, 0.4 mi downstream from bridge on State Highway 16, 7 mi upstream from Little Llano River, and 29.3 mi upstream from mouth.

DRAINAGE AREA. -- 4,197.14 mi², of which 5.14 mi² probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- September: 1939 to current year.

REVISED RECORDS. -- WRD TX-81-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 970.01 ft National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good. Many small diversions above station. Part of low flow of Llano River disappears into various formations, many of which are faulted, between stations near Junction and Llano. Gage-height telemeter and rain bage at station.

AVERAGE DISCHARGE.--45 years, 352 ft3/s (1.14 in/yr), 255,000 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 232,000 ft³/s Sept. 10, 1952 (gage height, 32.6 ft), from rating curve extended above 129,000 ft³/s on basis of slope-area measurement of peak flow; no flow at times in 1952-56, 1964, 1984.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1879, 41.5 ft June 14, 1935 (discharge, 380,000 ft³/s), from information by local resident.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 490 ft 3 /s July 28 at 0715 hours (gage height, 3.29 ft), no peak above base of 7,500 ft 3 /s; no flow July 21, 22 (result of pumping by the city $\vec{\alpha}$: Llano).

		DISCI	HARGE, IN	CUBIC FE		COND, WATER AN VALUES	YEAR	OCTOBER 1983	TO SE	PTEMBER 19	84	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	55	66	77	83	90	80	49	30	39	215	71	16
2	54	66	77	98	93	81	59	37	41	150	58	18
3 4	54	67	86	98	90	81	58	30	41	80	45	18
	50	69	85	99	93	80	55	33	38	74	39	20
5	46	119	88	98	97	86	54	32	36	77	36	23
6	48	138	81	102	94	86	56	28	36	61	35	28
7	48	200	81	104	94	86	63	27	35	45	29	22
8	43	181	81	127	94	80	64	27	35	31	27	21
9	59	191	81	166	97	77	61	26	35	23	25	18
10	66	155	80	125	99	79	71	25	35	17	22	18
11	61	123	76	144	101	77	58	24	35	12	21	18
12	75	105	77	132	102	79	62	23	35	8.4	21	16
13	66	97	72	120	98	78	62	22	34	6.9	20	14
14	58	89	69	108	98	81	58	22	33	4.8	18	13
15	55	81	69	103	95	81	53	22	32	3.6	20	13
16	55	79	66	101	90	77	52	23	30	2.0	20	12
17	54	77	66	99	93	81	49	25	29	1.0	18	11
18	55	75	66	96	97	83	47	30	28	.61	21	11
19	60	71	66	94	94	75	49	37	26	. 29	22	11
20	62	64	67	94	102	71	49	150	25	.00	19	10
21	73	67	75	94	103	70	50	100	23	.00	16	13
22	65	78	76	94	101	70	45	70	22	16	14	15
23	73	83	. 77	94	101	74	46	60	21	19	14	15
24	74	75	103	97	98	67	44	55	21	71	14	16
25	65	69	66	99	99	63	40	50	16	91	13	18
26	63	71	76	101	101	66	44	47	13	50	13	17
27	60	81	85	101	79	74	39	46	2.1	178	13	16
28	63	73	97	98	86	48	38	45	7.3	309	11	17
29	64	73	91	98	77	50	45	44	17	141	11	21
30 31	64 65	75	83 73	92 90		52	31	41	230	71 66	12 20	21
31	63		/3	90	4	49		40		00	20	
TOTAL	1853	2858	2413	3249	2756	2282	1551		050.4	1824.60	738	500
MEAN	59.8	95.3	77.8	105	95.0	73.6	51.7	41.0	35.0	58.9	23.8	16.7
MAX	75	200	103	166	103	86	71	150	230	309	71	28
MIN	43	64	66	83	77	48	31	22	2.1	.00	11	10
CFSM	.01	.02	.02	.03	.02	.02	.01	.01	.008	.01	.006	.004
IN.	.02	.03	.02	.03	.02	.02	.01	.01	.01	.02	.01	.00
AC-FT	3680	5670	4790	6440	5470	4530	3080	2520	2080	3620	1460	992
CAL YR WTR YR				151 61.1	MAX 320 MAX 30		.00	CFSM .04 I CFSM .02 I	N .49 N .20		09600 44320	

08151500 LLANO RIVER AT LLANO, TX -- Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical and biochemical analyses: April 1979 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: April 1979 to September 1981. WATER TEMPERATURES: April 1979 to September 1981.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 487 micromhos Jan. 3, 1981; minimum daily, 191 micromhos Sept. 3, 1981.
WATER TEMPERATURES: Maximum daily, 33.0°C on several days during summer of 1980-81; minimum daily, 6.0°C Jan. 29,
Feb. 9, Dec. 22, 1980, and Jan. 19, 1981.

DATE	TIME	FL INS TAN	EAM- OW, TAN- EOUS FS)	SPE- CIF: CON- DUC: ANCI	IC - T-	PH (STAN ARD JNITS	A	MPER- TURE DEG C)	TU BI IT (NT	D- Y	SO	GEN, IS- LVED G/L)	SOL (PE	S- VED R- NT UR-	OXYG DEMA BIO CHE ICA 5 I (MG	ND, CM-	COL FOR FEC 0.7 UM- (COL 100	MF S./	STR TOCO FEC KF A (COL PE 100	AL, GAR S. R	HARD- NESS (MG/L AS CACO3)
NOV	1405		176		360	7	. 8	22.0	2	0		8.6		100		1.1		160		220	160
08 MAR										.0								160			
13 JUL	1400		95		415	7	. 9	20.0	4	. 8		8.1		92		.5		24		86	180
10 AUG	1355		39	3	360	7	. 9	29.0	4	.3		8.8		118		.4		28		53	140
29	0945		11		360	7	. 4	28.0	2	.0		8.2		108		1.4		460		440	150
DATE	NE NON BON (M	ARD- CSS, ICAR- IATE IG/L CO3)	CALC DIS- SOL' (MG	VED /L	MAGN SIUI DIS SOLV (MG/ AS MG	M, SO ED SO L	DDIUM, DIS- DLVED (MG/L AS NA)	SOR TI RAT	D- P- ON	POTA SIU DIS SOLV (MG/ AS K	M, ED L	ALKA LINIT FIEL (MG/ AS CACO	Y D L	SULFA DIS- SOLV (MG/ AS SO	ED L	CHLO RIDE DIS- SOLV (MG/ AS (E, /ED /L	FLUC RIDE DIS SOLV (MG/ AS E	E, S- VED L	SILICA DIS- SOLVI (MG/I AS SIO2)	ED
NOV			2.1		0.0		45		-					.,		20			20		
08 MAR		12	31		20		14		.5	2.			48	14		23			.30	11	
JUL	•	9	35		22		17		.6	1.	8	1	70	17		24		4	.20	7.	.2
10		15	21		20		19		. 7	2.	7	1	20	14		31			30	19	
AUG 29	•	14	24		21		20		.7	3.	1	1	33	11		30		٠,	30	18	
DAT	RE AI D	LIDS, SIDUE 180 EG. C DIS- OLVED MG/L)	TUEN D: SOI	OF STI-	NIT GEI NO2+1 DIS SOL' (MG AS 1	N, NO3 / NED /L	NITRO GEN, AMMONI DIS- SOLVE (MG/L AS N)	GEN A MON ORG D TO	TRO- ,AM- IA + ANIC TAL G/L N)	PHOR PHOR TOT (MG	US, AL		US, S- VED	PHOR PHOR ORT DIS SOLV (MG/ AS P	US, HO, ED		NT,	CHAR	NT, IS- RGE, JS- NDED	SEI SUS SIEV DIA % FIN THA .062	SP. VE AM. NER AN
NOV																					
08. MAR		207		210	<	.10	.04	0	.50		010	<.	010	•	010		11	9	.5		48
13. JUL	• •	221		230	<	.10	.10	0	.20	<.	010	<.	010		020		8	2	.1		93
10.		204		200	<	.10	.02	0	.60		010	<.	010	<.	010		12	1	.3		80
AUG 29.		200		210	<	.10	.02	0	.70		020	<.	010	<.	010		13		.39		90
	DATE		r ime	SOI (UC	ENIC IS- LVED G/L AS)	BARIU DIS- SOLVI (UG, AS I	JM, ED /L	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	SO (U	MIUM IS- LVED G/L CD)	M D: SC (I	HRO- IUM, IS- DLVED JG/L S CR)	SOL (U	ALT, S- VED G/L CO)	SO (U	PPER, S- LVED G/L CU)	SO (U	ON, DIS- LVED G/L FE)	SO (U	AD, IS- LVED G/L PB)	
	NOV 08 MAR		1405		1		75	<.5		<1		<1		<3		1		14		<1	
	13		1400		<1		52	<.5		<1		1		<3		2		11		<1	
	JUL 10 AUG		1355		2		54	<1		1		<1		<3		<1		15		6	
	29	. 1	0945		2		58	1		<1		<1		<3		<1		15		5	

130

COLORADO RIVER BASIN

08151500 LLANO RIVER AT LLANO, TX --Continued

DATI	LITHIUM DIS- SOLVED (UG/L AS LI)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO)	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	VANA- DIUM, DIS- SOLVED (UG/L AS V)	ZINC, DIS- SOLVED (UG/L AS ZN)
NOV										
08.	16	3	<.1	<10	2	<1	1	260	<6	22
13.	10	5	<.1	<10	<1	<1	<1	310	<6	10
JUL 10.	10	4	<.1	<10	<1	<1	<1	240	8	16
29.	11	7	<.1	<10	1	<1	<1	250	<6	<3

08152000 SANDY CREEK NEAR KINGSLAND, TX.

LOCATION.--Lat 30°33'30", long 98°28'19", Llano County, Hydrologic Unit 12090201, on left bank at downstream side of bridge on State Highway 71, 6.6 mi upstream from mouth, and 7.3 mi south of Kingsland.

DRAINAGE AREA. -- 346 mi2.

PERIOD OF RECORD.--October 1966 to current year.
Water-quality records.--Sediment records: January 1968 to September 1975.

REVISED RECORDS. -- WRD TX-81-3: Drainage area.

GAGE .-- Water-stage recorder and crest-stage gage. Datum of gage is 862.31 ft National Geodetic Vertical Datum of 1929.

REMARKS.--Records fair. Some diversions above station for irrigation, amount unknown. Several observations of water temperature were made during the year. Gage-height telemeter at station.

AVERAGE DISCHARGE.--18 years, 58.6 ft3/s (2.30 in/yr), 42,460 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 27,500 ft 3/s June 16, 1981 (gage height, 17.63 ft); no flow at times most years.

EXTREMES OUTSIDE PERIOD OF RECORD.--The flood of Sept. 11, 1952, the highest since at least 1881, reached a stage of 34.2 ft (discharge, 163,000 ft³/s), from slope-area measurement at gage site.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 258 ft 3/s June 5 at 0030 hours (gage height, 5.99 ft), no peak above base of 2,500 ft 3/s; no flow for many days.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DAY							MEAN VALU	JES		127 227			
2	DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
3	1	. 04	.82	6.0	3.7	5.0	4.2	2.8	.18	. 46	.00	.46	.00
3	2	. 04	.82	5.7	4.6	5.2	4.6	2.5	.18	.32	.00	.32	.00
5	3	. 04											
5	4												
7	5												
7	6	. 04	19	4.4	5.4	5.1	7.0	2.0	. 04	12	.00	.00	.00
8	7	.18	14	4.4	5.4	5.1		3.1	. 04	4.7	.00	.00	.00
9 9.3 11 3.9 82 5.5 4.7 2.6 .04 2.0 .00 .00 .00 .00 10 5.8 7.5 4.1 50 5.6 4.8 2.1 .18 1.8 .00 .00 .00 .00 .00 11 29 5.6 3.9 36 5.6 4.6 1.9 .04 .63 .00 .00 .00 .00 12 35 4.6 4.0 28 6.1 4.8 1.7 .18 1.2 .00 .00 .00 .00 13 8.6 4.3 3.7 20 5.7 4.4 1.4 .18 .82 .00 .00 .00 .00 15 2.7 3.4 4.4 13 5.2 4.2 1.4 .32 .63 .00 .00 .00 .00 15 2.7 3.4 4.4 13 5.2 4.3 1.4 .32 .63 .00 .00 .00 .00 15 2.7 3.4 4.4 12 5.0 4.4 1.4 .32 .63 .00 .00 .00 .00 16 2.0 3.4 4.4 12 5.0 4.4 1.2 32 .46 .00 .00 .00 .00 18 1.6 3.4 6.5 11 5.1 4.6 1.0 4.6 .32 .00 .00 .00 .00 18 1.6 3.4 6.5 11 5.1 4.6 1.0 4.6 .32 .00 .00 .00 .00 19 1.4 3.3 6.1 8.3 5.0 4.1 1.0 .46 .32 .00 .00 .00 .00 19 1.4 3.3 6.1 8.3 5.0 4.1 1.0 .18 .32 .04 .00 .00 .00 .00 19 1.4 3.3 6.1 8.3 5.0 4.1 1.0 .18 .32 .04 .00 .00 .00 .00 20 2.2 3.1 6.1 7.9 5.1 3.7 .84 332 .04 .00 .00 .00 .00 21 2.6 2.3 1.6 6.1 7.9 5.1 3.7 .84 332 .04 .00 .00 .00 .00 .00 22 1.8 3.4 5.7 7.8 4.1 3.5 5.57 32 .00 .00 .00 .00 .00 22 1.8 3.4 5.7 7.8 4.1 3.5 5.57 32 .00 .00 .00 .00 .00 22 1.8 3.4 5.7 7.8 4.1 3.5 5.57 32 .00 .00 .00 .00 .00 22 1.8 3.4 5.7 7.8 4.1 3.5 5.57 32 .00 .00 .00 .00 .00 22 1.8 3.4 5.7 7.8 4.1 3.5 5.57 32 .00 .00 .00 .00 .00 .22 1.8 3.4 5.7 7.8 4.1 3.5 5.57 32 .00 .00 .00 .00 .00 .00 22 1.8 3.4 5.7 7.8 4.1 3.5 5.57 32 .00 .00 .00 .00 .00 .00 22 1.8 3.4 5.7 7.8 4.1 3.5 5.57 32 .00 .00 .00 .00 .00 .00 22 1.8 3.4 5.7 7.8 4.1 3.5 5.57 32 .00 .00 .00 .00 .00 .00 22 1.0 2.0 2.0 2.0 4.6 3.2 3.2 3.0 3.2 3.0 3.2 3.0 3.2 3.0 3.2 3.0 3.2 3.0 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2			14										
10 5.8 7.5 4.1 50 5.6 4.8 2.1 1.8 1.8 .00 .00 .00 .00 11 29 5.6 3.9 36 5.6 4.6 1.9 .04 .63 .00 .00 .00 .00 12 35 4.6 4.0 28 6.1 4.8 1.7 1.8 1.2 .00 .00 .00 .00 13 8.6 4.3 3.7 20 5.7 4.4 1.4 1.8 8.2 .00 .00 .00 .00 14 4.2 3.8 4.0 14 5.4 4.2 1.4 .32 .63 .00 .00 .00 .00 15 2.7 3.4 4.4 1.3 5.2 4.3 1.4 .32 .63 .00 .00 .00 .00 16 2.0 3.4 4.4 12 5.0 4.4 1.2 3.2 4.6 .00 .00 .00 17 1.8 3.4 6.5 11 5.1 4.6 1.0 4.6 3.2 .00 .00 .00 18 1.6 3.4 6.1 9.8 5.5 4.7 1.0 6.3 .04 .00 .00 .00 19 1.4 3.3 6.1 8.3 5.0 4.1 1.0 1.8 32 .00 .00 .00 20 2.2 3.1 6.1 7.9 5.1 3.7 .84 .32 .04 .00 .00 .00 21 2.6 2.9 6.1 7.9 5.1 3.7 .84 .32 .04 .00 .00 .00 22 1.8 3.4 5.7 7.8 4.1 3.5 .57 .32 .00 .00 .00 .00 22 1.8 8.4 5.4 8.3 4.8 4.9 4.9 4.0 3.8 .74 .32 .00 .00 .00 .00 .00 23 23 1.4 8.4 5.7 7.8 4.1 3.5 .57 .32 .00 .00 .00 .00 .32 24 1.1 7.0 5.4 8.1 4.6 3.6 .42 .18 .00 1.7 .00 .00 .96 24 1.1 7.0 5.4 8.1 4.6 3.6 .42 .18 .00 1.7 .00 1.0 26 .82 7.2 5.4 6.5 4.6 3.4 .8 4.4 4.6 3.6 .42 .18 .00 1.7 .00 1.0 26 .82 7.2 5.4 6.5 4.6 3.5 .47 .18 .00 1.7 .00 1.0 27 .82 12 5.0 6.0 4.3 3.2 .36 .32 .00 .13 .00 1.1 28 .82 9.8 4.7 5.7 4.0 2.6 .32 8.8 .00 1.3 .00 1.1 30 .82 6.8 4.7 5.7 4.0 2.6 .32 8.8 .00 1.3 .00 1.1 30 .82 6.8 4.7 5.7 4.0 2.6 .32 8.8 .00 1.3 .00 1.1 31 .82 4.7 5.0 2.8 2.7 .21 1.0 .00 .82 .00 1.3 MMX 35 19 6.7 82 6.1 7.9 3.7 8.9 4.21 1.7 1.4 7.1 3.14 .32 .026 .28 MMN .04 .82 3.7 3.7 2.9 2.5 .21 .04 .00 .00 .00 .00 .00 IN01 .02 .02 .04 .01 .01 .01 .004 .002 .009 .001 .000 .001													
12 35 4.6 4.0 28 6.1 4.8 1.7 1.8 1.2 .00 .00 .00 .00 13 8.6 4.3 3.7 20 5.7 4.4 1.4 .18 82 .00 .00 .00 .00 .00 14 4.2 3.8 4.0 14 5.4 4.2 1.4 .32 .63 .00 .00 .00 .00 15 2.7 3.4 4.4 13 5.2 4.3 1.4 .32 .46 .00 .00 .00 .00 .00 15 2.7 3.4 4.4 12 5.0 4.4 1.2 3.2 46 .00 .00 .00 .00 .00 16 2.0 3.4 4.4 12 5.0 4.4 1.2 3.2 .46 .00 .00 .00 .00 17 1.8 3.4 6.5 11 5.1 4.6 1.0 .46 3.2 .00 .00 .00 .00 18 1.6 3.4 6.1 9.8 5.5 4.7 1.0 .63 .04 .00 .00 .00 .00 19 1.4 3.3 6.1 8.3 5.0 4.1 1.0 1.8 32 .00 .00 .00 .00 19 1.4 3.3 6.1 8.3 5.0 4.1 1.0 1.8 32 .00 .00 .00 .00 .00 19 1.4 3.3 6.1 8.3 5.0 4.1 1.0 1.8 32 .00 .00 .00 .00 .00 2.2 3.1 6.1 7.9 5.1 3.8 3.4 5.7 7.8 4.1 3.5 5.7 .84 3.2 .00 .00 .00 .00 .00 2.2 1.8 3.4 5.7 7.8 4.1 3.5 5.7 3.2 .00 .00 .00 .00 .00 2.2 1.8 3.4 5.7 7.8 4.1 3.5 5.7 32 .00 .00 .00 .00 .00 .22 1.8 3.4 5.7 7.8 4.1 3.5 5.7 32 .00 .00 .00 .00 .00 .00 2.2 1.8 3.4 5.7 8 4.1 3.5 5.7 32 .00 .00 .00 .00 .00 .00 2.2 1.8 3.4 5.7 7.8 4.1 3.5 5.7 32 .00 .00 .00 .00 .00 .00 .00 .22 1.8 3.4 5.7 7.8 4.1 3.5 5.7 32 .00 .00 .00 .00 .00 .00 .00 .22 1.8 3.4 5.7 7.8 4.1 3.5 5.7 32 .00 .00 .00 .00 .00 .00 .00 .22 1.8 3.4 5.7 7.8 4.1 3.5 5.7 32 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0													
12 35 4.6 4.0 28 6.1 4.8 1.7 1.8 1.2 .00 .00 .00 .00 13 8.6 4.3 3.7 20 5.7 4.4 1.4 .18 82 .00 .00 .00 .00 .00 14 4.2 3.8 4.0 14 5.4 4.2 1.4 .32 .63 .00 .00 .00 .00 15 2.7 3.4 4.4 13 5.2 4.3 1.4 .32 .46 .00 .00 .00 .00 .00 15 2.7 3.4 4.4 12 5.0 4.4 1.2 3.2 46 .00 .00 .00 .00 .00 16 2.0 3.4 4.4 12 5.0 4.4 1.2 3.2 .46 .00 .00 .00 .00 17 1.8 3.4 6.5 11 5.1 4.6 1.0 .46 3.2 .00 .00 .00 .00 18 1.6 3.4 6.1 9.8 5.5 4.7 1.0 .63 .04 .00 .00 .00 .00 19 1.4 3.3 6.1 8.3 5.0 4.1 1.0 1.8 32 .00 .00 .00 .00 19 1.4 3.3 6.1 8.3 5.0 4.1 1.0 1.8 32 .00 .00 .00 .00 .00 19 1.4 3.3 6.1 8.3 5.0 4.1 1.0 1.8 32 .00 .00 .00 .00 .00 2.2 3.1 6.1 7.9 5.1 3.8 3.4 5.7 7.8 4.1 3.5 5.7 .84 3.2 .00 .00 .00 .00 .00 2.2 1.8 3.4 5.7 7.8 4.1 3.5 5.7 3.2 .00 .00 .00 .00 .00 2.2 1.8 3.4 5.7 7.8 4.1 3.5 5.7 32 .00 .00 .00 .00 .00 .22 1.8 3.4 5.7 7.8 4.1 3.5 5.7 32 .00 .00 .00 .00 .00 .00 2.2 1.8 3.4 5.7 8 4.1 3.5 5.7 32 .00 .00 .00 .00 .00 .00 2.2 1.8 3.4 5.7 7.8 4.1 3.5 5.7 32 .00 .00 .00 .00 .00 .00 .00 .22 1.8 3.4 5.7 7.8 4.1 3.5 5.7 32 .00 .00 .00 .00 .00 .00 .00 .22 1.8 3.4 5.7 7.8 4.1 3.5 5.7 32 .00 .00 .00 .00 .00 .00 .00 .22 1.8 3.4 5.7 7.8 4.1 3.5 5.7 32 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	1.1	29	5.6	3 0	36	5.6	4.6	1.0	0/1	63	00	00	.00
13 8.6 4.3 3.7 20 5.7 4.4 1.4 1.8 82 .00 .00 .00 .00 1.4 4.2 3.8 4.0 14 5.4 4.2 1.4 .32 .63 .00 .00 .00 .00 1.0 1.5 2.7 3.4 4.4 13 5.2 4.3 1.4 .32 .63 .00 .00 .00 .00 .00 1.0 1.0 1.0 1.0 1.0													
14 4.2 3.8 4.0 14 5.4 4.2 1.4 .32 .63 .00 .00 .00 .00 15 2.7 3.4 4.4 13 5.2 4.3 1.4 .32 .63 .00 .00 .00 .00 .00 16 2.7 3.4 4.4 13 5.2 4.3 1.4 .32 .46 .00 .00 .00 .00 .00 16 2.0 3.4 4.4 12 5.0 4.4 12 5.0 4.4 12 .32 .46 .32 .00 .00 .00 .00 17 1.8 3.4 6.5 11 5.1 4.6 1.0 .46 .32 .00 .00 .00 .00 18 1.6 3.4 6.1 9.8 5.5 4.7 1.0 6.3 .04 .00 .00 .00 .00 19 1.4 3.3 6.1 8.3 5.0 4.1 1.0 1.0 18 .32 .00 .00 .00 .00 19 1.4 3.3 6.1 8.3 5.0 4.1 1.0 1.0 18 .32 .00 .00 .00 .00 .00 19 1.4 3.3 6.1 7.9 5.1 3.7 .84 32 .04 .00 .00 .00 .00 .00 22 3.1 6.1 7.9 5.1 3.7 .84 32 .04 .00 .00 .00 .00 .00 22 1.8 3.4 5.7 7.8 4.1 3.5 .57 32 .00 .00 .00 .00 .00 .00 22 1.8 3.4 5.7 7.8 4.1 3.5 .57 .32 .00 .00 .00 .00 .00 .32 3.1 4.4 8.4 5.4 8.3 4.8 4.4 4.4 4.5 3.2 .00 .00 .00 .00 .00 .96 .24 1.1 7.0 5.4 8.1 4.6 3.6 4.2 1.8 .00 1.3 .00 1.0 25 .95 6.5 5.4 6.9 4.6 3.4 5.7 .18 .00 1.3 .00 1.0 25 .95 6.5 5.4 6.9 4.6 3.4 .57 .18 .00 1.7 .00 1.0 28 .82 12 5.0 6.0 4.3 3.2 3.2 3.8 8.0 0.1 3. 00 1.0 1.0 28 .82 8.2 9.8 4.7 5.7 4.0 2.6 32 8.8 .00 1.3 .00 1.1 29 .82 8.3 4.7 5.7 4.0 2.6 32 8.8 .00 1.3 .00 1.1 3.00 1.1 29 .82 8.3 4.7 5.7 4.0 2.6 32 8.8 .00 1.3 .00 1.1 3.00													
15													
16													
17	15	2.1	3.4	4.4	13	5.2	4.3	1.4	. 32	.46	.00	.00	.00
18													
19 1.4 3.3 6.1 8.3 5.0 4.1 1.0 1.8 .32 .00 .00 .00 .00 20 2.2 3.1 6.1 7.9 5.1 3.7 .84 .32 .04 .00 .00 .00 .00 .00 .00 .00 .00 .00													
20				6.1	9.8	5.5	4.7	1.0	.63	. 04	.00		
21	19	1.4	3.3	6.1	8.3	5.0	4.1	1.0	.18	. 32	.00	.00	.00
22	20	2.2	3.1	6.1	7.9	5.1	3.7	.84	.32	. 04	.00	.00	.00
22	21	2.6	2.9	6.1	7.9	4.0	3.8	.74	. 32	. 00	.00	.00	.00
23	22	1.8										.00	
24 1.1 7.0 5.4 8.1 4.6 3.6 .42 .18 .00 1.3 .00 1.0 25 .95 6.5 5.4 6.9 4.6 3.4 .57 .18 .00 1.7 .00 1.0 1.0 25 .95 6.5 5.4 6.9 4.6 3.4 .57 .18 .00 1.7 .00 1.0 1.0 2 .02 .02 .04 .01 .01 .004 .002 .000 .00 .00 .00 .00 .00 .00 .00 .													
25													
27													
27	26	02	7.2	5 4	6.5	1. 6	2.5	1.7	10	00	1.5	00	1 0
28													
29													
30													
31													
TOTAL 116.97 189.04 155.5 411.4 143.2 132.3 42.21 21.89 94.18 9.95 .82 8.48 MEAN 3.77 6.30 5.02 13.3 4.94 4.27 1.41 .71 3.14 .32 .026 .28 MAX 35 19 6.7 82 6.1 7.9 3.7 8.8 60 1.7 .46 1.1 MIN .04 .82 3.7 3.7 2.9 2.5 .21 .04 .00 .00 .00 .00 .00 .00 .00 IN01 .02 .02 .04 .01 .01 .004 .002 .009 .001 .000 .001 IN01 .02 .02 .04 .02 .01 .00 .00 .00 .01 .00 .00								. 21					
MEAN 3.77 6.30 5.02 13.3 4.94 4.27 1.41 .71 3.14 .32 .026 .28 MAX 35 19 6.7 82 6.1 7.9 3.7 8.8 60 1.7 .46 1.1 MIN .04 .82 3.7 3.7 2.9 2.5 .21 .04 .00 .00 .00 .00 .00 .00 .00 .00 .00	31	.82		4.7	5.0		2.8		.82		. 63	.00	
MAX 35 19 6.7 82 6.1 7.9 3.7 8.8 60 1.7 .46 1.1 MIN .04 .82 3.7 3.7 2.9 2.5 .21 .04 .00 .00 .00 .00 .00 .00 .00 IN01 .02 .02 .04 .01 .01 .004 .002 .009 .001 .000 .001 IN01 .02 .02 .04 .02 .01 .00 .00 .01 .00 .00 .00			189.04	155.5	411.4	143.2	132.3	42.21	21.89	94.18	9.95	.82	8.48
MAX 35 19 6.7 82 6.1 7.9 3.7 8.8 60 1.7 .46 1.1 MIN .04 .82 3.7 3.7 2.9 2.5 .21 .04 .00 .00 .00 .00 .00 .00 .00 .00 .01 .01	MEAN	3.77	6.30	5.02	13.3	4.94	4.27	1.41	.71	3.14	. 32	. 026	. 28
MIN	MAX	35											
CFSM .01 .02 .02 .04 .01 .01 .004 .002 .009 .001 .000 .001 IN01 .02 .02 .04 .02 .01 .00 .00 .01 .00 .00													
IN01 .02 .02 .04 .02 .01 .00 .00 .01 .00 .00 .00													
10-11 LJL J/J JVO 010 204 202 04 43 10/ 20 1.0 1/													
	AC-F1	232	3/3	300	010	204	202	04	43	107	20	1.0	17

CAL YR 1983 TOTAL 14026.93 MEAN 38.4 MAX 1540 MIN .04 CFSM .11 IN 1.51 AC-FT 27820 WTR YR 1984 TOTAL 1325.94 MEAN 3.62 MAX 82 MIN .00 CFSM .01 IN .14 AC-FT 2630

132

COLORADO RIVER BASIN

08152900 PEDERNALES RIVER NEAR FREDERICKSBURG, TX

LOCATION.--Lat 30°13'13", long 98°52'10", Gillespie County, Hydrologic Unit 12090206, on left bank at downstream side of bridge on U.S. Highway 87, 2.0 mi upstream from Mueseback Creek, 3.8 mi south of Fredericksburg, and 88.7 mi upstream from mouth.

DRAINAGE AREA. -- 369 mi2.

PERIOD OF RECORD .-- July 1979 to current year.

GAGE .-- Water-stage recorder. Datum of gage is 1,564.96 ft National Geodetic Vertical Datum of 1929.

REMARKS .-- Records good. No known regulation or diversions above station. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE. -- 5 years, 31.8 ft3/s (23,040 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 13,400 ft /s June 4, 1981 (gage height, 23.23 ft); no flow July 13-18, 1984.

EXTREMES OUTSIDE PERIOD OF RECORD.--The flood of Aug. 2, 1978, which is the highest since 1907, reached a stage of 41.6 ft (discharge not determined). The highest known discharge was 64,000 ft³/s June 1, 1979 (gage height, 34.4 ft, from floodmark), from rating curve extended above a discharge measurement of 42,300 ft³/s June 1, 1979.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 134 ft³/s Jan. 9 at 0400 hours (gage height, 5.04 ft), no other peak above base of 1,500 ft³/s; no flow July 13-18.

	DISCHARGE,	IN CUBIC	FEET PER		, WATER YEAR AN VALUES	COTOBER	1983 то	SEPTEMBER	1984		
DAY OC	CT NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2. 2 2. 3 2. 4 2. 5 2.	6 4.5 6 4.5 6 4.9	7.7 7.7 7.7 7.2 7.7	6.6 7.7 7.7 8.8 8.8	8.5 8.8 8.7 8.2 7.7	8.3 8.8 8.2 8.2 8.7	5.6 6.9 7.2 6.1 6.0	4.5 4.8 4.4 3.6 3.3	4.0 2.5 2.1 2.1 2.8	2.00 1.70 1.50 1.40 1.20	.41 .41 .40 .32	.07 .04 .04 .07
	3 10.0 3 7.7 8 6.6	7.2	8.2 8.2 16.0 74.0 24.0	7.7 7.5 7.7 7.7 7.7	9.2 9.4 9.4 9.1 9.2	6.0 6.3 7.5 8.2 8.1	3.1 3.1 3.0 2.5 2.6	4.0 4.2 3.6 3.5 2.9	.67 .41 .14 .13	.27 .27 .24 .18	.16 .18 .18 .18
11 4. 12 7. 13 5. 14 3. 15 3.	8 4.9 3 4.5 9 4.5	8.2 8.2 8.2	16.0 15.0 13.0 12.0 11.0	7.7 8.0 8.2 8.2 7.7	10.0 10.0 11.0 11.0	6.7 6.6 6.6 5.9 4.9	2.6 2.2 1.7 1.4 1.4	2.7 2.8 2.6 2.3 2.0	.10 .10 .00 .00	.18 .21 .46 .61	.18 .13 .13 .10
16 3. 17 3. 18 3. 19 3. 20 12.	2 5.0 2 5.4 2 5.4	7.2	11.0 11.0 11.0 9.4 9.3	7.2 7.2 7.5 9.0 8.8	12.0 13.0 12.0 13.0 12.0	5.4 5.5 5.7 6.0 5.5	1.2 1.4 3.1 7.0 6.0	1.6 1.9 2.0 2.0	.00 .00 .00 .32 3.00	.38 .24 .24 .24 .20	.02 .04 .04 .04
21 17. 22 11. 23 7. 24 5. 25 4.	0 5.4 2 18.0 6 17.0	7.2 7.2 7.2 7.2 6.6	8.8 8.8 9.3 9.8 9.4	8.8 9.1 9.4 9.4	11.0 11.0 13.0 14.0 14.0	5.2 4.9 4.9 5.2 4.9	3.2 3.2 3.2 2.6 2.0	2.0 1.6 1.4 1.2 1.4	1.10 .43 .38 3.00 3.50	.14 .13 .08 .09	.26 .59 .52 .40
26 27 4. 28 4. 29 4. 30 4. 31	5 8.2 5 8.2 5 8.2 5 8.2	6.6 7.2 7.2 7.2 7.2 7.2 7.2	8.7 8.2 8.2 8.2 8.0 7.7	10.0 9.0 8.2 8.2	8.3 7.2 5.1 4.9 5.4 5.5	5.8 5.9 4.9 5.4 4.9	1.3 2.2 2.1 2.6 1.6 4.6	1.4 1.2 1.3 2.1 2.6	1.60 .85 1.80 1.30 .73 .43	.17 .18 .14 .10 .07	.55 .97 .97 1.30 1.40
TOTAL 155. MEAN 5.0 MAX 1 MIN 2. AC-FT 30	2 8.23 7 34 3 4.5		83.8 12.4 74 6.6 761	241.2 8.32 10 7.2 478		78.7 5.96 8.2 4.9 354	91.5 2.95 7.0 1.2 181	69.8 2.33 4.2 1.2 138	27.89 .90 3.5 .00 55	7.46 .24 .61 .07	9.29 .31 1.4 .02 18
	TOTAL 7513.22 TOTAL 1943.94	MEAN 20 MEAN 5		X 604 X 74			4900 3860				

COLORADO RIVER BASIN 133
08153500 PEDERNALES RIVER NEAR JOHNSON CITY, TX

LOCATION.--Lat 30°17'30", long 98°23'57", Blanco County, Hydrologic Unit 12090206, near left downstream end of bridge on U.S. Highway 281, 0.2 mi downstream from Towhead Creek, 1.1 mi northeast of Johnston City, 3.4 mi downstream from Buffalo Creek, and 48.0 mi upstream from mouth.

DRAINAGE AREA. -- 901 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- May 1939 to current year.

REVISED RECORDS. -- WSP 1632: 1953(M), 1957, 1958(M). WDR TX-81-3: Drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 1,096.70 ft National Geodetic Vertical Datum of 1929. May 4 to Sept. 13, 1939, nonrecording gage, and Sept. 14, 1939, to Sept. 10, 1952, water-stage recorder at upstream side of bridge at same datum. Sept. 11, 1952, to June 29, 1953, nonrecording gage, and June 30, 1953, to Oct. 7, 1954, water-stage recorder at site 360 ft downstream at same datum.

REMARKS.--Water-discharge records good. There are some diversions above station for irrigation. During year, the city of Fredericksburg discharges various amounts of sewage effluent into the river upstream from station. The city of Johnson City diverts various amounts of water from pool at gage and discharges various amounts of sewage effluent into the river below gage. Flow is affected at times by discharge from the flood-detention pools of four floodwater-retarding structures with a combined detention capacity of 4,580 acre-ft. These structures control runoff from 15.6 mi² in the Williamson Creek drainage basin. Gage-height telemeter at station.

AVERAGE DISCHARGE. -- 45 years (water years 1940-84), 173 ft3/s (125,300 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 441,000 ft³/s Sept. 11, 1952 (gage height, 42.5 ft, from floodmark), from rating curve extended above 116,000 ft³/s on basis of slope-area measurement of 441,000 ft³/s; no flow at times in 1951-52, 1954, 1956-57, 1963-64, 1967-68, 1971, and 1984.

Maximum stage since at least 1859, 42.5 ft Sept. 11, 1952.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood of July 1869 reached a stage of 33 ft from information by local residents.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,270 ft³/s Nov. 6 at 0200 hours (gage height, 11.11 ft), no peak above base of 4,100 ft³/s; no flow July 15 to Sept. 30.

		DISCHARGE,	IN CUBIC	FEET	PER SECOND,	WATER YEA	R OCTOBE	R 1983	TO SEPTEMBER	1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	4.7	22 23	14 16	24 31	27.00 26.00	24.00 24.00	31.0 35.0	3.70 3.70	15.00 10.00	.24	0	0
2 3 4	4.1	21 18	18 21	31 31	28.00	27.00 24.00	31.0	3.70	4.70 3.10	2.40	0	0
5	4.7	32	24	32	31.00	24.00	24.0	2.40	4.30	1.10	0	0
6 7 8 9	4.4 3.4 4.0 187.0	465 121 81 43	21 21 24 27	31 27 36 195	31.00 31.00 31.00 31.00	24.00 24.00 27.00 24.00	21.0 18.0 16.0 14.0	2.00 1.40 1.10 1.50	12.00 10.00 7.60 6.70	.92 .50 .28	0 0 0	0 0 0
10	70.0	30	27	231	31.00	24.00	12.0	1.60	7.60	.10	Ö	ő
11 12 13 14 15	46.0 49.0 41.0 27.0 23.0	26 27 27 31 27	27 27 24 24 24	128 115 88 45 40	31.00 31.00 36.00 36.00 27.00	24.00 24.00 24.00 27.00 27.00	12.0 10.0 10.0 8.8 8.8	1.60 1.60 .92 .92	7.60 6.70 5.80 5.80 5.00	.06 .03 .02 .01	0 0 0 0	0 0 0 0
16 17 18 19 20	23.0 26.0 27.0 23.0 23.0	24 24 31 31 27	27 27 31 24 18	40 40 40 35 35	33.00 35.00 31.00 32.00 30.00	27.00 27.00 27.00 15.00 24.00	7.6 7.7 9.5 8.8 8.5	.50 .44 1.80 45.00 21.00	2.80 2.00 1.60 1.40 1.10	.00 .00 .00 .00	0 0 0 0	0 0 0 0
21 22 23 24 25	22.0 25.0 30.0 33.0 29.0	24 21 12 12 12	18 21 21 21 21	35 35 35 35 35	33.00 37.00 38.00 35.00 35.00	31.00 31.00 24.00 24.00 24.00	4.3	96.00 39.00 24.00 18.00 12.00	.92 .80 .69 .59	.00 .00 .00 .00	0 0 0 0	0 0 0 0
26 27 28 29 30 31	28.0 27.0 23.0 21.0 22.0 22.0	12 12 12 12 14	27 26 23 24 25 25	35 29 27 28 25 27	17.00 .84 13.00 24.00	27.00 16.00 .38 14.00 24.00 31.00	8.5 7.7 8.2 8.2 3.3	5.00 4.70 3.80 4.10 3.70 12.00	.33 .20 .17 .20 .24	.00 .00 .00 .00 .000	0 0 0 0	0 0 0 0
TOTAL MEAN MAX MIN AC-FT	880.8 28.4 187 3.4 1750	1274 42.5 465 12 2530	718 23.2 31 14 1420	1621 52.3 231 24 3220	850.84 29.3 38 .84 1690	738.38 23.8 31 .38 1460	377.5 12.6 35 3.3 749	321.18 10.4 96 .44 637	125.44 4.18 15 .17 249	8.73 .28 2.4 .00 17	.000 .00 .00	.000 .00 .00

CAL YR 1983 TOTAL 35232.60 MEAN 96.5 MAX 10500 MIN 3.2 AC-FT 69880 WTR YR 1984 TOTAL 6915.87 MEAN 18.9 MAX 465 MIN .00 AC-FT 13720

08153500 PEDERNALES RIVER NEAR JOHNSON CITY, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: April 1948 to September 1950, October 1971 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM DIS- SOLVED (MG/L AS NA
OCT									
03 DEC	0910	4.3	596	24.0	230	32	35	35	36
27 FEB	1420	25	811	4.5	310	48	49	45	52
06	1042	31	677	10.0	260	42	42	38	40
MAR 19 APR	0944	19	734	18.5	260	41	37	41	52
30 JUN	1230	6.0	805	21.5	280	53	34	48	57
11	1120	7.5	801	26.5	270	63	30	48	65

OLIDS, UM OF ONSTI- UENTS, DIS- SOLVED
(MG/L)
330
440
360
390
430
430

08154500 LAKE TRAVIS NEAR AUSTIN. TX

LOCATION.--Lat 30°23'29", long 97°54'24", Travis County, Hydrologic Unit 12090205, in powerhouse at Mansfield Dam on Colorado River, 7.3 mi downstream from Sandy Creek, 12 mi northwest of Austin, and at mile 318.0.

DRAINAGE AREA. -38,755 mi2, approximately, of which 11,403 mi2 probably is noncontributing.

PERIOD OF RECORD.--September 1940 to current year. Prior to October 1948, published as Marshall Ford Reservoir near Austin.

REVISED RECORDS. -- WSP 1342: Drainage area. WDR TX-83-3: 1982.

GAGE.--Nonrecording gage. Datum of gage is 0.12 ft National Geodetic Vertical Datum of 1929 (levels by Bureau of Reclamation). Prior to Dec. 26, 1940, staff gages on left bank near dam, datum is NGVD, unadjusted. Dec. 26, 1940, to February 1942, mercury manometer in powerhouse, datum is NGVD, unadjusted.

REMARKS.--The lake is formed by a 7,098-foot-long concrete gravity, earth, and rockfill dam. Storage began Sept. 9, 1940, and dam was completed in early 1942. Capacity curve is based on an October 1939 survey. Capacity between gage heights 681.0 and 714.0 ft is 778,000 acre-ft and is reserved for flood control. Water is used for power development and for irrigation below Columbus. For statement regarding regulation by Soil Conservation Service floodwater-retarding structures, see station 08153500. Diversion for municipal and irrigation purposes are pumped from lake, and minor amounts of sewage effluent are discharged into the lake. Figures given herein represent total contents. Data regarding the dam and lake are given in the following table:

	(feet)	(acre-feet)
Top of dam (roadway)	750.1	
Design flood	748.9	3,223,000
Crest of spillway	714.0	1,950,000
Top of power storage	681.0	1,172,000
Lowest gated outlet (invert)	535.8	27,900

COOPERATION. -- Records of daily gage heights and capacity curve furnished by Lower Colorado River Authority.

EXTREMES (at 2400) FOR PERIOD OF RECORD.--Maximum contents, 1,770,000 acre-ft May 18, 1957 (gage height, 707.4 ft); minimum, 332,600 acre-ft Aug. 13, 14, 1951 (gage height, 614.2 ft).

EXTREMES (at 2400) FOR CURRENT YEAR.--Maximum contents, 956,300 acre-ft Oct. 1; maximum gage height, 668.67 ft Oct. 1; minimum contents, 547,800 acre-ft Sept. 30 (gage height, 637.64 ft).

Capacity table (gage height, in feet, and total contents, in acre-feet)

635.0	520,600	645.0	631,700	655.0	754.500	665.0	899,900
640.0	572,700	650.0	690.700	660.0	824.700	670.0	976.900

CONTENTS, IN ACRE-FEET, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 INSTANTANEOUS OBSERVATIONS AT 2400

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3	956300 951800 949800	925000 925600 925000	931300 930700 930900	937500 937500 937500	945000 945000 945100	938600 938600 938800	923000 920600 918800	823800 820700 816600	733100 729300 725800	671900 669900 668500	628800 626600 627600	579300 578800 578700
4	948800	925100	931300	937500	945000	939200	915700	813500	725100	666500	626200	576000
5	944000	926500	931600	937500	944800	939400	913600	81 0400	727700	665200	624300	575400
6	940300	927500	932300	936800	945700	939400	910700	806500	727900	663000	623400	572600
7	937500	927500	932400	936900	946500	939200	909700	804500	725100	659700	621400	572000
8	934600	927500	930700	940000	947100	939200	909400	802200	722800	658700	621100	573200
10	940200 938000	927900	931600	941600	946700	938200	906700	798100	720600	656700	619500	573200
10	938000	928400	931000	942800	946500	938500	904100	796200	718900	655900	618400	572000
11	936800	926100	931000	943600	946700	938600	901300	791900	717100	654000	617300	571200
12	934900	927300	929800	943700	948200	938800	898500	789600	715900	653300	616600	570500
13	933500	927600	929600	943600	949000	938800	897000	785100	714900	650300	614400	569900
14	932700	927900	928900	943700	948500	938800	896100	780800	711700	649400	611200	569400
15	931200	927300	928500	943400	949000	938600	891800	776400	708100	649400	611600	567800
16	929600	926800	927800	943400	950400	940600	887300	772600	704700	648800	609600	565400
17	929600	926700	927800	943300	951300	940300	883100	770700	702900	647600	609800	563200
18	928900	926500	927800	943400	952400	940800	879300	768000	700200	646800	607400	562700
19	928200	926700	926800	943300	952600	940500	875600	767600	701600	645200	604300	561500
20	928900	926200	926700	944700	948700	940500	868700	765400	695500	643300	601000	560800
21	927800	925900	926500	943900	947600	939400	864500	761900	695000	641600	600500	560200
22	927900	927600	926500	944000	942300	938500	860400	761800	691900	639700	599300	559300
23	927600	927600	927100	944200	940900	939200	856100	761000	689500	637100	598100	558200
24	927600	927300	928400	944700	940800	938000	851000	756900	687800	639700	596500	556200
25	927500	927000	929500	944700	940800	936400	848000	755400	686000	636400	593200	555000
26	927100	927300	934100	944500	941900	935100	843600	752200	685200	634200	591000	554300
27	927100	926800	935100	944000	940300	935700	840000	749800	681900	632400	588600	552300
28	926400	929300	935800	944500	940000	932100	836300	746800	678400	631900	586500	551300
29	926400	932100	935700	944800	939500	930900	832400	742200	676700	630200	585600	549600
30	926200	931500	936100	945000		927800	828200	739900	674800	629500	581900	547800
31	925600		937700	945100		940800		736600		628500	580100	
MAX	956300	932100	937700	945100	952600	940800	923000	823800	733100	671900	628800	579300
MIN	925600	925000	926500	936800	939500	927800	828200	736600	674800	628500	580100	547800
(†)	667.07	667.07	667.47	667.95	667.59	667.67	660.23	653.62	648.65	644.73	640.63	637.64
(‡)	-30700	+5900	+6200	+7400	-5600	+1300	-112600	-91600	-61800	-46300	-48400	-32300
					43434	2000	-0.000		76.50			5 2 5 3 5

CAL YR 1983 MAX 1128000 MIN 915700 # -22300 WTR YR 1984 MAX 956300 MIN 547800 # -408500

t Gage height, in feet, at end of month.

t Change in contents, in acre-feet.

136

COLORADO RIVER BASIN

08154510 COLORADO RIVER BELOW MANSFIELD DAM, AUSTIN, TX

LOCATION.--Lat 30°23'30", long 97°54'28", Travis County, Hydrologic Unit 12090205, at the downstreams side of Mansfield Dam, 12.9 mi northwest of the STate Capitol at Austin, and at mile 318.0.

DRAINAGE AREA.--38,755 mi^{2} , approximately, of which 11,403 mi^{2} probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1974 to current year.

GAGE .-- None. Daily discharge record is based on daily releases from Lake Travis.

REMARKS. -- Water-discharge records fair.

COOPERATION. -- All records of releases were furnished by the Lower Colorado River Authority.

AVERAGE DISCHARGE. -- 10 years 1,534 ft3/s (1,111,000 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD .-- Maximum daily discharge, 25,300 ft3/s Apr. 17-19, 1977; no flow at times.

EXTREMES FOR CURRENT YEAR. -- Maximum daily discharge, 2,930 ft3/s Feb. 20; no flow at times.

		DISCHAF	RGE, IN CU	BIC FEET	PER SECO	ND, WATER Y	YEAR OCT	OBER 1983	TO SEPTEM	BER 1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1340	378	134	.00	38	449	1130	1980	2500	2780	825	2210
2	1200	.00	228	.00	.00		1100	1810	2710 2710	2600 2340	1920 674	2160 1840
3	1150 1320	.00	.00	.00	81	.00	928 1140	1740 1800	2710	2340	2020	2360
5	1540	.00	.00	.00	166	111	1140	1800	2570	2290	1420	1870
6	1650	.00	128	321	.00		1230	1830	2260	2380	1510	2050
7	1460	.00	143	898	.00		1200 1160	1760 1720	2540 2440	2330 2130	1380 1360	1620 1720
8	1460 1310	.00	172	.00	43 184	294	1190	1840	2340	2200	1480	1510
10	1540	236	528	.00	.00		1340	2650	2200	2130	1530	1690
11	1150	849	105	.00	.00		1380	2240	2370	1980	1660	1640
12	699	.00	105	.00	.00		1230	2670	2290 2270	2210 1810	1540 1830	1810 1750
13 14	745 425	.00	38 325	.00	.00		1380 1780	2100 2050	2610	1590	1760	1760
15	554	.00	163	.00	184	.00	1780	2220	2400	1550	1330	1820
16	505	84	374	.00	.00		1900	2440	2610	1600	1500	1830
17	493	.00	122	.00	.00		1820	2430	2400 2470	1530 1480	1400 1290	1850 1710
18 19	423 535	.00	125 387	.00	.00		1700 1650	2190 2060	2560	1640	1330	1640
20	505	.00	.00	.00	2930	.00	1870	2230	2480	1560	1400	1380
21	449	.00	262	.00	1650	438	1880	2270	2350	1680	1370	1260
22	.00	344	1400	.00	2660	250	1930 1900	1630 1720	2450 2450	1490 1870	1500 1880	1500 1340
23	.00	301 236	105 294	.00	701 15	224 633	2460	1690	2610	978	1500	1450
24 25	:00	173	1450	.00	.00		1410	1740	2270	1400	2270	1540
26	.00	134	807	.00	.00		2350	2460	2570	1690	1890	1050
27	231	131	.00	604	122	692	1730	2460 2310	2660 2610	1510 2330	1860 1930	1040 921
28 29	.00	114 134	163 245	.00	.00	642 845	1730 1770	2230	2340	1520	1670	737
30	.00	123	482	.00		1420	1930	2500	2510	1380	2740	736
31	176		.00	81		1150		2720		1260	2130	
	AL 20860.00	3237.00	8285.00	2038.00	8825.00		47138	65290	74260	57538	49899 1610	47794 1593
MEA	N 673 1650	108	267 1450	65.7 898	304 2930		1571	2106 2720	2475 2710	1856 2780	2740	2360
MAX MIN	.00	.00	.00	.00	.00		2460 928	1630	2200	978	674	736
CFSI		.004	.01	.002	.01	.01	.06	.08	.09	.07	.06	.06
IN.	.03	.00	.01	.00	.01	.01	.06	.09	.10	.08	.07	.07
AC-	FT 41380	6420	16430	4040	17500	17940	93500	129500	147300	114100	98970	94800
				EAN 688 EAN 1077		2440 MIN 2930 MIN		CFSM .03 CFSM .04	IN .34 IN .54		98200 31900	

08154510 COLORADO RIVER BELOW MANSFIELD DAM, AUSTIN, TX--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical and biochemical analyses: June 1980 to current year.

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)
OCT 28	0830	560	7.7	19.0	4.5	49	.0	200	46
DEC 14	0805	538	7.9	16.0	7.3	75	.5	180	52
FEB 21	1530	534	8.0	14.0	9.1	89	1.0	190	52
APR 16	1240	536	8.1	13.5	4.8	46	.9	200	58
JUN 27	1240	539	7.6	21.0	5.8	66	.4	200	62
AUG 16	0840	525	7.4	23.5	4.2	50	1.1	200	58
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
OCT									
28 DEC	42	22	35	1	3.6	150	40	63	.20
14 FEB	40	20	31	1	3.3	130	39	61	.30
21 APR	42	21	31	1	3.8	140	39	56	.30
16 JUN	43	22	32	1	3.8	140	38	59	.30
27 AUG	46	21	30	.9	3.2	140	37	57	.30
16	43	22	33	1	3.8	140	38	59	.30
DA'	(MG	CA, SUM CON: VED TUE: /L D		EN, GE RITE NO2+ CAL TOT G/L (MG	AL TOT	N, GE NIA ORGA AL TOT /L (MG	N, MONIA NIC ORGAN AL TOTA /L (MG/	AM- A + PHO NIC PHOR AL TOT 'L (MG	US, AL /L
OCT 28		7.4	300 <.	020	.10 .	040	.46 .	.50 .	090
		6.4	280 <.	.010		020	<.	.20 .	010
		7.6	280 <.	010	.20 .	030	.37	.40 .	030
APR 16		6.2	290 <.	010 <	10 .	010	.39	.40 <.	010
		5.2	280 <.	010	.10 .	020	.58 .	.60 <.	010
AUG 16		4.6	290 <.	010	10 .	060	.24	30 <.	010

08154700 BULL CREEK AT LOOP 360 NEAR AUSTIN, TX

LOCATION.--Lat 30°22'19", long 97°47'04", Travis County, Hydrlogic Unit 12090205, on right bank at downstream side of bridge at Loop 360, 1.0 mi upstream from West Fork Bull Creek and Farm Road 2222, and 7.1 mi northwest of the State Capitol Building in Austin.

DRAINAGE AREA. -- 22.3 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--April 1976 to July 1978 (operated as a flood-hydrograph partial station only), July 1978 to current year.

GAGE.--Water-stage recorder, concrete control, and crest-stage gage. Datum of gage is 534.08 ft National Geodetic Vertical Datum of 1929 (levels from city of Austin bench mark).

REMARKS.--Water-discharge records good. No known regulation or diversion above station. There are two recording rain gages in the watershed. This station is part of a hydrologic research project to study the rainfall-runoff relationship for the Austin urban-rural areas.

AVERAGE DISCHARGE. -- 6 years, 8.30 ft 3/s (5.05 in/yr), 6,010 acre-ft/yr.

EXTREMES FOR PERIOF OF RECORD.--Maximum discharge, 13,700 ft³/s May 13, 1982 (gage height, 11.96 ft); no flow for several days in 1984.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 176 ft 3 /s Aug. 12 at 1400 hours (gage height, 3.68 ft) no peak above base of 200 ft 3 /s; no flow for several days.

		DISCHARGE,	IN CUB	IC FEET		ND, WATER MEAN VALUE	YEAR OCTOBE	ER 1983 TO	SEPTEMB	ER 1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.3 1.2 1.1 1.2 1.2	1.8 1.8 1.8 1.8	2.7 2.7 15 5.5 4.8	2.1 2.0 2.0 2.0 2.0	2.4 2.4 2.4 2.4 2.4	2.2 2.2 6.5	2.7 2.7 2.6 2.4 2.1	.38 .38 .43 .42 .34	.16 .13 .13 .28 .78	.02 .02 .01 .00	.25 .25 .25 .24 .21	.00 .06 .52 .07
6 7 8 9 10	1.2 1.0 1.0 20 8.3	6.5 5.0 3.8 3.3 2.8	4.2 4.4 4.1 4.1 4.1	2.0 2.0 5.1 14 5.6	2.2 2.2 2.2 2.7 2.7	5.0 4.4 3.8	2.0 2.0 2.0 1.8 1.6	.34 .34 .29 .25	6.1 1.5 .66 .46 .43	.00 .00 .00	.17 .13 .10 .08 .04	.01 .00 .01 .04
11 12 13 14 15	4.5 3.7 3.0 2.7 2.6	2.4 2.4 2.4 2.4 2.2	3.8 3.5 3.4 3.0 3.0	4.8 4.6 4.1 4.1 3.8	2.7 4.2 3.4 3.4	6.0 4.6 4.4	1.6 1.5 1.3 1.2	.25 .25 .24 .21	.37 3.1 1.8 .74 .43	.00 .00 .00	.04 2.2 .25 .18	.06 .06 .06 .04
16 17 18 19 20	2.2 2.2 4.6 4.6 6.8	2.2 2.2 2.2 2.2 2.2	2.8 2.7 2.4 2.4 2.4	3.7 3.7 3.5 3.1 3.0	2.8 2.2 2.6 2.5 2.4	3.7 3.7 4.0	.92 .92 .92 .92 .92	.24 .26 .86 .73 .63	.40 .37 .25 .16 .15	.00 .00 .01 .00	.06 .06 .04 .04	.03 .02 .02 .02 .02
21 22 23 24 25	4.6 3.3 2.8 2.5 2.4	2.0 2.1 3.8 2.9 2.3	2.4 2.4 2.4 2.4 2.4	3.0 3.0 3.0 3.0 3.0	2.4 2.3 2.2 2.2 2.2	2.9 4.2 3.9	.80 .52 .54 .53	.49 .38 .29 .29	.12 .09 .09 .09	.00 .00 .00 4.6 1.2	.03 .03 .02 .02 .04	.05 .07 .04 .04
26 27 28 29 30 31	2.0 2.0 2.0 2.0 1.9	2.6 5.2 3.8 3.1 3.2	2.4 2.3 2.3 2.4 2.2 2.0	3.0 3.0 2.3 2.4 2.4 2.4	4.6 3.1 2.5 2.2	2.7	.49 .52 .43 .45	.24 .23 .16 .12 .14	.06 .04 .08 .11 .03	.43 .33 .28 .27 .29	.00 .00 .00 .00	.04 .04 .04 .04
TOTAL MEAN MAX MIN CFSM IN. AC-FT	101.7 3.28 20 1.0 .15 .17 202	92.1 3.07 9.9 1.8 .14 .15	106.6 3.44 15 2.0 .15 .18 211	107.7 3.47 14 2.0 .16 .18 214	77.3 2.67 4.6 2.2 .12 .13 153	122.6 3.95 13 2.2 .18 .20 243	38.30 1.28 2.7 .43 .06 .06 76	10.08 .33 .86 .12 .02 .02	19.19 .64 6.1 .03 .03 .03	7.72 .25 4.6 .00 .01 .01	4.87 .16 2.2 .00 .007 .01 9.7	1.60 .053 .52 .00 .002 .00
CAL YR WTR YR			MEAN MEAN		MAX 78 MAX 20	MIN .62 MIN .00	CFSM .31 CFSM .08	IN 4.24 IN 1.15	AC-FT AC-FT	5040 1370		

08154700 BULL CREEK AT LOOP 360 NEAR AUSTIN, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD..--Chemical, biochemical, and pesticide analyses: April 1978 to current year. Radiochemical analyses: October 1979 to September 1980.

DATE	TIME	STREAM FLOW, INSTAN TANEOU (CFS)	CON- DUCT S ANCE	C PH - (STAND ARD	ATURE	COBALT	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, DAY (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
FEB 27	0927	2.4	7	53 8.	2 10.0) <1	4.6	9.6	86	1.2	180	520
APR 16	1105	.9		42 3.			2.8	8.1	88	1.6	160	240
JUL 24	1345	16		36 8.			60	9.5	116	3.9	K40000	18000
AUG 21	0830	.0:					3.4	6.0	72	2.6	K180	K180
DATE	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR BONATE (MG/L CACO3	DIS- SOLV (MG/	DIS- ED SOLVE L (MG/L	DIS- D SOLVED (MG/L	SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)
FEB 27	290	91	0 78	23	50	1	2.0	200	89	72	.20	5.2
APR 16	260	7		23	34	.9	2.0	190	66	52	.20	5.9
JUL 24	250	100	0 70	19	82	2	4.9	150	140	93	.30	9.9
AUG 21	340	150	0 85	31	89	2	4.3	191	190	100	.20	11
DAT	TUEN DI SOI	STI- AT NTS, DEC IS- SI LVED PER	105 G. C, S US- NDED PI	VOLA- TILE, NI SUS- T ENDED (GEN, C TRATE NIT OTAL TO MG/L (N		EN, GI HNO3 AMMO TAL TOT G/L (MO	EN, GI ONIA ORGA FAL TO: G/L (MG	FRO- GEN, EN, MONI ANIC ORGA FAL TOT G/L (MG N) AS	A + PHO NIC PHOR AL TOT /L (MG	US, ORGA CAL TOT	NIC AL /L
FEB		440		,			. 10	0.50	15	20 /	010	2 6
27. APR		440	8	4				.050	.15			2.6
16. JUL		370	<2	<2				.110	.19			1.9
24. AUG 21.		510 630	97 12	39 9	.58	.020 (.010 <		.060	.74			9.7 4.8
21.		050	12					020	•40		020	4.0
		1	DATE	TIME (DIS- DI OLVED SOI UG/L (U	VED SOL	IS- DIS VED SOI G/L (UC	JM, COPI S- DIS LVED SOI G/L (UC	S- DI	S- VED /L		
			JL 24	1345	<1	63	<1	<10	2	88		
		At 2	JG ! 1	0830	2	76	<1	<10	<1	8		
			DATE	LEAD, DIS- SOLVE (UG/L AS PB	(UG/L	MERCURY DIS- SOLVED (UG/L	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	ZINC, DIS- SOLVED (UG/L AS ZN)			
			JUL 24.	. <	1 13	<.1	<1	<1	7			
			21.		4 33	<.1	<1	<1	4			
DATE	TIME	AME- TRYNE TOTAL	ATRA- ZINE, TOTAI (UG/I	AZINE TOTAL	METHO- MYL TOTAL (UG/L)	TONE	PROME- TRYNE TOTAL (UG/L)	PRO- PAZINE TOTAL (UG/L)	PROPHAM TOTAL (UG/L)	SEVIN, TOTAL (UG/L)	SIMA- ZINE TOTAL (UG/L)	SIME- TRYNE TOTAL (UG/L)
JUL 24	1345	<.10	<.1	0 <.10	0 <2.0	<.1	<.1	<.10	<2.0	<2.0	<.10	<.1

08154900 LAKE AUSTIN AT AUSTIN, TX

LOCATION.--Lat 30°18'53", long 97°47'10", Travis County, Hydrologic Unit 12090205, at city of Austin Waterplant No. 2 and 1.5 mi upstream from Tom Miller Dam on the Colorado River at Austin.

DRAINAGE AREA. -- 38,846 mi', of which 11,403 mi' probably is noncontributing.

PERIOD OF RECORD. -- Chemical, biochemical, and pesticide analyses: October 1978 to current year.

301739097471601 LAKE AUSTIN SITE AR
WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
MAR							
06	1030	1.00	565	8.2	12.5	10.1	95
06	1032	10.0	565	8.2	12.5	10.1	95
06 AUG	1034	23.0	565	8.1	12.5	10.0	94
17	0950	1.00	538	8.0	27.5	6.8	87
17	0952	10.0	538	8.0	27.0	6.7	85
17	0954	18.0	538	7.8	26.0	4.7	59

301739097471201 LAKE AUSTIN SITE AC WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DA	TE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	COLOR (PLAT- INUM- COBALT UNITS)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)
MAR 06		1000	1.00	565	8.2	12.5	1.10	<1	2.5	10.1	95	.6	K18
		1002	10.0	565	8.2	12.5		1		10.0	94		
		1004	20.0	565	8.2	12.5				10.0	94		
		1006	30.0	565	8.2	12.5				10.1	95		
		1008	40.0	565	8.2	12.5				9.9	94		
	• • •	1010	52.0	565	8.1	12.5		<1	2.3	9.8	93	1.7	
AUG		0915	1.00	538	8.0	27.0	2.10	4	.60	6.8	86	.6	46
		0917	10.0	538	8.0	27.0	2.10	4	.00	6.8	86	.0	
		0919	20.0	538	7.8	26.0		- 11	22	5.0	62		
		0921	30.0	538	7.7	25.5	-	W 198 . 24		4.7	58		
		0923	40.0	538	7.7	25.5				4.3	53		
		0925	46.0	538	7.7	25.5		30	27	4.1	51	1.6	
DA	ΓE	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
MAR													
		45	210	55	48	23	32	1	3.8	160	42	59	.30
06													
								-					
AUG	• • •		210	55	48	23	32		3.8	160	42	59	.30
		K4	200	51	44	22	32	1	3.8	150	32	59	.30
													- 15
	• • •												
	• • •		200	7.0			21		2 6	150	26		
17	• • •		200	48	43	22	31		3.9	150	36	60	.20

LAKE AUSTIN AT AUSTIN, TX--Continued

301739097471201 LAKE AUSTIN SITE AC--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	DI SO (M A	LVED G/L	SOL	OF STI- NTS,	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	SU: PEN	LA- LE,	NITRI GEN NITRI TOTA (MG/) AS N	TE NO	GEN, 02+NO3 COTAL (MG/L (S N)	AMI TO	ITRO- GEN, MONIA DTAL MG/L S N)	ORG TO (M	TRO- GEN, GANIC OTAL IG/L S N)	NITR GEN,A MONIA ORGAN TOTA (MG/ AS N	M- + IC P L L	PHOS- HORUS, TOTAL (MG/L AS P)	ORC TC (N	RBON, GANIC OTAL MG/L G C)		S- VED
MAR				0.4.0						0.12		12.5					242				
06		6.8		310	9		<2	<.0	10	<.10		.020		.18		20	.010		2.6		<1
06								<.0		<.10		.030		.17		20	.020				
06										-:									-		
06		6.8		310	7		<2	<.0		<.10		.020		.18		20	.010		2.8		<1
AUG																					
17		5.5		290	3		2	<.0		<.10 <.10		.020		.28		30 40	<.010 <.010		2.8		1
17										1.10		.030									
17								<.0		<.10		.030		.37		40	<.010				
17		5.6		290	52		15	<.0	10	<.10		.040		.36		40	<.010		3.1		1
DA*	TE	BARIU DIS- SOLVI (UG, AS I	ED 'L	CADMI DIS SOLV (UG/ AS C	UM MIU - DIS ED SOI L (UC		COPPE DIS- SOLV (UG/ AS (ED S	IRON, DIS- SOLVED (UG/L AS FE)	SOI (UC	AD, IS- LVED G/L PB)	MAN NES DI SOL (UG AS	E, S- VED /L	MERCI SOL' (UG AS	URY 1 S- VED /L	SELE- NIUM, DIS- SOLVE (UG/L AS SE	D SOI	VER, IS- LVED G/L AG)	ZIN DI SOL (UG AS	S- VED /L	
MAR																					
			80		<1	30		<1	49		<1		8		<.1	<		<1		<3	
									90				10			į.		==			
06																-	-				
AUG			81		<1	20		4	59		<1		11	- 3	<.1	<	1	<1		8	
17			74	- 0	<1	<10		2	4		4		1		<.1	<	1	<1		<3	
	• • •								10				<10			-					
17	• • •								10				<10			-		==			
17																-					
17	• • •		74		<1	<10		1	<3		<1		21		<.1	<	1	<1		<3	
				DAT		ME	SAM- PLIN DEPT (FEE	G AN	ME- RYNE DTAL	ATR ZIN TOI (UG	IE,	CYAN- AZINI TOTA (UG/	E L	METH MYI TOTA (UG)	AL :	PROME- TONE FOTAL (UG/L)					
				MAR 06. 06. AUG		00	1. 52.		<.10 <.10		.10		.10		2.0	<.·					
				17.		15	1.		<.10 <.10		.10		.10		2.0	<.·					
					DATE	PRO TRY TOT	ME- NE AL		PR	OPHAM OTAL UG/L)	SE	VIN, OTAL G/L)	SI	MA- INE TAL G/L)	SIME- TRYNI TOTAL (UG/I	3					
					MAR 06 06 AUG		<.1 <.1	<.1 <.1		<2.0 <2.0		2.0		<.10 <.10	<.						
					17		<.1 <.1	<.1 <.1		<2.0 <2.0		2.0		<.10 <.10	<.						

301739097470901 LAKE AUSTIN SITE AL

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
MAR							
06	1040	1.00	565	8.2	12.5	10.1	95
06	1042	10.0	565	8.2	12.5	10.1	95
06	1044	19.0	565	8.2	12.5	10.2	96
AUG							
17	0945	1.00	538	8.0	27.5	6.6	84
17	0947	10.0	538	8.0	27.0	6.4	81
17	0948	16.0	538	7.9	26.5	5.4	68

LAKE AUSTIN AT AUSTIN, TX--Continued

302043097472401 LAKE AUSTIN SITE BC

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	TI	MĒ	SAM PLI DEP (FE	- NG TH	SPE- CIFIC CON- DUCT- ANCE UMHOS	P (ST A	AND- RD	TEMP ATU	RE		R- ICY OXY ICHI I	GEN, DIS- DLVED MG/L)	OXYGE DIS SOLV (PER CEN SATU ATIO	ED T	SILIO DIS SOL' (MG AS SIO:	VED /L
MAR																
06	11	00	1	.00	56	51	8.2	. 1	3.5	1	.10	10.1		98		
06	11	02	10	.0	56	1	8.2	1	3.5			10.0		97		
06	11	04	20	.0	56	51	8.2	1	3.5			10.0		97		
06	11	06	29	.0	56	1	8.2	1	3.0			10.0		96		
AUG																
17	10	05	1	.00	53	36	8.1	2	8.0	2	.60	7.2		93		5.4
17	10	07	10	.0	53	16	8.0	2	7.5			6.7		86		
17	10	09	20	.0	54	1	7.8	2	6.0			4.9		61		
17	10	11	27	.0	54	1	7.7	2	6.0			4.4		55		
	DATE	NITE TO	TAL G/L	NITR GEN NO2+N TOTA (MG/ AS N	03 A L L	NITRO- GEN, MMONIA TOTAL (MG/L AS N)	ORG TO (M	TRO- EN, ANIC TAL IG/L N)	GEN MON: ORGA TO:	ANIC TAL	PHOS- PHORUS, TOTAL (MG/L AS P)	SO (U	ON, IS- LVED G/L FE)	MAN NES DI SOL (UG AS	E, S- VED /L	
MA	AR)6	,	.010	,	10	000		20		20	.010		40		<10	
	6	١.	.010	<.		.020		.28		.30	.010					
	06															
	06	<.	010	<.		<.010				.20	.010		40		<10	
	7	<.	.010	<.	10	.030		.37		.40	<.010)	5		<1	
1	7															
	7															
1	7	<.	010	<.	10	<.010				.40	.010)	<10		<10	

301926097502201 LAKE AUSTIN SITE CC

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	COLOR (PLAT- INUM- COBALT UNITS)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)
MAR												
06	1130	1.00	535	8.1	13.0	2.70	<1	1.4	9.7	93	.4	K10
06	1132	10.0	535	8.1	13.0				9.7	93		
06	1134	20.0	535	8.1	13.0				9.7	93		
06	1136	28.0	535	8.1	13.0		<1	1.4	9.6	92	.3	
AUG			30		146							
17	1030	1.00	540	8.0	26.5	2.60	5	.50	6.2	78	.7	60
17	1032	10.0	539	7.9	26.0				5.7	71		
17	1034	20.0	539	7.8	25.5			/	4.8	59		
17	1036	30.0	539	7.8	25.5		6	12	4.5	56	.6	
DATE	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
MAR												
06	23	200	48	43	22	32	1	3.7	150	37	58	.30
06												
06												
06 AUG		200	51	44	22	31	1	3.7	150	37	59	.30
17	K9	200	55	44	23	32	1	3.7	150	36	59	.30
17												
17												
17		200	48	43	22	32	1	3.7	150	38	59	. 30

LAKE AUSTIN AT AUSTIN, TX--Continued

301926097502201 LAKE AUSTIN SITE CC--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	DI SO (M	ICA, S- LVED G/L S	SOLII SUM (CONST TUENT DIS SOLV (MG)	OF TI- TS, S- VED	SOLIDS RESIDU AT 105 DEG. C SUS- PENDED (MG/L	E SOI	LIDS, DLA- ILE, US- NDED MG/L)	NIT TO (M	TRO- GEN, PRITE OTAL IG/L N)	NO2	TRO- GEN, 2+NO3 OTAL MG/L G N)	AMN TO	ITRO- GEN, MONIA DTAL MG/L S N)	ORG TO	TRO- EN, ANIC TAL G/L N)	GEN MON ORGA TO (Mo	TRO- , AM- IA + ANIC TAL G/L N)	PHO TO (M	OS- RUS, TAL IG/L P)	ORG TO (M	BON, ANIC TAL G/L C)	SOI (UC	ENIC IS- LVED G/L AS)
MAR				000															010				
06		6.9	4	290		4	<2		.010		<.10 <.10		.020		.18		.20		.010		2.5		<1
06		6.9	2	290		4	<2		.010		<.10		.020		.18		.20		.010		2.4		<1
AUG 17		5.2	,	290		6	3	,	.010		/ 10		020		.17		.20	,	.010		2.7		<1
17		3.2	4			-		,			<.10		.030		.17		.20	,	.010		2.1		
17						-			.010		<.10		.030		.27		.30		.010				
17		5.3	2	290	4	0	14	<	.010		<.10		.030		.27		.30	<	.010		2.9		<1
. DA	TE	BARIU DIS- SOLVE (UG/ AS E	ED L	CADMI DIS SOLV (UG/ AS C	UM M - D ED S L (HRO- IUM, IS- OLVED UG/L S CR)	(UG	VED	IROI DI SOL' (UG AS	S- VED /L	LEA DI SOL (UG AS	S- VED /L	MAN NES DI SOL (UG AS	E, S- VED /L	MERC DI SOL (UG AS	S- VED /L	SEL NIU DI SOL (UG AS	M, S- VED /L	SOL (UG	S- VED	SOI (UC	S- VED	
MAR																							
06			73		<1	50		<1		<3		<1		2		<.1		<1		<1		8	
										20				<10									
			74		<1	<10		<1		<3		<1		2		<.1		<1		<1		4	
AUG			75		<1	<10		2		7		8		5		<.1		<1		<1		<3	
						110																	
										<10				<10									
17	• • • •		75		<1	<10		1		<3		<1		7		<.1		<1		<1		12	
				DAT		TIME	SAM PLI DEP (FE	NG TH	AME- TRYNI TOTAL		ATR ZIN TOT (UG	E, AL	CYAN AZIN TOTA (UG/	E L	MET MY TOT (UG	L AL	TOT.	NE					
				MAR 06. 06. AUG		1130 1136		.00		.10		.10		.10		2.0		<.1 <.1					
				17.		1030 1036		.00		.10		.10		.10		2.0		<.1 <.1					
					DATE	TR	ROME- RYNE OTAL IG/L)	PRO PAZ TOT (UG	INE AL	TO	PHAM TAL G/L)	7	VIN, COTAL IG/L)	Z TO	MA- INE TAL G/L)	SIN TRY TOT (UC	NE						
					MAR 06 05 AUG		<.1 <.1		<.10 <.10		<2.0 <2.0		(2.0		<.10 <.10		<.1 <.1						
					17 17		<.1 <.1		<.10 <.10		<2.0 <2.0		2.0		<.10 <.10		<.1 <.1						

LAKE AUSTIN AT AUSTIN, TX--Continued

302021097540001 LAKE AUSTIN SITE DC WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
MAR								
06	1210	1.00	530	8.1	13.5	3.1	9.5	92
06	1212	10.0	530	8.1	13.0		9.5	91
06	1214	14.0	530	8.1	13.0		9.3	89
AUG								
17	1100	1.00	540	7.9	25.5	3.7	4.8	59
17	1102	10.0	540	7.8	25.5		4.5	56
17	1104	17.0	540	7.8	25.5		4.2	52
DATE	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
MAR								
06	<.010	<.10	.010		<.20	.010	30	20
06								
06	<.010	<.10	.030	.17	.20	.010	30	10
AUG			20.00				12	
17	<.010	<.10	.030	.27	.30	<.010	10	<10
17	/ 010	/ 10	050					7.0
17	<.010	<.10	.050	.25	.30	<.010	20	40

302314097544901 LAKE AUSTIN SITE EC

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS- PAR- ENCY (SECCHI DISK) (M)	COLOR (PLAT- INUM- COBALT UNITS)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)
MAR												
06	1230	1.00	528	8.3	11.0	2.40	<1	1.4	11.0	101	.8	K6
06 AUG	1232	8.00	526	8.3	11.0		<1	3.6	10.5	96	1.7	
17	1130	1.00	540	7.6	25.0	2.10	4	.90	2.8	34	1.3	51
17	1134	7.00	540	7.6	24.5		4	.90	2.4	29	.9	
DATE	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
MAR												
06	34	190	52	42	21	31	1	3.7	140	36	59	.30
06 AUG		200	56	42	22	32	1	3.6	140	36	58	.30
17	<1	200	51	44	22	33	1	3.9	150	35	60	.20
17		200	48	43	22	32	1	3.9	150	35	60	.20
2455	SILICA, DIS- SOLVED (MG/L AS	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED	SOLIDS, VOLA- TILE, SUS- PENDED	NITRO- GEN, NITRITE TOTAL (MG/L	NITRO- GEN, NO2+NO3 TOTAL (MG/L	NITRO- GEN, AMMONIA TOTAL (MG/L	NITRO- GEN, ORGANIC TOTAL (MG/L	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L	PHOS- PHORUS, TOTAL (MG/L	CARBON, ORGANIC TOTAL (MG/L	ARSENIC DIS- SOLVED (UG/L
DATE	SI02)	(MG/L)	(MG/L)	(MG/L)	AS N)	AS N)	AS N)	AS N)	AS N)	AS P)	AS C)	AS AS)
MAR												
06	6.6	280	<2	<2	.010	<.10	.020	.18	.20	.010	2.2	<1
06 AUG	6.8	280	11	<2	.010	<.10	.030	.27	.30	.020	2.8	<1
17	4.5	290	<1	<1	<.010	<.10	.060	.24	.30	<.010	2.5	<1
17	4.6	290	<1	<1	<.010	<.10	.060	.34	.40	<.010	2.7	<1

LAKE AUSTIN AT AUSTIN, TX--Continued

302314097544901 LAKE AUSTIN SITE EC--Continued

DATE	BARIUM, DIS- SOLVED (UG/L AS BA)	CADMIUM DIS - SOLVED (UG/L AS CD)	CHRO-MIUM, DIS-SOLVED (UG/L AS CR)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS - SOLVED (UG/L AS hG)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	ZINC, DIS- SOLVED (UG/L AS ZN)
MAR 06 06	71 73	<1 <1	30 30	<1 <1	8 <3	<1 <1	3 2	<.1 <.1	<1 <1	<1 <1	9
17 17	75 74	<1 <1	<10 <10	1	6 14	1 4	23 24	<.1 <.1	<1 <1	<1 <1	7 <3
		DATE	TIME	SAM- PLING DEPTH (FEET)	AME- TRYNE TOTAL	ATRA- ZINE, TOTAL (UG/L)	CYAN- AZ INE TOTAL (UG/L)	METHO- MYL TOTAL (UG/L)	PROME- TONE TOTAL (UG/L)		
		MAR 06 06 AUG	1230 1232	1.00 8.00	<.10 <.10	<.10 <.10	<.10 <.10	<2.0 <2.0	<.1 <.1		
		17	1130 1134	1.00 7.00	<.10 <.10	<.10 <.10	<.10 <.10	<2.0 <2.0	<.1 <.1		
			TF TC ATE (U	TAL TOT	INE PRO	TAL T	VIN, Z OTAL TO				
		O(6 6 G	<.1	<.10	(2.0 <	2.0	<.10 <.10	<.1 <.1		
			7 7					<.10 <.10	<.1 <.1		

08155260 BARTON CREEK NEAR CAMP CRAFT ROAD, AUSTIN, TX

LOCATION.--Lat 30°16'12", long 97°49'43", Travis County, Hydrologic Unit 12090205, on left bank about 0.5 mi south of Camp Craft Road, 1.0 mi downstream from bridge on Lost Creek Blvd., and 5 mi west of the State Capitol Building in Austin.

DRAINAGE AREA. -- 109 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- September 1982 to current year.

GAGE .- - Water-stage recorder. Altitude of gage is 570 ft, from topographic map.

REMARKS.--Water-discharge records good above 10 ft3/s and poor below. There are three recording rain gages in the watershed.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 492 ft3/s June 14, 1983 (gage height, 8.57 ft); no flow at times each year.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 137 ft3/s Oct. 9 at 1815 hours (gage height, 7.14 ft), no peak above base of 1,000 ft3/s; no flow May 3 to Sept. 30.

DICCHARGE IN CURIO REEM DED CROOMS HAMED WILL COMORED 1002 MG CERTINDED 1004

		DISCHARGE,	IN CUBIC	FEET I		WATER Y		1983	TO SEPTEMBER	1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	17	18	10	4.6	5.7	4.5	2.0	.02	.00	.00	.00	.00
2	16	16	11	4.8	5.9	4.4	2.2	.01	.00	.00	.00	.00
3 4	15	16	12	4.9	5.9	4.4	2.3	.00	.00	.00	.00	.00
4	14	15	9.9	5.0	5.8	4.4	2.2	.00	.00	.00	.00	.00
5	13	26	8.7	5.1	5.7	5.1	2.1	.00	.00	.00	.00	.00
6	12	24	7.8	4.9	5.9	4.6	1.8	.00	.00	.00	.00	.00
7	11	34	7.3	4.9	5.7	4.6	1.5	.00	.00	.00	.00	.00
8	11	26	7.1	5.1	5.8	4.6	1.5	.00	.00	.00	.00	.00
9	79	22	7.0	8.1	5.9	4.7	1.4	.00	.00	.00	.00	.00
10	103	19	6.7	6.7	6.2	4.6	1.3	.00	.00	.00	.00	.00
11	63	18	6.1	6.0	6.1	4.7	1.2	.00	.00	.00	.00	.00
12	93	17	5.9	6.1	6.3	5.7	1.0	.00	.00	.00	.00	.00
13 14	77 50	17	5.8	6.1	6.2	5.2	.98	.00	.00	.00	.00	.00
15		16 15	5.7	5.8	6.0	4.9	.88	.00	.00	.00	.00	.00
	44	15	5.5	5.7	6.0	4.8	.79	.00	.00	.00	.00	.00
16	40	14	5.4	5.5	5.8	4.8	.72	.00	.00	.00	.00	.00
17	37	14	5.5	5.6	5.6	4.6	.61	.00	.00	.00	.00	.00
18	35	13	5.5	5.5	5.8	4.3	.53	.00	.00	.00	.00	.00
19 20	34	13	5.2	5.5	5.5	4.7	.42	.00	.00	.00	.00	.00
20	46	12	5.2	5.4	5.5	4.3	.33	.00	.00	.00	.00	.00
21	45	12	5.2	5.4	5.4	3.8	.28	.00	.00	.00	.00	.00
22	37	12	5.2	5.5	5.3	3.3	.21	.00	.00	.00	.00	.00
23	32	13	5.2	5.8	5.2	3.8	.16	.00	.00	.00	.00	.00
24	29	12	4.9	5.9	5.2	4.6	.14	.00	.00	.00	.00	.00
25	27	11	4.8	6.0	4.9	4.9	.11	.00	.00	.00	.00	.00
26	24	11	4.9	6.0	5.1	3.3	.10	.00	.00	.00	.00	.00
27	23	12	4.9	6.0	4.9	2.4	.08	.00	.00	.00	.00	.00
28 29	21	12	4.8	5.9	4.9	2.3	.06	.00	.00	.00	.00	.00
29	20	11	4.6	6.0	4.6	2.1	.05	.00	.00	.00	.00	.00
30	20	11	4.6	5.9		2.9	.04	.00	.00	.00	.00	.00
31	19		4.6	5.7		2.2		.00		.00	.00	
TOTAL	1107			175.4	162.8	129.5	26.99	.03	.00	.00	.00	.00
MEAN	35.7	16.1	6.35	5.66	5.61	4.18	.90	.001	.000	.000	.000	.000
MAX	103	34	12	8.1	6.3	5.7	2.3	.02	.00	.00	.00	.00
MIN	11	11	4.6	4.6	4.6	2.1	.04	.00	.00	.00	.00	.00
CFSM	.33	.15	.06	.05	.05	.04	.008	.000	.000	.000	.000	.000
IN.	.38	.16	.07	.06	.06	.04	.01	.00	.00	.00	.00	.00
AC-FT	2200	956	391	348	323	257	54	.06	.00	.00	.00	.00
CAL YR 1				30.3	MAX 235	MIN .1			3.77 AC-FT			
WTR YR 1	984 TOTAL	2280.7	2 MEAN	6.23	MAX 103	MIN .0	00 CFSM .06	i IN	.78 AC-FT	4520		

08155260 BARTON CREEK NEAR CAMP CRAFT ROAD NEAR AUSTIN, TX--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: February 1983 to current year.

DATE	TIME T	TREAM- FLOW, NSTAN- ANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)		INUM- COBALT	BID- ITY S	YGEN, (DIS- OLVED S	DIS- DE SOLVED E PER- C CENT I SATUR- 5	MAND, F SIO- F CHEM- O CAL, U DAY (C	ECAL, .7 F M-MF (OLS./	STREP- FOCOCCI FECAL, KF AGAR (COLS. PER
FEB	1016											
27 APR	1158	5.0	438	8.2	14.0	<1	2.6	9.9	97	1.1	K12	21
16	1145	1.7	427	8.0	19.0	10	4.0	11.6	127	2.1	57	K4
DATE	HARD- NESS (MG/L AS CACO3)	(MG/	G, CALCI AR- DIS- TE SOLV 'L (MG/	JED SOL'L (MG	UM, SODIUM S- DIS- VED SOLVED /L (MG/L	SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	LINITY FIELD	SULFATE DIS- SOLVED (MG/L AS SO4)	DIS- SOLVED (MG/L	FLUO- RIDE, DIS- SOLVE (MG/I AS F)	ED -
FEB 27 APR	210	0	26 51	19	10	•3	.80	180	30	19	•2	20
16	200	0	38 48	19	11	. 4	1.3	160	28	18	.2	20
DATE	SILICA DIS- SOLVE (MG/L AS SIO2)	CONST	OF RESIDENCE AT 10 PENDE	OUE SOLI OUE SO	A- GEN, E, NITRIT - TOTAL ED (MG/L	GEN, E NO2+NO3 TOTAL (MG/L	GEN,	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	MONIA +	PHOS-	CARBON ORGANI TOTAL (MG/L AS C)	ić - -
FEB 27 APR	5.6	5 2	40	12	<2 <.01	0 <.10	<.010		•20	.010	1.	. 9
16	7.4	2	30	6	<2 <.01	0 <.10	.080	.22	.30	.010	2.	1

08155300 BARTON CREEK AT LOOP 360, AUSTIN, TX

LOCATION.--Lat 30°14'40", long 97°48'07", Travis County, Hydrologic Unit 12090205, on Loop 360, 0.9 mi west of the intersection of Ben White and Lamar Boulevards, and 4.3 mi southwest of the State Capitol Building in Austin.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--June 1975 to January 1977 (periodic gage heights and discharge measurements only), February 1977 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 510.32 ft National Geodetic Vertical Datum of 1929 (State Department of Highways and Public Transportation bench mark).

REMARKS.--Water-discharge records fair except those below 5 $\rm ft^3/s$, which are poor. No known regulation or diversions. There are three recording rain gages located in the watershed.

AVERAGE DISCHARGE. -- 7 years, 29.4 ft3/s (3.44 in/yr), 21,300 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 18,100 ft³/s May 25, 1981 (gage height, 15.03 ft); no flow for many days each year.

EXTREMES OUTSIDE PERIOD OF RECORD.—The flood of May 28, 1929, was probably the highest since that date (discharge $39,400~{
m ft}^3/{
m s}$), based on a slope-area measurement of peak flow at a site about 2 mi upstream.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 83 ft3/s Oct. 9 at 1945 hours (gage height, 3.74 ft), no peak above base of 1,000 ft3/s; no flow most of year.

		DISCHARGE,	IN CUBI	C FEET		, WATER YEAR AN VALUES	OCTOBER	1983 TO) SEPTEMBER	1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
2	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
3	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
4	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
5	.00	14	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
6	.00	2.4	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
7	.00	8.7	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
8	.00	.93	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
9	27	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
10	49	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
11	31	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
12	46	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
13	36	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
14	27	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
15	22	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
16	18	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
17	8.7	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
18	3.7	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
19	1.3	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
20	16	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
21	33	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
22	19	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
23	12	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
24	6.8	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
25	3.1	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
26	1.3	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
27	. 52	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
28	.16	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
29	.06	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
30	.00	.00	.00	.00		.00	.00	.00	.00	.00	.00	.00
31	.00		.00	.00		.00		.00		.00	.00	
TOTAL	361.64	26.03	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
MEAN	11.7	.87	.000	.000	.000		.000	.000	.000	.000	.000	.000
MAX	49	14	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
MIN	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
CFSM	.10	.008	.000	.000	.000		.000	.000	.000	.000	.000	.000
IN.	.12	.01	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
AC-FT	717	52	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00

CAL YR 1983 TOTAL 2972.37 MEAN 8.14 MAX 159 MIN .00 CFSM .07 IN .95 AC-FT 5900 WTR YR 1984 TOTAL 387.67 MEAN 1.06 MAX 49 MIN .00 CFSM .009 IN .12 AC-FT 769

08155500 BARTON SPRINGS AT AUSTIN, TX

LOCATION.--Lat 30°15'48", long 97°46'16", Travis County, Hydrologic Unit 12090205, at ground-water well (YD 58-42-903), on right bank 0.4 mi upstream from Barton Springs Road bridge over Barton Creek, 0.7 mi upstream from mouth, and 1.8 mi southwest of the State Capitol Building in Austin.

DRAINAGE AREA. -- Not applicable. Only flow from springs is published for this station.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--November 1894 to April 1917, and October 1918 to February 1978 (discharge measurements only), May 1917 to September 1918 (published as "Barton Creek at Austin, Texas"), and March 1978 to current year.

GAGE.--Water-stage recorder. Datum of gage, at ground-water well (YD 58-42-903), is 462.34 ft National Geodetic Vertical Datum of 1929. May 1917 to September 1918, nonrecording gage at site 1,000 ft downstream at different datum.

REMARKS.--Water-discharge records fair. Only flow published is springflow from the Edwards and associated limestones in the Balcones Fault Zone. This station is part of an urban hydrologic project to study the ground-water resources in the Austin urban area.

AVERAGE DISCHARGE. -- 7 years (water years 1918, 1979-84), 51.6 ft3/s (37,380 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD (DISCHARGE MEASUREMENTS ONLY).--Maximum measured discharge, 166 ft³/s May 10, 1941; minimum measured, 9.6 ft /s Mar. 29, 1956.

EXTREMES FOR PERIOD OF RECORD (1917-18 AND SINCE MARCH 1978).--Maximum daily spring discharge, 108 ft³/s June 9-11 16, 20, 21, 1979; minimum daily spring discharge, 12 ft³/s Feb. 25, 1918.

EXTREMES FOR CURRENT YEAR. -- Maximum daily spring discharge, 67 ft³/s Oct. 12, 13, 20-24; minimum daily, 24 ft³/s Sept. 14-23, 28-30.

DISCHARGE IN CURIC FEET DER SECOND. WATER VEAR OCTORER 1083 TO SEPTEMBER 1084

		DISCHARGE,	IN CUBIC	FEET	PER SECOND, MEA	WATER YEAR N VALUES	ROCTOBER	1983 TO	SEPTEMBER	1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	63	61	53	44	41	34	33	30	27	27	26	25
2	63	61	53	43	41	34	33	30	27	27	26	25 25
2 3 4 5	62	62	54	43	40	34	33	30	28	27	26	25
4	62	63	55	43	40	34	32	30	28	27	25	26
5	61	61	54	43	40	34	32	30	28	27	25	26
6	62	61	54	43	39	34	33	30	29	26	25	26
7	60	61	53	43	39	34	33	30	29	26	26	25
8	59	62	53	43	39	34	33	29	28	26	26	25
9	62	63	52	47	38	34	32	29	28	26	26	25
10	64	62	52	46	38	34	32	29	28	26	25	25
11	66	61	51	46	38	34	32	29	28	26	25	25
12	67	61	51	45	37	34	32	29	28	26	25	25
13	67	61	51	45	37	34	32	29	28	26	25	25
14	66	60	50	44	36	34	32	28	28	26	25	24
15	66	60	50	44	36	34	31	27	27	26	27	24
16	66	59	50	44	36	34	31	28	27	26	26	24
17	66	59	49	44	35	34	31	28	27	26	26	24
18	66	59	49	43	35	34	31	29	27	26	26	24
19	65	59	48	43	33	34	31	29	27	26	26	24
20	67	59	48	43	34	34	31	29	27	26	26	24
21	67	58	48	43	34	34	31	29	27	26	26	24
22	67	58	47	43	33	34	31	28	27	26	25	24
23	67	57	47	43	33	34	31	27	27	26	25	24
24	67	56	47	43	33	34	31	27	27	26	25	25
25	66	55	46	43	33	34	31	27	27	26	25	25
26	65	55	46	43	34	34	31	28	27	26	25	25
27	64	55	46	42	34	34	30	28	27	26	25	25
28	63	54	45	42	34	34	30	28	27	26	25	24
29	62	54	45	42	34	34	30	28	27	26	25	24
30	62	54	44	42		33	30	28	27	26	25	24
31	61		44	41	7	33		28		26	25	
TOTAL	1991	1771	1535	1346	1054	1052	946	888	824	811	789	740
MEAN	64.2	59.0	49.5	43.4	36.3	33.9	31.5	28.6	27.5	26.2	25.5	24.7
MAX	67	63	55	47	41	34	33	30	29	27	27	26
MIN	59	54	44	41	33	33	30	27	27	26	25	24
AC-FT	3950	3510	3040	2670	2090	2090	1880	1760	1630	1610	1560	1470

CAL YR 1983 TOTAL 23589 WTR YR 1984 TOTAL 13747 MEAN 64.6 MAX 87 MEAN 37.6 MAX 67 MIN 38 MIN 24 AC-FT 46790 MAX 67 AC-FT 27270

08155500 BARTON SPRINGS AT AUSTIN, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: December 1978 to current year. Radiochemical analyses: October 1979 to September 1980.

DATE	TIME	FL INS TAN	EAM- COW, COTAN- E	PE- IFIC ON- OUCT- NCE	(SI	ARD	TEMPI ATUI (DEG	ER- I	COLOR (PLAT- INUM- COBALT INITS)		D- Y S	YGEN, DIS- OLVED MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	CHI IC. 5	AND, F O- F EM- O AL, U DAY (C	OLI- ORM, ECAL, .7 M-MF OLS./ O ML)	STREP- TOCOCCI FECAL, KF AGAI (COLS. PER 100 ML)
тЕВ 27	1040		34	625		7.2	2 1	1.5	<1		.60	5.1	59		.2	110	130
16	1045		33	670		6.8	20	0.5	3		.60	5.1	58		.9	76	K
UG 22	1130		25	730		6.8	22	2.0	3		.60	4.0	46		1.8	37	49
DATE	AS	SS G/L	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALC DIS- SOL' (MG,	VED /L	MAGN SIU DIS- SOLV (MG/ AS Mo	M, S ED S L	SODIUM, DIS- SOLVED (MG/L AS NA)	SORP TIO RATI)- N	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	LINIT	Y SULI D DIS L SOI (MC	LVED G/L	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLU RID DI SOL (MG AS	E, S- VED /L
FEB			1, 75				,	,						.,	77.47.7		
27 APR		300	42	83		23		20		.5	1.3	2	60 3	30	34		.30
16 AUG		300	52	. 81		24		25		.6	1.4	2	50 3	35	44		.30
22		300	47	78		26		33		.9	1.8	2	55 4	15	54		•40
DATE	SILI DIS SOI (MO AS	S- LVED G/L	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	DEG. SUS-	OUE OS C,	SOLID: VOLA- TILE SUS- PENDE: (MG/I	, N	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	GEN	03 L L	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	GEN	O- GEN, , MONI IC ORGA L TOT L (MO	IA + ANIC TAL G/L	PHOS- PHORUS, TOTAL (MG/L AS P)	CARB ORGA TOT (MG AS	NIC AL /L
FEB 27	1	1	360		<2		<2	<.010	1.	4	.060		24	.30	<.010		.2
APR 16 AUG	1	1	370		<2		<2	<.010	1.	5	.080		12	.20	.050		.3
22	1	1	400		6		<1	<.010	1.	5	.010		49	.50	.010		1.0
			DATE	T	ME	ARSEN DIS SOLV (UG, AS A	S- VED /L	BARIUM DIS- SOLVED (UG/L AS BA	SOL (UG	S- VED /L	CHRO-MIUM, DIS-SOLVE (UG/L AS CR	(UG	VED SC	RON, DIS- DLVED JG/L G FE)			
			AUG 22	. 11	30		<1	6	0	<1	<10	0	<1	<3			
				DATE	s (EAD, DIS- OLVED UG/L S PB)	NES DI	S- VED	DIS- SOLVED (UG/L AS HG)	D SO (U	IS- LVED G/L	ILVER, DIS- SOLVED (UG/L AS AG)	ZINC, DIS- SOLVEI (UG/L AS ZN)				
				AUG 22		<1		3	.1		<1	<1	<3				

151 COLORADO RIVER BASIN 08156700 SHOAL CREEK AT NORTHWEST PARK, AUSTIN, TX

LOCATION.--Lat 30°20'50", long 97°44'41", Travis County, Hydrologic Unit 12090205, at Northwest Park in Austin, 400 ft upstream from Shoal Creek Boulevard bridge, 0.5 mi west of intersection of Burnet Road and Justin Lane, and 5.0 mi north of the State Capitol Building in Austin.

DRAINAGE AREA . -- 6.52 mi2.

PERIOD OF RECORD .-- March 1975 to September 1984 (discontinued).

GAGE .-- Water-stage recorder. Datum of gage is 661.34 ft National Geodetic Vertical Datum of 1929 (city of Austin bench mark).

REMARKS.--Records fair. The city of Austin diverts water into the channel above gage during summer months from a swimming pool at Northwest Park. There is some diversion into and out of the drainage area by storm sewers. This station is part of a hydrologic project to study the rainfall-runoff relationship for the Austin urgan area. There are two recording rain gages in the watershed upstream from station. Several observations of water temperture were made during the year.

AVERAGE DISCHARGE.--9 years, 3.07 ft 3/s (6.39 in/yr), 2,220 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 14,600 ft³/s May 24, 1981 (gage height, 18.00 ft), from rating curve extended above 1,100 ft³/s on basis of slope-area measurement of 14,600 ft³/s; no flow for several days each year except 1981 and 1983.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1885, occurred Apr. 22, 1915 (stage and discharge unknown). Flood on Sept. 9, 1921, was probably lower than the 1915 flood.

EXTREMES FOR CURRENT YEAR .-- Maximum discharge, 497 ft 3/s July 24 at 0800 hours (gage height, 5.06 ft), no peak above base of 750 ft3/s; no flow for several days.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 MEAN VALUES SEP DAY OCT NOV DEC JAN FEB MAR APR AUG MAY JUN JUL 4.1 . 08 .12 -24 . 02 . 00 .20 1.7 . 10 .12 .12 .17 .43 .80 .12 .00 15 .08 .28 . 07 .18 .15 3 . 75 36 .17 . 43 . 48 . 03 .00 36 4 .10 6.5 .18 .20 .43 4.6 .05 - 05 .21 . 07 .00 12 .14 5 .10 26 .12 .19 . 43 1.0 .07 . 04 8.5 . 03 .00 6 .08 .42 .10 .07 .43 .54 .07 . 05 11 .00 .00 .00 .20 .10 .43 .54 .05 . 08 .23 . 05 .12 . 00 . 00 .30 8 .20 . 04 24 .00 .10 . 05 .16 .00 . 01 65 .06 24 .86 .54 . 04 .07 . 03 .00 .53 .54 10 .24 . 05 1.1 .54 .02 .08 .13 .00 .00 .10 34 11 .21 .24 . 03 . 04 . 05 .13 . 02 .68 .48 .57 .54 .05 12 .40 .24 .12 6.9 11 .04 .06 20 .00 .23 .58 .83 10 .00 .23 .24 .00 . 06 . 07 .23 .28 . 04 .54 .48 .07 .06 .06 . 04 2.2 15 .24 .06 . 61 .25 . 21 . 05 . 04 . 02 .19 .00 16 .24 .20 .09 .20 .08 .52 . 03 . 02 .19 .00 .68 .51 14 .20 . 02 .61 .54 .17 . 08 .18 . 03 .08 .00 18 3.6 .20 .00 .61 .88 . 08 6.7 . 04 . 08 .16 .00 25.59 . 00 .00 2.6 . 04 . 22 . 08 .63 -68 - 45 - 08 20 .12 . 04 1.4 .20 .25 .08 .08 .06 .00 .68 .08 .00 21 .10 .18 . 08 .17 . 07 .23 .68 .20 .70 .67 . 06 1.8 22 . 07 .24 .15 2.9 5.7 .12 . 07 .00 .60 . 08 .17 23 .24 14 .54 . 03 .00 . 03 .27 .54 . 02 .16 6.6 24 .24 .11 .61 .10 .00 41 - 05 25 . 47 .24 .20 .15 .54 . 54 . 01 .10 .15 .08 . 04 26 .00 . 05 .24 .66 .18 7.3 .00 . 08 .15 .07 .00 27 .20 13 .15 .54 1.3 .00 .07 .14 . 04 . 00 .11 .00 .43 .00 28 .24 .06 .00 .03 .10 29 .12 1.6 . 09 . 09 .14 . 08 .00 . 05 .00 .12 .12 .13 30 .48 .12 . 04 .05 .00 .00 .00 .24 21 31 .16 . 48 ---.15 .14 . 00 ------35.90 TOTAL 110.28 39.27 65.87 12.96 42.52 43.12 79.61 3.56 1.27 2.12 1.09 6.7 1.42 1.39 2.65 MEAN 2.28 1.16 .080 2.22 MAX 26 .21 34 11 MIN . 05 .08 .00 .35 .00 . 02 . 04 .00 .00 .00 CFSM .55 .35 .20 .33 .17 .18 . 01 . 06 .22 .21 .34 .41 . 63 .25 .39 IN. .39 .38 .18 .20 . 01 . 07 . 24 AC-FT 219 131 136 78 4.8 136 158 63 26 84 86

CAL YR 1983 TOTAL 1408.04 MEAN 3.86 MAX 104 MIN .00 CFSM .59 IN 8.03 AC-FT 2790 WTR YR 1984 TOTAL 600.61 MEAN 1.64 MAX 65 MIN .00 CFSM .25 IN 3.43 AC-FT 1190

08156800 SHOAL CREEK AT 12TH STREET, AUSTIN, TX (Flood-hydrograph partial-record station)

LOCATION.--Lat 30°16'35", long 97°45'00", Travis County, Hydrologic Unit 12090205, at downstream side of bridge on 12th Street and 0.6 mi west of the State Capitol Building in Austin.

DRAINAGE AREA. -- 12.3 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--April 1975 to current year. Periodic discharge measurements only: November 1974 to current year. GAGE.--Flood-hydrograph recorder and crest-stage gage. Datum of gage is 455.33 ft National Geodetic Vertical Datum of 1929.

REMARKS.--Additional storm rainfall-runoff data for this site can be obtained from the latest report, "Hydrologic Data for Urban Studies in the Austin, Texas Metropolitan Area, 1984." Two recording rain gages are located in the watershed above this site.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 16,000 ft3/s May 24, 1981 (gage height, 23.22 ft).

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 893 ft3/s Oct. 9 at 0915 hours (gage height, 5.60 ft).

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: January 1975 to current year. Water temperatures: January 1975 to current year. Radiochemical analyses: October 1979 to September 1980.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	
NOV													
05	1555	492	180	7.6		130	900			15	400000	220000	
JAN													
08	2200	488	315							16	84000	270000	
08	2215	485	390			130	250				86000	160000	
08	2230	480	436							11	2.7		
08	2245	392	376			400	380	•			38000	150000	
08	2300	480	347	7.5				/			K14000	130000	
FEB	1017								404		0000	70.00	
28	1047	.14	660	8.4	7.5	<1	2.3	12.0	101	1.0	8000	7200	
MAR	0415	000											
12	0145	390	225					- 50		23	44000	240000	
12	0215	140	278	7.9						34	52000	290000	
12	0245	390	224		- 1					20	K120000	160000	
JUN	2020	206	0.70								210000	00000	
12	2030	396	278					14 / TA		11	310000	88000	
12	2045	604	266			200	420		Y		280000	120000	
12	2100 2115	643 678	271	7.5					-	10	K150000	81000	
12	2113		248							13			
12	2145	584 468	215 199			200	440			8.6	K200000	74000	
JUL	2143	400	199		18.75	200	440		1 55				
24	0945	385	295							15	K1100000	80000	
24	1000	805	326			800	800			13	K680000	220000	
24	1015	763	360	- 1			000	- ::				220000	
24	1030	702	313	7.6									
24	1045	604	261	7.0		1300	800			14	K720000	130000	
24	1100	539	222			1300				12	K/20000	130000	
AUG	1100	337	222		4 6 6	7.7							
12	1615	396	473	- 12							2900000	160000	
12	1630	732	324					VI I HELD				.00000	
12	1645	632	276	11	22								
12	1700	515	272		38,000							86000	
12	1715	431	285			100			1711				
12	1730	358	296			-		1			2800000	54000	
		555	2,00								_00000	34000	

08156800 SHOAL CREEK AT 12TH STREET, AUSTIN, TX--Continued

N (HARD- NESS, IONCAR- BONATE (MG/L CACO3)	CALC DIS SOL (MG AS	VED /L	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODI DIS SOLV (MG AS	ED /L	SODIUM AD- SORP- TION RATIO	S D SO: (Me	TAS- IUM, IS- LVED G/L K)	ALK LINI FIE (MG AS CAC	TY S LD /L	ULFAT DIS- SOLVE (MG/L S SO4	DIS D SOL (MG	E, - VED /L	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)
NOV	120	41	11													1.1	4.11
05 JAN	81	22	29		2.2	4	.6	.2		3.0		60	26	5	.4	.20	2.8
08													-				
08		==											_				
08																	
08 FEB	150	61	52		3.8	12		. 5	0	3.9		85	58	20		.40	3.4
28 MAR	270	110	96		7.3	30		. 8		3.8		160	97	57		.30	3.2
12	110												-				2.0
12	110	31	41		2.5	8	.2	- 4		3.0		82	35	10		.20	3.0
JUN																	
12								-					- 63	-			
12				11									-				
12	140	72	50		3.5	10		.4		3.7		68	34	13		.30	6.3
12								- 22					-				- ::
JUL												-55		-			
24													-				
24													3				- ::
24	130	60	45		3.4	11	3.7	.4	- 2	4.4		67	57	17		.40	3.4
24													-				
AUG													-		••		
12													-				
12								- ::									
12													-				
12													- 1				
DATE	SOLID SUM O CONST TUENT DIS SOLV (MG/	F RES I- AT S, DEG - SU ED PEN	IDS, IDUE 105 . C, S- DED G/L)	SOLID VOLA TILE SUS- PENDE (MG/	- G , NIT TO	TRO- EN, RATE TAL G/L N)	NITE GEN NITE TOTA (MG/ AS N	N, ITE NO AL T /L (ITRO- GEN, 2+NO3 OTAL MG/L S N)	AMMO TO:	TRO- EN, ONIA TAL G/L N)	NITR GEN ORGAN TOTA (MG/ AS N	O- G , M IC O	NITRO- EN, AM- ONIA + RGANIC TOTAL (MG/L AS N)	PHOS PHORU TOTA (MG/ AS F	S, ORO L TO L (1	RBON, GANIC DTAL MG/L G C)
NOV 05	. 1	10	922	1	80	.06	.1	140	.20		.060	5.	9	6.0	.0	80	28
JAN									70			0		0.5		•	21
08			1040		64	.64)60)40	.70		.030	5.0		2.5	1.3		34 68
08						.45	.0)50	.50		.030	5.0)	5.0	2.8	0	62
08		00	660		32	.45)50)50	.50		.030	3.		4.0 3.5	2.1		52 46
FEB																	
28 MAR	. 3	90	2		<2		<.0	010	.10	-	.140		16	.30	.0	10	3.8
12						.36	.1	140	.50		.160	4.	3	4.5	.9	00	40
12		50				.24	.0		.30		.050	7.0		7.0	2.9	0 00	57
JUN						.31	• 0	90	.40		.080	3.	,	4.0	.9	00	37
12						.43		70	.50		.020	3.		3.5	1.1		32
12			2140		72	.25		050	.30		.020	6.0)	6.0	1.5		42
12	1	60				.20	. 2	200	.40		.100	5.4	+	5.5	1.8	0	39
12			1910		89	.34		060	.40		.010	4	5	4.5	1.2		29
JUL			1310		0,	.26	• 0	040	.30	1.	.010			5.0	1.0	0	
24			3130		95	1.1		080	1.2		280	5.2		5.5	1.0		48 66
24			3130			.42		080	.50		.050	13		13	2.5		
24	. 1	80				.78	- 1	20	.90		350	9.2	2	9.5	4.0	0	44
24			2880		42	.78 .76)20)40	.80		.010	4.	3	4.5	3.1		63
AUG								77	- 00								
12						.19	2	10	.40		.020	4.		4.9	1.9	0	
12	5	22					• 2		.40		.020			4.9			==
12													-				
12						-44		060	.50		.700	5.		6.3	2.1	0 	

DATE JUN

JUN 12... JUL 24... AUG 12... 12... 12... 12...

COLORADO RIVER BASIN

08156800 SHOAL CREEK AT 12TH STREET, AUSTIN, TX--Continued

	DAT	TIM	ARSEN DIS SOLV E (UG/ AS A	- DIS- ED SOLVE L (UG/	DIS D SOLV L (UG/	- DIS ED SOL L (UG	M, COPPE - DIS- VED SOLV /L (UG/	DIS- VED SOLVEI L (UG/L			
	NOV										
	05. MAR	155	5	1	19	<1	<10	3 46	5		
	12. 12.			2 <1 3		<1 <1	20 20	14 100 5 100			
	JUN 12.	204	5	2 <1	00	<1	<10	5 180)		
	JUL 24.	094	5	2 <1	00	<1	<10	6 180)		
		DATE	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	ZINC, DIS- SOLVED (UG/L AS ZN)			
		NOV									
		05 MAR	<1	11	<.1	1	<1	4			
		12	2	<10	<.1	<1	<1	150			
		12 JUN	1	<10	<.1	<1	<1	10			
		12	10	50	<.1	<1	<1	20			
		JUL 24	12	30	<.1	<1	<1	20			
TIME	AME- TRYNE TOTAL	ATRA- ZINE, TOTAL (UG/L)	CYAN- AZINE TOTAL (UG/L)	METHO- MYL TOTAL (UG/L)	PROME- TONE TOTAL (UG/L)	PROME TRYNE TOTAL (UG/L	PAZ INE TOTAL	PROPHAM TOTAL (UG/L)	SEVIN, TOTAL (UG/L)	SIMA- ZINE TOTAL (UG/L)	SIME- TRYNE TOTAL (UG/L)
2100	<.10	<.10	<.10	-	.9	۷.	1 <.10			<.10	<.1
1015	<.10	<.10	<.10		.2	<.	1 <.10			.80	<.1
1615				<2.0			25 5 2	<2.0	<2.0		
1630	<.10	<.10	<.10		.3	<.	1 <.10			<.10	<.1
1645	/ 10	/ 10	/ 10	<2.0		,-			<2.0	/ 10	,
1700 1715	<.10	<.10	<.10	<2.0	.2	<.			<2.0	<.10	<.1
1730	<.10	<.10	<.10	12.0	.2	<.			12.0	<.10	<.1

155

08157900 TOWN LAKE AT AUSTIN, TX

LOCATION.--Lat 30°14'56", long 97°43'03", Travis County, Hydrologic Unit 12090205, at Longhorn Dam on the Colorado River at Austin, 1.5 mi downstream from Interstate Highway 35, and 2.3 mi southeast of the State Capitol in Austin. DRAINAGE AREA. -- 39,003 mi², approximately, of which 11,403 mi² probably is noncontributing.

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: February 1975 to current year.

301559097424801 TOWN LAKE AR WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
MAR							
07	1020	1.00	610	8.2	16.5	9.0	92
07	1022	10.0	610	8.2	16.5	9.1	93
07	1024	20.0	610	8.1	16.5	9.1	93
07	1026	30.0	610	7.9	15.0	6.2	62
AUG							
20	0945	1.00	540	8.1	28.5	7.2	94
20	0947	10.0	540	8.1	28.0	7.9	103
20	0949	20.0	540	7.8	27.5	5.9	76
20	0951	25.0	540	7.7	27.0	4.2	54

301500097424801 TOWN LAKE AC WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS - PAR - ENCY (SECCHI DISK) (M)	COLOR (PLAT- INUM- COBALT UNITS)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
MAR 07	0940	1.00	610	8.1	17.0	1.80	<1	1.4	9.0	93
07 07	0942 0944 0946	10.0 20.0 30.0	610 610 610	8.1 8.1 7.9	17.0 16.0 15.5	=	<1	35	9.2 8.5 7.8	95 86 78
20 20 20 20	0900 0902 0904 0906	1.00 10.0 20.0 25.0	539 540 540 540	8.0 7.9 7.8 7.7	29.0 28.0 27.5 27.5	2.70	3 4	1.3	6.9 6.5 6.0 5.0	91 85 77 64
DATE	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)
MAR										
07	1.0	45	23	250	41	64	22	29	.8	2.7
07										
07	.4			250	36	62	22	29	.8	2.7
AUG 20	1.4	K62	K5	200	51	44	22	32	1	3.6
20	1.4	1.02		200		44		32		3.0
20										
20	1.2			200	51	44	22	32	1	3.8
DATE	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)
MAR										
07	210	41	50	.30	6.8	340	6	<2	.39	.010
07									.39	.010
07										
07 AUG	210	39	49	.30	6.9	340	86	27	. 38	.020
20	150	41	58	.30	5.7	300	4	1.		<.010
20			4-							<.010
20										77
20	150	38	58	.30	6.1	290	16	1		<.010

TOWN LAKE AT AUSTIN, TX--Continued

301500097424801 TOWN LAKE AC--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	NO 2 TO	ITRO- GEN, 2+NO3 OTAL 4G/L S N)	AMM TO (M	TRO- EN, ONIA TAL G/L N)	ORGA TOT (MC	TRO- EN, ANIC TAL G/L N)	GEN MON ORG TO (N	TRO- I, AM- IIA + ANIC TAL IG/L N)	NI C TC (N	ITRO- GEN, OTAL 4G/L G N)	PHO TO (N	OS- PRUS, OTAL IG/L P)	ORG TO (M	BON, ANIC TAL G/L C)	SC (L	ENIC DIS- DLVED IG/L AS)	SOL (U	SIUM, S- VED G/L BA)	SO: (UC	MIUM IS - LVED G/L CD)
MAR																				
07		.40		.020		.18		.20		.60		.010		1.8		1		69		<1
07		.40		.100		.20		.30		.70		. 020								- 11
07 07 AUG		.40		.100		.20		.30		.70		.050		1.8		1		69		<1
20		<.10		.020		.18		.20			<	.010		2.8		1		74		<1
20		<.10		. 010				.20			<	. 010								
20																		==		
20		<.10		.060		.14		.20			<	. 010		2.6		1		75		<1
DAT	ГE	CHRI MIU DIS SOL (UG AS	M, - VED /L	COPP DIS SOL (UG AS	VED /L	IRO DI SOL (UG AS	S- VED /L	SO (U	AD, IS- LVED G/L PB)	NES DI SOI (UC	NGA- SE, IS- LVED G/L MN)	(UG	S- VED	SEL NIU DIS SOL (UG AS	M, S- VED /L	S01	/ER, IS- LVED G/L AG)	(UG		
MAR																				
			30		4		7		<1		2		<.1		<1		<1		6	
							50				<10									
07																				
07			30		2		6		<1		7		<.1		<1		<1		8	
AUG							- 19-												-	
			<10		3		<3		9		<1		<.1		<1		<1		8	
20.							20				<10									
20.			<10		1		5		1		10		<.1		<1		<1		7	
20.	• • •		(10				3		1		10		(.1		(1		(1		/	
		DA	ГЕ	TI	ME	SAM PLI DEP (FE	NG	AME TRYI	NE	ZIN	RA- NE, CAL G/L)	CYAN AZ IN TOTA (UG/	E L	METI MY: TOTA (UG)	L AL	TOT	ME- NE AL G/L)			
		MAR																		
		07		09			.00		(.10 (.10		.10		.10		2.0		<.1 <.1			
		20		09			.00		(.10 (.10		.10		.10		2.0		<.1 <.1			
			DA	ATE	TRY		PRO PAZ TOT (UG	INE AL	TO	PHAM TAL G/L)	T	VIN, OTAL G/L)	TO'	MA- INE FAL G/L)	TR TO	ME- YNE TAL G/L)				
			07	R 7		<.1 <.1		<.10 <.10		<2.0 <2.0		2.0		<.10 <.10		<.1 <.1				
				G 0		<.1 <.1		<.10 <.10		<2.0 <2.0		2.0		<.10 <.10		<.1 <.1				

301503097424701 TOWN LAKE AL

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
MAR							
07	1006	1.00	610	8.1	17.0	9.0	93
07	1008	10.0	610	8.1	17.0	9.1	94
07	1010	20.0	610	8.1	16.5	8.4	86
AUG					1		
20	0935	1.00	540	7.9	28.5	6.9	91
20	0937	10.0	540	7.9	28.0	6.5	85
20	0939	18.0	540	7.9	28.0	6.2	81

TOWN LAKE AT AUSTIN, TX--Continued

301500097440801 TOWN LAKE BR

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	T IME	SAM- PLING DEPTH (FEET)	S PE - CIFIC CON- DUCT - ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS - SOLVED (PER- CENT SATUR- ATION)
MAR							
07	1045	1.00	605	8.1	16.0	9.0	91
07	1 047	10.0	605	8.1	16.0	8.8	89
07	1049	14.0	602	8.0	15.5	7.8	78
AUG							
20	1015	1.00	544	7.9	28.0	6.5	85
20	1017	13.0	544	7.9	27.5	6.2	80

301504097440901 TOWN LAKE BC

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	TIME	SAM- PLING DEPTH (FEET)	S PE - CIFIC CON- DUCT - ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
MAR							
07	1035	1.00	606	8.1	16.5	9.1	93
07	1037	10.0	604	8.1	16.0	8.9	90
07	1039	20.0	602	8.1	16.0	8.8	89
07	1041	30.0	616	7.7	15.0	4.1	41
AUG							
20	1010	1.00	544	8.0	28.0	6.6	86
20	1011	10.0	544	8.0	28.0	6.6	86
20	1012	20.0	544	7.9	27.5	6.2	80
20	1013	27.0	544	7.9	27.5	6.0	77

301544097445201 TOWN LAKE CR

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	TIME	SAM- PLING DEPTH (FEET)	S PE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS - SOLVED (PEK- CENT SATUR- ATION)
MAR							
07	1106	1.00	605	7.8	15.5	8.2	82
07	1108	10.0	605	7.8	15.5	8.1	81
AUG							
20	1038	1.00	550	7.8	27.5	5.9	76
20	1040	8.00	550	7.8	27.5	5.7	73

301546097445101 TOWN LAKE CC

DATE	T IME	SAM- PLING DEPTH (FEET)	S PE - CIFIC CON- DUCT - ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)
MAR							
07	1100	1.00	610	7.8	16.0	8.7	88
07	1102	10.0	610	7.8	16.0	8.8	89
07	1104	14.0	610	7.8	16.0	8.7	88
AUG				1000		7.77	100
20	1030	1.00	546	7.9	29.0	6.5	86
20	1032	10.0	546	7.8	27.5	5.9	76
20	1034	17.0	546	7.8	27.5	5.7	73

TOWN LAKE AT AUSTIN, TX--Continued

301556097452301 TOWN LAKE DR

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	TIME	SAM- PLING DEPTH (FEET)	S PE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS - SOLVED (PER - CENT SATUR - ATION)
MAR							
07	1135	1.00	622	7.7	16.0	9.3	95
07	1137	10.0	622	7.7	15.5	9.2	93
AUG							
20	1100	1.00	540	7.9	27.5	5.8	75
20	1102	10.0	540	7.9	27.5	5.8	75
20	1104	15.0	540	7.9	27.5	5.8	75

301558097452201 TOWN LAKE DC

		WAIER QU	DALIII DAI	A, WAIER	IEAR OCIO	DEK 1963	IO SEFIER	IDEK 1964		
DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS - PAR- ENCY (SECCHI DISK) (M)	COLOR (PLAT- INUM- COBALT UNITS)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS - SOLVED (PER- CENT SATUR- AT ION)
MAR										
07	1115 1117	1.00	625 622	7.6 7.8	16.5 15.5	2.10	<1	1.1	8.9 9.8	91 99
07	1119	20.0	613	7.8	15.5		<1	.90	8.8	88
AUG	,	20.0	013	7.0	13.3		ν.	.,,	0.0	00
20	1045	1.00	540	7.9	27.5	2.60	5	1.6	6.0	77
20	1047	10.0	540	7.9	27.5				5.9	76
20	1049	21.0	548	7.8	27.5		4	1.6	5.8	75
DATE	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS - SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS - SIUM, DIS - SOLVED (MG/L AS K)
MAR										
07	1.0	260	74	280	52	75	23	24	.6	2.1
07										
07	.1.0			270	47	69	23	25	.7	2.2
AUG 20	1.5	80	K19	200	48	43	22	33	1	3.8
20				200						5.0
20	1.4			200	55	44	23	34	1	3.7
DATE	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)
MAR										
07	230	35	42	.30	7.3	350	<2	<2	.78	.020
07		26					5		.69	.010
07 AUG	220	36	44	.30	7.8	340	2	<2	.49	.010
20	150	37	57	.30	5.8	290	6	3		<.010
20	150									<.010
20	150	41	59	.30	5.9	300	5	4		<.010
DA	NIT GE NO2+ TOT (MG	N, GE NO3 AMMO AL TOT /L (MG	NIA ORGA AL TOT C/L (MG	RO- GEN, N, MONI NIC ORGA AL TOT /L (MG	A + NIT NIC GE CAL TOT G/L (MG	AL TOT	US, ORGA AL TOT I/L (MG	NIC DI AL SOL	S- DI VED SOL /L (UG	E, S- VED /L
MAR										
07		.80 .	050	<	.20	1	010	1.0	17	6
			010		.20		010		80	10
07 AUG	• • • •	.50 .	040	.26	.30	.80	010	1.4	5	13
		.10 <.	010		.20	(.	010	2.7	4	5
20	<			. 38	.40		010			<10
				.18	.20		010	2.4	7	7

TOWN LAKE AT AUSTIN, TX--Continued

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TRANS - PAR- ENCY (SECCHI DISK) (M)	COLOR (PLAT- INUM- COBALT UNITS)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO - CHEM- ICAL, DAY (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)
MAR 07 07	1200 1202	1.00 13.0	584 575	7.6 7.8	15.5 15.0	4.0	<1 <1	.90 1.1	9.6 10.1	97 1 00	.1	K6
20 20 20	1130 1132 1134	1.00 10.0 16.0	539 539 539	7.9 7.8 7.8	27.0 27.0 27.0	2.30	4 20	2.0 1.8	5.8 5.9 5.8	74 75 74	1.5	39
DATE	STREP- TOCOCCI FECAL, KF AGAR (COIS. PER 100 ML)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS - SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS - SIUM, DIS - SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- R1DE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
MAR 07 07	62	240 230	47 42	57 55	23 23	26 28	.8	2.8 3.1	190 190	37 39	47 51	.20
AUG 20	80	200	46	42	22	32	1	3.8	150	38	59	.30
20		200	51	44	22	32	1	3.6	150	37	57	.30
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)
MAR 07 07	7.6 7.0	31 0 32 0	<2 3	<2 <2	<.010 <.010	.40 .30	.050	.15	.20	.60 .50	.010	1.6 2.0
20 20 20	5.5	290 290	5 3	- 2	<.010 <.010 <.010	<.10 <.10 <.10	.010 .020 .030	.19 .18 .67	.20 .20 .70	==	<.010 <.010 <.010	2.8 2.8
DATE	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	CADMIUM DIS - SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MEKCURY DIS- SOLVED (UG/L AS HG)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	ZINC, DIS- SOLVED (UG/L AS ZN)
MAR 07 07	<1 <1	73 73	<1 <1	40 30	<1 <1	10	<1 <1	6 6	<.1 <.1	<1 <1	<1 <1	9 8
AUG 20	1	74	<1	<10	<1	3	5	2	<.1	<1	<1	5
20	1	74	<1	<10	<1	<10 <3	2	<10 1	<.1	<1	<1	6

TOWN LAKE AT AUSTIN, TX--Continued

301712097470701 TOWN LAKE SITE EC--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	TIME	SAM- PLING DEPTH (FEET)	AME - TRYNE TOTAL	ATRA- ZINE, TOTAL (UG/L)	CYAN- AZ INE TOTAL (UG/L)	METHO- MYL TOTAL (UG/L)	PROME- TONE TOTAL (UG/L)
MAD							
MAR							
07	1200	1.00	<.10	<.10	<.10	<2.0	<.1
07	1202	13.0	<.10	<.10	<.10	<2.0	<.1
AUG		7					
20	1130	1.00	<.10	<.10	<.10	<2.0	<.1
20	1134	16.0	<.10	<.10	<.10	<2.0	₹.1

DATE	PROME- TRYNE TOTAL (UG/L)	PRO- PAZINE TOTAL (UG/L)	PROPHAM TOTAL (UG/L)	SEVIN, TOTAL (UG/L)	SIMA- ZINE TOTAL (UG/L)	SIME- TRYNE TOTAL (UG/L)
MAR						
07	<.1	<.10	<2.0	<2.0	<.10	<.1
07	<.1	<.10	<2.0	<2.0	<.10	<.1
AUG						
20	<.1	<.10	<2.0	<2.0	<.10	<.1
20	<.1	<.10	<2.0	<2.0	<.10	<.1

301601097454001 TOWN LAKE FC

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS - SOLVED (PER- CENT SATUR- ATION)
MAR							
07	1145	1.00	644	7.6	19.0	15.0	162
AUG							
20	1115	1.00	739	7.3	25.5	6.5	81

08158000 COLORADO RIVER AT AUSTIN, TX (National stream-quality accounting network)

LOCATION.--Lat 30°14'40", long 97°41'39", Travis County, Hydrologic Unit 12090205, on right bank 1,000 ft upstream from upstream bridge on U.S. Highway 183 in Austin, 1.4 mi downstream from Longhorn Dam, and at mile 290.3.

DRAINAGE AREA. -39,009 mi2, approximately, of which 11,403 mi2 probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--February 1898 to current year. Records of daily discharge for Dec. 13-26, 1914, and Feb. 9-17, 1915, publi-shed in WSP 408, have been found unreliable and should not be used.

REVISED RECORDS.--WSP 508: 1915(m). WSP 528: 1900(M), 1918(m). WSP 548: 1901-16. WSP 1342: Drainage area. WSP 1562: 1908, 1929(M), 1936.

GAGE.--Water-stage recorder. Datum of gage is 402.27 ft National Geodetic Vertical Datum of 1929. Prior to June 19, 1939, all records collected at or near Congress Avenue Bridge 3.9 mi upstream at datum 19.6 ft higher; prior to June 18, 1915, nonrecording gages, recording gages thereafter; June 20, 1939, to Oct. 16, 1963, at site 1,000 ft downstream from present site at datum 5.0 ft higher.

REMARKS.--Water-discharge records fair. Since 1937, at least 10 percent of drainage area regulated by reservoirs. Flow largely regulated by Lake Travis (station 08154500). The city of Austin diverts water for municipal use upstream from station and returns sewage effluent downstream. Many other diversions above Lake Buchanan for irrigation, municipal supplies, and oilfield operations. Gage-height telemeter at station.

AVERAGE DISCHARGE.--38 years (water years 1899-1936) unregulated, 2,711 ft³/s (1,964,000 acre-ft/yr); 48 years (water years 1937-84) regulated, 1,965 ft³/s (1,424,000 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 481,000 ft³/s June 15, 1935 (gage height, 50 ft, present site and datum, from floodmark); minimum daily, 2.4 ft³/s Feb. 28, 1984.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1833, 51 ft July 7, 1869, present site and datum (adjusted to present site on basis of record for flood of June 15, 1935), determined from information concerning stage at former site furnished by Dean T. U. Taylor.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 4,700 ft³/s Oct. 11 at 2300 hours (gage height, 7.62 ft); maximum gage height, 8.50 ft July 20 at 2330 hours; minimum daily discharge, 2.4 ft³/s Feb. 28.

DISCHARGE IN CURIC PERT DED CECOND MATER VEAR OCTORER 1002 TO CERTEMBER 1004

		DISCHARGE,	IN CUBIC	FEET		WATER N VALUE	YEAR OCTOBER ES	1983 1	O SEPTEMBER	1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1260 1220 1240 1280 1530	139 127 137 152 331	191 44 232 79 78	107 125 96 104 100	73.0 85.0 81.0 78.0 73.0	75 82 76 123 119	1500 1450 1200 1350 1410	1910 1840 1770 1780 1670	2540 2720 2700 2740 2980	2150 2130 1980 1790 1850	286 1390 398 1550 1200	2060 2030 2080 2030 1730
6 7 8 9	1570 1630 1460 1990 1530	774 247 155 141 94	90 159 20 192 230	95 448 234 403 110	74.0 75.0 80.0 87.0 74.0	79 85 86 85 95	1920 1470 1460 1220 1610	1810 1860 1770 1560 2320	2690 2580 2470 2300 2360	1850 1780 1640 1730 1680	1140 1130 1130 1140 1180	1700 1570 1450 1610 1360
11 12 13 14 15	1510 903 735 592 602	52 80 104 101 104	180 194 206 204 205	87 89 83 79 76	80.0 92.0 78.0 75.0 90.0	83 303 95 99	1660 1320 1480 1950 2020	2000 1900 2130 2050 2050	2300 2510 2470 2430 2480	1620 1620 1540 1150 1110	1510 1450 1390 1510 1190	1460 1590 1610 1600 1700
16 17 18 19 20	606 1090 614 604 718	91 92 105 102 85	310 221 210 207 220	2300 3670 1700 71 73	74.0 75.0 94.0 76.0 104.0	89 89 98 118 85	1740 2140 1960 1790 2050	2510 2510 2410 2280 2150	2640 2480 2520 2550 2360	1210 1140 981 1020 1060	1260 1240 1120 1080 1080	1690 1700 1610 1600 1430
21 22 23 24 25	600 141 133 129 137	801 133 269 194 249	228 1680 221 961 1450	68 82 87 75 75	83.0 83.0 596.0 57.0 5.4	315 323 430 844 856	2160 2060 2150 1950 1690	2090 1750 1680 1650 1650	2360 2330 2300 2270 2360	1340 1080 1150 1250 912	1080 1410 1520 1520 1700	1310 1340 1380 1370 1330
26 27 28 29 30 31	130 130 127 134 131 127	253 289 208 178 184	849 142 122 96 306 108	74 80 73 76 81 80	6.6 2.8 2.4 31.0	862 869 819 987 1570 1490	2380 1990 2040 2000 1890	2090 2510 2390 2320 2610 2540	2550 2380 2630 2450 2000	1250 1150 1010 997 989 897	1700 1690 1790 1940 1980 1950	1120 1140 863 739 699
TOTAL MEAN MAX MIN AC-FT	24603 794 1990 127 48800	5971 199 801 52 11840	311 1680 20	10901 352 3670 68 21620	2485.2 85.7 596 2.4 4930	11425 369 1570 75 22660	1767 2380 1200	63560 2050 2610 1560 26100	2482 2980 2000	43056 1389 2150 897 85400	41654 1344 1980 286 82620	44901 1497 2080 699 89060

CAL YR 1983 TOTAL 322767.0 MEAN 884 MAX 2590 MIN 20 AC-FT 640200 WTR YR 1984 TOTAL 385651.2 MEAN 1054 MAX 3670 MIN 2.4 AC-FT 764900

08158000 COLORADO RIVER AT AUSTIN, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: October 1947 to October 1973. Chemical and biochemical analyses: October 1973 to current year. Sediment records: October 1974 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1947 to current year. WATER TEMPERATURES: October 1947 to current year.

REMARKS.--Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and regression relationships between each chemical constituent and specific conductance. Regression equations developed for this station may be obtained from the Geological Survey District office upon request.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 795 micromhos Mar. 10, 1984; minimum daily, 243 micromhos Dec. 2, 1953.
WATER TEMPERATURES: Maximum daily, 33.0°C July 25, 1979; minimum daily, 5.0°C Jan. 3, 1984.

EXTREMES FOR CURRENT YEAR .--

SPECIFIC CONDUCTANCE: Maximum daily, 795 micromhos Mar. 10; minimum daily, 477 micromhos Nov. 4. WATER TEMPERATURES: Maximum daily, 27.0°C Aug. 25; minimum daily, 5.0°C Jan. 3.

DATE	TIM	FL INS E TAN	EAM- OW, TAN- EOUS	SPE- CIFI CON- DUCT ANCE (UMHO	C - (S	PH STAND- ARD NITS)	TEMPE ATUR (DEG	E	TUR BID ITY (NTU	- D:	GEN, IS- LVED G/L)	OXYGE DIS SOLV (PER CEN SATU ATIO	ED BIG CHIT ICA	AND,	COLI FORM FECA 0.7 UM-M (COLS 100 M	, TO L, F KF F (C	TREP COCC ECAL AGA OLS. PER 0 ML	HAIR NES	RD- SS G/L S CO3)
OCT 25	121	0	130	5	51	8.5	22	.0	1.	3	13.2	1	53	.2	2	00	8	2	210
JAN 30	161	5	80	6	06		13	.0					-5				-	_	250
FEB 21	100	0	85	6	06	7.9	16	. 5		60	8.0		83	1.4	1	60	23	0	240
JUN 26	111	5	2830	5	44	7.9	23	. 5	1.3	2	6.2		74	.4		60	5	6	200
AUG 16	142	5	1360	5	02	7.7	29	. 5	1.	9	3.8		50	1.2	2	90	2	0	190
1		HARD- NESS, NONCAR- BONATE (MG/L CACO3)	SOI (MC		MAGNE SIUN DIS- SOLVE (MG/I AS MG	1, SOI D SOI	DIUM, IS- LVED MG/L S NA)	SOD SOR TIC RAT	D- P- ON	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	LIN FI (M A	ELD G/L S	SULFATE DIS- SOLVED (MG/L AS SO4)	(MC	DE, S- LVED	FLUO- RIDE, DIS- SOLVE (MG/L AS F)	D	ILICA, DIS- SOLVED (MG/L AS SIO2)	
	CT								- 1										
	25 AN	52	50)	21		30		.9	3.1		160	38	55	-	.3	0	7.5	
	30 EB	36	62	2	22		27		.8	2.5		210	36	47	1	.3	0	6.5	
	21 UN	49	59)	22		30		.9	2.9		190	40	52	2	.3	0	5.8	
2	26	50	45	5	21	3	31	- 14	1	3.4		150	35	57	7	.3	0	5.4	
	UG 16	45	43	1	21		32		1	3.8		150	35	58	3	.3	0	5.7	
	DATE	SOLID RESID AT 18 DEG. DIS SOLV (MG/	UE SU O CO C TU ED S	OLIDS, IM OF ONSTI- JENTS, DIS- GOLVED (MG/L)	GE NO2+ DI	S- VED	NITRO- GEN, MMONIA DIS- SOLVED (MG/L AS N)	GEI MOI ORG TO	ITRO- N,AM- NIA + GANIC OTAL MG/L S N)	PHOS- PHORUS TOTAL (MG/I AS P)	P.	PHOS- HORUS, DIS- SOLVED (MG/L AS P)	PHOS- PHORUS ORTHO DIS- SOLVEI (MG/L AS P)	S, S N, S N S	SEDI- MENT, SUS- PENDED (MG/L)	SED MEN' DI: CHARC SU: PEN: (T/D	r, S- GE, S- DED	SED. SUSF SIEVE DIAM % FINE THAN .062 M	P. E 4. ER
	OCT						22.0										1		
	25 JAN		07	300	<	.10	.040		.70	.01		.040	.02		14	4	. 9		72
	30 FEB			330															
	21 JUN	3	32	330		.31	.060		.40	.03	30	.010	.05	0	3		.69		50
	26 AUG	2	90	290	<	.10	<.010		.70	.01	0	<.010	.02	20 .	6	46		6	58
	16	2	83	290	<	.10	.020		.40	.01	0	<.010	.05	0	2	7	. 3	6	67

163 COLORADO RIVER BASIN 08158000 COLORADO RIVER AT AUSTIN, TX--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	TIME	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COBALT, DIS- SOLVED (UG/L AS CO)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB)
OCT				0.0	7.					
25 FEB	1210	1	66	<.5	<1	<1	<3	2	<3	1
21 JUN	1000	8	74	.5	<1	<1	<3	4	13	2
26 AUG	1115	<1	79	<2.0	<1	<1	<3	3	<3	1
16	1425	<1	81	<1.0	<1	<1	<3	2	3	<1
		WANTON		MOLYB-		anın		STRON-	VANA-	
DATE	DIS- SOLVED (UG/L AS LI)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	DENUM, DIS- SOLVED (UG/L AS MO)	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	TIUM, DIS- SOLVED (UG/L AS SR)	DIUM, DIS- SOLVED (UG/L AS V)	ZINC, DIS- SOLVED (UG/L AS ZN)
OCT	DIS- SOLVED (UG/L AS LI)	NESE, DIS- SOLVED (UG/L AS MN)	DIS- SOLVED (UG/L AS HG)	DENUM, DIS- SOLVED (UG/L AS MO)	DIS- SOLVED (UG/L AS NI)	NIUM, DIS- SOLVED (UG/L AS SE)	DIS- SOLVED (UG/L	TIUM, DIS- SOLVED (UG/L AS SR)	DIUM, DIS- SOLVED (UG/L AS V)	DIS- SOLVED (UG/L AS ZN)
OCT 25	DIS- SOLVED (UG/L	NESE, DIS- SOLVED (UG/L	DIS- SOLVED (UG/L	DENUM, DIS- SOLVED (UG/L	DIS- SOLVED (UG/L	NIUM, DIS- SOLVED (UG/L	DIS- SOLVED (UG/L	TIUM, DIS- SOLVED (UG/L	DIUM, DIS- SOLVED (UG/L	DIS- SOLVED (UG/L
OCT 25 FEB 21	DIS- SOLVED (UG/L AS LI)	NESE, DIS- SOLVED (UG/L AS MN)	DIS- SOLVED (UG/L AS HG)	DENUM, DIS- SOLVED (UG/L AS MO)	DIS- SOLVED (UG/L AS NI)	NIUM, DIS- SOLVED (UG/L AS SE)	DIS- SOLVED (UG/L	TIUM, DIS- SOLVED (UG/L AS SR)	DIUM, DIS- SOLVED (UG/L AS V)	DIS- SOLVED (UG/L AS ZN)
OCT 25 FEB	DIS- SOLVED (UG/L AS LI)	NESE, DIS- SOLVED (UG/L AS MN)	DIS- SOLVED (UG/L AS HG)	DENUM, DIS- SOLVED (UG/L AS MO)	DIS- SOLVED (UG/L AS NI)	NIUM, DIS- SOLVED (UG/L AS SE)	DIS- SOLVED (UG/L AS AG)	TIUM, DIS- SOLVED (UG/L AS SR)	DIUM, DIS- SOLVED (UG/L AS V)	DIS- SOLVED (UG/L AS ZN)

MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1983 TO SEPTEMBER 1984

MONTH	YEAR	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
OCT.	1983	24603	577	314	20800	53	3500	38	2510	220
NOV.	1983	5971	584	318	5120	54	865	38	618	220
DEC.	1983	9635	580	315	8200	53	1380	38	989	220
JAN.	1984	10901	583	317	9330	54	1580	38	1130	220
FEB.	1984	2485.2	622	336	2260	58	391	41	276	240
MAR.	1984	11425	580	315	9720	53	1640	38	1170	220
APR.	1984	53010	538	294	42000	48	6880	35	4990	210
MAY	1984	63560	536	2 92	50200	48	8190	35	5950	210
JUNE	1984	74450	535	292	58700	48	9570	35	6960	210
JULY	1984	43056	545	297	34600	49	5680	35	4110	210
AUG.	1984	41654	551	301	33800	50	5580	36	4030	210
SEPT	1984	44901	570	310	37600	52	62 90	37	4510	220
TOTAL		385651.2	**	**	312000	**	51500	**	37300	**
WTD.A	VG.	1054	550	300	**	49	**	36	**	210

08158000 COLORADO RIVER AT AUSTIN, TX--Continued

	SPECIF	IC CONDUC	JANCE (MI	CKOMHOS/C		VALENT ME		COTOBER	1983 TO S	EPTEMBER	1984	
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	576	582	575	620	654	577	553	537	529	536	564	550
2	596	581	611	610	612	618	551	535	535	548	553	551
2 3 4	589	494	559	616	628	632	562	534	537	537	548	549
4	596	477	589	553	638	545	552	535	533	529	550	556
5	595	563	590	600	641	537	545	535	527	550	552	578
6	586	573	580	614	612	614	537	532	534	545	542	556
7	585	555	609	525	622	590	568	535	536	537	563	557
8	587	596	596	550	561	615	508	533	528	508	543	558
9	563	609	585	516	622	618	543	542	534	535	546	559
10	584	619	593	576	630	795	539	537	532	550	541	568
11	576	586	590	574	639	765	533	540	535	553	551	571
12	533	590	595	567	640	629	514	536	520	537	556	577
13	574	580	668	594	617	617	536	538	536	548	547	569
14	576	591	623	600	555	594	538	530	538	539	543	568
15	574	607	591	610	617	582	535	521	541	552	539	570
16	576	591	588	582	622	599	531	540	525	528	52.5	574
17	555	593	595	602	634	638	538	544	542	561	551	575
18	567	598	600	562	606	626	539	539	535	553	556	574
19	548	600	607	576	638	627	536	530	540	538	554	580
20	565	598	602	564	641	678	535	540	534	551	557	578
21	570	599	618	575	636	623	544	535	535	552	559	577
22	560	601	565	600	638	596	537	534	535	570	550	579
23	571	607	585	614	616	607	536	536	537	557	554	581
24	582	593	580	604	627	589	540	530	538	559	549	583
25	551	584	550	618	626	575	535	532	544	560	554	584
26	573	594	560	638	620	565	534	535	537	555	570	567
27	592	593	575	607	626	563	536	532	539	554	553	602
28	590	594	594	610	637	577	538	533	534	550	556	586
29	575	599	598	608	631	565	536	541	535	553	555	596
30	584	610	605	606		554	533	536	536	549	551	593
31	596		610	623		556		539		557	556	
MEAN	576	585	593	591	624	609	539	535	535	547	551	572

		TEM	PERATURE,	WATER (D	EG. C),	WATER YEAR	OCTOBER	1983 TO	SEPTEMBER	1984		
DAY	OCT	NOV	DEC	JAN	FEB	ONCE-DAIL MAR	Y APR	MAY	JUN	JUL	AUG	SEP
1	22.0	21.0	13.5		13.5	13.5	18.5	20.0	21.0	23.0	22.0	25.0
2	22.0	22.0	15.0		11.5	15.5	18.0	20.0	20.5	23.0	23.0	24.5
2 3	22.0	22.0	15.0	5.0	12.0	15.0	19.0	18.5	25.5	25.0	24.0	24.5
4	21.5	22.0	15.0	11.0	15.0	15.0	16.5	20.0	26.0	23.0	23.0	23.5
5	21.5	20.5	15.0	15.0	15.5	15.5	15.0	21.5	20.5	22.0	24.0	25.0
6	23.0	21.0		14.0	11.0	15.0	16.5	21.5	20.5	23.5	24.5	24.0
7	22.0	21.0	14.5		13.0	15.0	16.5	24.0	21.5	23.5	24.0	23.5
8	22.0	21.0	15.0		13.0	15.5	16.5	20.5	22.0	23.5	24.0	25.0
9	23.0	20.5	15.0	13.5	20.0	15.0	16.5	18.0	22.0	24.0	24.0	24.0
10 .	23.0	17.0	15.0	11.0	15.5	17.0	18.0	21.5	22.0	24.0	23.5	24.0
11	21.5	19.0	15.0	10.5	15.5	16.5	18.0	22.0	22.0	24.0	24.0	26.0
12	20.5	19.0	15.0	11.5	15.5	17.0	18.0	22.0	21.5	24.5	25.0	25.0
13	19.5	19.0	17.0	11.0	13.5	18.0	18.0	22.0	21.5	23.0	25.0	25.5
14	20.0	19.0	15.0		16.5	19.5	19.5	22.0	22.0	24.5	24.5	25.5
15	20.5	19.0	14.5		17.0	18.0	15.0	21.0	21.5	24.0	24.0	26.0
16	20.0	17.0	13.5	9.5	15.5	19.0	18.5	20.5	22.0	24.5		26.0
17	20.5	19.0		8.0	15.5	18.0	18.5	21.0	23.5	24.0	24.0	24.5
18	23.0	15.0		6.5	15.5	18.0	18.5	20.0	23.0	25.5		23.5
19	23.0	15.5	10.5	7.0	15.5	18.0	18.5	21.0	23.0	24.0	24.0	24.0
20	23.0	15.5	10.0	6.5	15.5	18.0	20.0	20.5	22.0		24.5	23.5
21	21.0		10.0		15.5	18.0	18.5	20.5	23.0	26.0	24.5	22.0
22	20.5	21.0	16.5		15.0	18.0	19.0	20.0	25.0	24.0	24.0	20.5
23		19.5	17.0	10.0	14.5	18.0	18.5	21.0	21.5	23.0	25.0	24.0
24	20.5	15.5		8.0	14.5	18.0	19.0	21.0	21.5	24.5	25.5	23.5
25	20.0	15.5		11.5	14.5	17.0	19.5	21.0	23.5	23.0	27.0	23.5
26		15.5		11.0	14.5	18.0		21.0	23.5	23.0	25.0	23.0
27	20.5	15.5	6.0	10.5	14.5	19.0	19.5	22.0	23.0	25.5	25.0	22.0
28	20.5	20.0	8.0		13.0	19.0	21.0	22.0	23.5	25.5	24.5	23.0
29	20.5	14.5	7.0		13.0		22.0		23.5	24.0	25.5	20.5
30	20 5	14.5	6.5	14.0		18.5	18.0	21.0	23.5	23.5	25.5	19.0
31	20.5			12.0		18.5		20.5		23.0	25.0	-
MEAN	21.5	18.5	13.0	10.5	14.5	17.0	18.0	21.0	22.5	24.0	24.5	24.0

165 08158050 BOGGY CREEK AT U.S. HIGHWAY 183, AUSTIN, TX

LOCATION.--Lat 30°15'47", long 97°40'20", Travis County, Hydrologic Unit 12090205, on U.S. Highway 183, 1.6 mi south of the intersection of Webberville Road and U.S. Highway 183, 4.1 mi east of the State Capitol Building in Austin,

DRAINAGE AREA. -- 13.1 mi2.

and 0.7 mi upstream from mouth.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--January to July 1975 (periodic discharge measurements only), August 1975 to June 1977 (operated as a flood-hydrograph partial-record station only), June 1977 to current year.

GAGE .-- Water-stage recorder and crest-stage gage. Datum of gage is 411.29 ft National Geodetic Vertical Datum of 1929 (levels from city of Austin bench mark).

MARKS.-- Water-discharge records fair. No known regulation or diversions. The station is part of a hydrologic research project to study the rainfall-runoff relationship for the Austin urban area. Station is equipped with an automatic water-quality sampler. There is a recording rain gage in the watershed. REMARKS .-- Water-discharge records fair.

AVERAGE DISCHARGE. -- 7 years (water years 1978-84), 5.94 ft3/s (6.16 in/yr) 4,300 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 6,100 ft³/s May 23, 1975 (gage height, 17.03 ft, from floodmark), from rating curve extended above 500 ft³/s on basis of slope-area measurement of peak flow; no flow at times each

EXTREMES FOR CURRENT YEAR .-- Maximum discharge, 872 ft3/s Mar. 12 at 0230 hours (gage height, 9.00 ft); no peak above base of 1,500 ft3/s; no flow for many days.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

MEAN VALUES DAY OCT NOV DEC FEB JUN JUL AUG SEP JAN APR MAY .09 .04 .01 .00 .00 . 31 . 28 -09 .00 .00 .00 .04 .47 .31 .47 .28 .09 .00 .00 .01 .00 .00 3 .00 .10 20 .34 .47 .28 .09 00 .02 .00 4.4 5.2 2.6 .00 .38 .31 .47 .09 .00 .00 .01 .00 5 .00 16 .30 . 31 .47 .01 .00 .02 .09 .00 .00 .00 .31 .00 6 .64 .26 .47 .23 .09 .00 2.6 -00 .28 .25 .13 .00 .00 .00 .47 .15 .00 . 31 .09 - 00 8 .00 .21 .51 .09 .00 .00 .09 .00 74 .19 .25 47 .60 .12 .09 .00 .07 .00 .00 .00 10 2.4 1.2 .17 . 25 .60 .11 .09 .00 .06 -00 .00 .00 11 3.4 .17 .25 .91 . 55 .11 .09 .00 .03 .00 .00 12 5.1 .17 .25 .64 66 .00 .00 .86 .09 .00 11 .15 .49 .85 .63 .04 .09 .00 . 21 .25 .39 .09 .00 .04 15 .16 .19 .25 .80 . 51 .37 .09 .00 .05 .05 .04 .00 16 .17 .23 .80 .51 .34 .09 .05 .04 .03 .01 .00 17 .08 .17 .25 .51 .34 .00 .00 .80 .09 .10 .04 .00 .74 .28 .77 18 .17 .51 .31 .09 1.7 .04 .49 .00 .00 .10 .00 .00 .16 . 58 10 .06 -09 3.9 20 2.0 .15 .09 .08 .00 .18 .14 21 . 27 .15 .28 .89 .04 .00 .00 .00 .81 -08 .04 22 .07 .28 1.5 .37 .02 .00 .00 .14 .00 .14 .00 .02 23 .05 7.9 .23 . 34 .00 6.5 .00 .00 .03 .00 .00 .22 .05 .18 .00 24 .26 .83 . 34 .00 .05 12 -00 -00 25 .05 .18 .28 . 34 .18 .00 . 56 .11 - 00 .00 .02 .00 .04 .00 26 28 .51 13 .11 .01 .00 .00 .10 .00 27 .04 8.8 .00 .28 .51 .44 .10 .00 .05 .06 .00 - 00 .04 .48 .72 .28 .05 .02 .00 .08 .00 .00 .00 29 . 04 .56 .28 .47 .28 .08 .00 .00 .00 30 .04 .54 .31 . 47 .09 .00 .00 .03 .00 .00 .00 31 .04 .31 .47 ------.09 .00 ---.01 .00 ---28.53 TOTAL. 67.86 91.50 106.88 28.14 85.81 1.89 11.99 32.43 13.55 .05 4.83 2.95 3.45 .97 .063 .39 .44 .16 MEAN 2.26 .92 2.77 1.08 .002 20 .04 66 17 MIN .00 .04 .23 .31 .08 .00 .00 .00 .00 .00 CESM .23 .17 .07 .26 .07 .21 .005 .03 .08 .03 .000 .01 IN. .08 .08 . 24 .01 .03 .00 .01 .09 . 04 AC-FT 212 170 181 57 24 .10 9.6 64

CAL YR 1983 TOTAL 2159.37 MEAN 5.92 CFSM .45 MAX 179 .00 MIN IN 6.13 AC-FT 4280 1.29 WTR YR 1984 TOTAL 473.46 MEAN MAX 74 MIN CFSM .10 AC-FT .00 IN 1.34

08158050 BOGGY CREEK AT U.S. HIGHWAY 183, AUSTIN, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical, biochemical, and pesticide analyses: January 1975 to current year. Radiochemical analyses: October 1979 to September 1980.

													4	02.00.2
DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	CON- DUCT-	PH (STAN ARI) A	MPER- TURE DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGE DIS SOLV (PER CEN SATU ATIO	- DEM ED BI - CH T IC R- 5	GEN IAND, O- IEM- CAL, DAY IG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
JAN	4327			7.1										
08	2114	315 396	34 35									48	68000	290000
08	2131 2146	348	32				100	320				40	98000	320000
08	2201	290	27	3			1						55000	270000
08	2216	236	18	4			100	180				11	4.7000	270000
08 FEB	2230	210	19	2	.7							11	47000	270000
28	0840	.44	54	3 8	.1	7.5	<1	1.5	8.2		69	.7	1200	960
MAR	00/5	507	0.1	0								28	(2000	120000
12	0245 0300	52 7 8 9 1	21 21		.8		480					43	62000 72000	130000
12	0400	389		- '			100	950	W. 7.			33	K32000	320000
APR	1050	0.0					4.5	0 7				0.6	110	7.
16 JUN	1250	.09	65	/	.0	22.0	15	2.7	11.1	1	28	2.6	110	74
06	1000	12	20	7 7	. 7	22.5	75	240	7.3		86	6.1	K140000	13000
DATE	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	DIS- SOLVE (MG/L	D SOLV (MG/	M, SO ED SO L (DIUM, IS- LVED MG/L S NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFA DIS- SOLV (MG/ AS SO	TE RI DI ED SC L (M	LO- DE, S- DLVED IG/L CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)
JAN														
08													-	1
08														
08														
08		12		-				2	71	17		7 2	20	
08 FEB	84	13	30	2.	1	6.4	.3	3.5	71	17		7.2	.30	4.4
28 MAR	250	46	84	8.	8	25	.7	2.7	200	46	3	1	.30	11
12				-										
12	78	3		2.		10	.5	3.1	75	17		9.8	.20	9.5
APR		-				-		•		1 1 1 1				-
16	240	42	72	15		47	1	4.4	200	49	6	3	.50	6.9
JUN 06	84	12	29	2.	8	8.2	.4	3.1	72	18	1	1	.20	5.6
00111	04			2.		0.2	• •	3.1	, _		4		•20	
DAT	SOL	OF RES	105 V . C, T S- S DED PE	OLA- ILE, N US- NDED	NITRO- GEN, ITRATE TOTAL (MG/L AS N)	GEN,	GEN E NO2+N TOTA	I, GE IO3 AMMO L TOT L (MG	CN, G ONIA ORG CAL TO G/L (M	TRO- G EN, M ANIC O TAL G/L	NITRO- EN, AM- ONIA + RGANIC TOTAL (MG/L AS N)	PHOS PHORU TOTA (MG,	US, ORGA AL TOT /L (MG	NIC CAL S/L
JAN														
08.					.43	.07				4.0	4.5	2.6		9
08.			E 6 9 0	266	.53	.07				4.2	4.5	2.4		0
08.			5680	366	.63				100	3.4 2.4	3.5	2.3		.9
08.			2450	254	.56					1.4	1.5	1.3		
08.	••	110					- 6							
FEB 28. MAR		330	2	<2		<.01	0 .	50 .	110	.09	.20	.(040	2.6
12.					.20	.20	0 .	40 .		4.6	5.0	3.		64
12.	• •	120			.05	.35		40 .	310 1	1	11	2.9	90 10	0
12. APR	• •		4940	454	.00	.41	0 .	40 .	450	8.1	8.5	3.0	JU 6	9
16.		380	5	<2	.83	.07	0 .	90 .	070	.53	.60	.2	270	4.6
JUN		120												8
06.	• •	120	443	77	.35	.05	•	40 .	120	1.4	1.5	• •	350 1	0

167

DATE	T IME	ARSEN DIS SOLV (UG/ AS A	S- DIS VED SOLV		CADMIU DIS- SOLVE (UG/L AS CD	M MIN DIS D SOI		COPPEI DIS- SOLVI (UG/I AS CU	DI ED SOL L (UG	S- VED /L
JAN 08	2114		3	55	<		<10		3	54
08	2131		3	58	<		<10		2	55
08	2201		3	48	3		<10		3	35
MAR	2201		,	40	,		110		5	33
12 JUN	0245		2 <	(100	<	1	10		6	120
06	1000		2	33	<	1	<10		3	69
DA	S(EAD, DIS- DLVED JG/L S PB)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	SOI (UC	CURY IS- LVED G/L	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SO (U	VER, IS- LVED G/L AG)	ZINC, DIS- SOLVED (UG/L AS ZN)	
JAN										
		<1	110		<.1	<1		<1	16	
		<1	110		<.1	<1		<1	14	
08		<1	8		<.1	<1		<1	13	
MAR										
JUN		2	<10		<.1	<1		<1	10	
06	•••	5	4		<.1	<1		<1	5	
DATE		-2	ATRA- TONE TOTAL (UG/L)	ATR ZIN TOT (UG	E, A	YAN- ZINE OTAL UG/L)	CYP ZIN TOT (UG	AL	METHO- MYL TOTAL (UG/L)	PROME- TONE TOTAL (UG/L)
JUN										
06 10	00	<.10	<.10		.30	<.10		<.10	<2.0	.2
DATE	PROME- TRYNE TOTAL (UG/L)	PRO- PAZIN TOTAL (UG/L	TOT	AL	SEVIN TOTA (UG/L	L TOT	NE	SIME- TONE TOTAL (UG/L)	SIM TRY TOT. (UG	NE AL
JUN 06	<.1	<.	10 <	2.0	<2.0	<	.10	<.1	0	<.1

08158200 WALNUT CREEK AT DESSAU ROAD, AUSTIN, TX (Flood-hydrolograph partial-record station)

LOCATION.--Lat 30°22'30", long 97°39'37", Travis County, Hydrologic Unit 12090205, on downstream side of bridge on Dessau Road and 8.4 mi northeast of the State Capitol Building in Austin.

DRAINAGE AREA. -- 26.2 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- May 1975 to current year.

GAGE.--Digital water-stage recorder and crest-stage gage. Datum of gage is 553.44 ft National Geodetic Vertical Datum of 1929.

REMARKS.--Additional storm rainfall-runoff data for this site can be obtained from the report "Hydrologic Data for Urban Studies in the Austin, Texas Metropolitan Area, 1984." Two recording rain gages are located in the watershed.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 21,600 ft³/s May 25, 1981 (gage height, 26.20 ft).

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,530 ft /s July 24 at 0830 hours (gage height, 9.71 ft).

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical, biochemical, and pesticide analyses: October 1979 to current year.

DATE	TIME	STRE FLO INST TANE (CF	AN- COUS	SPE CIF CON DUC ANC (UMH	FIC I- CT- CE	(SI	PH CAND- ARD CTS)	A	MPER- TURE EG C)	(PI INU COE	LOR LAT- JM- BALT LTS)	E	TUR- BID- ITY NTU)	SC	GEN, DIS- DLVED NG/L)	SC (F	GEN, DIS- DLVED PER- CENT TUR- CION)	DEMA B10 CHI ICA 5 I (MO	AND,)- EM- AL, OAY	FEC. 0.7 UM-1 (COL 100	M, AL, MF S./	FE KF (CO P	REP OCC CAL AGA LS. ER ML
NOV 05	1635	376			289		7.3		20.5		100	220	00		7.8		88	1	6	66	000	15	000
FEB 27	1052		.5		649		8.3		9.5		<1		2.0		11.8		105		1.2		620		620
APR 16	1242		.08		602		8.5		18.5		10		2.3		15.1		165		1.3		190		54
JUN 06	0840	99			279		7.4		21.5		100	28			6.8		78	1	6		000	13	000
JUL															9.8		110	19	7.4				600
24	HARD- NESS (MG/L AS	HAR NES NONC BONA (MG	D- S, AR- TE /L	CALC DIS SOL (MG	VED	SO SO (M	GNE- SIUM, DIS- DLVED	SOL	21.0 DIUM, S- VED	SOF	ION	SO (M	OTAS- SIUM, DIS- DLVED	LIN FI (M	KA- IITY ELD IG/L	SO (M	FATE S- LVED IG/L	(MC	O- DE, S- LVED	FLUC RID DIS SOL' (MG	O- E, S- VED /L	SIL DI SO (M	ICA S- LVE G/L
DATE	CACO3)	CAC	03)	AS	CA)	AS	MG)		NA)			AS	K)	CA	(CO3)	AS	S04)	AS	CL)	AS .	F)	SI	02)
NOV 05 FEB	110		14	41			2.8	1	4		.6		3.8		100		19	15			.30		6.
27 PR	270		44	100			5.9	3	30		.8		2.6		230		51	40	1		. 40		6.
16	230		54	84			5.8	3	15		1		2.0		180		49	51			.50		1.
06	120		23	45			2.5		9.0		.4		3.6		100		22	15	1 1 3		.30		7.
JUL 24	73		16	27			1.3		3.6		.2		3.1		57		21	4	. 8		.30		5.3
DAT	SOL	OF TI- TS, S-	SOLID RESID AT 10 DEG. SUS- PENDE (MG/	OUE 05 C,	SOLID VOLA TILE SUS- PENDE (MG/	, D	NIT GE NITR TOT (MG AS	N, ATE AL /L	NITRO GEN NITRO TOTA (MG/) AS N	TE L L	NITT GEI NO2+I TOTA (MG	N, NO3 AL /L	NITI GEI AMMOI TOTA (MG, AS I	N, NIA AL /L	NIT GE ORGA TOT (MG AS	N, NIC AL /L	NIT GEN, MONI ORGA TOT (MG AS	AM- A + NIC AL /L	PHOS PHORU TOTA (MG/ AS P	S, C L L	CARBORGAL TOTA (MG	NIC AL /L	
NOV																						n.	
O5. FEB	• •	160	20	90	6	56		.35	.0	50		.40	• 3	260	4	. 7	5	.0	.6	60	5	0	
27. APR	••	370		12		6	1	. 2	.0	30	1	. 2	<.0	010				. 40	.3	00		2.9	
16. JUN	••	340		5		<2		. 39	.0	10		.40	1.	100		.40		.50	.0	20		2.2	
06. JUL		160	12	60	2	16		.54	.0	60	,	.60		180	- 1	. 3	. 1	. 5	.4	00	4.	5	
24.		100	29	80	1	29		.97	.0	30	1.	. 0		120	5	. 4	5	. 5	2.4	0	4	8	
			DAT	Έ	TIM	ΙE	ARSE DI SOL' (UG AS	S- VED /L	BARIUM DIS- SOLVE (UG/) AS BA	D L	CADM: DIS SOLV (UG, AS	S- VED /L	CHRO MIUN DIS- SOLV (UG) AS	/ED	COPP DIS SOL' (UG AS	VED /L	IRO DI SOL (UG AS	S- VED /L					
			NOV		160			2		00			-	110		0		24					
			O5. JUN		163			3		29		<1		(10		2		31					
			O6. JUL		084			1		42		<1		(10		1		230					
			24.		103	U		1	100	17		<1	•	(10		2		150					

COLORADO RIVER BASIN

08158200 WALNUT CREEK AT DESSAU ROAD, AUSTIN, TX--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

	DATE	LEAD, DIS- SOLVE (UG/L AS PB)	(UG	E, M S- VED /L	ERCURY DIS- SOLVED (UG/L AS HG)	SELI NIUI DIS SOLI (UG AS	M, S S- VED /L	DIS- SOLVED (UG/L AS AG)	ZINC, DIS- SOLVED (UG/L AS ZN)	
	NOV 05 JUN	<		1	<.1		<1	<1	4	
	06 JUL		7	32	<.1		<1	<1	8	
	24	4	4	12	<.1		<1	<1	10	
DATE	TIME	AME- TRYNE TOTAL	ATRA TONE TOTA (UG/	L	ATRA- ZINE, TOTAL (UG/L)	CYAN- AZ INI TOTAI (UG/I	E 2	CYPRA- ZINE COTAL (UG/L)	METHO- MYL TOTAL (UG/L)	PROME- TONE TOTAL (UG/L)
JUN 06 JUL	0840	<.10) <	.10	<.10	<.	.10	<.10	<2.0	<.1
24	1030	<.10)		.20	<.	.10	77	<2.0	.1
DAT	TRY	TAL TOT	INE	PROPHAL TOTAL (UG/L	TO	TAL	SIMA- ZINE TOTAL (UG/L	TONE TOTAL	SIME TRYN TOTA (UG/	NE AL
JUN 06. JUL		<.1	<.10	<2.	0 <2	.0	<.1	0 <.	10 <	(.1
24.		<.1	<.10	<2.	0 <2	. 0	<.1	0	<	(.1

08158600 WALNUT CREEK AT WEBBERVILLE ROAD, AUSTIN, TX

LOCATION.--Lat 30°16'59", long 97°39'17", Travis County, Hydrologic Unit 12090205, on left bank 190 ft downstream from bridge on Farm Road 969, 0.8 mi downstream from Little Walnut Creek, 2.8 mi upstream from Colorado River, 5.2 mi east of the State Capitol Building in Austin, and 2.8 mi upstream from mouth.

DRAINAGE AREA. -- 51.3 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- May 1966 to current year.

GAGE .-- Water-stage recorder. Datum of gage is 425.96 ft National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records fair. No known regulation or diversion. Station is part of hydrologic research project to study rainfall-runoff relation for urban areas. Five recording rain gages are located in the watershed above this station.

AVERAGE DISCHARGE. -- 18 years, 23.6 ft3/s (6.25 in/yr), 17,100 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 14,300 ft³/s May 25, 1981 (gage height, 27.24 ft); no flow at times in 1967, 1971, and 1982-84.

Maximum stage since at least 1891, that of May 25, 1981.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 15, 1935, reached a stage of 24 ft, backwater from Colorado River. A flood in 1919 reached a stage of 22 ft, from information by local residents.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 916 ft³/s July 24 at 1130 hours (gage height, 9.56 ft); no peak above base of 1,500 ft³/s; no flow for several days.

		DISCHARGE,	IN CUBIC	FEET		D, WATER YEA EAN VALUES	R OCTOBER	1983 T	О ЅЕРТЕМВЕ	R 1984	14	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	3.0 3.2 3.2 3.2 3.1	4.1 4.1 4.3 45 83	5.6 5.4 78 13	5.4 5.4 5.1 5.1 5.1	11 11 11 10 8.9	.81 .60 .81 1.7	6.8 6.7 6.7 6.1	2.7 3.1 3.0 2.5 2.3	1.1 1.4 1.4 2.3	1.2 1.2 .81 .76	1.0 .15 .24 .32 .32	8.7 6.2 46 6.6 2.5
6 7 8 9	2.9 2.8 2.7 143 14	19 9.8 7.6 6.4 5.0	10 9.1 8.3 8.0 8.2	5.1 5.1 35 95 17	8.3 7.8 7.5 9.1 7.6	3.2 1.1 .81 .60	6.1 5.8 7.8 5.5 5.3	2.3 2.2 1.8 1.4 1.4	22 5.1 2.4 2.0 2.0	.81 1.1 1.3 .67	.32 .41 .14 .35 .23	2.0 2.0 1.7 1.1
11 12 13 14 15	8.0 9.9 5.7 5.3 4.9	4.4 4.3 4.1 4.1 3.7	6.8 6.5 5.7 5.7	14 14 14 15 16	8.6 13 10 8.0 8.7	.81 21 2.3 .81 2.3	4.4 4.3 4.1 3.9 3.5	1.4 1.4 1.1 1.1	2.5 3.0 4.9 3.1 2.7	4.1 1.9 .23 .05	.38 6.5 3.3 1.3	1.7 1.7 .81 .81
16 17 18 19 20	5.1 4.7 8.2 9.1 24	3.5 3.4 3.5 6.2 5.1	7.3 6.4 6.1 5.8 5.7	17 17 18 22 24	9.0 11 8.7 4.4	1.7 1.7 1.7 16 6.8	3.2 3.2 3.2 3.2 3.2	3.5 2.3 14 16 5.7	2.7 2.6 2.4 5.4 4.3	.00 .00 .00 .03	1.6 .51 .61 .17 .47	.32 .15 .15 .15
21 22 23 24 25	15 8.0 6.2 5.3 5.1	5.0 4.4 22 6.6 4.7	5.7 5.6 5.6 5.8 5.8	23 24 26 21 20	6.6 6.4 8.0 5.7	7.6 6.8 30 12 8.5	3.2 3.2 2.9 3.1 3.6	3.8 3.8 3.5 3.5 3.5	3.4 2.9 2.7 2.4 2.9	.02 .00 .00	.19 .07 .07 .07	2.0 1.1 .81 .81
26 27 28 29 30 31	5.1 4.5 4.7 4.4 4.3 4.1	11 24 9.9 7.8 6.9	5.7 5.4 4.4 5.0 5.2 5.4	20 19 19 15 12	21 2.7 .81 .81	8.0 7.8 6.7 7.0 6.6 6.8	3.9 2.9 2.7 2.7 2.5	3.0 2.3 8.7 2.5 2.5 2.7	2.7 3.1 1.8 1.8 1.5	1.9 .86 1.2 .30 .15	.05 .07 .06 .16 .57	.81 .81 .81 1.1
TOTAL MEAN MAX MIN CFSM IN. AC-FT	332.7 10.7 143 2.7 .21 .24 660	332.9 11.1 83 3.4 .22 .24 660	279.0 9.00 78 4.4 .18 .20 553	565.3 18.2 95 5.1 .36 .41 1120	236.43 8.15 21 .81 .16 .17 469	197.15 6.36 30 .60 .12 .14 391	129.8 4.33 7.8 2.5 .08 .09 257	110.1 3.55 16 1.1 .07 .08 218	110.5 3.68 22 1.1 .07 .08 219	159.10 5.13 132 .00 .10 .12 316	35.38 1.14 14 .05 .02 .03 70	95.31 3.18 46 .15 .06 .07 189
CAL YR 1					MAX 378 MAX 143	MIN .97 MIN .00	CFSM .42 CFSM .14					

08158600 WALNUT CREEK AT WEBBERVILLE ROAD, AUSTIN, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical and biochemical analyses: October 1975 to current year. Sediment records: October 1977 to September 1982. Radiochemical analyses: October 1979 to September 1980.

DATE	TIME	STREAM FLOW, INSTAM TANEOU (CFS)	M- C N- DI JS Al	NCE	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	COBAL	- Т	TUR- BID- ITY NTU)	OXYGI DIS SOLV (MG)	EN, S- /ED	DXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGH DEMAN BIO- CHEN ICAI 5 DA (MG/	ND, 1- 1- 1- 1-	COLI- FORM, FECAL, 0.7 UM-MF COLS./	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
OCT 20	1747	91		293	7.8	24.5	2	0 7	00		7.1	87		5.4	62000	K120000
FEB 27	1250	7.	. 6	461	8.1	11.5			37		.2	86		2.2	2800	1500
MAR 23	1145	127		426	7.9	19.0			90		3.9	98	13		24000	32000
APR 18	0808	4.	.1	560	7.9	17.0		7	1.9		3.6	91		.5	130	240
JUN 05	1010	28		225	7.5	23.0			30		5.3	75		7.0	90000	94000
JUL 24	1215	644		164	7.8	22.0					5.3	73			110000	74000
24	1215	HARD-		104	MAGNE-	22.0	SODIU		OTAS-	ALKA		/3	CHLC		FLUO-	SILICA,
DATE	HARD- NESS (MG/L AS CACO3)	NESS, NONCAR BONATE (MG/I CACOS	CAI	LCIUM IS- DLVED MG/L S CA)	SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)		S (SIUM, DIS- OLVED MG/L S K)	LINIT FIEI (MG/ AS CACO	TY S _D 'L	ULFATE DIS- SOLVED (MG/L S SO4)	RIDE DIS- SOLV (MG/ AS C	E, I	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)
ОСТ						,										
20 FEB	120	3	31 4	45	2.9	10	•	4	2.9		94	24	17		•20	4.4
27 MAR	190	4	2 (59	4.8	20	9	7	2.6	1	50	41	29		•40	3.2
23 APR	180	4	4 6	67	3.9	17	•	6	2.9	1	40	37	27		•30	3.7
18 JUN	220	8	32 7	78	6.6	29		9	2.4	1	40	65	47		.40	3.3
05 JUL	90	1	0 3	33	1.9	7.2		3	2.2		80	19	13		.20	3.4
24	72	2	6 2	26	1.7	4.6	•	2	2.9		46	23	6.	7	•30	5.6
DAT	SOLI SUM CONS' TUEN' DI: SOL'	OF RE	SIDUE 105 G. C, SUS- ENDED (MG/L)	SOLIDS VOLA- TILE, SUS- PENDEI (MG/I	GE NITR TOT	N, G ATE NIT AL TO /L (M	EN, C RITE NO TAL TO G/L (I	ITRO- GEN, 2+NO3 DTAL MG/L S N)	NIT GE AMMO TOT (MG AS	NIA C	NITRO GEN, ORGANI TOTAL (MG/L AS N)	MONI C ORGA TOT	AM- A + NIC F AL /L	PHOS- PHORUS, TOTAL (MG/L AS P)	CARB ORGA TOT (MG AS	NIC AL /L
OCT 20. FEB		160	850	3	18	.18	.020	.20		040	1.6	1	.6	1.60	1	7
27. MAR		260	35		7	.27	.030	.30	٠.	090	.4	1	.50	.060)	5.4
23. APR		240	1570	18	34	.23	.070	.30	<.	010	-	-	.90	.960) 2	5
18.	:	320	5	<	(2		.010	<.10		090	.3	1	.40	.020)	1.8
JUN 05.		130	484	13	8	.34	.060	.40		070	.3	3	.40	.250	2	0
JUL 24.		99	6230	19	3	.67	.030	.70		190	5.8	6	.0	4.40	6	7
			DATE	TIME	SOL	VED SOL	S- 1 VED SC G/L (U	OMIUM DIS- DLVED JG/L S CD)	DIS	M, C - VED /L	OPPER DIS- SOLVE (UG/L AS CU	DI D SOL (UG	S- VED /L			
			CT 20 UN	1747		1	37	<1		<10		1	26			
			05 UL	1010		<1	30	<1		<10	3	3	41			
			24	1215	i.	<1	27	<1		<10	13	2	310			
			D		LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVEI (UG/L AS HG)	N N N N N N N N N N N N N N N N N N N	ELE- IUM, DIS- DLVED UG/L S SE)	SILVE DIS SOLV (UG/ AS A	ED L	ZINC, DIS- SOLVED (UG/L AS ZN)				
			00	о	2	1	<.1		<1		<1	5				
			JU 0	5	<1	2	<.1		<1		<1	5				
			JU	L 4	3	27			<1		<1	6				

172

08158600 WALNUT CREEK AT WEBBERVILLE ROAD, AUSTIN, TX--Continued

DATE	TIME	AME TRY TOT	NE TO	NE Z	TRA- INE, OTAL UG/L)	CYAN- AZINE TOTAL (UG/L)	ZIN	NE CAL	METHO- MYL TOTAL (UG/L)	TOTAL (UG/L)
JUN 05	1010		<.10	<.10	<.10	<.1	0	<.10	<2.0	.3
JUL	1010						•		12.0	
24	1215		<.10		<.10	<.1	0		<2.0	<.1
	TF	ROME- RYNE OTAL	PRO- PAZINE TOTAL	PROPHAM TOTAL		IN,	ZINE COTAL	SIME- TONE TOTAL	SIME- TRYNE TOTAL	
DATE	(1	JG/L)	(UG/L)	(UG/L)	(UG	/L) ((UG/L)	(UG/L)	(UG/I	_)
JUN 05 JUL		<.1	<.10	<2.0	<2	.0	<.10	<.1	0 <.	.1
24		<.1	<.10	<2.0	<2	.0	<.10	- 4	- <.	.1

08158640 WALNUT CREEK AT SOUTHERN PACIFIC RAILROAD BRIDGE, AUSTIN, TX (Reconnaissance partial-record station)

LOCATION.--Lat 30°15'58", long 97°39'24", Travis County, Hydrologic Unit 12090205, at Southern Pacific Railroad bridge, 1.2 mi south of Webberville Road, and 5.0 mi east of the State Capitol in Austin.

DRAINAGE AREA. -- 53.5 mi2.

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: January 1975 to current year. Radiochemical analyses: October 1979 to September 1980.

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	TIME	STREAM FLOW, INSTAN TANEOU (CFS)	CON- DUCT-	PH (STAND- ARD	- TEMPER ATURE (DEG C)	COBAL	TUR- BID- ITY	OXYGEN DIS- SOLVE (MG/L)	CENT D SATUR	DEMAND BIO- CHEM- ICAL, DEMAND	FORM, FECAL 0.7 UM-MF (COLS.	KF AGAR (COLS. PER
FEB 28	0937	3	6 79	0 7.3	17.5	5 15	5 4.6	6.5	5 6	8 15	84	150
MAR 12	1030	10	0 49	6 7.1	19.0	700	270	9.0) 9	9 14	2400	24000
APR 18	0838	4						6.4				
JUN 06		11.										
JUL								7.9				
24 AUG	1140	110		0 8.0	24.0	850	1600	8.4	10			
21	1040	3:	2 83	4 7.3	29.5	5 25	3.3	5.	6	3.	4 700	180
DATE	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR BONATE (MG/L CACO3	SOLVE (MG/L	DIS- D SOLVEI (MG/L	SODIUM, DIS- SOLVED (MG/L	SORP- TION RATIO	POTAS- SIUM, DIS- SOLVEI (MG/L AS K)	LINITY	SULFATI DIS- SOLVE (MG/L AS SO4)	DIS- SOLVE (MG/L	RIDE, DIS- D SOLVEI (MG/L	SILICA, DIS- SOLVED (MG/L AS SI02)
FEB												
28 MAR	170) 60	0 40	17.	86	3	10	110	100	95	2.2	8.8
12	140	3	6 40	8.7	40	2	5.8	100	53	45	1.1	6.3
APR 18	160	5:	5 38	17	84	3	11	110	94	100	2.7	8.3
JUN 06	130	3:	3 40	7.4	36	1	5.2	98	3 48	44	1.1	6.4
JUL 24	85	5 2	5 30	2.5	9.7	. 5	3.4	60	27	13	.40	5.1
AUG 21	170	8:	3 34	20	94	3	11	84		110	3.5	9.5
	DATE	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)
	FEB		3	,,				.,				
	28 MAR	420	3	<2	6.8	1.60	8.4	3.10	1.8	4.9	6.10	10
	12 APR	260	369	54	3.0	.770	3.8	1.40	3.6	5.0	3.70	14
	18	420	11	<2	8.3	.770	9.1	2.90	1.9	4.8	10.0	10
	JUN 06	250	834	123	2.0	.250	2.2	.800	1.7	2.5	1.60	16
	JUL 24	130	7200	155	.98	.120	1.1	.360	18	18	6.00	90
	AUG 21	420	12	8	7.7	2.20	9.9	1.50	1.9	3.4	8.20	9.4
			DATE	TIME	DIS-	BARIUM, DIS- SOLVED (UG/L AS BA)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DÍS- SOLVED (UG/L AS FE)		
			JUN	1115	/1	24	24	/10	2	2.7		
			JUL	1115	<1	34	<1	<10	3	37		
			24 AUG	1140	1	34	<1	<10	3	270		
			21	1040	2	14	<1	<10	3	46		

COLORADO RIVER BASIN

08158640 WALNUT CREEK SOUTHERN PACIFIC RAILROAD BRIDGE, AUSTIN, TX--Continued

	DATE	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	ZINC, DIS- SOLVED (UG/L AS ZN)	
	JUN 06	2	9	<.1	<1	<1	13	
	JUL 24 AUG	4	28	<.1	<1	<1	7	
	21	3	33	•2	<1	<1	27	
DATE	TIME	AME- TRYNE TOTAL	ATRA- TONE TOTAL (UG/L)	ATRA- ZINE, TOTAL (UG/L)	CYAN- AZINE TOTAL (UG/L)	CYPRA- ZINE TOTAL (UG/L)	METHO- MYL TOTAL (UG/L)	PROME- TONE TOTAL (UG/L)
JUN 06 JUL	1115	<.10	<.10	.10	<.10	<.10	<2.0	.2
24	1140	<.10		.10	<.10		<2.0	•2
DAT	TRY	AL TOTA	NE PROP	AL TO	TAL TOT	NE TONE	TRYI	NE AL
JUN 06. JUL	. 3	<.1 <	.10 <	2.0 <2	.0 <	(.10 <	.10	(.1
24.		<.1 <	.10 <	2.0 <2	.0 <	.10		(.1

08158650 COLORADO RIVER BELOW AUSTIN, TX (Low-flow partial-record station)

LOCATION.--Lat 30°12'28", long 97°38'15", Travis County, Hydrologic Unit 12090205, at bridge on Farm Road 973, 0.3 mi northeast of intersection of State Highway 71 and Farm Road 973, 8.8 mi downstream from Govalle Sewage Treatment Plant outfall, and 9.6 mi downstream from gaging station at Aistia.

PERIOD OF RECORD.--Chemical and biochemical analyses: February 1968 to current year. Pesticide analyses: October 1974 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	TIME	CO DU AN	FIC N- CT- CE	PH (STAN ARD UNITS	A'	MPER- TURE EG C)	COLO (PLA INUM COBA UNIT	AT- M- ALT	TUR BID ITY NTU	-	KYGEN, DIS- SOLVEI (MG/L)	, () S.	YGEN, DIS- OLVED PER- CENT ATUR- TION)	DEM BI CH IC 5	GEN AND, O- EM- AL, DAY G/L)	FOI FEO UM	LI- RM, CAL, 7 -MF LS./ ML)	FEC KF A (COI	CAL, AGAR LS. ER	HARD- NESS (MG/L AS CACO3)	
OCT 25	1110		639	7	. 4	21.5		5	1.	7	6.0)	69		1.0		K16		50	200)
DEC 14	1305		640		. 9	17.0		<1	1.0		10.2		107		1.3		45		120	220)
FEB 21	1145		660		. 3	14.5		<1	1.		14.4		142		2.6		K2		K12	210	
APR 16	1145		552		. 4	18.5		5	1.		5.2		56		.8		22		K7	200)
JUN 27	1020		555		. 4	26.5		5	1.2		7.8		98		.4		K17		22	200)
AUG 16	1200		553		.3	26.0		6	3.0		6.4		80		1.3	K	5300		70	190)
DATE	NON BON (N	ARD- ESS, ICAR- IATE IG/L ACO3)	CALCI DIS- SOLV (MG/ AS C	UM ED :	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM DIS-)	SODIUM AD- SORP- TION RATIO		POTAS- SIUM, DIS- SOLVEI (MG/L AS K)	AI LIN FI O (M	KA- NITY IELD MG/L AS ACO3)	SULF. DIS SOL' (MG AS SO	- VED /L	CHL RID DIS SOL (MG AS	E, - VED /L	FLU RID DI SOL (MG AS	E, S- VED /L	SILICA DIS- SOLVI (MG/I AS SIO2)	ED L	
OCT 25		55	49		20	44		1		4.9		150	4	8	66			.80	8	. 3	
DEC 14		54	60		18	- 40		1		4.0		170	50	0	57			. 70	5	. 5	
FEB 21		51	53		19	49		2		5.7		160	60	0	65		1	.1	4	.0	
APR 16		23	45		22	34		1		3.9		180	3	9	59			.30	5	. 7	
JUN 27		59	45		21	33		1		3.9		140	3	7	58			.40	5	.2	
AUG 16		47	40		21	35		1		4.1		140	40	0	61			.40	5	. 8	
DAT	SU CO TU	DLIDS, M OF ONSTI- ENTS, DIS- OLVED MG/L)	SOLI RESI AT 1 DEG. SUS PEND (MG	DUE S 05 C, ED I	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)	GEN NITRA TOTA (MG/	TE L L	NITRO GEN, NITRIT TOTAL (MG/L AS N)	E I	NITRO GEN, NO2+NO TOTAI (MG/I AS N)	3 AM 1 (GEN, MONIA TOTAL (MG/L AS N)	GI A ORGA TO (MC	TRO- EN, ANIC TAL G/L N)	GEN MON ORGA TO' (MO	TRO-, AM- IA + ANIC TAL G/L N)	PHO TO (Me	OS- RUS, TAL G/L P)	CARBO ORGAN TOTA (MG) AS (NIC AL /L	
OCT 25.		330		9		2.	4	.91	0	3.3		.440)	.66		1.1	1	. 80	4	5	
DEC 14.		340		2	<1	2.	9	.11	0	3.0		.110)	.59		.70	1	. 50	3	3.8	
FEB 21.		350		9	-	3.	9	.31	0	4.2		.410)	1.7		2.1	2	.10		5.7	
APR 16.		320		5	<2		17	.03	0	.2	.0	.160)	.44		.60		.240	2	2.6	
JUN 27.		290		5	3		36	.04	0	. 4	0	.070)	.43		.50		.220	3	3.1	
AUG 16.	• •	290		12	11		47	.13		.6	0	.190		.41		.60		.340	3	3.5	
			DA	TE	TIME	ARSEN DIS SOLV (UG/ AS A	ED L	BARIUM DIS- SOLVED (UG/L AS BA		CADMIU DIS- SOLVE (UG/I AS CI	IM M	CHRO- HIUM, DIS- GOLVEI (UG/L AS CR)	(U)		SOI (U	ON, IS- LVED G/L FE)					
			OCT 25		1110		2	5	9		1	<10)	2		<3					
			FEB		1145		2	4			1	<10		10		12					
			JUN		1020		<1	7			1	<10		3		<4					
			AUG		1200		<1	8			1	<10		2		4					
			. 0	2 - 15	.200		, ,	0	_	,				4		-					

176

COLORADO RIVER BASIN

08158650 COLORADO RIVER BELOW AUSTIN, TX--Continued

			DATE	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	ZINC, DIS- SOLVED (UG/L AS ZN)			
			OCT 25 FEB	2	6	۲.1	<1	<1	6			
			21 JUN	<1	4	<.1	<1	<1	17			
			27 AUG	<1	. 8	<.1	<1	<1	6			
			16	<1	3	<.1	<1	<1	12			
DATE	TIME	AME- TRYNE TOTAL	ATRA- ZINE, TOTAL (UG/L)	CYAN- AZINE TOTAL (UG/L)	METHO- MYL TOTAL (UG/L)	PROME- TONE TOTAL (UG/L)	PROME- TRYNE TOTAL (UG/L)	PRO- PAZ INE TOTAL (UG/L)	PROPHAM TOTAL (UG/L)	SEVIN, TOTAL (UG/L)	SIMA- ZINE TOTAL (UG/L)	SIME- TRYNE TOTAL (UG/L)
FEB 21 JUN	1145	<.10	<.10	<.10	<2.0	.4	<.1	<.10	<2.0	<2.0	<.10	۲.1
27 AUG	1020	<.10	<.10	<.10	<2.0	<.1	<.1	<.10	<2.0	<2.0	<.10	<.1
16	1200	<.10	<.10	<.10	<2.0	<.1	<.1	<.10	<2.0	<2.0	<.10	<.1

177

08158700 ONION CREEK NEAR DRIFTWOOD, TX

LOCATION.--Lat 30°04'59", long 98°00'29", Hays County, Hydrologic Unit 12090205, on left bank at upstream side of low-water crossing on Farm Road 150, 3.2 mi southeast of Driftwood, and 10 mi west of Buda.

DRAINAGE AREA. -- 124 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. --April 1958, November 1961 to June 1979 (periodic discharge measuremrents only), July 1979 to current year.

REMARKS.--Water-discharge records fair. Station is part of hydrologic research project to study rainfall-runoff relationship in the Austin urban-rural areas. There is a recording rain gage located in the watershed.

AVERAGE DISCHARGE. -- 5 years 28.7 ft3/s (3.14 in/yr) 20,790 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 8,010 ft³/s June 11, 1981 (gage height, 15.24 ft); no flow for several days in August and September 1984.

Flood of Mar. 20, 1979, reached a stage of 11.48 ft (discharge, 4,980 ft³/s), on basis of peak flow over dam, 1.5 mi downstream. Flood of June 11, 1981, peaked at a depth of 5 ft over this dam.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 35 $\rm ft^3/s$ Oct. 9 at 1045 hours (gage height, 1.14 $\rm ft$), no other peak above base of 500 $\rm ft^3/s$; no flow for several days.

		DISCHARGE,	IN CUBIC	FEET		WATER YEAR N VALUES	COTOBER	1983	O SEPTEMBER	1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	9.2 8.7 8.6 8.2 7.8	7.9 7.6 7.5 7.5 8.0	4.3 4.6 8.4 7.9 7.6	4.4 4.6 4.3 4.3	4.8 5.1 4.9 4.8 4.6	4.3 4.3 4.3 4.3	4.8 4.8 4.3 3.2 3.2	1.5 2.7 2.9 1.8 1.8	2.6 2.2 2.8 3.8 7.5	2.3 1.5 1.5 1.5 1.6	.23 .20 .14 .15 .15	.15 .18 .20 .18 .13
6 7 8 9	7.5 7.5 7.8 26 21	7.9 7.9 7.6 7.4 6.9	6.5 6.1 5.6 5.9 6.1	4.8 4.3 4.7 7.8 4.8	4.3 4.3 4.4 5.2 4.9	9.8 8.2 7.9 6.5 6.5	3.8 4.7 4.7 3.8 4.3	2.3 3.0 1.8 1.3 1.5	5.9 7.8 11 10 9.2	1.6 1.6 1.8 1.6	.10 .09 .10 .10	.10 .10 .10 .09
11 12 13 14 15	14 14 13 12 11	6.5 7.0 6.7 6.9 5.6	5.9 5.1 5.5 5.2 5.2	4.3 5.2 4.9 4.8 4.8	5.0 4.8 4.1 3.8 4.2	6.1 6.1 5.6 5.6 5.2	3.8 3.2 2.7 2.6 2.7	1.5 1.6 1.6 1.6 2.0	7.9 8.2 7.4 6.0 5.6	1.3 1.1 1.2 .92 .87	.10 .08 .10 .11	.05 .05 .05 .00
16 17 18 19 20	11 10 9.8 9.0	5.2 5.2 5.2 4.9 4.3	5.2 5.2 5.2 5.2 5.2	5.2 5.2 5.2 4.8 4.8	4.2 4.0 4.5 4.2 3.8	5.2 5.2 5.2 6.1 5.2	2.2 2.2 2.8 3.8 4.0	2.6 3.7 4.1 5.8 4.1	5.0 4.5 4.6 3.7 3.1	.60 .41 .35 .30	.14 .10 .10 .11 .03	.00 .00 .00 .00
21 22 23 24 25	12 10 10 10 9.1	4.3 4.6 5.2 3.8 3.8	5.2 5.0 4.8 4.5 4.3	4.8 5.3 6.2 5.6 5.2	3.8 3.8 4.3 3.8 3.2	4.8 5.2 5.6 4.8 4.8	3.7 2.7 2.2 2.6 2.7	3.2 3.4 3.2 2.3 2.2	2.4 2.5 2.2 2.3 1.5	.14 .15 .13 .15	.00 .03 .00 .00	.00 .00 .00 .00
26 27 28 29 30 31	9.0 9.0 8.6 8.6 8.3 8.2	4.1 5.0 4.2 3.8 4.7	4.3 4.8 5.1 4.2 3.8 4.1	5.1 4.8 5.0 4.8 4.8	6.1 3.2 2.7 3.2	4.8 4.8 4.3 4.3 4.3	1.7 1.8 1.7 2.0 1.0	2.7 2.5 5.0 3.7 3.0 2.3	1.3 1.6 1.7 2.1 2.7	.82 2.1 .77 .37 .35 .28	.05 .05 .15 .15 .15	.00 .00 .00 .00
TOTAL MEAN MAX MIN CFSM IN. AC-FT	331.9 10.7 26 7.5 .09 .10 658	177.2 5.91 8.0 3.8 .05 .05	166.0 5.35 8.4 3.8 .04 .05 329	154.5 4.98 7.8 4.3 .04 .05 306	124.0 4.28 6.1 2.7 .04 .04 246		93.7 3.12 4.8 1.0 .03 .03	82.7 2.67 5.8 1.3 .02 .02	139.1 4.64 11 1.3 .04 .04 276	29.78 .96 2.3 .13 .008 .01	3.18 .10 .23 .00 .001 .00 6.3	1.43 .048 .20 .00 .000 .000
CAL YR WTR YR			MEAN MEAN		MAX 265 MAX 26	MIN 1.6 MIN .00	CFSM .25 CFSM .03		3.45 AC-F7			

08158700 ONION CREEK NEAR DRIFTWOOD, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: January 1974 to current year. Radiochemical analyses: October 1979 to September 1980.

DATE	TIME	FI INS TAN	REAM- LOW, STAN- NEOUS CFS)	DU AN	FIC N- CT-	PH (STAN ARE	A	MPER- TURE DEG C)	COLO (PLA INUN COBA UNIT	AT- M- ALT	TUR- BID- ITY (NTU)	SOL	GEN, IS- VED	SO: (P) C: SA'	GEN, IS- LVED ER- ENT TUR- ION)	OXYG DEMA BIO CHE ICA 5 D (MG	ND, - M- L,	COLI FORM FECA 0.7 UM-M (COLS	I, IL, IF	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
FEB 28	0830		2.2		490	8	.3	10.5		<1	1.1	1	0.0		91		.4		31	88
APR 17	0820		1.3		473	7	.5	17.0		5	1.1		9.0		95		2.1	K	18	33
AUG 22	0740		.04		486	7	•2	24.5		5	.80		5.5		68		1.9		38	560
DATE	HARD- NESS (MG/L AS CACO3)	NON BON (M	ARD- CSS, ICAR- IATE IG/L ACO3)	DIS SOI (MC	CIUM S- LVED G/L CA)	MAGN SIU DIS SOLV (MG/ AS M	M, SO - D ED SO L (DIUM, DIS- LVED MG/L S NA)	SODI AI SORE TIO RATI	D- P- DN :	POTAS- SIUM, DIS- SOLVED (MG/L	ALK LINI FIE (MG AS	TY ELD G/L	DIS	LVED G/L	CHL RID DIS SOL (MG AS	E, VED /L	FLUC RIDE DIS SOLV (MG/ AS F	ED L	SILICA, DIS- SOLVED (MG/L AS SIO2)
FEB																				
28 APR	260		51	73	3	19		8.6		.2	1.0		210		44	15			20	7.4
17 AUG	230		44	64		18		8.7		.3	1.1		190		41	13			20	9.8
22	250		34	66	5	20		9.1		.3	1.9		214	1	27	13		4.	20	16
DATE	SOI	OF TI-	SOLI RESI AT 1 DEG. SUS PEND (MG	DUE 05 C, ED	SOLII VOLA TILE SUS- PENDE (MG/	E, N	NITRO- GEN, ITRATE TOTAL (MG/L AS N)	GEN	N, LTE N AL /L	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	GE	NIA AL /L	NIT GE ORGA TOT (MG AS	NIC AL /L	MONIA ORGAN TOTA (MG AS	AM- A + NIC AL /L	PHOS PHORU TOTA (MG/ AS I	JS, O AL /L	ARBORGA TOT (MG AS	NIC AL /L
FEB 28		290		7		<2		<.0	010	<.10		090			<	.20	<.0	10		1.4
APR 17		270		4		<2	.09	.0	010	.10		090			<	.20	.0	080	- 17	1.6
AUG 22.		280		5		<1		<.1	100	<.10		030		.17		.20	.0	020	:	2.0
			DA	TE	TIM	1E	RSENIC DIS- SOLVED (UG/L AS AS)	DIS-	ED /L	DIS- SOLVEI (UG/L AS CD)	DIS SOL (UG	M, VED /L	COPP DIS SOL' (UG AS	VED /L	IROI DIS SOLY (UG AS	S- VED /L				
			AUG 22		074	0	<1		31	<1		<10		2		<3				
				DA	TE	LEAD DIS SOLV (UG/ AS P	, N ED S L (ANGA- ESE, DIS- OLVED UG/L S MN)	MERCU DIS SOLV (UG/ AS H	JRY 1 S- VED S 'L	SELE- IIUM, DIS- SOLVED (UG/L (S SE)		S- VED	SOI (UC	NC, IS- LVED G/L ZN)					
				AUG 22			1	16	<	.1	<1		<1		4					

179

08158810 BEAR CREEK BELOW FARM ROAD 1826 NEAR DRIFTWOOD, TX

LOCATION.--Lat 30°09'19", long 97°56'23", Hays County, Hydrologic Unit 12090205, 0.8 mi southeast of Farm Road 1826 and 5.9 mi northeast of Driftwood.

DRAINAGE AREA. -- 124 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- March 1978 to July 1979 (periodic discharge measurements only), October 1978 to June 1979 (peak discharges above base only), July 1979 to current year.

GAGE .- Water-stage recorder. Altitude of gage is 860 ft, from topographic map.

REMARKS.--Water-discharge records good. Station is part of hydrologic research project to study rainfall-runoff relation for the Austin urban-rural areas. There is a recording rain gage located in the watershed.

AVERAGE DISCHARGE. -- 5 years 5.60 ft3/s (6.23 in/yr) 4,060 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 8,330 ft³/s June 11, 1981 (gage height, 13.05 ft, from floodmarks), from slope-area measurements of peak flow; no flow in 1980, and 1983-84.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 9, 1919, reached a stage of 16.2 ft (discharge unknown) and was the highest since at least 1924, from information by local resident. A flood in 1915, was 2 ft higher than the 1939 flood, from information by local resident.

EXTREMES FOR CURRENT YEAR .-- Maximum discharge, 14 ft3/s Mar. 4 at 2230 hours (gage height, 2.76 ft), no peak above base of 500 ft3/s; no flow for many days.

		DISCHARGE,	IN CUBI	C FEET		WATER YE	AR OCTOBER	1983	TO SEPTEMBER	1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.6 1.5 1.4 1.4	2.1 1.9 2.3 2.3 2.5	.91 .91 1.9 1.2	.91 .91 .91 .91	1.0 1.1 1.1 1.0 1.0	1.2 1.2 1.2 2.9 3.4	.91 1.0 .88 .84	.32 .33 .32 .26	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00
6 7 8 9 10	1.3 1.3 1.3 4.2 2.5	2.3 2.1 2.1 1.9	1.1 1.0 1.0 1.0	.80 .71 .90 2.0 1.1	1.0 1.0 1.0 1.2	1.9 1.6 1.4 1.3	.80 .83 .84 .72 .68	.25 .23 .23 .21	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00
11 12 13 14 15	2.5 2.3 1.9 1.9	1.7 1.7 1.6 1.6	1.0 1.0 1.1 1.0 .97	.95 1.0 1.0 1.0	1.1 1.1 1.0 .91	1.3 1.6 1.3 1.3	.65 .64 .63 .61	.17 .17 .19 .25	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00
16 17 18 19 20	1.7 1.7 1.9 1.9 3.5	1.4 1.4 1.4 1.4	1.0 1.0 1.0 .91	1.0 1.0 1.0 1.0	.91 .96 1.0 .91	1.3 1.2 1.2 1.3 1.2	.53 .50 .62 .57	.17 .15 .15 .11	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00
21 22 23 24 25	2.9 2.5 2.5 2.3 2.3	1.4 1.4 1.4 1.2	.91 .91 .91 .91	1.0 1.1 1.2 1.2	.97 .91 .89 .84	1.2 1.2 1.3 1.2	.50 .44 .40 .40	.05 .05 .04 .04	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
26 27 28 29 30 31	2.3 2.3 2.3 2.1 2.1 2.1	1.0 1.3 1.0 1.0	1.0 1.0 1.0 .91 .91	1.1 1.1 1.1 1.1 1.0 1.0	2.1 1.2 1.2 1.2	1.0 1.0 .96 .91 .91	.40 .38 .35 .35	.03 .02 .02 .02 .01	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00
TOTAL MEAN MAX MIN CFSM IN. AC-FT	64.8 2.09 4.2 1.3 .17 .20 129		31.46 1.01 1.9 .91 .08 .10	32.04 1.03 2.0 .71 .08 .10 64	30.64 1.06 2.1 .84 .09 .09	42.04 1.36 3.4 .91 .11 .13 83	18.07 .60 1.0 .29 .05 .06	4.54 .15 .33 .00 .01 .01	.02 .001 .02 .00 .000	.00 .000 .00 .00 .000	.00 .000 .00 .00 .000	.00 .000 .00 .00 .000
CAL YR WTR YR			MEAN 5		AX 31 AX 4.2	MIN .10 MIN .00	CFSM .41 CFSM .06		5.58 AC-F1 .83 AC-F1	3630 539		

08158810 BEAR CREEK BELOW FARM ROAD 1826 NEAR DRIFTWOOD, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.---Chemical, biochemical, and pesticide analyses: March 1978 to current year. Radiochemical analyses: October 1979 to September 1980.

		STREAM- FLOW, INSTAN- TANEOUS	SPE- CIFIC CON- DUCT- ANCE	(S)	ARD	EMPER-	COLOR (PLAT- INUM- COBALT	TUR- BID- ITY	S	YGEN, DIS- OLVED	DIS- SOLVED (PER- CENT SATUR-	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY	COLI- FORM, FECAL, 0.7 UM-MF (COLS./	KF AGAR (COLS. PER
DATE		(CFS)	(UMHOS) UNI	ITS) (DEG C)	UNITS)	(NTU)	()	MG/L)	ATION)	(MG/L)	100 ML)	100 ML)
FEB 28 APR	1000	1.3	48	9	8.3	9.5	<1	1.4		10.4	92	1.2	120	88
	0900	.45	51	1	7.6	15.5	5	1.5		8.4	86	1.4	K48	K48
DATE	HARD- NESS (MG/I AS CACO3	NONC BONA (MG	S, CA AR- D TE S /L (LCIUM IS- OLVED MG/L S CA)	MAGNE SIUM DIS- SOLVE (MG/L AS MG	DIS- D SOLVED (MG/L	SORP TIO	- 1 N SC	OTAS- SIUM, DIS- DLVED MG/L S K)	ALKA- LINITY FIELD (MG/L AS CACO3)	SOLV (MG/	ED SOL L (MG	E, RI - D VED SO /L (M	UO- DE, IS- LVED G/L F)
FEB 28 APR	2.7	70	43	78	19	8.0		.2	.80	230	0 30	15		•20
17	27	70	46	75	19	8.3		2	.90	220	0 28	12		.20
DATE	SILICA DIS- SOLVE (MG/I AS SIO2)	CONS D TUEN DI SOL	OF RE TI- AT TS, DE S- S VED PE	LIDS, SIDUE 105 G. C, US- NDED MG/L)	SOLIDS VOLA- TILE, SUS- PENDED (MG/L	GEN, NITRIT TOTAL (MG/L	GEN E NO2+NO TOTA	03 AMN - TO	ITRO- GEN, MONIA OTAL MG/L S N)	NITRO- GEN, ORGANIO TOTAL (MG/L AS N)	MONIA C ORGAN TOTA	M- + PHO IC PHOR L TOT L (MG	JS, ORG AL TO /L (M	BON, ANIC TAL G/L C)
FEB 28 APR	8.	0	300	6		2 <.010	0 <.	0	.070	.13	3 .	20 <.:	200	1.9
17	9.	2	280	<2	<	2 <.010	0 <.	0	.110	.19	9.	30 .	010	1.3

181 COLORADO RIVER BASIN 08158840 SLAUGHTER CREEK AT FARM ROAD 1826 NEAR AUSTIN. TX

LOCATION.--Lat 30°12'32", long 97°54'11", Travis County, Hydrologic Unit 12090205, 1.7 mi south the intersection of U.S. Highway 290 and Farm Road 1826 and 11.9 mi southwest of the State Capitol Building in Austin.

DRAINAGE AREA. -- 8.24 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- January 1978 to current year.

GAGE .-- Water-stage recorder. Datum of gage is 876.14 ft National Geodetic Vertical Datum of 1929.

REMARKS .-- Water-discharge records good. No known regulation or diversion. There is a recording rain gage in the watershed.

AVERAGE DISCHARGE.--6 years (water years 1979-84), 4.99 ft³/s (8.22 in/yr), 3,620 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,080 ft3/s June 11, 1981 (gage height, 10.79 ft); no flow at times most years.

EXTREMES FOR CURRENT YEAR .-- Maximum discharge, 110 ft3/s Oct. 20 at 1545 hours (gage height, 5.01 ft), no peak above base of 500 ft3/s; no flow for many days.

		DISCHARGE	, IN CUB	IC FEET		OND, WATER MEAN VALUE	YEAR OCTOBE	R 1983 TO	SEPTEME	ER 1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.5 1.4 1.2 1.1	2.3 2.2 2.2 2.1 9.7	1.2 1.4 12 3.6 3.2	.91 1.0 1.0 1.0	1.1 1.2 1.2 1.2 1.2	.39 .42 .42 .63	.34 .36 .37 .30	.07 .07 .06 .06	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
6 7 8 9 10	1.0 1.0 .98 11 3.7	9.3 7.6 5.6 4.7 3.7	2.2 2.0 2.0 2.0 2.2	.91 .83 1.8 6.3 1.8	1.1 1.0 .88 1.1	.45 .42 .42 .38	.30 .30 .30 .27 .26	.06 .04 .03 .03	.01 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
11 12 13 14 15	3.3 4.0 3.2 2.8 2.6	3.2 3.1 2.8 2.6 2.0	1.9 1.8 1.7 1.6	1.6 1.6 1.6 1.6	1.0 1.0 .91 .91	.46	.24 .21 .18 .18	.02 .01 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
16 17 18 19 20	2.6 2.6 2.5 2.5	2.0 2.0 2.0 1.9	1.5 1.5 1.4 1.3	1.6 1.6 1.5 1.5	.82 .82 .88 .61	.46 .47 .49	.17 .13 .13 .13	.00 .01 .03 .04	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
21 22 23 24 25	7.1 4.8 4.1 4.0 3.3	1.6 1.8 2.0 1.6 1.6	1.3 1.1 1.2 .97	1.5 1.6 2.0 1.8 1.7	.59 .59 .57 .47	.42 .53 .46	.11 .10 .10 .10	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
26 27 28 29 30 31	3.1 2.6 2.6 2.4 2.4 2.4	1.6 1.9 1.3 1.3	1.0 1.0 1.1 .91 .91	1.6 1.5 1.5 1.5 1.2	.77 .39 .38 .38		.10 .08 .08 .07	.00 .00 .00 .00	.00 .00 .08 .01	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00
TOTAL MEAN MAX MIN CFSM IN. AC-FT	99.88 3.22 11 .98 .39 .45	88.6 2.95 9.7 1.3 .36 .40	58.80 1.90 12 .91 .23 .27 117	49.28 1.59 6.3 .83 .19 .22 98	24.11 .83 1.2 .38 .10 .11	13.88 .45 .80 .34 .06	5.69 .19 .37 .07 .02 .03	.64 .021 .07 .00 .003 .00	.18 .006 .08 .00 .001	.00 .000 .00 .00 .000	.00 .000 .00 .00 .000	.00 .000 .00 .00
CAL YR WTR YR					MAX 93 MAX 12	MIN .18 MIN .00	CFSM .37 CFSM .11	IN 4.96 IN 1.54	AC-FT AC-FT	2180 676		

08158840 SLAUGHTER CREEK AT FARM ROAD 1826 NEAR AUSTIN, TX--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical and biochemical analyses: June 1983 to current year.

DATE	TIME	FI INS TAN	REAM- LOW, STAN- NEOUS CFS)	SPE CIF CON DUC AND	IC I- ET- EE	PH (STA AR UNIT	ND- D	TEMI ATU	JRE	INU	AT- M- ALT	B	TUR- ID- TY TU)	S	GEN, DIS- DLVED MG/L)	SO (P C SA	GEN, IS- LVED ER- ENT TUR- ION)	DE O	YGE EMAN BIO- CHEM ICAL DA (MG/	D, - Ý (COLI- FORM, FECAL, 0.7 UM-MF COLS./ 00 ML)	TOO FI KF (CO	TREP- COCCI ECAL, AGAR OLS. PER D ML)
NOV 05 FEB	1535	1	12		578		7.7	2	21.0		30	2	5		7.5		87		2	.5	30000	, (63000
28 APR	1030		.38		699	1	8.2	1	11.5		<1		1.0		10.8		100			.5	K3	,	K12
17	0940		.15		672		7.6	1	17.5		5		1.1		9.5		102		2	.0	K19)	K5
DATE	HARD- NESS (MG/L AS CACO3)	NON BON (M	ARD- ESS, NCAR- NATE MG/L ACO3)	(MG	VED	MAGI SII SOL' (MG	UM, S- VED /L		3-	SOD A SOR TI RAT	P- ON	SO SO (M	TAS- IUM, IS- LVED G/L K)	FI (N	KA- HITY ELD IG/L AS ACO3)	DI	LVED G/L) S	CHLO RIDE DIS- SOLV (MG/ AS C	ED L	FLUO- RIDE, DIS- SOLVEI (MG/L AS F)	D1 S0 (N	LICA, IS- DLVED MG/L AS IO2)
NOV																							
O5 FEB	280		78	78		20		18			• 5		1.9		200		54		39		.20		7.8
28 APR 17	350		100	97		26		22			.5		.50		250		55		58		.20		5.4
17	310	,	85	83		26		21			.5		.50		230		46		53		•20		7.3
DAT	SUN CON TUI I SO	IDS, 1 OF ISTI- ENTS, DIS- DLVED 1G/L)	SOLI RESI AT 1 DEG. SUS PEND (MG	DUE 05 C, ED	SOLIE VOLA TILE SUS- PENDE (MG/	, 1	NITI GEI NITRA TOTA (MG,	N, ATE AL /L	NITE GEN NITE TOTA (MG/ AS N	N, LTE AL /L	NIT GEI NO2+I TOTA (MG AS	N, NO3 AL /L	GE	CAL G/L	ORGA TOT	CAL G/L	GEN MON ORG TO (M	IA +	P	PHOS- HORUS TOTAL (MG/L AS P)	ORG TO	RBON, GANIC OTAL MG/L G C)	
NOV 05. FEB		340		19		<1		.08	.0	020		.10	10	060		.74		.80		.03	0	4.4	
28.		410		5		<2			<.0	010	<	.10		070		.13		.20)	<.20	0	1.3	
17.	••	370		4		<2			.0	010	<	.10	W.	120		.28		.40	1	.01	0	1.6	
				DATE		TIME		RSENI DIS- SOLVE (UG/L AS AS	D SC	ARIUM DIS- DLVED (UG/L AS BA		ADMI DIS SOLV (UG/ AS C	ED L	CHRO MIUM DIS- SOLV (UG/ AS C	ED L	OPPEI DIS- SOLVI (UG/I	ED L	SOL (UG	S- VED				
				VON																			
				05	•	1535		<	1	3	4		<1	<	10		1		14				
					DATE	5	LEAD, DIS- SOLVI (UG/I	ED.	MANGA NESE, DIS- SOLVE (UG/L AS MN	ED M	ERCUI DIS- SOLVI (UG/I	E D	SELE NIUM DIS SOLV (UG/ AS S	i, ED L	SILVE DIS SOLV (UG/ AS A	ED L		S- VED /L					
					NOV 05					8	<			3		<1		4					

183 COLORADO RIVER BASIN 08158920 WILLIAMSON CREEK AT OAK HILL, TX

LOCATION.--Lat 30°06'06", long 97°51'36", Travis County, Hydrologic Unit 12090205, on downstream side of bridge on U.S. Highway 290 in Oak Hill, 0.8 mi east of the intersection of U.S. Highway 290 and State Highway 71, and 7.7 mi southwest of the State Capitol Building in Austin.

DRAINAGE AREA. -- 6.30 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- January 1974 to February 1977 (periodic discharge measurements only), January 1978 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 798.68 ft National Geodetic Vertical Datum of 1929 (levels from city of Austin bench mark).

REMARKS.--Water-discharger records fair. Station is part of hydrologic-research project to study rainfall-runoff rela-relation for the Austin urban-rural areas. Station is equipped with an automatic water-quality sampler. There are two recording rain gages located in the watershed above this station.

AVERAGE DISCHARGE. -- 6 years, 4.07 ft3/s (8.77 in/yr), 2,950 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,170 ft3/s June 11, 1981 (gage height, 8.55 ft); no flow for many days each year.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 497 ft3/s Nov. 6 at 2000 hours (gage height, 3.82 ft); no peak above base of 500 ft3/s; no flow for many days.

		DISCHARGE	, IN CUE	BIC FEET H		, WATER Y AN VALUES	EAR OCTOBER	1983 T	O SEPTEM	BER 1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.17	2.2	1.5	.49	.65	.29	.37	.07	.00	.00	.00	.00
2	.14	2.2	1.5	. 54	.70	.29	. 39	.14	.00	.00	.00	.00
2 3 4	.10	2.5	12	.63	.75	.27	.45	.12	.00	.00	.00	.00
4	.07	3.3	1.5	.69	.85	.95	.43	.00	.00	.00	.00	.00
5	.07	16	1.4	.76	.70	.29	.58	.00	7.3	.00	.00	.00
6	.04	30	1.2	.93	.62	.21	.46	.00	.00	.00	.00	.00
7	. 04	9.9	1.0	.94	.58	.20	. 55	.00	.00	.00	.00	.00
8	.07	5.1	.95	4.8	.52	.22	. 49	.00	.00	.00	.00	.00
9	33	4.0	.90	5.9	1.2	. 22	.37	.00	.00	.00	.00	.00
10	2.0	2.9	.93	.72	1.0	.22	.37	.00	.00	.00	.00	.00
11	4.1	2.5	.93	.70	.95	.29	.29	.00	.00	.00	.00	.00
12	6.8	2.2	.90	.80	.88	1.7	.29	.00	.00	.00	.00	.00
13	2.7	2.1	.88	.79	.85	.29	.29	.00	.00	.00	.00	.00
14	2.0	2.0	.83	.85	.82	.29	.29	.00	.00	.00	.10	.00
15	1.2	1.6	.81	.74	.78	.32	.29	.00	.00	.00	.00	.00
16	1.2	1.8	.75	.80	.74	. 52	.33	.02	.00	.00	.00	.00
17	1.2	2.0	.70	.77	.70	.41	.29	.00	.00	.00	.00	.00
18	1.2	1.7	.70	.70	1.0	.64	. 29	.09	.00	.00	.00	.00
19	1.2	1.7	.81	.57	. 88	.38	.28	.08	.00	.00	.00	.00
20	20	1.5	.86	.58	.75	. 34	.23	.00	.00	.00	.00	.00
21	2.3	1.5	.85	.62	.72	. 22	. 21	.00	.00	.00	.00	.00
22	1.5	1.5	.58	.75	.68	. 26	.16	.00	.00	.00	.00	.00
23	1.2	2.2	.57	. 95	.64	.38	.09	.00	.00	.00	.00	.00
24	1.2	1.2	.55	.80	.64	.31	.06	.00	.00	.06	.00	.00
25	1.1	1.4	.48	.75	.35	.31	.06	.00	.00	.00	.00	.00
26	.97	1.5	.57	.70	.59	.37	.16	.00	.00	.00	.00	.00
27	.89	2.2	.53	.65	. 22	.39	.12	.00	.00	.00	.00	.00
28	1.0	1.7	.48	.60	.22	.45	.03	.00	.00	.00	.00	.00
29	1.1	1.5	.40	.59	.29	.50	.12	.00	.00	.00	.00	.00
30	1.0	1.6	.46	.57		.42	.03	.00	.00	.00	.00	, .00
31	1.8		.46	.56		.53		.00		.00	.00	
TOTAL	91.36	113.5	36.98	31.24	20.27	12.48	8.37	.52	7.30	.06	.10	.00
MEAN	2.95	3.78	1.19	1.01	.70	.40	.28	.017	.24	.002	.003	.000
MAX	33	30	12	5.9	1.2	1.7	.58	.14	7.3	.06	.10	.00
MIN	.04	1.2	.40	.49	. 22	.20	.03	.00	.00	.00	.00	.00
CFSM	.47	.60	.19	.16	.11	.06	.04	.003	.04	.000	.000	.000
IN.	.54	.67	.22	.18	.12	.07	.05	.00	.04	.00	.00	.00
AC-FT	181	225	73	62	40	25	17	1.0	14	.1	.2	.00
											. 2	.00
CAL YR	1983 TOT.	AL 980.84	MEAN 2	.69 MAX	50 MIN	.00 C	FSM _43 I	N 5.79	AC-FT 1	950		

CAL YR 1983 TOTAL 980.84 WTR YR 1984 TOTAL 322.18 MEAN 2.69 MEAN .88 MIN .00 MIN .00 IN 5.79 IN 1.90 MAX 33 CFSM .14 AC-FT -639

08158920 WILLIAMSON CREEK AT OAK HILL, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Occasional discharge measurements: January 1974 to current year. Chemical, biochemical, and pesticide analyses: January 1974 to current year. Radiochemical analyses: October 1979 to September 1980.

		STREAM FLOW, INSTAN	CON- DUCT-	PH			TUR- BID-	OXYGEN DIS-	CENT	DEMAND, D BIO- CHEM- ICAL,	FECAL, 0.7 UM-MF	KF AGAR (COLS.
DATE	TIME	TANEOU (CFS)		ARD UNITS)	ATURE (DEG C)	COBAL		SOLVE (MG/L			(COLS./	
OCT	15/5	447		•							54000	
20	1545 1600	117 239	43			60	600			-1	200000	
20	1615	169	21									
20 NOV	1630	123	18	8	La Habani					- 11	18.0	a Water
05	1352	117	38								K36000	
05	1407 1422	1 90 1 5 4	30									
05	1437	117	19	7		. 3:	600					
05	1452	84	18					•		, , ,		
05 FEB	1507	73	19	3 7.9						7.6	92000	150000
28 APR	1100	.1	0 66	1 8.6	10.0	(1 2.2	13.	8 124	4 1.2	2 84	160
17	1013	•2	0 70	6 8.0	16.5	5 10	2.5	13.0	0 136	5 2.1	140	120
DATE	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR BONATE (MG/L CACO3)	SOLVE (MG/L	DIS- D SOLVEI (MG/L	SODIUM, DIS- SOLVED (MG/L	SORP- TION RATIO	POTAS- SIUM, DIS- SOLVEI (MG/L AS K)	LINITY FIELD	SULFATI DIS- SOLVEI (MG/L) AS SO4)	DIS- D SOLVEI (MG/L	(MG/L	SILICA, DIS- SOLVED (MG/L AS SIO2)
OCT	CACOS	CACOS) AS CA) AS MG)	AS NA)		AS K)	CACOS) AS 504,	AS CL)	AS F)	5102)
20								180	0			
20								- 130	0			
20												
NOV					9			,			120	
05												
05	-											
05												
05	82											
05 FEB 28				5.4	5.0	.2		72		7.5	•20	
APR	350			27	17			300		31	.30	
17	360			26	17	.4	1.0	300	36	33	.30	8.8
	DATE	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)
	OCT											
	20				.38	.020	.40	.040	.76	.80	4.00	13
	20				.28	.020	.30	.050	1.7	1.7	1.20	22 27
	20				.28	.020	.30	.040	3.2 4.5	3.2 4.5	1.00	29
	NOV		- 1			0.70	40	000	4.0	5.0	600	22
	05				.33 .21	.070	.40	.080	4.9 6.9	5.0 7.0	.600 .710	23 24
	05											
	05		1180	120	.21	.090	.30	.090	2.9	3.0 5.5	.470	24 27
	05	110				.070		.000	3.4			
	FEB 28	390	4	<2		<.010	<.10	.120	.28	.40	.130	2.8
	APR 17	400	3	<2		<.010	<.10	.120	.18	.30	.110	2.0
			3	-						•33		2.0

185

COLORADO RIVER BASIN

08158920 WILLIAMSON CREEK AT OAKHILL, TX--Continued

		D.F	TI ATE	ARSE DI SOL ME (UG AS	S- DIS VED SOLV	S- VED G/L	ADMIUM DIS- SOLVED (UG/L AS CD)	CHR MIU DIS SOL (UG AS	M, COPI - DIS VED SOI -/L (UC	S- D: LVED SOI G/L (UC	ON, IS- LVED G/L FE)		
		OC1		45	1 <	<100	<1		<10	2	50		
		NOV	7	07	1	23	42		<10	4	69		
			DATE OCT 20 NOV 05	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)		RY NII - D ED SOI L (U	LE- UM, IS- LVED G/L SE)	SILVER, DIS- SOLVED (UG/L AS AG)	ZINC, DIS- SOLVED (UG/L AS ZN)			
DATE	TIME	AME- TRYNE TOTAL	ATRA- ZINE, TOTAL (UG/L)	CYAN- AZINE TOTAL (UG/L)	METHO- MYL TOTAL (UG/L)	PROM TON TOTA (UG/	E TRY	OME- YNE TAL G/L)	PRO- PAZINE TOTAL (UG/L)	PROPHAM TOTAL (UG/L)	SEVIN, TOTAL (UG/L)	SIMA- ZINE TOTAL (UG/L)	SIME- TRYNE TOTAL (UG/L)
NOV 05	1422	<.10	<.10	<.10	<2.0		.1	<.1	<.10	<2.0	<2.0	<.10	<.1

08158970 WILLIAMSON CREEK AT JIMMY CLAY ROAD, AUSTIN, TX

LOCATION.--Lat 30°11'21", long 97°43'56", Travis County, Hydrologic Unit 12090205, at Jimmy Clay Road, 0.5 mi southeast of the intersection of Jimmy Clay and Nuckles Crossing Roads, and 5.9 mi south of the State Capitol in Austin.

DRAINAGE AREA. -- 27.6 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--November 1974 to September 1975 (periodic discharge measurements only), September 1975 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 493.88 ft National Geodetic Vertical Datum of 1929 (city of Austin bench mark). Prior to Oct. 1, 1982, at datum 3.30 ft higher.

REMARKS.--Water-discharge records good. No known regulation or diversion in watershed. There are three recording rain gages located in the watershed. The station is part of a hydrologic research project to study the rainfall-runoff relationships for the Austin urban-rural areas.

AVERAGE DISCHARGE.--9 years, 8.39 ft³/s (4.13 in/yr), 6,080 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 14,100 ft³/s June 11, 1981 (gage height, 20.55 ft), present datum; no flow Aug. 16, 1984.

EXTREMES OUTSIDE PERIOD OF RECORD.--The maximum flood since 1869 occurred on Sept. 9 or 10, 1921 (stage and discharge not determined).

EXTREMES FOR CURRENT YEAR, -- Maximum discharge, 485 ft³/s Nov. 5 at 1715 hours (gage height, 7.75 ft), no peak above base of 500 ft³/s; no flow Aug. 16.

		DISCHARGE,	IN CUBIC	C FEET		ND, WATER YEAR MEAN VALUES	COCTOBER	1983	TO SEPTEMBER	1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	2.4 2.5 2.4 2.4 2.5	2.4 2.0 1.8 2.4 58	4.2 4.0 11 5.3 3.8	4.3 4.5 4.1 3.5 3.7	1.6 1.7 1.6 1.6	1.4 1.3 1.4 2.8	2.4 2.9 2.6 2.8 2.9	1.5 1.6 1.4 1.3	.18 .21 .27 .81	.33 .41 .36 .31	.95 .85 .70 .60	2.1 1.9 5.2 3.1 2.3
6 7 8 9	2.4 2.1 2.0 77 7.0	13 13 4.7 3.9 3.8	3.5 3.7 3.7 3.8 3.9	3.6 3.6 7.2 42 4.2	2.0 2.0 1.7 1.9	2.2 1.7 1.5 1.5	2.9 3.1 3.0 2.9 2.6	1.2 1.1 .94 .87	20 2.1 1.1 .92 .85	.32 .33 .37 .38 .38	.40 .35 .25 .24	2.1 2.1 1.9 2.2 2.2
11 12 13 14 15	2.8 10 3.1 3.0 2.8	3.7 3.4 3.4 3.1 3.0	3.2 3.2 3.2 3.3 3.2	3.6 3.0 2.6 2.0 2.0	2.2 1.7 1.7 1.7	1.6 12 3.6 2.6 2.1	2.4 2.8 2.9 2.1 1.6	.68 .74 .68 .57	.79 .80 .87 .86	.38 .41 .45 .40	.18 .18 .15 .49	2.1 2.2 2.0 2.0 2.1
16 17 18 19 20	2.7 2.7 2.6 2.6	3.0 3.4 3.3 3.1 2.9	3.4 3.4 3.2 3.1 3.2	2.2 1.5 1.6 1.3 1.3	1.8 1.9 2.1 2.5 3.6	2.1 2.1 2.0 2.6 2.1	1.7 1.5 1.5 1.6	.38 .34 .47 .68	.68 .71 .75 .84	.40 .43 .46 .48	.08 .68 1.2 1.1	2.1 2.0 2.1 2.1 2.2
21 22 23 24 25	6.4 2.9 2.6 2.3 2.2	3.0 3.2 5.9 3.5 3.4	3.2 3.1 3.4 3.9 3.8	1.5 1.6 2.9 1.6 1.5	2.3 1.9 1.8 1.7	3.3 2.3 8.1 5.1 3.6	1.6 1.5 1.6 1.7	.43 .24 .21 .18 .16	.58 .55 .51 .54	.55 .60 .70 .80	1.4 1.4 1.5 1.4	2.0 1.7 1.5 1.3
26 27 28 29 30 31	2.3 2.2 2.2 2.7 2.8 2.4	19 17 5.4 4.4 4.2	3.6 3.7 3.4 3.4 3.5 4.2	1.6 1.7 1.4 1.8 1.5	5.2 2.7 1.5 1.3	3.5 3.5 3.5 3.5 2.9	1.8 1.9 1.9 1.8 1.6	.16 .16 .16 .14 .14	.49 .40 .34 .34 .33	.92 1.0 1.0 1.0 1.0	1.5 1.5 1.1 1.4 1.4	.85 .74 .75 .65
TOTAL MEAN MAX MIN CFSM IN. AC-FT	176.0 5.68 77 2.0 .21 .24 349	206.3 6.88 58 1.8 .25 .28 409	118.5 3.82 11 3.1 .14 .16 235	120.4 3.88 42 1.3 .14 .16 239	58.8 2.03 5.2 1.3 .07 .08 117		64.9 2.16 3.1 1.5 .08 .09 129	20.26 .65 1.6 .14 .02 .03 40	51.91 1.73 20 .18 .06 .07 103	17.26 .56 1.0 .31 .02 .02 .34	26.14 .84 1.9 .08 .03 .04	57.89 1.93 5.2 .65 .07 .08 115
CAL YR WTR YR					MAX 134 MAX 77		FSM .25 FSM .10	IN 3				

08158970 WILLIAMSON CREEK AT JIMMY CLAY ROAD, AUSTIN, TX--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: January 1975 to current year. Radiochemical analyses: October 1979 to September 1980.

DATE		TIME	STRE FLO INST TANE (CF	W, AN- OUS	SPE- CIFI CON- DUCT ANCE (UMHO	-	PH (STAN ARD UNITS		EMPER ATURE DEG (2	COL (PL INU COB UNI	AT-	- Т	TUR- BID- ITY (NTU)	-	OXYGE DIS SOLV (MG)	S- /ED	OXYGE DIS SOLV (PER CEN SATU ATIO	ED T R-	OXYGE DEMAN BIO- CHEM ICAL 5 DA (MG/	D, - Y	FORM FECA 0.7 UM-N (COLS	i, iL, iF	STRI TOCOO FECA KF AC (COL: PEI 100 I	CCI AL, GAR S.
NOV 05		1520	3	8	6	579	7	.2	21.	. 5		30	0	44			8.8		67	30		320	00	К5	100
FEB 27		1000		2.5	6	22	7	. 7	12.	. 8			5	4.4	4	8	3.1		78	5	.2		40	12	200
MAR 23		1040		2.9		26		.5	19.			60		58			.3		58	15		K	90	56	600
APR 16		1020		1.8		30		.5	17.			20		3.	,		.1		53		.3		60		300
JUN 05		0800				78								80			2		73.		.5	K230			000
AUG								.0	22.			150									.4		.00		500
22		0905		1.1	1	26	6	.6	27.	.0		25	5	1.5	5	2	. 6		33	,	• 4	12	.00		000
DATE	1	HARD- NESS (MG/L AS CACO3	NONC. BONA (MG	S, AR- TE /L	CALCI DIS- SOLV (MG/ AS C	ED	MAGN SIU DIS SOLV (MG/ AS M	M, SO ED SO L (DDIUM DIS- DLVEI (MG/L)	SOD A SOR TI RAT	D- P- ON	5	SIUN DIS- SOLVI (MG/I	M, ED	ALKA LINIT FIEL (MG/ AS CACO	Y .D L	SULFA' DIS- SOLV! (MG/I	ED L	CHLO RIDE DIS- SOLV (MG/ AS C	, ED L	FLUC RIDE DIS SOLV (MG/ AS E	ED L	SILIO DIS- SOLV (MG, AS SIO2	VED /L
NOV																									
05 FEB	•	25	0	41	82		11		39			1		5.2	2	2	10	59		49		9	50	11	l)
27 MAR		28	0	47	91		12		28			. 8	8	2 . 7	7	2	30	33		46			40		7.0
23 APR		250	0	23	78		14		43			1		7.5	5	2	30	44		60		•	50	10)
16 JUN		32	0	34	100		18		47			1		5.0)	2	90	33		70			50	14	4
05		110	0.	2	38		4 .:	2	13			.6	6	2.7	7	1	10	16		14			30	(6.6
AUG 22		160)	30	39		16		74		9	3		11		1	33	64		90			80	11	1
	DAT		SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	RE AT DE S PE	LIDS, SIDUE 105 G. C, US- NDED MG/L)	VC TI SU PEN	IDS, DLA- ILE, IS- IDED	NITR GEN NITRA TOTA (MG/ AS N	I, ATE AL 'L	NII TO	TRO- GEN, CRITE OTAL MG/L G N)		NITE GEN NO2+N TOTA (MG/ AS N	103 L L	AMM TO (M	TRO- GEN, IONIA OTAL IG/L G N)	OR T	ITRO- GEN, GANIC OTAL MG/L S N)	GEN MON ORGA TO' (M	TRO- ,AM- IA + ANIC TAL G/L N)	PHO TO (M	HOS- DRUS, DTAL HG/L G P)	ORO TO	RBON, GANIC OTAL MG/L S C)	
	NOV 05.		380		180		47		21		.290			50	3	.30		4.7		8.0	2	.10		20	
	FEB 27.		360		6		<2		68		.120			80		.810		.69		1.5		.330		4.1	
	MAR 23.		390		89		21		79		.210		1.		7	.10		.40		7.5	1	.50		5.5	
	APR 16.		460		5		<2									.70		1.3		5.0		.850		4.3	
	JUN								65		.150			80	4									12	
	O5.		160		289		78		25		.050			30		.200		1.8		2.0		.500			
	22.	••	390		9		<1	3.	2	1	.10		4.	3	3	.20		2.3	1	5.5	/	.60		8.0	
					DATE	Т	IME	ARSEN DIS SOLV (UG/ AS A	ED L	DI SOL (U	IUM, S- VED G/L BA)		CADMI DIS SOLV (UG/ AS C	ED L	MI DI SO (U	IRO- UM, S- LVED IG/L CR)	S (PPER, IS- OLVED UG/L S CU)	SOI (UC	ON, IS- LVED G/L FE)					
				(0V 05	1	520		5		66			<1		<10		2		75					
				(UN 05	0	800		1		47			1		<10		2		44					
					JG 22	0	905		7		37			<1		<10		4		59					

COLORADO RIVER BASIN

08158970 WILLIAMSON CREEK AT JIMMY CLAY ROAD, AUSTIN, TX--Continued

	DATE	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	ZINC, DIS- SOLVED (UG/L AS ZN)	
	NOV 05	<1	180	<.1	<1	<1	12	
	JUN 05	<1	3	<.1	<1	<1	7	
	AUG 22	2	140	.1	<1	<1	76	
DATE	TIME	AME- TRYNE TOTAL	ATRA- TONE TOTAL (UG/L)	ATRA- ZINE, TOTAL (UG/L)	CYAN- AZINE TOTAL (UG/L)	CYPRA- ZINE TOTAL (UG/L)	METHO- MYL TOTAL (UG/L)	PROME- TONE TOTAL (UG/L)
JUN 05	0800	<.10	<.10	<.10	<.10	<.10	<2.0	.2
DA	TRY	OME - PRO- YNE PAZ: TAL TOTA G/L) (UG/	INE PRO	TAL TO	IN, Z	MA- SIME INE TONE TAL TOTA G/L) (UG/	TRYI	NE AL
JUN 05		<.1 <	(.10	<2.0 <2	.0	<.10 <	.10	<.1

COLORADO RIVER BASIN

08159000 ONION CREEK AT U.S. HIGHWAY 183 NEAR AUSTIN, TX

LOCATION.--Lat 30°10'40", long 97°41'18", Travis County, Hydrologic Unit 12090205, on right bank at downstream side of downstream bridge on U.S. Highway 183, 2.4 mi downstream from Williamson Creek, 3.2 mi southwest of Del Valle, and 7.5 mi southeast of the State Capitol Building in Austin.

DRAINAGE AREA. -- 321 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--May 1924 to March 1930, March 1976 to current year. In 1924-30 station was published as "near Del Valle."

GAGE.--Water-stage recorder. Datum of gage is 442.85 ft State Department of Highways and Public Transportation datum. May 15, 1924, to Mar. 15, 1930, nonrecording gage at highway bridge 1,700 ft upstream at 6.42-foot higher datum.

REMARKS.--Water-discharge records fair. Flow is slightly regulated by several small ponds on main channel and tributaries above station. There are eleven recording rain gages located in the watershed.

AVERAGE DISCHARGE.--13 years (water years 1925-29, 1977-84), 76.2 ft3/s (3.22 in/yr), 55,210 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 76,000 ft³/s May 28, 1929 (gage height, 30.5 ft), present datum; no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1869 occurred about July 3, 1869, stage about 38 ft from newspaper accounts, and Sept. 9, 1921, stage 38.0 ft, from floodmark, present site and datum.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,470 ft³/s Nov. 5 at 1800 hours (gage height, 8.79 ft), no peak above base of 2,500 ft³/s; no flow for several days.

		DISCHARGE,	IN CUB	IC FEET		, WATER YEA AN VALUES	R OCTOBER	1983	TO SEPTEMBER	1984		
DAY	OCT	NOV	DEC	JAN	FEB	MA'R	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	9.5 8.3 8.1 7.6 7.2	9.3 8.9 9.3 10 254	14 14 33 21 16	11 11 11 11 11	6.3 6.5 7.1 7.7	7.7 7.2 7.0 5.9	8.7 8.7 8.7 8.2 8.2	2.3 2.3 2.3 2.0 1.7	.99 .99 .83 .93	.00 .00 .08 .09	.34 .41 .41 .89	5.4 4.2 8.2 11 5.3
6 7 8 9	7.2 7.2 7.2 314 61	141 54 28 16 13	15 14 14 14 14	11 11 11 205 20	7.7 7.9 8.2 8.4 9.2	12 7.6 7.2 6.8 6.2	8.2 8.2 7.7 7.7 7.2	1.2 .99 .99 .57	75 11 5.9 4.1 3.2	.00 .00 .00	1.2 1.1 .19 .00	3.1 2.5 2.6 2.0 2.0
11 12 13 14 15	23 31 17 15 13	12 11 11 10 9.9	14 14 14 14 14	9.2 7.7 6.8 6.8	9.9 9.9 9.9 9.9	5.4 20 10 7.3 7.2	7.2 6.8 6.8 6.7 5.4	.76 .61 .57 .56	2.5 2.3 2.9 2.0 1.7	.00 .00 .00	.00 .00 .00 .00	2.0 2.0 2.0 2.0 2.0
16 17 18 19 20	13 11 10 10 21	9.9 8.9 9.2 9.1 8.7	14 14 14 14 14	6.8 6.6 6.3 6.0 5.8	9.9 9.9 9.9 9.5 9.4	6.8 6.8 6.3 6.3	5.4 5.4 4.9 4.9	.57 .57 .87 1.6 3.3	1.4 .74 .57 .41	.00 .00 .00	.16 .00 .00 .26 .26	.76 .59 .57 1.1 2.4
21 22 23 24 25	48 14 12 11 10	8.7 8.9 21 15	14 14 13 13	5.8 5.8 7.5 7.8 6.8	11 11 11 9.9 9.4	5.8 6.5 14 18 13	4.5 3.6 2.6 2.6 1.4	3.7 2.8 2.0 1.9	.57 .40 .14 .18	.00 .00 .00	.00 .35 .21 .21	3.6 4.5 5.1 3.7 2.9
26 27 28 29 30 31	9.3 9.3 9.3 9.3 9.3	55 153 31 19 16	11 11 11 11 11 11	6.8 6.8 6.3 6.3	18 16 9.0 7.7	11 11 10 9.3 9.2 8.7	2.3 3.0 2.3 2.3 2.3	1.4 1.4 1.2 .77 .76	.05 .00 .00 .00	.00 .00 .01 .15 .21	.21 .21 .21 .16 .32 .80	3.0 1.8 1.8 2.5 3.2
TOTAL MEAN MAX MIN CFSM IN. AC-FT	752.1 24.3 314 7.2 .08 .09 1490	982.8 32.8 254 8.7 .10 .11 1950	441 14.2 33 11 .04 .05 875	459.0 14.8 205 5.8 .05 .05 910	276.4 9.53 18 6.3 .03 .03 548	316.0 10.2 49 5.4 .03 .04 627	166.8 5.56 8.7 1.4 .02 .02	43.45 1.40 3.7 .41 .004 .01 86	160.50 5.35 75 .00 .02 .02 318	.75 .024 .21 .00 .000	10.01 .32 1.2 .00 .001 .00	92.54 3.08 11 .57 .01 .01

CAL YR 1983 TOTAL 17831.70 MEAN 48.9 MAX 2220 MIN 3.0 CFSM .15 IN 2.07 AC-FT 35370 WTR YR 1984 TOTAL 3701.35 MEAN 10.1 MAX 314 MIN .00 CFSM .03 IN .43 AC-FT 7340

08159000 ONION CREEK AT U.S. HIGHWAY 183 NEAR AUSTIN, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: October 1976 to current year. Sediment analyses: October 1976 to September 1982. Radiochemical analyses: October 1979 to September 1980.

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

															OXYGE	N, (OXYGEI	N COI	LI-	ST	REP
ATE	TIME	STREA FLOW INSTA	W, AN- OUS	SPE- CIFI CON- DUCT ANCE (UMHO	C I - (ST	PH CAND-	ATU	RE	LNU	AT- M- ALT	TUR BID ITY	-	OXYGE DIS SOLV	ED	DIS SOLV (PER CEN SATU	ED T R-	BIO- CHEM- ICAL 5 DA	FEC O.7 UM-	CAL, MF LS./	KF (CO	CAL AGA LS. ER
В		(OF	3)	(onne	ON I	TS)	(DEG	()	UNI	15)	(NTU	,	(MG/	۲)	ATIO	N)	(MG/I	L) 100	riL)	100	FIL
7	0910	20		5	76	8.2	14	4.0		<1	6.	0	8	.7		86	. 2	.2 I	340	>:	2000
R 6	1125	5	.4	5	36	8.6	2	1.0		10	1.	1	13	.0	1	47	1.	.4 K1	600		180
N 5	0900	82		6	11	8.0	2	7.0		75	38		4	.6		59	4.	.2	5500	K	6000
G 2	0946		. 93	7	07	7.0	2	7.5		7		50	4	.6		59	2.	.7 2	100		38
ATE	HARD- NESS (MG/L AS	HARI NESS NONCA BONAT (MG/	AR- CE /L	CALCI DIS- SOLV (MG/	ED SOL (M	GNE- SIUM, DIS- DLVED	SODII DIS- SOLVI (MG)	ED /L	SOD A SOR TI RAT	D- P- ON	POTA SIU DIS SOLV (MG/	M, ED L	ALKA LINIT FIEL (MG/ AS	Y D L	SULFA DIS- SOLV (MG/	ED L	CHLO- RIDE, DIS- SOLVI (MG/I	RII DI ED SOI L (MC	DE, IS- LVED G/L	(Mo	S- LVE G/L S
	CACO3)	CACC	13)	AS C	A) AS	MG)	AS 1	NA)			AS K)	CACO	3)	AS SO	4)	AS CI	L) AS	r)	510	02)
3 7	230		43	75	1	1	34			1	3.	2	1	90	41		46		.40		6.
· · ·	200		41	64		9.9	33			1	2.	1	1	60	54		42		.40		9.
	180		14	49	1	5	53			2	4.	2	1	70	27		74		.40		16
	190		14	50	1	6	71		:	2	5.	8	1	77	35		95		.60		13
	ATE	ONSTI- UENTS, DIS- SOLVED (MG/L)	DEC SU PEN	SIDUE 105 G. C, JS- NDED MG/L)	VOLA- TILE, SUS- PENDED (MG/L	N	GEN, ITRATE TOTAL (MG/L AS N)	NIT TO (M	TRO- GEN, RITE TAL IG/L N)	NO2 TO	ETRO- GEN, 2+NO3 DTAL MG/L S N)	AM T	ITRO- GEN, MONIA OTAL MG/L S N)	ORG TC	TRO- GEN, GANIC DTAL MG/L S N)	GEN, MONI ORGA TOI (MG AS	ANIC TAL	PHOS- PHORUS, TOTAL (MG/L AS P)	OR T	RBON, GANIO OTAL MG/L S C)	
	7	330		15		8	.46		.040		.50		.080		.52		.60	.170		5.0)
API 1	R 6	310		13	<	2		<	.010		<.10		.060			<	.20	.010		1.7	,
JUI		340		181	6				.010		<.10		.080		2.4		.5	.470		9.7	
AUC		390		11	1			<	.100		<.10		.020		.78		.80	1.10		5.4	
																				. 3	
			Г	OATE	TIME		RSENIC DIS- SOLVED (UG/L AS AS)	SOL (U		SO (U	OMIUM DIS- DLVED IG/L S CD)	M D Si	HRO- IUM, IS- OLVED UG/L S CR)	SO (U	PER, S- DLVED G/L CU)	SOL (UG	S- VED				
			JU 0	N 5	0900		3		83		<1		<10		<1		8				
			AU		0946		15		57		<1		<10		<1		11				
				Da		LEAD DIS- SOLVI (UG/I	, NE - D ED SO L (U	NGA- SE, IS- LVED G/L MN)	SC (U	CURY OIS- OLVED JG/L G HG)	SOI (UC		D SOI	/ER, IS- LVED G/L AG)	SOI (UC	NC, IS- LVED G/L ZN)					
					5		2	26		<.1		<		<1		3					
				AUC	2		2	13		<.1		<		<1	439	7					

08159000 ONION CREEK AT U.S. HIGHWAY 183 NEAR AUSTIN, TX--Continued

DATE	TIME	AME- TRYN TOTA	TO NE TO	NE	ATRA- ZINE, TOTAL (UG/L)	CYAN- AZINE TOTAL (UG/L	ZII	NE	METHO- MYL TOTAL (UG/L)	PROME- TONE TOTAL (UG/L)
JUN 05	0900		<.10	<.10	<.10	<.	10	<.10	<2.0	•
DATE	TR	OME- YNE TAL G/L)	PRO- PAZINE TOTAL (UG/L)	PROPHA TOTAL (UG/L	TO	IN,	SIMA- ZINE TOTAL (UG/L)	SIME- TONE TOTAL (UG/L)	SIMI TRYN TOTA (UG	NE AL
JUN 05		<.1	<.10	<2.	0 <2	.0	<.10	<.1	0 4	(.1

192

COLORADO RIVER BASIN

08159165 BIG SANDY CREEK NEAR MCDADE, TX

LOCATION.--Lat 30°18'18", long 97°17'48", Bastrop County, Hydrologic Unit 12090301, on left bank at upstream side of left abutment of U.S. Highway 290 bridge, 3.8 mi northwest of McDade, 5.3 mi southeast of Elgin, and 14.2 mi upstream from mouth.

DRAINAGE AREA. -- 38.7 mi2.

PERIOD OF RECORD .-- July 1979 to current year.

GAGE. -- Water-stage recorder. Altitude of gage is 422 ft, from topographic map.

REMARKS.--Records good. No known regulation or diversion. Two recording rain gages are located in the watershed. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE. -- 5 years, 8.18 ft 3/s (2.87 in/yr), 5,930 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,410 ft³/s June 11, 1981 (gage height, 15.74 ft); no flow for many days each year.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 14 ft 3 /s Oct. 21 at 0200 hours (gage height, 3.30 ft), no peak above base of 325 ft 3 /s; no flow for many days.

		DISCHAR	RGE, IN O	CUBIC FEET	PER SECO	ND, WATE	R YEAR OCT	OBER 198	3 TO SEPT	EMBER 1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	. 06	. 06	.55	.51	1.5	. 75	.31	. 06	.00	.00	.00	.00
2	. 06	.10	.87	.51	1.5	.75	.30	.06	.00	.00	.00	.00
3	. 06	.12	1.6	.63	1.5	.75	.30	. 05	.00	.00	.00	.00
3 4	. 06	.14	1.1	.63	1.3	.75	.30	. 03	.00	.00	.00	.00
5	. 06	.17	.69	.63	1.3	.67	.30	. 03	. 09	.00	.00	.00
6	.06	.26	.39	.68	.93	.63	.55	. 05	.09	.00	.00	.00
7	.10	.30	.30	.75	.89	.70	.50	. 05	.13	.00	.00	.00
8	.14	.30	.17	.75	.89	.63	.38	. 03	. 05	.00	.00	.00
9	.14	.30	.17	2.4	1.1	.63	. 22	. 05	.00	.00	. 00	.00
10	.14	.30	.22	1.9	1.3	.62	.22	.06	.00	.00	.00	.00
11	.18	.30	. 28	1.5	1.3	.51	. 21	. 06	.00	.00	.00	.00
12	. 08	.30	.30	1.2	1.8	.64	.13	. 06	.00	.00	.00	.00
13	. 03	.30	. 22	1.1	1.6	.82	. 06	. 08	.00	. 00	. 00	.00
14	. 03	.35	. 06	.90	1.4	.80	.06	.13	.00	.00	.00	.00
15	. 05	.30	. 06	.89	1.2	.75	. 03	. 06	.00	.00	.00	.00
16	.06	.30	. 06	.89	1.2	.75	. 02	.06	.00	.00	.00	.00
17	. 09	.35	. 09	.89	1.0	.73	. 02	.11	.00	.00	.00	.00
18	.14	.40	.21	.89	1.0	.52	.03	.20	.00	.00	.00	.00
19	.12	. 44	.22	.83	.94	1.3	. 03	.20	.00	.00	.00	.00
20	1.1	.51	.22	.75	.94	1.1	.03	.14	.00	.00	.00	.00
21	7.5	.40	.22	.75	1.0	. 64	. 03	.14	.00	.00	.00	.00
22	1.4	.40	.22	.81	1.0	.51	.03	.13	.00	.00	.00	.00
23	.66	.57	.25	1.5	1.0	.63	. 03	.06	.00	.00	.00	.00
24	.33	.55	.30	1.6	1.1	2.1	. 05	.10	.00	.00	.00	.00
25	.24	. 51	.30	1.4	1.1	1.1	. 06	.13	.00	.00	.00	.00
26	.14	.40	.40	1.3	1.3	.68	.06	.06	.00	.00	.00	.00
27	.14	.40	.50	1.3	1.6	. 54	. 06	. 05	.00	.00	.00	.00
28	.08	.40	.63	1.3	1.1	.49	.06	. 03	.00	.00	.00	.00
29	. 06	. 51	.59	1.4	.75	.40	. 06	.00	.00	.00	.00	.00
30	. 06	.63	.41	1.4		.40	. 06	.00	.00	.00	.00	.00
31	. 06		. 44	1.5		.40		.00		.00	.00	
TOTAL	13.43	10.37	12.04	33.49	34.54	22.69	4.50	2.27	.36	.00	.00	.00
MEAN	. 43	.35	.39	1.08	1.19	.73	.15	.073	.012	.000	.000	.000
MAX	7.5	.63	1.6	2.4	1.8	2.1	.55	.20	.13	.00	.00	.00
MIN	. 03	.06	.06	.51	.75	.40	. 02	.00	.00	.00	.00	.00
CFSM	.01	.009	.01	.03	.03	.02	.004	.002	.000	.000	.000	.000
IN.	. 01	. 01	.01	.03	.03	. 02	.00	.00	.00	.00	.00	.00
AC-FT	27	21	24	66	69	45	8.9	4.5	.7	.00	.00 1	.00
CAL YR WTR YR					AX 755 AX 7	.5 MIN		SM .26 SM .01	IN 3.47 IN .13	AC-FT 717 AC-FT 26		

LOCATION.--Lat 30°15'54", long 97°19'39", Bastrop County, Hydrologic Unit 12090301, on right bank at downstream side of bridge on State Highway 95, 6.1 mi south of Elgin, 10.7 mi north of Bastrop, and 10.8 mi upstream from mouth.

DRAINAGE AREA -- 63.8 mi2.

WTR YR 1984 TOTAL

143.43

MEAN

.39

MAX

4.8

PERIOD OF RECORD,--July 1979 to current year.

Water-quality records.--Chemical, biochemical, and pesticide analyses: May 1979 to September 1981. Radiochemical analyses: May to September 1979.

GAGE .-- Water-stage recorder. Altitude of gage is 392 ft, from topographic map.

REMARKS.--Records good. No known regulation or diversion. Three recording rain gages are located in the watershed. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE. -- 5 years, 10.9 ft3/s (2.32 in/yr), 7,900 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,760 ft³/s June 11, 1981 (gage height, 21.54 ft); no flow for several days each year.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 6.6 ft 3/s Oct. 21 at 1715 hours (gage height, 2.76 ft), no peak above base of 500 ft 3/s; no flow for many days.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984
MEAN VALUES SEP DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL. AUG .00 . 00 . 02 1.6 .98 .20 . 02 . 02 2 . 02 .15 .30 1.6 1.2 1.4 .20 . 05 . 02 .00 .00 .00 3 .02 1.5 1.9 1.2 .17 . 00 . 18 1.0 . 19 . 02 . 00 . 00 .00 .33 .89 - 15 . 02 .00 5 . 02 .45 1.6 1.6 1.1 1.0 .15 . 05 . 02 .00 .00 . 02 .00 .00 6 1.2 .99 .03 . 02 .00 .38 1.6 .73 . 21 .57 .00 .00 . 02 .60 1.5 .15 . 03 . 02 . 00 8 1.5 .00 .02 .11 .50 .52 .72 .02 .02 .00 - 00 . 00 - 02 .13 .37 .59 .63 .20 . 02 . 02 . 00 . 00 10 . 02 .31 3.5 .77 .20 . 01 . 02 .00 .00 .00 .18 .63 2.5 . 00 11 . 01 . 00 . 04 .19 . 26 1.3 . 52 .20 . 03 .00 . 09 .00 12 -13 .23 1.5 - 04 .00 .35 2.1 .34 .00 . 22 .20 13 1.1 2.6 . 04 .00 .00 . 06 .00 .16 14 . 03 .21 1.9 .00 . 03 .00 .00 .00 15 .00 .00 . 03 . 21 .24 . 52 1.5 1.5 .10 . 00 . 02 .00 16 .03 .10 .23 .99 .82 .09 .00 .02 .00 .00 .00 . 09 .00 .33 17 . 03 . 52 .83 . 52 . 09 . 01 .00 .00 . 00 .00 18 . 03 .09 .42 .00 .00 .00 .56 .81 .09 .07 . 52 . 55 .00 . 07 .10 . 03 .00 20 .95 . 09 .39 .47 .48 .08 . 02 .00 .00 .00 .00 .00 21 4.8 .10 . 52 . 44 .57 . 47 . 05 . 09 .00 .00 .00 22 4.4 .54 .45 .23 .00 .00 .00 .00 .08 .61 . 05 . 02 23 24 2.4 .57 . 02 .27 .82 .58 .17 . 04 .00 .00 .00 . 00 .00 .91 .00 .00 .17 .52 .86 . 03 . 02 .00 25 .37 .71 1.6 . 48 1.1 . 03 . 01 .00 . 00 .00 .00 26 .21 .18 -90 1.3 .89 . 03 - 01 .00 .00 .00 .57 27 .15 .40 1.1 .89 2.0 . 42 . 03 . 01 . 00 .00 .00 .00 .13 .38 1.1 .72 .23 .00 .00 3.1 .03 .01 .00 .00 .96 . 00 . 00 29 .10 .29 .99 2.1 .23 . 02 . 01 .00 - 00 30 -10 -28 1.0 .23 .02 . 02 .00 .00 .00 .00 31 .11 1.7 .72 .00 .00 . 02 ---.20 ------------TOTAL 15.53 5.95 20.96 38.31 32.26 94 .00 .72 .00 24.82 3.55 . 39 . 013 . 023 .000 MEAN .50 .20 1.24 1.8 .12 . 030 .000 .68 1.11 .37 4.8 MAX 2.0 3.1 .00 .34 MIN . 02 . 08 . 21 . 44 .48 .17 . 02 . 00 . 00 . 00 . 00 . 00 .008 CFSM .003 - 01 - 02 .000 .000 .000 . 02 . 01 .002 .000 .000 1.4 . 01 .00 . 01 . 02 . 02 . 01 .00 .00 7.0 . 00 . 00 AC-FT 31 42 76 1.9 .00 .00 64 .8 CAL YR 1983 TOTAL 4473.37 MEAN 12.3 .00 CFSM .19 IN 2.61 AC-FT 8870 MAX 947 MIN

CFSM . 006

.00

AC-FT

08159200 COLORADO RIVER AT BASTROP, TX

LOCATION.--Lat 30°06'20", long 97°19'08", Bastrop County, Hydrologic Unit 12090301, on left bank in city park at Bastrop, 400 ft upstream from bridge on State Highway 71, 0.3 mi upstream from Gills Creek, 1.1 mi downstream from Piney Creek, and at mile 236.7.

DRAINAGE AREA. -- 39,979 mi2, approximately, of which 11,403 mi2 probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- March 1960 to September 1973, October 1975 to current year.

WTR YR 1984 TOTAL 467182 MEAN 1276 MAX 3500 MIN 155 AC-FT 926700

GAGE.--Water-stage recorder. Datum of gage is 307.38 ft National Geodetic Vertical Datum of 1929. Prior to May 10, 1960, nonrecording gage at same site and datum.

REMARKS.--Water-discharge records good. There are many diversions above stations for irrigation and municipal supply.

Regulation is the same as that for Colorado River at Austin (station 08158000). The city of Austin diverts water upstream from station by pumping into Decker Lake. The Lower Colorado River Authority diverts water upstream from station by pumping into Lake Bastrop. Gage-height telemeter at station.

AVERAGE DISCHARGE. -- 24 years, 2,091 ft 3/s (1,515,000 acre-ft yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 79,600 ft³/s Oct. 29, 1960 (gage height, 34.45 ft); minimum daily, 75 ft³/s Apr. 1, 1964.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1845, 60.3 ft July 7 or 8, 1869. Flood of June 16, 1935, reached a stage of 57.0 ft, and flood of Dec. 4, 1913, reached a stage of 53.3 ft, from information by local residents.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 3,630 ft³/s Jan. 18 at 0600 hours (gage height, 6.38 ft); maximum gage height, 8.07 ft June 29 at 2000 hours; minimum daily discharge, 155 ft³/s Mar. 2.

		DISC	HARGE, IN	N CUBIC FEET		SECOND, WATER MEAN VALUES	YEAR	OCTOBER 1983	TO SE	EPTEMBER 1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1550	268	379	350	226	163	1220	1720	2670	2930	1640	2600
2	1500	266	370	280	227	155	1310	1700	2700	3050	1440	2710
3	1430	262	398	320	217	187	1220	1680	2880	3020	1060	2670
2 3 4	1510	268	373	270	212		1120	1620	2930	2980	1520	2700
5	1460	277	449	290	216	208	1170	1580	3030	2560	1040	2720
6	1750	347	319	260	212	265	1360	1530	3310	2640	1690	2510
7	1800	649	280	240	207	305	1190	1670	3100	2630	1620	2250
8	1890	848	270	900	202	216	1320	1700	2930	2570	1600	2190
9	1760	488	311	527	226	212	1350	1670	2820	2300	1600	1890
10	2520	. 377	252	836	227	208	1210	1710	2530	2370	1590	1840
11	2170	340	264	478	233	206	1410	2120	2600	2330	1590	1850
12	1570	319	334	348	224	230	1470	2100	2550	2230	1900	1780
13	1570	269	331	295	221	456	1260	1940	2680	2190	2230	1800
14	1050	257	349	287	223	382	1380	2040	2870	2170	2020	2040
15	939	270	325	279	209	249	1710	2070	2730	1790	1950	1960
16	774	272	354	268	193	223	1830	2090	2830	1580	2230	1970
17	743	270	356	1590	195	212	1620	2510	2980	1600	1820	2060
18	732	267	396	3500	204	203	1890	2570	2860	1650	1710	2080
19	746	267	357	2240	181	205	1800	2610	2900	1530	1590	2040
20	795	260	346	546	200	187	1620	2400	2940	1500	1400	1960
21	828	264	343	369	191	220	1810	2260	2760	1490	1330	1820
22	916	433	343	335	210	178	1870	2150	2710	1880	1340	1590
23	744	594	828	323	202	331	1830	1970	2730	1760	1570	1570
24	445	389	736	318	353	414	1900	1750	2720	1640	1890	1570
25	346	429	659	321	475	520	1760	1710	2670	1960	1950	1640
26	315	388	1140	288	269	781	1650	1700	2800	2000	2010	1580
27	300	419	927	269	173	808	1990	2000	3060	1820	2200	1460
28	289	503	795	255	210	766	1810	2510	2940	1940	2240	1340
29	280	518	400	258	182	818	1870	2450	3240	1760	2260	1190
30	274	429	300	241		820	1830	2420	3080	1670	2400	1080
31	267		500	230		1120		2680		1660	2580	
TOTAL	33263	11207	13784	17311	6520	11467	46780	62630	85550	65200	55010	58460
MEAN	1073	374	445	558	225	370	1559	2020	2852	2103	1775	1949
MAX	2520	848	1140	3500	475	1120	1990	2680	3310	3050	2580	2720
MIN	267	257	252	230	173	155	1120	1530	2530	1490	1040	1080
AC-FT	65980	22230	27340		12930		92790		69700		09100	116000
CAL YR	1983 TOT	AL 425248	MEAN	1165 MAX	9400	MIN 185	AC-FT	843500				

08159200 COLORADO RIVER AT BASTROP, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical and biochemical analyses: October 1967 to September 1973, October 1975 to current year.

DATE	1	STREAM- FLOW, INSTAN- CANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	SOLVE	SO N, (P C ED SA	IS- DE LVED E ER- C ENT I TUR- 5	CAL, DAY	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)
OCT	2.52	5.44	5.52				0			2.11	
25 DEC	0900	400	598	8.2	19.5	4.	.2	46	.2	210	40
14 FEB	1105	362	677	8.4	14.0	9.	8	96	1.0	240	46
21	1320	200	686	8.5	13.0	14.	4	137	1.4	230	47
APR 16 JUN	0915	1170	575	7.8	19.0	4.	2	45	2.0	200	49
27 AUG	0910	2700	545	8.1	27.0	6.	4	81	.2	200	57
16	1035	2410	558	7.4	29.0	6.	4	84	1.1	200	53
DATE	CALCIU DIS- SOLVE (MG/L AS CA	DIS D SOLV (MG/	M, SODI - DIS ED SOLV L (MC	LUM, A	D- S P- D ON SO 10 (M	IUM, LI IS- F LVED (G/L	LKA- NITY TIELD MG/L AS ACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	DIS- SOLVEI (MG/L	(MG	E, S- VED /L
OCT											
25 DEC	51	20	36	5	1	3.7	170	46	57		.40
14 FEB	63	19	44		1	4.7	190	43	60		.70
21	58	20	50)	1	5.1	180	63	70		.80
APR 16	45	21	36	i	1	4.1	150	42	61		.40
JUN 27	46	20	31		1	3.8	140	38	59		.30
AUG 16		22	35			4.2	150	36	61		•40
10	43					4.2	150	30			•40
DATE	SILIC DIS- SOLV (MG/ AS SIO2	CONS ED TUEN L DI SOL	OF NITI- OTS, NITIS- TO VED (M	GEN, GERATE NIT OTAL TO IG/L (M	EN, RITE NO. TAL TO G/L (GEN, 2+NO3 A OTAL MG/L	NITRO- GEN, MMONIA TOTAL (MG/L AS N)	NITRO GEN, ORGANI TOTAL (MG/L AS N)	MONIA C ORGANI TOTAL (MG/L	I- + PH C PHO TO	OS- RUS, FAL G/L P)
OCT											
25 DEC	. 4	.5	320	<	.020	.90	.010	.5	9 .6	0	.410
14 FEB	. 1	.1	350	3.3	.030	3.3	.030	.8	7 .9	0 1	.60
21 APR	. 1	.5	380	2.1	.020	2.1	.040	.9	6 1.0	1	• 60
16	. 4	. 8	300	.64	.060	.70	.150	.6	5 .8	0	.410
JUN 27	. 4	.6	290	.39	.010	.40	.020	1.1	1.1		.270
AUG 16	. 6	.4	300	.39	.010	.40	.050	.5	5 .6	0	.300

08160700 COLORADO RIVER ABOVE COLUMBUS, TX

LOCATION.--Lat 29°43'09", long 96°34'16", Colorado County, Hydrologic 12090301, at right downstream side of bridge on State Highway 71 and 1.8 mi north of the intersection of State Highway 71 and Interstate Highway 10.

DRAINAGE AREA.--41,313 mi², approximately, of which 11,403 mi² probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- August 1983 to current year.

GAGE .- - Water-stage recorder. Altitude of gage is 169 ft, from topographic map.

REMARKS.--Water-discharge records good. Regulation is the same as that for Colorado River at Austin (station 08158000) and Colorado River at Bastrop (station 08159200). The Lower Colorado River Authority diverts water upstream from this station to Cedar Creek Reservoir, but there are many other diversions above station for irrigation and for municipal supply.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 2,960 ft3/s June 8, 1984 (gage height, 9.97 ft); minimum daily, 194 ft3/s Aug. 30.

EXTREMES FOR AUGUST TO SEPTEMBER 1983.--Maximum discharge, 2,370 ft³/s Aug. 12 (gage height, 9.17 ft); minimum daily, 501 ft³/s Aug. 20.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2,960 ft³/s June 8 at 1000 hours (gage height, 9.97 ft); minimum daily, 194 ft³/s Mar. 7.

		DISCHARGE,	IN CUB	IC FEET		WATER N VALUI	YEAR OCTOBE	R 1983	то ѕертемв	ER 1984		4
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1610	380	583	455	316	298	1000	1880	2250	2710	1450	2070
2	1370	365	507	382	304	282	1190	1870	2410	2570	1400	2210
2 3 4	1510	350	507	377	295	283	1340	1770	2410	2470	1390	2300
4	1450	340	422	397	281	254	1390	1790	2430	2500	1380	2390
5	1410	335	423	350	274	245	1340	1720	2560	2500	1300	2460
6	1440	410	403	331	257	196	1280	1670	2640	2470	1230	2450
7	1380	586	424	321	256	194	1270	1660	2780	2270	1290	2470
8	1570	564	419	310	261	229	1410	1670	2890	2210	1200	2410
9	1620	726	343	489	269	241	1310	1650	2740	2220	1400	2260
10	1690	871	323	604	279	313	1360	1650	2620	2180	1420	2190
11	1730	683	309	628	289	258	1370	1640	2530	2050	1430	2060
12	2150	538	314	910	297	249	1300	1690	2380	1980	1450	1950
13	1800	465	263	761	282	315	1400	2000	2380	2010	1480	1880
14	1570	420	255	573	279	260	1480	1970	2340	1980	1500	1780
15	1330	384	326	474	275	275	1340	1860	2400	1920	1730	1740
16	1110	339	345	419	273	494	1400	1930	2480	1880	1850	1870
17	1010	316	351	397	269	437	1680	1950	2380	1780	1770	1930
18	888	323	339	370	276	377	1760	2080	2420	1530	1850	1870
19	841	346	356	1000	261	716	1720	2690	2480	1440	1830	1910
20	822	330	374	1500	311	668	1880	2580	2420	1440	1680	1960
21	1020	313	386	1000	317	382	1830	2410	2440	1430	1600	1980
22	1150	315	359	700	280	351	1740	2280	2450	1350	1510	1930
23	931	319	387	600	275	348	1820	2180	2360	1320	1430	1860
24	974	325	369	500	280	511	1880	2100	2300	1370	1370	1730
25	883	608	601	460	273	375	1880	1960	2290	1540	1370	1610
26	730	531	897	440	310	485	1910	1800	2280	1510	1540	1560
27	593	462	718	420	481	648	1860	1720	2260	1510	1720	1530
28	502	469	1150	400	472	839	1790	1690	2300	1710	1770	1540
29	448	418	968	380	361	945	1960	1910	2450	1540	1870	1490
30	420	443	860	360		964	1850	2260	2470	1530	1960	1400
31	400		609	337		991		2270		1530	1990	
TOTAL	36352	13274	14890	16645	8653	13423	46740	60300	73540	58450	48160	58790
MEAN	1173	442	480	537	298	433	1558	1945	2451	1885	1554	1960
MAX	2150	871	1150	1500	481	991	1960	2690	2890	2710	1990	2470
MIN	400	313	255	310	256	194	1000	1640	2250	1320	1200	1400
AC-FT	72100		29530	33020	17160	26620		119600	145900	115900	95530	116600

WTR YR 1984 TOTAL 449217 MEAN 1227 MAX 2890 MIN 194 AC-FT 891000

COLORADO RIVER BASIN 197 08160700 COLORADO RIVER ABOVE COLUMBUS, TX--Continued

LOCATION.--Lat 29°43'09", long 96°34'16", Colorado County, Hydrologic Unit 12090301, at bridge on State Highway 71 and 1.8 mi north of the intersection of State Highway 71 and Interstate 10.

PERIOD OF RECORD .-- Chemical, biochemical, pesticide, and sediment analyses: October 1982 to September 1983.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1983 to September 1984. WATER TEMPERATURES: October 1983 to September 1984.

INSTRUMENTATION .-- Beginning October 1983, specific conductance and water temperature are recorded continuously at this station.

REMARKS.--Interruptions in the record were due to malfunctions of the instrument. Where maximum or minimum specific conductance values are not shown, mean value is estimated. Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and regression relationships between each chemical constituent and specific conductance. Regression equations developed for this station may be obtained from the Geological Survey District office upon request.

EXTREMES FOR CURRENT YEAR.--SPECIFIC CONDUCTANCE: Maximum daily, 924 micromhos Nov. 19; minimum daily, 434 micromhos Mar. 20.

	TIME	STREAM- FLOW, INSTAN- TANEOUS	SPE- CIFIC CON- DUCT- ANCE	PH (STAND- ARD	TEMPER- ATURE	COLOR (PLAT- INUM- COBALT	TUR- BID- ITY	OXYGEN, DIS- SOLVED	OXYGEN, DIS- SOLVED (PER- CENT SATUR-	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY
DATE		(CFS)	(UMHOS)	UNITS)	(DEG C)	UNITS)	(NTU)	(MG/L)	ATION)	(MG/L)
NOV 07 DEC	1352	600	581	8.1	22.5	5	23	7.5	87	1.6
20	1510	350	666	8.7	7.0	<1	1.1	12.9	107	.2
JAN 30 MAR	1548	362	611	8.7	14.0	<1	2.9	11.5	111	.7
12 APR	1510	260	679	9.2	22.0	<1	3.8	13.2	153	2.1
23	1413	2030	563	8.2	24.5	40	29	8.1	98	1.4
JUN 04	1522	2500	536	8.6	26.5	7	4.4	8.2	103	.7
JUL	1100	1350	563	8.4		13		8.2	109	.7
23 AUG					30.0		8.9			
27	1612	1730	565	8.8	32.0	20	4.0	9.2	127	.5
DATE	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS - SIUM, DIS - SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3)
NOV		200								
07 DEC	1400	2600	220	32	59	18	36	1	4.1	190
20 JAN	К6	К9	250	48	68	19	40	1	4.1	200
30 MAR	K5	K7	240	52	62	21	39	1	3.8	190
12	K1	K6	240	45	65	20	49	1	4.8	200
APR 23 JUN	24	84	200	53	45	22	35	1	4.1	150
04	K5	170	200	48	43	22	33	1	3.6	150
JUL 23 AUG	22	92	210	65	48	23	35	1	4.4	150
27	K19	640	210	56	46	22	36	1	4.1	150

08160700 COLORADO RIVER ABOVE COLUMBUS, TX--Continued

							1		
DATE	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)
	004)	110 011)		0102)	(110/11)	(110/11)	(1.0, 1)		
NOV 07 DEC	44	50	.40	4.5	330	30	<1	.48	.020
20	49	53	.50	1.6	360	<1	<1	1.3	.010
JAN 30	49	57	.40	4.4	350	<2	<2	23.5	<.010
MAR 12	62	64	.80	1.5	390	7	<2		.010
APR 23	41	58	.40	6.6	300	67	16	.37	.030
JUN 04	34	58	.40	3.1	290	19	<2		<.010
JUL 23	42	60	.40	6.6	310	18	12		<.010
AUG 27	42	62	.30	5.8	310	13	10	.19	.010
	- 14	1					100		100
	NITRO- GEN, NO2+NO3 TOTAL (MG/L	NITRO- GEN, AMMONIA TOTAL (MG/L	NITRO- GEN, ORGANIC TOTAL (MG/L	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L	PHOS- PHORUS, TOTAL (MG/L	PHOS- PHORUS, ORTHO, DIS- SOLVED (MG/L	CARBON, ORGANIC TOTAL (MG/L	CARBON, ORGANIC DIS- SOLVED (MG/L	PHENOLS TOTAL
DATE	AS N)	AS N)	AS N)	AS N)	AS P)	AS P)	AS C)	AS C)	(UG/L)
NOV 07	.50	.120	1.2	1.3	.270	.180	3.5	3.5	6
DEC 20	1.3	.010	.29	.30	.640	.650	2.8	6.1	
JAN 30	.50	.010	.49	.50	.260	.230	2.7	2.9	
MAR 12	<.10	.080	.52	.60	.610	.650	4.9	4.5	
APR 23	.40	.140	.56	.70	.510	.030		3.1	<1
JUN 04	<.10	.020	.28	.30	.200	.180	3.0	2.6	LAT LA
JUL 23	.20	.010	.49	.50	.260	.230	2.8	3.2	
AUG 27	.20	.030	.17	.20	.310	.270	4.9	3.3	<1
		.050	• • • • • • • • • • • • • • • • • • • •	.20	.510		7.,		
	DATE	TIME	ARSENIC TOTAL (UG/L AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	CYANIDE TOTAL (MG/L AS CN)	
	NOV 07	1352	2	<100	<1	10	5	<.01	
	APR 23	1413	2	200	<1	<10	4	<.01	
	AUG 27	1612	2	<100	<1	<10	3	<.01	
		1012	-	MANGA-		110			
	DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	
	NOV 07	900	1	40	5.8	<1	<1	10	
	APR 23	1600	4	100	<.1	<1	<1	20	
	AUG 27	290	<1	20	.2	<1	<1	20	

COLORADO RIVER BASIN

08160700 COLORADO RIVER ABOVE COLUMBUS, TX--Continued

DATE	TIME	PCB, TOTAL (UG/L)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	ALDRIN, TOTAL (UG/L)	CHLOR- DANE, TOTAL (UG/L)	DDD, TOTAL (UG/L)	DDE, TOTAL (UG/L)	DDT, TOTAL (UG/L)	DI- AZINON, TOTAL (UG/L)	DI- ELDRIN TOTAL (UG/L)	
NOV 07	1352	<.1	<.10	<.01	<.1	<.01	<.01	<.01	.01	<.01	
APR 23	1413	<.1	<.10	<.01	<.1	<.01	<.01	<.01	.01	<.01	
AUG 27	1612	<.1	<.10	<.01	<.1	<.01	<.01	<.01	.01	<.01	
DATE	ENDO- SULFAN, TOTAL (UG/L)	ENDRIN, TOTAL (UG/L)	ETHION, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL (UG/L)	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	LINDANE TOTAL (UG/L)	MALA- THION, TOTAL (UG/L)	METH- OXY- CHLOR, TOTAL (UG/L)	METHYL PARA- THION, TOTAL (UG/L)	METHYL TRI- THION, TOTAL (UG/L)	
NOV 07	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	
APR 23 AUG	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	
27	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	
DA	TO	TAL TOT	ION, THA	ANE APHE	AL THI	RI- 2,4	AL TOTA	L TOT		AL	
NOV		. 01	. 01	<.1	/1	. 01	.06 <.	01 <	.01 <	. 01	
APR			(.01 (.01	<.1						. 01	
AUG			(. 01	<.1						. 01	

08160700 COLORADO RIVER ABOVE COLUMBUS, TX--Continued

MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1983 TO SEPTEMBER 1984

MONTH	YEAR	DISCHARGE (CFS-DAYS)	S PECIFIC CONDUCT - ANCE (MICRO - MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
								517		
OCT.	1983	36352	577	319	31300	59	5830	42	4150	210
NOV.	1983	13274	695	396	14200	58	2080	61	2200	250
DEC.	1983	14890	636	357	14300	59	2390	51	2060	230
JAN.	1984	16645	613	341	15300	60	2680	48	2140	230
FEB.	1984	8653	699	397	9280	59	1380	61	1430	250
MAR.	1984	13423	663	375	13600	59	2130	56	2030	240
APR.	1984	46740	591	328	41400	59	7510	44	5610	220
MAY	1984	60300	545	299	48700	59	9560	38	6190	200
JUNE	1984	73540	551	303	60100	59	11700	39	7710	200
JULY	1984	58450	568	313	49400	59	9350	41	6470	210
AUG.	1984	48160	618	345	44900	59	7700	49	6330	230
SEPT	1984	58790	637	357	56600	60	9480	51	8120	230
TOTAL		449217	**	**	399000	**	71800	**	54400	**
WTD.AV	G.	1227	593	329	**	59	**	45	**	220

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBE	R		NOVEMBE	R		DECEMBE	R		JANUAR	Y
1			569			634	816	781	790			620
2			571			637			712			633
3			570			640			675			634
4	572	570	571			643			645			630
5	580	570	575			644			625			640
6	579	571	575			628			629			645
7			572			604			625			648
8			570			606			626			651
9			569			592			642			615
10			569	642	608	626			648			602
11			569	648	637	643			652			600
12			568	642	638	640			650			583
13			568	659	636	642			668			647
14			570	669	647	653			671			605
15			572	729	663	689			647			617
16			576	809	627	680			642			626
17			579	649	621	629			640			630
18			584	691	614	635			643			636
19			586	924	603	674			637			580
20			587	678	617	646			635			570
21			579	777	688	741	686	659	670	2		580
22			576	821	779	799	717	688	702			594
23			582	826	806	816	727	718	723			602
24			580	842	814	827	735	580	699			613
25			584	842	825	833	755		625			619
26			592	859	838	845			585			622
27			603	868	848	855			593			626
28			613	849	829	837	4 2-1		576			629
29			621	844	815	828			585			634
30			626	835	791	817			590	753	631	667
31			629	655	751				595	720	679	691
							** ** Y C					
MONTH	580	570	582	924	603	699	816	580	647	753	631	622

COLORADO RIVER BASIN 201
08160700 COLORADO RIVER ABOVE COLUMBUS, TX--Continued

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984--Continued

2	SPECIFIC	CONDUCTA	ANCE (MICRO	MHOS/CM AT	25 DEG.	C), WATER	YEAR OCTO	BER 1983	TO SEPTEMB	ER 1984	Continue	ed
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUAR	RY		MARCH	I		APRII			MAY	
1 2 3 4 5	736 755 792 761 754	679 700 707 722 719	698 724 775 741 741	768 743 752 750 759	715 704 688 702 735	739 724 718 721 746	646 625 626 632 641	622 621 618 624 629	632 623 622 628 634	556 558 562 563 563	549 549 551 552 553	553 553 556 557 558
6 7 8 9 10	758 765 674 659 703	728 661 607 571 599	745 717 648 640 660	772 800 798 824	691 745 764 784	747 760 772 777 801	634 646 660 664 651	627 632 642 647 641	631 639 650 655 647	565 566 554 557 559	554 553 530 532 552	560 560 546 551 556
11 12 13 14 15	824 676 730 697 734	629 617 640 633 638	676 651 669 665 674	829 833 718 741 741	790 608 661 698 699	813 675 687 714 720	640 618 605 599 592	574 563 554 558 563	605 589 585 582 576	559 557 556 557 555	554 552 548 549 546	556 554 552 553 551
16 17 18 19 20	704 692 698 705 707	656 669 679 682 657	677 681 688 693 680	726 706 716 726 499	667 680 694 540 434	690 688 705 683 452	624 591 597 607 619	542 544 565 548 586	576 570 580 579 599	549 550 548 523 532	544 545 529 473 497	546 548 537 505 514
21 22 23 24 25	703 708 723 728 709	674 685 681 668 664	685 697 700 694 684	528 618 631 648 631	443 528 435 552 535	500 561 590 628 581	616 618 601 564 559	571 575 558 551 553	594 596 575 558 555	549 555 550 549 545	533 545 544 538 534	544 550 547 543 539
26 27 28 29 30 31	738 733 741 752	670 707 727 731	712 723 733 741	660 669 657 678 679 669	633 653 626 630 666 647	647 664 636 652 673 657	558 559 560 562 556	549 547 552 550 552	554 555 555 556 555	544 546 551 549 546 548	535 539 528 536 536 539	540 542 543 542 541 544
MONTH	824	571	697	833	434	681	664	542	595	566	473	546
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEME	ER
1 2 3 4 5	543 545 545 547 549	535 534 533 536 541	539 539 539 541 545	587 594 591 603 589	519 541 553 564 559	554 562 576 583 564	581 588 592 594 597	561 579 583 587 590	571 583 588 590 593	762 718 678 652 653	719 681 652 650 646	740 703 660 651 648
6 7 8 9	548 550 556 553 558	535 536 537 513 518	544 543 544 539 542	566 565 565 568 570	561 560 560 561 561	564 563 562 564 566	600 606 608 613 614	593 593 599 601 610	596 600 603 606 612	646 625 615 611 616	626 616 605 605 603	637 620 608 609 607
11 12 13 14 15	542 543 563 559 566	515 529 536 526 534	536 536 548 547 552	573 575 581 585 589	562 565 569 573 575	568 570 575 578 582	619 616 605 603 612	604 592 591 595 598	611 606 598 599 604	639 639 619 621 621	616 620 614 617 618	630 629 617 620 619
16 17 18 19 20	566 571 572 575 572	533 532 546 532 539	551 553 551 550 552	583 562 562 563 568	557 554 531 532 559	570 558 556 555 563	622 619 617 613 600	608 614 610 596 591	614 617 614 607 597	620 616 623 624 628	615 609 614 620 623	618 613 618 622 625
21 22 23 24 25	578 577 578 588 588	540 534 540 529 550	557 557 555 559 569	571 567 570 566 570	561 558 564 554 562	566 563 567 560 567	600 595 608 593 591	590 588 588 546 552	596 593 592 570 571	630 637 636 639 644	628 630 633 636 638	629 634 635 638 641
26 27 28 29 30	594 587 593 600 605	554 555 541 556 550	574 571 571 572 575	578 578 577 582 583	567 551 553 573 573	572 569 568 577 578	596 586 569 802 804	550 561 566 732 793	575 570 567 779 799	648 648 652 650 642	643 638 645 643 637	646 643 649 646 639
31 MONTH	605	513	552	579 603	565 519	572 567	791 804	762 546	775 613	762	603	636

COLORADO RIVER BASIN

08160700 COLORADO RIVER ABOVE COLUMBUS, TX--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAI		ОСТОВЕ			NOVEMBE		Light in	DECEMBE	R	ward.	JANUARY	t .
-1				27.5	20.0	22.5	16.0	15.0 15.0	15.0 15.5		- 1	122
2				26.5	20.0	22.5 23.5	16.5 18.0	16.5	17.5			2.1.
4 5	27.0 28.0	25.0 26.0	26.5 27.0	26.5 21.0	20.5 19.5	22.0	17.5 18.5	17.0 17.5	17.5 18.0		==	===
6	27.5	26.5	27.0	24.0	17.5	20.0	17.5	15.0	16.5			
7	27.0	26.0	26.5	21.5	16.0	19.0	15.0	14.0	14.5	111	111	111
8	26.5 26.0	25.5 25.0	26.0 25.5				16.0	15.0	15.5			
10	25.5	24.0	25.0	18.5	17.5	18.0	18.5	16.0	17.5	577		
11	25.5	24.0	24.5	17.5	16.0	17.0	18.5	17.0 15.5	18.0 16.5		1	7
12	25.0	22.5	24.0 21.5	17.5 19.5	15.5	16.5	17.0	14.5	15.5			
14 15	22.0	20.0	21.0 21.5	21.5	19.0	20.5	14.5 14.5	13.0 12.5	13.5 13.5			777
16	24.0	22.0	23.0	18.5	17.0	18.0	14.0	12.5	13.0			
17	25.0	23.0	24.0	18.5	16.5	17.5	12.5	12.0	12.5	3.7	111	
18	26.5	24.5	25.0 25.5	20.0	18.5 19.0	19.0	12.5	9.5	10.0			
20	26.5	24.5	25.5	19.0	17.5	18.5	9.5	8.5	9.0			
21	25.0	24.0	24.5	19.5	16.5	18.0	8.5	8.0	8.5		- 111	
22 23	23.5	22.0	23.0	21.5	19.0	20.5	7.5 6.5	6.5	7.0 6.0	===		
24	22.5	20.5	21.5	19.0	17.5	18.0	5.5	4.5	5.0	Algorithm (
25	22.0	20.0	21.0	17.5	16.5	17.0						
26 27	21.0	12.0 11.0	17.5 17.5	18.5 18.5	17.0 17.0	18.0 17.5				111		111
28	23.0	10.5	17.5	17.0	15.0	15.5		1,				
29 30	24.0	13.0 14.5	19.0	15.0 16.0	14.0 14.5	14.5 15.0				13.0	12.5	13.0
31	24.0	19.5	21.0						TO NO.	12.5	11.5	12.0
MONTH	28.0	10.5	23.0	27.5	14.0	19.0	18.5	4.5	13.5	13.0	11.5	12.5
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	MIN FEBRUAR		MAX	MIN MARCH		MAX	MIN APRII		MAX	MIN	MEAN
1	MAX			MAX			MAX			MAX		MEAN
1	12.5	11.5 12.5	12.0 12.5	MAX			MAX			MAX		MEAN
1 2 3 4	12.5 13.0 13.5 13.0	11.5 12.5 12.0 12.0	12.0 12.5 13.0 12.5	MAX			MAX			MAX		MEAN
1 2 3 4 5	12.5 13.0 13.5 13.0 13.0	11.5 12.5 12.0 12.0 11.0	12.0 12.5 13.0 12.5 12.0	MAX			MAX			MAX		MEAN
1 2 3 4 5	12.5 13.0 13.5 13.0 13.0	11.5 12.5 12.0 12.0 11.0	12.0 12.5 13.0 12.5 12.0	MAX			MAX			MAX		MEAN
1 2 3 4 5	12.5 13.0 13.5 13.0 13.0	FEBRUAR 11.5 12.5 12.0 12.0 11.0 10.5 6.5 9.0	12.0 12.5 13.0 12.5 12.0	MAX			MAX			MAX		MEAN
1 2 3 4 5	12.5 13.0 13.5 13.0 13.0	11.5 12.5 12.0 12.0 11.0	12.0 12.5 13.0 12.5 12.0	MAX			MAX			MAX		MEAN
1 2 3 4 5 6 7 8 9	12.5 13.0 13.5 13.0 13.0 12.0 12.0 15.0 17.5	11.5 12.5 12.0 12.0 11.0 10.5 6.5 9.0 12.0 14.0	12.0 12.5 13.0 12.5 12.0 11.5 10.0 11.0 13.0	MAX			MAX			MAX		MEAN
1 2 3 4 5 6 7 8 9 10	12.5 13.0 13.5 13.0 13.0 12.0 12.0 12.0 15.0 17.5	11.5 12.5 12.0 12.0 11.0 10.5 6.5 9.0 12.0 14.0	12.0 12.5 13.0 12.5 12.0 11.5 10.0 11.0 13.0 15.5	MAX			MAX			MAX		MEAN
1 2 3 4 5 6 7 8 9 10	12.5 13.0 13.5 13.0 13.0 12.0 12.0 15.0 17.5	11.5 12.5 12.0 12.0 11.0 10.5 6.5 9.0 12.0 14.0	12.0 12.5 13.0 12.5 12.0 11.5 10.0 11.0 13.0 15.5	MAX			MAX			MAX		MEAN
1 2 3 4 5 6 7 8 9 10	12.5 13.0 13.5 13.0 13.0 12.0 12.0 12.0 15.0 17.5	11.5 12.5 12.0 12.0 11.0 10.5 6.5 9.0 12.0 14.0	12.0 12.5 13.0 12.5 12.0 11.5 10.0 11.0 13.0 15.5	MAX			MAX			MAX		MEAN
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	12.5 13.0 13.5 13.0 13.0 12.0 12.0 15.0 17.5	11.5 12.5 12.0 12.0 11.0 10.5 6.5 9.0 12.0 14.0 16.0 14.0	12.0 12.5 13.0 12.5 12.0 11.5 10.0 11.0 13.0 15.5	MAX			MAX			MAX		MEAN
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	12.5 13.0 13.5 13.0 13.0 12.0 12.0 15.0 17.5	11.5 12.5 12.0 12.0 11.0 10.5 6.5 9.0 12.0 14.0 16.0 14.0	12.0 12.5 13.0 12.5 12.0 11.5 10.0 11.0 13.0 15.5	MAX			MAX			MAX		MEAN
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	12.5 13.0 13.5 13.0 13.0 12.0 12.0 15.0 17.5	11.5 12.5 12.0 12.0 11.0 10.5 6.5 9.0 12.0 14.0 16.0 14.0	12.0 12.5 13.0 12.5 12.0 11.5 10.0 11.0 13.0 15.5 17.0 17.5 16.0 16.0	MAX			MAX			MAX		MEAN
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	12.5 13.0 13.5 13.0 13.0 12.0 12.0 15.0 17.5	11.5 12.5 12.0 12.0 11.0 10.5 6.5 9.0 12.0 14.0 16.0 14.0	12.0 12.5 13.0 12.5 12.0 11.5 10.0 11.0 13.0 15.5 17.0 16.0 16.0 16.5	MAX			MAX			MAX		MEAN
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	12.5 13.0 13.5 13.0 13.0 12.0 12.0 15.0 17.5	11.5 12.5 12.0 12.0 11.0 10.5 6.5 9.0 12.0 14.0 16.0 14.0	12.0 12.5 13.0 12.5 12.0 11.5 10.0 11.0 13.0 15.5 17.0 16.0 16.0 16.5	MAX			MAX			MAX		MEAN
1 2 3 4 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	12.5 13.0 13.5 13.0 13.0 12.0 12.0 15.0 17.5	11.5 12.5 12.0 12.0 11.0 10.5 6.5 9.0 12.0 14.0 16.0 14.0	12.0 12.5 13.0 12.5 12.0 11.5 10.0 11.0 13.0 15.5 17.0 16.0 16.0 16.5	MAX			MAX			MAX		MEAN
1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	12.5 13.0 13.5 13.0 13.0 12.0 12.0 15.0 17.5	11.5 12.5 12.0 12.0 11.0 10.5 6.5 9.0 12.0 14.0 16.0 14.0	12.0 12.5 13.0 12.5 12.0 11.5 10.0 11.0 13.0 15.5 17.0 16.0 16.0 16.5	MAX			MAX			MAX		MEAN
1 2 3 4 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	12.5 13.0 13.5 13.0 13.0 12.0 12.0 15.0 17.5	11.5 12.5 12.0 12.0 11.0 10.5 6.5 9.0 12.0 14.0 16.0 14.0	12.0 12.5 13.0 12.5 12.0 11.5 10.0 11.0 13.0 15.5 17.0 16.0 16.0 16.5	MAX			MAX			MAX		MEAN
1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	12.5 13.0 13.5 13.0 13.0 12.0 12.0 15.0 17.5	11.5 12.5 12.0 12.0 11.0 10.5 6.5 9.0 12.0 14.0 16.0 14.0	12.0 12.5 13.0 12.5 12.0 11.5 10.0 11.0 13.0 15.5 17.0 16.0 16.0 16.5	MAX			MAX			MAX		MEAN
1 2 3 4 4 5 5 6 7 8 9 10 11 12 13 14 4 15 15 16 17 18 19 20 21 22 23 24 25 26 27 28	12.5 13.0 13.5 13.0 13.0 12.0 12.0 15.0 17.5	11.5 12.5 12.0 12.0 11.0 10.5 6.5 9.0 12.0 14.0 16.0 14.0	12.0 12.5 13.0 12.5 12.0 11.5 10.0 11.0 13.0 15.5 17.0 16.0 16.0 16.5	MAX			MAX			MAX		MEAN
1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	12.5 13.0 13.5 13.0 13.0 12.0 12.0 15.0 17.5	11.5 12.5 12.0 12.0 11.0 10.5 6.5 9.0 12.0 14.0 16.0 14.0	12.0 12.5 13.0 12.5 12.0 11.5 10.0 11.0 13.0 15.5 17.0 16.0 16.0 16.5	MAX			MAX			MAX		MEAN
1 2 3 4 4 5 6 7 7 8 9 10 11 12 13 14 4 15 16 17 7 18 19 20 21 22 23 24 25 26 27 28 29	12.5 13.0 13.5 13.0 13.0 12.0 12.0 15.0 17.5	11.5 12.5 12.0 12.0 11.0 10.5 6.5 9.0 12.0 14.0 16.0 14.0	12.0 12.5 13.0 12.5 12.0 11.5 10.0 11.0 13.0 15.5 17.0 16.0 16.0 16.5	MAX			MAX			MAX		MEAN

08160700 COLORADO RIVER ABOVE COLUMBUS, TX--Continued

TEMPERATURE,	WATER	(DEG.	C),	WATER	YEAR	OCTOBER	1983	TO	SEPTEMBER	1984Continued	
--------------	-------	-------	-----	-------	------	---------	------	----	-----------	---------------	--

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEMB	ER
1 2 3 4 5												
6 7 8 9												
11 12 13 14 15												
16 17 18 19 20												
21 22 23 24 25												
26 27 28 29 30 31												
MONTH												

08160700 COLORADO RIVER ABOVE COLUMBUS, TX--Continued

Colorado River above Columbus, TX (08160700)

Phytoplankton Analyses October 1983 to September 1984

	Date Time	12-20-83 1510
	TOTAL CELLS/m1 NUMBER OF SPECIES DEPTH COLLECTED (ft.)	480 13 N/A
Organisms		Cells/ml
CHLOROPHYTA (Green	algae)	
Chlamydomonas sp		60
CYANOPHYTA (Blue-g	reen algae)	
Chroococcus limn Dactylococcopsis Oscillatoria lim	raphidioides	40 10 190
CRYPTOPHYTA (Crypt	omonads)	
Cryptomonas sp. Rhodomonas sp.		10 10
BACILLARIOPHYTA (D	iatoms)	
Order Centrales		
Stephanodiscus h	antzschii	40
Order Pennales		

Achnanthes lanceolata var. dubia Cocconeis placentula Hannaea arcus Navicula Symmetrica Nitzschia sp. Surirella angustata

Colorado River above Columbus, TX (08160700)

	Date Time	1-30-84 1548
	TOTAL CELLS/ml NUMBER OF SPECIES DEPTH COLLECTED (ft.)	1860 7 N/A
Organisms		Cells/ml
CHLOROPHYTA (Green	n algae)	A STREET
Golenkinia radio Unicellular cocc	ata var. <u>brevispina</u> coid	30 100
CYANOPHYTA (Blue-	green algae)	
Oscillatoria lin	nnetica	1430
BACILLARIOPHYTA (Diatoms)	
Order Centrales		
Melosira varians		70
Order Pennales		
Cocconeis placer Navicula latens Nitzschia sp.	ntula_	100 30 100

08160700 COLORADO RIVER ABOVE COLUMBUS, TX--Continued

Colorado River above Columbus, TX (08160700)

Phytoplankton Analyses October 1983 to September 1984

3-12-84

Time	1510
TOTAL CELLS/m1 NUMBER OF SPECIES DEPTH COLLECTED (ft.) Organisms OPHYTA (Blue-green algae) abaena sp. roococcus limneticus nechococcus elongatus LLARIOPHYTA (Diatoms) er Pennales cconeis pediculus cconeis placentula matopleura solea atoma vulgare vicula capitata vicula cryptocephala vicula latens vicula latens vicula latens vicula menisculus var. upsaliensis	750 20 N/A
Organisms	Cells/ml
CYANOPHYTA (Blue-green algae)	
Anabaena sp. Chroococcus limneticus Synechococcus elongatus	100 80 20
BACILLARIOPHYTA (Diatoms)	
Order Pennales	
Cocconeis pediculus Cocconeis placentula	40 80
Diatoma vulgare	10 130
Navicula capitata	10
Navicula cryptocephala	20
Navicula ilopangensis	10 60
	10
Navicula rhyncocephala	10
Navicula secreta var. apiculata	10
Navicula symmetrica	
	40
Navicula sp.	40 10
Navicula sp.	10
Navicula sp. Nitzschia frustulum	10 20
Navicula sp.	10

Date

08160700 COLORADO RIVER ABOVE COLUMBUS, TX--Continued

Colorado River above Columbus, Texas (08160700)

	Date Time		4-23-84 1413
	TOTAL CELLS/ml NUMBER OF SPECIES DEPTH COLLECTED (ft.)	10 mg 1	2,014 48 N/A
Organisms			Cells/ml
CHLOROPHYTA (Green	algae)		
Scenedesmus biju	ga		132
BACILLARIOPHYTA (D	iatoms)		
Order Centrales			
Biddulphia laevi Rhizosolenia sp.			148 4
Order Pennales			
Achnanthes affin a Achnanthes minti Cocconeis fluvia Cocconeis placen Cymatopleura sol Diatoma vulgare Fragilaria vauch Gomphonema brasi Gyrosigma spence Navicula capitat Navicula content Navicula decussi Navicula decussi Navicula decussi Navicula decussi Navicula practio Navicula practio Navicula halophi Navicula halophi Navicula i lopang Navicula laterop	ssima tilis lus tulia var. euglypta ea eriae tatum Hense rii la a a ephala var. veneta s sis ides la i ensis		58 4 8 8 85 625 454 12 16 8 8 12 8 19 12 12 16 27 12 14 8
Navicula secreta Navicula symmetr Navicula tripunc	ephala eri var. escambia var. apiculata ica tata a var. rostellata ta is ula lum picua dea		16 8 19 4 27 12 12 12 12 8 39 27 8 8 12 4

08160700 COLORADO RIVER ABOVE COLUMBUS, TX--Continued

Colorado River above Columbus, Texas (08160700)

Phytoplankton Analyses October 1983 to September 1984

	Da te Time	1522
	TOTAL CELLS/ml NUMBER OF SPECIES DEPTH COLLECTED (ft.)	495 11 N/A
Organis	sms	Cells/ml
CHLOROPHYTA (Gre	een algae)	
Chodatella sp.		33
CYANOPHYTA (Blue	e-green algae)	
Anabaena sp. Chroococcus pa	allidus	132 66
BACILLARIOPHYTA	(Diatoms)	
Order Pennales		
Diploneis ap. Navicula elgir	mancis	33
Navicula minus	scula	110
Navicula schro	peteri var. escambia	33
Navicula symme	trica	13 3
Nitzschia amph Nitzschia hung		33
Nitzschia pale		30

Colorado River above Columbus, Texas (08160700)

Date Time	7-23-84 1100
TOTAL CELLS/m1	7006
NUMBER OF SPECIES	20
DEPTH COLLECTED (ft.)	N/A

Cells/ml
250
438
63
4875
315
63
188
250
6
50 63
6
63
63
82
63
32
6
32
98

08160700 COLORADO RIVER ABOVE COLUMBUS, TX--Continued

Colorado River above Columbus, Texas (08160700)

Organisms CHLOROPHYTA (Green algae) Chlamydomonas sp. 1 Chlamydomonas sp. 3 Chlorogonium euchlorum CYANOPHYTA (Blue-green algae) Aphanocapsa delicatissima Oscillatoria angustissima Synechococcus aeruginosa Synechococcus lineare BACILLARIOPHYTA (Diatoms) Order Pennales Amphora acutiuscula Amphora submontana Amphora ovalis Cocconeis fluviatilis Cocconeis placentula	-84 612
CHLOROPHYTA (Green algae) Chlamydomonas sp. 1 Chlamydomonas sp. 3 Chlorogonium euchlorum CYANOPHYTA (Blue-green algae) Aphanocapsa delicatissima Oscillatoria angustissima Synechococcus aeruginosa Synechococcus lineare BACILLARIOPHYTA (Diatoms) Order Pennales Amphora acutiuscula Amphora submontana Amphora ovalis Cocconeis fluviatilis Cocconeis placentula	380 20 N/A
Chlamydomonas sp. 1 Chlamydomonas sp. 3 Chlorogonium euchlorum CYANOPHYTA (Blue-green algae) Aphanocapsa delicatissima	/m1
Chlamydomonas sp. 3 Chlorogonium euchlorum CYANOPHYTA (Blue-green algae) Aphanocapsa delicatissima	
Chlamydomonas sp. 3 Chlorogonium euchlorum CYANOPHYTA (Blue-green algae) Aphanocapsa delicatissima	227
CYANOPHYTA (Blue-green algae) Aphanocapsa delicatissima 21: Oscillatoria angustissima 8: Synechococcus aeruginosa 3: Synechococcus lineare 18: BACILLARIOPHYTA (Diatoms) Order Pennales Amphora acutiuscula Amphora submontana Amphora ovalis Cocconeis fluviatilis Cocconeis placentula	114
Aphanocapsa delicatissima 21:	114
SACILLARIOPHYTA (Diatoms) Order Pennales Amphora acutiuscula Amphora ovalis Cocconeis fluviatilis Cocconeis placentula	
Oscillatoria angustissima Synechococcus aeruginosa Synechococcus lineare BACILLARIOPHYTA (Diatoms) Order Pennales Amphora acutiuscula Amphora submontana Amphora ovalis Cocconeis fluviatilis Cocconeis placentula	591
Synechococcus aeruginosa Synechococcus lineare 18. ACILLARIOPHYTA (Diatoms) Order Pennales Amphora acutiuscula Amphora submontana Amphora ovalis Cocconeis fluviatilis Cocconeis placentula	081
Synechococcus lineare SACILLARIOPHYTA (Diatoms) Order Pennales Amphora acutiuscula Amphora submontana Amphora ovalis Cocconeis fluviatilis Cocconeis placentula	409
Amphora acutiuscula Amphora submontana Amphora ovalis Cocconeis fluviatilis Cocconeis placentula	182
Amphora acutiuscula Amphora submontana Amphora ovalis Cocconeis fluviatilis Cocconeis placentula	
Amphora submontana Amphora ovalis Cocconeis fluviatilis Cocconeis placentula	
Amphora submontana Amphora ovalis Cocconeis fluviatilis Cocconeis placentula	91
Cocconeis fluviatilis Cocconeis placentula	23
Cocconeis placentula	46
Coccone1s placentula	62
	52
	114
Navicula sp.	14
Nitzschia communis Nitzschia frustulum	50
	7
Nitzschia palea Nitzschia trybTionella	43
Rhoicosphenia curvata	114
Synedra rumpens var. meneghiniana	23

08160800 REDGATE CREEK NEAR COLUMBUS, TX

LOCATION.--Lat 29°47'56", long 96°31'55", Colorado County, Hydrologic Unit 12090301, on left bank 68 ft downstream from bridge on Farm Road 109, 1.9 mi upstream from Cummins Creek, and 7.0 mi north of Columbus.

DRAINAGE AREA, -- 17.3 mi2.

PERIOD OF RECORD .-- April 1962 to current year.

REVISED RECORDS .-- WSP 2122: Drainage area.

GAGE.--Water-stage recorder and crest-stage gages. Datum of gage is 210.82 ft National Geodetic Vertical Datum of 1929. Prior to Oct. 1, 1975, at datum 10.00 ft higher.

REMARKS.--Records fair except those for period of no gage-height record, which are poor. No known diversion above station. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE. -- 22 years, 5.75 ft3/s (4.51 in/yr), 4,170 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,360 ft³/s May 22, 1979 (gage height, 27.19 ft), from rating curve extended above 2,170 ft³/s on basis of slope-area measurement of peak flow of Jan. 22, 1965; no flow for many days.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1860, about 33.4 ft in late June or early July 1940, from information by State Department of Highways and Public Transportation and local resident.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,110 ft³/s May 19, time unknown (gage height 16.81 ft, from crest stage gage), no other peak above base of 1,000 ft³/s; minimum, 0.06 ft³/s Aug. 28-30.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

		DIOGIAIN	JL, IN 001	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	M	EAN VALUES	S	DBR 1705 .				
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.54 .54 .54 .54	.55 .59 .59 .69	1.0 1.1 53 2.6 1.7	1.1 1.0 .99 .99	.88 .93 .96 .87	1.3 1.3 1.4 1.5 2.0	.99 1.1 1.1 .88 .85	.50 .48 .45 .42	.95 .90 .85 .80	.92 .51 .47 .40 .36	.20 .18 .17 .16	.18 .11 .10 .10
6 7 8 9	.54 .47 .47 .47	9.3 1.7 1.2 1.1	1.4 1.2 1.2 1.2 1.3	.99 1.2 .93 4.9 1.3	.76 .76 .95 1.2 .93	1.4 1.1 1.1 1.1	.82 .80 4.0 1.5 1.2	.38 .35 .32 .30	12 1.8 1.2 1.1	.32 .30 .27 .25 .25	.15 .15 .14 .14	.10 .11 .16 .12
11 12 13 14 15	.47 .58 .50 .47	.93 .93 .93 .93	1.5 1.2 1.1 1.1	1.1 1.1 .89 .88	.85 4.1 1.4 1.1	1.2 1.3 1.1 1.1	1.1 1.0 .95 .92	.30 .28 .28 .28	.77 1.2 .79 .63	.25 .24 .24 .24 .24	.19 .74 .46 .20	.11 .11 .11 .13
16 17 18 19 20	.66 .82 .59 .63	.77 .82 .88 1.5	1.3 1.1 1.1 .99	.88 .88 .84 .78	1.0 .99 1.1 1.0	1.1 1.1 1.1 4.4 1.5	.88 .85 .82 .80	.25 .25 2.0 200 20	.54 .54 .54 .57	.23 .23 .23 .22 .22	.16 .14 .13 .12	.19 .12 .11 .11
21 22 23 24 25	1.6 .63 .50 .63 .53	.93 .93 1.5 .95 .88	1.0 .93 .99 .88 .77	.80 .88 2.3 1.3	3.0 1.7 1.5 1.4 1.3	1.2 1.1 9.0 5.2 1.7	.75 .72 .70 .68	5.0 2.1 1.8 1.7 1.6	.67 .63 .63 .59	.22 .22 .22 1.4 .49	.10 .09 .08 .07	.11 .11 .10 .10
26 27 28 29 30 31	.50 .50 .50 .50 .50	.92 1.2 .99 .93 1.0	.93 1.2 1.2 .93 .88	.99 .89 .88 .88	8.6 2.3 1.4 1.3	1.4 1.3 .97 .88 .95	.62 .60 .57 .55	1.5 1.4 1.3 1.2 1.1	.50 .47 .43 .43	.33 .97 .50 .25 .24	.07 .07 .06 .06 .06	.09 .09 .08 .08
TOTAL MEAN MAX MIN CFSM IN. AC-FT	17.80 .57 1.6 .47 .03 .04	38.41 1.28 9.3 .55 .07 .08 76	87.89 2.84 53 .77 .16 .19	35.30 1.14 4.9 .78 .07 .08 70	57.16 1.97 13 .76 .11 .12	53.09 1.71 9.0 .88 .10 .11	28.60 .95 4.0 .52 .06 .06	247.49 7.98 200 .25 .46 .53 491	35.25 1.18 12 .43 .07 .08 70	11.45 .37 1.4 .22 .02 .02 .23	4.91 .16 .74 .06 .009 .01 9.7	3.36 .11 .19 .08 .006 .01 6.7

CAL YR 1983 TOTAL 1775.58 MEAN 4.86 MAX 309 MIN .22 CFSM .28 IN 3.82 AC-FT 3520 WTR YR 1984 TOTAL 620.71 MEAN 1.70 MAX 200 MIN .06 CFSM .10 IN 1.33 AC-FT 1230

NOTE. -- No gage-height record Apr. 5 to May 21.

08161000 COLORADO RIVER AT COLUMBUS, TX

- LOCATION.--Lat 29°42'22", long 96°32'12", Colorado County, Hydrologic Unit 12090302, near right bank at downstream side of pier of bridge on U.S. Highway 90 at eastern edge of Columbus, 340 ft downstream from Texas and New Orleans Railroad Co. bridge, 2.6 mi downstream from Cummins Creek, and at mile 135.1.
- DRAINAGE AREA.--41,640 mi^2 , approximately, of which 11,403 mi^2 probably is noncontributing; 41,730 mi^2 , approximately, at site "near Eagle Lake".
- PERIOD OF REORD.--January 1903 to December 1911 (gage heights only), May 1916 to current year. Discharge records for 1902-11, published in WSP 84, 99, 132, 174, 210, 288, and 308, have been found to be unreliable and should not be used. Records collected at site 23 mi downstream October 1930 to May 1939, published as "near Eagle Lake". Gageheight records collected in this vicinity since 1903 are contained in reports of the National Weather Service. Water-quality records.--Chemical analyses: October 1967 to September 1971. Chemical and biochemical analyses: February 1968 to September 1981.
- REVISED RECORDS .-- WSP 1562: 1920-21(M), 1922, WRD TX-81-3: Drainage area. See also PERIOD OF RECORD.
- GAGE.--Water-stage recorder. Datum of gage is 155.52 ft National Geodetic Vertical Datum of 1929. Prior to May 1, 1919, various nonrecording gages at sites in the immediate vicinity at datum 3.00-foot lower. May 1, 1919, to Nov. 23, 1930, water-stage recorder at site about 300 ft downstream at datum 3.00-foot lower. Sept. 17, 1930, to June 12, 1939 (Oct. 1, 1930, to May 31, 1939, used herein), water-stage recorder at site 23 mi downstream at different datum. May 17 to Nov. 14, 1939, nonrecording gage at present site and datum. Gage-height telemeter located at station.
- REMARKS.--Records good except those for period of no gage-height record, which are fair. At times, low-flow releases from Lake Travis (station 08154500) are made for generation of electric power and (or) to fulfill downstream water contracts. The Lower Colorado River Authority reported that 26,570 acre-ft was diverted from the river to Cedar Creek Reservoir during the current year. This reservoir is located 10 mi north of the river and 3.5 mi west of Fayettville. Flow is also affected at times by discharge from flood-detention pools of 20 floodwater-retarding structures with a combined detention capacity of 25,570 acre-ft. These structures control runoff from 73.1 mi in the Cummins Creek watershed. There are many other diversions above station for irrigation and municipal supply.
- AVERAGE DISCHARGE.--20 years (water years 1917-36) unregulated, 3,809 ft³/s (2,760,000 acre-ft/yr); 48 years (water years 1937-84) regulated, 2,870 ft³/s (2,079,000 acre-ft/yr).
- EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 190,000 ft³/s June 18, 1935 (gage height, 38.5 ft), present site and datum, computed on basis of records for station near Eagle Lake; minimum, 93 ft³/s Sept. 1, 1918.
- EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1852, 41.6 ft, present datum, in July 1869 and Dec. 6, 1913, from information by local resident. River divided each time and left Columbus on an island.
- EXTREMES FOR CURRENT YEAR.--Maximum discharge, 4,640 ft³/s May 19 at 1700 hours (gage height, 5.35 ft); minimum daily, 159 ft³/s Mar. 7.

		DISC	HARGE, II	N CUBIC FEET		ECOND, WATER EAN VALUES	YEAR	OCTOBER 1983	TO SE	PTEMBER 1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1580	420	600	550	369	281	816	1730	2130	2670	1540	1840
2	1370	400	560	440	357	246	931	1730	2280	2570	1460	1860
2 3	1490	390	560	430	346	252	1150	1670	2290	2470	1440	1940
4	1450	380	470	450	338	231	1180	1660	2310	2470	1420	2040
5	1410	370	470	400	329	216	1150	1620	2440	2480	1400	2150
6	1420	400	440	380	315	192	1120	1580	2620	2470	1240	2260
7	1360	640	450	370	311	159	1120	1560	2700	2330	1330	2330
8	1510	620	450	360	324	196	1290	1560	2800	2240	1200	2330
9	1560	780	380	500	350	181	1210	1550	2650	2260	1380	2360
10	1640	820	380	648	356	274	1240	1560	2530	2250	1420	2250
11	1620	740	350	577	364	237	1260	1550	2450	2170	1420	2110
12	2040	600	350	818	375	242	1200	1580	2360	2080	1450	2040
13	1790	520	300	777	343	265	1270	1840	2330	2110	1470	1900
14	1510	470	280	568	314	210	1340	1840	2290	2090	1480	1830
15	1390	440	360	473	306	219	1230	1730	2310	2020	1680	1750
16	1170	400	380	418	293	394	1250	1800	2400	1990	1730	1670
17	1040	360	390	388	280	438	1490	1810	2320	1850	1670	1680
18	950	360	380	369	284	363	1630	1940	2340	1670	1760	1800
19	890	400	400	1440	265	521	1570	3230	2400	1580	1670	1780
20	870	380	410	2730	354	878	1730	2840	2360	1590	1570	1780
21	1060	360	410	1660	402	431	1670	2380	2360	1560	1490	1840
22	1190	365	400	1000	314	340	1570	2200	2380	1490	1440	1890
23	970	370	420	764	276	340	1650	2060	2320	1450	1360	1840
24	1000	365	420	623	266	698	1720	1990	2250	1480	1320	1780
25	919	568	650	546	249	413	1710	1890	2250	1650	1280	1680
26	800	587	900	496	300	411	1760	1740	2260	1630	1340	1550
27	650	511	800	469	471	528	1700	1680	2240	1590	1540	1490
28	560	518	1300	450	495	662	1630	1650	2260	1740	1620	1480
29	500	468	1100	417	367	776	1810	1770	2390	1690	1680	1450
30	470	500	950	398		789	1690	2120	2440	1600	1790	1400
31	440		700	379		801		2150		1600	1810	
TOTAL	36619	14502	16410	20288	9713		42 087		71460		46400	56100
MEAN	1181	483	529	654	335	393	1403	1871	2382	1963	1497	1870
MAX	2040	820	1300	2730	495	878	1810	3230	2800	2670	1810	2360
MIN	440	360	280	360	249	159	816	1550	2130	1450	1200	1400
AC-FT	72630	28760	32550	40240	19270	24170	83480	115100 1	41700	120700	92030	111300

CAL YR 1983 TOTAL 574712 MEAN 1575 MAX 21100 MIN 242 AC-FT 1140000 WTR YR 1984 TOTAL 444613 MEAN 1215 MAX 3230 MIN 159 AC-FT 881900

08162000 COLORADO RIVER AT WHARTON, TX (National stream-quality accounting and radiochemical networks)

LOCATION.--Lat 29°18'32", long 96°06'13", Wharton County, Hydrologic Unit 12090302, near left bank at downstream side of downstream bridge on U.S. Highway 59 in Wharton, 1,100 ft downstream from Texas and New Orleans Railroad Co. bridge, 12 mi upstream from Jones Creek, and at mile 66.6.

DRAINAGE AREA.--42,003 mi², approximately, of which 11,403 mi² probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--July 1916 to August 1918 (intermittent periods), March 1919 to September 1925, July and August 1938 (flood discharge measurements only), October 1938 to current year. June to November 1901 and May to September 1902, daily records published in U.S. Department of Agriculture, Office of Experiment Stations, Bulletin Nos. 119 and 133. Gage-height records collected in this vicinity since 1935 are contained in reports of the National Weather Service.

REVISED RECORDS .-- WSP 878: 1938(M). WDR TX-81-3: Drainage area

GAGE.--Water-stage recorder. Datum of gage is 52.42 ft (revised) National Geodetic Vertical Datum of 1929. Prior to Oct. 1, 1938, various types of recording and nonrecording gages 800 ft upstream at different datum. Oct. 1, 1938, to June 1, 1966, nonrecording gage 100 ft upstream at datum 13.00 ft higher. June 1, 1966, to Sept. 30, 1975, water-stage recorder at present site at datum 13 ft higher. Oct. 1, 1975, to Mar. 1, 1983, water-stage recorder at present site at datum 10.00 ft higher.

REMARKS.--Water-discharge records good. Many diversions above station for irrigation, municipal supply, cooling water for thermal-electric powerplant, and oilfield operations. For statement regarding upstream regulation, see station 08161000. Telemeter at station.

AVERACE DISCHARGE.--5 years (water years 1920-25) unregulated, 3,680 ft³/s (2,666,000 acre-ft/yr); 46 years (water years 1939-84) regulated, 2,646 ft³/s (1,917,000 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge observed, 100,000 ft 3/s July 3, 1940 (gage height, 38.99 ft); no flow Aug. 6, 1925 (result of pumping).

Flood of July 30, 1938, reached a stage of 50.4 ft, present datum, observed by Geological Survey engineers (discharge, 145,000 ft³/s).

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1869, 51.9 ft (revised) Dec. 8, 1913, present datum, from information by local residents; below Wharton floodwater combined with that of the Brazos River. Flood of about July 12, 1869, reached about same height. Flood of June 20, 1935, reached a stage of 51.2 ft (revised), present datum, furnished by National Weather Service (discharge, 159,000 ft 3/s), from rating curve defined by current-meter measurements below 145,000 ft 3/s.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 5,140 ft /s May 20 at 2000 hours (gage height, 16.19 ft); minimum daily, 228 ft /s Aug. 27 (result of regulation and pumping).

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	529	608	578	889	500	505	585	975	1070	1420	1220	677
	837	583	587	759	496	417	620	940	1050	2300	1080	777
2	912	558	703	632	486	386	700	1010	1070	1950	928	892
3		220	1370	578	472	349	893	984	1120	1640	749	1080
2 3 4 5	909	593								1570	662	1210
5	985	837	1460	534	458	344	909	922	1140	13/0	002	1210
6 7	936	1210	890	554	439	349	840	781	1430	1540	711	1290
7	855	1210	735	510	417	306	872	645	1700	1520	656	1340
8	897	1300	638	494	417	301	812	671	1900	1410	627	1350
8 9	1040	1110	636	716	421	271	1000	778	2200	1290	545	1340
10	1070	946	634	702	439	289	865	755	2120	1260	468	1280
	1000	007		005	400	207	626	744	1990	1270	536	1130
11	1220	987	558	995	439	297						961
12	1220	1000	590	859	486	349	695	697	1820	1260	626	
13	1680	842	598	853	510	331	626	617	1530	1190	782	806
14	1660	726	553	970	534	327	510	785	1550	1180	1020	687
15	1400	617	510	846	515	325	574	875	1410	1270	1070	598
16	1650	608	518	723	491	295	630	768	1300	1280	1030	583
17	2250	558	534	631	486	292	573	755	1290	1250	1130	660
18	1430	529	534	582	439	412	634	1070	1250	1200	1090	759
	1190	510	534	611	439	383	675	2040	1240	1110	992	853
19 20						303	629	4150	1290	1000	961	885
20	1040	500	524	868	439	303	629	4130	1290	1000	901	883
21	1000	515	515	2870	558	574	747	4260	1300	979	863	1010
22	1030	510	512	2020	770	531	932	2950	1250	945	664	1240
23	1270	510	528	1410	629	361	848	2280	1230	889	502	1400
24	1170	505	543	1140	467	314	860	1800	1180	796	417	1370
25	1060	496	562	973	417	404	828	1440	1120	789	345	1270
26	1050	498	492	025	267	596	705	1160	1120	956	269	972
				835	367		785				228	770
27	967	677	767	766	349	474	855	912	1120	1080		
28 29	848	637	877	678	395	402	874	768	1100	1140	294	714
29	736	602	902	625	510	433	854	668	1070	1470	375	714
30	660	618	1140	579		508	1120	646	1140	1520	505	714
30 31	624		1 01 0	530		578		898		1360	613	
TOTAL	34125	21400	21532	26732	13776	12006	22971	38744	41100	39834	21958	29332
MEAN	1101	713	695	862	475	387	766	1250	1370	1285	708	978
MAX	2250	1300	1460	2870	770	596	1120	4260	2200	2300	1220	1400
						396					228	
MIN	529	496	492	494	349	271	510	617	1050	789		583 58180
AC-FT	67690	42450	42710	53020	27320	23810	45560	76850	81520	79010	43550	28180

CAL YR 1983 TOTAL 562554 WTR YR 1984 TOTAL 323510 MEAN AC-FT 1116000 1541 MAX 22900 MIN 130 AC-FT 4260 MIN 228 641700 MEAN 884 MAX

08162000 COLORADO RIVER AT WHARTON, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: April 1944 to current year. Chemical and biochemical analyses: January 1968 to current year. Pesticide analyses: February 1968 to current year. Sediment analyses: October 1974 to current year. Radiochemical analyses: December 1973 to current year.

WATER TEMPERATURES: October 1945 to September 1948, March 1950 to current year.

REMARKS.--Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and regression relationships between each chemical constituent and specific conductance. Regression equations developed for this station may be obtained from the Geological Survey District office upon request.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 904 micromhos Oct. 29, 1963; minimum daily, 146 micromhos Sept. 27, 1957.
WATER TEMPERATURES: Maximum daily, 35.0°C July 26, 1954; minimum daily, 0.0°C Dec. 26, 1983.

EXTREMES FOR CURRENT YEAR .--

SPECIFIC CONDUCTANCE: Maximum daily, 717 micromhos Mar. 17; minimum daily, 317 micromhos Dec. 6. WATER TEMPERATURES: Maximum daily, 31.0°C June 25; minimum daily, 0.0°C Dec. 26.

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, DAY (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)
NOV 08	1534	1270	406	7.5	22.5	40	58	9.2	107	1.7	550
FEB 02	0905	496	626	7.8	12.0	<1	8.1	9.6	89	1.0	24
MAR 13	1600	335	701	8.3	23.5	. 5	5.0	11.6	136	1.2	K4
APR 26	1311	736	583	8.0	23.0	140	50	7.9	93	1.9	80
JUN 14	0750	1530	538	8.5	28.0	40	33	7.9	101	.9	60
AUG 29	1620	382	589	8.5	33.5	10	3.0	8.9	125	1.4	48
DATE	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
NOV 08	980	150	23	42	12	23	.8	4.6	132	21	35
FEB 02	120	250	41	67	20	37	1	3.6	210	40	58
MAR 13	100	260	26	71	19	45	1	4.1	230	48	60
APR 26	200	210	47	48	21	36	1	4.0	160	42	59
JUN 14	36	200	46	46	20	32	1	4.0	152	35	55
AUG 29	20	210	38	50	20	39	1	4.6	170	42	62

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

08162000 COLORADO RIVER AT WHARTON, TX--Continued

Not	DATE	FLUC RIDE DIS SOLV (MG/ AS F	E, DI: S- SOI /ED (MC	ICA, RES S- AT LVED DE G/L D S SO	IDUE ST 180 CC G. C TU IS- LVED S	DLIDS, JM OF DNSTI- JENTS, DIS- GOLVED (MG/L)	SOLI RESI AT 1 DEG. SUS PENI (MG	DUE 105 . C,	SOLID VOLA TILE SUS- PENDE (MG/	G NIT TO M	TRO- EN, RATE TAL G/L N)	NITRO GEN, NITRIT TOTAL (MG/I AS N)	GE NO2+ TO7	NO3 TAL G/L	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NIT GE AMMO	TAL G/L
PEN			.20	8.2	231	230		11		4	-24	-06	60	.30	.28		.120
MAR	FEB																
APR	MAR																
14. 30	APR																.040
NITRO GEN, AMMONIA GEN, CEN, AMMONIA GEN, AMMONIA GEN, AMMONIA GEN, CORANIC GEN, C	JUN																.010
NITRO-	AUG																
08 1-00			NITRO- GEN, AMMONIA DIS- SOLVED (MG/L	NITRO- GEN, ORGANIC TOTAL (MG/L	NITRO GEN, AN MONIA ORGANI TOTAI (MG/I)- - + PH C PH(ORUS, OTAL MG/L	PHO PHOR DI SOL (MG	S- US, S- VED /L	PHOS- PHORUS, ORTHO, DIS- SOLVED (MG/L	ORGA TOT (MC	BON, ANIC TAL G/L	SEDI- MENT, SUS- PENDED	SED MEN DIS CHARG SUS PEN	I- F, S- S GE, S- %	SED. SUSP. IEVE DIAM. FINER THAN	
FEB			100	1.1	1.2		260		160	130		6.5	105	360)	99	
MAR 13	FEE	3															
APR 26 0.70	MAR	3															
JUN 14 1.010 1.59 1.60 1.260 1.190 1.130 3.9 109 450 85	APR	3															
AUG	JUN	1															
NOV	AUG	3															
NOV			.010		• •				100			3.0	12	12	16.	,,	
08 1534	DA	ATE	TIME	DIS- SOLVED (UG/L	DIS- SOLVED (UG/L	DI SC (U	UM, S- LVED G/L	SOL' (UG	S- VED /L	MIUM, DIS- SOLVED (UG/L	SOLV (UG	ED :/L	DIS- SOLVED (UG/L	SOLV (UG)	S- /ED S(DIS- DLVED UG/L	
O2 O905			1534	2	8	2	<.5		<1	<1		<3	2		54	<1	
14 0750 \$\lambda 86 1.0 \$\lambda 1 \$\lambda 3 1 8 \$\lambda 1 \\ AUG 29 1620 2 96 \$\lambda 1.0 \$\lambda 1 2 \$\lambda 3 2 \$\lambda 3 2 \\ 2 \$\lambda 3 2 \$\lambda 3 2 \$\lambda 3 2 \\ 2 \$\lambda 3 2 \$\lambda 3 2 \$\lambda 3 2 \\ 2 2 3 2 \$\lambda 3 2 \$\lambda 3 2 \\ 2 2 3 2 \$\lambda 3 2 2 3 2 \\ 2 2 3 2 2 3 2 2 2 3 2 2	02		0905	1	11	0	<.5		<1	<1		<3	10		3	<1	
29 1620 2 96 <1.0 <1 2 <3 2 <3 2 <3 2 MANGA-	14.		0750	<1	86		1.0	1.0	<1	<1		<3	1		8	<1	
LITHIUM			1620	2	9	6	<1.0		<1	2		<3	2		<3	2	
08 20 3 <.1 <10 5 <1 1 310 <6 16 FEB 02 21 12 <.1 <10 <1 <1 <1 540 <6 7 JUN 14 19 2 <.1 <10 1 <1 <1 <1 440 <6 <3 AUG 29 16 7 <.1 <10 <1 <1 <1 <1 500 <6 <3 GROSS GROS	DA		DIS- SOLVED (UG/L	NESE, DIS- SOLVED (UG/L	DIS- SOLVE (UG/L	Y DE D SO (U	NUM, IS- LVED G/L	SOLV (UG)	VED /L	NIUM, DIS- SOLVED (UG/L	SOL (UG	ER, S- VED /L	TIUM, DIS- SOLVED (UG/L	DIUM DIS SOLV (UG/	1, Z: 3- 1 7ED SC 'L (U	DIS- DLVED JG/L	
FEB 02 21 12 <.1 <10 <1 <1 540 <6 7 JUN 14 19 2 <.1 <10 1 <1 <1 <1 540 <6 <7 JUN 14 19 2 <.1 <10 1 <1 <1 <1 440 <6 <3 AUG 29 16 7 <.1 <10 <1 <1 <1 <1 <1 500 <6 <3 RADIUM 14 19 2 <.1 <10 <1 <1 <1 <1 500 <6 <3 RADIUM REPRORUE SUSP. DIS- SUSP. DIS			20	2					-	24			210		,,		
JUN 14 19 2 <.1 <10 1 <1 <1 <40 <6 <3 AUG 29 GROSS G	FEB																
AUG 29 GROSS G	JUN																
GROSS GROS	AUG																
ALPHA, ALPHA, SUSP. DIS- SUSP. DI	29	•••	10	,	۲.	1	(10		<1	\$1		<1	500		(0	(3	
08 1534 2.9 <5.9 4.2 3.4 2.6 3.0 2.2 .1068 AUG	DATE	TIMI	ALP SUS TOT (PCI E A	HA, ALE P. DI AL SOI /L (UC S AS	PHA, A IS- S LVED T G/L (LPHA, USP. OTAL UG/L AS	BETA DIS SOLV (PCI, AS	A, S- VED /L (BETA, SUSP. TOTAI (PCI/I AS	BET DI SOL (PC AS	A, S- VED I/L SR/	BETA, SUSP. TOTAL (PCI/I AS SR	22 DI SOLV L RAD / MET	6, U S- N ED, ON HOD	ATURAL DIS- SOLVED (UG/L	SOLVI EXTRA TION	S- ED, AC- N
AUG		1534	4	2.9	(5.9	4.2		3.4	2.	6	3.0	2.5	2	.10			.68
	AUG																

MEAN

COLORADO RIVER BASIN

08162000 COLORADO RIVER AT WHARTON, TX--Continued

MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1983 TO SEPTEMBER 1984

MONTH	YEAR .			HARGE - DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
OCT.	1983		34	125	573	314	28900	48	4460	39	3570	220
NOV.	1983		214	400	579	317	18300	49	2830	39	2250	220
DEC.	1983		21	532	572	313	18200	49	2820	38	2240	220
JAN.	1984		26	732	608	333	24000	52	3730	41	2940	230
FEB.	1984		133	776	621	339	12600	53	1960	41	1540	230
MAR.	1984		120	006	669	365	11800	57	1860	44	1420	250
APR.	1984		229	971	612	335	20800	52	3230	41	2540	230
MAY	1984		387	744	496	273	28600	42	4360	34	3590	190
JUNE	1984		411	100	544	299	33100	46	5080	37	4130	200
JULY	1984		398	334	554	304	32700	47	5030	38	4060	2 1.0
AUG.	1984		219	958	566	310	18400	48	2830	38	2280	210
SEPT	1984		293	32	582	319	25300	49	3900	39	3110	220
TOTAL			3235	10	**	**	273000	**	42100	**	33700	**
WTD.A	VG.		8	884	570	312	**	48	**	39	**	210
DAY 1 2 3		OCT 585 587 507	NOV 640 642 646	DEC 678 690 680	JAN 675 668 657	EQU FEB 624 627 630	JIVALENT MEAN MAR 674 682 670	APR 663 656 687	MAY JU 580 566 585 56 572 563	N JUL 0 557 5 546	AUG 540	SEP 584 582 580
5	6	608 600	652 547	450 338	660 662	640 644	680 690	666 649	573 566 569 556	519	544 550	575 577
6 7 8 9 10	6	504 505 503 587 502	390 500 419 407 475	317 343 469 563 605	666 669 671 628 564	648 650 655 644 654	688 711 703 711 704	639 633 631 627 610	576 55 582 50 574 53 575 53 573 54	9 550 1 555 6 561	543 548 573 579 602	576 580 573 569 570
11 12 13 14 15	6	503 504 505 502 510	547 596 568 609 639	632 648 647 582 589	594 473 527 580 567	655 640 637 620 624	710 697 698 707 697	614 606 615 626 619	572 53 573 52 583 525 582 532 575 506	563 566 2 565	589 585 535 545 560	573 575 570 575 586
16 17 18 19 20	3 4 5	597 566 484 537 546	654 665 669 676 668	591 593 608 469 450	609 629 648 649 661	615 639 653 668 665	710 717 705 696 708	617 621 613 605 598	568 53 570 54 552 554 509 552 360 554	569 567 568	556 560 563 575 573	583 573 588 586 582
21 22 23 24 25	5	668 682 690 692 603	679 672 647 635 639	565 579 617 620 640	676 640 575 542 546	614 611 479 499 545	696 697 709 714 588	601 594 585 584 582	331 549 414 543 492 552 521 556 534 558	562 566 578	574 580 585 595 602	580 582 588 589 589
26 27 28 29 30 31	5 6 6	516 565 507 523 525 526	649 629 650 662 673	684 688 697 695 690 681	522 539 556 578 594 609	580 595 634 658	52 7 58 8 63 3 58 2 59 3 66 6	580 581 572 578 572	538 555 540 552 545 556 551 55 559 559 557	2 569 3 560 7 559 540	618 619 607 598 590 573	591 598 601 603 608

COLORADO RIVER BASIN

08162000 COLORADO RIVER AT WHARTON, TX--Continued

		TEM	PERATURE,	WATER (D	EG. C),	WATER YEAR ONCE-DAIL		1983 TO S	EPTEMBER	1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	24.0	22.0	15.0		11.0	11.0	19.0	22.0	23.5	28.0	27.0	28.0
2	24.0	23.0	16.5	8.5	13.0	13.0	20.0	24.0	24.5	28.0	28.5	
3	24.0	23.0	19.0	9.0	11.5	16.5	20.0	24.0	24.5	28.0	29.0	
4	24.5	24.0		10.0	12.0			24.0	25.0	29.0	30.0	26.5
5	26.0	23.0	19.5	11.5	11.5	16.0	17.0	25.0	26.0	29.5	28.0	25.0
6	26.5	21.5	14.5	12.0	9.0	11.0	18.5	26.0	26.5	29.5	28.0	25.0
7	25.0	22.0	12.0	13.0	9.0	11.5	20.0	27.0	26.0	30.0	28.0	27.0
8	25.0	20.0	13.0	14.0	11.5	14.0	21.0	23.5	27.0	30.0	28.0	27.0
9	24.5	21.0	16.0	15.0	13.0	16.0	21.0	21.5	27.0	29.5	29.0	28.5
10	23.0	16.0	20.0	11.5	12.0	17.0	22.0	22.0		29.5	29.0	28.5
11	24.0	15.0	18.0	8.0	19.0	17.0	21.0	27.0	27.5	30.0	29.0	28.0
12	22.0	15.0	15.0	8.0		18.0	23.0	25.0	27.5	30.0	29.0	27.5
13	20.0	18.5	16.0	8.0	15.5	20.5	23.0	25.0	28.0	29.0	29.0	29.5
14	21.0	21.0	13.0	8.0	16.0	21.5	23.0	25.0	28.0	30.0	29.0	27.0
15	21.0	19.5	12.0	7.0	17.0	21.5	19.5	25.0	28.0	30.0	29.0	28.0
16	23.0	16.0	12.0	7.0	16.5	23.5	19.0	25.0	28.0	29.0	29.0	25.0
17	22.5	16.0	10.0	8.0	16.5	22.5	18.0			29.0		23.0
18	25.0	19.5	11.0	6.5	19.0	23.5	21.0	24.0	29.0	30.0	29.0	24.0
19	26.0	21.5	7.0	3.0	15.0	21.5	23.0	24.0	29.0	29.0	29.0	24.0
20	26.0	16.5	6.0	4.0	12.0	16.0	24.0	24.0	29.0	29.0	30.0	25.0
21	24.5	16.0	9.0	4.0	10.0	16.5	24.5	24.5	29.0	29.0	29.0	
22	22.5	22.0	4.0	6.0	12.0	16.5	21.5	26.0	29.5	29.0	29.0	26.0
23	21.0	19.0	3.0		14.0	20.0	20.0	27.0	30.0	28.5	28.0	26.0
24	21.0	15.0		9.0	15.0	18.0	22.0	27.5	30.0	29.0	29.0	25.0
25	21.0	15.0		9.0	14.5	18.0	22.0	28.0	31.0	27.0	29.0	27.0
26	19.5	15.0	.0	9.0	19.0	20.0	23.0	27.0	30.5		28.0	25.0
27	18.0	16.5	2.0	10.5	12.0	21.0	24.5		30.0	29.0	28.0	25.0
28	19.0	13.5	4.0	10.5	9.0	13.5	25.0		30.0	28.0	28.0	24.0
29	20.0	12.0		12.5	9.0	16.0	25.0	25.0	30.0	29.5	29.5	21.0
30	20.0	16.0		14.0		17.0	23.0	22.5	30.0	28.0	28.0	18.0
31	21.5		2.0	11.0		17.5		22.5		28.0	29.0	
MEAN	22.5	18.5	11.0	9.0	13.5	17.5	21.5	25.0	28.0	29.0	28.5	25.5

216

COLORADO RIVER BASIN

08162500 COLORADO RIVER NEAR BAY CITY. TX

LOCATION.--Lat 28°58'26", long 96°00'44", Matagorda County, Hydrologic Unit 12090302, on right bank 6,300 ft downstream from bridge on State Highway 35, 7,100 ft downstream from Texas and New Orleans Railroad Co. bridge, 2.8 mi west of Bay City, and at mile 32.5.

DRAINAGE AREA.--42,240 mi², approximately, of which 11,403 mi² probably is noncontributing.

PERIOD OF RECORD.--July 1940 (in WSP 1046), April 1948 to current year. Records of elevation collected in this vicinity since 1946 are contained in reports of the National Weather Service.

Water-quality records.--Chemical and biochemical analyses: October 1974 to September 1975.

REVISED RECORDS . -- WRD TX-81-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929. July 2-6, 1940, nonrecording gage at highway bridge, 6,300 ft upstream at datum 30.60 ft lower.

REMARKS.--Records fair. Diversions above station for irrigation and municipal supply. For statement regarding regulation by Soil Conservation Service floodwater-retarding structures, see station 08161000. Telemeter at station.

AVERAGE DISCHARGE. -- 36 years (water years 1949-84), 2,344 ft 3/s (1,698,000 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 84,100 ft³/s June 26, 1960; maximum elevation, 48.2 ft, present datum, July 4, 1940, at site 6,300 ft upstream at bridge on State Highway 35, observed by Corps of Engineers, elevation 46.6 ft, adjusted to present site; no flow at times in 1951-53 and 1956.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum elevation since 1869, 56.1 ft Dec. 10, 1913. Flood in July 1869 probably reached about same elevation. Elevation of other floods are as follows: May 8, 1922, 55.4 ft; June 1929, 55.0 ft; June 22, 1935, 54.6 ft; Oct. 5, 1936, 52.2 ft; Aug. 2, 1938, 53.4 ft; Nov. 27, 1940, 47.6 ft. All above flood data from information by Texas and New Orleans Railroad Co. and adjusted to present site.

EXTREMES FOR CURRENT YEAR .-- Maximum discharge, 10,700 ft 3/s Oct. 17 at 2000 hours (elevation, 16.02 ft); minimum daily, 3.1 ft 3/s May 15.

		DISC	CHARGE, IN	CUBIC FEE	T PER	SECOND, WATER MEAN VALUES	YEAR	OCTOBER 19	83 TO SE	PTEMBER	1984	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	75	815	502	950	600	490	116	481.0	15	225	852.0	17
2	40	849	487	812	570	467	113	325.0	29	749	765.0	34
3	225	552	548	677	559		141	293.0	56	1450	692.0	564
4	341	525	618	582	547	400	196	296.0	81	1080	596.0	694
5	436	1050	1580	534	523	382	302	216.0	96	800	549.0	719
6	455	3360	1210	527	505	368	286	114.0	145	660	557.0	766
7	418	3260	829	539	498	367	254	21.0	667	610	516.0	774
8	467	1990	697	521	490	170	345	16.0	955	610	367.0	755
9	505	1440	629	603	488	70	301	21.0	1180	520	306.0	774
10	667	1060	624	907	499	248	380	37.0	1210	415	209.0	791
11	723	930	595	947	500	323	272	33.0	1150	400	216.0	713
12	881	982	525	981	526	345	151	28.0	1040	419	283.0	514
13	988	901	552	785	544	380	157	5.8	842	446	609.0	356
14	1430	752	543	841	572	376	128	3.3	680	411	708.0	235
15	1290	643	514	914	582	376	79	3.1	666	461	749.0	102
16	1130	578	494	773	552	331	84	3.7	538	557	769.0	137
17	7900	542	494	682	526	284	117	13.0	489	547	752.0	228
18	9430	508	499	612	508	283	67	428.0	461	501	756.0	271
19	6790	477	490	568	471	356	116	2860.0	404	502	652.0	245
20	3130	457	490	545	446	260	128	6090.0	392	475	560.0	297
21	1590	453	498	1520	481	162	45	5450.0	427	399	481.0	496
22	1010	462	486	2750	578	354	221	3360.0	407	404	333.0	907
23	938	462	494	2060	767	275	393	2280.0	362	430	162.0	1070
24	1060	443	492	1980	604	160	318	1570.0	323	428	52.0	1060
25	917	446	480	1690	513	155	340	1170.0	251	355	14.0	969
26	852	444	504	1250	455	199	325	831.0	162	464	12.0	757
27	800	465	491	973	395	254	354	545.0	197	659	10.0	441
28	711	566	779	833	373	161	460	272.0	249	668	9.5	320
29	727	528	767	741	410	143	390	104.0	190	765	9.0	283
30	665	512	935	686		121	389	49.0	114	929	8.7	332
31	613		1040	636		113		19.0		949	12.0	
TOTAL	47204	26452	19886	29419	15082	8804	6968	26937.9	13778	18288	12566.2	15621
MEAN	1523	882	641	949	520	284	232	869	459	590	405	521
MAX	9430	3360	1580	2750	767	490	460	6090	1210	1450	852	1070
MIN	40	443	480	521	373	70	45	3.1	15	225	8.7	17
AC-FT	93630	52470	39440	58350	29920		3820	53430	27330	36270	24930	30980
CAL YR WTR YR				N 1675 1	1AX 21	400 MIN 38 9430 MIN 3.	A	C-FT 1213	3000			

TRES PALACIOS RIVER BASIN 217 08162600 TRES PALACIOS RIVER NEAR MIDFIELD, TX

LOCATION.--Lat 28°55'40", long 96°10'15", Matagorda County, Hydrologic Unit 12100401, at left downstream end of bridge on Farm Road 456, 1.0 mi downstream from Juanita Creek, and 2.4 mi southeast of Midfield.

DRAINAGE AREA. -- 145 mi2.

PERIOD OF RECORD.--June 1970 to current year. Prior to October 1973, published as Tres Palacios Creek near Midfield. Water-quality records.--Chemical, biochemical, and pesticide analyses: October 1968 to September 1981.

GAGE..-Water-stage recorder. Datum of gage is 5.38 ft National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. Ten known diversions above station (amounts unknown). An undetermined amount of water from irrigated ricefields enters river upstream at various points. Extensive channel cleaning upstream and downstream from gage was begun in the 1983 water year and completed this year. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE. -- 14 years, 157 ft 3/s (113,700 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 17,000 ft 3/s Oct. 17, 1984 (gage height, 32.43 ft, from floodmark); minimum daily, 1.0 ft 3/s Nov. 3-5, 1978.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1885, 37 ft in June 1960 and 35 ft in August 1945, from information by local residents.

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 1,600 ft3/s and maximum (*):

Date		Time	Discharge (ft³/s)	Gage height (ft)
Oct.	17	1400	*17,000	a32.43
May	20	0300	3,180	23.67

DISCHARGE IN CURIC FEET PER SECOND WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

a From floodmark.

MAX

12200

MAX 12200

Minimum daily discharge, 6.9 ft 3/s May 15.

CAL YR 1983 TOTAL 101952.5 MEAN 279 WTR YR 1984 TOTAL 52536.0 MEAN 144

		DISCHARGE,	IN CU	BIC FEET	PER SECON	D, WATER MEAN VALU	YEAR OCT	OBER 1983	TO SEPTEM	BER 1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	89	31	28	12	25	11.0	16.0	8.1	14	31	36	10.0
2	83	26	37	12	22	11.0	9.8	12.0	15	38	31	9.3
3	80	26	33	11	26	11.0	14.0	16.0	15	45	33	18.0
2 3 4 5	76	23	27	11	23	11.0	14.0	15.0	17	42	33	27.0
5	73	47	23	11	20	11.0	25.0	19.0	17	43	39	27.0
6 7 8	60	873	19	11	17	11.0	23.0	15.0	18	46	46	23.0
7	45	550	16	11	15	9.2	16.0	13.0	19	45	49	20.0
	35	215	15	11	14	8.9	12.0	13.0	20	32	38	19.0
9	33	111	15	224	14	9.6	12.0	17.0	20	38	34	19.0
10	31	68	15	364	15	11.0	12.0	26.0	20	42	28	17.0
11	30	49	14	163	14	10.0	11.0	19.0	21	36	26	18.0
12	30	38	14	69	14	12.0	15.0	12.0	26	31	37	15.0
13	30	32	14	42	22	14.0	22.0	8.2	23	29	113	12.0
14	31	27	12	30	32	13.0	18.0	7.1	20	29	123	11.0
15	26	24	13	23	22	13.0	31.0	6.9	20	29	72	12.0
16	26	21	14	19	17	11.0	20.0	7.2	20	29	51	16.0
17	12200	21	21	17	15	10.0	16.0	17.0	22	33	37	45.0
18	9800	20	22	15	14	9.8	17.0	481.0	21	29	26	37.0
19	5450	19	18	14	14	11.0	23.0	1690.0	19	23	20	25.0
20	3260	18	14	13	14	9.8	24.0	2750.0	18	25	15	22.0
21	1900	17	14	13	14	9.8	29.0	1190.0	19	24	14	32.0
22	872	16	13	13	19	11.0	22.0	298.0	21	26	11	41.0
23	358	17	12	121	16	10.0	29.0	104.0	20	25	21	38.0
24	200	17	12	351	14	9.2	20.0	54.0	20	28	23	30.0
25	132	17	15	394	13	9.2	21.0	31.0	21	41	16	24.0
26	96	17	11	172	12	9.3	21.0	19.0	22	51	13	21.0
27	72	61	13	89	12	9.6	16.0	15.0	23	73	14	17.0
28	57	73	12	54	11	8.6	24.0	14.0	25	70	15	14.0
29	45	45	12	36	12	9.6	28.0	14.0	27	48	13	16.0
30	37	30	11	40		8.3	19.0	13.0	27	35	14	17.0
31	33		12	34		8.5		13.0		33	13	
TOTAL	35290	2549	521	2400	492	321.4	579.8	6917.5	610	1149	1054	652.3
MEAN	1138		16.8	77.4	17.0	10.4	19.3	223	20.3	37.1	34.0	21.7
MAX	12200	873	37	394	32	14	31	2750	27	73	123	45
MIN	26	16	11	11	11	8.3	9.8	6.9	14	23	11	9.3
AC-FT	70000	5060	1030	4760	976	637	1150	13720	1210	2280	2090	1290

MIN 3.5 AC-FT 202200 MIN 6.9 AC-FT 104200

202200

08163500 LAVACA RIVER AT HALLETTS VILLE, TX

LOCATION.--Lat 29°26'35", long 96°56'39", Lavaca County, Hydrologic Unit 12100101, on left bank 75 ft downstream from bridge on U.S. Highway 77 in Hallettsville and 0.7 mi downstream from Campbell Branch.

DRAINAGE AREA. -- 108 mi2.

PERIOD OF RECORD .-- July 1939 to current year.

REVISED RECORDS. -- WSP 1312: 1942(M), 1944(M). WSP 1732: 1952(M). WSP 2123: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 186.72 ft National Geodetic Vertical Datum of 1929. Prior to Apr. 19, 1960, water-stage recorder for high stages and movable nonrecording gage for stages below about 6.2 ft. Apr. 20, 1960, to June 2, 1961, movable nonrecording gage. All gages at same site and datum.

REMARKS.--Records fair prior to Jan. 10 and poor thereafter. No diversion above station. The Lavaca County Flood Control District No. 3 began channel rectification 1.6 mi downstream from gage in August 1983. This rectification reached the gage Jan. 26, 1984, and was completed in June 1984. The channel was previously rectified in 1959-60. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE. -- 45 years, 51.2 ft3/s (6.44 in/yr), 37,090 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 99,500 ft³/s Aug. 31, 1981 (gage height, 41.1 ft, from floodmark), from rating curve extended above 23,000 ft³/s on basis of slope-area measurement of peak flow; no flow at times in 1953 and 1956.

Maximum stage since at least 1840, that of Aug. 31, 1981.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage from about 1870 to 1940, 32.8 ft July 16, 1936, from information by local resident.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 326 ft³/s Nov. 6 at 0830 hours (gage height, 12.95 ft), no peak above base of 2,300 ft³/s; minimum daily, 0.10 ft³/s July 31.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

					MI	EAN VALUES	3					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	2.0 2.0 1.9 1.9	3.5 3.6 3.6 3.9 7.8	3.5 3.8 4.2 4.0 4.1	3.9 3.9 3.9 3.9	5.0 10 7.5 6.5 6.0	10 7.0 5.5 5.2 5.0	3.3 3.4 3.8 4.3 5.0	3.0 3.0 2.9 2.9 2.9	1.1 1.1 1.1 1.1 1.1	1.2 1.0 .80 1.0 1.4	.11 .20 .12 .12	.30 .30 2.0 .60
6 7 8 9	1.8 1.8 1.8 2.6 2.1	89 25 10 6.4 4.6	3.8 3.5 3.5 3.5 3.8	3.7 3.6 3.9 42 25	5.5 5.0 4.8 4.7 4.5	4.8 4.7 4.6 4.5 4.5	4.5 4.5 4.8 5.1 5.4	2.8 2.8 2.8 2.8 2.8	2.0 1.8 1.6 1.4	.90 .70 .60 .50	.13 .15 .15 .20	.50 .50 .50 .50
11 12 13 14 15	2.1 2.5 2.2 2.3 2.2	3.9 3.6 3.5 3.2 3.0	3.9 3.9 3.8 3.5 3.5	15 10 9.0 8.0 7.8	4.4 4.3 4.2 4.1 4.0	4.5 15 7.0 6.5 6.0	5.4 5.4 5.3 5.1	2.8 2.8 2.8 2.8 2.8	2.5 2.2 1.9 1.6 1.5	.40 .40 .40 .30	.30 .30 .30 .30	.50 .50 .50 .50
16 17 18 19 20	2.5 2.7 2.4 2.8 3.0	2.9 3.0 3.0 3.4 3.2	3.5 3.5 3.7 3.7 3.5	7.5 7.2 7.1 6.8 6.7	3.9 3.8 3.7 3.7 50	5.8 5.5 5.2 6.0 5.0	4.8 4.5 4.3 4.1 3.8	2.8 2.8 5.0 5.5 3.2	1.4 1.4 1.3 1.3	.60 .40 .30 .20	.30 .30 .30 .30	.50 .60 .70 .60
21 22 23 24 25	6.0 3.2 3.4 3.5 3.3	3.3 3.4 4.0 3.2 3.2	3.7 3.7 3.8 3.8	6.5 6.3 6.1 6.0 5.8	15 10 9.0 8.5 8.0	4.8 4.6 4.4 4.3 4.1	3.7 3.6 3.4 3.3 3.3	2.7 2.3 2.0 1.9	1.2 1.2 1.2 1.2 1.2	.60 .40 .60 .80	.30 .30 .30 .30	.50 .50 .70 .50
26 27 28 29 30 31	3.0 2.9 2.9 3.0 3.2 3.3	3.4 3.5 3.4 3.5	3.9 4.0 3.9 3.9 3.9	5.7 5.5 5.4 5.3 5.2 5.1	60 25 15 13	3.9 3.8 3.7 3.6 3.5 3.4	3.2 3.1 3.1 3.0	1.4 1.2 1.1 1.1 1.1	1.2 1.2 1.2 1.2 1.6	1.0 .60 .60 .20	.30 .30 .30 .30 .30	.50 .60 .60 .60
TOTAL MEAN MAX MIN CFSM IN. AC-FT	82.1 2.65 6.0 1.8 .03 .03	224.5 7.48 89 2.9 .07 .08 445	116.4 3.75 4.2 3.5 .04 .04 231	245.6 7.92 42 3.6 .07 .08 487	309.1 10.7 60 3.7 .10 .11 613	166.4 5.37 15 3.4 .05 .06 330	125.1 4.17 5.4 3.0 .04 .04 248	79.5 2.56 5.5 1.1 .02 .03 158	42.3 1.41 2.5 1.1 .01 .01	19.10 .62 1.4 .10 .006 .01 38	7.91 .26 .30 .11 .002 .00	17.40 .58 2.0 .30 .005

CAL YR 1983 TOTAL 9396.42 MEAN 25.7 MAX 1830 MIN .43 CFSM .24 IN 3.24 AC-FT 18640 WTR YR 1984 TOTAL 1435.41 MEAN 3.92 MAX 89 MIN .10 CFSM .04 IN .49 AC-FT 2850

NOTE .-- No gage-height record Jan. 27 to Feb. 26 and Feb. 28 to Apr. 9.

08164000 LAVACA RIVER NEAR EDNA, TX (National stream-quality accounting network)

LOCATION.--Lat 28°57'35", long 96°41'10", Jackson County, Hydrologic Unit 12100101, at downstream side near center of upstream bridge of two bridges on U.S. Highway 59, 660 ft upstream from Texas and New Orleans Railroad Co. bridge, and 2.8 mi southwest of Edna.

DRAINAGE AREA. -- 817 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- August 1938 to current year.

REVISED RECORDS. -- WSP 1923: 1955. WDR TX-73-1: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 13.88 ft National Geodetic Vertical Datum of 1929. Prior to June 6, 1939, nonrecording gage (property of Corps of Engineers); June 6, 1939, to Apr. 3, 1957, nonrecording gage at site 110 ft downstream; Apr. 4, 1957, to Mar. 21, 1961, nonrecording gage; all at same datum.

REMARKS .-- Water-discharge records good. Small diversions above station for irrigation.

AVERAGE DISCHARGE. -- 46 years, 330 ft 3/s (5.49 in/yr), 239,100 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 73,000 ft 3/s July 1, 1940 (gage height, 32.51 ft); no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum stage since at least 1880, 33.8 ft May 25, 1936 (discharge, 83,400 ft 3/s), from information by local resident.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 5,840 ft³/s Nov. 6 at 1500 hours (gage height, 21.13 ft), no other peak above base of 4,100 ft³/s; minimum daily, 8.0 ft³/s Sept. 30. DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

MEAN VALUES DAY OCT NOV DEC FEB JUN AUG SEP JAN MAR APR MAY JUL 27 9.2 63 45 79 73 77 1100 132 12 9.1 8.8 8.5 53 8.5 50 79 9.9 8.8 50 8.2 8.5 916 67 9.2 9.0 8.8 8.5 8.0 ---8.6 TOTAL 485.1 333.6 MEAN 73.0 19.7 54.9 MAX 45 MIN 8.5 8.0 .26 .08 .40 .13 .14 . 07 . 02 CFSM .09 . 09 . 02 IN. . 07 .10 . 02 AC-FT

MIN 33 CFSM .44 CAL YR 1983 TOTAL 132349.0 IN 6.03 WTR YR 1984 TOTAL 46676.7 MEAN 128 MAX MIN 8.0 CFSM .16 IN 2.13

08164000 LAVACA RIVER NEAR EDNA, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical analyses: October 1960 to September 1977. Chemical and biochemical analyses: October 1977 to current year. Pesticide analyses: January 1968 to September 1981.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: November 1977 to September 1981. WATER TEMPERATURES: November 1977 to September 1981.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 899 micromhos April 22, 1978; minimum daily, 100 micromhos May 5, 1979, and
May 20, 1980.
WATER TEMPERATURES: Maximum daily, 33.0°C July 16, 1978; minimum daily, 5.0°C January 22, 1978.

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DAT	TIME E	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	
OCT											
JAN	1600	40	699	8.2	22.5	6.0	8.0	92	1.1	140	
17. FEB	1530	109	537	7.6	8.0	21	10.8	91	1.6	390	
29.	1100	89	725	7.8	9.5		10.8	93	1.0		
APR 10.	1605	74	716	7.8	24.5	22	8.5	103	1.8	160	
JUL 10 AUG	1530	18	688	· 2	31.0	9.5	7.8		1.1	460	
21.	1600	13	651	8.3	29.5		7.8	103	1.2		
DAT	STREPTOCOCC FECAL KF AGAI (COLS. PER 100 ML)	HARD- R NESS (MG/L AS	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	
OCT											
12. JAN	230	260	0	96	5.8	44	1	3.6	270	19	
17. FEB	150	170	0	62	4.7	29	1	6.0	176	19	
29. APR		- 260	10	94	6.3	51	1	13	251	24	
10. JUL	130	280	0	99	6.7	58	2	3.1	277	25	
10.	200	260	0	94	7.1	56	2	2.7	281	16	
AUG 21.		- 250	0	89	6.4	63	2	6.2	277	18	
DAT	CHLO- RIDE, DIS- SOLVEI (MG/L E AS CL)	(MG/L	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	
OCT 12.	54	.30	23	440	410		<.020	<.10	<.10	.030	
JAN											
17. FEB		.20	15	293	280	.29	.010	.30	.27	.040	
29. APR		.30	14		430		<.010	.30		.010	
JUL		.50	19	472	460		<.010	.20	.18	.030	
10. AUG	70	.30	23	421	440		<.010	<.10	<.10	.030	
21.	67	.40	20	·	440		.030	<.10		.070	

LAVACA RIVER BASIN

08164000 LAVACA RIVER NEAR EDNA, TX--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	AMMO DI SOI (MO	N, N ONIA S- OR VED T	GEN, GANIC OTAL MG/L	GEN, MONI ORGA TOT (MG	AM- A + PH NIC PHO AL TO /L (M	RUS, TAL G/L	PHORUS DIS- SOLVE (MG/L	PHO OR DISOL (MG	RUS, THO, S- VED /L	MENT, SUS- PENDED	MEN DI CHAR SU PEN	IT, SUS- SINGE, DIS- % FINDED TH	ED. JSP. EVE IAM. INER HAN
		0/0			00								76
		040	.//		.80	.120	.10	0	.100	4/		5.1	76
		040	.36		.40	.150	.11	0	.120	33		9.7	96
29			.19		.20	.090	-	-					
10		030	.37		.40	.150	.15	0	.080	112	2	2	45
10		090	.17		.20	.100	.08	0	.050	86		4.2	25
			.33		.40	.110	-	->					
	TIME	DIS- SOLVE (UG/L	DIS D SOLV	S- VED G/L	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	SOLY (UG	LUM S- VED /L	MIUM, DIS- SOLVED (UG/L	DIS- SOLVE: (UG/I	D 50 L (U	IS- DLVED JG/L	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB)
	1600		4	330	<.5		<1	<1		(3	3	8	4
	1530		3	240	<.5		<1	<1		<3	3	42	2
				340			<1	1		(3	<1	6	<1
•	1530		3	340	<1.0		<1	1		(3	<1	<3	1
Si (I	DIS- DLVED JG/L	NESE, DIS- SOLVEI (UG/L	MERC DI SOI (UG	S- VED G/L	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO)	SOLV (UG)	EL, I	NIUM, DIS- SOLVED (UG/L	DIS- SOLVE (UG/I	ED SC	TIUM, DIS- DLVED IG/L	VANA- DIUM, DIS- SOLVED (UG/L AS V)	ZINC, DIS- SOLVED (UG/L AS ZN)
					4.7						-	907.	
•	17	24	4	<.1	<10		7	<1	<	(1	320	<6	6
	14	16	5	.2	<10		3	<1	<	(1	210	<6	14
	19	19	9	<.1	<10		2	<1	<	(1	380	<6	15
	23	37	,	<.1	<10		3	<1			000	<6	15
	12 1AN 17 FEB 29 APR 10 JUL 10 AUG 21	GE AMMC DI SOI (MC DI SOI (MC) (MC DI SOI (MC) (MC DI SOI (MC) (MC) (MC) (MC) (MC) (MC) (MC) (MC)	AMMONIA DIS- OR SOLVED T (MG/L	GEN, AMMONIA GEN, ORGANIC SOLVED (MG/L (MG/L AS N)) DATE AS N) AS N) OCT 12040 .77 JAN 17040 .36 FEB 2919 APR 10030 .37 JUL 10090 .17 AUG 2133 ARSENIC BAR: DIS DIS DIS SOLVED	GEN, MITRO- GEN, MONI DIS- ORGANIC ORGA SOLVED TOTAL TOTAL (MG/L (GEN, AMMONIA GEN, MONIA + PH DIS - ORGANIC ORG	GEN, MITRO- GEN, AM- AMMONIA GEN, MONIA + PHOS- DIS- ORGANIC ORGANIC PHORUS, SOLVED TOTAL TOTAL TOTAL (MG/L (MG/L (MG/L (MG/L (MG/L) 12040 .77 .80 .120 DATE AS N) AS N) AS N) AS P) OCT 12040 .77 .80 .120 JAN 17040 .36 .40 .150 JAN 17040 .37 .40 .150 JUL 10030 .37 .40 .150 JUL 10090 .17 .20 .100 JUL 10090 .17 .20 .100 ARSENIC BARIUM, LIUM, CADM, DIS- SOLVED SOLVED SOLVED SOLVED SOLVED SOLVED SOLVED SOLVED TIME (UG/L (UG/L (UG/L (UG/L) 4 AS AS) AS BA) AS BE) AS G 1600 4 .330 <.5 1605 3 .340 .1.6 1530 3 .240 <.5 1605 3 .340 1.6 1530 3 .340 1.6 1530 3 .340 1.6 1530 3 .340 1.6 1530 3 .340 1.6 1530 3 .340 1.6 1605 AS AS BA) AS BC) AS MO) AS N 17 24 <.1	GEN, NITRO- GEN, AM- AMMONIA GEN, MONIA - PHOSI- DIS- ORGANIC ORGANIC PHORUS, SOLVED TOTAL TOTAL TOTAL TOTAL SOLVE (MG/L (MG/L (MG/L (MG/L (MG/L (MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L	GEN, NITRO- GEN, AM- AMMONIA GEN, MONIA + PHOS- PHORUS, OR DIS- ORGANIC ORGANIC ORGANIC PHORUS, DIS- DIS- SOLVED TOTAL TOTAL TOTAL SOLVED SOLVED DATE AS N) AS N) AS N) AS N) AS P) AS P) OCT 12040 .77 .80 .120 .100 JAN 17040 .36 .40 .150 .110 FEB 2919 .20 .090 PR 10030 .37 .40 .150 .150 JUL 10090 .17 .20 .100 .080 AUG 2133 .40 .110 ARSENIC BARIUM, LIUM, CADMIUM MIUM, DIS- DIS- SOLVED SOLVED SOLVED SOLVED SOLVED SOLVED TIME (UG/L (UG/	CEN, NITRO GEN, AM PHOS PHORUS, ORTHO, DIS ORGANIC ORGANIC PHORUS, DIS D	CEN, NITRO CEN, AM PHOS PHORUS ORTHO, SEDIDIS ORGANIC ORGANIC PHORUS DIS DIS	GEN	CEN, NITRO- GEN, AM- PHOS- PHORUS, ORTHO, SEDI- DIS- SII

08164300 NAVIDAD RIVER NEAR HALLETTSVILLE, TX

LOCATION.--Lat 29°28'00", long 96°48'45", Lavaca County, Hydrologic Unit 12100102, on right bank 28 ft downstream from bridge on U.S. Highway 90-A, 0.8 mi downstream from Mixons Creek, 1.2 mi southwest of Sublime, and 8 mi northeast of Hallettsville.

DRAINAGE AREA . -- 332 mi2.

PERIOD OF RECORD .-- October 1961 to current year.

REVISED RECORDS. -- WSP 2123: Drainage area.

GAGE .-- Water-stage recorder. Datum of gage is 159.28 ft National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. No known diversion above station. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--23 years, 153 ft3/s (6.26 in/yr), 110,800 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 53,500 ft³/s Sept. 13, 1974 (gage height, 36.05 ft); no flow Aug. 5-7, 22, Sept. 2-16, 1964.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1860, 40 ft in June 1940; flood in July 1936 reached a stage of 39 ft, from information by local residents and Southern Pacific Railroad Co.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,740 ft³/s Nov. 6 at 1500 hours (gage height, 17.71 ft), no peak above base of 2,500 ft³/s; minimum daily, 0.40 ft³/s Sept. 14, 29, 30.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 MEAN VALUES DAY OCT NOV SEP DEC JAN FEB MAR APR MAY JUN JUL AUG 9.4 7.9 25 5.0 12 9.0 7.9 22 24 23 23 2 16 16 25 4.8 11 1.2 .59 3 142 5.6 1.1 .91 16 26 4.8 22 4.8 5 8.5 16 19 15 22 25 22 10 5.3 3.3 .98 20 16 15 24 1.1 7.8 9.0 8.7 377 22 20 2.6 .97 8.3 8 53 15 14 21 23 22 35 7.9 9.0 2.2 .86 21 28 30 15 936 6.3 .68 10 8.5 23 16 493 9.3 24 21 23 5.4 1.9 .60 11 21 25 8.5 99 21 21 7.9 42 1.6 24 1.3 . 59 8.5 19 25 101 51 7.8 1.5 .52 25 19 13 8.4 18 31 1.4 1.9 14 7.9 18 15 32 23 26 18 7.2 15 1.3 6.1 -40 15 7.8 16 14 22 30 24 17 6.6 10 1.3 4.3 .86 16 7.9 15 14 29 22 23 16 6.5 8.7 1.2 2.1 .87 17 10 14 22 14 27 22 15 7.5 12 8.0 1.1 1.5 .79 9.3 22 .64 19 9.0 16 14 21 194 136 .96 .92 . 52 20 8.5 16 14 24 67 410 15 62 6.3 .87 .90 .45 21 16 14 24 77 15 19 5.7 .98 .77 .45 123 27 14 14 5.2 1.1 .70 22 15 16 24 43 56 14 .45 23 42 33 13 46 .45 64 10 .50 .88 .63 25 12 15 12 33 25 42 12 26 10 15 14 12 30 28 8.1 3.6 1.2 .62 .52 36 36 27 23 27 3.8 8.8 27 33 7.2 1.9 .57 .45 8.4 30 27 28 16 16 25 12 6.5 .57 .43 24 16 16 12 6.0 3.1 8.8 . 56 .40 30 11 5.5 2.9 .40 2.8 31 7.9 14 24 25 5.3 . 52 TOTAL 463.0 1843.6 615 2251 814 359.6 1500 544 88.06 41.60 19.09 464.6 MEAN 28.1 18.1 1.34 48.4 15.0 .64 MAX 123 988 142 936 77 410 35 136 101 12 6.1 1.2 MIN 7.8 7.9 12 11 14 20 21 5.3 2.9 . 87 . 51 .40 CFSM . 05 .04 .06 . 09 .06 . 05 .009 .004 .002 . 01 .00 .00 IN. . 05 . 21 . 07 . 25 . 09 . 17 . 06 . 05 . 04 AC-FT 918 713 3660 1220 4460 1610 2980 1080 922 175 83 38

6720 AC-FT CAL YR 1983 TOTAL 39595.90 MEAN 108 MIN 4.3 CFSM .33 IN 4.44 78540 WTR YR 1984 TOTAL 9003.55 MEAN 24.6 MAX 988 MIN .40 CFSM . 07 IN 1.01 AC-FT 17860

223

08164350 NAVIDAD RIVER NEAR SPEAKS, TX LOCATION.--29°19'18", long 96 42'32", Lavaca County, Hydrologic Unit 12100102, at right downstream end of bridge on Farm Road 530, 100 ft downstream from Ragsdale Creek, and 4.6 mi north of Speaks.

DRAINAGE AREA. -- 437 mi2.

PERIOD OF RECORD .-- October 1981 to current year.

GAGE. -- Water-stage recorder. Datum of gage is 120.00 ft National Geodetic Vertical Datum of 1929.

REMARKS .-- Records good. There are no known diversions above this station. Several observations of water temperature were made during the year.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 19,300 ft3/s May 14, 1982 (gage height, 27.89 ft, from floodmark); minimum daily, 1.8 ft3/s Aug. 30, 31, 1984.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2,210 ft 3 /s Nov. 5 at 2000 hours (gage height, 15.30 ft, from floodmark), no peak above base of 2,500 ft 3 /s; minimum daily, 1.8 ft 3 /s Aug. 30, 31.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

			Carlo Carlo		N	MEAN VAI	LUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	37	41	21	18	48	31	33.0	9.7	8.0	5.9	5.2	3.0
	28	40	21	19	45	31	33.0	8.9	7.6	13.0	3.9	4.4
3	23	39	633	20	46	31	33.0	8.6	6.7	13.0	3.6	6.0
4	21	40	229	19	45	31	32.0	8.4	7.1	10.0	3.6	8.0
2 3 4 5	17	720	71	19	41	33	28.0	8.0	7.6	6.7	3.5	6.5
6 7	16	1160	49	19	39	35	27.0	6.8	52.0	8.0	4.6	6.0
7	16	1660	49	18	38	31	26.0	5.9	182.0	8.4	3.7	5.5
8 9 10	15	261	47	18	38	28	32.0	4.9	30.0	6.7	4.9	5.8
9	14	110	42	918	47	27	48.0	4.5	15.0	5.6	5.1	6.0
10	13	88	42	1530	47	26	34.0	7.1	13.0	4.9	5.2	5.4
11	11	67	42	241	45	26	27.0	5.9	18.0	4.8	5.1	4.3
12	11	46	42	100	251	90	23.0	4.3	255.0	4.8	4.8	3.0
13	11	36	42	69	137	75	22.0	3.9	89.0	4.5	4.5	3.0
14	11	31	42	49	68	45	20.0	3.5	42.0	4.5	4.3	3.0
15	11	28	41	42	56	34	19.0	3.3	30.0	4.5	6.8	2.8
16	88	26	33	42	50	32	17.0	4.0	20.0	4.2	7.4	2.7
17	364	23	32	41	46	33	16.0	4.4	16.0	4.5	5.1	3.5
18	128	20	32	39	45	33	15.0	11.0	15.0	7.6	3.6	3.9
19	96	20	31	37	45	50	15.0	117.0	13.0	4.8	3.9	3.6
20	74	20	31	37	195	698	14.0	278.0	12.0	3.6	3.2	3.4
21	892	16	32	36	278	176	14.0	73.0	11.0	2.7	2.6	3.3
22	333	16	32	36	111	93	13.0	43.0	11.0	2.0	2.4	3.3
23	164	22	32	279	78	73	12.0	29.0	9.3	2.2	2.3	3.3
24	95	22	30	144	67	68	12.0	20.0	8.4	2.5	2.2	3.3
25	66	21	25	124	53	79	10.0	17.0	7.6	2.7	2.1	3.3
26	55	21	19	91	45	54	10.0	15.0	7.6	3.6	2.0	3.0
27	47	21	18	69	67	48	10.0	12.0	7.6	3.6	2.0	3.0
28	44	19	20	57	49	43	10.0	9.4	7.6	5.6	1.9	2.8
29	42	19	20	53	36	37	10.0	8.8	6.7	7.6	1.9	2.8
30	38	21	19	49		33	9.7	9.0	6.3	11.0	1.8	2.8
31	40	4	19	59		33		8.8		6.3	1.8	
TOTAL	2821	4674	1838	4292	2156	2157	624.7	753.1	922.1	179.8	115.0	120.7
MEAN	91.0	156	59.3	138	74.3	69.6	20.8	24.3	30.7	5.80	3.71	4.02
MAX	892	1660	633	1530	278	698	48	278	255	13	7.4	8.0
MIN	- 11	16	18	18	36	26	9.7	3.3	6.3	2.0	1.8	2.7
AC-FT	5600	9270	3650	8510	4280	4280	1240	1490	1830	357	228	239
CAL YR	1983 TOTA	T. 65344.	7 MEAN	179	MAX 5620	MIN	3.9 AC-FT	129600				

CAL YR 1983 TOTAL 65344.7 WTR YR 1984 TOTAL 20653.4 MEAN 179 MAX 5620 MIN 3.9 AC-FT 129600 MEAN 56.4 AC-FT MAX 1660 MIN 1.8 40970

08164450 SANDY CREEK NEAR LOUISE, TX

LOCATION.--Lat 29°09'36", long 96°32'46", Jackson County, Hydrologic Unit 12100102, on left bank at downstream end of bridge on Farm Road 710, 0.9 mi upstream from Goldenrod Creek, and 9.1 mi northwest of Louise.

DRAINAGE AREA. -- 289 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1977 to current year.

GAGE. -- Water-stage recorder. Datum of gage is 59.72 ft National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good. Much of the low flow during the irrigation season (April to September) comes from drainage from ricefields irrigated by water originally diverted from the Colorado River. No known diversion above station.

AVERAGE DISCHARGE. -- 7 years, 182 ft 3/s (8.55 in/yr), 131,900 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $14,000 \text{ ft}^3/\text{s}$ Sept. 14,1978 (gage height, 23.03 ft), from rating curve extended above $7,800 \text{ ft}^3/\text{s}$; no flow at times.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 1,500 ft3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft 3/s)	Gage height (ft)
Oct. 22	01 00	1,960	12.33	Jan. 10	0600	1,780	11.99
Nov. 7	1000	*2,350 1,790	13.18	May 20	1300	2,310	13.08

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

Minimum, no flow Aug. 28 to Sept. 1.

					M	EAN VALUES	5						
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1	122	18	.97	.29	52	22	.66	5.2	.36	14	54	.00	
2	100	15	.59	.29	35	16	.66	6.0	.15	39	47	3.0	
3	80	11	242	. 29	29	13	.66	2.0	. 08	1 01	30	15	
2 3 4 5	71	4.4	892	.29	26	11	1.9	.91	. 08	121	25	25	
5	72	87	200	. 32	25	11	2.9	1.9	. 08	104	28	36	
6	69	940	103	.35	19	10	.19	3.8	70	91	33	35	
7	68	2050	57	.35	15	10	. 11	2.5	398	97	17	16	
8	76	856	37	.38	11	9.5	.11	2.9	416	115	20	13	
9	266	457	23	307	10	8.1	. 08	.75	242	139	8.7	11	
10	230	228	15	1250	15	6.7	.08	.39	119	206	1.0	9.0	
11	135	134	19	401	24	5.3	.06	.18	50	236	. 62	8.6	
12	138	79	23	170	121	12	2.8	.16	36	207	2.0	5.8	
13	124	54	24	111	411	25	. 33	. 01	628	157	1.9	1.2	
14	95	37	13	76	137	16	.06	.69	218	130	9.1	1.1	
15	74	25	7.9	55	73	10	3.4	4.3	76	134	24	1.1	
16	72	16	5.2	38	48	9.2	4.8	1.5	45	83	27	14	
17	915	10	4.3	28	35	6.4	.34	1.8	25	55	19	29	
18	1260	6.7	3.2	22	28	5.2	.33	26	22	48	11	42	
19	765	6.7	2.5	17	23	5.4	.29	516	20	38	6.5	52	
20	400	6.2	1.7	12	107	5.8	.31	2050	14	37	3.5	71	
21	981	5.4	1.1	9.2	810	10	4.8	1730	10	28	.64	73	
22	1550	4.5	.74	8.7	318	6.2	16	1210	5.5	18	.72	86	
23	846	5.5	-37	281	136	4.1	19	527	9.9	9.9	.18	104	
24	440	6.8	.20	673	76	2.7	1.8	130	3.1	31	.11	88	
25	237	13	.24	498	49	2.6	2.9	27	2.4	77	.10	70	
26	163	9.4	.24	292	34	6.9	6.7	2.9	3.1	76	. 07	84	
27	115	5.8	.24	193	51	. 87	4.6	. 41	2.7	57	. 02	76	
28	86	3.4	.24	124	56	.66	9.8	.23	6.1	55	.00	61	
29	62	2.9	.24	80	34	. 66	8.6	.19	5.2	89	.00	67	
30	41	2.1	.24	56		.66	5.0	.15	8.8	85	.00	61	
31	29		.26	48		.66		.15		59	.00		
TOTAL	9682	5099.8	1678.47	4752.46	2808	253.61	99.27	6255.02	2436.55	2736.9	370.16	1158.80	
MEAN	312	170	54.1	153	96.8	8.18	3.31	202	81.2	88.3	11.9	38.6	
MAX	1550	2050	892	1250	810	25	19	2050	628	236	54	104	
MIN	29	2.1	.20	.29	10	. 66	. 06	- 01	. 08	9.9	.00	.00	
CFSM	1.08	.59	.19	.53	.34	. 03	. 01	.70	.28	.31	.04	.13	
IN.	1.25	.66	.22	.61	. 36	. 03	. 01	.81	. 31	. 35	. 05	.15	
AC-FT	19200	10120	3330	9430	5570	503	197	12410	4830	5430	734	2300	

CAL YR 1983 TOTAL 84877.66 MEAN 233 MAX 3960 MIN .01 CFSM .81 IN 10.93 AC-FT 168400 WTR YR 1984 TOTAL 37331.04 MEAN 102 MAX 2050 MIN .00 CFSM .35 IN 4.81 AC-FT 74050

08164450 SANDY CREEK NEAR LOUISE, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical and biochemical analyses: October 1977 to current year. Pesticide analyses: October 1977 to September 1981.

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	TIME	FLO	EAM- DW, FAN- EOUS	SPE- CIFIC CON- DUCT- ANCE UMHOS)		AND- RD	TEMP ATU (DEG	RE	B	UR- ID- IY IU)	SO	GEN, IS- LVED G/L)	SO: (P: CI SA'		DEMA BIO CHE ICA 5 D. (MG	ND, - M- L, AY	HAR NESS (MG: AS CACO	D- NE S NON /L BON (N	ARD- CSS, ICAR- IATE IG/L ACO3)
OCT				2.2										1	-				
12 JAN	1215	140		333		7.5	2	2.0	1	7		7.6		86		2.0		100	23
18 FEB	1120	22	2	196		7.2		6.5	3	9		11.7		94		1.9		54	13
28 APR	1430	54	+	179		7.2	1	2.5	68	8		10.8		100		1.7		54	11
11	1500		.05	340		8.2	3	0.0		5.0		7.8		104	1.	5.4	1	100	7
JUL 10	1300	190)	520			2	9.0	34	4		7.2		93		1.9		160	
AUG 21	1430		.20	670		8.0	3	3.0	2	2.2		7.8	2	2060		3.8	2	210	17
DA [*]	D Si	LCIUM IS- OLVED MG/L S CA)	MAGN SIU DIS SOLV (MG/ AS M	M, SOD - DI ED SOL L (M	OLUM, S- VED IG/L NA)	SOD A SOR TI RAT	D- P- ON	SI		LII	LKA- NITY IELD MG/L AS ACO3)	DI SO (M	FATE S- LVED G/L SO4)	CHLC RIDE DIS- SOLV (MG/ AS C	ED L	FLUO RIDE DIS SOLV (MG/ AS F	ED L	SILICA, DIS- SOLVEI (MG/L AS SIO2)	
OCT 12		26	9.	7 2	3		1	5	.1		82		17	46			20	29	
		15	4.	0 1	3		.8	7	.7		41		19	24			10	8.0	
FEB 28		16	3.	4 1	2		.7	4	.2		43		11	20			10	8.2	
APR 11		33	5.	4 1	8		.8	3	. 7		98		5.6	31			20	15	
JUL 10		40	15	3	4		1	3	. 1				25	65			40	18	
AUG 21		50	20	4	8		1	15			190		24	95			40	38	
	SUM CON: TUE! D: SO!	STI- NTS, IS- LVED	SOLIDS RESIDU AT 105 DEG. C SUS- PENDED	E NIT GE NITR TOT (MG	N, ATE AL /L	NITRO GEN NITRI TOTAL (MG/1	re i	NITR GEN NO2+N TOTA (MG/	03 L L	GH AMMO TOT (MO	CAL G/L	NIT GE ORGA TOT (MG	N, NIC AL /L	NITRO GEN, AM MONIA ORGANI TOTAL (MG/L	- + C I	PHOS- PHORUS TOTAL (MG/L	, (CARBON, ORGANIC TOTAL (MG/L	
DATE	E (Mo	G/L)	(MG/L) AS	N)	AS N)	AS N)	AS	N)	AS	N)	AS N)		AS P)		AS C)	
OCT 12 JAN		210	44	4		.02	20	<.	10	1	.050	1	.6	1.6		.150)	8.8	
18 FEB		120	11	1		.03	30	<.	10		050		. 55	.6	0	.090)	12	
28 APR		100	28	3	.15	.05	50		20		020		. 78	.8	0	.050)	12	
11	••	170		7		<.01	10	<.	10		130		.37	.5	0	.080)	6.9	
10			86	5	.19	.01	10	.:	20		040		.76	.8	0	.160)	8.6	
21		400	9	9	.07	.03	30		10		210			<.2	0	.460)	14	

08164450 SANDY CREEK NEAR LOUISE, TX--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	TIM	ARSEN DIS SOLV E (UG) AS A	S- DIS VED SOLV	S- D VED SOI G/L (U	MIUM IS- LVED G/L	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)
OCT 12 JUL	1215	5	2	96	<1	<10	2	360
10	1300)	3	120	<1	<10	<1	51
DA	TE	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	SELE NIUM DIS SOLV (UG/ AS S	, SIL - D ED SO L (U	IS- I LVED SO G/L (U	INC, DIS- DLVED JG/L S ZN)
		4	4	.8		<1	<1	14
JUL 10		4	7	<.1		<1	<1	10

227

08164503 WEST MUSTANG CREEK NEAR GANADO, TX

LOCATION.--Lat 29°04'17", long 96°28'01", Jackson County, Hydrologic Unit 12100102, on right bank at downstream end of downstream bridge on U.S. Highway 59, 2.1 mi upstream from Middle Mustang Creek, and 3.6 mi east of Ganado. DRAINAGE AREA. -- 178 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1977 to current year.

GAGE (revised).--Water-stage recorder. Datum of gage is 40.12 ft National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good except those for period of no gage-height record, which are fair. Much of low flow during the irrigation season (April to September) comes from drainage from ricefields irrigated by diversions originally from the Colorado River.

AVERAGE DISCHARGE. -- 7 years, 161 ft 3/s (12.3 in/yr), 116,600 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 13,400 ft 3/s Jan. 21, 1980 (gage height, 24.49 ft, from floodmark), from rating curve extended above 8,800 ft 3/s; minimum daily, 0.03 ft 3/s Jan. 18, 19, 1981.

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 1,500 ft 3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)
Oct. 18	0500	*6,020	19.21
May 20	1800	1.560	13.57

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

Minimum daily discharge, 1.5 ft3/s Dec. 30, 31, Mar. 10.

		DISCHARG	E, IN CO	DIC FEEL I	PER SECOND	EAN VALUES	AR OUT	DER 1905 1	O DELLE	1004		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	102	13	4.5	1.7	10	4.1	6.4	21	3.8	38	36	12
2	69	14	4.0	1.7	7.3	3.5	15	24	3.8	62	28	20
3	43	49	25	1.7	6.2	3.0	9.3	20	4.6	66	32	44
3 4	35	27	400	1.7	6.5	2.8	13	17	4.9	72	51	62
5	34	224	200	1.7	5.4	2.2	6.6	16	7.7	74	86	68
6	33	807	100	1.8	4.2	1.9	4.6	14	5.2	56	82	51
7	43	1050	50	1.9	3.4	2.0	9.6	18	81	110	761	34
8	134	644	25	2.0	2.9	2.0	22	17	161	119	74	27
9	840	261	13	250	2.8	1.7	30	19	121	119	55	20
10	306	123	7.0	600	2.9	1.5	24	18	78	130	40	14
11	132	70	8.0	300	3.0	1.7	13	21	50	131	54	11
12	82	46	10	75	17	2.0	8.2	13	36	124	43	18
13	78	36	13	42	68	2.3	19	8.0	41	114	39	13
14	51	24	9.0	25	36	2.8	19	9.2	38	116	38	7.6
15	37	15	7.0	18	19	3.8	24	9.0	30	87	47	10
16	83	10	5.0	13	11	3.5	28	12	29	87	54	141
17	3870	8.1	4.2	9.3	9.2	3.2	28	32	24	83	47	127
18	5270	6.8	3.5	6.6	4.9	3.6	29	109	24	75	34	105
19	2950	5.6	3.1	4.7	3.5	2.8	29	834	15	81	27	73
20	1110	4.5	2.8	3.5	48	2.1	26	1510	8.8	94	22	57
21	434	3.9	2.5	3.1	296	3.2	21	1190	13	106	6.9	48 51
22 23	531 362	3.8	2.3	3.1 225	145 55	3.5 3.5	24	579 185	17 17	92 80	5.8	55
24	186	3.5	2.1	495	26	2.4	41 17	59	15	94	6.8	52
25	118	3.8	1.9	289	13	2.4	25	30	14	180	5.8	49
26	97	5.4	1.8	142	15	2.7	37	13	12	188	5.9	33
27	65	6.3	1.7	74	21	3.0	45	7.3	17	143	13	24
28	40	5.7	1.6	50	9.0	2.1	22	4.7	10	122	16	22
29	31	5.6	1.6	29	6.0	1.9	22	4.1	9.2	110	14	21
30	23	5.2	1.5	17		2.2	35	3.9	14	63	11	27
31	18		1.5	14		8.4		4.2		55	13	
TOTAL	17207	3484.8	914.6	2702.5	857.2	87.9	652.7	4821.4	905.0	3071	1077.2	1296.6
MEAN	555	116	29.5	87.2	29.6	2.84	21.8	156	30.2	99.1	34.7	43.2
MAX	5270	1050	400	600	296	8.4	45	1510	161	188	86	141
MIN	18	3.5	1.5	1.7	2.8	1.5	4.6	3.9	3.8	38	5.8	7.6
CFSM	3.12	.65	.17	.49	.17	. 02	.12	.88	.17	.56	.20	.24
IN.	3.60	.73	.19	.56	.18	. 02	.14	1.01	.19	.64	.23	.27
AC-FT	34130	6910	1810	5360	1700	174	1290	9560	1800	6090	2140	2570
CAL YR WTR YR		TAL 73740.			AX 5270 AX 5270	MIN .64 MIN 1.5	CFSM CFSM		15.41 7.75		46300 73540	

08164503 WEST MUSTANG CREEK NEAR GANADO, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical and biochemical analyses: October 1977 to current year. Pesticide analyses: October 1977 to September 1981.

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

															OXYG				
			STRE FLO INST	W, CO	FIC N- I	PH CAND-	TEM	PER-	TU BI			GEN, IS-	SO (P	LVED ER- ENT	B IO CHE ICA	- H M- N L, (ARD- ESS MG/L	HAR NES NONC BONA	SAR-
DA	ATE	TIME	TANE (CF			ARD ITS)	ATU (DEC	JRE G C)	IT (NT			LVED G/L)		rur- ion)	5 D. (MG		AS ACO3)		G/L CO3)
OCT	2	1420	7	9	386	7.	,	22.0	25			7.0		84	911	2.4	120		30
18	3	1250	519		85	7.6 6.9		23.0 24.0	35 170			7.2				2.1	25		4
JAN 18 FEB	3	1030		7.2	368	7.'8		6.0	300			10.2		81		2.6	100		34
28	3	1330		8.0	252	7.2	1	12.0	240		3	10.0		91	-3	2.8	72		18
APR 11		1300	1	1	758	7.7	2	21.5	32			7.2		83		5.6	250		110
JUI 10)	1200	13	0	586		2	28.0	170			6.6		84		1.5	180		
AUG 21		1320	1	3	737	7.9	2	27.0	11			5.0		63		8.5	230		39
		DIS	LVED	MAGNE- SIUM, DIS- SOLVED	SODIUM, DIS- SOLVED	SOF	DIUM AD- RP- LON	SI	AS- UM, S- VED	ALK LINI FIE (MG	TY	DIS	LVED	RIDI DIS- SOL	E, VED	FLUO- RIDE, DIS- SOLVE	D S	LICA, IS- OLVED MG/L	
	DATE		G/L CA)	(MG/L AS MG)	(MG/L AS NA)	RAT	010	(MG AS		CAC	03)		G/L 504)	AS ((MG/L AS F)		AS 102)	
	OCT																•		
	12		7.4	7.7 1.5	28 4.6		1 .4		.3		94 21		6.2	53	. 0	<.1		9.1	
	JAN 18	. 30)	6.1	26		1	9	.8		66		32	49		.2	0	14	
	FEB 28	. 22	2	4.2	18		1	5	.0		54		21	28		.2	0	8.5	
	APR 11	. 82	2	12	59		2	12			149		42	140		.5	0	23	
	JUL 10	. 51		13	42		1	2	.5				20	83		.4	0	24	
	AUG 21	. 62	2	19	59		2	26			194		37	130		.4	0	59	
		SOLII SUM C		SOLIDS, RESIDUE	NITRO-	NITE	80-	NITR		NITR	0-	NITI	RO-	NITRO GEN, AN					
		TUENT DIS	S,	AT 105 DEG. C, SUS-	GEN, NITRATE TOTAL	GEN NITRI TOTA	TE L	GEN NO 2+N TOTA	03 . L	GEN AMMON TOTA	IA L	GEI ORGAI TOTA	NIC AL	MONIA ORGAN TOTA	IC I	PHOS- PHORUS, TOTAL	ORG.	BON, ANIC FAL	
	DATE	SOLV (MG/		PENDED (MG/L)	(MG/L AS N)	(MG/		(MG/ AS N		(MG/ AS N		(MG)		(MG/I		(MG/L AS P)		G/L C)	
	OCT																		
	12		230 53	61 118	.20		050		10 30		50 00		6	1.4		.170		8.9	
	JAN 18	2	210	100	.93	.1	70	1.	1	.1	80		.92	1.1	1	.280		6.3	
	FEB 28	1	40	178	.30	.2	00		50	.0	90	1.	. 3	1.4	4	.180		18	
	APR 11	4	60	68		<.0	010	1.	4	1.4	0	1.	. 5	2.9	9	.220		12	
	JUL 10			121	.17		30		20		80		92	1.0		.150		8.5	
	AUG 21	5	10	38	* .15		50		20		70		7	1.8		.510			
		-		-				•		. 0									

LAVACA RIVER BASIN
08164503 WEST MUSTANG CREEK NEAR GANADO, TX--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	T I ME	SOI (UC	S- DI LVED SOI S/L (U	IUM, S- VED IG/L BA)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)
OCT								
12	1420		3	120	<1	<10	2 2	120
18	1250)	1	27	<1	<10	2	85
JUL	1200		4	160	<1	<10	2	21
10	1200	,	4	100	1	(10	2	2,
DAT	s (EAD, DIS- OLVED UG/L S PB)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCI DIS SOL' (UG, AS I	S- DIS VED SOLV /L (UG	M, SILV S- DI VED SOI /L (UG	S- DI VED SOL	S- VED /L
OCT		,	,		2	/1	21	17
18. JUL		4 2	2		.6 (.1	<1 <1	<1 <1	17 16
10.		<1	1		<.1	<1	<1	11

GARCITAS CREEK BASIN

08164600 GARCITAS CREEK NEAR INEZ, TX

LOCATION.--Lat 28°53'28", long 96°49'08", Victoria County, Hydrologic Unit 12100402, at right downstream end of bridge on U.S. Highway 59 access road, 0.3 mi upstream from Southern Pacific Railroad bridge, 2.0 mi southwest of Inez, and 3.6 mi upstream from Casa Blanca Creek.

DRAINAGE AREA. -- 91.7 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- June 1970 to current year.

GAGE .-- Water-stage recorder. Datum of gage is 29.16 ft National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good. No known diversion above station. An undetermined amount of return water from irrigation enters stream above station. Recording rain gage at station.

AVERAGE DISCHARGE. -- 14 years, 56.7 ft 3/s (8.40 in/yr), 41,080 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 19,700 ft³/s June 12, 1981 (gage height, 29.00 ft); no flow May 22, 23, and May 26 to June 17, 1971.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage during period 1903-70, 24.5 ft Oct. 26, 1960. In 1929, a flood nearly as high as the 1960 flood occurred, and a flood in September 1967 reached a stage of 23.4 ft, from information by local resident.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 1,500 ft 3/s and maximum (*):

Date	е	Time	Discharge (ft 3/s)	Gage height (ft)
Oct.	17	2300	1,800	14.96
	21	2300	*1,970	15.35

Minimum daily discharge, 0.03 ft3/s Sept. 1.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	3.6 3.2 2.9 3.2	9.3 8.3 12 56	4.4 4.3 4.4 8.0	2.7 2.7 2.7 2.7 2.7	11 10 9.9 9.0 8.1	5.6 5.3 5.0 5.0 5.0	2.7 2.8 2.8 2.6 2.4	1.8 1.9 2.1 1.8 1.5	.92 .91 .92 .92	.60 .63 .57 .45	1.9 1.9 1.7 1.6 5.9	.03 .07 .31 1.5 2.1
6 7 8 9	8.9 5.6 4.2 5.0 7.9	608 375 150 85 53	8.1 6.0 5.0 4.6 4.4	2.7 2.7 3.2 368 446	7.1 6.3 5.9 5.7 5.2	4.7 4.3 4.2 4.1 4.1	2.4 2.4 2.5 2.4 2.5	1.5 1.8 4.5 4.1 2.2	1.4 5.4 2.8 2.0 1.7	.33 .39 .44 .40	3.5 1.9 1.4 1.1	1.8 1.8 2.4 2.1 1.7
11 12 13 14	5.9 5.1 4.2 3.5 3.0	35 25 20 17 13	4.3 3.9 3.8 3.5 3.4	134 71 42 28 20	5.2 8.3 97 46 22	4.1 4.4 4.4 4.3 4.5	2.9 2.8 2.6 2.4 2.2	1.9 1.6 1.4 1.3	1.4 1.3 1.3 1.3	.37 .38 .45 .39 .33	1.1 2.1 2.4 1.7 1.9	1.5 1.3 1.0 .79 .75
16 17 18 19 20	20 1240 715 153 86	11 9.4 8.6 8.0 7.0	4.1 4.5 7.4 6.4 5.2	16 12 10 8.7 7.7	14 10 8.4 7.3 26	4.3 4.0 3.8 5.4 4.3	2.1 2.0 2.0 2.0 2.0	1.3 2.1 15 47 18	.92 .90 .87 .91	.29 .45 .38 .29	1.8 2.4 1.5 .98 .72	1.1 .80 .72 .57
21 22 23 24 25	1210 974 195 106 64	6.4 6.0 6.8 6.0 5.4	4.5 3.9 3.5 3.1 2.9	6.5 6.4 13 59 150	97 49 25 15	3.7 3.5 3.7 3.6 3.4	2.3 2.4 2.2 2.0 1.8	7.0 4.2 2.9 2.3 2.0	.82 .66 .60 .56	.40 .58 .80 .85	.55 .41 .33 .30 .27	1.9 2.0 1.9 1.8
26 27 28 29 30 31	40 29 22 18 15	5.3 5.1 4.6 4.4 5.1	2.9 3.0 3.0 3.0 2.8 2.7	115 57 31 20 15	9.7 8.5 6.9 6.1	3.4 3.3 3.1 2.9 2.7 2.7	1.9 1.9 1.8 2.2 2.1	1.6 1.4 1.3 1.2 1.0	.46 .47 .40 .46 .49	1.1 1.2 1.7 2.5 2.2 1.9	.20 .14 .12 .12 .07	1.7 1.5 1.4 1.2 1.6
TOTAL MEAN MAX MIN CFSM IN. AC-FT	4979.2 161 1240 2.9 1.76 2.02 9880	1576.7 52.6 608 4.4 .57 .64 3130	141.0 4.55 10 2.7 .05 .06 280	1670.4 53.9 446 2.7 .59 .68 3310	550.6 19.0 97 5.2 .21 .22 1090	126.8 4.09 5.6 2.7 .05 .05	69.5 2.32 2.9 1.8 .03 .03	139.9 4.51 47 1.0 .05 .06 277	34.51 1.15 5.4 .40 .01 .01 .68	22.32 .72 2.5 .29 .008 .01 44	41.05 1.32 5.9 .04 .01 .02 81	39.57 1.32 2.4 .03 .01 .02 78

CAL YR 1983 TOTAL 20696.31 WTR YR 1984 TOTAL 9391.55 MAX 2980 MIN .60 CFSM .62 IN 8.40 AC-FT 41050 MEAN 25.7 MAX 1240 MIN .03 CFSM .28 IN 3.81

GARCITAS CREEK BASIN

08164600 GARCITAS CREEK NEAR INEZ, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical and biochemical analyses: October 1969 to current year. Pesticide analyses: October 1969 to September 1981.

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
OCT 12	1305	4.7	575	7.8	23.0	5.2	7.6	88	1.2		
JAN 11	1600	120	123	7.4	10.0	60	10.8	94	4.8	K6100	7200
FEB 28	1600	6.9	431	7.6	14.0	56	10.6	101	1.6		
APR 10	1745	2.4	665	7.6	27.0	5.3	8.8	112	1.2		
JUL 11	1030	.31	498	8.0	. 28.5	1.2	8.0	103	•7		
AUG 21	1145	.60	575	8.3	28.5	1.1	7.3	94	1.1		
DATE	HARD- NESS (MG/L AS	HARD- NESS, NONCAR- BONATE (MG/L	CALCIUM DIS- SOLVED (MG/L	MAGNE- SIUM, DIS- SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L	ALKA- LINITY FIELD (MG/L AS	SULFATE DIS- SOLVED (MG/L	CHLO- RIDE, DIS- SOLVED (MG/L	FLUO- RIDE, DIS- SOLVED (MG/L
DATE	CACO3)	CACO3)	AS CA)	AS MG)	AS NA)		AS K)	CACO3)	AS SO4)	AS CL)	AS F)
OCT 12 JAN	170	0	53	8.3	48	2	3.1	172	23	55	.20
11 FEB	35	9	11	1.9	8.2	.6	5.7	26	17	13	<.10
28 APR	160	13	54	6.7	23	.8	2.6	150	26	31	•20
10 JUL	260	26	85	12	43	1	1.6	236	46	56	•30
11 AUG	130	11	37	10	50	2	1.4	123	38	62	.30
21	120	0	32	10	82	3	2.9	154	31	93	•30
DAT	SILI DIS SOL (MG AS	CONS VED TUEN /L DI SOL	OF RESI TI- AT 1 TS, DEG. S- SUS VED PEND	DUÉ NITE 05 GE C, NITE	TAL TOT	N, GE NO3 AMMO AL TOT /L (MG	N, GE NIA ORGA AL TOT /L (MG	N, MONIA NIC ORGAN AL TOTA /L (MG	AM- A + PHOS NIC PHORU AL TOTA /L (MG/	JS, ORGA AL TOT 'L (MG	NIC AL /L
OCT 12.	3:	3	330	10 <.	.020 <	.10 .	040 1	.2 1	.2 .0	30	7.7
JAN 11.		8.3	81	48 .	.080 <	.10 .	050	.75	.80 .0	70 1	5
FEB 28.	. 1	9	250	25 .	.040 <	.10	020	.78	.80 .0	30 1	0
APR 10.	. 23	2	410	15 .	.030 <	.10 .	080	.12	.20 .0	10	3.9
JUL 11.	3	5	310	4 .	.010 <	.10 .	110	.29	.40 .0	20	4.4
AUG 21.	. 30)	370	1	.020 <	.10 .0	040	.46	.50 <.0	10	7.1
		DATE	TIME	DIS-	BARIUM, DIS- SOLVED (UG/L AS BA)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)		
		JAN 11	1600	<1	53	<1	<10	3	150		
		JUL 11	1030	4	170	<1	<10	2	15		
		11,74	1030	-	170	31	V10	2	13		
		DA		D, NES S- DI VED SOL /L (UG	S- DI: VED SOL'	S- DIS VED SOLV	M, SILV S- DI VED SOLV /L (UG	S- DIS VED SOLV	S- /ED /L		
		JAN 11		<1	9	<.1	<1	<1	15		
		JUL 11		<1	14	<.1	<1	<1	11		

232

PLACEDO CREEK BASIN

08164800 PLACEDO CREEK NEAR PLACEDO, TX

LOCATION.--Lat 28°43'30", long 96°46'07", Victoria County, Hydrologic Unit 12100401, on right bank at downstream end or bridge on Farm Road 616, 0.1 mi downstream from confluence of Lone Tree Creek and Arroyo Palo Alto, 1.2 mi upstream from Ninemile Creek, and 4.4 mi northeast of Placedo.

DRAINAGE AREA. -- 68.3 mi2.

PERIOD OF RECORD .-- June 1970 to current year.

GAGE.--Water-stage recorder. Datum of gage is 5.58 ft National Geodetic Vertical Datum of 1929.

REMARKS.--Records good except those for period of no gage-height record, which are poor. No known diversion above station. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE. -- 14 years, 71.2 ft 3/s (51,580 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 18,300 ft³/s Oct. 31, 1981 (gage height, 30.8 ft); no flow at times in 1971, and 1981-84.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1930, 31.9 ft in September 1967 and 30.4 ft in 1960 (probably October), from information by local resident.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 1,500 ft 3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date		Time	Discharge (ft³/s)	Gage height (ft)
Oct. 17 Oct. 21	2000	1,860 2,290	19.50 20.31	Jan. Mar.	9	1800 1800	2,230 *2,980	20.20 21.38

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

Minimum discharge, no flow June 24, 25.

						MEAN VALU	JES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	3.1 3.0 2.8 2.5 2.5	9.9 9.8 9.8 10.0 25.0	1.90 2.20 8.40 3.90 2.40	1.9 1.9 1.9 1.9	15.0 14.0 14.0 13.0 13.0	5.0 5.2 5.0 4.8 4.6	4.50 4.60 4.50 4.10 3.90	1.20 1.10 1.10 .90 .77	.45 .37 .29 .26	4.0 12.0 5.7 3.8 3.6	4.0 3.0 3.0 8.8 10.0	2.2 2.5 4.3 5.6 6.8
6 7 8 9 10	2.5 2.7 2.8 5.2 8.0	316.0 251.0 90.0 50.0 100.0	1.70 1.30 1.40 1.50	1.8 1.7 1.7 1300.0 634.0	13.0 13.0 12.0 12.0 12.0	4.5 4.2 4.1 4.1	3.70 3.70 3.80 3.50 3.20	.77 .82 1.70 13.00 6.40	.26 .26 .26 .23 .20	3.4 3.2 3.0 2.6 2.2	5.4 2.5 2.2 2.0 1.8	6.9 11.0 20.0 11.0 8.5
11 12 13 14 15	6.3 6.3 4.1 3.7 4.8	32.0 18.0 11.0 6.5 3.6	1.50 1.30 1.20 .86 .83	100.0 43.0 29.0 21.0 18.0	12.0 13.0 20.0 22.0 14.0	4.0 1700.0 694.0 79.0 34.0	2.90 2.50 2.40 2.00 1.30	3.30 1.10 .45 .27	.18 .18 .14 .11	2.0 2.0 1.9 1.9	2.4 2.8 2.9 6.4 21.0	7.0 4.6 4.2 3.2 2.5
16 17 18 19 20	6.6 1040.0 936.0 415.0 144.0	2.2 1.7 1.7 1.8 1.5	.83 .83 .83 .83	15.0 13.0 13.0 12.0	11.0 9.0 8.6 8.2 11.0	22.0 14.0 10.0 222.0 64.0	1.10 .80 .97 .86	.21 2.20 264.00 505.00 664.00	.07 .15 .14 .13	1.7 1.6 1.5 1.4	11.0 5.6 3.5 2.7 2.4	5.5 5.6 4.7 4.0 3.4
21 22 23 24 25	1330.0 1040.0 197.0 79.0 43.0	1.6 1.8 2.0 2.1 1.5	.89 .94 1.10 1.10	12.0 12.0 18.0 186.0 368.0	27.0 23.0 13.0 8.9 7.0	19.0 9.8 7.1 5.9 5.2	1.20 1.10 1.00 .51 .48	52.00 19.00 8.20 3.00 .94	.14 .08 .02 .00	1.4 1.4 1.3 6.6 13.0	2.1 1.7 1.9 2.2 1.9	14.0 14.0 10.0 7.2 5.6
26 27 28 29 30 31	31.0 25.0 20.0 18.0 14.0	1.6 1.9 1.9 1.7 1.8	1.40 1.70 1.80 1.70 1.70	145.0 61.0 36.0 26.0 20.0	6.3 5.9 5.3 5.0	5.2 5.2 4.6 4.4 4.5 4.4	3.90 1.80 1.20 1.50 1.50	2.00 2.00 .84 .71 .60	.31 .32 .94 1.70 2.10	7.6 6.2 8.3 12.0 18.0 9.0	1.9 2.0 2.0 2.1 2.1 2.2	4.5 3.5 3.2 4.0 7.1
TOTAL MEAN MAX MIN AC-FT	5409.9 175 1330 2.5 10730	969.4 32.3 316 1.5 1920	51.17 1.65 8.4 .83 101	3125.7 101 1300 1.7 6200	361.2 12.5 27 5.0 716	2963.8 95.6 1700 4.0 5880	69.23 2.31 4.6 .48 137	1558.29 50.3 664 .17 3090	9.77 .33 2.1 .00	145.6 4.70 18 1.3 289	125.5 4.05 21 1.7 249	196.6 6.55 20 2.2 390

CAL YR 1983 TOTAL 32879.43 MEAN 90.1 MAX 5630 MIN .10 AC-FT 65220 WTR YR 1984 TOTAL 14986.16 MEAN 40.9 MAX 1700 MIN .00 AC-FT 29730

NOTE. -- No gage-height record June 30 to Sept. 11.

233 08165300 NORTH FORK GUADALUPE RIVER NEAR HUNT, TX

LOCATION.--Lat 30°03'36", long 99°23'40", Kerr County, Hydrologic Unit 12100201, on right bank 410 ft downstream from Ranch Road 1340, 1.3 mi downstream from Bear Creek, 3.7 mi west of Hunt, and 4.1 mi upstream from Honey Creek.

DRAINAGE AREA. -- 168 mi2.

PERIOD OF RECORD .-- August 1967 to current year.

REVISED RECORDS .-- WRD TX-74-1: 1971(P).

GAGE.--Water-stage recorder and crest-stage gages. Datum of gage is 1,800.10 ft National Geodetic Vertical Datum of

REMARKS--Records good. There is a permit issued by the Texas Department of Water Resources to impound and use 20.33 acre-ft of water on a game preserve upstream from station. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE. -- 17 years, 37.0 ft3/s (2.99 in/yr), 26,810 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 39,300 ft³/s Aug. 3, 1978 (gage height, 26.80 ft, from high-water mark), from rating curve extended above 170 ft³/s on basis of slope-area measurements of 7,460 and 38,400 ft³/s; minimum, 0.68 ft³/s May 30, 1969.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1900 occurred July 1, 1932 (gage height, 37.3 ft), discharge 140,000 ft³/s, by slope-area measurements, combined flow of North Fork Guadalupe River 5 mi upstream and Bear Creek 2 mi upstream from mouth, and adjusted for difference in drainage area.

EXTREMES FOR CURRENT YEAR.--Maximum daily discharge, 21 ft 3 /s Jan. 9 (gage height not determined), no peak above base of base of 500 ft 3 /s; minimum, 9.3 ft 3 /s Aug. 22, 23.

		DISCHARGE,	IN CUBIC	FEET 1		WATER YEAR N VALUES	R OCTOBER	1983 TO	SEPTEMBE	R 1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	13 13 12 12 12	11 10 10 10 15	18 19 19 19	18 19 19 19	14 14 14 14	16 16 17 16 16	15 15 15 15 15	14 14 13 13	12 12 12 12 13	12 11 10 10	12 12 12 11 11	13 11 11 11 11
6 7 8 9 10	12 13 13 14 15	15 12 12 12 13	19 19 19 19	19 18 19 21 18	13 13 13 13	16 15 15 15	14 15 15 15 15	12 12 12 12 12	13 14 13 13	10 10 10 10 9.9	11 11 10 10	10 10 10 10 10
11 12 13 14 15	13 12 12 12 12	14 14 15 15	19 19 19 19	17 16 16 16 16	13 13 13 13	15 15 15 14 14	15 14 14 14 14	12 12 12 12 12	12 12 12 12 12	9.8 10 9.9 9.7 9.9	10 10 10 11 11	10 9.9 10 10
16 17 18 19 20	12 13 13 12 15	15 15 15 17 16	19 19 19 18 18	16 16 16 15	13 13 13 13	14 14 14 12 11	14 14 13 13	13 14 15 15	12 11 11 11	10 10 10 10 11	11 10 10 9.7 9.7	9.6 9.7 9.8 9.8 9.8
21 22 23 24 25	16 13 12 12 12	16 16 17 17	19 19 19 18 17	15 15 15 15	13 13 13 12 12	11 11 12 12 12	13 12 13 13	13 13 13 13	11 11 11 11 10	11 11 11 13 15	9.5 9.3 9.3 9.4	15 15 12 11
26 27 28 29 30 31	12 11 11 11 11 11	18 18 18 18 18	17 18 18 17 17	15 14 14 14 14 14	13 15 15 16	12 12 12 13 13	13 13 13 13 13	13 13 13 13 13 13	10 10 14 15 12	14 13 14 13 12	12 11 10 10 11 15	11 11 11 11 11
TOTAL MEAN MAX MIN CFSM IN. AC-FT	387 12.5 16 11 .07 .09 768	443 14.8 18 10 .09 .10 879	574 18.5 19 17 .11 .13	508 16.4 21 14 .10 .11 1010	387 13.3 16 12 .08 .09 768	430 13.9 17 11 .08 .10 853	416 13.9 15 12 .08 .09 825	401 12.9 15 12 .08 .09 795	358 11.9 15 10 .07 .08 710	342.2 11.0 15 9.7 .07 .08 679	328.9 10.6 15 9.3 .06 .07 652	324.6 10.8 15 9.6 .06 .07 644
CAL YR WTR YR			MEAN 19. MEAN 13.		X 66 MIN X 21 MIN			IN 1.60 IN 1.08	AC-FT AC-FT	4300 9720		

08165500 GUADALUPE RIVER AT HUNT, TX

LOCATION.--Lat 30°04'08", long 99°19'23", Kerr County, Hydrologic Unit 12100201, on right bank 56 ft upstream and 137 ft right of right end of bridge on State Highway 39, 0.6 mi downstream from confluence of North and South Forks, 0.8 mi east of Hunt, and at mile 430.9.

DRAINAGE AREA. -- 288 mi2.

PERIOD OF RECORD.--October 1941 to September 1949, discharge not computed above 600 ft³/s, and April 1965 to current year. Occasional discharge measurements made 1950-64.

REVISED RECORDS. -- WSP 2123: Drainage area.

GAGE .-- Water-stage recorder and crest-stage gages. Datum of gage is 1,722.7 ft National Geodetic Vertical Datum of 1929.

REMARKS.--Records good except those for period Apr. 10 to May 2, which are fair. Numerous diversions for irrigation above station, amounts unknown. Gage-height telemeter at station. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE .-- 19 years, 70.8 ft3/s (3.34 in/yr), 51,290 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 62,900 ft³/s Aug. 2, 1978 (gage height, 23.5 ft, from floodmark), from rating curve extended above 3,700 ft³/s on basis of channel geometry and flow-over-dam measurement of peak flow; minimum, 6.9 ft³/s June 17, 1948.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1900, 36.6 ft July 2, 1932, from information by local resident (discharge, 206,000 ft³/s, determined by slope-area measurement 4.5 mi downstream from gage).

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 79 ft³/s May 28 at 1645 hours (gage height, 1.56 ft), no peak above base of 1,000 ft³/s; minimum daily, 8.2 ft³/s July 17.

		DISCHARGE,	IN CUBIC	FEET	PER S		WATER Y	EAR OCTOBER	1983 TO	SEPTEMBE	R 1984		
DAY	OCT	NOV	DEC	JAN		FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	27 27	33 33	39 40	35 37		36 37	39 41	22 33	25 24	17 17	15 13	17 16	23 19
2 3 4 5	27 28 27	32 34 49	42 40 38	39 38 37		37 36 36	40 41 41	24 22 19	22 19 18	19 18 19	12 11 11	17 16 15	17 16 16
6 7	27 27	54 45	39 37	37 37		37 38	43 42	9.4 16	18 20	23 23	11 11	15 14	15 14
8 9 10	29 37 39	41 39 35	37 38 39	38 60 48		38 39 40	42 42 43	28 58 54	32 16 15	22 22 23	15 13 11	14 13 14	15 17 16
11 12	33 31	35 36	39 36	41 37		40 41	42 44	40 37	14 11	23 24	11 9.9	14	14 14
13 14 15	29 29 30	36 36 34	36 37 37	36 35 35		41 41 40	44 42 39	32 25 25	11 13 15	21 19 18	9.4 9.6 10	14 17 16	13 13 13
16 17 18	31 34 41	33 33 33	36 36 36	35 35		39 40	42 40	29 30	15 22 31	16 15 13	9.2	15 14 14	14 12 13
19 20	35 54	35 37	36 35	34 34 33		41 39 37	38 34 30	33 31 34	34 35	14 14	9.6 19 17	13 13	13 13
21 22 23	53 41 36	34 39 45	35 36 36	34 34 36		39 38 38	29 28 29	33 27 25	27 22 20	13 11 11	15 15 15	13 12 13	19 33 25
24 25	34 34	40 39	34 33	38 37		38 39	28 26	18 23	19 18	12 11	16 25	12 13	20 22
26 27 28	34 33 32	37 39 40	34 37 37	36 36 35		40 37 36	25 24 22	30 27 26	19 18 28	10 11 15	26 22 27	15 18 14	19 18 18
29 30 31	33 34 33	39 39	35 33 33	35 35 35		37	21 21 22	24 24	33 24 16	19 17	25 21 18	13 14 20	19 21
TOTAL MEAN	1039 33.5	1134 37.8	1136 36.6	1152 37.2		115	1084 35.0	858.4 28.6	654 21.1	510 17.0	460.9	452 14.6	514 17.1
MAX MIN CFSM IN.	54 27 .12	54 32 .13	42 33 .13	33 .13		41 36 .13	44 21 .12	58 9.4 .10	35 11 .07	24 10 .06	8.2 .05	20 12 .05	33 12 .06
AC-FT	.13 2060	.15 2250	.15 2250	.15 2280	2	.14	.14 2150	.11 1700	.08 1300	1010	.06 914	.06 897	1020
CAL YR WTR YR			MEAN 2		MAX 1 MAX		IN 19 IN 8.2	CFSM .14 CFSM .10	IN 1.83 IN 1.31	AC-FT AC-FT	28060 20050		

08166000 JOHNSON CREEK NEAR INGRAM. TX

LOCATION.--Lat 30°06'00", long 99°16'58", Kerr County, Hydrologic Unit 12100201, on right bank 1.6 mi upstream from Henderson Branch, 3.4 mi northwest of Ingram, 3.8 mi upstream from mouth, and 9.2 mi northwest of Kerrville.

PERIOD OF RECORD. -- September 1941 to November 1959, October 1961 to current year.

REVISED RECORDS. -- WSP 1058: 1942-45. WSP 2123: Drainage area.

GAGE .-- Water-stage recorder. Datum of gage is 1,721.30 ft National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. Numerous small diversions above station for irrigation. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE. -- 41 years (water years 1942-59, 1962-84), 19.5 ft /s (2.32 in/yr), 14,130 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 95,900 ft³/s Oct. 4, 1959 (gage height, 24.25 ft), from rating curve extended above 4,400 ft³/s on basis of slope-area measurements of 9,100 and 16,000 ft³/s and conveyance study; minimum daily, 0.4 ft³/s July 26, 27, 1956.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1852, 35 ft July 2, 1932, from information by local resident; discharge, 138,000 ft³/s, by slope-area measurement at point 0.5 mi downstream from State fish hatchery and 6 or 7 mi upstream from gage. Flood of June 14, 1935, reached a stage of 31 or 32 ft, from information by local resident. resident.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 85 ft^3/s May 28 at 2030 hours (gage height, 1.63 ft), no peak above base of 500 ft^3/s ; minimum daily, 2.8 ft^3/s July 14, 16.

DISCHARGE IN CURIC FEFT DED SECOND MATER VEAR OCTOBER 1002 TO SERTEMBER 1004

		DISCHARGE,	IN CUBIC	FEET P	ER SECOND ME	, WATER AN VALU	YEAR OCTOBER	R 1983 T	O SEPTEMBE	R 1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	10 9.6 9.7 9.2 9.7	10 11 11 9.6 26	11 11 12 11	15 14 14 16 14	15 15 16 15 13	9.2 9.2 11 11 10	9.6 11 10 10	11 11 10 11 12	13 9.7 7.5 8.1	4.0 3.4 4.1 3.7 3.5	8.6 7.5 8.5 11 7.4	8.7 7.9 6.6 8.2 7.2
6 7 8 9 10	9.2 9.2 9.2 14	24 18 16 13	12 12 12 12 12	12 12 14 22 16	12 18 18 14	11 11 11 11 13	12 14 12 12	9.8 9.4 9.6 9.2 9.0	9.8 10 9.2 9.2 9.2	3.5 3.4 3.1 3.0 4.1	6.2 7.4 7.4 6.8 6.4	7.6 6.7 7.2 6.7 7.0
11 12 13 14 15	9.9 11 11 10 9.7	11 11 11 10	11 12 11 11 12	14 14 14 14 14	12 12 12 12 12	13 11 13 13 14	10 10 9.9 10 8.9	9.5 10 8.1 8.8 8.7	9.2 9.9 9.3 9.5 9.0	3.7 3.5 2.9 2.8 2.9	9.2 7.6 6.5 8.4 8.5	9.1 12 7.4 6.0 4.8
16 17 18 19 20	11 11 11 12 22	14 14 13 10 9.9	12 15 12 12 13	14 15 14 14 13	11 11 9.8 7.9 7.9	11 11 11 9.6 9.6	9.2 11 10 11	8.7 11 13 23 18	8.4 7.5 6.9 6.7 6.7	2.8 3.4 8.4 28 12	8.2 6.7 6.6 6.3 5.8	4.9 4.8 4.8 6.9 6.7
21 22 23 24 25	17 13 11 11	12 12 13 11	13 12 12 11 11	12 14 14 15 15	7.9 7.8 9.5 15	11 12 12 9.8 9.9	11 8.4 9.1 10 9.9	16 16 13 14	6.6 6.5 6.8 8.4 7.3	7.9 8.6 6.7 7.6	5.7 5.5 4.4 5.0 4.7	8.0 9.7 8.6 8.2
26 27 28 29 30 31	11 9.7 9.2 9.2 9.2 9.2	11 12 11 12 13	12 13 13 13 13	15 13 12 12 13 14	10 6.8 7.7 8.5	11 12 11 8.9 10 9.2	9.5 9.2 9.3	10 9.4 25 25 15	6.6 6.0 5.0 5.7 7.3	12 15 16 13 11	5.5 5.8 6.4 5.9 5.6 7.5	9.4 7.9 8.2 10 8.0
TOTAL MEAN MAX MIN CFSM IN. AC-FT	339.9 11.0 22 9.2 .10 .11 674	385.5 12.9 26 9.6 .11 .13 765	373 12.0 15 11 .11 .12 740	438 14.1 22 12 .12 .14 869	344.8 11.9 18 6.8 .10 .11 684	340.4 11.0 14 8.9 .10 .11 675	313.0 10.4 14 8.4 .09 .10 621	388.2 12.5 25 8.1 .11 .13 770	246.0 8.20 13 5.0 .07 .08 488	229.0 7.39 28 2.8 .07 .07 454	213.0 6.87 11 4.4 .06 .07 422	229.2 7.64 12 4.8 .07 .07 455
CAL YR	1983 TOT	AL 5429.9	MEAN 14.	9 MAY	70 MIN	4.1	CESM 13 I	N 1 77	AC-FT 10	770		

CAL YR 1983 TOTAL 5429.9 WTR YR 1984 TOTAL 3840.0 CFSM .13 IN 1.77 AC-FT 10770 CFSM .09 IN 1.25 AC-FT 7620 MEAN 14.9 MAX 70 MEAN 10.5 MAX 28 MIN 4.1 MIN 2.8

08166140 GUADALUPE RIVER ABOVE BEAR CREEK AT KERRVILLE, TX

LOCATION.--Lat 30°04'10", long 99°11'42", Kerr County, Hydrologic Unit 12100201, on left bank 600 ft downstream from Goat Creek, 900 ft upstream from Bear Creek and Bear Creek Crossing, and 2.4 mi east of intersection of State Highways 27 and 39 in Ingram.

DRAINAGE AREA. -- 494 mi2.

PERIOD OF RECORD .-- April 1978 to current year.

GAGE. -- Water-stage recorder. Datum of gage is 1,623.20 ft National Geodetic Vertical Datum of 1929.

REMARKS.--Records good except those for period Nov. 16 to Jan. 23, which are fair. Discharge not computed above 400 ft³/s. Numerous diversions for irrigation above station, amounts unknown. Several observations of water temperature were made during the period.

EXTREMES FOR PERIOD OF RECORD.--Maximum stage, 32.79 ft Aug. 3 1978 (discharge not known); minimum daily discharge, 13 ft³/s July 10, 14-18, 1984.

EXTREMES OUTSIDE PERIOD OF RECORD .-- Maximum stage since 1900, 34.1 ft July 2, 1932, from information by local resident.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 120 ft3/s May 19 at 0730 hours (gage height, 3.22 ft); minimum daily, 13 ft3/s July 10, 14-18.

		DISCHARGE,	IN CUBIC	FEET	PER SECOND, MEA	WATER N VALUE	YEAR OCTOBER	1983	TO SEPTEMBER	1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	31	43	52	49	51	40	38	28	36	24	34	22
2	32	43	51	50	50	42	41	28	33	20	30	24
2 3 4	31	45	53	51	50	45	53	28	30	19	25	24
4	32	46	50	53	50	48	41	28	31	17	27	23
5	30	62	49	49	49	50	39	26	29	18	26	22
6	29	92	49	47	49	48	35	25	42	16	23	20
7	30	75	50	47	49	47	28	25	34	18	21	17
8	30	61	49	49	52	46	33	27	34	16	21	19
9	44	56	49	78	53	46	62	32	32	14	20	18
10	48	52	50	75	50	47	57	24	34	13	19	19
11	44	49	49	69	50	48	43	21	39	16	18	20
12	39	48	47	60	49	50	40	20	31	14	20	19
13	34	48	47	52	50	47	35	23	27	14	23	17
14	35	48	48	51	49	48	27 27	19	26	13	21	15
15	34	47	48	51	47	47	27	23	24	13	21	15
16	34	46	47	51	45	49	31	23	23	13	22	14
17	40	47	50	53	45	48	32	25	23	13	20	15
18	44	47	48	51	45	48	35	40	24	13	19	14
19	45	47	48	50	45	44	33	78	22	23	18	14
20	66	49	48	49	44	43	36	66	19	37	18	15
21	86	46	47	48	43	42	35	53	19	27	16	17
22	63	49	48	50	44	43	30	42	19	24	16	22
23	51	+ 56	48	51	44	45	28	35	18	24	14	33
24 25	47	55	46	52	45	45	21	31	18	24	14	33 29 24
25	44	53	45	51	49	45	26	31	19	30	14	24
26	45	49	45	51	50	43	33	28	19	38	18	27 25
27	44	51	49	49	41	43	30	28	18	44	18	25
28	42	53	50	48	39	38	29	26	18	50	18	23
29	41	53	49	47	39	38	27	64	23	41	18	24
30	41	52	47	49		38	27	51	25	39	16	27
31	43		46	49		38		43		35	17	
TOTAL	1299	1568	1502	1630	1366	1389	1052	1041	789	720	625	617
MEAN	41.9	52.3	48.5	52.6	47.1	44.8	35.1	33.6	26.3	23.2	20.2	20.6
MAX	86	92	53	78	53	50	62	78	42	50	34	33
MIN	29	43	45	47	39	38	21	19	18	13	14	14
AC-FT	2580	3110	2980	3230	2710	2760	2090	2060	1560	1430	1240	1220

CAL YR 1983 TOTAL 22787 MEAN 62.4 MAX 225 MIN 29 AC-FT 45200 WTR YR 1984 TOTAL 13598 MEAN 37.2 MAX 92 MIN 13 AC-FT 26970

08167000 GUADALUPE RIVER AT COMFORT. TX

LOCATION.--Lat 29°58'10", long 98°53'33", Kendall County, Hydrologic Unit 12100201, on right bank at downstream side of southbound bridge on Interstate Highway 10, at Comfort, 0.5 mi downstream from Cypress Creek, and at mile 396.2.

DRAINAGE AREA -- 839 mi2.

PERIOD OF RECORD .-- May 1939 to current year.

REVISED RECORDS.--WSP 1632: 1958. WSP 1732: 1939(M). WSP 2123: Drainage area, 1944(M), 1952(M), 1957(M), 1960(M).

GAGE.--Water-stage recorder. Datum of gage is 1,371.83 ft National Geodetic Vertical Datum of 1929. Prior to Nov. 27, 1939, nonrecording gage. Nov. 27, 1939, to June 2, 1980, recording at gage site 0.4 mi upstream at datum 0.22 ft

REMARKS.--Records good except those for periods of no gage-height record, which are fair. Many small diversions above station for irrigation. Several observations of water temperature were made during the year. Gage-height telemeter at station.

AVERAGE DISCHARGE. -- 45 years (water years 1940-84), 183 ft 3/s (132,600 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 240,000 ft³/s Aug. 2, 1978 (gage height, 40.90 ft), from high-water mark in well, from rating curve extended above 74,000 ft³/s on basis of current-meter measurement of 124,000 ft³/s at gage height 32.47 ft and slope-area measurement of 182,000 ft³/s at gage height 38.4 ft, made at former gaging station "near Comfort" 5 mi upstream; no flow at times in 1952-57, 1963-64. All stages are at site and datum then in use. Maximum stage since at least 1848, that of Aug. 2, 1978.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of July 1869 reached a stage of 40.3 ft, from report by Corps of Engineers. Flood of July 1, 1932, reached a stage of 38.4 ft, from floodmark, and from information by State Department of Highways and Public Transportation. Flood of July 16, 1900, reached about the same stage as that of July 1, 1932, from information by local residents. All stages are at site and datum then in use.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 243 ft 3 /s May 20 at 0300 hours (gage height, 1.58 ft), no peak above base of 2,600 ft 3 /s; minimum daily, 1.8 ft 3 /s July 18, 19. DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

MEAN VALUES DAY OCT NOV DEC AUG SEP JAN FEB MAR APR MAY JUN JUL 13.0 13.0 30.0 27.0 12.0 13.0 59 11.0 26.0 13.0 24.0 20.0 11.0 10.0 21.0 21.0 19.0 8.8 19.0 17.0 16.0 7.8 18.0 14.0 14.0 6.3 12.0 12.0 12.0 11.0 5.8 9.9 11.0 4.9 9.8 9.9 73 12.0 4.4 8.3 3.8 13.0 9.3 21 23 23 3.0 18.0 20.0 9.9 1.8 19.0 7.2 5.8 17.0 2.0 14.0 7.8 11.0 5.8 93 73 23.0 9.5 8.3 71 27 5.8 24.0 21.0 29.0 7.2 21.0 28.0 5.8 19.0 34.0 6.3 19.0 43.0 9.3 20.0 20.0 35.0 9.3 TOTAL 30.5 437.2 443.7 405.1 45.5 70 32 MEAN 70.0 80.5 85.5 65.1 61.3 40.5 14.1 14.3 13.5 MAX 5.8 1.8 MIN 5.8 AC-FT

CAL YR 1983 TOTAL 34185.0 MEAN 93.7 MAX 414 MIN 32 AC-FT WTR YR 1984 TOTAL 18241.0 MEAN 49.8 1.8 AC-FT MAX 163 MIN

08167500 GUADALUPE RIVER NEAR SPRING BRANCH, TX

LOCATION (revised).--Lat 29°51'38", long 98°22'58", Comal County, Hydrologic Unit 12100201, on downstream side of bridge on Ranch Road 311, 1.9 mi southeast of Spring Branch Post Office, 7.5 mi downstream from Curry Creek, and at mile 334.4.

DRAINAGE AREA. -- 1.315 mi2.

PERIOD OF RECORD.--June 1922 to current year.
Water-quality records.--Chemical Biochemical analyses: October 1980 to September 1982.

REVISED RECORDS.--WSP 1562: 1923-24, 1926, 1927-28(M), 1929, 1930(M). WSP 2123: Drainage area.

GAGE.--Water-stage recorder and crest-stage gages. Datum of gage is 948.10 ft National Geodetic Vertical Datum of 1929. Prior to Jan. 14, 1981, at site 220 ft downstream at same datum.

REMARKS.--Records good. Several small diversions above station for irrigation. Several observations of water temperature were made during the year. Gage-height telemeter located at station.

AVERAGE DISCHARGE. -- 62 years, 307 ft3/s (222.400 acre-ft).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 160,000 ft³/s Aug. 3, 1978 (gage height, 45.25 ft, from floodmark), from rating curve extended above 55,600 ft³/s on basis of slope-area measurement of peak flow; no flow at times in 1951-52, 1954-56, and 1963-64.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1859, about 53 ft in 1869; flood in July 1900 reached a stage of about 49 ft, from information by local resident.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 3,300 ft³/s Oct. 9 at 1300 hours (gage height, 7.01 ft), no peak above base of 4,000 ft³/s; minimum daily, 1.1 ft³/s July 21.

		DISCHAR	GE, IN C	UBIC FEE	r PER SECON	D, WATER EAN VALU	R YEAR OCTO	DBER 1983	TO SEPTE	MBER 1984	- in	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	59	91	110	104	73	91	65	42	35	14.0	30.0	8.5
2	58	91	111	111	71	81	69	41	47	12.0	29.0	9.7
3	57	93	121	111	68	88	69	45	46	10.0	26.0	8.5
4	56	93	119	111	67	89	68	40	43	7.4	24.0	17.0
2 3 4 5	55	171	116	108	66	90	70	38	47	6.4	22.0	26.0
6 7 8 9	55	859	112	106	64	90	73	39	55	7.7	21.0	21.0
7	54	254	107	104	83	91	73	38	60	12.0	20.0	16.0
8	54	208	106	107	97	91	72	35	72	11.0	18.0	18.0
9	975	180	103	135	100	88	74	32	54	9.3	16.0	19.0
10	316	151	107	209	100	88	68	31	66	8.1	15.0	19.0
11	154	136	106	172	106	87	64	30	59	7.0	15.0	18.0
12	129	128	104	136	113	90	65	30	50	6.4	14.0	16.0
13	119	122	103	126	108	90	74	29	47	5.2	43.0	14.0
14	98	118	108	121	108	90	64	31	42	4.4	50.0	12.0
15	91	113	161	143	106	91	57	29	37	3.4	26.0	11.0
16	84	108	163	145	104	88	54	28	35	3.0	19.0	9.7
17	82	107	152	145	101	87	52	30	31	2.6	38.0	8.5
18	81	108	121	135	103	89	50	34	29	2.1	33.0	7.7
19	81	107	108	102	99	89	49	37	28	1.4	22.0	6.7
20	94	104	104	85	100	86	50	38	26	1.4	19.0	6.0
21	139	104	105	90	99	84	47	103	24	1.1	18.0	8.9
22	199	109	101	105	99	82	47	105	22	1.4	17.0	9.7
23	161	108	101	114	101	78	49	75	22	2.8	16.0	9.3
24	139	106	100	112	99	77	46	66	20	3.0	14.0	8.5
25	119	139	97	110	96	76	45	58	19	2.2	12.0	8.0
26	106	125	98	106	98	79	45	52	16	1.8	9.7	7.2
27	100	119	100	105	94	78	44	47	15	4.6	8.5	6.0
28	96	112	101	119	93	71	44	43	21	16.0	8.1	6.5
29	94	112	98	120	110	69	49	40	20	48.0	7.4	15.0
30	93	113	98	94		75	45	39	18	34.0	6.0	17.0
31	92		101	77		75		36		27.0	6.0	
TOTAL	4090	4489	3442	3668	2726	2618	1741	1361	1106	276.7	622.7	368.4
MEAN	132	150	111	118	94.0	84.5	58.0	43.9	36.9	8.93	20.1	12.3
MAX	975	859	163	209	113	91	74	105	72	48	50	26
MIN	54	91	97	77	64	69	44	28	15	1.1	6.0	6.0
AC-FT	8110	8900	6830	7280	5410	5190	3450	2700	2190	549	1240	731
CAL YR WTR YR				162 72.4	MAX 1890 MAX 975	MIN 4 MIN	7 AC-F					

08167700 CANYON LAKE NEAR NEW BRAUNFELS, TX

LOCATION.--Lat 29°52'07", long 98°11'55", Comal County, Hydrologic Unit 12100201, in intake structure of Canyon Dam on Guadalupe River, 12 mi northwest of New Braunfels, and at mile 303.0.

DRAINAGE AREA. -- 1.432 mi2.

DAV

OCT

MOV

DEC

PERIOD OF RECORD. -- July 1962 to current year. Prior to October 1970, published as Canyon Reservoir.

REVISED RECORDS .-- WSP 2123: Drainage area.

GAGE .-- Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers). Prior to Sept. 24, 1964, nonrecording gage at present site and datum.

REMARKS.--The lake is formed by a rolled earthfill dam 6,830 ft long, consisting of the main dam 4,410 ft long, an earthen dike 210 ft long, a 1,260-foot-long uncontrolled broad-crested-type spillway, and a 950-foot concrete and earthen nonoverflow section. Deliberate impoundment began June 16, 1964, and main part of dam was completed in August 1964. The flood-control outlet works consist of a 10.0-foot-diameter conduit controlled by two 5.7 by 10.0-foot hydraulically operated slide gates. The lake was built for water conservation and flood control. Capacity table beginning Oct. 1, 1974, is based on a sedimentation survey of August 1972. Small diversions above the lake for irrigation. Gage-height telemeter at station. Figures given herein represent total contents. Data regarding the dam and lake are given in the following table:

	(feet)	(acre-feet)
Top of dam	974.0	
Crest of spillway	943.0	736,700
Top of conservation pool	909.0	382,000
Lowest gated outlet (invert)	775.0	240

COOPERATION .-- Records furnished by the Corps of Engineers and reviewed by the Geological Survey.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 588,400 acre-ft Aug. 4, 1978 (elevation, 930.61 ft); minimum observed since conservation pool first reached in April 1968, 314,500 acre-ft Sept. 30, 1984 (elevation, 900.31 ft).

EXTREMES FOR CURRENT YEAR.--Maximum daily contents, 349,200 acre-ft Nov. 6 at 2400 hours (elevation, 904.91 ft); minimum daily, 314,500 acre-ft Sept. 30 at 2400 hours (elevation, 900.31 ft).

Capacity table (elevation, in feet, and total contents, in acre-feet)

900.0	312,300	902.0	327,000	904.0	342,200
901.0	319,500	903.0	334,500	905.0	349,900

ADD

CONTENTS, IN ACRE-FEET, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 INSTANTANEOUS OBSERVATIONS AT 2400

DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	346400	347200	342600	341900	344200	342400	341100	337400	333800	331000	325400	320000
2	346400	347200	342900	342100	344200	342300	341200	337400	333700	330700	325300	319600
3	346300	347200	343200	342200	344000	342300	341000	337300	333600	330400	325200	319500
4	346300	347200	343200	342300	343900	342500	340900	337100	333700	330200	324800	319300
5	346200	348100	343200	342500	343800	342400	340700	336900	334100	330000	324700	319000
6	346100	349200	343000	342600	343600	342200	340600	336800	334200	329900	324400	210500
7	346000	349200	342900	342600	343400	342200	340700			329400		318500 318400
8	346000	348900	342900	343200	343500	341900		336800	334100		324200	
9	347500	348400	343100	343700	343600		340700	336400	334100	329300	324000	318200
10	348000	347800				341800	340600	336000	334100	329000	323800	318000
10	346000	347600	343200	343700	343600	341800	340500	335700	334000	328800	323600	317900
11	348300	347300	343200	343900	343600	341800	340400	335500	333900	328600	323500	317700
12	348100	346900	343000	344100	343800	341800	340300	335300	333900	328500	323300	317500
13	347900	346600	342900	344100	343700	341800	340200	335100	333900	328200	323400	317400
14	347700	346300	342900	344200	343700	341900	340000	335000	333800	327900	323600	317300
15	347700	345500	342800	344300	343700	341900	339900	334800	333700	327600	323800	317100
16	347600	345000	342900	344500	343600	342000	339600	334700	333500	327400	323600	316800
17	347600	344600	342900	344500	343600	342100	339400	335000	333200	327300	323400	316400
18	347600	344200	342900	344600	343600	342300	339300	335200	333100	327200	323300	316300
19	347500	343600	342600	344300	343500	342200	339200	335400	332900	327100	323100	316100
20	348000	342900	342600	344200	343500	342100	339200	335400	332700	327000	322900	316100
- 55	5.5555	3.2,00	542000	344200	343300	342100	339200	333400	332700	327000	322900	310100
21	347800	342800	342600	344000	343300	341900	339100	335400	332500	326600	322700	316000
22	347800	343200	342300	344300	343200	341900	338800	335400	332200	326600	322400	315900
23	347800	342900	342300	344400	343200	342100	338600	335500	332000	326400	322200	315800
24	347800	342900	342000	344400	343000	341900	338400	335600	331900	326400	322100	315700
25	347800	342700	341700	344300	343000	341800	338300	335400	331800	326300	321900	315700
26	347700	342900	341800	344300	343100	341800	338300	335300	331600	326100	321800	315600
27	347500	342900	341700	344300	342800	341800	338100	335100	331400	326400	321500	315300
28	347400	342700	341900	344300	342600	341600	337900	335000	331300	326000	321300	315100
29	347400	342700	341600	344300	342400	341200	337900	334700	331300	325800	321100	314700
30	347400	342800	341600	344300	342400	341200	337700	334400		325700		
31	347200	342000	341600	344200		341200	33//00	334400	331100	325700	320900 320700	314500
				344200		341000		334100		323300	320700	
MAX	348300	349200	343200	344600	344200	342500	341200	337400	334200	331000	325400	320000
MIN	346000	342700	341600	341900	342400	341000	337700	334100	331100	325500	320700	314500
(†)	904.65	904.08	903.93	904.26	904.03	903.85	903.42	902.95	902.55	901.80	901.16	900.31
(‡)	+600	-4400	-1200	+2600	-1800	-1400	-3300	-3600	-3000	-5600	-4800	-6200
CAL YE	1983 M	AX 365800	MIN	341600	± - 22200							
	100/ M			341000	-22200							

CAL YR 1983 WTR YR 1984 MAX 349200 MIN 314500

Elevation, in feet, at end of month.

[‡] Change in contents, in acre-feet.

GUADALUPE RIVER BASIN

08167800 GUADALUPE RIVER AT SATTLER, TX

LOCATION.--Lat 29°51'32", long 98°10'47", Comal County, Hydrologic Unit 12100202, on right bank 200 ft upstream from Horseshoe Falls, 0.8 mi north of Sattler, 1.8 mi downstream from Canyon Dam, 2.3 mi upstream from Heiser Hollow, 11.2 mi north of New Braunfels, and at mile 301.2.

DRAINAGE AREA. -- 1,436 mi2, of which 1,432 mi2 is above Canyon Dam.

PERIOD OF RECORD.--March 1960 to current year.
Water-quality records.--Chemical and biochemical analyses: October 1980 to September 1982.

REVISED RECORDS .-- WSP 2123: Drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 742.24 ft National Geodetic Vertical Datum of 1929 (Corps of Engineers bench mark).

REMARKS.--Records good. Flow completely regulated since July 21, 1962, by Canyon Lake (station 08167700) 1.8 mi upstream. Small diversions above station for irrigation. Gage-height telemeter located at station.

AVERAGE DISCHARGE.--22 years (water years 1962-84) since regulation began at Canyon Lake, 380 ft³/s (275,300 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 20,800 ft³/s Oct. 29, 1960 (gage height, 12.20 ft). Maximum discharge since closure of Canyon Dam on July 21, 1962, 5,850 ft³/s Aug. 5, 1978 (gage height, 8.31 ft); no flow July 31 to Aug. 6, 1962 (result of closure of Canyon Dam), and part of Jan. 29, 30, Feb. 1, 1965 (result of closure while constructing present control).

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in July 1869 (stage unknown) has not been exceeded since that date; flood in July 1900 (stage unknown) exceeded 39 ft; maximum stage since at least 1904, 39 ft in July 1932 and June 1935, from information by local residents.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 355 ft³/s Sept. 1 at 0100 hours (gage height, 5.28 ft); minimum daily, 1.1 ft³/s Sept. 27-30.

DISCHARGE IN CHRIS PER DER CECOND HAMED VEAD COMORED 1003 TO CERTEMPER 1004

		DISCHARG	E, IN (CUBIC FEET	PER SECOI	ND, WATER Y MEAN VALUES	EAR OCTOR	ER 1983	TO SEPTE	MBER 1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	45 45 45 45 45	98 97 91 95 98	82 82 84 83 82	55 55 55 55	114 114 114 114	116 116 116 116 116	76 76 76 76 76	79 79 78 77 77	40 40 40 40 40	18.0 18.0 18.0 18.0 18.0	8.7 14.0 40.0 71.0 36.0	313.0 119.0 42.0 42.0 42.0
6 7 8 9	45 45 45 45 45	97 154 275 275 275	82 82 82 81 80	55 55 55 55 55	114 114 114 115 114	116 116 116 116 116	76 76 76 76 76 76	77 78 79 79 79	40 40 40 40 40	18.0 83.0 45.0 14.0	33.0 30.0 26.0 21.0 20.0	42.0 34.0 22.0 22.0 22.0
11 12 13 14 15	45 45 45 45 50	275 275 277 279 279	80 80 80 80	55 56 56 56 56	114 114 114 114 114	116 116 104 80 80	76 76 76 76 76	78 79 80 70 48	40 40 40 40 47	14.0 14.0 38.0 81.0 16.0	20.0 20.0 19.0 13.0 18.0	22.0 22.0 22.0 22.0 22.0
16 17 18 19 20	92 92 92 92 95	279 279 279 279 279	80 80 80 80	74 110 111 112 112	114 114 114 114 114	80 80 80 80 79	75 75 76 76 76	48 49 47 47	52 52 52 52 52 52	15.0 10.0 1.9 1.4 29.0	44.0 45.0 44.0 42.0 42.0	22.0 15.0 2.6 1.8 1.5
21 22 23 24 25	93 93 93 61 56	216 83 82 82 82	80 80 80 76 76	112 112 112 112 112	114 114 116 116 116	79 79 71 75 76	74 74 74 72 76	45 45 45 51 63	52 52 52 52 52 47	57.0 8.3 11.0 9.1 6.0	42.0 42.0 42.0 42.0 42.0	1.5 1.5 1.4 1.4
26 27 28 29 30 31	101 106 91 87 88 69	82 82 82 82 82	76 68 56 56 56 55	112 112 112 114 114 114	117 116 116 116	76 76 76 76 76 76	76 76 77 79 79	64 64 63 62 62 55	24 19 18 18	5.8 32.0 57.0 7.6 6.4 6.3	42.0 42.0 42.0 42.0 42.0 61.0	1.2 1.1 1.1 1.1 1.1
TOTAL MEAN MAX MIN AC-FT	2081 67.1 106 45 4130	5290 176 279 82 10490	2379 76.7 84 55 4720	2585 83.4 114 55 5130	3322 115 117 114 6590	2891 93.3 116 71 5730	2275 75.8 79 72 4510	1994 64.3 80 45 3960	1219 40.6 52 18 2420	690.8 22.3 83 1.4 1370	1087.7 35.1 71 8.7 2160	865.6 28.9 313 1.1 1720
CAL YR WTR YR	1983 TOTAL 1984 TOTAL		MEAN MEAN		MAX 512 MAX 313	MIN 45 MIN 1.1	AC-FT AC-FT	139600 52920				

08168500 GUADALUPE RIVER ABOVE COMAL RIVER AT NEW BRAUNFELS, TX

LOCATION.--Lat 29°42'53", long 98°06'35", Comal County, Hydrologic Unit 12100202, on right bank at New Braunfels, 1.1 mi upstream from Comal River, 21.9 mi downstream from Canyon Lake, and at mile 281.1.

DRAINAGE AREA. -- 1.518 mi2.

PERIOD OF RECORD .-- December 1927 to current year.

REVISED RECORDS. -- WSP 898: 1935. WSP 1562: 1932. WSP 2123: Drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 586.65 ft National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. Small diversions for irrigation below station 08167800 and above this station. Since July 21, 1962, flow is largely regulated by Canyon Lake (station 08167700) 21.9 mi upstream. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--34 years (water years 1929-62) prior to regulation by Canyon Lake, 372 ft 3/s (269,500 acre-ft/yr); 22 years (water years 1963-84) regulated, 466 ft 3/s (337,600 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 101,000 ft3/s June 15, 1935 (gage height, 32.95 ft); no flow July 8, 9, July 17 to Aug. 20, 1956.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum stage since at least 1845, 38 ft July 8, 1869, and in December 1913, from information by local residents.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 358 ft³/s Sept. 1 at 1500 hours (gage height, 2.39 ft); minimum daily, 2.6 ft3/s Sept. 28-30.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

MEAN VALUES DAY SEP OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG 18.0 196.0 17.0 221.0 128 75 16.0 115.0 65.0 51.0 16.0 50.0 16.0 49.0 71.0 47.0 50.0 33.0 29.0 25.0 78 28.0 16.0 28.0 13.0 13.0 28.0 36.0 28.0 27.0 74.0 29.0 27.0 27.0 18.0 28.0 16.0 12.0 18.0 8.2 8.2 48.0 5.0 121 30.0 4.1 3.4 16.0 2.8 16.0 2.7 10.0 2.6 14.0 63.0 2.6 2.6 31.0 15.0 ------------TOTAL 770.2 1156.1 MEAN 97.4 93.6 93.3 80.8 66.2 47.4 24.8 40.4 38.5 MAX MIN 8.2 2.6 AC-FT

CAL YR 1983 TOTAL 89557.0 MEAN MIN 64 WTR YR 1984 TOTAL 31089.3 MEAN 84.9 MAX 318 MIN 2.6 AC-FT

08169000 COMAL RIVER AT NEW BRAUNFELS. TX

LOCATION.--Lat 29°42'21", long 98°07'20", Comal County, Hydrologic Unit 12100202, on right bank 200 ft upstream from San Antonio Street viaduct in New Braunfels and 1.1 mi upstream from mouth.

DRAINAGE AREA, -- 130 mi2. Normal flow of river comes from springs; drainage area not applicable.

PERIOD OF RECORD. -- 1882 to current year (1882 to November 1927, discharge measurements only).

REVISED RECORDS . -- WSP 2123: Drainage area.

GAGE.--Water-stage recorder. Concrete control since Oct. 1, 1955. Datum of gage is 582.80 ft National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. The flow from Comal Springs emerges from the Edwards and associated limestones in the Balcones Fault Zone. Except during periods of rainfall, flow of river is primarily from Comal Springs about 1.0 mi upstream. Flow is affected at times by cleanup operations by the city of New Braunfels at Landa Park Lake and at times by discharge from the flood-detention pools of five floodwater-retarding structures with a combined detention capacity of 17,580 acre-ft. These structures control runoff from 74.6 mi². Several observation of water temperature were made during the year.

AVERAGE DISCHARGE. -- 52 years (water years 1933-84), 295 ft 3/s (213,700 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 60,800 ft³/s May 11, 1972 (gage height, 36.55 ft, from floodmark), from rating curve extended above 13,000 ft³/s on basis of contracted-opening measurements on Blieders and Dry Comal Creeks and unit rainfall-runoff studies; no flow from Comal Springs from June 13 to Nov. 3, 1956.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood information begins with flood of July 8, 1869, which reached a stage of 36.91 ft, from painted and dated marks in old Remmert Brewery 0.5 mi downstream; the flood of Oct. 17, 1870, reached a stage of 37.65 ft at same site (probably some backwater from Guadalupe River).

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 578 ft³/s Feb. 9 at 0300 hours (gage height, 4.78 ft), no peak above base of 1,100 ft³/s; minimum daily, 26 ft³/s July 18, 24.

		DISCHAI	RGE, IN	CUBIC FEET	PER SECO	ND, WATER MEAN VALU	YEAR OCT	OBER 1983	TO SEPTE	MBER 1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	197	208	226	219	222	211	184	112	88	49	34	27
2	201	208	226	219	222	211	180	115	90	55	32	30
3	199	211	234	219	229	208	174	112	88	51	28	40
2 3 4	194	211	230	219	219	208	165	91	90	49	29	44
5	191	222	230	219	222	208	168	92	84	49	29	47
	101	237	226	215	219	204	165	98	102	39	29	48
6	191							92	94	40	28	49
7	194	222	226	215	219	201	165					
8	197	219	226	219	219	201	168	98	96	34	28	52
9	201	219	226	230	270	201	168	98	92	39	· 28	54
10	204	219	226	222	222	201	159	94	92	33	28	54
11	204	219	230	219	219	204	153	90	92	33	29	52
12	208	222	230	222	219	208	153	86	86	34	28	51
13	204	219	226	222	215	204	150	84	88	27	32	45
14	208	226	226	222	215	204	147	88	92	32	35	41
				222				80	88	33	39	39
15	208	219	222	222	215	204	147	80	00	33	39	39
16	211	219	222	226	215	201	147	82	92	34	45	39
17	211	219	222	226	215	204	144	98	90	27	47	41
18	208	222	226	222	215	204	144	103	90	26	47	40
19	208	222	226	226	215	204	139	117	80	28	47	40
20	208	222	226	226	219	201	133	115	78	27	48	40
	011	000	200	200	015	201	133	120	78	28	44	41
21	211	222	226	226	215	201						
22	211	222	226	234	215	201	128	120	67	30	41	44
23	211	226	222	230	215	201	141	115	67	32	40	45
24	211	222	222	230	215	197	130	110	60	26	45	42
25	211	226	222	230	215	194	125	110	57	32	40	41
26	211	226	222	234	215	194	117	107	48	35	40	41
27	215	226	222	230	215	187	112	105	47	32	42	42
28	211	226	219	234	211	184	112	103	48	35	39	42
29	215	226	219	230	214	184	117	105	45	35	37	48
								98	47	37	37	52
30	215	226	219	222		184	120				32	
31	215		219	222		180		96		36	32	
TOTAL	6384	6633	6970	6951	6355	6199	4388	3134	2356	1097	1127	1311
MEAN	206	221	225	224	219	200	146	1 01	78.5	35.4	36.4	43.7
MAX	215	237	234	234	270	211	184	120	102	55	48	54
MIN	191	208	219	215	211	180	112	80	45	26	28	27
AC-FT	12660	13160	13820	13790	12610	12300	8700	6220	4670	2180	2240	2600
AC-FI	12000	13100	13020	13/90	12010	12300	0,00	0220	4070	2.00	40	2300

CAL YR 1983 TOTAL 86736 MEAN 238 MAX 471 MIN 171 AC-FT 172000 WTR YR 1984 TOTAL 52905 MEAN 145 MAX 270 MIN 26 AC-FT 104900

08169580 GUADALUPE RIVER BELOW NEW BRAUNFELS, TX

LOCATION.--Lat 29°40'00", long 98°04'14", Comal County, Hydrologic Unit 12100202, in Lake Dunlap, 8 mi southeast of New Braunfels, and 15 mi downstream from Interstate Highway 35 bridge.

PERIOD OF RECORD. -- Periodic chemical and biochemical analyses: January 1968 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)		HARD- NESS, NONCAR- BONATE (MG/L CACO3)
OCT	1255	561	7.0	25.0		0.6		250	33
17 DEC	1355		7.8	25.0	6.9	86	1.8	250	
02 MAR	1110	540	7.9	16.5	7.8	82	1.2	250	18
01 APR	1050	534	8.1	15.5	8.6	88	.8	240	19
17 SEP	1110	582	8.1	22.0	7.6	89	.5	250	27
05	1010	539	7.8	27.5	3.6	46	2.7	220	15
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
OCT									4.5
17 DEC	73	17	19	. 5	1.6	220	23	28	.20
02 MAR	71	1.7	17	• 5	1.7	230	18	23	.20
01 APR	66	18	18	.5	1.8	220	25	25	.20
17 SEP	69	18	22	.6	1.9	220	27	30	.30
05	59	17	27	.8	2.4	203	24	35	.30
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVEI (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN,	GEN,	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)
OCT									
17 DEC	12	310	.98	.020	1.0	.060	.84	.90	.160
02 MAR	12	300	1.1	.010	1.1	.160	.84	1.0	.060
01 APR	-11	300	1.1	.010	1.1	.130	.87	1.0	.090
17	11	310	.97	.030	1.0	.210	.19	.40	.110
SEP 05	13	300	.50	.100	.60	.190	.51	.70	.220

GUADALUPE RIVER BASIN

08170000 SAN MARCOS RIVER SPRINGFLOW AT SAN MARCOS, TX

LOCATION.--Lat 29°52'06", long 97°55'38", Hays County, Hydrologic Unit 12100203, on left bank 0.7 mi downstream from bridge on Interstate Highway 35 and U.S. Highway 81, 1.2 mi southeast of courthouse in San Marcos, and 2.1 mi upstream from Blanco River.

DRAINAGE AREA. -- 93.0 mi2. Normal flow of river comes from springs, drainage area of stream not applicable.

PERIOD OF RECORD.--May 1956 to current year. June 1915 to January 1916, March 1916 to September 1921, and May to September 1956, published as San Marcos River at San Marcos; records include some surface runoff. Periodic measurements of springflow were made at this location outside periods of records since Nov. 14, 1894, and are published as miscellaneous measurements.

REVISED RECORDS. -- WSP 1923: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 536.82 ft National Geodetic Vertical Datum of 1929. June 10, 1915, to Jan. 19, 1916, nonrecording gage at site 1.2 mi upstream, and Mar. 13, 1916, to Sept. 7, 1921, water-stage recorder near present site, datum relations unknown.

REMARKS.--Records good. Flow slightly regulated by utilities dam about 1.5 mi upstream. Flow is affected at times by discharge from flood-detention pool of a floodwater-retarding structure with detention capacity of 8,580 acre-ft. This structure controls runoff from 33.6 mi². Entire flow of river is from San Marcos Springs, about 1.8 mi upstream, except during period of local runoff. Springs emerge from the Edwards and associated limestones in the Balcones Fault Zone. Small diversion for operation of State fish hatchery, some of which is returned above gage. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE. -- 28 years (water years 1957-84), 164 ft 3/s (118,800 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum daily spring discharge (estimated), 350 ft 3/s June 20, 1981; maximum discharge, 76,600 ft 3/s May 15, 1970 (gage height, 35.12 ft); minimum daily spring discharge, 46 ft 3/s Aug. 15, 16, 1956.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum stage since at least 1913, 38.6 ft Sept. 10, 1921 (from floodmark, backwater from Blanco River), present datum.

EXTREMES FOR CURRENT YEAR.--Maximum daily spring discharge, 144 ft³/s Oct. 10; maximum gage height, 4.23 ft Aug. 14 at 2300 hours (flood runoff); minimum daily spring discharge, 64 ft³/s Sept. 18.

DISCHARGE IN CURIC PERT DER SECOND WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

		DISCHA	RGE, IN C	UBIC FEET	PER SECON	ND, WATER MEAN VALU	YEAR OCTO	OBER 1983	TO SEPTE	MBER 1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	140	129	128	132	129	112	111	1 01	99	94	73	74
2	140	129	131	131	129	115	113	103	101	93	73	72
3	137	130	135	130	129	116	111	104	101	91	75	76
2 3 4 5	137	131	132	131	129	114	108	104	100	92	75	74
5	138	138	133	131	129	119	105	105	98	92	76	74
6 7 8	138	139	130	132	126	119	107	102	102	89	72	74
7	137	138	130	131	125	117	111	101	1 01	89	69	74
8	137	132	131	132	126	114	111	98	101	90	69	74 72
9	141	130	132	135	127	118	107	94	104	90	68	72
10	144	130	132	129	126	117	104	95	106	88	69	12
11	141	133	131	130	122	116	104	93	104	88	71	72
12	140	133	133	128	120	119	106	97	105	86	74	72
13	138	132	131	127	118	116	1 02	99	107	85	71	71
14	136	134	131	129	118	118	103	97	107	87 87	72 85	71 71
15	137	133	133	129	117	116	106	94	106	87	85	/ 1
16	137	132	132	128	117	116	107	95	106	84	79	70
17	135	132	132	129	118	115	106	98	104	83	81	69
.18	133	131	131	126	119	111	105	99	101	84	80	64
19	133	133	133	126	117	112	107	102	100	85 87	80 81	66 70
20	135	134	132	125	119	112	106	103	96	87	81	70
21	132	134	133	125	120	110	106	1 01	94	88	76	74
22	133	133	132	127	120	110	105	98	95	88	76	75
23	135	135	132	130	120	111	104	98	97	84	75	75
24	134	132	128	126	119	109	102	98	97	83	75 74	72 71
25	134	133	129	127	118	110	1 01	99	97	83	74	/1
26	135	135	131	126	119	109	100	102	96	81	74	72
27	135	138	129	126	117	109	100	101	94	76	74	71
28	132	132	128	127	116	106	104	100	91	74	74	71
29	132	130	127	128	113	108	103	99	96	76	74 74	76 76
30	132	127	128	127		108	100	99 98	95	77 76	74	
31	131		129	126		107		98		70	74	
TOTAL	4219	3982	4059	3986	3522	3509	3165	3077	3001	2650	2313	2165
MEAN	136	133	131	129	121	113	106	99.3	100	85.5	74.6	72.2
MAX	144	139	135	135	129	119	113	105	107	94	85	76
MIN	131	127	127	125	113	106	1 00	93	91	74	68	64
AC-FT	8370	7900	8050	7910	6990	6960	6280	6100	5950	5260	4590	4290
	8370	7900	8050	7910	6990	6960	6280	6100	5950	5260	4590	

CAL YR 1983 TOTAL 53573 MEAN 147 MAX 218 MIN 108 AC-FT 106300 WTR YR 1984 TOTAL 39648 MEAN 108 MAX 144 MIN 64 AC-FT 78640

08171000 BLANCO RIVER AT WIMBERLEY, TX

LOCATION.--Lat 29°59'39", long 98°05'19", Hays County, Hydrologic Unit 12100203, on left bank at downstream side of highway, near left end of bridge on Ranch Road 12, 0.3 mi southeast of Wimberley, 2,200 ft downstream from Cypress Creek, and at mile 29.0.

DRAINAGE AREA . -- 355 mi2.

WTR YR 1984 TOTAL

MEAN 34.2

MAX

MIN 10

CFSM .10

IN 1.31

AC-FT

PERIOD OF RECORD. -- August 1924 to September 1926, June 1928 to current year.

REVISED RECORDS.--WSP 1562: 1929, 1930-31(M), 1935-36(M), 1938(M), 1941-42(M), 1947(M), 1949(M). WSP 2123: Drainage

GAGE.--Water-stage recorder and crest-stage gages. Datum of gage is 797.23 ft National Geodetic Vertical Datum of 1929. Aug. 6, 1924, to Sept. 30, 1926, nonrecording gage at site 1,030 ft upstream at datum 5.00 ft higher. Recording gage from June 6, 1928, to June 12, 1975, at site 1,000 ft upstream at datum 5.00 ft higher.

REMARKS .-- Records good. Numerous small diversions above station. Several observations of water temperature were made during the year. Gage-height telemeter at station.

AVERAGE DISCHARGE.--58 years (water years 1925-26, 1929-84), 121 ft3/s (4.63 in/yr), 87,660 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 113,000 ft^3/s May 28, 1929 (gage height, 33.3 ft, from floodmark), present site and datum, from rating curve extended above 30,000 ft^3/s on basis of slope-area measurements of 95,000 and 113,000 ft^3/s ; minimum, 0.6 ft^3/s Aug. 16, 1956.

Maximum stage since at least 1869, that of May 28, 1929.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood in July 1869 reached a stage of 25 ft, from information by local residents.

EXTREMES FOR CURRENT YEAR .-- Maximum discharge, 2,910 ft3/s Oct. 9 at 1530 hours (gage height, 7.52 ft), no other peak above base of 1,800 ft3/s; minimum daily, 10 ft3/s Sept. 16.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 MEAN VALUES DAY OCT NOV DEC JAN FEB APR MAY JUN JUL AUG SEF MAR 57 55 25 58 50 ---TOTAL MEAN 71.5 50.7 42.7 44.9 41.0 35.7 25.7 23.1 32.8 15.7 13.2 13.1 37 39 11 MAX 11 MIN CFSM .20 .12 .12 .10 .07 .07 .09 . 04 . 04 . 04 IN. .08 . 08 . 04 AC-FT MAX CAL YR 1983 TOTAL MEAN 86.9 MIN 24 CFSM .25

08171300 BLANCO RIVER NEAR KYLE, TX

LOCATION.--Lat 29°58'45", long 97°54'35", Hays County, Hydrologic Unit 12100203, on left bank 800 ft downstream from Tarbutton Ranch House (Hatchett Ranch), 2.2 mi southwest of Kyle, 4.2 mi downstream from Halifax Creek, and 6.3 mi upstream from bridge on U.S. Highway 81.

DRAINAGE AREA . -- 412 mi2.

PERIOD OF RECORD .-- May 1956 to current year.

REVISED RECORDS. -- WSP 1923: 1957-58, 1960(M). WSP 2123: Drainage area.

GAGE .-- Water-stage recorder. Datum of gage is 620.12 ft Corps of Engineers datum.

REMARKS.--Records good. Small diversions above station for irrigation. Most of the low flow of the Blanco kiver enters the Edwards and associated limestones in the Balcones Fault Zone which crosses the basin upstream from this station and below the station at Wimberley. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--28 years, 143 ft3/s (4.71 in/yr), 103,600 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 98,000 ft 3/s May 2, 1958 (gage height, 36.3 ft, from floodmark), from rating curve extended above 37,000 ft 3/s on basis of slope-area measurement of 139,000 ft 3/s and slope-conveyance study; no flow at times in 1956-57, 1963-65, 1967, 1971, 1978, and 1984.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1882, about 40 ft in May 1929, from information by local residents (discharge, 139,000 ft 3/s). Flood of Sept. 11, 1952, reached a stage of 38.0 ft (discharge, 115,000 ft 3/s).

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,870 ft³/s Oct. 9 at 2100 hours (gage height, 9.82 ft), no peak above base of 2,500 ft³/s; no flow July 10 to Sept. 30.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUI. AUG SEP . 00 17 23 32 16 4.8 3.7 2.8 . 00 23 32 16 15 4.7 3.3 17 27 32 22 2.0 .00 .00 16 23 43 28 32 22 2.6 .00 .00 4 16 23 38 27 30 22 .00 5 15 29 35 27 30 24 13 3.6 5.7 .65 .00 .00 6 15 41 27 23 29 .00 .00 14 41 32 31 26 27 29 21 13 2.8 34 .29 . 00 .00 50 21 2.6 29 15 41 .22 - 00 - 00 271 50 32 31 20 . 08 . 00 .00 10 429 42 32 30 20 12 1.5 .00 .00 .00 116 39 31 29 12 13 30 20 1.3 .00 . 00 . 00 12 75 39 29 35 29 21 12 .00 .00 .00 44 13 39 29 35 28 12 1.0 10 . 00 .00 .00 38 29 7.5 34 27 20 11 .91 .00 . 00 .00 7.7 15 35 36 28 34 27 20 . 84 .00 .00 .00 16 34 34 30 33 21 10 .79 .00 26 5.6 .00 .00 33 17 36 34 29 20 .97 4.7 26 10 .00 - 00 .00 18 30 34 27 33 9.9 4.0 .00 .00 .00 . 00 9.1 19 28 34 27 32 26 27 9.5 3.5 . 00 .00 32 20 29 28 10 3.2 31 26 21 8.7 .00 .00 .00 21 47 32 29 31 26 19 8.0 27 2.5 .00 . 00 .00 22 6.4 34 1.9 30 34 28 32 24 20 .00 .00 .00 28 37 40 28 25 21 .00 . 00 .00 24 29 33 26 21 6.9 19 25 28 32 24 34 25 18 6.4 15 .91 .00 .00 .00 26 33 28 28 12 .87 .00 .00 .00 6.6 27 25 24 36 28 32 26 9.3 .70 . 00 19 .00 .00 28 35 5.6 28 32 23 16 7.4 .54 .00 .00 .00 24 33 26 33 22 1.5 14 6.1 . 00 . 00 .00 30 24 33 5.1 1.9 .00 .00 .00 16 31 23 26 32 16 4.3 .00 . 00 TOTAL 1597 1045 924 982 798 628 308.8 229.01 236.62 10.53 .00 .00 51.5 34.8 .34 MEAN 29.8 31.7 27.5 20.3 10.3 7.39 7.89 .000 . 000 MAX 43 41 32 27 16 34 41 .00 .00 23 24 22 MIN 14 26 5.1 14 .79 .54 .00 .00 .00 CFSM .13 .08 .07 . 05 .03 . 02 .001 .000 .000 . 08 .07 . 02 .00 IN. .14 . 09 . 08 . 09 . 07 . 06 . 03 . 02 . 02 .00 .00 AC-FT 3170 2070 1830 1950 1580 1250 613 469 454 21 .00 .00

CAL YR 1983 TOTAL 26846.00 AC-FT MEAN 73.6 MAX 1580 MIN 14 CFSM .18 IN 2.42 53250 WTR YR 1984 TOTAL 6758.96 MEAN 18.5 MAX 429 MIN .00 CFSM . 05 IN .61 AC-FT 13410

08172000 SAN MARCOS RIVER AT LULING, TX

LOCATION.--Lat 29°39'54", long 97°38'59", Caldwell-Guadalupe County line, Hydrologic Unit 12100203, on left bank 390 ft downstream from bridge on State Highway 80, 1.0 mi south of U.S. Post Office at Luling, and 9.4 mi upstream from

DRAINAGE AREA . -- 838 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- April 1939 to current year.

REVISED RECORDS.--WSP 958: 1940. WSP 1312: 1940(M), 1945(M), 1947(M). WSP 2123: Drainage area.

GAGE .-- Water-stage recorder. Datum of gage is 322.05 ft National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good. Flow is affected at times by discharge from flood-detention pools of 18 floodwater-retarding structures with a combined detention capacity of 26,830 acre-ft. These structures control runoff from 105 mi² in the Town and York Creeks drainage basins. Rain gage and gage-height telemeters at station.

AVERAGE DISCHARGE. -- 45 years, 364 ft 3/s (263,700 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD .-- Maximum discharge, 57,000 ft 3/s Sept. 12, 1952 (gage height, 34.95 ft); minimum daily, 43 ft3/s Aug. 12, 1951.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1859, 40.4 ft in 1869 or 1870, from information by State Department of Highways and Public Transportation. Flood of May 29, 1929, reached a stage of 37.1 ft and is the second highest known.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 680 ft³/s Nov. 6 at 0100 hours (gage height, 7.06 ft), no peak above base of 4,000 ft³/s; minimum daily, 56 ft³/s Sept. 1.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 MEAN VALUES AUG SEP TIIN JUL. DAY OCT NOV DEC JAN. FEB MAR APR MAY 157 70 59 ---------TOTAL 63.7 64.4 537 170 193 233 83.7 MEAN 89.3 68.4 MAX MIN AC-FT

CAL YR 1983 TOTAL 99581 MEAN 273 MIN 128 AC-FT 197500 MAX WTR YR 1984 TOTAL 43630 MEAN 119 MAX MIN AC-FT

08172000 SAN MARCOS RIVER AT LULING, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical analyses: September 1961 to April 1966, October 1968 to current year.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
OCT									
05 NOV	1533	155	602	8.0	25.5	290	48	84	19
22 JAN	1528	159	611	8.2	18.5	290	41	85	19
05 FEB	1110	144	610	8.5	12.5	280	26	79	19
28 APR	1618	133	602	8.6	14.0	280	28	80	19
12 MAY	1436	105	625	8.3	22.0	280	26	79	19
23 JUL	1330	90	621	8.2	26.0	280	33	82	19
11	1005	68	574	8.2	29.0				
AUG 22	1609	62	580	8.1	29.0	270	36	75	19
DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)
OCT									
05 NOV	19	-							
		•5	1.9	240	31	30	.20	11	340
22	19	.5	1.9	240 250	31 30	30 30	.20 .20	11	340 350
JAN 05	19 21								
JAN 05 FEB 28		.5	1.9	250	30	30	.20	11	350
JAN 05 FEB 28 APR 12	21	.6	1.9	250 250	30 28	30 35	.20 .20	11 6.3	350 340
JAN 05 FEB 28 APR 12 MAY 23	21 21	.5 .6 .6	1.9 1.8 2.0	250 250 250	30 28 32	30 35 33	.20 .20 .20	11 6.3 4.4	350 340 340
JAN 05 FEB 28 APR 12	21 21 22	.5 .6 .6	1.9 1.8 2.0 2.0	250 250 250 250	30 28 32 31	30 35 33 39	.20 .20 .20	11 6.3 4.4 9.1	350 340 340 350

GUADALUPE RIVER BASIN 249 08172400 PLUM CREEK AT LOCKHART, TX

LOCATION.--Lat 29°55'22", long 97°40'44", Caldwell County, Hydrologic Unit 12100203, on right bank 548 ft upstream from bridge on U.S. Highway 183, 2.7 mi north of Lockhart, 3.7 mi upstream from Town Creek, 5.0 mi downstream from Brushy Creek, and 30.4 mi upstream from mouth.

DRAINAGE AREA . -- 112 mi2.

PERIOD OF RECORD .-- April 1959 to current year.

REVISED RECORDS .-- WSP 2123: Drainage area.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 431.19 ft National Geodetic Vertical Datum of 1929. Apr. 30, 1959, to July 25, 1968, at site 548 ft downstream at present datum.

REMARKS.--Records good. No known diversion above station. Flow at times is affected by discharge from the flood-detention pools of 17 floodwater-retarding structures with a combined detention capacity of 24,850 acre-tt. These structures control runoff from 67.8 mi² above this station. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE. -- 25 years, 45.9 ft 3/s (33,250 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 26,600 ft 3/s Oct. 29, 1960 (gage height, 20.62 ft); no flow at times each year.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1905, 22 ft in June 1936 at present site; flood in 1951 reached a stage of 20 ft at present site, from information by local resident.

EXTREMES FOR CURRENT YEAR .-- Maximum discharge, 130 ft 3/s Jan. 9 at 1230 hours (gage height, 5.42 ft), no peak above base of 2,000 ft3/s; no flow for many days.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 2.6 .96 0 .28 .07 3.6 1.4 1.90 0 0 0 0 0 0 2 .24 .03 3.7 1.5 1.60 .96 0 0 2.6 0 0 3 .15 . 02 4.6 1.6 1.50 .95 .08 . 01 4.6 1.8 2.4 .88 0 () 0 0 0 2.60 4.9 0 0 0 5 . 02 2.0 2.4 2.70 . 75 67 .00 22.00 4.0 2.0 .67 0 0 0 0 0 3.5 .00 39.00 2.0 2.1 2.20 .67 0 0 0 0 0 12.00 2.0 0 8 .00 1.9 1.90 .61 0 0 7.20 2.5 .00 54.0 20.0 1.60 . 43 10 .03 4.90 2.4 14.0 8.1 1.50 .25 0 0 0 0 0 0 0 11 .29 3.10 2.4 8.7 4.9 1.50 .16 0 0 0 1.40 1.90 2.2 0 0 6.1 4.1 1.60 13 1.00 1.30 2.0 4.5 3.9 1.80 . 09 0 0 0 0 0 Ü 1.10 1.8 4.0 0 0 14 1.40 3.6 1.80 . 08 0 15 3.6 3.1 0 .88 1.90 .06 16 1.5 3.3 2.6 0 0 0 0 0 .72 . 86 1.90 . 03 . 59 . 86 . 02 0 0 0 1.80 .44 18 .82 2.9 2.00 .00 .00 10 .29 .79 1.6 2.6 2.2 2.50 0 0 0 0 2.6 20 2.4 0 0 0 .28 -67 1.5 3.20 .00 0 21 1.90 .88 1.5 2.5 .00 0 0 0 0 1.6 1.5 1.3 2.4 2.60 22 3.00 1.20 2.4 .00 0 0 0 0 0 23 2.9 1.20 1.80 .00 0 0 0 3.9 2.00 .00 25 .49 3.00 1.1 4.2 2.1 1.60 .00 0 0 0 0 0 26 2.50 4.0 .00 2.0 1.60 27 .24 2.30 1.2 3.7 1.9 .00 0 0 0 0 .25 1.6 3.5 .00 28 8.90 1.8 1.20 0 0 0 0 0 29 0 6.30 0 1.9 .97 .00 0 4.40 3.0 1.00 .00 0 31 .10 1.3 2.7 ---0 0 0 .92 TOTAL 16.81 0 0 133.71 69.0 159.7 97.8 58.69 7.69 0 0 0 MEAN 2.23 5.15 3.37 .000 .000 .000 .000 .000 1.89 .26 .00 MAX 3.0 39 4.9 54 20 3.4 .96 .00 .00 .00 .00 MIN 01 .00 .00 .00 1.4 1.8 .92 .00 . 00 .00 116 33 194 .00 15 .00

CAL YR 1983 TOTAL 13648.30 MEAN 37.4 MIN 27070 MAX 2210 .00 AC-FT WTR YR 1984 TOTAL 543.40 MEAN 1.48 AC-FT MAX MIN 1080 54 .00

GUADALUPE RIVER BASIN

08173000 PLUM CREEK NEAR LULING, TX

LOCATION.--Lat 29°41'58", long 97°36'12", Caldwell County, Hydrologic Unit 12100203, near left bank on downstream side of pier of bridge on county road, 1.2 mi upstream from West Fork, 1.9 mi upstream from Southern Pacific Railroad Co. bridge, 2.2 mi upstream from McNeil Creek, 2.9 mi northeast of Luling, and at mile 7.5.

DRAINAGE AREA. -- 309 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- March 1930 to current year.

REVISED RECORDS. -- WSP 1923: 1933. WSP 2123: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 321.57 ft National Geodetic Vertical Datum of 1929. Prior to Aug. 18, 1976, at datum 5 ft higher.

REMARKS.--Water-discharge records good. Low flow is slightly regulated by oilfield operation above station. At end of year, flow from 119 mi² above this station was partly controlled by 27 floodwater-retarding structures with a combined detention capacity of 41,840 acre-ft. No other known diversion above station.

AVERAGE DISCHARGE. -- 54 years, 101 ft 3/s (73.170 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 78,500 ft³/s July 1, 1936 (gage height, 30.7 ft, from floodmarks), present datum, from rating curve extended above 37,500 ft³/s; no flow at times.

Maximum stage since at least 1868, that of July 1, 1936.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in December 1913 reached about same stage, from information by local residents.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 837 ft³/s Nov. 7 at 1100 hours (gage height, 12.49 ft), no peak above base of 2,300 ft³/s; minimum daily, 0.36 ft³/s Aug. 22.

		DISCHA	ARGE, IN C	CUBIC FEET		ND, WATER MEAN VALU		OBER 198	3 TO SEPTE	MBER 1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	7.7	7.6	15.0	9.9	11	10	12.0	3.8	1.30	3.50	3.30	.63
	6.9	7.7	13.0	11.0	11	12	12.0	4.2	.94	3.70	3.00	.99
2	6.4	6.5	17.0	11.0	12	12	13.0	5.1	1.00	3.00	3.00	2.10
2 3 4												
	5.8	8.9	25.0	11.0	12	12	12.0	4.3	2.90	1.70	2.80	3.00
5	5.8	36.0	18.0	12.0	12	12	9.4	4.0	11.00	1.50	2.80	3.60
6	5.3	171.0	14.0	12.0	12	11	8.2	3.2	34.00	.78	2.80	2.30
7	4.9	464.0	13.0	12.0	12	13	8.5	2.9	41.00	. 84	6.00	.80
8	4.8	125.0	12.0	13.0	12	12	8.3	1.9	13.00	.95	4.60	.54
9	6.1	59.0	11.0	92.0	65	12	8.5	1.7	8.20	.94	3.40	.46
10	27.0	40.0	11.0	130.0	106	12	9.5	2.2	6.20	1.00	3.00	.48
	17.0	21 0	10.0	45.0	25	10	0.1	0.0	F (0	0/	2 00	4.0
11	17.0	31.0	12.0	45.0	35	12	8.1	2.2	5.60	.94	2.90	- 48
12	14.0	25.0	17.0	27.0	24	14	7.3	5.1	7.30	1.40	2.70	.52
13	16.0	22.0	13.0	21.0	23	15	7.4	2.6	19.00	1.60	2.80	.48
14	12.0	20.0	10.0	15.0	20	15	6.6	2.5	12.00	. 48	9.80	.95
15	9.8	17.0	10.0	14.0	19	14	5.9	2.5	7.30	.82	2.90	.92
16	9.4	14.0	9.6	13.0	18	14	5.5	2.5	5.90	.86	1.60	.88
17	8.0	13.0	9.3	12.0	18	14	5.7	2.8	4.90	.84	1.40	.79
18	8.0	12.0	8.7	11.0	17	14	6.3	6.2	4.60	.75	1.40	.73
		11.0									1.20	
19	7.4		8.5	11.0	16	32	6.7	11.0	4.50	.68		. 55
20	12.0	10.0	8.2	10.0	16	24	6.0	21.0	4.20	.69	.58	.55
21	34.0	9.2	8.7	9.7	20	17	5.6	8.8	4.20	.85	.74	.37
22	12.0	9.1	9.5	10.0	18	17	4.9	6.0	3.60	.97	.36	.93
23	11.0	11.0	9.4	12.0	17	18	4.4	4.9	3.70	1.00	1.30	3.70
24	11.0	17.0	9.0	15.0	16	17	3.7	4.6	3.60	3.30	1.50	1.90
25	9.2	12.0	9.0	13.0	15	16	3.7	3.9	3.30	23.00	.73	1.40
26	7.0	40.0							0.00	10.00	7.0	1 10
	7.8	10.0	8.9	13.0	31	15	3.9	3.6	2.90	13.00	.70	1.10
27	8.1	11.0	9.1	13.0	21	16	4.0	2.8	2.80	7.60	.76	.92
28	7.5	11.0	9.5	13.0	12	15	4.7	2.7	2.60	5.30	.67	.88
29	7.5	12.0	9.5	13.0	11	14	4.9	1.4	2.90	5.00	. 66	.83
30	7.4	17.0	8.6	12.0		13	4.0	2.2	3.00	4.30	.49	1.00
31	7.5		9.4	11.0		12		1.4		3.70	. 38	
TOTAL	317.3	1220.0	355.9	627.6	632	456	210.7	134.0	227.44	94.99	70.27	34.78
MEAN	10.2	40.7	11.5					4.32			2.27	1.16
				20.2	21.8	14.7	7.02		7.58	3.06		
MAX	34	464	25	130	106	32	13	21	41	23	9.8	3.7
MIN	4.8	6.5	8.2	9.7	11	10	3.7	1.4	.94	. 48	. 36	.37
AC-FT	629	2420	706	1240	1250	904	418	266	451	188	139	69

CAL YR 1983 TOTAL 28192.39 MEAN 77.2 MAX 3610 MIN .61 AC-FT 55920 WTR YR 1984 TOTAL 4380.98 MEAN 12.0 MAX 464 MIN .36 AC-FT 8690

08173000 PLUM CREEK NEAR LULING, TX--Continued

WATER-OUALITY RECORDS

PERIOD OF RECORD. -- Chemical analyses: October 1967 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1967 to current year. WATER TEMPERATURES: October 1967 to current year.

INSTRUMENTATION .-- Beginning March 1981, specific conductance and water temperature are recorded continuously at this

REMARKS.--Interruptions in the record were due to malfunctions of the instrument. Where maximum or minimum specific conductance values are not shown, mean value is estimated. Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and regression relationships between each chemical constituent and specific conductance. Regression equations developed for this station may be obtained from the Geological Survey District office upon request.

EXTREMES FOR PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE: Maximum daily, 6,210 micromhos Feb. 27, 1977; minimum daily, 100 micromhos Feb. 10, 1983. WATER TEMPERATURES: Maximum daily, 35.0°C July 24, 1969; minimum daily, 0.5°C Dec. 24, 26, 27, 30, 31, 1983.

EXTREMES FOR CURRENT YEAR. --

SPECIFIC CONDUCTANCE: Maximum daily, 2,860 micromhos Jan. 7; minimum daily, 490 micromhos June 6. WATER TEMPERATURES: Maximum daily, 31.0°C July 14; minimum daily, 0.5°C Dec. 24, 26, 27, 30, 31.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	DIS-
OCT									
06 NOV	1232	5.2	1220	8.0	24.0	320	61	110	11
28 JAN	1510	12	1140	8.0	12.5	340	66	120	11
05	1600	13	1280	8.4	10.5	380	99	130	13
FEB 28	0932	12	1120	8.0	10.0	280	90	94	11
APR 13	1100	7.2	1570	8.1	19.0	410	88	140	14
MAY 24	1130	4.3	1220	7.9	25.0	290	21	100	10
JUL 11	1502	.90	1670	8.2	29.5			- 1	
AUG 23	1255	1.5	1490	8.2	28.0	330	0	110	13
DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)
OCT	100			0.50		200	5.0	10	71.0
06 NOV	130	3	6.5	260	81	200	.50	19	710
28 JAN	110	3	5.3	280	89	170	.50	20	690
05 FEB	120	3	3.9	280	100	190	.50	11	740
28 APR	110	3	5.8	190	83	200	.40	9.4	630
13	170	4	4.6	320	110	260	.60	20	910
MAY 24	140	4	5.1	270	79	190	.50	22	710
JUL 11				376					
AUG 23	190	5	6.6	343	89	240	.70	22	880

08173000 PLUM CREEK NEAR LULING, TX--Continued

MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1983 TO SEPTEMBER 1984

MONTH	YEAR	DISCHARGE (CFS-DAYS)	S PEC IF IC CONDUCT - ANCE (MICRO - MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
OCT.	1983	317.3	1140	661	566	170	148	97	83	320
NOV.	1983	1220.0	820	475	1570	110	375	74	245	240
DEC.	1983	355.9	1350	784	754	220	209	110	105	370
JAN.	1984	627.6	1200	694	1180	190	322	98	166	330
FEB.	1984	632	1070	622	1060	160	272	93	158	310
MAR.	1984	456	1440	838	1030	240	291	120	142	400
APR.	1984	210.7	1590	925	526	270	155	120	70	430
MAY	1984	134.0	1440	834	302	240	85	110	41	390
JUNE	1984	227.44	1190	692	425	180	113	100	61	340
JULY	1984	94.99	1440	838	215	240	61	110	29	400
AUG.	1984	70.27	1400	811	154	230	43	110	21	390
	1984	34.78	1520	883	83	250	24	120	11	410
TOTAL		4380.98	**	**	7900	**	2100	**	1130	**
WTD.A		12	1140	664	**	180	**	96	**	320

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBE	R		NOVEMBE	R		DECEMBE	R		JANUAR	Y
1 2 3 4	1200 1120 1150 1130	1090 1080 1120 1120	1130 1100 1140 1130	1290 1260 1230 1210	1230 1230 1210 1200	1270 1240 1220 1210	1160 1150 1900 2180	1140 1140 1140 1390	1150 1150 1210 1640	1240 1220 1220 1220 1220	1200 1210 1200 1200 1210	1220 1210 1210 1210 1210 1220
5	1180	1120	1150	1200	890	1150	1440	1340	1390			
6 7 8 9	1210 1180 1270 1240 1240	1170 1150 1180 1190 1060	1200 1160 1240 1210 1140	1880 720 890 900 980	560 570 720 860 860	740 650 789 875 902	2120 2110 1880 1650 1520	1300 1890 1660 1530 1400	1500 2010 1770 1600 1460	1290 2860 2730 2450 820	1210 1340 2470 710 610	1230 2500 2610 1660 708
11 12 13 14	1220 1190 1990 2010 1620	1010 1130 1060 1680 1330	1120 1150 1250 1900 1460	1 000 980 970 990 1 000	980 950 950 960 980	988 962 959 974 993	1390 1310 1220 1180 1310	1310 1220 1180 1160 1180	1340 1270 1200 1170 1260	930 1250 	750 860 	860 978 1130 1190 1210
16 17 18 19 20	1300 1110 1260 1250 1220	1120 1040 1090 1210 1110	1190 1060 1230 1240 1170	1020 1030 1040 1060 1070	1000 1010 1020 1040 1050	1010 1020 1030 1050 1060	1290 1300 1300 1320 1320	1240 1240 1250 1230 1260	1260 1270 1280 1270 1280			1220 1230 1250 1250 1270
21 22 23 24 25	1110 730 1100 1170 1140	720 590 760 1110 1100	904 649 972 1130 1120	1080 1090 1100 1110 1110	1060 1070 1090 1100 1100	1070 1080 1090 1100 1110	1260 1340 1290 1250 1260	1220 1230 1250 1230 1240	1240 1300 1260 1240 1250		===	1270 1270 1230 1190 1220
26 27 28 29 30 31	1100 1060 1120 1230 1230 1220	1060 1020 1030 1030 1190 1160	1070 1040 1080 1160 1210 1180	1120 1130 1130 1140 1150	1110 1120 1120 1130 1130	1120 1120 1130 1130 1140	1330 1290 1250 1240 1230 1230	1250 1250 1230 1220 1210 1200	1310 1260 1240 1230 1220 1210	==		1220 1220 1230 1220 1230 1230
MONTH	2010	590	1160	1880	560	1040	2180	1140	1330	2860	610	1290

08173000 PLUM CREEK NEAR LULING, TX--Continued

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984--Continued

DATE PERSONAT	5	SPECIFIC	CONDUCTA	NCE (MICR	OMHOS/CM AT	25 DEG.	C), WATER	YEAR OCTO	BER 1983	TO SEPTEMBER	1984	Continued	1
1	DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX		MEAN
1			FEBRUAR	Y		MARCH	la l		APRIL			MAY	
The color of the	2 3 4		===	1250 1230 1220	1530 1620 1940	1480 1520 1570	1510 1590 1670	2220 2140 1560	1470 1570 1500	1760 1790 1530	1620 1620 1600	1600 1590 1580	1610 1600 1590
11	6 7 8 9	==	===	1220 1230 895	1470 1450 1400	1400 1390 1370	1440 1410 1390	1480 1470 1460	1410 1410 1410	1450 1440 1440	1580 1610 1630	1570 1580 1610	1570 1600 1620
16	11 12 13 14			1030 1100 1110 1140	1520 1460 1460 1480	1460 1410 1400 1370	1490 1430 1420 1410	1430 1550 1550	1360 1410 1530	1400 1480 1540	1660 1660 1660	1640 1640 1650	1650 1650 1660
21	16 17 18 19	===		1160 1160 1170 1180	1400 1450 1460 2760	1380 1360 1360 1330	1390 1400 1420 1670	1600 1610 1610 1630	1570 1570 1590	1590 1590 1610	1640 1620 1560	1610 1560 1370	1620 1600 1450
26	21 22 23 24		==	1140 1160 1170 1180	1430 1380 1430 1380	1300 1350 1370 1340	1360 1370 1400 1360	1820 1710 2230	1690 1650 1720	1750 1670 2070	1250 1260 1230	1190 1190 1190	1230 1220 1200
MAX	26 27 28 29 30	1460	1390	1050 1130 1230 1440	1420 1430 1470 1450	1380 1390 1410 1420	1400 1420 1440 1430	1740 1760 1660 1610	1670 1680 1600 1580	1700 1730 1620 1590	1210 1460 1490 1500	1100 1220 1460 1470	1130 1370 1470 1490
JUNE JUNE JULY AUGUST SEPTEMBER				1160	2760	1180	1440	2230	1360	1620	1670	1100	1490
1 1770 1680 1730 1590 1570 1580 1320 1250 1280 1510 1470 1490 2 1740 1700 1720 1590 1570 1580 1310 1260 1290 1510 1490 1500 3 1700 1640 1670 1580 1540 1560 1340 1310 1320 1550 1500 1530 4 1640 1570 1610 1550 1530 1540 1390 1340 1370 1560 1510 1540 5 1600 1420 1520 1530 1520 1530 1340 1390 1340 1370 1560 1510 1460 1490 6 1410 490 1200 1540 1520 1530 1340 1390 1340 1370 1560 1510 1460 1490 7 1100 860 974 1590 1540 1570 1390 1340 1360 1310 1320 1510 1400 1400 8 940 850 886 1600 1580 1590 1380 1390 1410 1390 1410 1390 190 190 190 190 190 190 190 190 190 1	DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
1			JUNE			JULY			AUGUST	:		SEPTEMB	ER
7 1100 860 974 1590 1540 1570 1390 1340 1360 1420 1400 1410 8 940 850 886 1600 1580 1590 1400 1380 1390 1410 1390 1400 9 1040 920 990 1610 1580 1590 1400 1300 1330 1400 1390 1400 11 1210 1150 1190 1660 1630 1650 1500 1400 1300 1350 1410 1390 1400 11 1210 1150 1190 1660 1630 1650 1500 1400 1400 1400 1400 1420 1420 12 1200 1100 1170 1680 1640 1660 1510 1490 1500 1460 1420 1420 13 1150 1010 1110 1650 1630 1640 1660 1510 1490 1500 1400 1400 1470 14 1110 970 1050 1640 1620 1630 1550 1450 1550 1500 1400 1510 1530 1490 1510 15 1180 1110 1140 1660 1630 1650 1450 1370 1410 1540 1510 1530 16 1250 1180 1220 1670 1620 1650 1360 1300 1330 1550 1520 1540 17 1260 1240 1250 1690 1650 1670 1330 1300 1310 1560 1530 1550 18 1250 1180 1230 1690 1550 1660 1300 1300 1310 1560 1530 1550 18 1250 1180 1230 1690 1550 1660 1300 1300 1310 1560 1530 1550 18 1250 1180 1230 1690 1550 1660 1410 1360 1380 1580 1580 1570 19 1180 1120 1210 1710 1590 1660 1410 1360 1380 1580 1570 1590 21 1490 1340 1430 1710 1590 1690 1430 1400 1410 1600 1570 1590 21 1490 1340 1430 1710 1590 1690 1430 1400 1410 1600 1570 1590 22 1580 1490 1530 1690 1500 1640 1500 1470 1470 1480 1670 1590 1620 23 1630 1580 1610 1700 1610 1670 1470 1470 1480 1670 1590 1620 24 1620 1610 1620 1690 1500 1640 1570 1500 1440 1510 1590 1620 25 1610 1590 1600 1610 1700 1610 1670 1470 1470 1480 1670 1590 1620 26 1600 1580 1590 1600 1610 1230 1440 1570 1550 1580 1490 1530 26 1600 1580 1590 1200 1600 1610 1230 1440 1570 1550 1580 1490 1530 26 1600 1580 1590 1200 1600 1610 1230 1440 1570 1550 1500 1620 1420 1470 1430 1440 1470 1430 1470 1430 1470 1440 1470 1430 1470 1440 1440 1440 150 1500 1500 1500 1440 1470 1450 1460 1510 1470 1440 1450 1500 1500 1500 1500 1500 150	2 3 4	1740 1700 1640	1700 1640 1570	1720 1670 1610	1590 1580 1550	1570 1540 1530	1580 1560 1540	1310 1340 1390	1260 1310 1340	1290 1330 1370	1510 1550 1560	1490 1500 1510	1500 1530 1540
12	7 8 9	1100 940 1040	860 850 920	974 886 990	1590 1600 1610	1540 1580 1580	1570 1590 1590	1390 1400 1380	1340 1380 1300	1360 1390 1330	1420 1410 1400	1400 1390 1390	1410 1400 1390
16 1230 170 1240 1250 1690 1650 1670 1330 1300 1310 1560 1530 1550 18 1250 1180 1230 1690 1520 1660 1360 1320 1340 1570 1550 1560 19 1180 1120 1150 1720 1500 1660 1410 1360 1380 1580 1560 1570 20 1330 1120 1210 1710 1590 1690 1430 1400 1410 1600 1570 1590 21 1490 1340 1430 1710 1540 1680 1460 1430 1410 1600 1570 1590 21 1490 1340 1430 1710 1540 1680 1460 1430 1450 1600 1580 1590 22 1580 1490 1530 1660 1470 1450 1460 1610	12 13 14	1200 1150 1110	1100 1010 970	1170 1110 1050	1680 1650 1640	1640 1630 1620	1660 1640 1630	1510 1510 1500	1490 1500	1500 1500 1480	1460 1490 1530	1420 1460	1440 1470 1510
21 1490 1540 1640 1530 1690 1490 1670 1470 1450 1460 1610 1590 1600 23 1630 1580 1610 1700 1610 1670 1500 1470 1480 1670 1590 1620 24 1620 1610 1620 1690 1500 1640 1530 1480 1500 1680 1590 1640 25 1610 1590 1600 1610 1230 1460 1570 1530 1550 1580 1490 1530 1640 25 1610 1590 1600 1610 1230 1460 1570 1530 1550 1580 1490 1530 1590 1640 27 1590 1560 1580 1490 1230 1570 1510 1550 1490 1450 1470 1430 1450 1590 1560 1580 1490 1220 1260 1430 1390 1410 1470 1430 1450 1450 1580 1580 1580 1590 1560 1580 1320 1220 1260 1430 1390 1410 1470 1430 1450 1450 1580 1580 1580 1560 1570 1290 1170 1270 1410 1380 1400 1510 1470 1490 1500 1580 1580 1560 1570 1380 1190 1330 1440 1410 1420 1520 1500 1510 1510 1510 1510 1510 15	17 18 19	1260 1250 1180	1240 1180 1120	1250 1230 1150	1690 1690 1720	1650 1520 1500	1670 1660 1660	1330 1360 1410	1300 1320 1360	1310 1340 1380	1560 1570 1580	1530 1550 1560	1550 1560 1570
27	24	1580 1630 1620	1490 1580 1610	1530 1610 1620	1690 1700 1690	1490 1610 1500	1670 1670 1640	1470 1500 1530	1450 1470 1480	1460 1480 1500	1610 1670 1680	1590 1590 1590	1600 1620 1640
1500 1500 1500 1500	28 29 30	1590 1590 1580 1580	1560 1560 1560 1560	1580 1580 1570 1570	1430 1320 1290 1380	1270 1220 1170 1190	1360 1260 1270 1330	1500 1430 1410 1440	1420 1390 1380 1410	1470 1410 1400 1420	1450 1470 1510 1520	1420 1430 1470 1500	1440 1450 1490 1510
													1500

08173000 PLUM CREEK NEAR LULING, TX--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

		Т	EMPERATURE,	WATER (D	EG. C),	WAIER YEAR	OCTOBER	1905 10 51	STIERDER	1701		
DAY	MAX	MIN	MEAN	MAX	MIN NOVEMBE	MEAN	MAX	MIN DECEMBE	MEAN R	MAX	MIN JANUAR	MEAN
1 2 3 4 5	22.0 22.5 23.0 24.0 24.5	21.0 21.0 21.5 22.5 23.0	21.5 21.5 22.0 23.0	20.0 21.0 21.5 22.0 21.5	18.5 20.0 20.5 21.5 21.0	19.5 20.5 21.0 21.5 21.5	13.5 12.5 14.5 14.5 15.5	12.0 12.0 12.5 13.5 14.0	12.5 12.0 14.0 14.0 15.0	4.5 7.0 8.0 9.5	2.0 4.5 7.0 7.5 9.0	3.5 6.0 7.5 8.5 9.5
6 7 8 9	25.0 24.5 24.0 24.0 22.5	23.5 23.5 23.5 22.5 21.5	24.0 24.0 24.0 23.5 22.0	21.0 21.0 20.0 20.0 19.0	20.0 19.5 19.5 19.0 15.5	20.5 20.0 19.5 19.5 17.0	15.0 12.0 11.5 13.5 16.0	12.5 10.5 10.0 12.0 14.0	13.5 11.0 11.0 12.5 15.0	11.0 12.0 12.0 13.5 13.0	9.5 11.0 11.5 12.0 10.0	10.5 11.5 12.0 12.5 11.5
11 12 13 14 15	22.0 22.0 19.0 18.5 19.0	21.5 19.5 18.0 17.5 17.5	22.0 21.0 18.5 18.0 18.5	15.5 14.5 16.0 17.0	14.5 13.0 14.5 15.5	14.5 14.0 15.0 16.5 16.5	16.0 14.5 14.0 13.5 12.0	14.5 13.5 13.0 12.5 11.0	15.5 14.0 13.5 13.0 11.5	10.0 8.5 8.0 7.0 6.0	8.0 7.5 7.0 6.0 5.5	9.0 8.0 7.5 6.5 5.5
16 17 18 19 20	20.5 21.5 22.5 23.5 23.5	19.0 20.5 21.5 22.5 23.0	20.0 21.0 22.0 23.0 23.5	15.5 15.0 17.0 19.0 17.5	14.0 13.5 15.0 17.5 15.5	14.5 14.0 16.0 18.0 16.5	11.5 9.5 9.0 7.5 5.5	9.5 9.0 7.5 6.0 5.0	10.5 9.5 8.5 6.5 5.5	6.0 6.5 6.5 5.5 4.0	5.5 6.0 5.5 4.0 3.5	6.0 6.5 6.0 4.5 4.0
21 22 23 24 25	23.0 21.5 20.0 19.5 19.5	21.5 20.0 19.0 18.5 18.0	22.0 20.5 19.5 19.0 18.5	16.0 19.0 19.0 17.0 14.5	15.0 16.0 17.0 14.5 13.5	15.5 17.5 18.0 15.5 14.0	5.5 4.5 3.0 2.0	5.0 3.0 2.0 .5	5.5 4.0 2.5 1.0	4.0 5.5 7.0 7.5 8.5	3.0 4.0 5.5 7.0 7.5	3.5 4.5 6.5 7.5 8.0
26 27 28 29 30 31	18.5 17.5 16.5 17.0 18.5 19.0	17.5 16.0 15.5 16.0 17.0 18.0	18.0 16.5 16.0 16.5 17.5	16.0 16.0 14.0 12.0 13.5	14.0 14.5 12.5 11.0 11.5	15.0 15.0 13.0 11.5 12.5	.5 1.5 3.5 2.0 1.5 2.0	.5 .5 1.5 1.0 .5	.5 1.0 2.5 1.5 1.0	10.0	7.0 8.0 8.5 9.5 11.0 10.0	8.0 9.0 9.5 10.5 11.5 10.5
MONTH		15.5	20.5	22.0	11.0	17.0	16.0	.5	8.5	13.5	2.0	8.0
DAY	MAX	MIN FEBRUA	MEAN RY	MAX	MIN MARC	MEAN H	MAX	MIN APRII	MEAN	MAX	MIN	MEAN
1 2 3 4 5	11.0 11.5 11.5 11.0	9.5 11.0 10.0 9.5 9.5	10.0 11.0 11.0 10.5 10.0	11.0 15.0 17.0 18.5 18.0	9.5 11.0 15.0 17.0 12.5	10.5 13.0 16.0 18.0 15.5	18.0 19.5 19.5 18.5 17.0	17.5 18.0 16.5	17.5 18.5 18.5 17.5 16.5	20.5 21.0 23.0 23.5 24.5	19.5 20.0 20.5 21.0 22.5	20.0 20.5 21.5 22.0 23.5
6 7 8 9	10.0 9.5 10.0 13.0 15.0	8.5 8.0 9.0 10.0 12.5	8.5 9.5 11.5	13.5 13.0 14.5 16.0 16.5	11.5 11.0 12.0 13.5 15.0	12.0	16.5 17.0 19.0 19.5 20.5	16.0 17.0 17.5	16.0 16.5 18.0 18.5 19.0	25.5 26.5 24.5 22.0 21.0	23.5 24.5 22.0 20.0 18.5	24.5 25.5 23.5 21.0 20.0
11 12 13 14	16.5 17.0 16.0 15.5 17.0	15.0 16.0 14.0 13.0 15.0	16.0 16.5 15.0 14.5 16.0	16.5 18.5 19.5 20.0 20.5	16.0 16.0 17.5 19.5	16.0 17.5 19.0 19.5 20.0	20.0 20.5 20.5 20.5 19.0	18.5 18.0 19.0	19.0 19.5 19.5 19.5 18.0		19.0 21.0 22.0 23.0 22.5	20.5 22.0 23.0 23.5 23.5
16 17 18 19 20	16.5 16.0 17.5 16.5 13.0	14.5 14.0 16.0 13.0 11.0	15.5 15.0 16.5 14.5	21.5 22.0 23.0 21.5 18.0	20.5 21.0 21.5 18.0 16.0	21.0 21.5 22.0 19.5 17.0	17.5 17.0 19.0 21.0 23.0	14.5	16.5 16.0 17.5 20.0 22.0	23.5 22.5 22.0 22.0 23.5	22.5 22.0 21.5 21.5 21.5	23.0 22.5 22.0 21.5 22.5
21 22 23 24 25	12.0 12.0 13.5 14.5 14.5	10.5 10.5 11.0 13.0 12.5	11.5 11.5 12.5 13.5 13.5	17.5 18.5 20.5 20.0 19.0	16.0 17.0 18.5 18.5	17.0 18.0 19.5 19.0 18.0	23.5 22.0 20.0 20.5 20.5	18.0 18.0	22.5 21.0 19.0 19.5 19.5	24.0 25.0 25.5 26.0 26.5	22.5 23.0 24.5 24.5 25.0	23.0 24.0 25.0 25.0 25.5
26 27 28 29	17.0 15.0 11.5 11.0	14.5 12.0 10.5 9.5	15.5 13.0 11.0 10.0	20.0 22.0 20.5 17.5 18.0 17.5	18.5 19.5 17.5 16.0 16.0	19.0 20.5 19.0 16.5 16.5	22.5 23.0 23.0 23.5 22.0	21.5 21.5 22.0	21.5 22.0 22.0 22.5 21.0	26.5 27.0 26.5 25.5 23.0 22.5	25.0 25.5 25.5 23.0 21.5 20.0	26.0 26.0 24.0 22.0 21.0
31 MONTH	17.5	8.0	12.5	23.0	9.5		23.5		19.0		18.5	23.0

GUADALUPE RIVER BASIN 08173000 PLUM CREEK NEAR LULING, TX--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 -- Continued MEAN MIN MAX MAX MIN MEAN MAX MIN MEAN MEAN DAY MAX MIN SEPTEMBER AUGUST JUNE JULY 25.0 25.5 25.5 28.0 25.5 26.5 24.0 27.0 26.5 21.5 28.5 26.0 20.5 23.0 26.0 25.5 27.0 25.5 28.0 28.5 27.0 27.5 27.5 24.5 26.5 26.5 24.0 2 26.5 25.0 21.5 22.5 23.0 22.5 26.5 25.0 24.5 26.5 25.0 25.5 29.0 26.5 23.5 23.0 25.0 24.0 24.0 29.0 26.5 27.0 25.0 26.0 5 24.5 23.5 25.0 25.5 22.5 30.5 29.5 29.5 26.5 26.5 26.5 28.0 26.5 28.0 678 24.5 23.5 24.0 22.5 23.5 28.0 27.5 27.5 28.0 26.5 26.0 25.0 23.5 24.5 26.0 24.0 26.0 25.5 27.5 28.5 24.5 28.0 26.0 27.0 29.5 26.5 27.5 25.0 25.5 26.5 25.0 28.0 28.0 26.0 27.0 26.0 10 26.5 25.0 25.0 28.0 26.0 27.0 28.0 27.5 27.0 28.5 26.0 29.5 11 26.5 25.0 26.0 25.0 26.5 28.0 27.5 27.0 27.0 26.5 25.5 25.5 28.0 26.5 27.0 26.5 26.0 26.5 28.5 28.5 12 25.5 25.5 28.5 25.0 26.5 26.0 13 26.0 27.5 25.0 26.0 27.5 14 31.0 26.0 25.0 26.0 25.0 25.5 26.0 27.5 26.0 15 27.0 25.0 26.0 29.0 23.5 24.5 27.5 27.0 27.5 26.5 25.0 26.0 16 17 27.5 27.0 25.5 26.0 29.5 26.0 23.5 22.5 28.0 26.5 26.5 27.0 25.5 25.0 25.0 29.0 25.5 27.0 25.5 26.0 22.0 23.0 25.5 25.5 25.5 18 27.0 26.0 24.5 22.0 23.0 25.5 29.0 25.5 29.0 26.0 19 26.5 24.0 22.0 23.0 27.5 28.5 25.5 26.5 30.0 20 22.5 21.5 22.0 27.5 27.5 27.5 26.0 26.0 26.0 21 22 27.5 28.0 25.5 26.5 28.5 26.0 27.0 29.0 25.0 25.0 22.5 23.5 26.0 26.0 25.5 25.5 27.0 27.0 26.5 27.0 27.0 30.5 28.5 28.0 23 28.0 25.0 24.5 26.5 29.0 26.5 27.5 24 25 29.0 26.5 27.5 27.0 26.0 25.0 25.5 26.5 28.0 26.0 25.0 25.5 28.5 25.0 22.5 26.5 27.0 27.5 27.0 27.0 28.5 25.5 28.0 27.5 27.0 25.0 25.5 26 29.0 24.0 22.0 22.5 25.5 25.5 25.5 24.5 29.0 26.0 27.0 26.0 28.5 27 22.5 20.5 26.5 26.5 28 27.0 26.5 26.0 19.5 29.5 26.5 26.5 26.0 27.5 20.5 18.5 26.0 25.5 27.0 29 27.5 20.0 17.5 18.5 26.5 29.5 27.5 27.5 30 29.0 27.0 27.0 26.5 24.0 25.0 29.0 31 28.5 17.5 24.0 24.0 26.5 27.0 30.5

MONTH

29.0

20.5

25.5

31.0

24.0

08175000 SANDIES CREEK NEAR WESTHOFF, TX

LOCATION.--Lat 29°12'54", long 97°26'57", De Witt County, Hydrologic Unit 12100202, on left bank 100 tt downstream from bridge on county highway, 1.9 mi upstream from Birds Creek, 2.0 mi northeast of Westhoff, and 20.4 mi upstream from mouth.

DRAINAGE AREA . -- 549 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- March 1930 to November 1934, August 1959 to current year.

REVISED RECORDS . -- WSP 2123: Drainage area.

CAL YR 1983 TOTAL 18121.80

WTR YR 1984 TOTAL

MEAN 49.6

8405.09 MEAN 23.0

MAX 1290

942

MAX

GAGE.--Water-stage recorder. Datum of gage is 178.27 ft National Geodetic Vertical Datum of 1929. Prior to Nov. 9, 1934, water-stage recorder at site 150 ft upstream at datum 0.86 ft higher. Aug. 10, 1959, to Feb. 2, 1960, non-recording gage at present site and datum.

REMARKS .-- Water-discharge records good. No known diversion above station.

AVERAGE DISCHARGE. -- 29 years (water years 1931-34, 1960-84), 128 ft 3/s (3.17 in/yr), 92,740 acre-tt/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 79,700 ft 3/s Sept. 22, 1967 (gage height, 32.34 ft), from rating curve extended above 21,000 ft 3/s on basis of slope-area measurement of 92,700 ft 3/s; no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum discharge since at least 1864, 92,700 ft³/s July 2, 1936 (gage height, 33.1 ft, from floodwarks), on basis of computation of peak flow, at present site and datum.

Flood in October 1913 reached a stage of 26.0 ft, present site and datum, from information by local residents.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 993 ft 3/s Nov. 8 at 1100 hours (gage height, 13.67 ft), no peak above base of 2,000 ft 3/s; minimum daily, 0.80 ft 3/s Sept. 2.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 MEAN VALUES PAY CCT NOV DEC JAN FEB MAR APR MAY THN JIII. AliG SEP 1.1 .92 12 6.4 13 4.6 1.1 10 6.3 10 10 10 4.8 2.7 1.6 .80 2.6 1.9 3 8.9 6.1 11 12 10 10 5.0 1.5 4 10 4.8 8.1 11 10 6.1 98 2.7 5 7.3 13 14 11 10 10 9.9 7.5 1.4 1.1 2.1 6 7.1 418 4.8 6.9 683 13 11 10 9.9 20 4.9 5.8 1.3 1.1 1.3 6.6 942 12 8.6 9.7 23 4.7 5.8 1.1 1.1 58 665 133 9.5 18 4.4 1.3 1.0 11 9.4 4.5 10 249 8.9 4.8 16 193 18 1.2 18 4.3 11 12 74 11 122 11 9.4 5.4 1.2 1.3 40 1.2 12 12 10 71 11 47 17 5.2 4.1 1.1 1.3 3.8 26 41 401 13 12 20 10 24 11 647 9.7 4.4 3.5 1.0 1.2 1.1 3.2 .90 1.1 15 18 17 10 18 11 501 8.3 4.2 1.0 12 10 11 104 4.1 3.0 1.0 2.3 17 9.4 13 9.7 13 11 46 7.1 4.0 2.9 .83 2.3 5.5 9.6 6.0 8.5 6.9 18 11 30 4.0 .84 6.5 27 1.0 3.9 20 12 9.6 12 12 27 6.0 5.3 3.3 1.4 2.9 9.6 21 57 12 25 3.1 28 9.9 5.8 6.8 1.3 2.7 3.2 23 27 11 14 11 25 5.6 5.7 1.1 1.1 2.6 .98 2.5 24 29 11 9.5 25 12 20 5.6 4.8 9.5 1.3 25 15 53 12 5.5 11 28 4.2 26 9.5 3.8 2.6 1.2 2.4 9.7 11 12 23 1.1 42 5.1 9.6 2.5 1.0 2.3 27 8.0 11 38 19 4.9 3.6 1.1 11 9.6 1.1 6.8 18 4.7 2.0 23 29 6.7 10 9.7 10 15 4.7 3.2 1.8 2.2 1.7 2.1 30 6.7 11 10 17 13 4.6 3.0 6.4 3.0 TOTAL 451.6 3431.9 102.6 35.95 38.72 68.42 324.9 1036 318.7 2163.9 291.3 141.1 9.71 4.55 1.25 MEAN 14.6 114 10.5 33.4 11.0 69.8 3.42 1.16 2.28 58 942 14 193 13 647 23 6.8 7.5 1.6 2.3 6.0 MAX 9.4 MIN 6.4 6.1 11 8.2 9.4 4.6 3.0 1.7 .83 . 94 .80 .002 .21 . 02 .13 .002 .004 **CFSM** .03 . 02 .008 .006 . 06 . 02 . 00 . 03 . 02 . 07 . 02 . 02 . 01 AC-FT 2050 204 136

MIN 3.5

MIN .80

CFSM .09 IN CFSM .04 IN

IN 1.23

.57 AC-FT 16670

08175000 SANDIES CREEK NEAR WESTHOFF, TX--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical analyses: April 1962 to current year.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
OCT									
14	1335	1.1	793		19.0	80	0	24	4.9
DEC 01	1455	10	992		14.0	170	0	50	11
JAN	40.50								15
19 MAR	1250	10	955	7.9	5.0	160	0	45	11
01	1500	9.8	1530		12.0	220	0	64	14
APR 12	1630	17	1460		22.0	130	0	39	8.9
MAY				7.7					
24 JUL	1535	4.7	970		23.5	120	0	35	7.8
12	1100	1.1	1940	8.3	27.0	220	0	33	33
AUG	10/5		0.620		07.0	90	0	27	F /
23	1245	1.1	2630		27.0	90	U	21	5.4
DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)
OCT									
14 DEC	140	7	11	224	34	100	.40	17	470
01	130	5	11	180	79	160	.30	20	570
JAN 19	140	5	12	180	97	140	.40	15	570
MAR	140		12	100	91	140	•40	13	370
01 APR	240	7	11	295	130	250	.60	12	900
12	260	10	12	367	50	230	.70	14	830
MAY 24	280	12	11	415	34	200	.90	16	830
JUL	200				34	200	.90		
12	390	12	11	641	28	250	1.3	20	1200
AUG 23	660	32	12	725	30	550	1.6	20	1700

08175800 GUADALUPE RIVER AT CUERO, TX

LOCATION.--Lat 29°03'57", long 97°19'16", De Witt County, Hydrologic Unit 12100204, on left bank at downstream side of bridge on U.S. Highways 77A, 87, and 183, 2.1 mi upstream from Gohlke Creek, 2.4 mi southwest of Cuero, 4.2 mi downstream from Sandies Creek, and at mile 100.6.

DRAINAGE AREA. -- 4.934 mi2, of which 1,432 mi2 is above Canyon Dam.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--December 1902 to December 1906, August 1916 to December 1935, January 1964 to current year. Published as "near Cuero" 1902-6, and as "below Cuero" 1916-35. Gage-height records collected at site 7.1 mi upstream from Sandies Creek from 1941 to 1966 (published in reports of the National Weather Service) and at present site since June 12, 1968.

REVISED RECORDS .-- WRD TX-68-1, TX-69-1: Drainage areas at all sites.

GAGE.--Water-stage recorder. Datum of gage is 128.64 ft National Geodetic Vertical Datum of 1929. Dec. 26, 1902, to June 1903, nonrecording gage at site 7.1 mi upstream at different datum, gage heights moved to site 3.3 mi upstream from present site before computation; July 1903 to December 1906 nonrecording gage 3.3 mi upstream at different datum; Aug. 19, 1916, to Dec. 16, 1935, water-stage recorder at site 5.0 mi downstream at datum 3.19 ft lower.

REMARKS.--Water-discharge records good to July and fair thereafter. Since July 21, 1962, flow is regulated by Canyon Lake (station 08167700) 202.4 mi upstream. Flow below New Braunfels is partly regulated by a series of small power dams, combined capacity of six largest dams 33,550 acre-ft. Flow is affected at times by discharge from the flood-detention pools of 53 floodwater-retarding structures with a combined detention capacity of 87,200 acre-ft. These structures control runoff from 302 mi² in the Comal, San Marcos, and Plum Creek drainage basins. Many small diversions above station. Gage-height telemeter and data collection platform at station.

AVERAGE DISCHARGE.--20 years (water years 1904-6, 1917-18, 1921-35) prior to regulation by Canyon Lake, 1,303 ft 3 /s (944,000 acre-ft/yr); 20 years (water years 1965-84) regulated, 1,988 ft 3 /s (1,440,000 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 132,000 ft³/s Sept. 1, 1981 (gage height, 41.83 ft); minimum daily, 28 ft³/s July 22, 1984.

Floods at this station since at least 1900 occurred Mar. 1, 1903, 43.0 ft, at different site and datum; Oct. 20, 1919, 32.2 ft, site and datum then in use; May 30, 1929, 35.2 ft, site and datum then in use; all from information by local residents.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1900, probably occurred July 2, 1936, 44.33 ft, present site and datum, from information by State Department of Highways and Public Transportation. Other floods at this station occurred Oct. 4, 1913, 37.57 ft, at different site and datum; Dec. 6, 1913, 34.57 ft, at different site and datum; June 21, 1961, 37.0 ft, present site and datum; all from information by local residents.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2,520 ft 3/s Nov. 9 at 0700 hours (gage height, 8.53 ft); minimum daily, 28 ft 3/s July 22.

		DISCHAR	GE, IN	CUBIC FEET		ND, WATER MEAN VALUE		OBER 1983	TO SEPTE	MBER 1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	580	589	587	568	550	588	481	360	258	177	75	73
2	568	563	598	518	542	579	489	359	255	173	75	195
3	561	586	559	556	557	559	473	356	252	159	70	258
4	549	580	598	565	551	581	447	352	253	157	90	192
2 3 4 5	540	599	613	544	568	567	505	352	250	145	88	154
6	533	904	608	595	528	545	475	351	249	132	85	140
7	517	1850	601	499	546	558	452	347	252	128	88	94
8	517	2400	591	547	538	524	466	334	250	114	80	91
9	519	2350	591	1240	526	605	460	324	259	1 01	78	207
10	522	1400	587	1620	545	531	469	303	274	99	71	163
11	530	941	584	1350	767	545	483	279	273	90	65	151
12	575	835	583	948	907	681	473	289	266	89	89	135
13	808	788	557	654	695	1240	432	300	259	76	118	132
14	731	777	583	533	697	1340	437	293	257	71	100	122
15	659	681	570	502	521	1470	436	288	257	72	81	116
16	607	750	584	505	455	825	426	279	255	71	153	127
17	601	728	565	499	468	585	413	284	250	65	160	135
18	596	707	545	505	579	552	410	282	249	64	119	135
19	639	722	555	502	554	563	403	294	246	45	178	132
20	595	669	552	505	591	580	404	304	240	44	183	127
21	589	687	567	511	600	624	401	314	238	42	178	100
22	676	756	579	516	620	668	404	322	239	28	213	100
23	665	736	549	533	554	619	415	319	236	30	81	81
24	635	658	563	581	577	599	403	310	228	60	122	59
25	621	692	563	634	561	555	388	300	224	65	175	77
26	608	637	539	599	585	548	383	292	218	160	103	88
27	649	602	565	581	571	502	380	286	208	130	142	100
28	599	593	545	563	586	509	379	282	195	120	127	73
29	549	591	548	554	580	488	368	278	184	100	116	81
30	607	584	549	550		500	361	276	172	85	91	86
31	594		538	558		489		267		76	71	
TOTAL	18539	25955	17716	19935	16919	20119	12916	9576	7246	2968	3465	3724
MEAN	598	865	571	643	583	649	431	309	242	95.7	112	124
MAX	808	2400	613	1620	907	1470	505	360	274	177	213	258
MIN	517	563	538	499	455	488	361	267	172	28	65	59
AC-FT	36770	51480	35140	39540	33560	39910	25620	18990	14370	5890	6870	7390
CAT VR	1983 TOT	AL 380532	MEAN	1043 MA	X 7730	MIN 508	AC-FT	754800				

WTR YR 1984 TOTAL 159078 MEAN 435 MAX 2400 MIN 28 AC-FT 315500

08175800 GUADALUPE RIVER AT CUERO, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical analyses: March 1968 to current year.

		STREAM-	SPE- CIFIC			HARD-	HARD- NESS.	CALCIUM	MAGNE- SIUM.
DATE	TIME	FLOW, INSTAN- TANEOUS (CFS)	CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	NESS (MG/L AS CACO3)	NONCAR- BONATE (MG/L CACO3)	DIS- SOLVED (MG/L AS CA)	DIS- SOLVED (MG/L AS MG)
OCT									
14 DEC	1025	754	545	75	22.0	220	22	63	16
01	1035	581	585		15.0	250	34	72	17
JAN 18	1705	485	676	8.2	8.0	260	31	77	16
MAR 01	1215	575	610		13.5	250	39	72	18
APR									
11 MAY	1220	490	637		23.0	250	28	72	18
24 JUL	1130	321	645		26.5	230	17	63	18
11	1545	90	660	8.0	28.5	240	17	63	19
AUG 23	1100	82	695	1.2		230	7	62	19
DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)
ост				0.1005)	5017	,		/	
14 DEC	27	.8	3.3	202	33	37	.30	12	310
01	28	.8	2.5	216	29	37	.20	12	330
JAN 18	43	1	3.8	228	43	59	.30	8.6	390
MAR 01	32	.9	2.5	215	35	46	.30	4.7	340
APR 11	44	1	3.1	226	37	59	.30	10	380
MAY 24	39	1	2.9	215	34	54	.30	14	350
JUL 11	45	1	3.0	219	34	58	.30	18	370
AUG									
23	56	2	3.0	226	39	68	.30	17	400

08176500 GUADALUPE RIVER AT VICTORIA, TX (National stream-quality accounting network)

LOCATION.--Lat 28°47'34", long 97°00'46", Victoria County, Hydrologic Unit 12100204, on left bank just upstream from pier of upstream bridge of two bridges on U.S. Highway 59 in Victoria, 1,300 ft upstream from Southern Pacific Railroad Co. bridge, 15 mi upstream from Coleto Creek, and at mile 50.7.

DRAINAGE AREA. -- 5,198 mi2, of which 1,432 mi2 is above Canyon Dam.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--November 1934 to current year. Gage-height records collected in this vicinity since 1904 are contained in reports of the National Weather Service.

REVISED RECORDS. -- WSP 2123: Drainage area.

GAGE .-- Water-stage recorder. Datum of gage is 29.15 ft, National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good. Since July 21, 1962, flow is regulated by Canyon Lake (station 08167700) 252.3 mi upstream. Many diversions above station. Records furnished by the city of Victoria show a discharge of about 7,540 acre-ft of sewage effluent below station. For statement regarding regulation by Soil Conservation Service floodwater-retarding structures, see station 08175800.

AVERAGE DISCHARGE.--27 years (water years 1936-62) prior to regulation by Canyon Lake, 1,626 ft 3 /s (1,178,000 acreft/yr); 22 years (water years 1963-84) regulated, 1,958 ft 3 /s (1,419,000 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 179,000 ft³/s July 3, 1936, (gage height, 31.22 ft); minimum daily, 14 ft³/s Aug. 20, 1956.

Maximum stage since at least 1833, that of July 3, 1936.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood of June 1, 1929, reached a stage of 30.2 ft, present site and datum.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 3,280 ft³/s Oct. 21 at 0700 hours (gage height, 11.70 ft); minimum daily, 63 ft³/s Sept. 26.

		DISCHAI	RGE, IN O	CUBIC FEE	T PER SECO	ND, WATER MEAN VALUE		OBER 1983	TO SEPTE	MBER 1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	565	504	543	482	666	625	499	399	326	179	113	102
	552	497	561	517	634	635	493	399	311	174	97	106
3	547	485	574	455	637	611	502	401	308	166	91	130
2 3 4	540	499	514	519	634	599	467	398	311	. 148	114	258
5	529	569	565	520	637	630	439	391	311	140	110	243
6	522	841	571	502	639	607	527	389	330	130	93	152
7	512	1650	577	558	603	586	481	403	330	125	86	134
8	482	2530	561	444	622	595	452	451	311	113	104	109
9	507	2650	552	956	619	569	465	386	303	113	99	79
10	509	1990	555	1810	590	643	460	370	297	110	85	84
11	497	1180	542	1800	611	568	502	350	330	100	87	171
12	535	916	536	1470	1010	2090	517	323	352	93	104	140
13	668	850	531	1040	1050	1560	508	320	322	91	104	122
14	811	818	500	781	786	1430	453	341	303	90	103	108
15	678	760	532	647	812	1530	461	333	300	76	99	132
16	633	683	542	598	575	1490	462	327	297	71	94	149
17	1450	748	545	603	482	802	453	337	294	76	72	142
18	882	719	514	595	480	638	437	412	294	75	109	142
19	669	727	483	594	629	646	436	396	292	87	120	155
20	700	711	498	588	630	641	430	352	292	115	97	156
21	2650	647	497	584	701	638	430	355	286	107	131	148
22	1160	708	514	609	655	731	427	365	278	96	146	98
23	775	787	527	647	685	704	431	383	281	87	170	87
24	646	686	489	682	594	574	448	375	278	75	146	80
25	588	682	505	897	625	553	437	369	275	76	74	71
26	551	651	515	857	610	572	422	358	243	75	83	63
27	557	591	484	768	634	552	417	352	232	74	135	87
28	568	556	512	717	613	515	412	347	224	178	88	100
29	490	545	487	669	650	531	412	336	213	154	108	110
30	475	574	497	649		504	405	339	195	141	98	95
31	527		495	636		514		330		121	87	
TOTAL	21775	26754	16318	23194	19113	23883	13685	11387	8719	3456	3247	3753
MEAN	702	892	526	748	659	770	456	367	291	111	105	125
MAX	2650	2650	577	1810	1050	2090	527	451	352	179	170	258
MIN	475	485	483	444	480	504	405	320	195	71	72	63
AC-FT	43190	53070	32370	46010	37910	47370	27140	22590	17290	6850	6440	7440
CAL YR WTR YR					MAX 7650 MAX 2650	MIN 455 MIN 63	AC-FT AC-FT	802300 347700				

08176500 GUADALUPE RIVER AT VICTORIA, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: October 1945 to September 1946, October 1948 to current year. Chemical and biochemical analyses: October 1972 to current year. Pesticide analyses: October 1973 to September 1981. Sediment records: October 1972 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1945 to September 1981. WATER TEMPERATURES: November 1950 to September 1981.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 1,950 micromhos on several days during January 1946; minimum daily, 135 micromhos Sept. 3, 1981.
WATER TEMPERATURES: Maximum daily, 32.0°C Aug. 4, 27, 1952; minimum daily, 2.0°C Jan. 11, 12, 1962, Jan. 24, 1963.

DATE	IN TIME TA	TREAM- CONTROL OF CONT	UCT- (ST	RD A	MPER- TURE	BID- I	GGEN, (PDIS-COLVED SA	LVED BI ER- CH ENT IC TUR- 5	AND, FOR 0- FEC EM- 0.7 AL, UM-	RM, TOCCAL, FE	REP- DCCI CAL, HARD- AGAR NESS LS. (MG/L ER AS ML) CACO3)
OCT 12	1820	52 9	550	8.2	24.0	11	7.9	94	.9	100	110 210
JAN			506							0.0	24 222
17 APR	1800	572	586	8.0	8.0	15	10.8	91	1.2	38	21 200
11	0915	502	628	7.6	22.0	23	7.2	83	1.0	K9	K22 250
JUL 11	1145	98	642	7.9	29.5	9.0	7.2	95	1.1	44	160 240
DATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	SOLVED (MG/L	DIS- SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)
OCT 12	15	61	15	29	.9	2.5	200	25	38	.30	13
JAN	10		10	0.0			404			0.0	
17 APR	10	60	13	38	1	5.2	194	33	45	.20	11
11 JUL	22	73	17	38	1	2.8	231	34	53	.30	12
11	8	67	17	45	1	2.8	230	31	59	.30	21
DATE	SOLIDS RESIDU AT 180 DEG. DIS- SOLVE (MG/L	C TUENTS DIS- D SOLVE	GEN, - NO2+NO3, DIS- SOLVED D (MG/L	GEN, AMMONIA DIS-	GEN, AM- MONIA - ORGANIO	PHOS-	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	PHOS- PHORUS, ORTHO, DIS- SOLVED (MG/L AS P)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. FINER THAN .062 MM
OCT											
12 JAN	. 30	9 30	0 •54	.040	.90	.070	.050	.050	21	30	89
17 APR	. 32	6 32	0 .94	.140	.60	.190	.160	.150	26	40	88
11 JUL	. 38	5 37	0 .86	.030	.40	.110	.060	.050	73	99	67
11	. 38	3 38	0 <.10	.110	.40	.080	.070	.060	62	31	47

GUADALUPE RIVER BASIN

08176500 GUADALUPE RIVER AT VICTORIA, TX--Continued

DATE	TIME	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COBALT, DIS- SOLVED (UG/L AS CO)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB)
OCT 12	1820	2	81	<.5	<1	<1	<3	2	6	4
JAN 17	1800	3	80	<.5	<1	<1	<3	4	40	5
APR 11	0915	2	100	. 7	<1	1	<3	1	5	<1
JUL 11	1145	4	130	<1	<1	<1	<3	2	3	<1
DATE	LITHIUM DIS- SOLVED (UG/L AS LI)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO)	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	VANA- DIUM, DIS- SOLVED (UG/L AS V)	ZINC, DIS- SOLVED (UG/L AS ZN)
OCT 12 JAN	16	4	<.1	<10	15	<1	<1	460	<6	7
17	21	. 6	.1	<10	8	<1	<1	420	<6	7
APR 11	21	4	<.1	<10	<1	<1	<1	560	<6	15
JUL 11	31	19	<.1	<10	6	1	<1	530	6	21

263 08176900 COLETO CREEK AT ARNOLD ROAD CROSSING NEAR SCHROEDER, TX

LOCATION.--Lat 28°51'41", long 97°13'34", Goliad County, Hydrologic Unit 12100204, on right bank at downstream side of Arnold Road Crossing, 0.7 mi downstream from confluence of Twelvemile and Fifteenmile Creeks, 3.2 mi north of Schroeder, 12.8 mi upstream from Coleto Creek Reservoir, and 26.0 mi upstream from mouth.

DRAINAGE AREA. -- 357 mi2.

PERIOD OF RECORD.--October 1978 to current year. Records equivalent for January 1930 to December 1933 and October 1952 to September 1979, published as "near Schroeder".

GAGE .-- Water-stage recorder. Datum of gage is 100.43 ft National Geodetic Vertical Datum of 1929.

REMARKS. -- Records good. No known diversion above station. Gage-height telemeter at station. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE. -- 6 years. 92.4 ft 3/s (66.940 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 32,500 ft3/s Aug. 31, 1981 (gage height, 17.78 ft); minimum daily, 2.6 ft³/s July 18, 19, 1984.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum discharges since at least 1872 at site 3.5 mi downstream, 122,000 ft³/s Sept. 21, 1967 (slope-area measurement of peak flow), 63,700 ft³/s Oct. 16, 1946, and 46,700 ft³/s in October 1925, from information by local resident.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 5,690 ft³/s Mar. 12 at 0900 hours (gage height, 11.44 ft), no other peak above base of 4,000 ft³/s; minimum daily, 2.6 ft³/s July 18, 19.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

MEAN VALUES SEP OCT NOV DEC JUL AUG DAY FEB JUN JAN. MAR APR MAY 7.1 3.5 16 25 18 16 23 19 15.0 9.4 4.5 3.8 3.3 24 22 9.3 2 15 18 16 19 22 15.0 3 24 22 7.4 3.3 4.2 15 18 16 19 22 15.0 3.6 5.5 26 15.0 3.7 5 14 45 17 16 20 19 22 14.0 11.0 6.1 16 19 6.0 3.0 4.0 6 14 367 16 20 22 14.0 16.0 14 249 16 17 20 19 23 15.0 11.0 5.7 3.1 3.8 3.0 8 14 98 17 18 20 18 23 28.0 10.0 6.0 3.6 23.0 23 9.9 4.9 53 16 106 18 10 19 39 17 19 9.8 4.5 3.2 11 17 33 16 59 19 21 35.0 3.9 9.0 3.1 18 16.0 30 22.0 8.0 3.1 12 24 16 40 32 3220 20 15.0 3.6 13 32 28 15 32 27 620 20 14.0 20.0 3.4 17.0 3.0 14 25 26 16 28 23 124 19 17 13.0 15.0 3.3 11.0 3.0 15 70 13.0 24 26 3.6 16 4.2 23 3.0 36.0 16 19 19 24 20 52 43 16 13.0 11.0 22 20 23 19 11.0 2.8 15.0 3.5 49 15.0 16 22 18 38 21.0 10.0 8.9 3.3 19 26 21 17 21 37 17 20.0 10.0 2.6 7.4 3.3 3.5 20 22 20 17 20 23 36 16 17.0 11.0 3.9 6.0 5.4 21 1570 20 16 19 23 17 15.0 11.0 3.4 4.1 4.2 9.9 22 381 20 17 20 22 31 16 14.0 4.0 3.2 4.3 3.9 22 23 107 17 24 20 29 16 13.0 24 27 27 13.0 8.7 3.0 16 19 67 16 25 49 19 15 88 19 26 16 13.0 8.1 2.7 4.2 3.5 26 19 59 19 17 12.0 7.8 2.7 3.3 18 25 3.3 3.9 3.2 11.0 23 28 31 18 18 30 19 16 11.0 7.0 27.0 3.8 3.2 3.5 3.2 29 6.9 11.0 29 18 17 26 18 16 10.0 28 19 15 9.6 6.5 3.4 31 26 16 23 21 5.5 3.3 TOTAL 2782 1392 525 1063 606 4731 561 460.2 344.9 167.3 206.6 108.0 MEAN 89.7 46.4 16.9 34.3 20.9 153 18.7 14.8 11.5 5.40 6.66 3.60 MAX 23 15 5.5 1570 367 20 153 3220 28 35 27 36 9.6 2.6 3.0 14 6.5 MIN 18 15 16 18 18 AC-FT 5520 2760 1040 2110 1200 9380 1110 913 332 410 684

CAL YR 1983 TOTAL 17555.5 WTR YR 1984 TOTAL 12947.0 MEAN 48.1 MIN 6.7 AC-FT 2050 34820 MAX MEAN 35.4 MAX 3220 25680 MIN 2.6 AC-FT

08176990 COLETO CREEK RESERVOIR INFLOW (GUADALUPE DIVERSION) NEAR SCHROEDER, TX

LOCATION.--Lat 28°50'21", long 97°11'20", Victoria County, Hydrologic Unit 12100204, on right bank of small tributary 1,200 ft upstream from Coleto Creek and 2.6 mi northeast of Schroeder.

PERIOD OF RECORD .-- March 1980 to current year.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 100.52 ft National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. Discharge represents flow diverted by pumping from the Guadalupe River to be used as makeup water for the Central Power and Light Co. generating plant on Coleto Creek Reservoir.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 36 ft³/s Apr. 2, 11, Sept. 11, 1980; no flow most of time.

EXTREMES FOR CURRENT YEAR.--Maximum daily discharge, 34 ft³/s June 26; no flow most of time.

		DISCHA	RGE, IN C	UBIC FEET	PER SECO	ND, WATER MEAN VALUE	YEAR OCT	OBER 198	3 TO SEPTE	MBER 1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	C	0	.00	0	.00	0	0	.00	.00	31	31	.00
2	0	0	.00	0	.00	0	0	.00	.00	30	31	.00
3	0	0	.00	0	.00	0	0	.00	.00	30	31	22.00
4	0	0	.00	0	.00	0	0	.00	.00	30	30	32.00
5	0	0	.00	0	.00	0	0	.00	.00	30	30	32.00
6	0	0	.00	0	.00	0	0	.00	.00	29	30	33.00
7	0	0	.00	0	.00	0	0	9.00	.00	29	30	33.00
8	0	0	.00	0	.00	0	0	.22	.00	29	30	33.00
9	0	0	.00	0	.00	0	0	.00	.00	29	30	33.00
10	0	0	.00	0	.00	0	0	.00	.00	29	30	33.00
11	0	0	.00	0	.00	0	0	.00	.00	29	30	32.00
12	0	0	.00	Ö	.00	0	0	.00	.00	29	25	32.00
13	0	0	9.40	O	.00	0	0	.00	9.80	29	20	32.00
14	0	Ö	.22	Ö	.00	Ö	0	.00	.25	29	31	20.00
15	O	0	.00	Ö	.00	Ö	. 0	.00	.00	29	31	.47
16	C	0	.00	0	.00	0	0	.00	.00	29	29	.00
17	Ö	Õ	.00	ő	.00	Ö	ő	.00	.00	29	31	.00
18	Ö	ő	.00	Ö	.00	ő	ő	.00	.48	29	31	.00
19	ő	ő	.00	ő	.00	ő	ő	.00	.02	28	31	.00
20	0	0	.00	0	.00	0	0	.00	.00	28	31	14.00
21	0	0	.00	0	.00	0	0	.00	.00	27	31	33.00
22												
	0	0	.00	0	.00	0	0	.00	.00	27	31	33.00
23	0	0	.00	0	.00	0	0	.00	.00	26	31	33.00
24	0	0	.00	0	10.00	0	0	.00	.00	27	32	33.00
25	0	0	.00	0	.18	0	0	.00	15.00	30	32	23.00
26	0	0	.00	0	.00	0	0	.00	34.00	30	31	.51
27	0	0	.00	0	.00	O	0	.00	33.00	28	32	. 31
28	0	0	.00	0	.00	0	0	.00	33.00	21	31	.00
29	0	0	.00	0	.00	0	0	.00	32.00	31	31	.00
30	0	. 0	.00	0		0	0	.00	32.00	31	31	.00
31	0		.00	0		0		.00		31	15	
TOTAL	0	0	9.62	0	10.18	0	0	9.22	189.55	893	921	537.29
MEAN	.000	.000	.31	.000	.35	.000	.000	.30	6.32	28.8	29.7	17.9
MAX	.00	.00	9.4	.00	10	.00	.00	9.0	34	31	32	33
MIN	.00	.00	.00	.00	.00	.00	.00	.00	.00	21	15	.00
AC-FT												

CAL YR 1983 TOTAL 629.50 MEAN 1.72 MAX 34 MIN .00 AC-FT 1250 WTR YR 1984 TOTAL 2569.86 MEAN 7.02 MAX 34 MIN .00 AC-FT 5100

08177300 PERDIDO CREEK AT FARM ROAD 622 NEAR FANNIN. TX

LOCATION.--Lat 28°45'05", long 97°19'01", Goliad County, Hydrologic Unit 12100204, at right downstream end of bridge on Farm Road 622, 1.2 mi downstream from Farmer Creek, 3.1 mi upstream from Kilgore Creek, and 6.1 mi northwest of Fannin.

DRAINAGE AREA. -- 28.0 mi2.

PERIOD OF RECORD .-- June 1978 to current year.

GAGE.--Water-stage recorder. Datum of gage is 134.66 ft National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. No known diversion above gage. Several observations of water temperature were made during the year. Gage-height telemeter at station.

AVERAGE DISCHARGE. -- 6 years, 6.82 ft3/s (3.31 in/yr), 4,940 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 15,600 ft³/s May 29, 1981 (gage height, 13.80 ft, from floodmark), from rating curve extended above 1,160 ft³/s; maximum gage height, 14.60 ft Oct. 31, 1981; minimum daily discharge, 0.04 ft³/s July 7, 8, 1980.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Apr. 20, 1976, reached a stage of 26.28 ft, and flood of Sept. 15, 16, 1967, reached a stage of 26.08 ft, from information by the State Department of Highways and Public Transportation.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 400 ft 3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)
Oct. 21	0130	*2,640	9.6

Minimum daily discharge, 0.09 ft 3/s July 26.

		DISCHARGE,	IN CUB	IC FEET		ND, WATER YEA MEAN VALUES	R OCTOBE	R 1983 T	O SEPTEMBER	1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.17	.11	.74	. 33	.84	.67	. 86	. 54	. 25	. 32	.28	.28
2	.17	.11	.73	.28	.82	.68	.98	.56	.26	.21	.28	.32
2 3 4	.16	.11	1.1	.28	.76	.67	.84	. 54	. 25	.17	.28	. 41
4	.16	.10	-71	.28	.66	. 76	.74	.52	.63	.16	2.1	.30
5	.15	53	.62	.28	.63	.74	.79	. 52	. 37	.17	. 46	. 22
6	.15	162	.51	.28	.70	.61	.80	.53	.35	.17	.55	.20
7	.15	24	. 49	. 24	.70	.58	. 85	.62	.27	. 22	. 32	.20
8	.15	5.1	.53	. 42	.81	.58	.80	.61	.25	.18	.23	.19
9	2.0	3.0	.56	2.9	.81	.60	.71	. 49	. 26	.17	. 39	.18
10	1.5	1.9	.59	.47	.70	.63	.70	.50	.25	.15	. 29	.18
11	.60	1.5	.55	.33		.69	.72	. 51	3.1	.14	. 24	.17
12	.20	1.5	.43	.33	1.1	18	.72	.53	.87	.12	3.0	.17
13	.16	1.4	. 42	. 33	.82	3.1	.72	. 56	.56	.12	1.1	.17
14	.15	1.2	.33	.33	.72	2.0	.67	.49	.43	.14	. 41	.17
15	.15	1.1	.35	. 33	. 74	1.7	.63	. 51	. 38	.16	1.0	. 21
16	.15	.98	.56	.28	.72	1.4	.59	.68	.34	.12	.69	.25
17	5.0	1.0	.40	.28	.72	1.2	. 75	1.3	.35	.11	. 42	.17
18	1.0	1.1	.38	. 31	.77	1.2	.74	1.5	.30	.11	.38	.19
19	.25	.94	.28	. 28	.67	1.6	. 74	.76	.29	. 21	. 36	.19
20	.23	.82	.28	.28	1.3	1.0	.72	• 46	.28	.16	.35	.25
21	330	.89	. 34	.28	.89	.95	.72	.34	.26	.12	. 32	. 37
22	10	.99	.30	.63	.77	.95	.72	.35	.26	.12	. 28	.29
23	1.0	1.2	.28	. 75	.65	.94	.70	. 34	. 25	.17	. 28	.17
24	.20	.76	. 49	2.6	.63	.86	.70	.31	.24	.14	.32	.16
25	.15	.72	. 55	4.2	.67	. 87	.70	. 29	. 22	. 1,1	. 32	.16
26	.14	.80	.29	1.4	.83	.89	.66	.28	.20	.09	.31	.15
27	.13	. 75	.30	.74	. 62	. 86	.60	. 26	.20	. 86	. 29	.14
28	.13	.67	.31	.61	.61	.75	.61	.27	.20	7.3	.28	.15
29 30	.12	.70 1.5	.38	.59	.63	.77	.63	.25	.21	.47	.27	.18
31	.11	1.5	.33	.76		.86	.61	.26	.40	.29	.29	
TOTAL	354.75	269.95	14.46	22.20	21.99		21.72	15.93	12.48	13.29	16.35	6.37
MEAN	11.4	9.00	.47	.72	.76	47.95 1.55	.72	.51	.42	.43	.53	.21
MAX	330	162	1.1	4.2	1.3	18	.98	1.5	3.1	7.3	3.0	.41
MIN	.11	.10	.28	.24	.61	.58	.59	.25	.20	. 09	.23	.14
CFSM	.41	.32	. 02	.03	.03	.06	.03	. 02	.02	. 02	. 02	.008
IN.	.47	. 36	. 02	. 03	. 03	. 06	. 03	. 02	. 02	. 02	. 02	. 01
AC-FT	704	535	29	44	44	95	43	32	25	26	32	13
CAL YR	1983 TOT	CAL 1721.90	MEAN	4.72	MAX 431	MIN .10	CFSM .17	IN 2.2	29 AC-FT	3420		
	1984 TOT				MAX 330		CFSM .08	IN 1.0				

GUADALUPE RIVER BASIN

08177360 COLETO CREEK RESERVOIR (CONDENSER NO. 1) NEAR FANNIN, TX

LOCATION.--Lat 28°43'24", long 97°12'16", Goliad County, Hydrologic Unit 12100204, on right bank of discharge canal 4,000 ft below Central Power and Light powerplant, 2.7 mi northeast of Fannin, and 13.3 mi southwest of Victoria.

PERIOD OF DAILY RECORD.--WATER TEMPERATURES: October 1980 to current year.

INSTRUMENTATION .-- Beginning May 1980, water temperature is recorded continuously at this station.

REMARKS.--Prior to Feb. 19, 1982, water temperature recording site was 4,000 ft upstream at Condensor No. 1 cooling water outlet.

EXTREMES FOR PERIOD OF DAILY RECORD.-WATER TEMPERATURES: Maximum daily, 40.5°C on several days during July, August, and September 1983; minimum daily, 4.5°C Dec. 26, 1983.

EXTREMES FOR CURRENT YEAR.-WATER TEMPERATURES: Maximum daily, 40.0°C on several days during June and July; minimum daily, 4.5°C Dec. 26.

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		остовь	ER		NOVEMBE	ER		DECEMBE	ER		JANUAF	RY
1 2 3 4 5	35.5 35.5 35.5 35.5 36.5	34.5 34.5 34.5 34.5 34.5	35.0 35.0 35.0 35.0 35.5	23.5 25.0 25.5 32.0 36.5	23.0 23.0 23.0 25.5 29.5	23.0 24.0 25.0 30.0 32.5	32.0 32.0 32.5 32.5 32.5	29.0 31.0 31.0 29.5 30.5	31.0 31.5 32.0 31.5 32.0	14.0 14.5 15.5 16.0 16.5	13.0 12.0 14.0 15.0 14.5	13.5 13.5 14.5 15.5 16.0
6 7 8 9	36.0 36.0 28.0 27.5 26.5	35.5 31.0 26.5 26.5 26.0	36.0 32.5 27.5 27.0 26.0	35.5 36.0 36.5 37.0 36.0	25.0 29.5 28.5 32.5 30.5	30.0 31.5 32.0 36.0 33.5	32.5 31.5 31.5 31.5 33.0	27.5 30.5 28.5 28.0 31.0	31.0 31.0 30.5 30.5 32.0	11.5 19.0 20.0 21.0 20.5	9.5 10.0 17.5 18.5 19.0	10.0 14.0 19.0 20.0 20.0
11 12 13 14 15	26.5 26.5 24.5 25.0 24.5	25.5 24.5 23.5 24.0 24.5	26.5 25.5 24.0 24.5 24.5	35.5 34.5 35.0 35.5 33.5	32.5 30.5 30.5 32.0 30.5	34.5 32.0 33.5 34.5 31.5	33.0 33.0 32.0 26.0 25.5	31.5 29.5 25.5 24.5 24.0	32.5 31.5 28.5 25.5 25.0	19.5 19.0 19.0 18.0 17.5	19.0 18.5 18.0 17.5	19.0 19.0 18.5 18.0 17.5
16 17 18 19 20 21 22 23 24 25	25.0 25.5 24.5 25.0 25.5 25.5 25.0 25.0 24.5 25.0	24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.0 24.0 23.5	24.5 24.5 24.5 25.0 25.0 24.5 24.5 24.0 24.0	33.5 33.5 33.5 35.0 33.5 33.0 34.5 33.0 33.5	31.5 31.5 30.5 30.5 31.5 32.0 30.5 31.5 29.5 28.5	33.0 32.5 32.0 33.5 33.0 32.5 32.0 33.5 31.5 31.5	25.0 24.0 23.0 21.5 20.5 11.5 10.5 9.5 6.5	24.0 23.0 22.0 20.5 19.5 11.5 10.5 9.5 6.5 5.5	24.5 23.5 22.5 21.0 20.0 18.5 11.0 10.0 7.5 6.0	17.5 17.5 17.5 17.0 16.5 16.5 17.5 18.0 19.5	17.0 16.5 17.0 16.0 16.0 16.0 16.0 16.5 17.0	17.5 17.5 17.5 16.5 16.5 16.0 16.0 17.0 17.5 18.5
26 27 28 29 30 31	24.5 24.0 22.5 23.0 23.5 23.5	23.5 22.5 22.0 22.0 22.5 22.5	24.0 23.5 22.5 22.5 23.0 23.0	33.5 33.5 33.0 32.5 33.0	30.5 30.5 29.5 31.0 31.5	32.0 32.5 31.5 32.0 32.5	10.5 7.5 7.0 6.5 13.5	4.5 5.5 6.0 5.5 5.0	7.0 6.0 6.5 6.0 8.5	20.5 21.0 21.0 21.0	18.5 19.5 20.0 19.5	19.5 20.0 20.5 20.0
MONTH	36.5	22.0	27.0	37.0	23.0	31.5	33.0	4.5	21.5	21.0	9.5	17.0

267 GUADALUPE RIVER BASIN 08177360 COLETO CREEK RESERVOIR (CONDENSER NO. 1) NEAR FANNIN, TX--Continued

		TEMPERA	TURE, WATE	R (DEG. C)	, WATER	YEAR OCTOR	BER 1983 TO	SEPTEMB	ER 1984C	ontinued		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUAR	Y		MARCH			APRIL			MAY	
1 2 3 4 5	21.0 21.5 22.0 23.0 23.5	20.0 20.0 20.0 20.5 21.0	21.0 21.0 21.5 22.0 22.5	22.5 24.0 25.0 25.5 25.5	22.0 22.5 23.5 24.5 23.5	22.5 23.5 24.5 25.0 24.5	30.0 31.0 31.5 31.0 31.0	27.5 28.0 29.0 28.0 27.0	29.5 30.0 30.5 30.0 29.5	31.5 31.5 32.0 33.5 34.5	29.5 31.0 29.0 30.0 29.0	31.0 31.5 31.0 32.5 32.0
6 7 8 9	23.0 22.0 21.5 23.5 24.0	21.0 21.0 21.0 20.5 20.5	22.0 21.5 21.5 22.0 23.0	24.0 24.5 25.0 25.5 26.0	23.0 23.5 23.5 24.0 25.0	23.5 24.0 24.0 25.0 25.5	30.5 30.0 31.5 32.0 32.0	27.0 28.0 28.0 27.5 29.0	29.5 29.5 30.0 30.5 31.0	34.5 35.0 34.0 33.5 33.0	33.0 33.5 29.0 29.0 29.0	34.0 34.5 32.0 31.5 31.5
12	24.0 24.5 25.0 25.0 26.5	22.5 23.5 24.0 24.0 23.5	23.5 24.0 24.5 24.5 25.0	26.0 27.5 28.5 29.0 30.0	25.5 24.5 26.5 28.5 29.0	26.0 26.5 28.0 29.0 29.5	32.0 32.5 33.0 32.5 25.0	29.0 29.0 31.5 29.5 24.0	31.0 31.5 32.5 32.0 24.0	33.5 34.0 34.5 34.5 34.5	30.0 29.0 29.0 33.0 30.0	32.0 32.5 33.0 34.0 33.5
16 17 18 19 20	26.5 27.0 27.0 26.5 25.0	25.5 26.0 26.0 24.5 24.0	26.0 26.5 27.0 25.5 24.0	30.0 29.5 30.5 30.0 29.5	29.0 29.5 29.0 29.0 28.5	29.5 29.5 29.5 29.5 29.0	24.0 23.5 24.0 24.0 25.0	23.0 22.5 22.5 23.5 23.5	23.5 23.0 23.5 23.5 24.5	34.0 33.5 33.0 33.0	30.5 29.0 29.0 29.0	33.0 32.0 30.5 31.0
21 22 23 24 25	24.0 24.5 25.0 25.5 25.5	23.5 22.0 23.5 24.0 24.5	24.0 24.0 24.5 24.5 25.0	29.5 29.5 30.0 30.5 31.0	27.0 28.5 23.0 28.5 27.5	28.5 29.0 28.0 29.5 29.5	26.0 25.5 24.0 24.0 23.5	24.0 23.5 23.5 23.5 23.5	24.5 24.0 24.0 24.0 23.5	33.5 34.5 35.0 35.0	32.5 28.0 34.0 34.0	33.0 32.0 34.5 34.5
26 27 28 29 30 31	26.0 24.5 23.5 23.0	24.5 23.0 22.5 20.5	25.5 24.0 23.0 22.5	31.5 32.0 31.5 30.0 30.0 30.0	28.5 30.5 29.5 27.0 27.0 27.5	30.5 31.5 30.0 29.0 29.0	30.5 32.0 32.0 32.0 32.0	23.5 25.5 29.0 29.0 30.5	27.0 28.0 31.0 31.0 31.5	35.5 36.0 36.0 35.5 34.5 34.0	34.0 34.5 34.5 34.5 29.0 30.5	35.0 35.0 35.0 35.0 33.0 33.0
MONTH	27.0	20.0	23.5	32.0	22.0	27.5	33.0	22.5	28.0	36.0	28.0	33.0
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN AUGUST	MEAN	MAX	MIN SEPTEME	MEAN BER
1 2 3 4 5	34.0 34.5 34.5 34.5 34.5	30.0 29.0 28.5 33.5 33.5	33.0 33.5 33.0 34.0 34.0	39.5 40.0 40.0 40.0 40.0	38.0 37.0 38.5 38.5 38.5	38.5 39.0 39.5 39.0 39.0	39.0 39.5 39.5 39.0 38.5	37.5 38.0 38.0 37.5 37.5	38.0 38.5 38.5 38.0 38.0	38.5 38.0 37.0 36.5 36.0	36.0 36.5 34.5 35.0 34.0	37.5 37.5 36.5 36.0 35.5
6 7 8 9	35.0 35.0 35.0 35.0 35.0	34.0 34.5 34.5 34.5 34.5	34.5 35.0 35.0 34.5 35.0	39.0 38.5 39.0 39.0 39.0	37.5 38.0 37.5 38.0 37.5	38.5 38.0 38.5 38.5 38.5	38.5 38.5 38.5 38.5 38.0	37.5 36.5 37.5 37.0 37.0	38.0 38.0 38.0 38.0 37.5	36.0 36.5 37.0 37.0 37.0	33.5 35.0 30.0 30.0 36.0	35.5 36.0 35.5 35.5 36.5
11 12 13 14 15	35.0 35.5 36.0 36.0 36.5	34.5 34.0 34.5 35.0 35.5	35.0 35.0 35.5 35.5 36.0	39.5 39.5 38.5 39.0 38.5	38.0 38.0 38.0 37.5 35.5	38.5 38.5 38.5 38.0 38.0	38.0 38.0 38.0 38.0 38.0	37.0 37.0 37.5 37.0 37.0	37.5 37.5 37.5 37.5 37.5	37.5 37.0 36.5 37.0 36.5	36.0 36.0 35.5 35.5 36.0	36.5 36.0 36.0 36.0
16 17 18 19 20	37.0 37.5 37.5 38.0 37.5	35.0 35.0 36.0 36.5 34.5	36.5 36.5 37.0 37.0 37.0	39.5 38.5 38.5 39.0 39.5	38.0 37.5 37.5 37.5 38.0	38.5 38.0 38.0 38.0 38.0	38.0 38.5 39.0 39.0 39.0	37.0 37.5 37.5 37.5 37.5	37.5 38.0 38.0 38.0 38.0	36.0 35.5 34.5 34.5 34.0	35.5 30.0 30.0 30.0 30.5	35.5 34.0 34.0 33.0 33.5
21 22 23 24 25	38.5 38.5 38.5 39.0 39.5	37.0 37.0 35.0 37.0 38.0	37.5 37.5 37.0 38.0 38.5	39.5 39.5 39.5 39.0 38.5	38.5 38.5 38.5 38.5 38.0	39.0 39.0 39.0 38.5 38.5	39.0 39.0 39.0 39.0 39.0	37.5 37.5 37.5 37.5 38.0	38.0 38.5 38.5 38.5 38.0	33.5 34.5 35.5 35.5 35.5	30.5 29.0 34.0 34.5 34.5	33.0 33.5 34.5 35.0 35.0
26 27 28 29 30 31	40.0 40.0 40.0 39.5 39.5	38.0 38.0 38.0 38.5 38.5	39.0 39.0 39.0 39.0 39.0	39.0 39.5 38.5 39.0 38.5 39.0	38.0 38.0 38.0 37.5 38.0	38.5 38.5 38.5 38.5 38.0 38.0	39.0 39.0 39.0 39.0 39.0 38.5	38.0 38.0 37.5 38.0 37.5 37.5	38.5 38.5 38.5 38.5 38.5 38.0	35.5 35.0 34.0 33.5 31.0	34.5 34.0 29.0 29.0 28.0	35.0 34.0 32.5 31.0 29.5
MONTH	40.0	28.5	36.0	40.0	35.5	38.5	39.5	36.5	38.0	38.5	28.0	35.0

08177400 COLETO CREEK RESERVOIR NEAR VICTORIA, TX

LOCATION.--Lat 28°43'51", long 97°09'53", Victoria County, Hydrologic Unit 12100204, on right bank 175 ft upstream from right end of spillway of dam on Coleto Creek, 1.6 mi upstream from U.S. Highway 59, 11.6 mi west of Victoria, and 12.8 mi upstream from mouth. Record includes contents of station 08177240 Coleto Creek Reservoir (Turkey Creek Arm) near Schroeder, and station 08177380 Coleto Creek Reservoir (Sulphur Creek Arm) near Fannin.

DRAINAGE AREA. -- 494 mi2.

PERIOD OF RECORD .-- February 1980 to current year.

GAGE.--Water-stage recorder. Datum of gage 80.00 ft National Geodetic Vertical Datum of 1929.

Supplementary gage (Turkey Creek Arm).--Water-stage recorder 2.7 mi upstream at datum 90.00 ft National Geodetic Vertical Datum of 1929. Station 08177240 Coleto Creek Reservoir (Turkey Creek Arm) near Schroeder is locally known

as Dike No. 2.

Supplementary gage (Sulphur Creek Arm).--Water-stage recorder 2.8 mi upstream at datum 90.00 ft National Geodetic Vertical Datum of 1929. Station 08177380 Coleto Creek Reservoir (Sulphur Creek Arm) near Fannin is known locally as

Dike No. 1.

REMARKS.--The reservoir system consists of the main reservoir (station 08177400), Turkey Creek Arm (station 08177240), and Sulphur Creek Arm (station 08177380). Figures shown below are the total contents for the three stations. Cooling water is diverted from the main reservoir through a Central Power and Light coal-fired generating plant, through a canal to the Sulphur Creek Arm, and then through a canal to Turkey Creek Arm where it is released back into the main reservoir. The system was built by the Guadalupe-Blanco River Authority, and storage began in February 1980.

The main reservoir is formed by a compacted earthfill dam 20,800 ft long, including a 2,000-foot uncontrolled spillway and a 403-foot wide concrete outlet structure with seven 40- x 28-foot spillway gates. Low-flow releases are made through the dam by a controlled 8-inch pipe. Turkey Creek Arm is formed by a compacted earthfill dam 2,250 ft long, including a 186-foot wide concrete outlet structure with two 40- x 11-foot spillway gates. Sulphur Creek Arm is formed by a compacted earthfill dam 1,030 ft long, including a 186-foot wide concrete outlet structure with two 40- by 11-foot spillway gates. Data regarding the dams and reservoirs are given in the following table:

	Coleto Cree	k Reservior	Turkey Cre	eek Arm	Sulphur Creek Arm		
	Gage height (feet)	Contents (acre-feet)	Gage height (feet)	Contents (acre-feet)	Gage height (feet)	Contents (acre-feet)	
Top of dam	39.0	140,200	17.0	7,330	17.0	2,550	
Spillway	27.3	63.560					
Top of spillway gates	19.0	34,000	12.9	4,950	12.9	1,640	
Crest of spillway	-9.0	954	1.89	1,400	1.91	306	

COOPERATION .-- Elevations and capacity tables were furnished by Forrest and Cotton Engineers, Consulting Engineers for the Guadalupe-Blanco River Authority.

EXTREMES FOR PERIOD OF RECORD. -- Maximum daily contents, 40,330 acre-ft Feb. 25, 1982; no appreciable storage prior to Feb. 28, 1980.

EXTREMES FOR CURRENT YEAR. -- Maximum daily contents, 38,140 acre-ft Oct. 20; minimum daily, 33,990 acre-ft Sept. 30.

CONTENTS, IN ACRE-FEET, WATER YEAR OCTOBER 1982 TO SEPTEMBER 1983 INSTANTANEOUS OBSERVATIONS AT 2400

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	34870	35040	37320	37270	37210	37600	37430	37010	36440	36520	36570	36240
2	34890	35140	37430	37240	37150	37630	37370	36980	36410	36380	36870	36160
3 4	34820	35370	37220	37220	37180	37670	37480	36800	36360	36250	36940	36040
4	34790	35520	37150	37330	37190	37670	37600	36760	36310	36160	37570	35930
5	34760	35650	37250	37340	37400	37640	37510	36700	36340	36130	37410	35850
6	34910	35740	37190	37420	37300	37610	37440	36740	36330	36150	37650	35780
7	35090	35750	37320	37460	37320	37580	37390	36740	36390	36260	37260	35710
8	35190	35790	37290	37410	37550	37540	37370	36650	36440	36290	37350	35830
9	35280	35890	37200	37370	37520	37440	37370	36630	36410	36160	37330	35790
10	35280	35990	37300	37310	37500	37440	37420	36840	36410	36180	37270	35760
11	35340	36020	37180	37360	37500	37310	37420	36880	36400	36260	37260	35760
12	35420	35910	37100	37270	37390	37360	37550	36840	36380	36290	37230	35740
13	35400	35840	37210	37350	37390	37440	37530	36830	36400	36330	37210	35840
14	35390	35800	37330	37390	37510	37460	37310	36860	36400	36670	37150	35760
15	35370	35850	37220	37200	37550	37570	37270	36680	36400	37080	37130	35740
16	35340	35910	37220	37280	37270	37680	37240	36710	36820	37240	37040	35730
17	35350	36040	37330	37310	37680	37630	37260	36760	37180	36720	36940	35700
18	35370	36160	37360	37330	37470	37660	37300	36820	37180	37440	36880	35760
19	35330	38770	37220	37340	37630	37930	37300	36810	37110	37360	36820	36360
20	35180	37210	37330	37360	37830	37710	37240	36850	37070	37270	36760	36630
21	35080	37290	37420	37390	37360	37700	37300	36870	37020	37120	36680	36730
22	35030	37200	37450	37360	37510	37820	37280	36950	37050	37170	36620	36750
23	34950	36760	37490	37440	37430	37490	37160	36880	37030	37170	36570	36740
24	34850	36670	37520	37510	37550	37170	37050	36860	36960	37170	36490	36740
25	34850	36740	37360	37490	37510	37560	37020	36830	36970	37130	36630	36770
26	34900	36880	37240	37420	37480	37580	37040	36790	36950	37120	36590	36760
27	34950	37120	37330	37340	37460	37100	37040	36780	36880	37050	36550	36700
28	34970	37340	37350	37540	37510	37120	37030	36720	36770	36980	36460	36670
29	34970	37540	37240	37460		37370	37040	36670	36710	36970	36430	36640
30	35030	37530	37270	37600		37420	37070	36590	36600	36890	36330	36560
31	35010		37220	37600		37530		36490		36830	36270	
MAX	35420	38770	37520	37600	37830	37930	37600	37010	37180	37440	37650	36770
MIN	34760	35040	37100	37200	37150	37100	37020	36490	36310	36130	36270	35700
	34700	33340	3,100	3,200	37130	37100	3,320	30490	30310	30130	30270	33700

WTR YR 1983 MAX 38770 MIN 34760

269

08177410 COLETO CREEK RESERVOIR (OUTFLOW) NEAR VICTORIA, TX

LOCATION.--Lat 28°43'54", long 97°09'50", Victoria County, Hydrologic Unit 12100204, on top of Coleto Creek Dam at Pier No. 4, 1.6 mi upstream from U.S. Highway 59, and 11.6 mi west of Victoria.

PERIOD OF DAILY RECORD.-WATER TEMPERATURES: October 1980 to current year.

INSTRUMENTATION. -- Beginning May 1980, water temperature is recorded continuously at this station.

EXTREMES FOR PERIOD OF RECORD.-WATER TEMPERATURES: Maximum daily, 32.5°C July 16, 1983; minimum daily, 7.5°C Dec. 31, 1983, Jan. 1, 2, 1984.

EXTREMES FOR CURRENT YEAR.-- WATER TEMPERATURES: Maximum daily, 29.0°C several days during August and September; minimum daily, 7.5°C Dec. 31, Jan. 1, 2.

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

				areas and a		A STATE OF THE PARTY OF						
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		остовн	ER		NOVEMBE	ER		DECEMBE	ER		JANUAR	tY.
1 2 3 4 5	25.0 25.0 25.0 24.5 24.5	24.5 24.5 24.5 24.5 24.5	24.5 24.5 24.5 24.5 24.5	22.5 22.0 22.0 22.5 22.5	22.0 21.5 22.0 22.0 22.0	22.0 22.0 22.0 22.0 22.0	19.0 19.0 19.0 19.0 18.5	19.0 19.0 19.0 18.5 18.5	19.0 19.0 19.0 18.5 18.5	8.0 8.5 8.5 8.5	7.5 7.5 8.0 8.5 8.5	7.5 8.0 8.0 8.5 8.5
6 7 8 9	24.5 25.0 25.0 25.0 28.0	24.5 24.5 24.5 23.0 23.0	24.5 24.5 24.5 24.5 24.5	22.5 22.5 22.0	22.5	22.5 22.5 21.5	18.5 18.5 18.0 18.0	18.0 18.0 17.5 17.5	18.5 18.5 18.0 18.0	8.5 8.0 8.0 8.0	8.0 8.0 8.0 8.0	8.0 8.0 8.0 8.0
11 12 13 14	27.5 25.5 25.5 24.5 24.5	23.5 23.5 24.5 24.5	24.0 25.0 25.0 24.5 24.0	21.5 20.5 20.5 20.5 20.5	20.5 20.5 20.5 20.0 20.0	21.0 20.5 20.5 20.0 20.0	18.0 17.5 18.0 18.0 18.0	17.5 17.5 17.5 17.5 17.5	17.5 17.5 17.5 18.0 17.5	9.0 9.0 9.5 10.0 10.5	8.5 9.0 9.0 9.5 10.0	9.0 9.0 9.5 10.0 10.5
16 17 18 19 20	24.5 24.0 24.5 24.0 23.5	23.5 23.5 23.5 23.0 23.0	24.0 24.0 24.0 23.0 23.0	20.5 20.5 20.5 21.0 20.5	20.5 20.0 20.0 20.5 20.0	20.5 20.5 20.5 20.5 20.5	18.0 17.5 17.0 16.5 15.5	17.5 17.0 16.5 15.5 15.0	17.5 17.0 17.0 16.0 15.0	10.5 10.5 10.5 10.5	10.5 10.5 10.5 10.0	10.5 10.5 10.5 10.5
21 22 23 24 25	24.5 23.5 23.5 23.5 23.5	23.5 23.0 23.0 23.0 23.0	23.0 23.0 23.5 23.5 23.5	20.0 20.5 20.5 20.5 20.5	20.0 20.0 20.0 20.0 20.0	20.0 20.0 20.5 20.5 20.5	15.0 14.5 13.5 12.5 11.0	14.5 13.5 12.5 11.0 10.0	15.0 14.0 13.0 12.0 10.5	10.0 10.0 10.0 9.0 9.0	10.0 9.5 9.0 9.0	10.0 10.0 9.5 9.0 9.0
26 27 28 29 30 31	23.5 23.0 23.0 22.5 22.5 22.5	23.0 22.5 22.0 22.5 22.0 22.0	23.0 23.0 22.5 22.5 22.5 22.5	20.5 20.5 20.0 19.5 19.5	20.5 20.0 19.5 19.0 19.0	20.5 20.0 20.0 19.5 19.0	10.0 9.5 9.5 9.0 8.5 8.5	9.5 9.5 9.0 8.5 8.0 7.5	10.0 9.5 9.5 8.5 8.0 7.5	9.0 9.0 8.5 9.0 9.0	8.5 8.5 8.5 9.0 9.0	9.0 9.0 8.5 8.5 9.0
MONTH	28.0	22.0	24.0	22.5	19.0	21.0	19.0	7.5	15.0	10.5	7.5	9.0

08177410 COLETO CREEK RESERVOIR (OUTFLOW) NEAR VICTORIA, TX--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 -- Continued MIN MEAN MAX MAX MIN MEAN MEAN MAX MIN MEAN DAY MAX MTN APRIL MAY FEBRUARY MARCH 23.0 23.0 23.0 21.5 16.0 16.0 16.0 22.0 21.5 9.5 9.5 22.5 23.0 23.0 22.0 21.5 9.5 9.5 16.0 15.5 2 21.5 23.0 23.0 23.0 9.5 15.5 15.5 17.0 3 9.5 9.5 15.5 15.5 21.5 23.0 23.0 23.0 9.5 9.5 15.5 23.0 23.0 9.5 15.5 16.0 21.5 21.5 21.5 5 9.5 23.0 23.0 17.0 17.0 21.5 23.0 10.0 16.5 6 10.0 9.5 23.5 23.0 23.0 16.5 16.5 21.5 21.0 21.5 9.5 10.0 16.5 10.0 21.5 23.5 24.0 21.5 21.0 10.0 10.0 10.0 16.5 16.5 16.5 24.0 24.0 24.0 16.5 16.5 16.5 10.0 10.0 24.0 21.5 21.0 21.0 24.0 24.0 10 10.5 10.0 10.5 24.0 24.0 21.5 21.0 16.5 11 10.5 10.5 16.5 16.5 21.0 24.0 24.0 24.0 11.0 20.0 16.5 12 11.5 10.5 24.5 24.0 24.0 18.0 21.0 21.0 21.0 13 12.0 11.5 24.5 21.0 12.0 12.0 12.0 18.0 21.0 21.0 14 21.0 21.0 21.5 24.5 24.0 24.5 15 12.0 12.5 18.0 17.5 17.5 21.5 24.5 18.0 18.0 21.0 21.0 12.5 18.0 16 12.5 12.5 21.0 24.5 24.0 24.5 21.0 21.0 12.5 18.0 18.0 18.0 12.5 12.5 24.5 24.0 20.5 21.0 24.5 18 13.0 12.5 13.0 18.0 18.0 18.0 24.5 24.5 21.0 20.5 21.0 19.0 18.0 18.5 13.0 19 13.0 13.0 24.5 24.5 24.5 20.5 13.0 13.5 18.5 19.0 21.0 20.5 20 13.5 24.5 24.5 19.0 21.0 20.5 21.5 24.5 19.5 19.0 21 13.5 13.5 14.0 24.5 24.5 24.5 21.0 19.5 19.0 19.5 21.5 21.5 14.0 24.5 21.5 24.5 24.5 21.5 23 14.0 14.0 20.0 19.5 19.5 14.5 24.5 24.5 22.0 24 15.0 14.5 14.5 20.0 20.0 20.0 24.5 24.5 22.0 22.0 21.5 24.5 20.0 20.0 20.0 25 15.0 15.0 15.0 24.5 24.5 24.5 21.5 21.5 22.0 15.5 20.5 20.0 20.0 26 20.0 22.0 21.5 22.0 24.5 24.5 24.5 27 20.5 16.5 16.5 16.5 24.5 16.0 16.0 20.5 20.5 20.5 22.0 21.5 22.0 28 16.5 24.5 24.5 21.5 22.5 20.5 22.0 22.0 21.5 16.0 16.0 16.0 21.5 25.0 24.5 24.5 21.5 23.0 30 22.0 22.0 24.5 25.0 24.5 ---22.0 21.5 31 ------21.5 25.0 22.5 24.0 23.0 20.5 22.5 18.0 MONTH 16.5 9.0 12.5 15.5 MEAN MAX MIN MEAN MIN MIN MAX MIN MEAN MAX DAY MAX MEAN SEPTEMBER AUGUST JIII Y JUNE 27.5 27.5 27.5 28.5 28.5 27.5 28.5 25.0 27.5 27.5 27.5 27.5 25.0 28.5 28.5 28.5 27.5 25.0 25.0 25.0 25.0 25.0 27.5 27.5 27.5 27.5 27.5 3 25.0 29.0 28.5 25.0 27.5 27.5 27.5 25.5 4 5 29.0 29.0 25.5 25.5 28.0 27.5 27.5 28.0 25.0 29.0 28.5 29.0 28.0 27.5 27.5 25.5 27.5 27.5 27.5 67 25.5 25.5 28.5 28.0 28.5 28.5 25.5 27.5 27.5 27.5 28.0 27.5 25.5 28.0 28.0 28.5 28.0 28.5 27.5 27.5 8 25.5 25.5 25.5 27.5 28.0 28.0 28.0 28.0 28.0 28.0 28.0 26.0 25.5 26.0 28.0 28.0 27.5 28.5 28.0 10 26.0 25.5 26.0 27.5 27.5 28.0 28.0 28.0 28.0 27.5 27.5 28.0 11 26.0 26.0 26.0 28.0 28.0 28.0 27.5 27.5 28.5 28.0 28.5 28.0 26.0 26.0 12 26.0 28.0 27.5 27.5 13 26.0 26.0 27.5 27.5 28.5 28.5 28.5 28.0 27.5 27.5 26.0 26.5 28.0 27.5 27.5 27.5 28.5 28.0 28.5 27.5 27.5 15 26.5 26.5 26.5 28.0 27.5 28.5 28.5 28.5 27.5 27.5 26.5 26.5 28.0 27.5 27.5 16 26.5 28.5 27.5 27.5 27.5 28.0 28.5 26.5 26.5 28.0 27.5 17 26.5 27.5 28.5 28.0 28.0 28.5 26.5 18 27.0 27.0 19 27.0 26.5 27.0 28.0 26.5 27.5 28.5 28.5 28.5 27.0 26.5 27.0 28.5 20 27.0 27.0 27.0 27.5 26.0 27.0 28.5 28.5 28.5 26.5 26.5 28.5 28.5 27.0 27.0 27.0 28.0 26.0 27.0 28.5 21 26.5 26.0 26.0 26.5 28.5 27.0 27.0 27.0 27.0 26.0 22 25.5 25.5 28.5 25.0 27.0 26.5 23 27.0 27.0 27.0 27.0 26.5 28.5 28.5 25.0 25.0 24 27.5 26.5 27.0 25.0 24.5 25.0 28.5 27.0 27.0 27.0 26.5 28.5 28.5 28.5 25.0 24.5 24.5 28.5 28.5 27.0 27.0 27.0 26 27 27.0 27.0 27.5 24.5 27.0 27.0 27.0 28.5 28.5 28.5 24.5 24.5 27.0 27.0 26.5 24.5 28 27.5 27.5 27.0 27.0 28.5 28.5 24.5 24.5 24.5 27.5 27.0 27.0 28.5 27.5 29 27.5 27.5 24.0 24.0

27.5

26.5

27.5

27.5

24.5

30

31

MONTH

27.5

27.5

28.0

27.5

27.5

26.0

27.5

27.5

29.0

29.0

29.0

28.5

28.5

27.5

28.5

28.5

28.0

24.5

29.0

27.0

24.0

08177500 COLETO CREEK NEAR VICTORIA, TX

LOCATION.--Lat 28°43'51", long 97°08'18", Victoria County, Hydrologic Unit 12100204, on left bank at downstream side of westbound bridge on U.S. Highway 59, 1.6 mi downstream from Coleto Creek dam, 9.0 mi southwest of Victoria, and 11.2 mi upstream from mouth.

DRAINAGE AREA. -- 514 mi2.

PERIOD OF RECORD .-- June 1939 to September 1954, June 1978 to current year.

REVISED RECORDS. -- WSP 1562: 1939-40. WSP 1732: 1941.

GAGE.--Water-stage recorder. Datum of gage is 44.18 ft National Geodetic Vertical Datum of 1929. Prior to Jan. 17, 1955, at datum 5.0 ft higher.

REMARKS.--Records good. Flow completely regulated since Feb. 21, 1980, by Coleto Creek Reservoir, 1.6 mi upstream.

Diversions from Guadalupe River basin to Coleto Creek basin upstream from Coleto Creek Reservoir began Mar. 6, 1980 (see station 08176990). No other large diversion above station. Several observations of water temperature were (see station 08176990). No other large diversion above made during the year. Gage-height telemeter at station.

AVERAGE DISCHARGE. -- 16 years (water years 1940-54, 1979) prior to regulation by Coleto Creek Reservoir, 92.7 ft 3/s (67,160 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 89,000 ft³/s Oct. 16, 1946 (gage height, 36.64 ft, present datum, from floodmark) on basis of slope-area measurement of peak flow; no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum discharge since at least 1875, 236,000 ft³/s Sept. 22, 1967 (gage height, 42.0 ft, from floodmark), present site and datum, on basis of slope-area measurement of peak flow. Flood of Apr. 20, 1976, reached a stage of 37.85 ft, at site 0.2 mi upstream at present datum. Flood of July 1, 1936, reached a stage of 32.2 ft, present site and datum, from information by railroad company.

EXTREMES FOR CURRENT YEAR .-- Maximum discharge, 14,400 ft3/s Mar. 12 at 1100 hours (gage height, 18.82 ft); minimum daily, 3.5 ft 3/s Mar. 10.

		DISCHA	AKGE, IN	CUBIC FEET	PER SEC	OND, WATER MEAN VALU		TOBER 1983	TO SEPTE	EMBER 1984	4	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	5.7 5.6 5.9 6.0 5.8	7.1 129.0 29.0 7.7 1200.0	5.3 5.4 142.0 9.0 5.3	4.1 4.1 4.2 4.2	7.4 6.8 6.7 6.8 6.0	4.9 4.6 4.5 4.3 4.0	5.2 5.3 5.1 5.1 5.2	5.1 4.9 4.7 4.3 4.3	6.2 5.1 5.0 5.4 5.4	4.7 4.4 4.4 4.5	4.8 5.0 5.0 6.1 5.7	5.1 4.9 5.7 5.3 5.1
6 7 8 9 10	5.8 5.9 5.9 7.3 6.6	1590.0 1240.0 41.0 59.0 37.0	4.7 4.7 4.4 4.5 4.6	4.4 4.4 4.6 600.0 64.0	5.9 5.7 5.5 70.0 49.0	3.9 4.0 3.8 3.7 3.5	5.4 5.6 5.1 4.9 4.9	4.1 8.4 11.0 6.5 6.3	5.3 5.2 5.0 5.0 5.2	4.7 5.1 5.5 6.3 6.2	5.0 4.9 4.8 4.8 4.6	5.0 7.3 5.5 4.9 4.8
11 12 13 14 15	6.2 8.1 7.1 6.8 6.4	12.0 10.0 8.4 7.5 6.7	4.2 4.2 4.2 4.2 4.2	9.0 7.5 111.0 8.4 7.0	6.0 101.0 188.0 39.0 5.8	3.6 4670.0 1540.0 100.0 100.0	5.0 4.8 5.0 4.6 4.4	6.2 6.2 5.7 5.9 6.8	5.4 5.6 5.4 5.2 5.2	5.5 5.2 5.1 5.1	4.6 5.2 6.5 5.2 5.3	4.8 4.7 4.9 4.8 5.2
16 17 18 19 20	6.6 2210.0 90.0 35.0 21.0	6.5 6.4 6.5 6.2 6.0	4.3 4.2 4.1 3.9 4.0	6.2 5.6 5.4 5.4 5.1	5.3 5.2 4.9 4.6 5.4	90.0 15.0 10.0 120.0 7.0	4.3 4.2 4.3 4.5 4.4	8.2 9.6 12.0 10.0 8.5	5.2 5.2 5.1 5.4 5.2	4.9 4.4 4.4 4.4	5.3 5.1 4.8 4.6 4.6	5.6 4.9 4.9 4.8 5.0
21 22 23 24 25	3160.0 453.0 297.0 20.0 14.0	6.1 6.1 112.0 14.0 4.8	4.1 3.9 3.9 3.9 3.9	5.1 5.4 58.0 528.0 25.0	4.8 4.5 4.5 4.4 4.6	6.3 6.0 60.0 20.0 6.0	4.3 4.2 4.3 4.2 4.3	7.6 7.6 7.3 7.0 6.9	5.1 5.1 4.9 4.7 4.4	4.8 4.7 4.9 4.8 5.0	4.6 4.7 4.7 4.8 4.9	6.2 5.5 5.0 4.8 4.7
26 27 28 29 30 31	12.0 10.0 9.9 8.7 8.4 7.6	4.7 4.1 4.3 5.0 5.6	3.9 3.9 4.0 4.0 4.0	104.0 81.0 17.0 103.0 13.0 8.4	4.9 4.5 4.8 5.3	5.5 5.4 5.2 5.3 5.3	4.4 4.2 4.2 4.4 6.3	6.8 6.8 6.8 8.7 7.3 6.9	4.6 4.4 4.5 4.5	4.9 7.2 5.5 4.8 4.7	5.0 5.0 4.9 4.9 4.9	4.6 4.7 4.9 4.8 4.8
TOTAL MEAN MAX MIN AC-FT	6458.3 208 3160 5.6 12810	4582.7 153 1590 4.1 9090	274.9 8.87 142 3.9 545	1816.6 58.6 600 4.1 3600	577.3 19.9 188 4.4 1150	6827.0 220 4670 3.5 13540	142.1 4.74 6.3 4.2 282	218.4 7.05 12 4.1 433	152.3 5.08 6.2 4.4 302	155.4 5.01 7.2 4.4 308	154.9 5.00 6.5 4.6 307	153.2 5.11 7.3 4.6 304

CAL YR 1983 TOTAL 32271.3 WTR YR 1984 TOTAL 21513.1 MEAN 88.4 MAX 5090 MEAN 58.8 MAX 4670 MIN 1.3 AC-FT MIN 3.5 AC-FT 64010 42670

08177700 OLMOS CREEK AT DRESDEN DRIVE, SAN ANTONIO, TX (Flood-hydrograph partial-record station)

LOCATION.--Lat 29°29'56", long 98°30'36", Bexar County, Hydrologic Unit 12100301, on right bank 30 ft downstream from low-water bridge on Dresden Drive at San Antonio, 0.15 mi west of intersection of Blanco Road and Dresden Drive, and 4.0 mi upstream from Olmos Dam.

DRAINAGE AREA. -- 21.2 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--June 1968 to September 1981 (operated as a continuous-record station), October 1982 to current year. GAGE.--Water-stage recorder. Datum of gage is 726.10 ft National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. Recording rain gage located at station, with three additional recording rain gages located in watershed. Rain gage and gage-height telemeters at station.

AVERAGE DISCHARGE.--13 years (water years 1968-81), 4.34 ft³/s (2.78 in/yr), 3,140 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 7,450 ft³/s Sept. 13, 1978 (gage height, 14.82 ft, from floodmark); no flow at times.

Maximum stage since 1935, that of Sept. 13, 1978.

EXTREMES OUTSIDE PERIOD OF RECORD.--Floods in September and November 1947 reached a stage of 8.5 ft, from information by local resident.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 400 ft3/s and maximum (*):

Date		e	Time	Discharge (ft ³ /s)	Gage height (ft)
	Mar.	12	0200	419	4.68
	May	28	1920	*1,000	5.30
	June	30	1715	436	4.72

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: November 1968 to current year. Sediment analyses: October 1972 to September 1973. Water temperatures: November 1968 to current year. Bacteria analyses: April 1976 to current year.

DATE	TIME	F IN TA	REAM- LOW, STAN- NEOUS CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	TUI BII IT	D- Y S	YGEN, DIS- DLVED MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
DEC 27	1414		.18	655	8.2	10.0	<1	3	.0	9.8	90	3.8	3500	700
MAY				000	0.2	10.0		,	• •	,.0	30	3.0	3300	700
18	1025	2	62	110	8.9	22.0	75	210		7.3	86	12	K150000	K160000
DATE	HARD- NESS (MG/I AS CACO3	NO NO BO	ARD- ESS, NCAR- NATE MG/L ACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTA SIL DIS SOL (MG, AS	JM, LII S- F: VED (I	LKA- NITY IELD MG/L AS ACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)
DEC 27	2.7	0	56	96	8.3	35	1	2 .	.7	218	75	32	.40	18
18	4	6	7	16	1.4	4.5	.3	3	.3	39	14	4.2	.10	4.2
DAT	SU CO TU	DLIDS, M OF NSTI- ENTS, DIS- OLVED MG/L)	SOLI RESI AT 1 DEG. SUS PEND (MG	DUE SOLI 05 VOI C, TII - SUS	A- GE E, NITE	EN, GE RATE NITE FAL TOTAL G/L (MC	EN, GERITE NO2- TAL TO3 G/L (MC	TAL G/L	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NIT GE ORGA TOT (MG	RO- GEN, N, MONI NIC ORGA AL TOT /L (MG	A + PHO NIC PHOR CAL TOT C/L (MG	US, ORGA AL TOT /L (MG	NIC AL /L
DEC 27. MAY		400		8	<1	<.	.010	.90	.130	1	.9 2	.0 <.	010	5.0
18.		71	2	440	308	.22	.080	.30	.140	5	.4 5	.5 1.	80 3	7

08177700 OLMOS CREEK AT DRESDEN DRIVE, SAN ANTONIO, TX--Continued

		DATE	SO TIME (U	OIS- D LVED SO G/L (RIUM, IS- LVED UG/L S BA)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	(UG/L	DIS D SOLV	S- /ED /L	
		EC 27 1	414	1	56	<1	<10		2	4	
		DATE	LEAD, DIS- SOLVE (UG/L AS PB	D SOLV (UG/	, MER - D ED SO L (U	CURY N IS- LVED S G/L (DIS- OLVED UG/L	SILVER, DIS- SOLVED (UG/L AS AG)	ZINC, DIS- SOLVED (UG/L AS ZN)		
		DEC 27		1	-4	<.1	1	<1	32		
DATE	TIME	PCB, TOTAL (UG/L)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	ALDRIN, TOTAL (UG/L)	CHLO DANE TOTA (UG/L	, DD L TOT	AL TO	TAL T	DDT, A	DI- AZINON, TOTAL (UG/L)	DI- ELDRIN TOTAL (UG/L)
DEC 27	1414	<.1	<.10	<.01	<	.1 <	.01	<.01	<.01	.07	<.01
DATE	ENDO- SULFAN, TOTAL (UG/L)	ENDRIN, TOTAL (UG/L)	ETHION, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL (UG/L)		R DE LIND L TOT	ANE TH	IA- ION, C	ETH- OXY- HLOR, OTAL UG/L)	METHYL PARA- THION, TOTAL (UG/L)	METHYL TRI- THION, TOTAL (UG/L)
DEC 27	<.01	<.01	<.01	<.01	<.	01 <	.01	.03	<.01	<.01	<.01
DA	TO	TAL TOT	ON, THA	NE APH	ENE, TAL	TOTAL TRI- THION (UG/L)	2,4-D, TOTAL (UG/L)	2, 4-DP TOTAL (UG/L)	2,4,5- TOTAL (UG/L	. TOTA	L
DEC 2.7		(.01 <	.01	<.1	<1	<.01	.03	<.01	<.0	1 <.	01

08177800 OLMOS RESERVOIR AT SAN ANTONIO, TX

LOCATION.--Lat 29°28'24", long 98°28'26", Bexar County, Hydrologic Unit 12100301, at gate house near middle of dam on Olmos Drive, 0.3 mi upstream from Hildebrand Street, 1.5 mi upstream from Brackenridge Park Zoo, and 4.0 mi downstream from gaging station 08177700.

DRAINAGE AREA .-- 32.4 mi?.

PERIOD OF RECORD .-- June 1968 to September 1971, April 1976 to current year.

GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929.

REMARKS.--The dam is a concrete gravity-type structure with a maximum height of 50 ft and a total length of 1,941 ft, spillway crest length 1,051 ft. The dam, spillway section, and gate house were rebuilt in 1980. The outlet structure consists of six vertical slide-gate-controlled concrete conduits with entrance dimensions of 5.75 ft wide by 7.83 ft high. The gates are maintained and operated by the city of San Antonio Fire Department as required to control downstream flooding. The reservoir is empty except during flooding when it is used as a detention reservoir. The reservoir has a surface area of about 950 acres at top of dam. The dam is owned by the city of San Antonio. Rain gage and gage-height telemeters at station. Prior to 1983 water year, elevation published at 2400 hours. Data regarding the dam and reservoir are given in the following table:

	Elevation (feet)	(acre-feet)
Design flood (probably maximum flood)	736.4	24,150
Floor of gate operating room	736.0	23,560
Top of dam (crest of spillway)	728.0	14,240
Lowest gated outlet (invert)	680.0	0

EXTREMES FOR PERIOD OF RECORD .-- Maximum elevation, 706.97 ft Oct. 7, 1981.

EXTREMES FOR CURRENT YEAR .-- Maximum elevation, 692.30 ft Mar. 12.

ELEVATION, IN FEET, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	
2	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	
3	681.68	681.68	682.73	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	
4	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	
5	681.68	689.18	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	
6	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	682.21	681.68	681.68	681.68	
7	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	
8	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	
9	681.67	682.65	681.68	688.78	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	
10	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	
11	681.66	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	
12	681.68	681.68	681.68	681.68	681.68	692.30	681.68	681.68	684.54	681.68	681.93	681.68	
13	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.99	681.68	683.18	681.68	
14	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	
15	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	689.61	681.68	
16	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	682.01	681.68	
17	681.68	681.68	681.68	681.68	681.68	681.68	681.68	682.80	681.68	681.68	681.68	681.68	
18	681.68	681.68	681.68	681.68	681.68	681.96	681.68	687.44	681.68	681.68	681.68	681.68	
19	681.68	681.68	681.68	681.68	681.68	686.59	681.68	689.90	681.68	681.68	681.68	681.68	
20	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.77	681.68	681.68	681.68	681.68	
21	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	
22	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	
23	681.68	685.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	
24	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	684.18	681.68	
25	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	683.82	681.68	
26	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	
27	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	
28	681.68	681.68	681.68	681.68	681.68	681.68	681.68	690.31	681.68	681.68	681.68	681.68	
29	681.68	681.68	681.68	681.68	681.68	681.68	681.68	689.32	681.68	681.68	681.68	681.68	
30	681.68	681.68	681.68	681.68		681.68	681.68	681.68	685.57	681.68	681.68	681.68	
31	681.68		681.68	681.68		681.68		681.68		681.68	681.68		
MAX	681.68	689.18	682.73	688.78	681.68	692.30	681.68	690.31	685.57	681.68	689.61	681.68	
MIN	681.66	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	681.68	
	007.00	0000	001.00	001.00	001.00	001.00	001.00	001.00	001.00	001.00	001.00	001.00	

CAL YR 1983 MAX 692.69 MIN 681.66 WTR YR 1984 MAX 692.30 MIN 681.66

275 08178000 SAN ANTONIO RIVER AT SAN ANTONIO, TX

LOCATION.--Lat 29°24'34", long 98°29'41", Bexar County, Hydrologic Unit 12100301, on left bank 193 ft downstream from South Alamo Street Bridge in San Antonio, 2.1 mi upstream from San Pedro Creek, and 230.6 mi upstream from mouth.

DRAINAGE AREA. -- 41.8 mi2. Flow of river comes from intermittent spring flow and from artesian wells; drainage area of streams not applicable.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--December 1895 to June 1906 (periodic discharge measurements only), January 1915 to November 1929, February 1939 to current year. Ground-water discharge into river is discussed by Petit and George, Texas Board of Water Engineers Bull. 5608, vol. 1 (1956, p. 45).

REVISED RECORDS.--WSP 1312: 1917. WSP 1923: Drainage area. WRD TX-72-1: 1971(m).

GAGE..-Water-stage recorder and concrete control. Datum of gage is 605.26 ft National Geodetic Vertical Datum of 1929. Jan. 26, 1915, to Feb. 27, 1916, nonrecording gage at site 1.3 mi upstream at different datum. Feb. 28, 1916, to Apr. 7, 1920, nonrecording gage at site 1.1 mi upstream at different datum. Apr. 8, 1920, to Nov. 16, 1929, and Feb. 15, 1939, to Apr. 25, 1967, water-stage recorder in vicinity of South Alamo Street Bridge at 7.00-foot higher datum. Apr. 25, 1967, to May 13, 1969, water-stage recorder at site 307 ft downstream at same datum.

REMARKS.--Water-discharge records good except those for periods of no gage-height record, which are fair. Floodflow is regulated by Olmos flood-control reservoir (capacity, 14,240 acre-ft), about 8.5 mi upstream. Dam completed in 1926 and rebuilt in 1980. Springs emerge intermittently from the Edwards and associated limestones along the Balcones Fault Zone. Rain gage and gage-height telemeters at station.

AVERAGE DISCHARGE. -- 59 years, 54.5 ft 3/s (17.70 in/yr), 39,490 acre-ft/yr.

WTR YR 1984 TOTAL 5000.19

MEAN 13.7

MAX 208

MIN .17 CFSM .33

AC-FT

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 15,300 ft³/s Sept. 10, 1921 (gage height, 20.14 ft, from floodmark), at former site and datum, from rating curve extended above 2,000 ft³/s on basis of slope-area measurement of peak flow; no flow at times due to regulation. Maximum stage since 1819, that of Sept. 10, 1921.

EXTREMES OUTSIDE PERIOD OF RECORD .-- Flood of July 5, 1819, equaled or exceeded that of Sept. 10, 1921.

EXTREMES FOR CURRENT YEAR. -- Maximum discharge, 2,910 ft 3/s Aug. 12 at 1900 hours (gage height, 11.99 ft); minimum daily, 0.17 ft3/s Sept. 19.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUI. AUG SEP 12 .32 10 8.3 11 10 16 11 7.0 8.3 7.8 12 5.3 2 13 12 41 9.2 7.0 11 10 11 2.3 20 9.7 9.0 48 15 7.0 12 3.5 13 14 10 10 10 3.9 33 11 7.4 7.0 5 13 208 12 8.3 7.0 11 11 12 5.2 10 .27 6.6 6 12 6.6 6.2 7.0 8.2 18 11 6.2 7.0 9.7 9.7 15 6.2 11 7.7 13 52 7.0 10 10 24 8.7 15 5.5 8 9 12 7.0 20 12 5.6 118 21 12 117 7.8 6.6 10 11 11 5.3 7.9 5.6 10 15 12 5.0 8.3 16 9.4 8.0 10 8.3 7.0 6.2 11 11 13 10 10 2.9 7.8 5.8 .23 11 10 4.8 8.1 10 12 11 7.0 8.3 26 10 3.1 16 132 11 67 8.9 80 10 13 21 9.7 8.7 40 9.5 2.6 15 12 8.7 6.1 14 12 8.7 7.8 14 29 6.6 15 9.3 11 8.7 5.5 13 6.2 11 10 4.7 166 5.7 6.6 16 6.2 8.3 6.6 9.5 6.6 17 11 6.6 6.6 10 9.7 16 9.3 5.4 5.2 7.1 18 3.5 8.7 11 11 7.0 6.6 13 10 49 72 4.9 4.8 3.3 6.6 49 12 13 5.4 6.2 20 9.3 27 11 4.6 12 7.6 6.6 6.6 11 12 67 5.9 21 10 9.4 6.6 6.6 8.3 12 11 29 6.2 4.8 17 22 9.1 36 6.2 10 8.7 23 10 6.0 4.6 6.6 11 8.2 23 58 6.6 12 6.6 11 17 9.5 10 5.2 14 24 5.8 14 6.6 11 11 16 7.8 8.3 6.7 16 25 8.8 9.8 8.3 10 12 28 14 6.2 11 11 15 26 8.6 11 7.4 9.8 5.6 7.4 5.8 10 11 14 12 16 8.3 7.0 8.6 22 8.5 15 5.8 10 10 13 13 28 8.2 27 9.2 6.6 6.2 12 9.7 10 6.6 29 8.2 11 8.3 6.6 7.4 14 8.3 55 8.0 8.4 5.8 42 30 5.6 12 8.3 6.6 10 10 19 40 11 7.4 16 31 6.9 8.7 12 5.1 ---6.6 13 13 TOTAL. 457.3 622.3 313.2 401.5 233.7 464.8 300.43 649.1 430.2 226.1 512.4 389.16 MEAN 14.8 20.7 13.0 10.1 15.0 20.9 14.3 7.29 13.0 8.06 10.0 16.5 MAX 118 208 48 117 27 24 72 67 16 166 43 2.3 MIN 5.6 1.7 5.8 2.6 5.8 .23 8.7 7.8 3.3 .17 5.8 CFSM .35 .50 .24 .31 .24 .19 .36 .50 .34 .40 . 31 TN. 41 55 .28 36 41 . 38 . 58 .20 AC-FT 907 1230 621 796 464 922 596 1290 853 448 1020 772 CAL YR 1983 TOTAL 8485.79 MEAN 23.2 MAX 566 MIN CFSM .56 IN 7.55 AC-FT 16830

08178000 SAN ANTONIO RIVER AT SAN ANTONIO, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: November 1968 to current year. Sediment analyses: May 1970 to September 1973. Water temperatures: November 1968 to current year. Bacteria analyses: May 1976 to current year.

DATE	TIME	STRE FLO INST TANE (CF	AN- COUS	DUC ANO	FIC N- CT- CE	(ST	H AND- RD IS)	TEMI ATU (DEC	IRE	IN CO	LOR PLAT- IUM- BALT IITS)	B	UR- ID- TY TU)	SOI	GEN, IS- LVED G/L)	SOI (PI CI SAI	GEN, IS- LVED ER- ENT FUR- ION)		AND,)- EM-	FE O. UM (CO	CAL, 7 1-MF LS./	STR TOCO FEC. KF A (COLL PE 100	CCI AL, GAR S.
DEC 28	1146		8.6		568		8.6		9.0		<1		.90	1	5.2		135		1.7		K140		K37
APR 20 MAY	0955	1	7		544		7.9	2	22.5		10		3.3	1	0.2		121		1.7		640		130
18	1145	4	7		362		7.6	2	2.5		130	8	0		7.4		88		8.4	K14	0000	72	000
DATE	HARD- NESS (MG/L AS CACO3)	HAR NES NONC BONA (MG CAC	S, AR- TE /L	SOI (MC	CIUM S- LVED G/L CA)	SO:	GNE- IUM, IS- LVED G/L MG)	SOLV (MG	ED	SO	DIUM AD- RP- ION TIO	SO SO (Me	TAS- IUM, IS- LVED G/L K)	ALK LINI FIE (MC AS	TY LD J/L		S- LVED G/L	(MC	E,	RI SO (M	UO- DE, IS- LVED G/L F)	SILI DIS SOL (MG AS SIO	VED /L
DEC																			199				
28 APR	280		46	84	+	18	8	17			.5		2.8		238		34	26	,		.30	1	1
20 MAY	260		0	73	3	18	8	18			.5		2.3		266		34	24			.30	1	1
18	160		25	48	3		9.3	12			.4		3.8		133		32	16	,		.30		8.5
DAT	SOL	OF STI- STS,	SOLII RESII AT 10 DEG. SUS- PENDE (MG/	DUE D5 C,	SOLID VOLA TILE SUS- PENDE (MG/	, D	NIT GE NITR TOT (MG AS	N, ATE AL /L	NIT GE NITR TOT (MG AS	ITE AL /L	NITE GEN NO2+N TOTA (MG/ AS N	1, 103 L L	MITTOTA AMMON TOTA (MG, AS I	N, NIA AL /L	ORGA TOT. (MG AS	N, NIC AL /L	NIT GEN, MONI ORGA TOT (MG AS	AM- A + NIC AL	PHO PHOF TOT (MC AS	RUS, FAL G/L	CARB ORGA TOT (MG AS	NIC AL /L	
DEC 28.		340		<1		<1	1	. 7		020	1.	7		010		.69		.70		030		1.7	
APR 20. MAY		340		9		<2		.88		020		90		070		.63		.70		030		2.0	
18.	••	210	1	153		39		.74		060	4	80		120	3	.9	4	.0		300	1	6	
			DA	ATE.	TI	ME	SO (U	ENIC IS- LVED G/L AS)	SOL (U	IUM, S- VED G/L BA)	SOL (UG	S- VED	MII DIS SOI (UC		(U		SO (U	ON, OIS- LVED G/L FE)					
			DEC 28	3	11	46		<1		63		<1		10		2		10					
				D	ATE	SC (U	EAD, DIS- DLVED JG/L S PB)	NE SO (U	NGA- SE, IS- LVED G/L MN)	ME S	RCURY DIS- OLVED UG/L S HG)	N: SC (I	ELE- IUM, DIS- DLVED JG/L S SE)	SO (U	VER, IS- LVED G/L AG)	SC (U	INC, DIS- DLVED IG/L ZN)						
				DE 2	C 8		2		5		<.1		<1		<1		16						

08178000 SAN ANTONIO RIVER AT SAN ANTONIO, TX--Continued

DATE	TIME	PCB, TOTAL (UG/L)	NAPH- THA- LENES POLY- CHLOR TOTAL (UG/L)	, ALDRIN,	TOTAL	DDD, TOTAL (UG/L)	DDE, TOTAL (UG/L)	DDT, A	DI- AZINON, TOTAL (UG/L)	DI- ELDRIN TOTAL (UG/L)
DEC 28	1146	<	-1-11			<.01	<.01	<.01	.01	<.01
DATE	ENDO- SULFAN, TOTAL (UG/L)	ENDRIN, TOTAL (UG/L)	TOTAL	TOTAL	EPOXIDE TOTAL	LINDANE TOTAL (UG/L)	MALA- THION, TOTAL (UG/L)	METH- OXY- CHLOR, TOTAL (UG/L)	METHYL PARA- THION, TOTAL (UG/L)	METHYL TRI- THION, TOTAL (UG/L)
DEC 28	<.01	<.01	<.0	<.01	<.01	<.01	<.01	<.01	<.01	<.01
DA	TO	REX, THOTAL TO	TION, THOTAL TO	HANE APH	TAL TH	RI- 2,4	AL TOTA	L TOTAL	TOTA	AL
DEC 28		<.01	<.01	<.1	<1 <	(.01 <	.01 <.	.01 <.0	01 <	. 01

08178620 LORENCE CREEK AT THOUSAND OAKS BOULEVARD, SAN ANTONIO, TX (Flood-hydrograph partial-record station)

LOCATION.--Lat 29°35'24", long 98°27'47", Bexar County, Hydrologic Unit 123100301, on right bank 30 ft upstream from Thousand Oaks Boulevard and 4.2 mi upstream from mouth.

DRAINAGE AREA. -- 4.05 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- January 1980 to current year.

GAGE.--Digital recorders (stage and rainfall), concrete control, and crest-stage gages. Gage is not referenced to National Geodetic Vertical Datum of 1929. (Gage removed Sept. 5-30, 1984.)

REMARKS .-- Water-discharge records poor.

EXTREMES FOR PERIOD OF RECORD.--Maximum gage height, 5.90 ft May 6, 1982 (discharge not determined); no flow most of time.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 15 $\rm ft^3/s$ May 18 at 1035 hours (gage height, 1.48 $\rm ft$), no peak above base of 100 $\rm ft^3/s$; no flow most of time.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical, biochemical, and pesticide analyses: January 1980 to current year.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, 0:7 UM-MF (COLS:/ 100 ML)
SEP 03-03 03-03 03-03 03-03	1622 1652 1722 1753	8.0 5.1 3.8 3.3	103 94 96 96	- ::		700 700 600 500	800 870 670 590	6.5	 81	6.3 4.9 4.9	100000 100000 66000
DATE	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	SOLVED (MG/L	DIS-	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUMAD- SORP- TION RATIO	M POTAS- SIUM, DIS- SOLVED (MG/L AS K)	LINITY FIELD	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
SEP 03-03 03-03 03-03 03-03	94000 80000 48000	38 40	7 10		.70	2.3		3.6	31	11 12	2.3
DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED		NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO GEN, NITRATI DIS- SOLVE (MG/L AS N)	NITRO- E GEN, NITRITE	NITRO- GEN, NITRITE	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
SEP 03-03 03-03 03-03 03-03	.20	5.2	58	3650 1800	150 200 100 140	.38 .40 	.5:	100	.020	.50 .50 	.57 .55
	AMA TO (1)	ITRO- CGEN, AMM MONIA I	MONÍA DIS- OR DLVED T MG/L (ITRO- GEN, OR GANIC OTAL S	ITRO- N GEN, GE GANIC MO DIS- OR OLVED T MG/L (ITRO- N N,AM- GE NIA + MO GANIC OR OTAL D MG/L (GANIC PI IS. MG/L	PHOS- PH HORUS, TOTAL S (MG/L (HOS- PHO ORUS, OF DIS- DI	HOS- DRUS, RTHO, CAR LS- ORG LVED TO	RBON, GANIC DTAL IG/L S C)
(EP 03-03 03-03 03-03 03-03	.060 .040 	.040	1.4	.36	1.5 .90 <.20	.40 .70	.520 .310 .300	.050 .050 	.050	18 28

GUADALUPE RIVER BASIN 08178620 LORENCE CREEK AT THOUSAND OAKS BOULEVARD, SAN ANTONIO, TX--Continued

	D.A	TE	TIME	ARSENI DIS- SOLVE (UG/I AS AS	DIS ED SOLV	S-	CADMIU DIS- SOLVE (UG/I AS CI	DIS ED SOI	JM, COI S- D: VED SC G/L (U	IS- DLVED S JG/L	IRON, DIS- SOLVED (UG/L AS FE)	
		-03	1622 1753		1	15 15		(1	<10 <10	7 2	51 75	
		DATE		S- VED /L	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERC DI SOL (UG AS	S- VED /L	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVEI (UG/L AS AG)	DIS- D SOLVE (UG/I	D D	
		SEP 03-03 03-03		4 3	7 7		<.1 <.1	<1 <1	<1 <1		3	
DATE	TIME	PCB, TOTAL (UG/L)	NAP TH LEN POL CHL TOT (UG/	A- ES, Y- OR. A	LDRIN, TOTAL (UG/L)	CHLODANI TOTA (UG/	E, AL	DDD, TOTAL (UG/L)	DDE, TOTAL (UG/L)	DDT, TOTAI	TOTAL	TOTAL
SEP 03-03 03-03	1622 1753	<		.10	<.01 <.01		<.1 <.1	<.01 <.01	<.01 <.01			
DATE	ENDO- SULFAN, TOTAL (UG/L)	ENDRIN, TOTAL (UG/L)	TOT	AL	HEPTA- CHLOR, TOTAL (UG/L)	HEP CHL EPOX TOTA (UG	OR IDE I AL	INDANE TOTAL (UG/L)	MALA- THION, TOTAL (UG/L)	TOTAL	PARA- THION, TOTAL	TRI- THION, TOTAL
SEP 03-03 03-03	<.01 <.01	<.01 <.01		.01	<.01 <.01		.01 .01	<.01 <.01	<.01 <.01			
DA		EX, TH	RA- HON, OTAL HG/L)	PER- THANE TOTAL (UG/L	APHE TOT		TOTAL TRI- THION (UG/L	2,4 TOT	AL TO	TAL T	OTAL TO	VEX, OTAL JG/L)
	-03 <	.01	<.01 <.01	<. <.		<1 <1	<.0 <.0		.03 .01	<.01 <.01	<.01 <.01	<.01 <.01

AC-FT

19

43

GUADALUPE RIVER BASIN

08178700 SALADO CREEK (UPPER STATION) AT SAN ANTONIO, TX

LOCATION.-Lat 29°30'57", long 98°25'51", Bexar County, Hydrologic Unit 12100301, on right bank at downstream side of eastbound bridge on Interstate Highway 410 in San Antonio, 1.0 mi west of Northeast School, 1.1 mi upstream from Perrin-Beitel Creek, and 2.7 mi east of San Antonio International Airport.

DRAINAGE AREA . -- 137 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- September 1960 to current year.

GAGE .-- Water-stage recorder with concrete control. Datum of gage is 684.60 ft National Geodetic Vertical Datum of

REMARKS.--Water-discharge records good. No known diversion above station. Flow is affected at times by discharge from the flood-detention pools of eleven floodwater-retarding structures with a combined detention capacity of 26,770 acre-ft. These structures control runoff from 74.6 mi² above this station. Recording rain gage located at station with four additional recording rain gages located in watershed.

AVERAGE DISCHARGE. -- 24 years, 8.97 ft 3/s (6,500 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 24,900 ft 3 /s May 12, 1972 (gage height, 15.22 ft), from rating curve extended above 8,000 ft 3 /s on basis of slope-area measurement of peak flow; no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1853, 23 to 24 ft in October 1913. Flood in September 1921 reached a stage of 18 ft, and flood of Sept. 27, 1946, reached a stage of 18.2 ft, and are the second and third highest since 1899.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 279 ft 3/s Mar. 12 at 0100 hours (gage height, 4.22 ft), no other peak above base of 250 ft 3/s; no flow for many days. DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

MEAN VALUES

DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP .00 .13 - 04 . 00 .00 . 00 . 02 .09 - 05 .00 - 00 . 00 .00 .20 .03 .57 .46 .00 .00 .00 .00 .00 .00 .00 3 .00 .32 . 28 2.0 .00 18 .00 .00 .00 . 00 .23 -00 .15 .15 1.5 .00 .00 .00 .00 .00 . 00 6.4 5 13 .00 . 09 .10 1.1 .00 . 00 - 00 . 00 . 00 . 00 6 .00 1.9 .06 . 07 .10 .00 .00 .00 . 04 .00 .00 .01 .20 .00 . 02 . 05 . 07 .00 . 00 . 03 .11 . 00 . 00 . 00 .02 . 01 .11 .36 . 05 .00 . 01 .00 .00 .00 .00 .00 4.4 . 03 .00 .00 .00 . 00 .14 10 .61 . 02 .01 . 01 .00 .00 .00 .00 .00 .00 .00 .00 . 36 . 01 . 07 .00 .00 .00 .00 .00 .00 .00 .00 12 4.0 .00 .00 .06 .00 25 .00 .00 .00 .00 .20 .00 13 .16 .00 . 05 . 02 .00 .39 .00 .00 .00 .00 .19 .00 . 07 . 01 3.2 .00 .00 .13 .00 .00 .00 .00 .00 15 . 02 .00 .47 .00 .00 .00 .08 .00 . 00 .00 .00 16 .00 .00 .09 .00 .00 .00 .00 .00 .00 . 01 .00 . 04 17 . 01 .00 .07 .00 5.0 .00 .00 .00 .00 .00 .00 .00 .06 18 - 03 .09 .00 .00 .23 .00 18 .00 .00 .00 .00 . 04 19 . 00 . 08 .00 .00 9.1 . 00 34 . 00 .00 - 00 .00 20 .00 .00 .07 .00 .23 .00 .00 8.1 .00 .00 .00 .00 21 . 00 .00 . 06 - 00 - 00 .12 .00 .92 . 00 . 00 . 00 . 00 22 .00 . 03 . 04 .08 . 07 .00 .00 .00 .00 .00 .00 .16 23 .00 3.9 . 03 .78 .00 . 03 .00 . 06 .00 .00 .00 .00 .15 .00 24 .00 . 02 . 17 .00 .00 . 02 .00 .00 .03 25 .00 .08 .00 .20 .00 .00 .00 .00 .00 .00 . 00 .00 .00 26 .00 .00 .00 .00 . 05 . 11 .00 .00 .00 .00 .00 27 .00 .92 . 02 - 04 .00 - 00 - 00 .00 . 02 . 00 . 00 .00 .00 .27 .00 .00 .00 .00 .00 . 29 .00 .00 .00 .00 .15 29 .00 . 09 . 04 .00 .00 .00 .00 30 - 00 .10 . 14 .05 .00 .00 . 09 .00 .00 .00 .00 31 .06 .09 ---. 04 ---.00 ---. 02 ---.00 . 05 ---TOTAL 9.74 21.92 10.72 11.96 5.37 35.42 01 67.99 .17 .00 83 24.55 . 31 .73 MEAN .19 .000 . 006 .000 .35 .39 1.14 2.19 . 027 .82 5.6 8.5 25 . 01 .23 18 34 .11 .00 .00 MIN .00 .00 .00 .00 .00 .00 00 .00 .00 . 00

70

. 02

135

.3

.00

1.6

. 00

49

CAL YR 1983 TOTAL 645.80 MEAN 1.77 MAX 130 MIN .00 AC-FT 1280 WTR YR 1984 TOTAL 188.68 MEAN .52 MAX 34 MIN .00 AC-FT 374

24

11

21

08178700 SALADO CREEK (UPPER STATION) AT SAN ANTONIO, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: November 1968 to current year. Sediment analyses: November 1971 to September 1973. Water temperatures: November 1968 to current year. Bacteria analyses: May 1976 to current year.

DATE	TI		STREAM- FLOW, INSTAN- TANEOUS (CFS)	CI CC DI AN	NCE	PH (STAND- ARD UNITS)	ATI	PER- IN URE CO	DLOR PLAT- IUM- DBALT IITS)	TUR- BID- ITY (NTU)	OXYG DI: SOL' (MG	EN, S- VED	DXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	CHI ICA 5 I	AND,	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
MAY 18	104	42	16		297	7.8	2	22.0	180	25		6.0	70		6.3	50000	39000
DATE	HAR NESS (MG, AS CACO	S /L	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	DI SC (N	CIUM IS- DLVED IG/L S CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	DIS SOLV (MC	IUM, S- SC VED T	DIUM AD- ORP- CION CTIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA LINIT FIEL (MG, AS CACO	TY S LD /L	SULFATE DIS- SOLVED (MG/L S SO4)	RII DIS SOI (MC	LO- DE, S- LVED G/L CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)
MAY 18	-	110	32	3	37	4.0	13	3	.6	4.8		77	45	13	3	•40	6.4
DAT	9	SOLID SUM O CONST TUENT DIS SOLV (MG/	F RES I- AT S, DEG - SU ED PEN	. C,	SOLID VOLA TILE SUS- PENDE (MG/	- GH , NITH TOT D (MC	CAL G/L	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO GEN, NO2+NO TOTAL (MG/L AS N)	GE 3 AMMC TOT	CAL G/L	NITRO GEN, ORGANI TOTAL (MG/L AS N)	MONI C ORGA TOT (MG	AM- A + NIC AL /L	PHOS PHORU TOTA (MG/ AS F	IS, ORGAL TOTAL (MC	ANIĆ FAL G/L
MAY 18.		1	70	192		37	.54	.060	.6	0.	100	1.4	1	.5	.3	100 1	5

08178800 SALADO CREEK (LOWER STATION) AT SAN ANTONIO, TX

LOCATION.--Lat 29°21'25", long 98°24'45", Bexar County, Hydrologic Unit 12100301, on right bank at upstream side of bridge on Loop 13 at San Antonio, 1.4 mi east of Brooks Air Force Base, and 3.3 mi upstream from kosillo Creek.

DRAINAGE AREA. -- 189 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- September 1960 to current year.

GAGE. -- Water-stage recorder. Datum of gage is 526.95 ft National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good. Small diversions above station. Recording rain gages located in watershed. Most of low flow comes from artesian wells and springs in city of San Antonio. For statement regarding regulation by Soil Conservation Service floodwater-retarding structures, see station 08178700.

AVERAGE DISCHARGE. -- 24 years, 40.6 ft 3/s (2.92 in/yr), 29,410 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 13,100 ft³/s Sept. 27, 1973 (gage height, 28.83 ft); no flow Aug. 13, 1967.

Maximum stage since at least 1941, that of Sept. 27, 1973.

EXTREMES OUTSIDE PERIOD OF RECORD.--Floods of Sept. 27, 1946, and Aug. 15, 1960, were about equal magnitude. Flood of Aug. 15, 1960, reached a stage of 26.8 ft, from floodmarks.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 390 ft 3/s Mar. 12 at 1300 hours (gage height, 10.29 ft); minimum daily, 0.83 ft 3/s July 15.

	9	DISCHARGE,	IN CUBIC	FEET		ND, WATER MEAN VALU	YEAR OCTOBE	R 1983 T	O SEPTEMBER	1984			
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1 2 3 4 5	14 14 14 14	17 18 19 21 161	17 18 51 33 20	17 22 23 18 18	18 19 19 18 17	13 14 14 14 13	11 10 10 7.2 7.8	8.3 8.7 9.2 11 8.2	7.1 6.7 6.5 6.9 6.7	2.6 2.4 2.5 3.1 2.9	2.3 1.9 1.8 1.6 1.9	2.5 2.9 5.4 55	
6 7 8 9	14 14 16 55 45	80 20 15 14 21	16 15 16 18 18	16 16 16 130 39	17 16 16 18 18	13 14 14 13 13	7.5 8.8 15 8.9 8.2	7.3 8.9 27 13	9.6 7.6 7.1 6.6 5.4	2.0 1.8 1.6 1.5 2.0	2.6 2.4 1.0 1.8 .98	8.7 6.9 6.7 4.8 4.6	
11 12 13 14 15	18 25 23 14 13	14 13 14 14 15	17 16 17 17 16	20 18 17 16 16	19 24 21 17 16	13 180 37 17 14	7.9 7.0 6.5 6.7 6.5	8.5 7.5 7.3 8.9 6.9	5.9 5.0 26 7.3 6.0	1.6 1.4 1.2 1.1 .83	.85 2.0 9.0 7.8 7.8	4.2 4.0 3.6 3.6 4.6	
16 17 18 19 20	13 13 13 13	15 16 18 19 18	16 16 16 16	15 15 15 15 14	15 14 16 14 26	13 13 12 61 32	6.6 6.4 6.5 6.6 7.0	7.4 11 61 210 106	5.5 5.4 4.9 4.9 5.1	1.0 1.1 1.2 3.2 2.8	26 11 6.8 4.9 4.6	4.3 3.1 3.0 3.3 3.1	
21 22 23 24 25	13 13 13 13	18 22 57 26 17	16 16 15 16 15	14 17 26 22 23	23 16 14 14 13	14 12 11 11	6.5 6.8 6.1 6.5 6.4	21 13 10 9.9 8.6	5.2 4.5 3.6 3.1 2.9	2.5 2.2 2.0 1.6 1.3	3.8 3.4 2.6 3.2 2.2	3.4 3.5 3.2 4.7 3.5	
26 27 28 29 30 31	14 14 14 15 15	16 18 19 18 19	17 18 17 15 14	19 18 18 18 18	15 15 14 14	10 10 9.4 9.1 9.0	8.0 7.6 7.6 8.4 7.9	7.8 8.1 11 30 12 8.2	2.5 3.1 3.6 3.4 2.4	1.2 1.5 4.9 3.5 3.2 2.5	1.8 3.4 4.4 3.9 3.3 2.7	2.8 2.9 3.0 5.3 8.6	
TOTAL MEAN MAX MIN CFSM IN. AC-FT	526 17.0 55 13 .09 .10	772 25.7 161 13 .14 .15	558 18.0 51 14 .10 .11	686 22.1 130 14 .12 .14 1360	496 17.1 26 13 .09 .10 984	645.5 20.8 180 9.0 .11 .13 1280	233.9 7.80 15 6.1 .04 .05 464	685.7 22.1 210 6.9 .12 .13 1360	180.5 6.02 26 2.4 .03 .04 358	64.23 2.07 4.9 .83 .01 .01	133.73 4.31 26 .85 .02 .03 265	193.2 6.44 55 2.5 .03 .04 383	
CAL YR WTR YR			MEAN 2 MEAN 1		MAX 731 MAX 210	MIN 6.0 MIN .83	CFSM .14 CFSM .08	IN 1. IN 1.		19140 10260			

08178800 SALADO CREEK (LOWER STATION) AT SAN ANTONIO, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical, biochemical, and pesticide analyses: November 1968 to current year. Sediment analyses: November 1971 to September 1973. Water temperatures: November 1968 to current year. Bacteria analyses: December 1975 to current year.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	CON- DUCT-	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
DEC 28 APR	1605	17	712	3.2	5.0	<1	1.6	12.0	96	1.1	К8	K28
18	0930 0910	6.5 7.5		8.0 7.8	19.0 21.5	40	14	6.1	68 72	.9	210	480
DATE	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)
DEC 28	300	36	92	17	37	1	2.8	264	47	48	.30	11
APR 18 20	310	94	94	18	55	1	3.3	260 215	59	100	.30	16
DAT	TUEN DI SOI	OF RES	. C, TII S- SUS DED PENI	A- GE E, NITR S- TOI	RATE NITR CAL TOT G/L (MG	ITE NO2- AL TO7	EN, GE HNO3 AMMO TAL TOT G/L (MG	EN, GE ONIA ORGA CAL TOT G/L (MG	RO- GEN, N, MONI NIC ORGA AL TOT I/L (MG	A + PHO NIC PHOR AL TOT.	US, ORGA AL TOT /L (MG	NIC AL /L
DEC 28.		410	4	<1	<.	010	.90	010	.19	.20 <.	010	1.4
APR 18. 20.		470	23	<2	.57 .	030	.60 .	150	.25	.40 .0	050	2.7
			ATE	ARSE DI SOL ME (UG AS	S- DIS VED SOLV	- DI ED SOI /L (UC	IS- DIS VED SOL G/L (UG	M, COPP - DIS VED SOL	VED SOL	S- VED		
		DE 2		05	1	82	1	<10	1	10		
			DATE	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	ZINC, DIS- SOLVED (UG/L AS ZN)			
			DEC 28	<1	9	<.1	<1	<1	15			
	DATE	TIME	PCB, TOTAL (UG/L)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	ALDRIN, TOTAL (UG/L)	CHLOR- DANE, TOTAL (UG/L)	DDD, TOTAL (UG/L)	DDE, TOTAL (UG/L)	DDT, TOTAL (UG/L)	DI- AZINON, TOTAL (UG/L)	DI- ELDRIN TOTAL (UG/L)	
	DEC 28	1605	<.1	<.10	<.01	<.1	<.01	<.01	<.01	.01	<.01	
	DATE	ENDO- SULFAN, TOTAL (UG/L)	ENDRIN, TOTAL (UG/L)	ETHION, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL (UG/L)	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	LINDANE TOTAL (UG/L)	MALA- THION, TOTAL (UG/L)	METH- OXY- CHLOR, TOTAL (UG/L)	METHYL PARA- THION, TOTAL (UG/L)	METHYL TRI- THION, TOTAL (UG/L)	
	DEC 28	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	
	DA	TO	PAR REX, THI DTAL TOT G/L) (UG	ON, THA	NE APHEI AL TOTA	NE, TR AL THI	I- 2,4 ON TOT	-D, 2, 4 AL TOT /L) (UG/	AL TOT	AL TOTA	AL	
	DEC 28		.01 <	.01	<.1	<1 <	.01 <	.01 <	.01 <	.01 <	.01	

08178880 MEDINA RIVER AT BANDERA, TX

LOCATION.--Lat 29°43'25", long 99°04'11", Bandera County, Hydrologic Unit 12100302, on left bank 40 ft downstream from centerline of State Highway 173, 1.9 mi upstream from Bandera Creek, and 5.6 mi downstream from Indian Creek. PERIOD OF RECORD. -- Chemical, biochemical, and pesticide analyses: October 1982 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

STREAM				WALLER	OKLIII DA	IIA, WAIEN	LIBAR OCT	OBER 1963	IO SEPIE	TIBER 1904			
22 1025 54 570 7.8 10.5 C1 2.1 10.4 96 .4 22 2 21 A 1145 24 569 8.2 19.0 5 2.0 8.7 98 .2 33 32 A 1510 1.3 568 8.0 30.0 4 2.7 7.3 101 .9 K16 68 BARD RISSS CALCIUM SIN SOUTH SIN SOUT	DATE	T IME	FLOW, INSTAN- TANEOUS	CIFIC CON- DUCT- ANCE	(STAND- ARD	ATURE	(PLAT- INUM- COBALT	BID- ITY	DIS- SOLVED	DIS- SOLVED (PER- CENT SATUR-	DEMAND, BIO- CHEM- ICAL, 5 DAY	FORM, FECAL, 0.7 UM-MF (COLS./	TOCOCCI FECAL, KF AGAR (COLS. PER
ARR 18 1445		1025	5/4	570	7.8	10.5	/1	2.1	10.4	96	4	22	21
AUC 14 1510 1.3 568 8.0 30.0 4 2.7 7.3 101 .9 K16 60 RARD	APR												
RARD- NESS NONCAR NOCAR NONCAR NOCAR N	AUG												
HARD NESS CALCIUM SIUM SOUTH	14	1510	1.3	568	8.0	30.0	4	2.7	7.3	101	.9	K16	60
## APR 18. 280 98 86 19 7.1 .2 1.1 195 88 13 .20 8.3 ## APR 18. 280 110 81 20 7.3 .2 1.3 179 110 10 .30 9.8 ## APR 18. 280 120 74 23 8.7 .2 2.4 158 120 14 .30 14 ## APR 280 120 74 23 8.7 .2 2.4 158 120 14 .30 14 ## APR 280 120 74 23 8.7 .2 2.4 158 120 14 .30 14 ## APR 280 120 74 23 8.7 .2 2.4 158 120 14 .30 14 ## APR 280 120 74 23 8.7 .2 2.4 .10 .00 .00 .00 .00 .00 ## APR 280 120 74 23 8.7 .20 .20 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 ## APR 280 280 280 280 .00 .	DATE	NESS (MG/L AS	NESS, NONCAR- BONATE (MG/L	DIS- SOLVED (MG/L	SIUM, DIS- SOLVED (MG/L	DIS- SOLVED (MG/L	AD- SORP- TION	SIUM, DIS- SOLVED (MG/L	LINITY FIELD (MG/L AS	DIS- SOLVED (MG/L	RIDE, DIS- SOLVED (MG/L	RIDE, DIS- SOLVED (MG/L	DIS- SOLVED (MG/L AS
APR 18 280 110 81 20 7.3 .2 1.3 179 110 10 .30 9.8 AUC 280 120 74 23 8.7 .2 2.4 158 120 14 .30 14 .30 14 30 15 30 1		200	0.0	96	10	7 1	2		105	0.0	12	20	0.3
AUC 14 280 120 74 23 8.7 .2 2.4 158 120 14 .30 .30	APR												
SOLIDS SOLIDS SUM OF RES IDUE SOLIDS SUM OF RES IDUE RES IDUE SUM OF RES IDUE RES	AUG												
SUM OF RESIDUE SOLIDS NITRO NITRO CEN MORITA PHOS OKTHO CARBON CEN MORITA CEN CEN CEN MORITA CEN CEN MORITA CEN CEN MORITA CEN CEN CEN MORITA CEN	14	280	120	74	23	8.7	. 2	2.4	138	120	14	.30	14
25 340 6 <2 <.010	DAT	SUM CONST TUENT DIS SOLV	F RESI II- AT 1 IS, DEG. I- SUS VED PEND	DUÉ SOLI 05 VOL C, TIL SUS ED PEND	A- GE E, NITR - TOT ED (MG	N, GE ITE NO2+ AL TOT /L (MG	N, GEN NO3 AMMON AL TOTA /L (MG/	N, GE NIA ORGA AL TOT /L (MG	RO- GEN, N, MONI NIC ORGA AL TOT	AM- A + PHO NIC PHOR AL TOT C/L (MG	PHOR ORT US, DIS AL SOLV	EUS, HO, CARE - ORGA ED TOT L (MG	NIC AL J/L
APR 18 350			40	6	12 1	01.0	40 /	01.0		20	010		0
AUG 14 350 6 <1 <.010 <.10 .060 .54 .60 <.010 .040 1.5	APR												
ARSENIC BARIUM, CADMIUM MIUM, COPPER, IRON, DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS-	AUG												
ARSENIC BARIUM, CADMIUN MIUN, COPPER, IRON, DIS-DIS-DIS-DIS-DIS-DIS-DIS-DIS-DIS-DIS-	14.	••	50	6	<1 <.	010 <	.10 .0			.60 (.	010 .	040	1.5
25 1025 1 32 <1 <10 2 7 AUG 14 1510 <1 36 <1 <10 2 6 LEAD, NESE, DIS- SOLVED			D	T ATE	D SO IME (U	IS- DIS LVED SOL' G/L (U	S- DI VED SOI G/L (UC	MIUM MI IS- DI LVED SO G/L (U	UM, COP S- DI LVED SO G/L (U	S- D LVED SO G/L (U	IS- LVED G/L		
AUG 14 1510 <1 36 <1 <10 2 6 LEAD, NESE, DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS-					025	1	32	(1	<10	2	7		
LEAD, NESE, DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS-			AU	G									
LEAD, NESE, DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS-							30			and the second			
25 1 2 .2 <1 <1 11 AUG 14 <1 1 <.1 <1 <1 9				DATE	DIS- SOLVED (UG/L	NESE, DIS- SOLVED (UG/L	DIS- SOLVED (UG/L	NIUM, DIS- SOLVED (UG/L	DIS- SOLVED (UG/L	DIS- SOLVED (UG/L			
AUG 14 <1 1 <.1 <1 <1 9 NAPH- THA- LENES, POLY- PCB, CHLOR. ALDRIN, DANE, DDD, DDE, DDT, AZINON, ELDRIN TIME TOTAL DATE JAN 25 1025 <.1 <.10 <.01 <.01 <.01 <.01 <.01 <.01					1	2	.2	(1	<1	11			
NAPH-				AUG									
THA- LENEZ, POLY- POLY- PCB, CHLOR. ALDRIN, DANE, DDD, DDE, DDT, AZINON, ELDRIN TIME TOTAL DATE JAN 25 1025 <.1 <.10 <.01 <.1 <.01 <.01 <.01 <.01 <					3.6			W. 12					
25 1025 <.1 <.10 <.01 <.01 <.01 <.01 <.01 <.01			T IME	TOTAL	THA- LENES, POLY- CHLOR. TOTAL	TOTAL	DANE, TOTAL	TOTAL	TOTAL	TOTAL	AZ INON, TOTAL	ELDRIN TOTAL	
		25	1025	<.1	<.10	<.01	<.1	<.01	<.01	<.01	<.01	<.01	
			1510	<.1	<.10	<.01	<.1	<.01	<.01	<.01	<.01	<.01	

GUADALUPE RIVER BASIN

08178880 MEDINA RIVER AT BANDERA, TX--Continued

DATE	ENDO- SULFAN, TOTAL (UG/L)	ENDRIN TOTAL (UG/L	TOT	ION, CI	EPTA- HLOR, E DTAL JG/L)	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	LINDANE TOTAL (UG/L)	MALA- THION, TOTAL (UG/L)	METH- OXY- CHLOR, TOTAL (UG/L)	METHYL PARA- THION, TOTAL (UG/L)	METHYL TRI- THION, TOTAL (UG/L)
JAN				. 01					4.04	4.01	2.01
25 AUG	<.01	<.0		.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01
14	<.01	<.0	1 <	.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01
		P.	ARA-	PER-	TOX-	TOTA	Ĺ				
	MIR		HION,	THANE	APHENE						
DA'			OTAL UG/L)	TOTAL (UG/L)	TOTAL (UG/L						
JAN											
	<	.01	<.01	<.1	<	1 <.	01 <.	01 <.	.01 <.	.01 <	. 01
14		01	< 01	(1	1	1 /	01 /	01 /	01 /	01 /	01

08179500 MEDINA LAKE NEAR SAN ANTONIO, TX

LOCATION.--Lat 29°32'24", long 98°56'01", Medina County, Hydrologic Unit 12100302, at gate-operating platform, 576 ft from left end of Medina Dam on Medina River, 4.2 mi upstream from Medina diversion dam, 13 mi north of Castroville, 28 mi west of San Antonio, and 70.4 mi upstream from mouth. Water-quality sampling site at the center of low-water bridge 0.6 mi downstream.

DRAINAGE AREA . -- 634 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--May 1913 to current year. Prior to October 1965, monthend contents only. REVISED RECORDS.--WSP 1923: Drainage area.

GAGE.--Nonrecording gage read once daily if stage changing materially, otherwise intermittently. Datum of gage is 7.80 ft below National Geodetic Vertical Datum of 1929.

REMARKS.--The lake is formed by a gravity-type concrete dam, 1,580 ft long. The dam was completed and storage began May 7, 1913. The uncontrolled emergency spillway is a cut through natural rock 880 ft long, with a 3-foot-wide cutoff wall, located near right end of dam. The dam and lake are owned by the Bexar-Medina-Atascosa Counties Water Improvement District No. 1, which has a permit from the Texas Department of Water Resources to irrigate 150,000 acres annually. An undetermined amount of water from the lake enters the Edwards and associated limestones in the Balcones Fault Zone, part of which is above and part below the dam. Water is released downstream to Medina Diversion Reservoir where it is diverted into Medina Canal by the Water District. Figures given herein represent total contents. Data regarding the dam and lake are given in the following table:

	(feet)	(acre-feet)
Top of dam	1,084.0	-
Crest of spillway	1,072.0	254,000
Water-supply outlet pipes (invert)	966.5	4,780
Lowest gated outlet (invert)	920.0	0

COOPERATION.--Capacity table, based on survey made prior to June 1912, and gage-height record were furnished by the Bexar-Medina-Atascosa Counties Water Improvement District No. 1.

EXTREMES (at 0800) FOR PERIOD OF RECORD.--Maximum contents observed, 288,800 acre-ft Sept. 16, 1919 (gage height, 1,078.0 ft); minimum observed since lake first filled, 780 acre-ft about Apr. 11, 1948 (gage height, 944.0 ft).

EXTREMES (at 0800) FOR CURRENT YEAR.--Maximum contents, 157,900 acre-ft Oct. 1, 2 (gage height, 1,051.9 ft); minimum, 68,630 acre-ft Sept. 30 (gage height, 1,022.6 ft).

Capacity table (gage height, in feet, and total contents, in acre-feet)

1,022.0	67.240	1,040.0	114,500
1,025.0	74,220	1,045.0	132,200
1,030.0	85,860	1,050.0	150,000
1,035.0	100,200	1,052.0	158,400

CONTENTS, IN ACRE-FEET, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 INSTANTANEOUS OBSERVATIONS AT 0800

DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	157900	153300	155000	148900	148200	145000	137500	126600	113700	105300	90160	78640
2	157900	153300	154200	148900	148200	145000	137200	125900	113100	104800	89870	77710
3	157500	152900	154200	148900	147800	145000	137200	125500	112800	104200	89010	77480
4	157100	152900	154200	149200	148500	144600	136500	125100	112500	103600	88730	77480
5	156700	154600	154200	149200	147800	144600	136500	124400	112800	103100	88150	77250
6 7 8 9	156300 156300 155800 156700 157500	156700 157100 157100 157100 156700	154200 153700 153700 153300 153300	148900 148900 148500 148900 148900	147500 147500 147500 147100 147100	144300 143900 143900 143600 143600	136100 135800 135400 135100 134400	124400 124100 123700 123400 123000	113100 113100 112800 112800 112500	102500 101900 101600 101000 100800	87580 87290 86720 86430 85860	76780 76080 75850 75620 75150
11 12 13 14	157100 157500 156700 156300 156300	156700 156700 156700 156700 156700	152900 152500 152500 152500 152100	148900 149200 149200 149200 149200	147100 147500 147500 147100 147100	143200 142900 142900 142900 142500	134400 133700 133300 132900 132600	122300 122300 122000 121600 120900	112200 111900 111900 111700 111100	100200 99620 99040 98760 98180	85390 84930 84460 84230 83530	74920 74690 74220 73750 73750
16	155800	156700	152100	149200	147100	142500	132200	120500	111100	97610	83300	73060
17	155800	156300	152100	149200	146800	142200	132200	120200	110800	97320	83070	72820
18	155800	156300	151600	148900	146800	142200	131500	119800	110200	96750	82830	72360
19	155800	155800	151600	149200	148900	141800	131200	119800	109900	96180	82600	72360
20	155800	155800	151200	149200	148900	141800	131200	119800	109400	96460	82370	71890
21	156700	155800	151200	148900	149600	141100	130800	118800	109100	95320	82370	71660
22	155800	155400	150800	148900	147800	140700	130500	118800	108800	95320	81670	71190
23	155400	155800	151200	148900	146400	140400	130100	118100	108500	94460	81440	70730
24	155000	155400	150000	149200	146100	140700	129400	117400	108200	93880	81200	70500
25	155400	155800	150000	149200	146100	140000	129000	117000	107600	93310	81200	70260
26 27 28 29 30 31	155000 155000 155000 154600 154200 153700	155400 155400 155400 154600 154600	149600 150000 149600 150000 149600	148900 148500 148500 148200 147800 147100	145700 145700 145700 145000	139700 139300 139300 138600 138600 137900	128700 128300 128000 127300 127300	116300 115900 115200 114900 114900 114200	107400 107100 106500 105900 105600	93020 92740 92170 91590 91310 90730	80740 80510 80040 79570 79340 79110	70030 69800 69330 69100 68630
MAX	157900	157100	155000	149200	149600	145000	137500	126600	113700	105300	90160	78640
MIN	153700	152900	149600	147100	145000	137900	127300	114200	105600	90730	79110	68630
(†)	1050.9	1051.1	1049.9	1049.2	1048.6	1046.6	1043.6	1039.9	1036.9	1031.7	1027.1	1022.6
(‡)	-4700	+900	-5000	-2500	-2100	-7100	-10600	-13100	-8600	-14870	-11620	-10480

CAL YR 1983 MAX 190300 MIN 149600 ‡ -40700 WTR YR 1984 MAX 157900 MIN 68630 ‡ -89770

t Elevation, in feet, at end of month.

t Change in contents, in acre feet.

GUADALUPE RIVER BASIN

08179500 MEDINA LAKE NEAR SAN ANTONIO, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical analyses: October 1969 to current year.

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
JAN 25	1645	410	13.0	190	51	50	16	7.8
DATE	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)
JAN 25	.3	1.9	140	54	14	.20	8.9	240

08180000 MEDINA CANAL NEAR RIOMEDINA, TX

LOCATION.--Lat 29°30'19", long 98°54'11", Medina County, Hydrologic Unit 12100302, in center of canal, 54 ft upstream from center pier of double-barrel flume, 350 ft downstream from county highway bridge, 1,900 ft downstream from head of canal and diversion dam, 4.6 mi downstream from Medina Dam, 4.7 mi north of Riomedina, and 25 mi northwest of San Antonio.

PERIOD OF RECORD .-- March 1922 to May 1934, July 1957 to current year.

REVISED RECORDS. -- WSP 568: 1922. WSP 1712: 1922(M), 1924, 1926.

GAGE .- - Water-stage recorder. Altitude of gage is 910 ft, from topographic map.

REMARKS.--Records good except those for period of no gage-height record, which are poor. Station is above all diversions from canal. Canal diverts from right end of Medina Diversion Dam 1,900 ft upstream from gage for irrigation downstream near Lacoste and Natalia. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--38 years (water years 1923-33, 1958-84), 42.9 ft³/s (31,080 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD .-- Maximum daily discharge, 216 ft 3/s May 6, 1971; no flow at times.

		DISCH	ARGE, IN C	CUBIC FEET	PER SECO	ND, WATER MEAN VALU	YEAR OCT	OBER 1983	TO SEPTE	MBER 1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	73 73 76	51 52 51	46 39 32	.00 .00	27 27 28	58 57 57	119 117 119	151 154 156	151 151 153	157 156 157	149 149 148	138 137 137
3 4 5	80 87	53 54	2.1 18	.00	28 28	56 59	121 135	156 99	150 137	157 158	148 147	112 109
6 7 8 9	94 92 84 23	56 44 32 32 35	46 46 47 42 33	.00 .00 .00 .00	28 28 28 26 18	68 71 77 78 79	127 131 133 102 83	56 38 132 133 139	126 75 60 89 107	158 158 159 159 159	147 147 146 146 142	103 84 81 89 114
11 12 13 14 15	2.2 2.3 1.4 .00	39 40 39 39 46	33 39 43 44 45	.00 .00 .00	16 15 17 28 28	80 81 82 82 82	66 79 93 101 101	90 113 120 126 132	1 09 117 113 95 73	160 159 160 159 159	139 140 141 140 129	111 99 98 105 103
16 17 18 19 20	37 35 34 25 24	48 53 64 63 60	46 46 46 47 24	.00 .00 .00 .00	28 28 28 28 27	79 84 90 89 78	105 123 144 137 119	135 129 130 139 136	92 92 89 102 108	158 159 158 158 157	57 62 66 65 65	90 57 76 82 82
21 22 23 24 25	26 33 36 52 57	59 58 59 58 54	30 29 20 20 20	.00 .00 .00 .00	27 35 43 44 44	84 98 100 98 97	112 111 128 137 134	138 143 143 142 143	113 124 127 122 141	157 157 157 154 153	71 84 107 102 98	82 82 82 99 98
26 27 28 29 30 31	55 61 62 63 64 60	52 51 50 49 49	40 40 40 40 40	.00 .00 .00 .00 .00	45 41 42 54	97 107 106 104 122 122	135 148 146 146 147	143 143 144 129 120 142	148 154 158 158 157	153 153 152 151 151 150	95 1 02 114 123 131 137	95 91 89 67 55
TOTAL MEAN MAX MIN AC-FT	1434.20 46.3 94 .00 2840	1490 49.7 64 32 2960	1123.1 36.2 47 2.1 2230	27.00 .87 .27 .00 54	884 30.5 54 15 1750	2622 84.6 122 56 5200	3599 120 148 66 7140	3994 129 156 38 7920	3591 120 158 60 7120	4853 157 160 150 9630	3637 117 149 57 7210	2847 94.9 138 55 5650

CAL YR 1983 TOTAL 18990.41 MEAN 52.0 MAX 151 MIN .00 AC-FT 37670 WTR YR 1984 TOTAL 30101.30 MEAN 82.2 MAX 160 MIN .00 AC-FT 59710

NOTE. -- No gage-height record Dec. 23 to Jan. 30.

GUADALUPE RIVER BASIN 08180700 MEDINA RIVER NEAR MACDONA, TX.

LOCATION.--Lat 29°20'05", long 98°41'22", Bexar County, Hydrologic Unit 12100302, at downstream side of Loop 1604 bridge, 0.1 mi downstream from Polecat Creek, 0.7 mi north of Macdona, 2.2 mi downstream from Potranca Creek, and 21.2 mi upstream from mouth.

DRAINAGE AREA. -- 885 mi2, of which 634 mi2 is above dam forming Medina Lake.

PERIOD OF RECORD .-- January 1981 to current year.

GAGE .-- Water-stage recorder. Datum of gage is 589.86 ft National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. Flow is regulated by Medina Lake (station 08179500) and by Medina Diversion Lake (capacity, 4,500 acre-ft) 41 mi upstream. For diversion of canal records, see Medina Canal near Riomedina (station 08108000). A large part of the streamflow is lost into the Edwards and associated limestones in the Balcones Fault crosses the basin between the upstream end of Medina Lake and about 5 mi downstream from Medina Dam, or 0.9 mi downstream from the diversion dam. There are recorded the result diversions below Medina Dam, or 0.9 mi downstream from the diversion fro There are several small diversions below Medina Diversion Dam. Several observations of from the diversion dam. water temperature were made during the year.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 5,810 ft 3/s June 15, 1981 (gage height, 16.08 ft); minimum, 22 ft 3/s Aug. 3, 1984.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 75 ft³/s Oct. 10 at 1200 hours (gage height, 3.35 ft); maximum gage height, 3.36 ft Mar. 28; minimum daily discharge, 22 ft³/s Aug. 3.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 28 35 52 51 23 55 32 29 29 53 ---TOTAL 28.4 MEAN 41.2 28.2 31.6 43.8 46.2 51.2 46.7 44.3 37.5 33.5 33.3 25 MAX MIN

CAL YR 1983 TOTAL WTR YR 1984 TOTAL MEAN 46.3 MAX 114 MIN 29 AC-FT TOTAL MEAN 38.8 MIN 22 MAX AC-FT

GUADALUPE RIVER BASIN

08180800 MEDINA RIVER NEAR SOMERSET, TX

LOCATION.--Lat 29°15'45", long 98°34'56", Bexar County, Hydrologic Unit 12100302, on left bank 300 ft upstream from bridge on State Highway 16, 2.1 mi upstream from Elm Creek, 4.9 mi downstream from Medio Creek, 5.2 mi hortheast of Somerset, and 14.1 mi upstream from mouth.

DRAINAGE AREA. -- 967 mi², of which 634 mi² is above dam forming Medina Lake.

PERIOD OF RECORD .-- October 1970 to current year.

GAGE.--Water-stage recorder. Datum of gage is 493.56 ft National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. Flow is regulated by Medina Lake (station 08179500) 56 mi upstream and by Medina Diversion Lake (capacity, 4,500 acre-ft). For diversion of canal records, see Medina Canal near Riomedina (station 08180000). A large part of the streamflow is lost into the Edwards and associated limestones in the Balcones Fault Zone, which crosses the basin between the upstream end of Medina Lake and about 5 mi downstream from Medina Dam, or 0.9 mi downstream from the diversion dam. There are several small diversions below Medina Diversion Dam. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE. -- 14 years, 235 ft 3/s (170,300 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 30,500 ft³/s July 17, 1973 (gage height, 29.39 ft); minimum daily, 16 ft³/s Sept. 19, 20, 1984.

Maximum stage since about 1890, that of July 17, 1973.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 136 ft³/s Aug. 15 at 0200 hours (gage height, 6.18 ft); minimum daily, 16 ft³/s Sept. 19, 20.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

		DISONARGE	, 11 000	IO I SEL I	ME	AN VALUES	EAR OCTOB	EK 1905 1	0 00110110			10
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	41	45	53	57	46	48	43	31	32	23	19	21
2	42	46	53	58	48	49	46	32	32	25	26	21
2	42	47	53	55	48	48	45	33	32	24	23	24
4	39	48	53	53	46	51	46	34	35	20	21	28
5	39	51	53	52	45	51	41	33	33	22	21	28
6	41	62	53	53	46	50	40	32	36	22	22	27
7	41	64	53	51	46	46	45	48	37	24	23	26
8	40	60	53	51	47	47	51	38	35	23	22	25
9	51	59	53	64	47	48	53	33	34	23	23	26
10	55	56	51	74	49	47	47	31	33	25	22	27
11	54	56	51	66	50	46	44	30	31	23	23	26
12	54	57	50	58	53	49	41	30	31	24	21	24
13	53	60	50	56	52	50	42	31	30	23	23	23
14	53	62	49	55	52	48	45	30	32	23	26	21 25
15	52	61	49	54	50	47	43	29	42	23	41	25
16	52	55	50	54	45	47	44	. 30 .	34	23	28	27
17	51	55	52	54	47	46	42	33	32	22	29	20
18	51	55	50	53	49	45	43	39	33	18	28	19
19	51	55	52	51	48	48	43	45	30	17	27	16
20	52	55	52	50	48	47	43	44	28	18	27	16
21	51	54	52	49	48	48	43	44	28	19	27	19
22	49	54	53	49	48	47	40	40	27	20	25	21
23	49	54	55	50	47	45	39	37	27	22	25	22
24 25	49	58	56	51	49	43	37	37	25	24	25	24
25	49	56	56	53	48	41	36	35	26	22	25	21
26	49	53	57	51	49	43	36	33	26	23	24	19
27	48	53	57	49	50	43	34	33	25	23	24	19
28	48	53	57	47	48	42	32	32	23	25	23	19
29	48	53	53	53	48	41	31	. 32	25	23	23	22
30	46	53	54	47		41	31	31	24	23	21	25
31	47		56	45		43		31		22	21	
TOTAL	1487	1650	1639	1663	1397	1435	1246	1071	918	691	758	681
MEAN	48.0	55.0	52.9	53.6	48.2	46.3	41.5	34.5	30.6	22.3	24.5	22.7
MAX	55	64	57	74	53	51	53	48	42	25	41	28
MIN	39	45	49	45	45	41	31	29	23	17	19	16
AC-FT	2950	3270	3250	3300	2770	2850	2470	2120	1820	1370	1500	1350
CAL YR WTR YR			MEAN 55 MEAN 40			35 AC-				1		

08181400 HELOTES CREEK AT HELOTES, TX

LOCATION.--Lat 29°34'42", long 98°41'29", Bexar County, Hydrologic Unit 12100302, 42 ft to left and 44 ft downstream from centerline of bridge on State Highway 16, 0.1 mi northwest of Helotes, and 8.6 mi upstream from mouth.

DRAINAGE AREA. -- 15.0 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- June 1968 to current year.

REVISED RECORDS .-- WRD TX-73-1: 1972(M).

GAGE. -- Water-stage recorder. Datum of gage is 1,014.82 ft National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good. An undetermined amount of flow is diverted for domestic use above the station, and some flow enters the Edwards and associated limestones through the Balcones Fault Zone in the vicinity of the gage. Recording rain gage located at station, with two additional recording rain gages located in the watershed.

AVERAGE DISCHARGE. -- 16 years, 3.90 ft3/s (3.53 in/yr), 2,830 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 7,680 $\rm ft^3/s$ July 16, 1973 (gage height, 10.8 ft, from floodmarks), from rating curve extended above 5,000 $\rm ft^3/s$; no flow most of time.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum stage since 1923, 13.7 ft in 1927, from information by local resident.

EXTREMES FOR CURRENT YEAR. -- Maximum discharge, 21 ft3/s May 28 at 1715 hours (gage height, 1.87 ft), no peak above base of 140 ft3/s; no flow most of year.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 MEAN VALUES JUL AUG SEP DAY OCT NOV FEB MAR APR MAY JUN DEC JAN .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 nn .00 .00 .00 .00 .00 .00 .00 .00 2 .00 .00 .00 .00 .00 3 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 00 .00 .00 .00 .00 .00 .00 .00 .00 -00 .00 .00 .00 .00 .00 .00 .00 5 .00 .20 .00 -00 .00 .00 .00 .00 .00 -00 6 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 -00 .00 .00 .00 .00 .00 8 .00 .00 .00 -00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 10 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 11 .00 .00 .00 .00 .00 .00 .00 .00 .00 12 .00 .00 .00 .00 .00 .00 .00 .00 .22 .00 .00 .00 .00 .00 .00 .00 13 .00 .00 -00 .00 - 00 .00 .00 - 00 .00 .00 .00 .00 .00 .00 .00 .00 .00 14 .00 .00 15 .00 16 .00 .00 .00 . 90 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 18 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 . 00 19 .00 .00 00 00 00 .00 10 -00 - 00 20 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 21 .00 .00 .00 .00 .00 .00 .00 00 - 00 - 00 .00 22 .00 .00 .00 .00 .00 .00 .00 -00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 24 .00 .00 .00 .00 .00 .00 .00 25 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 26 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 27 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 28 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 . 61 29 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 30 .00 .00 .00 .00 .00 .00 .00 .00 .00 31 .00 .00 .00 ---.00 .00 .00 .00 ---TOTAL .00 20 .22 00 .00 .00 .00 .00 .00 MEAN .000 .007 .000 .000 .000 .000 .000 .023 .007 .000 .000 .000 .00 .00 MAX .20 .00 .00 .00 .00 .00 .61 .22 .00 .00 MIN .00 .00 .00 00 .00 .00 .00 .00 .00 .00 CFSM .000 .000 .000 .000 .000 .000 .000 .002 .000 .000 .000 .000 .00 .00 .00 .00 1.4 IN. .00 .00 .00 .00 .00 .00 .00 AC-FT .00 .00 .4 .00 .00 .4 .00

CAL YR 1983 TOTAL 4.08 MEAN .011 MAX .75 MIN .00 CFSM .001 IN .01 AC-FT 8.1 WTR YR 1984 TOTAL 1.13 MEAN . 003 AC-FT 2.2 MAX . 61 MIN .00 CFSM .000 IN .00

GUADALUPE RIVER BASIN

08181480 LEON CREEK AT INTERSTATE HIGHWAY 35 AT SAN ANTONIO, TX

LOCATION.--Lat 29°19'47", long 98°35'02", Bexar County, Hydrologic Unit 12100302, on left bank of Leon Creek between bridges on Interstate Highway 35.

PERIOD OF RECORD.--Chemical and biochemical analyses: July to September 1984.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	HARD- NESS (MG/L AS CACO3)
JUL											
27 AUG	1505	3.4	657	7.5	28.0	7	6.9	7.8	102		
29	0940	3.7	512	7.5	25.0	25	3.2	4.8	59	1.3	270
DATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)
JUL 27 AUG							125				
29	170	89	11	36	1	3.5	100	150	62	.60	12
DATE	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)
JUL 27 AUG		7	<1	1.4	.020	1.4	.120	.58	.70	1.00	2.4
29	420	26	8	1.5	.030	1.5	.070	.43	.50	.250	4.2

LOCATION.--Lat 29°15'14", long 98°28'20", Bexar County, Hydrologic Unit 12100302, near left bank on downstream side of pier of upstream bridge of two bridges on U.S. Highway 281 in San Antonio and 6.8 mi upstream from mouth.

DRAINAGE AREA. -- 1,317 mi2, of which 634 mi2 is above dam forming Medina Lake.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1929 to December 1930, July 1939 to current year. October 1929 to December 1930 records below about 50 ft³/s in connection with seepage investigation (published as "at Losoya"). Published as "near San Antonio" July 1939 to September 1970.

REVISED RECORDS. -- WSP 1562: 1957. WSP 1923: Drainage area.

CAL YR 1983 TOTAL 41672 WTR YR 1984 TOTAL 30112 MEAN 114

82.3

MEAN

MAX 267

MAX 144

MIN 43

GAGE.--Water-stage recorder. Datum of gage is 439.0 ft National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers). October 1929 to December 1930, nonrecording gage at Losoya 1.5 mi downstream at different datum.

REMARKS.--Water-discharge records fair. Flow is slightly regulated by Medina Lake (station 08179500), 60 mi upstream, and diversion dam reservoir, capacity 4,500 acre-ft. For diversion of canal records, see Medina Canal near kiomedina (station 08180000). For statement concerning losses into the Edwards and associated limestones formation, see Medina River near Somerset (station 08180800). Several small diversions below diversion dam reservoir. Records furnished by the city of San Antonio show that during the current year 24,860 acre-ft of sewage effluent was discharged from the Leon Creek plant into the Medina River above this station. No sewage effluent was discharged from Mitchell Lake plant during year. Gage-height telemeter at this station.

AVERAGE DISCHARGE.--45 years (water years 1940-84), 171 ft3/s (123,900 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 31,900 ft³/s July 17, 1973 (gage height, 43.59 ft); minimum daily, 3.3 ft³/s Apr. 18, Nov. 1, 1956, and Jan. 24, 1957.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage, 55 ft sometime prior to construction of Medina Dam in 1913, from information by State Department of Highways and Public Transportation.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, $326 \text{ ft}^3/\text{s}$ Aug. 17 at 1900 hours (gage height, 7.92 ft); minimum daily, $43 \text{ ft}^3/\text{s}$ July 20.

		DISCHARGE,	IN CUB	C FEET	PER SECOND	, WATER YEAR AN VALUES	OCTOBER	1983	TO SEPTEMBER	1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	96	82	104	116	1 01	1 01	84	63	60	52	48	54
	96	86	105	119	100	102	88	65	58	54	48	53
3	96	89	105	117	105	103	87	64	58	54	60	51
2 3 4	96	85	103	113	104	102	87	64	58	58	56	53
5	96	95	1 03	111	101	1 01	86	63	60	50	64	58
6	96	120	103	110	102	98	84	60	72	50	59	65
7	95	105	103	108	98	93	92	70	90	50	55	60
8	95	97	102	108	99	93	94	78	86	52	64	61
9	95	1 01	103	144	100	94	93	65	84	54	59	57
10	95	96	101	138	104	94	90	56	79	50	59	60
11	95	97	104	123	101	96	84	54	77	50	60	62
12	95	95	102	113	106	107	85	52	76	50	52	60
13	95	97	100	109	108	110	86	52	90	50	58	62
14	95	104	99	105	105	104	79	56	97	49	59	60
15	94	104	98	106	1 01	1 02	80	52	119	49	57	60
16	94	103	99	107	95	102	81	53	104	49	61	58
17	94	98	100	107	95	100	77	60	88	47	123	75
18	94	100	100	108	97	93	77	60	79	45	83	62
19	94	110	103	109	97	105	74	63	78	45	66	60
20	94	110	105	107	100	98	77	64	71	43	64	59
21	94	109	104	106	1 02	95	79	64	62	45	61	57
22	94	109	111	107	99	93	72	64	60	45	62	58
23	93	105	116	112	99	93	70	60	58	50	58	60
24	93	110	113	111	97	89	69	58	54	49	59	58
25	89	106	113	114	1 01	89	68	56	53	47	59	61
26	87	105	116	110	101	91	71	56	55	45	58	60
27	86	105	119	108	103	90	68	54	54	45	58	58
28	89	105	116	105	102	88	63	52	51	45	56	55
29	88	104	115	108	101	87	63	52	52	46	56	54
30	86	104	116	106		85	64	52	52	46	52	66
31	88		115	98		86		58		47	53	
TOTAL	2887	3036	3296	3463	2924		2372	1840	2135	1511	1887	1777
MEAN	93.1	1 01	106	112	1 01	96.3	79.1	59.4		48.7	60.9	59.2
MAX	96	120	119	144	108	110	94	78	119	58	123	75
MIN	86	82	98	98	95	85	63	52	51	43	48	51
AC-FT	5730	6020	6540	6870	5800		4700	3650	4230	3000	3740	3520
						4727						

AC-FT 82660

AC-FT

08181500 MEDINA RIVER AT SAN ANTONIO, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical and biochemical analyses: October 1970 to current year. Pesticide analyses: October 1970 to September 1981.

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	COBALT	BID-	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	HARD- NESS (MG/L AS CACO3)	
JAN 27	1430	110	801	7.8	14.0			5.8	57	19		
FEB											222	
MAR	1137	101	831	7.2	17.0	<1	4.7	4.9	52	15	300	
16 MAY	1310	91	836	7.4	23.5	20	24	4.2	50	13	290	
09 JUL	1208	45	853	7.8	22.0	40	35	4.2	48	12	290	
27	1335	48	850	7.5	28.0	27	14	7.1	92		-	
DATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS-	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	
JAN 27							246					
FEB							246		THE PARTY OF		-	
10 MAR	78	86	20	57	1	4.5	220	91	72	.40	11	
16 MAY	68	84	19	54	1	4.6	220	93	68	.40	- 11	
09 JUL	58	82	20	61	2	5.7	230	82	72	.40	15	
27							210					
DATE	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)	
JAN	(, -)	(/ _/	(1.07 2)		AS N	AS N	AS N	AS II)	AU II)	AO 17	AD 07	
27 FEB												
10	470	8	8	3.5	.980	4.5	.760	1.0	1.8	1.50	4.0	
MAR 16	470	54	15	2.5	1.00	3.5	1.30	1.1	2.4	1.30	4.8	
MAY 09	480	79	21	1.5	2.80	4.3	2.40	3.1	5.5	2.30	6.6	
JUL 27		23	16	2.4	1.50	3.9	3.20	1.6	4.8	2.80	6.4	
							of the second					
		DATE	TIME	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)			
		FEB 10	1137	<1	48	<1	<10	5	11			
		DAT	(UG	S- DI VED SOI	S- DI VED SOI	IS- DI LVED SOL	M, SILV S- DI VED SOI /L (UG	IS- DI VED SOL	S- VED /L			

10...

<1

5

<.1

<1 <1 7

GUADALUPE RIVER BASIN

08181800 SAN ANTONIO RIVER NEAR ELMENDORF, TX

LOCATION.--Lat 29°13'19" long 98°21'20", Bexar County, Hydrologic Unit 12100301, at downstream side of bridge on Farm Road 1604, 2.7 mi southwest of Elmendorf, 3.3 mi downstream from Braunig Plant Lake, and 203.0 mi upstream from mouth.

DRAINAGE AREA. -- 1.743 mi2.

WTR YR 1984

TOTAL

MEAN 243

MAX

MIN 105

AC-FT 176500

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- September 1962 to current year.

GAGE.--Water-stage recorder. Altitude of gage is 385 ft, from topographic map. Prior to Dec. 19, 1980, at site 2.5 mi upstream at different datum.

REMARKS.--Water-discharge records good. Flow slightly regulated by Medina Lake (station 08179500) and Olmos flood-control reservoir (combined capacity, 269,500 acre-ft). Storage began in Medina Lake in 1913, and Olmos Dam was completed in 1926. Water is diverted above station from Medina River for irrigation in the vicinity of Devine and Lytle, with some water diverted for irrigation near San Antonio. During the current year, the city of San Antonio discharged 110,500 acre-ft of sewage effluent into the San Antonio River from the Rilling Road, Leon Creek, Salado Creek, and Mitchell Lake plants upstream from this station. The San Antonio City Public Service Board pumped 6,440 acre-ft into Braunig Lake, released 120 acre-ft from Braunig Lake, and pumped 29,390 acre-ft into Calaveras Lake, upstream from this station. For additional information relative to sewage effluent, see station 08181500. For statement regarding regulation by Soil Conservation Service floodwater-retarding structures, see station 08178700.

AVERAGE DISCHARGE. -- 22 years (water years 1963-84), 504 ft 3/s (365,100 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $40,000 \text{ ft}^3/\text{s}$ Sept. 27, 1973 (gage height, 47.60 ft); minimum, 12 ft³/s Aug. 24-26, 1963. All stages at site and datum then in use.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1900, 61 ft in 1946. Second highest stage was 53 ft in 1913, from information by local residents. All site and datum in use prior to Dec. 19, 1980.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,870 ft³/s Nov. 5 at 2100 hours (gage height, 21.79 ft), no peak above base of 7,000 ft³/s; minimum daily, 105 ft³/s Sept. 2.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 MEAN VALUES AUG SEP JUN JUL DAY OCT NOV DEC JAN FEB MAR APR MAY 253 315 518 129 ---TOTAL MEAN MAX MIN AC-FT MEAN MIN 141 AC-FT

08181800 SAN ANTONIO RIVER NEAR ELMENDORF, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical analyses: October 1966 to current year. Chemical and biochemical analyses: January 1968 to current year. Pesticide analyses: January 1968 to September 1981.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1966 to current year.

PH: June 1984 to September 1984.
WATER TEMPERATURES: October 1966 to current year.
DISSOLVED OXYGEN: June 1984 to September 1984.

INSTRUMENTATION.--Beginning June 1984, a four-parameter water-quality monitor records temperature, DO, pH, and specific conductance continuously at this station.

REMARKS.--Interruptions in the record were due to malfunctions of the instruments. Where maximum or minimum specific conductance values are not shown, mean value is estimated. Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and regression relationships between each chemical constituent and specific conductance. Regression equations developed for this station may be obtained from the Geological Survey District office upon request.

EXTREMES FOR PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE: Maximum daily, 1,240 micromhos Jan. 29, 1973, Aug. 8, 1975; minimum daily, 253 micromhos Oct. 7, 1981.
WATER TEMPERATURES: Maximum daily, 32.0°C on several days during summer months; minimum daily, 5.5°C Jan. 10, 1973.

EXTREMES FOR CURRENT YEAR .--

SPECIFIC CONDUCTANCE: Maximum, 1,020 micromhos June 29, July 1; minimum, 450 micromhos Mar. 12. pH: Maximum, 8.0 units Sept. 7, 26, 27; minimum, 7.3 units Aug. 3, 13-17. WATER TEMPERATURES: Maximum, 32.0°C on several days during June and July; minimum, 9.0°C Dec. 25, 27. DISSOLVED OXYGEN: Maximum, 8.9 mg/L July 23; minimum, 1.0 mg/L July 30, 31.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	HARD- NESS (MG/L AS CACO3)	
JAN 27	1330	268	864	7.9	15.5			6.6	67	20		
FEB	1330	200	804	7.9	13.3			0.0	07	20		
10 MAR	1004	327	908	7.5	18.0	<1	12	4.9	53	22	280	
16 MAY	1130	253	896	7.4	23.0	20	16	4.4	52	13	260	
09 JUL	1055	235	780	7.6	23.0	50	6.2	-		9.8	250	
27	1205	1.9	895	7.4	32.0	12	1.1	4.0	55	14	·	
DATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	
JAN												
27 FEB							271					
10 MAR	31	81	19	76	2	7.5	250	70	87	.60	14	
16 MAY	13	77	17	74	2	7.4	250	74	83	.60	14	
09 JUL	57	74	16	59	2	6.2	194	63	72	.50	14	
27							228					

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

08181800 SAN ANTONIO RIVER NEAR ELMENDORF, TX--Continued

DATE	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)
JAN 27 FEB											
10	510	19	10	2.9	.960	3.9	3.50	1.0	4.5	3.40	7.9
MAR 16	500	34	10	2.4	.840	3.2	4.50	1.5	6.0	3.00	8.0
MAY 09	420	34	16	2.3	.890	3.2	2.30	1.5	3.8	2.60	9.7
JUL 27		13	6	2.3	1.10	3.4	4.30	.70	5.0	4.50	6.8
		DATE	TIME	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)		
		FEB 10	1004	<1	47	<1	<10	8	34		
		FEI	SO (U ATE AS	AD, NE DIS- D LVED SO G/L (U	OIS- D LVED SO G/L (U	CURY NI DIS- I DLVED SC IG/L (U	OIS- I LVED SO G/L (U	DIS- D DLVED SO JG/L (U	NC, IS- LVED G/L ZN)		

MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1983 TO SEPTEMBER 1984

MONTH	YEAR	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
OCT.	1983	8635	814	461	10800	73	1700	71	1660	280
NOV.	1983	9141	767	436	10800	66	1640	68	1680	270
DEC.	1983	7809	844	478	10100	77	1620	73	1540	280
JAN.	1984	9279	819	464	11600	73	1830	72	1800	280
FEB.	1984	8357	873	493	11100	81	1830	75	1690	290
MAR.	1984	9697	798	452	11800	71	1860	70	1830	270
APR.	1984	6762	888	501	9150	83	1520	76	1390	290
MAY	1984	8480	712	405	9260	60	1380	64	1460	250
JUNE	1984	5427	865	489	7170	80	1170	75	1090	290
JULY	1984	4856	883	499	6540	83	1080	76	991	290
AUG.	1984	5785	807	457	7140	72	1130	70	1100	270
SEPT	1984	4743	827	468	6000	74	951	72	924	280
TOTAL		88971	**	**	111000	**	17700	**	17100	**
WTD.AV	/G.	243	819	464	**	74	**	71	**	280

GUADALUPE RIVER BASIN 08181800 SAN ANTONIO RIVER NEAR ELMENDORF, TX--Continued

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DAY	MAX	MIN MEAN	MAX MIN	N MEAN	MAX	MIN MEAN	MAX	MIN	MEAN
		OCTOBER	NOVE	MBER		DECEMBER		JANUAR	Y
1 2 3 4 5		867 872 851 829 867		836 888 881 877 620		840 870 725 738 781		4.	818 830 780 795 842
6 7 8 9		878 895 878 800 580		480 650 732 785 809		808 857 887 882 872			867 852 872 785 629
11 12 13 14 15		619 724 671 787 807		774 830 840 825 817		876 862 843 877 895			700 818 853 858 864
16 17 18 19 20		847 837 812 844 867		859 887 886 889 881		871 887 889 882 841			835 807 861 876 877
21 22 23 24 25		875 873 877 856 835		863 838 800 765 790		869 890 872 871 844			862 855 840 821 843
26 27 28 29 30 31		872 893 900 904 892 863		802 831 822 800 836		820 785 818 846 843 838			812 857 868 888 865 842
MONTH		831		806		848			831
DAY	MAX	MIN MEAN	MAX MIN	MEAN	MAX	MIN MEAN	MAX	MIN	MEAN
		FEBRUARY	MAR	СН		APRIL		MAY	
1 2 3 4 5		860 889 902 875 905		897 876 894 887 876		903 877 861 866 890			851 883 912 904 907
6 7 8 9		872 855 892 885 889		850 890 910 914 887		898 913 858 784 833			895 891 833 778 905
11 12 13 14 15		891 882 871 812 870		811 450 580 745 828		893 906 905 908 911		2 27	909 905 901 897 836
16 17 18 19 20		876 886 887 878 857		875 872 892 725 705		905 870 892 911 903			884 845 519 475 500
21 22 23 24 25		820 826 866 879 893		783 852 877 859 871		898 901 889 836 881			640 740 811 856 854
26 27 28 29 30 31		874 883 853 905		875 857 891 898 899		895 900 901 967 945			883 901 920 463 700
MONTH		874		893 836		890			806 807

08181800 SAN ANTONIO RIVER NEAR ELMENDORF, TX--Continued

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984--Continued

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEMB	ER
1			864	1020	763	914	903	852	885	867	843	853
2			870	828	729	777	932	898	909	878	849	868
3			885	862	823	838	927	906	915	878	841	858
4			863	908	861	897	926	900	909	830	634	722
5			831	925	890	915	930	888	902	771	660	723
6			821	912	863	880	897	881	888	851	775	817
7			830	920	869	903	882	857	869	874	848	863
8			817	944	901	916	918	873	895	855	843	849
9			897	907	877	890	932	906	916	858	841	850
10			900	871	833	848	927	903	917	847	814	831
11			872	895	846	879	948	925	937	809	802	805
12			831	906	877	892	943	926	931	848	804	835
13			850	905	870	893			600	863	836	855
14			800	891	871	881			690	862	841	854
15	862	801	833	890	863	877			550	856	827	840
16	867	838	850	883	836	855			760	827	695	801
17	923	857	898			856	857	803	828	732	673	697
18	900	840	870			870	866	802	834			770
19	851	836	844			886	889	860	876			820
20	887	853	877	911	889	902	885	841	860	939	805	842
21	916	829	874	909	887	894	844	825	835	884	849	865
22	870	835	856	921	881	901	886	844	873	986	844	866
23	883	850	867	901	872	886	908	875	891	883	855	870
24	898	856	872	884	843	859	907	871	893	883	853	862
25	859	809	830	894	848	884	890	867	875			847
26	824	794	810	937	893	923	879	784	834			895
27	986	819	900	938	898	915	844	834	837	9 08	895	903
28	1010	969	993	906	880	895	834	807	818	904	890	896
29	1020	984	1010	928	891	907	885	824	852	912	890	895
30	1010	974	988	902	859	879	890	866	884	915	784	821
31				859	845	851	877	856	867			
MONTH	1020	794	870	1020	729	883	948	784	849	986	634	836

PH (STANDARD UNITS), WATER YEAR OCTOBER 1983 TO SEPTEMBER	1984	4
---	------	---

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		ОСТОВЕ			NOVEMBER			DECEMBE			JANUAR	
1 2 3 4 5												
6 7 8 9 10												
11 12 13 14 15												
16 17 18 19 20												
21 22 23 24 25												
26 27 28 29 30 31												

MONTH

08181800 SAN ANTONIO RIVER NEAR ELMENDORF, TX--Continued

PH (STANDARD UNITS), WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984--Continued

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1 2 3 4 5												
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20												
												1.7. 100 - 1
21 22 23 24 25												
26 27 28 29 30 31												
MONTH												

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEME	ER
1							7.5	7.4	7.4	7.6	7.5	7.5
2							7.4	7.4	7.4	7.5	7.5	7.5
3							7.4	7.4	7.4	7.5	7.5	7.5
4							7.4	7.4	7.4	7.8	7.4	7.5
5							7.4	7.4	7.4	7.7	7.5	7.6
6							7.4	7.4	7.4	7.8	7.6	7.6
7							7.5	7.4	7.4	8.0	7.6	7.6
8							7.5	7.4	7.4	7.7	7.6	7.6
9							7.4	7.4	7.4	7.6	7.5	7.6
10							7.5	7.4	7.4	7.6	7.5	7.6
11							7.4	7.4	7.4	7.7	7.5	7.6
12							7.4	7.4	7.4	7.6	7.5	7.5
13	!						7.5	7.3	7.4	7.6	7.5	7.5
14	7.6	7.5	7.6				7.4	7.3	7.3	7.7	7.5	7.6
15	7.6	7.5	7.6				7.4	7.3	7.4	7.7	7.5	7.6
16	7.7	7.5	7.5				7.4	7.3	7.3	7.6	7.4	7.5
17	7.6	7.5	7.6				7.7	7.3	7.4	7.6	7.5	7.5
18	7.6	7.4	7.5				7.6	7.5	7.6	7.7	7.5	7.6
19	7.6	7.4	7.5	7.7	7.5	7.6	7.6	7.5	7.6	7.8	7.5	7.6
20	7.6	7.5	7.5	7.7	7.5	7.6	7.5	7.5	7.5	7.7	7.6	7.7
21	1			7.6	7.5	7.5	7.6	7.5	7.5	7.7	7.6	7.6
22				7.5	7.5	7.5	7.6	7.6	7.6	7.6	7.5	7.6
23				7.8	7.4	7.6	7.6	7.5	7.6	7.6	7.5	7.5
24				7.7	7.4	7.6	7.6	7.5	7.6	7.6	7.5	7.5
25				7.6	7.4	7.5	7.6	7.5	7.5	7.6	7.5	7.5
26				7.5	7.4	7.5	7.6	7.5	7.5	8.0	7.5	7.7
27				7.6	7.4	7.5	7.6	7.5	7.6	8.0	7.9	7.9
28				7.5	7.4	7.4	7.6	7.5	7.6	7.9	7.8	7.9
29				7.4	7.4	7.4		7.6	7.6	7.9	7.9	7.9
30				7.4	7.4	7.4	7.7	7.6	7.6	7.9	7.8	7.8
31				7.6	7.4	7.5	7.6	7.5	7.6			
MONTH	7.7	7.4	7.5	7.8	7.4	7.5	7.7	7.3	7.5	8.0	7.4	7.6

GUADALUPE RIVER BASIN

08181800 SAN ANTONIO RIVER NEAR ELMENDORF, TX--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
1 2 3 4		OCTOBE	26.0 27.0 26.0 26.0		NOVEMBE	24.0 24.0 25.0 25.0		DECEMBER	18.0 17.0 20.0 19.0		JANOIN	15.0 15.0 15.0
5 6 7 8 9			27.0 27.0 27.0 28.0 25.0			24.5 24.0 23.0 23.0 24.0 21.0			20.0 18.0 16.0 16.0 19.0 22.0			17.0 17.0 17.0 17.0 19.0
10 11 12 13 14			24.0 24.0 24.0 22.0 22.0 24.5			18.0 20.0 22.0 20.0 20.0			20.0 18.0 18.0 18.0 16.0			12.5 14.0 14.0 12.0 13.0
16 17 18 19 20			25.0 25.0 26.0 27.0 26.0			19.0 19.0 21.0 23.0 20.0			13.0 14.0 12.0 16.0 13.0			14.0 13.0 13.0 11.0 11.0
21 22 23 24 25			25.5 24.0 24.0 23.0 23.0			19.0 23.0 22.0			13.5 11.0 11.0 10.0 9.0			12.0 13.0 14.0 14.0 15.0
26 27 28 29 30 31			22.0 22.0 20.0 22.0 24.0 23.0			21.0 19.0 17.0 17.0 19.0			9.0 13.0 10.5 11.0 12.5			14.0 14.0 17.0 18.0 17.5
MONTH			24.5			21.5			15.0			14.5
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUAR	Y		MARCH			APRIL			MAY	
1 2 3 4 5			15.0 16.0 15.5 16.0 15.0			15.5 18.0 22.0 22.0 19.0			22.0 22.0 22.0 21.0 20.0			23.0 24.5 25.0 25.5 28.0
6 7 8 9			14.0 13.5 15.5 17.0 18.5			17.0 16.0 17.0 18.0 20.0			20.5 21.0 24.5 22.0 22.5			28.0 28.0 26.0 23.5 23.5
11 12 13 14 15			20.0 19.0 17.5 17.0 19.5			20.0 20.5 20.0 22.0 22.5			23.5 23.5 23.0 25.0 22.0			24.0 27.0 28.0 27.0 26.0
16 17 18 19 20			19.0 19.0 20.0 18.0 16.5			23.5 24.0 25.0 22.0 20.0			21.0 21.0 22.0 23.0 25.0			26.0 28.5 24.5 25.0 25.0
21 22 23 24 25		*1	14.5 15.5 16.5 18.0 18.0			20.0 20.5 22.0 24.0 21.0			26.5 24.0 22.0 23.0 24.0			26.0 26.5 28.0 27.5 27.5
26 27 28 29 30 31			19.0 17.0 14.5 14.5			22.0 23.0 22.0 19.5 20.0 23.0			24.5 25.0 25.0 25.0			30.0 29.0 25.5 24.0 23.5
MONTH			17.0			20.5			23.0			26.0

GUADALUPE RIVER BASIN
08181800 SAN ANTONIO RIVER NEAR ELMENDORF, TX--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984--Continued

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST		14.8913.	SEPTEME	BER
1			24.0	31.5	29.0	30.5	30.0	27.5	29.0	30.5	28.5	29.5
2				31.5	29.0	30.0	30.5	28.0	29.5	29.5	28.5	29.0
3				31.5	28.5	30.0	31.0	28.5	30.0	29.0	28.0	28.5
4			26.5	31.0	28.5	30.0	31.0	29.0	30.0	29.0	27.5	28.5
5			27.0	31.5	28.5	30.0	31.0	28.5	29.5	28.5	26.5	27.5
6			27.0	31.5	28.5	30.0	31.0	29.0	30.0	28.5	26.0	27.5
7			28.0	32.0	29.0	30.5	31.0	28.5	30.0	28.0	26.0	27.5
8			28.0	31.5	29.0	30.5	31.0	29.0	30.0	29.0	27.0	28.0
9			30.0	31.5	29.0	30.5	30.0	28.5	29.5	29.5	27.5	28.5
10			29.0	31.0	28.5	30.0	31.0	28.5	29.5	30.0	28.0	29.0
11			28.0	31.0	28.5	30.0	30.5	28.5	30.0	30.0	28.0	29.0
12			28.0	31.0	28.5	30.0	31.0	29.0	30.0	30.0	28.0	29.0
13			28.5	31.0	28.5	29.5	30.5	29.0	29.5	30.0	28.0	29.0
14	29.0	28.0	28.5	31.0	28.5	30.0	30.5	28.0	29.5	30.0	28.0	29.0
15	29.5	27.0	28.5	31.0	28.5	30.0	29.5	27.0	28.0	30.0	28.0	29.0
16	29.5	27.0	28.5	31.5	28.5	30.0	28.5	27.0	27.5	28.5	27.0	28.0
17	29.5	27.0	28.5	31.5	28.5	30.5	30.0	27.5	28.5	27.0	25.5	26.5
18	30.0	27.5	28.5	32.0	29.0	30.5	31.0	28.0	29.5	27.0	25.5	26.0
19	29.5	27.5	28.5	31.0	29.5	30.5	31.5	28.5	30.0	27.5	25.5	26.5
20	29.5	27.0	28.5	31.5	29.0	30.0	31.0	29.0	30.0	26.5	26.0	26.5
21	30.5	27.5	29.0	31.5	29.0	30.5	31.0	28.5	30.0	26.0	25.5	25.5
22	31.0	28.5	30.0	31.5	29.0	30.0	31.0	28.5	30.0	27.5	25.5	26.5
23	31.5	28.5	30.0	31.5	29.5	30.5	31.0	29.0	30.0	29.0	27.5	28.0
24	32.0	29.0	30.5	31.0	29.0	30.0	31.5	29.0	30.0	29.5	28.0	28.5
25	32.0	29.0	30.5	30.0	28.5	29.5	31.0	29.0	30.0	29.0	28.0	28.5
26	32.0	29.0	31.0	31.0	28.5	29.5	31.0	29.0	30.0	28.5	27.0	27.5
27	32.0	29.0	30.5	30.5	28.5	29.5	31.0	29.0	30.0	27.0	25.5	26.5
28	31.0	29.0	30.0	30.0	28.5	29.0	31.5	29.0	30.5	26.5	25.0	26.0
29	31.5	28.5	30.0	30.5	28.5	29.5	31.5	29.0	30.5	25.0	23.0	23.5
30	31.5	29.0	30.5	30.0	28.0	29.5	31.0	29.0	30.5	23.5	21.5	22.5
31				30.0	27.5	29.0	30.5	28.5	29.5			7
MONTH	32.0	27.0	29.0	32.0	27.5	30.0	31.5	27.0	29.5	30.5	21.5	27.5

OYYCEN	DISSOLVED	(00)	MG/T.	WATER	YEAR	OCTOBER	1983	TO	SEPTEMBER	1984

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		остове	IR .		NOVEMBE	ER		DECEMBE	R		JANUARY	
1 2												
1 2 3 4 5												
6 7 8 9												
11 12 13 14									au i			
16 17 18 19 20												
21 22 23 24 25												
26 27 28 29 30 31												A STATE OF THE STA
30 31 MONTH												

08181800 SAN ANTONIO RIVER NEAR ELMENDORF, TX--Continued

OXYGEN, DISSOLVED (DO), MG/L, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984--Continued

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUAR	Y .		MARCH			APRIL			MAY	
1 2 3 4 5	ī											
6 7 8 9												
11 12 13 14 15												
16 17 18 19 20												
21 22 23 24 25												
26 27 28 29 30 31												
MONTH												

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEME	ER
1				4.4	1.9	3.2	6.0	2.1	3.5	4.3	2.5	3.2
2				5.1	2.8	3.9	5.4	1.8	3.2	4.1	2.4	3.1
3				5.4	3.5	4.3	5.8	1.8	3.3	4.3	2.6	3.3
4				5.2	3.1	4.0	5.3	1.9	3.1	3.4	2.1	2.7
5				5.1	2.9	3.8	5.3	2.0	3.2	4.6	3.6	4.1
6				6.0	2.9	4.1	5.7	2.1	3.4	4.7	3.5	3.9
7				5.5	2.7	3.9	6.3	2.3	3.8	4.0	3.2	3.5
8				5.7	2.7	3.9	5.5	2.2	3.5	4.1	2.9	3.4
9				6.1	2.7	4.0	5.2	2.3	3.4	4.1	2.6	3.2
10				6.0	2.9	4.1	5.9	2.4	3.7	4.6	2.6	3.4
11				5.4	2.7	3.8	5.5	2.4	3.6	5.0	2.8	3.8
12				5.5	2.6	3.8	6.4	2.5	3.9	4.6	2.6	3.5
13				5.9	2.8	4.0	3.6	1.3	2.7	4.9	2.6	3.6
14	4.7	4.4	4.5	6.1	2.7	4.0	4.3	3.4	3.7	4.9	2.6	3.8
15	4.4	3.9	4.2	6.4	2.6	4.0	4.3	1.5	3.3	5.0	2.7	3.7
16	4.3	3.7	4.0	7.7	2.7	4.6	4.7	3.8	4.2	4.6	2.5	3.4
17	4.3	3.7	3.9	8.8	2.9	5.2	4.1	3.4	3.8	4.9	3.1	3.9
18	4.3	3.5	3.9	7.9	2.7	4.8	3.7	3.2	3.4	5.8	3.3	4.5
19	4.3	3.5	3.9	6.6	2.4	4.0	3.5	3.0	3.2	5.2	2.9	4.0
20	4.2	3.4	3.8	7.0	2.4	4.1	3.8	2.9	3.3	4.2	2.8	3.5
21	5.5	3.3	4.3	6.4	1.9	3.5	3.7	3.1	3.3	3.7	2.7	3.1
22	5.4	3.9	4.6	6.3	1.7	3.3	3.7	2.9	3.2	4.2	2.5	3.2
23	5.5	3.7	4.5	8.9	1.5	4.5	4.0	3.0	3.3	4.0	2.2	3.0
24	5.4	3.3	4.3	8.5	2.6	5.0	4.1	3.0	3.4	4.4	2.1	3.0
25	6.1	3.3	4.5	7.4	2.4	4.4	4.0	3.0	3.4	4.1	2.6	3.4
26	6.3	3.4	4.6	6.8	2.1	3.8	4.2	2.9	3.5	6.3	2.8	4.2
27	5.9	2.9	4.2	4.9	1.5	2.7	4.5	3.2	3.7	8.2	4.7	6.3
28	5.8	3.0	4.3	4.2	1.5	2.5	5.2	3.4	4.1			
29	6.2	3.0	4.3	5.0	1.3	2.6	4.3	2.9	3.7			
30	5.8	2.9	4.1	5.4	1.0	2.6	4.3	2.5	3.2			
31				5.8	1.0	3.0	4.3	2.4	3.2			
MONTH	6.3	2.9	4.2	8.9	1.0	3.9	6.4	1.3	3.5	8.2	2.1	3.6

GUADALUPE RIVER BASIN

08183500 SAN ANTONIO RIVER NEAR FALLS CITY, TX

LOCATION.--Lat 28°57'05", long 98°03'50", Karnes County, Hydrologic Unit 12100303, on left bank 23 ft downstream from bridge on Farm Road 791, 0.9 mi upstream from Scared Dog Creek, 3.6 mi southwest of Fall City, and 150.5 mi upstream from mouth.

DRAINAGE AREA . -- 2,113 mi2.

PERIOD OF RECORD.--April 1925 to current year.

Water-quality records: Chemical and biochemical analyses: January 1968 to September 1981. Sediment analyses:

January 1966 to September 1975.

REVISED RECORDS. -- WSP 1732: 1947(M). WSP 1923: Drainage area.

GAGE. -- Water-stage recorder. Datum of gage is 285.49 ft National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good except those for periods of no gage-height record, which are fair. For diversions and regulation above station, see REMARKS for Salado Creek (upper station) at San Antonio (station 08178700), Medina River at San Antonio (station 08181500), and San Antonio River near Elmendorf (station 08181800). Flow is slightly regulated by Calaveras Lake on Calaveras Creek, which enters the San Antonio River downstream from the station near Elmendorf. Flow is affected at times by discharge from the flood-detention pools of ten floodwater-retarding structures with a combined detention capacity of 26,130 acre-ft. These structures control runoff from 73.8 mi. Records furnished by the San Antonio City Public Service Board show that during the current year no water was released into Calaveras Creek from Calaveras Lake.

AVERAGE DISCHARGE. -- 59 years (water years 1926-84), 401 ft3/s (290,500 acre-ft).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 47,400 ft³/s Sept. 29, 1946 (gage height, 33.80 ft), from floodmark; minimum daily, 19 ft³/s June 27, 1956.

Maximum stage since at least 1875, that of Sept. 29, 1946.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in October 1913 reached a stage of 28.4 ft, from floodmark, from information by local residents.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,550 ft³/s Nov. 6 at 2400 hours (gage height, 3.42 ft), no peak above base of 4,000 ft³/s; minimum daily, 174 ft³/s May 13.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 MEAN VALUES AUG SEP JUL DAY OCT NOV DEC JAN FEB MAR APR MAY JUN 425 1,22 ---------TOTAL. MEAN MAX MIN AC-FT

NOTE .-- No gage-height record July 11 to Aug. 28.

MEAN 484

MEAN 357 MAX

MAX

MIN 212

MIN 174

AC-FT 350100

AC-FT 259400

CAL YR 1983 TOTAL 176488

WTR YR 1984 TOTAL 130796

08183900 CIBOLO CREEK NEAR BOERNE, TX

LOCATION.--Lat 29°46'26", long 98°41'50", Kendall County, Hydrologic Unit 12100304, on left bank 0.6 mi upstream from Southern Pacific Lines bridge, 0.9 mi downstream from Menger Creek, and 2.5 mi southeast of Boerne.

DRAINAGE AREA. -- 68.4 mi2.

PERIOD OF RECORD .-- March 1962 to current year.

REVISED RECORDS. -- WRD TX-73-1: 1964-65, 1966(P), 1968-72(P).

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 1,339.61 ft National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. No known diversion above station. Flow is affected at times by discharge from the flooddetention pools of four floodwater-retarding structures with a combined detention capacity of 8,850 acre-ft. These structures control runoff from 34.0 mi². Several observations of water temperature were made during the year.

AVERAGE DISCHARGE .-- 22 years, 27.3 ft 3/s (5.42 in/yr), 19.780 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 36,400 ft³/s Sept. 27, 1964 (gage height, 19.15 ft, from floodmark), from rating curve extended above 2,500 ft³/s on basis of slope-area measurement at 12,000 ft³/s and contracted-opening measurement of 36,400 ft³/s; no flow at times in 1962-64, 1966-67, 1971, and 1984.

Maximum stage since at least 1892, that of Sept. 27, 1964.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Second highest flood in 1952 reached a stage of 16.3 ft (discharge, 25,600 tt 3/s), from information by local residents.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,020 ft³/s Oct. 9 at 0600 hours (gage height, 4.49 ft), no other peak above base of 900 ft³/s; no flow Aug. 30, Sept. 1, 12-15, 19, 25-27.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 MEAN VALUES SEP DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG . 00 5.8 3.9 .97 2 1.3 4.5 6.3 4.3 5.2 4.0 4.3 1.9 .74 1.1 .52 . 01 .91 1.3 4.5 8.4 4.5 5.7 3.8 4.1 1.7 . 58 .45 1.7 1.2 5.7 7.1 3.6 .63 .32 .56 5 29 4.9 30 .33 .14 1.1 6.7 5.9 3.7 3.4 .60 6 .89 23 35 .71 .20 .10 5.8 4.8 3.5 3.4 1.4 5.6 .93 13 5.1 4.8 5.3 3.5 3.8 1.4 3.8 . 46 .08 8 1.1 10 5.4 4.9 3.6 1.4 2.3 .46 . 09 .08 168 9.7 5.1 31 5.2 3.8 3.5 1.3 1.9 . 50 . 07 . 05 10 9.7 3.4 .37 . 03 14 9.1 4.0 1.3 1.8 .06 5.4 5.6 11 7.2 . 28 . 05 . 02 6.9 7.9 5.1 5.8 4.0 3.3 1.4 1.8 .23 12 7.3 7.3 6.2 5.8 5.2 3.4 .06 .00 6.1 4.7 7.0 1.3 2.1 13 4.7 2.7 .00 6.3 1.5 .19 .00 14 4.6 4.9 2.9 1.4 2.1 . 06 15 4.6 6.9 4.6 5.5 4.9 5.5 2.7 1.3 2.0 .06 .30 .00 2.6 16 4.7 5.0 5.6 1.2 2.0 .08 .41 . 02 5.4 5.6 4.5 6.3 5.8 2.7 1.9 .06 17 4.9 5.3 5.3 1.4 .36 . 01 . 01 18 4.8 4.9 2.6 .32 4.8 3.8 4.6 4.6 4.5 1.8 20 28 7.3 4.5 5.5 4.2 4.7 3.1 3.6 1.7 .78 . 28 . 01 21 6.8 11 4.6 5.4 4.1 4.7 2.5 2.2 1.6 .35 . 03 4.5 7.2 12 7.6 2.0 2.1 2.1 22 7.7 4.5 5.9 4.6 1.5 . 04 5.6 1.1 .47 23 4.4 6.5 4.7 1.8 .23 . 04 24 4.0 .25 1.8 . 01 6.6 4.1 4.3 1.2 .97 25 5.6 6.8 4.3 6.1 4.2 4.4 2.0 1.8 .20 .00 26 5.2 6.1 4.0 5.3 4.2 1.5 -21 .00 5.6 2.2 1.1 1.6 5.0 27 6.2 4.3 1.2 . 22 5.8 5.5 1.8 1.1 . 00 28 5.6 4.0 5.6 5.6 1.5 4.3 .23 .01 . 02 29 5.4 5.2 3.7 5.3 4.2 3.9 1.7 4.5 1.4 1.6 .16 4.9 3.9 30 6.0 5.0 4.2 1.4 1.8 1.4 .85 . 03 . 04 3.8 31 4.8 5.2 4.2 1.3 .00 .65 ---TOTAL 329.32 139.5 4.50 7.0 7.33 3.20 254.2 154.3 200.7 110.35 147.5 87.0 58.7 19.50 8.47 4.98 5.09 . 24 10.6 6.47 2.90 1.89 3.68 1.7 .63 MAX 168 29 8.4 31 5.9 1.6 .67 4.3 4.5 MIN .89 4.5 3.7 3.9 4.1 3.5 1.4 1.2 . 56 . 06 .00 . 00 .07 CFSM .16 .10 .07 .07 - 04 - 03 - 05 .009 - 004 . 002 . 05 . 03 . 01 .00 .00 .08 . 08 AC-FT 653 504 306 398 293 277 173 116 219 15 6.3 39

CAL YR 1983 TOTAL 4399.82 MEAN 12.1 MAX 272 MIN .89 CFSM .18 IN 2.39 AC-FT 8730 WTR YR 1984 TOTAL 1511.60 MEAN 4.13 MIN MAX 168 .00 CFSM . 06 IN .82 AC-FT 3000

GUADALUPE RIVER BASIN

08185000 CIBOLO CREEK AT SELMA, TX

LOCATION.--Lat 29°35'38", long 98°18'39", Bexar-Guadalupe County line, Hydrologic Unit 12100304, on right bank 0.6 mi downstream from Missouri-Kansas-Texas Railroad Co. bridge and 0.9 mi upstream from bridge on Interstate Highway 35 at Selma.

DRAINAGE AREA. -- 274 mi2.

PERIOD OF RECORD. -- March 1946 to current year. Figures for water year 1960 in WSP 1813 are in error and should be disregarded.

REVISED RECORDS. -- WSP 1923: Drainage area.

GAGE .-- Water-stage recorder. Datum of gage is 728.34 ft National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. Small diversion above station. For statement regarding regulation by Soil Conservation Service floodwater-retarding structures, see station 08183900. Considerable flow of Cibolo Creek enters the Edwards and associated limestones in the Balcones Fault Zone, which crosses basin between this station and the station near Boerne (station 08183900).

AVERAGE DISCHARGE. -- 38 years, 14.4 ft 3/s (10,430 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 65,000 ft³/s July 16, 1973 (gage height, 26.2 ft, from floodmark), from rating curve extended above 16,000 ft³/s on basis of field estimate of 54,000 ft³/s and contracted-opening measurement of 65,000 ft³/s; no flow most of time.

Maximum stage since at least 1869, that of July 16, 1973.

EXTREMES OUTSIDE PERIOD OF RECORD.--A stage of 26 ft occurred in 1889, but stage for flood in 1913 is unknown, from information by local residents.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

EXTREMES FOR CURRENT YEAR .-- No flow for year.

CAL YR 1983 TOTAL 201.66 MEAN .55 MAX WTR YR 1984 TOTAL 0.00 MEAN .000 MAX

					ME.	AN VALUES						
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
2	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
3	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
4	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
5	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
6	.00	.00	.00	.00	.00	.00	.00	.00	.00	00	.00	.00
7	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
8	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
9	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
10	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
11	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
12	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
13	.00	.00	.00	.00	.00	. 00	.00	.00	.00	.00	. 00	.00
14	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
15	.00	.00	.00	.00	.00	.00	.00	. 00	.00	.00	.00	.00
16	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
17	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
18	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
19	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
20	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
21	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
22	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
23	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
24	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
25	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
26	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
27	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
28	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
29	.00	.00	.00	.00	.00	.00	. 00	.00	.00	.00	.00	.00
30	.00	.00	.00	.00		.00	.00	.00	.00	.00	.00	.00
31	.00		.00	.00		.00		.00		.00	.00	
TOTAL	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
MEAN	.000	.000	.000	.000	.000	.000	.000	.000	. 000	.000	.000	.000
MAX	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
MIN	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
AC-FT	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00

MIN .00

.00 MIN .00

AC-FT 400

AC-FT

.00

08186000 CIBOLO CREEK NEAR FALLS CITY, TX

LOCATION.--Lat 29°00'50", long 97°55'48", Karnes County, Hydrologic Unit 12100304, on right bank at downstream side of pier of bridge on State Highway 123, 5.7 mi northeast of Falls City, and 10.4 mi upstream from mouth.

DRAINAGE AREA. -- 827 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1930 to current year. Monthly discharge only for some periods, published in WSP 1312. REVISED RECORDS.--WSP 733: 1931. WSP 1058: 1935. WSP 1562: 1931(M), 1933. WSP 1923: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 264.28 ft National Geodetic Vertical Datum of 1929. Nov. 4, 1930, to Aug. 4, 1940, water-stage recorder at site 1,600 ft upstream at datum 0.56 ft higher. Aug. 5 to Sept. 13, 1940, nonrecording gage at present site and datum.

REMARKS.--Water-discharge records good. Diversions for irrigation above station. Much of the base flow is effluent from the Carrizo Sands in the vicinity of Sutherland Springs. Flow is affected at times by discharge from flood-detention pools of ten floodwater-retarding structures with a combined detention capacity of 16,620 acre-ft. These structures control runoff from 62.9 mi².

AVERAGE DISCHARGE. -- 54 years, 121 ft 3/s (87,660 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $33,600 \text{ ft}^3/\text{s}$ July 6, 1942 (gage height, 34.45 ft); maximum gage height, 35.44 ft Sept. 28, 1973; no flow July 30, 31, Aug. 4-22, 1956, Aug. 1, 1971.

Maximum stage since at least 1890, that of Sept. 28, 1973.

EXTREMES OUTSIDE PERIOD OF RECORD .-- In October 1913, a stage of 35 ft occurred (discharge, about 35,000 ft3/s).

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2,920 ft 3/s Nov. 6 at 1300 hours (gage height, 13.99 ft), no peak above base of 3,600 ft 3/s; minimum daily, 1.1 ft 3/s July 20, Aug. 9, 10.

buoc .	01 3,000 10	DISCHARGE,	IN CUBIC	FEET PER			YEAR OCTOBER	1983	O SEPTEMBER	1984		
	0.000		500			N VALUE			27.4		1118	414.05
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	16	14	21	22	19	19	17	9.7	7.4	3.8	3.8	1.9
2	16	14	19	23	19	18	18	10	7.2	3.4	3.5	2.1
3	16 15	15 15	20 20	23	19	18	19	9.8	6.7	3.3	3.2	3.7
2 3 4 5	15	576	19	23 24	18 18	17 18	19 18	9.0	6.7	3.1	2.7	4.4 3.8
6 7	15	1360	19	23	18	16	17	9.3	6.6	3.1	3.0	3.8
7	15	153	20	23	17	16	16	12	7.1	3.3	2.2	5.5
8 9	15	47	20	22	17	16	61	15	8.9	2.9	1.5	6.0
10	17 22	26 19	20 19	59 34	18 18	16 15	24 17	9.5	9.3 7.4	2.9	1.1	5.3 6.2
11	20	22	19	25	18	15	15	7.6	6.6	3.5	2.1	6.4
12	18	19	18	32	19	115	14	7.7	8.4	3.1	2.1	5.9
13	18 18	16 15	18 18	27	19	361	13	8.2	9.7	3.1	2.4	4.7
15	17	15	18	24 22	18 19	91 53	13 12	9.4 8.5	8.5	2.9	2.7 3.4	4.6
16	18	14	19	21	21	41	11	8.3	7.4	2.5	18	14
17	18	15	19	20	21	35	11	8.9	7.6	2.9	23	4.1
18 19	18 17	22 16	19 18	20 20	21 20	29 31	10 10	9.1	6.7 7.0	2.0	9.5	4.3
20	17	15	18	20	20	27	10	11	7.0	1.9	2.5	4.5
21	24	15	18	19	20	30	11	17	6.3	1.4	2.0	5.0
22	20	15	19	20	20	33	10	33	5.7	1.4	1.9	5.2
23 24	15 15	16 17	20 20	21 25	19 19	30 29	9.7 9.6	31 26	5.6 5.5	1.2	1.5	5.8
25	15	16	20	34	19	24		20	5.0	2.5	1.6	6.1
26	14	19	20	26	19	22		16	5.1	3.0	1.5	5.9
27 28	14 15	20 19	20 21	24	20	21		13	4.6	2.9	1.8	5.5
29	14	18	23	22 21	19 19	19 18	9.8 9.7	9.8	4.6 3.9	3.4	2.3	6.3 7.0
30	14	20	22	20		18	9.8	8.2	4.0	2.9	2.1	7.2
31	14		22	20	324	17		7.4		3.1	1.7	
TOTAL	515	2583	606	759	551	1228		81.8		83.1	115.7	162.4
MEAN MAX	16.6		19.5	24.5	19.0	39.6		12.3	6.69	2.68	3.73	5.41
MIN	14	1360 14	23 18	59 19	21 17	361 15	61 9.5	33 7.4	9.7 3.9	3.8	1.1	1.9
AC-FT	1020			1510	1090	2440	880	757	398	165	229	322
					0.00				7.7.7			

CAL YR 1983 TOTAL 13538.4 MEAN 37.1 MAX 1360 MIN 7.3 AC-FT 26850 WTR YR 1984 TOTAL 7629.5 MEAN 20.8 MAX 1360 MIN 1.1 AC-FT 15130

08186000 CIBOLO CREEK NEAR FALLS CITY, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: October 1968 to current year. Chemical and biochemical analyses: October 1969 to current year. Sediment records: October 1968 to September 1969.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1968 to current year. WATER TEMPERATURES: October 1968 to current year.

INSTRUMENTATION .-- Beginning March 1981, specific conductance and water temperature are recorded continuously at this

REMARKS.--Interruptions in the record were due to malfunctions of the instrument. Where maximum or minimum specific conductance values are not shown, mean value is eatimated. Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and regression relationships between each chemical constituent and specific conductance. Regression equations developed for this station may be obtained from the Geological Survey District office upon request.

EXTREMES FOR PERIOD OF DAILY RECORD .--WATER TEMPERATURES: Maximum daily, 2,270 micromhos May 20, 21, 1971; minimum daily, 120 micromhos Oct. 7, 1981. WATER TEMPERATURES: Maximum daily, 34.0°C July 31, Aug. 8, 9, 1980; minimum daily, 0.0°C Dec. 25, 26, 1983.

EXTREMES FOR CURRENT YEAR. --SPECIFIC CONDUCTANCE: Maximum daily, 2,210 micromhos Sept. 7; minimum daily, 479 micromhos Nov. 6. WATER TEMPERATURES: Maximum daily, 30.0°C June 26; minimum daily, 0.0°C Dec. 25, 26.

DATE		IME	STRE FLO INST TANE (CF	OW, CAN-	DUC ANG	FIC N- CT-		AND-	AT	PER URE G C	- S	YGEN DIS- DLVI MG/1	ED.	SO (P C SA	GEN, IS- LVED ER- ENT FUR- ION)	DEM BI CH IC	GEN AND, O- EM- AL, DAY G/L)	NE (M A	RD- SS G/L S CO3)	BONA (MC	SS, CAR-
DEC								0													
15 JAN		720		16		1500		8.6		14.		13.			131				430		160
27 MAR	. 1	045	2	26		1300		7.1		11.	5	11.	. 0		102		1.7		420		160
09 APR	. 1	255	1	6	1	1510		9.4		16.	0	10.	3		105		1.8		410		140
26 JUN	. 1	245		9.0	1	700		8.1		23.	5	8.	4		102		2.5		470		220
12 AUG	. 1	315		8.1	- 1	1440		8.1		25.	3	7.	7		96		2.3		350		120
06	. 1	400		3.1	1	850		8.2		31.	0	7.	6		104		2.0		310		89
	DATE	SO (M	CIUM S - LVED G/L CA)	SI SOI (MG	GNE- UM, IS- LVED G/L MG)	SOLV (MC AS	ED	SO	DIUM AD- RP- ION TIO	5	POTAS- SIUM, DIS- SOLVEI (MG/L AS K)	I	ALE INI FIE (MC AS	TY LD	SC (N	FATE S- LVED IG/L SO4)	R D S(HLO- IDE, IS- DLVED MG/L G CL)	RI SO (M	UO- DE, IS- LVED G/L F)	
	DEC 15	13	0	26		160			3		7.4			270	2	40	19	90		.30	
	JAN 27	13	0	22		140)		3		7.5			260	2	10	18	30		.30	
1	MAR 09	12	0	26		160			4		7.4			270	2	70	19	90		.40	
1	APR 26	14	0	29		190			4		8.8			249		20		30		.40	
	JUN 12	10	0	24		170			4		7.9			228		40		90		.40	
I	AUG 06	9		21		220			6		6.2			225		70		0		.40	
	00	,		21		220			0		0.2			225		70	13	,0		.40	
	DATE		S- LVED G/L	SOLI SUM CONS TUEN DI SOL (MG	OF TI- TS, S- VED	NIT GE NITR TOT (MG AS	ATE AL /L	NIT TO	TRO- EN, RITE TAL G/L N)	NO T	GEN, 2+NO3 OTAL MG/L S N)	A	GE	NIA AL /L	ORG TO (M	TRO- EN, ANIC TAL G/L N)	GEN MON ORG TO (N	TRO- I,AM- IIA + GANIC OTAL IG/L IN)	PHO TO (M	OS - RUS, FAL G/L P)	
I	DEC																				
	15 JAN		9.0		920			<	. 010		.20)	•	030		.67		.70		.100	
N	27 IAR		5.7		850		.77		. 030		.80)	•	070		.13		.20		.400	
	09 PR		5.7		940	1	.9		.460		2.4			070		.43		.50		.210	
	26 IUN	1	1	1	100		.29		. 010		.30			220		.58		.80		.210	
	12 UG	1	5		880		.28		.020		.30			060		.64		.70		.380	
	06		7.2		940			<	. 01 0		<.10			030		.57		.60		.240	

GUADALUPE RIVER BASIN 309
08186000 CIBOLO CREEK NEAR FALLS CITY, TX--Continued

MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1983 TO SEPTEMBER 1984

MONTH	YEAR	DISCHARGE (CFS-DAYS)	S PEC IF IC CONDUCT - ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS - SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
OCT.	1983	515	1290	794	1100	150	208	220	301	380
NOV.	1983	2583	699	418	2910	68	477	100	709	220
DEC.	1983	606	1430	889	1450	170	285	250	410	420
JAN.	1984	759	1290	792	1620	150	305	220	442	380
FEB.	1984	551	1260	778	1160	150	216	210	314	380
MAR.	1984	1228	1180	725	2400	130	442	190	643	360
APR.	1984	443.7	1380	855	1020	170	199	240	286	400
MAY	1984	381.8	1500	936	965	190	193	270	277	430
JUNE	1984	200.8	1630	1030	558	210	115	300	164	460
JULY	1984	83.1	1680	1060	239	220	50	320	71	470
AUG.	1984	115.7	1720	1090	340	230	72	330	102	480
SEPT	1984	162.4	2000	1290	567	290	128	410	180	530
TOTAL		7629.5	**	**	14300	**	2690	**	3900	**
WTD.A	VG.	21	1130	696	**	130	**	190	**	340

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN		
	OCTOBER				NOVEMBER			DECEMBER			JANUARY			
1	1350	1330	1340	1310	1300	1300	1560	1540	1540	1370	1350	1360		
2	1350	1330	1330	1330	1300	1310	1540	1500	1520	1360	1350	1360		
3	1330	1310	1320	1340	1320	1330	1510	1490	1500	1360	1350	1350		
4	1320	1290	1300	1330	1310	1320	1510	1490	1500	1360	1340	1350		
5	1310	1290	1300			621	1510	1490	1500	1350	1330	1340		
6	1300	1280	1290			479	1500	1480	1490	1340	1330	1340		
7	1290	1270	1280			888	1490	1470	1480	1340	1320	1330		
7 8 9	1290	1270	1280			1170	1480	1460	1470	1330	1320	1330		
9	1270	1260	1270	1350	1320	1330	1480	1460	1470	1330	1320	1320		
10	1260	1250	1260	1330	1310	1320	1480	1470	1470	1330	1320	1320		
11	1260	1240	1250	1320	1300	1310	1480	1450	1460	1330	1310	1320		
12	1260	1240	1250	1310	1300	1300	1460	1440	1450	1320	1310	1320		
13	1260	1250	1250	1300	1290	1300	1450	1430	1440	1330	1310	1320		
14	1260	1250	1250	1330	1280	1300	1440	1430	1440	1330	1300	1310		
15	1260	1240	1250	1330	1320	1320	1440	1420	1430	1300	1260	1280		
10	1260	1240	1250	1330	1320	1320	1430	1420	1420	1270	1240	1250		
16						1320	1420	1410	1410	1260	1250	1250		
17	1240	1210	1230	1330	1310		1420	1400	1410	1260	1250	1260		
18	1220	1200	1220	1310	1210	1260			1400	1260	1240	1250		
19	1310	1200	1270			1290	1410	1400		1260	1250	1250		
20	1320	1300	1310			1310	1410	1390	1400	1260	1230	1230		
21	1320	1300	1310			1300	1400	1390	1390	1260	1240	1250		
22	1330	1310	1320			1330	1390	1380	1390	1250	1240	1250		
23	1330	1320	1320			1320	1390	1380	1380	1250	1240	1250		
24	1340	1320	1330			1380	1390	1380	1390	1250	1230	1240		
25	1330	1320	1320			1410	1390	1380	1380	1250	1240	1240		
26	1330	1310	1320	444		1440	1380	1370	1380	1250	1230	1240		
27	1330	1310	1320			1480	1380	1370	1370	1250	1220	1240		
28	1330	1320	1330			1490	1380	1360	1370	1240	1220	1230		
29	1330	1320	1320			1510	1380	1360	1370	1240	1200	1220		
30	1320	1300	1320			1530	1370	1360	1370	1210	1180	1190		
31	1310	1290	1300				1370	1360	1360	1190	1170	1180		
MONTH	1350	1200	1290	1350	1210	1280	1560	1360	1430	1370	1170	1280		

MONTH

GUADALUPE RIVER BASIN

08186000 CIBOLO CREEK NEAR FALLS CITY, TX--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

		T	EMPERATURE	, WATER (D	EG. C),	WATER YEAR	OCTOBER 1	983 TO S	EPTEMBER	1984		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
1 2 3 4 5	25.5 25.5 26.0 26.5 27.5	23.0 23.5 24.0 24.5 25.0	24.0 24.5 25.0 25.5 26.0	23.0 23.5 24.0 24.5 24.0	20.5 22.0 22.5 23.0 22.0	21.5 22.5 23.5 24.0 23.0	15.0 14.5 16.0 16.0 17.5	13.5 14.0 14.5 14.0 15.5	14.0 14.0 15.0 15.0 16.5	7.0 9.0 9.0 11.0 11.5	4.0 7.0 7.5 8.5 9.5	5.0 7.5 8.5 9.5 10.5
6 7 8 9	27.5 27.5 27.0 26.5 25.5	26.0 25.5 26.0 24.0 23.5	26.5 26.5 26.5 25.0 24.5	22.0 22.5 22.0 22.0 20.0	20.5 21.5 21.0 20.5 18.0	21.5 22.0 21.5 21.5 18.5	16.5 13.5 14.0 15.0 17.5	13.0 11.5 11.5 13.5 15.5	14.0 12.5 13.0 14.0 16.5	13.0 13.5 13.0 14.5 13.5	10.5 11.5 12.0 13.0 11.0	11.5 12.0 12.5 13.5 12.0
11 12 13 14 15	25.5 25.0 22.0 22.0 22.5	23.0 22.0 20.0 19.5 19.5	24.0 23.0 21.0 20.5 21.0	18.0 18.0 19.0 20.5 20.0	16.0 15.5 16.5 18.0 17.5	17.0 16.5 17.5 19.0 18.5	17.0 16.0 15.0 14.0 13.5	15.0 13.5 14.0 12.5 11.0	16.0 15.0 14.5 13.5 12.5	11.0 10.5 9.0 8.5 7.5	9.0 8.0 8.0 7.0 7.0	10.0 9.0 9.0 8.0 7.0
16 17 18 19 20	23.5 24.5 25.5 26.0 25.5	21.0 22.5 24.0 24.5 25.0	22.0 23.5 24.5 25.0 25.5	18.0 18.0 19.5 20.0 18.0	15.5 15.5 17.5 18.0 16.0	17.0 16.5 18.5 19.5 17.0	13.0 10.5 9.5 7.5 7.0	10.0 9.5 7.5 6.5 6.0	11.5 10.0 9.0 7.0 6.5	8.0 8.0 8.0 7.0 6.5	7.0 7.5 6.5 5.0 5.0	7.5 7.5 7.5 6.0 5.5
21 22 23 24 25	25.5 23.5 23.0 22.5 22.0	23.0 22.0 21.0 20.5 20.5	24.0 23.0 22.0 21.5 21.0	19.0 21.5 21.0 18.0 16.5	15.5 19.0 18.0 16.0 14.0	17.0 20.0 19.0 17.0 15.5	6.5 5.5 4.5 3.5 2.0	5.5 3.5 3.0 1.0	6.0 4.5 3.5 2.0 1.0	6.5 7.0 9.0 9.0 11.0	4.0 6.0 7.0 8.5 8.5	5.5 6.5 8.0 8.5 9.5
26 27 28 29 30 31	21.0 20.0 20.0 20.5 21.5 22.0	19.0 17.5 17.5 18.5 20.0 20.0	20.0 19.0 18.5 19.5 20.5 21.0	18.5 17.0 15.5 14.0 16.5	15.5 15.5 13.0 12.5 14.0	17.0 16.0 14.0 13.5 15.0	1.0 3.5 4.5 3.0 3.0	.0 1.0 2.5 1.5 1.0	.5 2.0 3.5 2.5 2.0 2.0	11.5 12.5 13.0 14.0 13.5 12.0	8.5 9.5 9.5 10.5 12.0 11.0	10.0 10.5 11.0 12.5 12.5 11.5
MONTH	27.5	17.5	23.0	24.5	12.5	18.5	17.5	.0	9.5	14.5	4.0	9.0
DAY	MAX	MIN FEBRUAF	MEAN	MAX	MIN	MEAN H	MAX	MIN APRII	MEAN	MAX	MIN MAY	MEAN
1 2 3 4 5	11.5 12.5 13.5 13.5 13.0	10.5 11.5 10.5 10.5 10.5	11.0 11.5 12.0 12.0 11.5	14.5 18.5 19.0 21.5 20.0	12.5 14.5 17.0 18.5 14.5	13.5 16.0 18.0 19.5 16.5	20.0 21.5 22.0 20.5 19.5	18.5 19.0 19.5 18.5 17.0	19.0 20.0 20.5 19.5 18.0	22.5 23.5 25.0 26.0 27.0	20.0 21.5 22.0 21.5 23.5	21.0 22.5 23.0 23.5 25.0
6 7 8 9	12.0 12.0 12.0 16.0 18.0	9.5 9.0 10.5 12.0 14.5	11.0 10.5 11.5 14.0 16.0	17.0 17.0 18.5 18.0 18.5	13.5 12.5 14.5 16.0 16.0	15.0 15.0 16.0 17.0	18.5 19.0 20.5 21.5 22.0	17.0 18.0 18.5 18.0 19.0	18.0 18.5 19.0 19.5 20.5	27.0 28.0 25.0 24.0 23.5	24.0 25.0 21.5 20.0 20.0	25.5 26.0 23.0 22.0 21.5
11 12 13 14	18.0 19.0 18.0 18.0 19.5	17.0 16.5 15.0 14.5 16.5	17.5 17.5 16.5 16.0 18.0	18.0 19.0 19.0 17.5 19.5	17.0 17.5 16.0 16.0 17.5	17.5 18.5 18.0 17.0 18.5	22.5 22.5 23.0 22.5 20.5	19.0 20.0 19.5 20.0 18.0	20.5 21.0 21.5 21.0 19.5	24.5 25.5 26.5 26.0 25.0	20.5 22.5 23.5 23.5 23.0	22.5 24.0 24.5 25.0 24.0
16 17 18 19 20	18.5 18.5 19.0 17.5 14.5	15.5 16.0 17.5 14.5 13.0	17.0 17.0 18.0 15.5 13.5	22.0 22.5 23.5 22.5 20.5	19.0 20.5 20.5 19.5 17.5	20.0 21.5 22.0 20.5 19.0	20.0 21.0 22.0 24.5 25.5	17.0 16.5 18.0 20.0 22.0	18.5 18.5 20.0 22.0 23.5	24.0 23.0 22.5 25.0 26.5	23.0 22.5 22.0 22.0 23.5	23.0 22.5 22.5 23.0 24.5
21 22 23 24 25	15.0 16.0 17.0 17.5 18.0	12.0 12.0 13.0 14.5 14.5	13.5 14.0 15.0 16.0 16.0	20.5 20.5 22.5 21.5 21.5	17.5 18.0 19.5 19.0 18.5	19.0 19.0 20.5 20.5 20.0	24.5 22.5 22.5 23.0 21.5	22.5 19.5 18.5 19.5 20.0	23.0 21.0 20.5 21.0 21.0	25.5 26.5 27.0 27.0 26.0	23.5 24.0 25.0 25.0 25.0	24.5 25.0 26.0 26.0 25.0
26 27 28 29 30 31	18.5 15.5 15.0 15.0	15.5 13.5 12.5 11.5	17.5 14.5 13.5 13.0	22.5 24.0 22.0 20.0 19.5	20.0 21.0 19.0 17.0	21.0 22.0 20.0 18.5 18.5	25.0 24.5 24.5 24.5 23.5	21.0 22.5 22.5 23.0 20.5	22.5 23.5 23.5 24.0 21.5	27.5 28.0 27.0 26.0 23.5 24.0	25.0 25.0 25.0 22.5 21.0 20.0	26.0 26.5 26.0 24.0 22.5 22.0
31 MONTH	19.5	9.0	14.5	19.5	17.5	18.5	25.5	16.5	20.5	28.0	20.0	24.0
327777		200 23										

20.5

30.0

MONTH

26.5

29.0

20.0

GUADALUPE RIVER BASIN 08186000 CIBOLO CREEK NEAR FALLS CITY, TX--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984--Continued MIN MEAN MAX MEAN MEAN MAX MIN MIN MEAN MAX MIN DAY MAX SEPTEMBER AUGUST JUNE JULY 27.0 25.0 26.5 ::: 29.0 25.0 27.5 22.5 24.5 25.0 25.0 20.5 25.5 25.0 ------26.5 25.0 21.0 23.0 29.0 26.0 27.5 2 25.5 24.0 ------27.0 3 22.0 23.5 28.5 26.0 24.0 ------23.0 24.0 25.0 4 5 24.0 28.5 26.0 28.0 ---26.0 21.5 23.5 29.0 28.5 28.5 28.5 28.5 25.0 26.0 24.0 25.0 25.5 25.5 28.0 67 27.0 25.5 22.5 23.0 ::: ------27.5 27.5 28.0 27.5 27.5 ---25.0 20.0 25.0 28.5 26.5 28.5 89 27.5 26.0 25.5 24.5 28.0 26.0 27.5 26.0 27.5 26.5 28.5 25.0 27.0 26.5 10 25.5 28.5 28.5 27.5 27.0 25.0 26.5 25.0 25.0 25.5 25.0 27.0 27.0 11 27.5 25.0 26.0 28.0 26.5 27.5 28.5 28.5 12 26.5 25.5 26.0 26.0 27.0 26.0 26.5 25.5 24.5 25.0 25.0 27.0 28.0 27.5 24.5 26.0 28.5 28.0 28.0 27.0 26.0 14 26.0 27.0 26.5 24.5 25.0 28.0 28.0 26.5 27.5 28.0 24.5 23.5 23.5 22.5 20.5 26.0 26.5 26.5 25.0 29.0 26.0 27.5 16 17 28.0 21.0 25.0 26.5 25.0 26.5 26.5 27.5 28.0 28.0 25.0 29.0 23.5 23.5 23.5 23.5 22.5 27.5 29.5 26.0 28.5 28.5 29.0 18 19 20 26.5 26.5 26.5 28.0 25.5 22.0 27.5 26.0 27.5 29.0 28.0 28.5 25.5 22.0 22.5 29.0 25.5 22.5 21.0 22.0 27.5 27.0 27.0 27.5 21 22 23 24 25 29.0 29.0 25.5 27.0 28.0 26.5 28.5 26.0 27.0 25.5 22.0 23.5 25.0 25.5 27.5 27.5 26.0 26.0 28.0 27.5 26.0 26.0 23.5 25.0 25.0 25.0 27.5 29.0 26.0 28.0 26.5 27.5 27.0 26.5 26.0 28.0 27.5 26.5 28.0 28.0 27.5 29.5 25.0 26.0 29.5 23.5 27.0 27.0 27.0 26.0 24.0 22.0 27.5 26.0 26 27 28 29 27.5 28.0 21.0 26.5 27.0 29.5 30.0 27.0 20.5 22.0 28.0 25.0 29.5 28.5 26.5 26.5 26.5 24.0 21.5 22.5 27.5 27.0 28.5 27.5 25.0 26.5 26.0 21.0 18.0 18.5 26.0 25.0 29.5 28.0 18.0 19.5 28.0 25.0 27.0 30 29.5 27.0 28.5 26.5 26.5 26.5 20.0 24.0 27.0 25.5 31 ------27.5 17.0 24.0 27.0 27.0 29.5 20.5

08186500 ECLETO CREEK NEAR RUNGE. TX

LOCATION.--Lat 28°55'12", long 97°46'19", Karnes County, Hydrologic Unit 12100303, on left bank 55 ft downstream from Farm Road 81, 215 ft left of left end of bridge, 2.6 mi upstream from Salt Branch, 4.5 mi northwest of Runge, and 5.2 mi upstream from mouth.

DRAINAGE AREA -- 239 mi2.

PERIOD OF RECORD .-- March 1962 to current year. Water-quality records. -- Sediment records: February 1966 to September 1975.

GAGE .-- Water-stage recorder. Datum of gage is 215.03 ft State Department of Highways and Public Transportation datum.

REMARKS.--Records good except those for periods of no gage-height record, which are poor. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE. -- 22 years, 37.8 ft 3/s (2.15 in/yr), 27,390 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 74,000 ft 3/s Aug. 31, 1981 (gage height, 34.10 ft, from floodmark), from rating curve extended above 7,300 ft 3/s on basis of slope-area measurement of peak flow; no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood information begins with the flood in June 1903, which reached a stage of 34 ft, discharge 71,000 ft³/s. A stage of 32 ft, discharge 39,000 ft³/s, occurred in September 1952, from information by local residents.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,080 ft³/s Oct. 21 at 0600 hours (gage height, 9.98 ft), no other peak above base of 700 ft³/s; no flow for many days.

		D	ISCHARGE,	IN CUE	SIC FEET	PER SEC	OND, WATI	ER YEA	R OCTO	BER	1983	то	SEPTEMBER	1984		
DAY	oc	T	NOV	DEC	JAN	FEI	3 M	AR	APR		MAY		JUN	JUL	AUG	SEP
1	.0	0	.91	.00	.17	.00) .	02	.00		. 00		.00	.00	.00	.00
2	.0		1.0	.00	.09	.00		06	.00		.00		.00	.00	.00	.00
3	. 0		1.2	.00	.06	. 00		08	.00		.00		.00	.00	.00	.00
3 4	.0		1.3	.00	.06	.00		08	.00		.00		.00	.00	.00	.00
5	.0		2.2	.00	.06	. 00		06	.00		.00		.00	.00	.00	.00
6	.0	0 2	91	. 07	.06	.00) .(06	.00		.00		.00	.00	.00	.00
7	.0	0 2	42	.00	. 07	. 00	. (06	.00		.00		.00	.00	.00	.00
8	.0		63	.00	. 07	.00		2	.00		.38		.00	.00	.00	.00
9	.0		15	.00	37	. 00			.91		.18		.00	.00	.00	.00
10	25		3.7	.00	55	.00			4.4		.16		.00	.00	.00	.00
11	7.3		2.0	.00	20	.00	55		.83		.12		.00	.00	.00	.00
12	.9	5	.84	.00	5.0	.00			.16		.12		.00	.00	.00	.00
13	. 2	0	. 49	.00	1.5	. 00			. 04		.12		.00	.00	.00	.00
14	.1	3.	.16	.00	.60	.00	5.2)	.00		.12		.00	.00	.00	.00
15	.1	7	. 07	.00	.30	. 00			.00		.10		.00	.00	.00	.00
16	.0	9	. 04	.00	.18	.00	6.7		.00		.12		.00	.00	.00	.00
17	. 0.	3	. 02	.00	.13	.00	12		.00		.16		.00	. 00	.00	.00
18	.0	0	. 01	.00	. 06	.00	5.7		.00		.16		.00	.00	.00	.00
19	. 0	0	.00	.00	.00	. 00			.00		.16		. 00	.00	.00	.00
20	14		.00	.00	.00	.00			.00		.16		.00	.00	.00	.00
21	493		.00	.00	.00	.00		7	.00		.18		.00	.00	.00	.00
22	59		.00	.00	.00	.00	5.4		.00		.16		.00	.00	.00	.00
23	13		.00	.00	.00	. 00			.00		.14		.00	.00	.00	.00
24	5.1		.00	. 01	. 02	.00			.00		. 07		.00	.00	.00	.00
25	2.6		.00	. 01	1.6	.00			.00		. 03		.00	. 00	.00	.00
26	1.8		.00	.01	14	.00	. 2	3	.00		. 01		.00	.00	.00	.00
27	1.4		.00	. 01	6.1	. 00	. 1	4	.00		.00		.00	.00	.00	.00
28	1.2		.00	. 05	1.3	.00	.0	14	.00		.00		.00	.00	.00	.00
29	1.1		.00	.06	. 34	. 00	. (0	.00		.00		.00	.00	.00	.00
30	.91	1	.00	.06	.12		.0	0	.00		.00		.00	.00	.00	.00
31	. 83	3		.19	. 04		. (.00			.00	.00	
TOTAL	627.81	62	24.94	.47	143.93	.00	743.6	2	6.34		2.65	7	.00	.00	.00	.00
MEAN	20.3		20.8	. 015	4.64	.000			. 21		. 085		.000	.000	.000	.000
MAX	493		291	.19	55	.00			4.4		.38		.00	.00	.00	.00
MIN	. 00		.00	.00	.00	.00			.00		.00		.00	.00	.00	.00
CFSM	.09		. 09	.000	. 02	.000			.001		.000		.000	.000	.000	.000
IN.	.10		.10	.00	. 02	.00			.00		.00		.00	.00	.00	.00
AC-FT	1250		1240	.9	285	.00			13		5.3		.00	.00	.00	.00
CAL YR WTR YR		COTAL	5045.08 2149.76		13.8	MAX 535 MAX 493	MIN MIN	.00	CFSM .			.79	AC-FT AC-FT	10010		

08188500 SAN ANTONIO RIVER AT GOLIAD, TX (National stream-quality accounting network)

LOCATION.--Lat 28°38'58", long 97°23'04", Goliad County, Hydrologic Unit 12100303, on right bank at upstream side of bridge on U.S. Highway 183, 1.2 mi southeast of courthouse in Goliad, 11.7 mi upstream from Manahuilla Creek, and 66.5 mi upstream from mouth.

DRAINAGE AREA .-- 3,921 mi2.

TOTAL

AC-FT

MEAN

MAX MIN

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- June 1924 to March 1929, February 1939 to current year.

REVISED RECORDS. -- WSP 1923: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 91.08 ft National Geodetic Vertical Datum of 1929. Prior to Mar. 31, 1929, nonrecording gage at Texas and New Orleans Railroad Co. bridge 0.9 mi upstream at same datum.

REMARKS.--Water-discharge records good. Many diversions and regulations above station (see station 08181800). Flow is affected at times by discharge from flood-detention pools of 36 floodwater-retarding structures with a combined detention capacity of 66,730 acre-ft. These structures control runoff from 213 mi².

AVERAGE DISCHARGE.--49 years (water years 1925-28, 1940-84), 662 ft³/s (479,600 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 138,000 ft³/s Sept. 23, 1967 (gage height, 53.7 ft, from floodmark), from rating curve extended above 26,000 ft³/s on basis of slope-area measurement of peak flow; minimum observed, 1.2 ft³/s June 16, 1956.

Maximum stage since 1869, that of Sept. 23, 1967. Flood of July 9, 1942, reached a stage of 44.9 ft.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Floods in October 1913 and June 15, 1935, reached about the same stage as flood in 1942. Maximum stage since about 1800 occurred in 1869 and was several feet higher than flood of Sept. 23, 1967.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 3,120 ft³/s Nov. 8 at 0300 hours (gage height, 14.94 ft), no peak above base of 6,000 ft³/s; minimum daily, 117 ft³/s Sept. 2, 16.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

MEAN VALUES

DAY OCT NOV DEC FEB APR MAY JUN JUL AUG SEP JAN 152 276 263 191 353 359

CAL YR 1983 TOTAL 160318 MEAN 439 MAX 6700 MIN 162 AC-FT 318000 WTR YR 1984 TOTAL 104935 MEAN 287 MAX 2670 MIN 117 AC-FT 208100

08188500 SAN ANTONIO RIVER AT GOLIAD, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: September 1945 to September 1946, September 1958 to current year. Chemical and biochemical analyses: January 1968 to current year. Pesticide analyses: January 1968 to September 1982. Sediment records: October 1974 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: September 1945 to September 1946, September 1958 to current year. WATER TEMPERATURES: September 1958 to current year.

REMARKS.--Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and regression relationships between each chemical constituent and specific conductance. Regression equations developed for this station may be obtained from the Geological Survey District office upon request.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 1,580 micromhos July 22, 1978; minimum daily, 138 micromhos Oct. 27, 1960.
WATER TEMPERATURES: Maximum daily, 36.0°C June 5, 1969; minimum daily, 0.0°C on many days during winter months.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum daily, 1,330 micromhos May 14; minimum daily, 411 micromhos Nov. 8.
WATER TEMPERATURES: Maximum, 34.0°C June 25, July 22; minimum daily, 6.0°C Dec. 24, 27.

DATE	T IME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)
OCT 11 JAN	1410	329	1040	7.6	25.0	5	30	7.0	85	1.0	210
16	1650	310	911	7.7	9.0	60	58	10.5	91	1.6	96
FEB 28	0900	321	1100	7.9	13.0	20	26	9.2	86	1.2	145
APR											84
09 JUL	1510	257	1160	7.9	23.0	40	39	8.4	100		
09 AUG	1450	145	1240	8.2	30.0	39	38	7.8	104	2.1	96
21	1000	210	1060	7.9	28.5	70		6.0	79	2.5	230
DATE	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD-	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT 11 JAN	240	320	95	94	20	96	2	7.5	224	110	130
16	200	270	63	80	16	73	2	5.8	204	82	100
FEB 28	55	330	90	99	21	97	2	6.5	244	120	130
APR 09	320	340	96	100	22	110	3	7.5	246	120	170
JUL											
09 AUG	150				22	120	3	8.2	244	110	170
21	260	280	43	79	19	92	3	8.6	233	92	120
DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)
OCT											
11 JAN	.50	17	641	620	76	8	5.7	.040	5.7	5.6	.040
16 FEB	.30	12	510	500	84	20	3.7	.030	3.7	3.7	.060
28	.50	13	666	640	65	8	5.6	.040	5.6	5.7	<.010
APR 09	.60	17	733	700	89	18	5.6	.020	5.6	5.5	.030
JUL 09	.60	18	720	690	72	9	4.6	.030	4.6	3.7	.020
AUG 21	.50	17	593	570	120	13	3.6	.870	4.5	4.6	.190

08188500 SAN ANTONIO RIVER AT GOLIAD, TX--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	PHOS- PHORUS, ORTHO, DIS- SOLVED (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
OCT										
11	.040	1.4	1.4	2.10	2.00	2.00	4.3	66	59	93
JAN 16	.040	1.1	1.2	1.10	1.00	1.00	6.6	105	88	87
FEB										
28 APR	.030		.90	1.50	1.50	1.00	4.7	63	55	98
09	.010	1.1	1.1	3.10	3.00	2.30	5.5	83	58	97
JUL 09	.040	1.1	1.1	2.30	2.30	1.80	5.2	78	31	96
AUG										
21	.120	1.1	1.3	1.60	1.30	1.30	14	186	105	94
DATE	T IME	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COBALT, DIS- SOLVED (UG/L AS CO)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB)
OCT										
11	1410	3	90	<.5	<1	<1	<3	3	4	4
JAN 16	1650	3	67	<.5	<1	<1	<3	6	10	2
APR	1030	3	67	(.)	(1	(1	(3	0		
09	1510	2	95	. 5	<1	1	<3	<1	6	<1
JUL 09	1450	4	95	<1.0	<1	<1	<3	3	5	<1
DATE	LITHIUM DIS- SOLVED (UG/L	MANGA- NESE, DIS- SOLVED (UG/L	MERCURY DIS- SOLVED (UG/L	MOLYB- DENUM, DIS- SOLVED (UG/L	NICKEL, DIS- SOLVED (UG/L	SELE- NIUM, DIS- SOLVED (UG/L	SILVER, DIS- SOLVED (UG/L	STRON- TIUM, DIS- SOLVED (UG/L	VANA- DIUM, DIS- SOLVED (UG/L	ZINC, DIS- SOLVED (UG/L
DATE	AS LI)	AS MN)	AS HG)	AS MO)	AS NI)	AS SE)	AS AG)	AS SR)	AS V)	AS ZN)
OCT	25							1000		
11 JAN	35	4	<.1	<10	8	<1	<1	1000	7	11
16	33	3	.1	<10	4	<1	<1	810	<6	28
APR 09	. 39	3	.1	<10	3	1	<1	1100	6	37
JUL									leng .	
09	43	4	<.1	<10	9	2	<1	1100	10	30

MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1983 TO SEPTEMBER 1984

MONTH	YEAR	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT - ANCE (MICRO - MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
OCT.	1983	11508	941	550	17100	110	3280	99	3060	310
NOV.	1983	14405	774	451	17500	83	3240	80	3110	260
DEC.	1983	9092	1130	667	16400	140	3470	120	3020	360
JAN.	1984	11668	1010	592	18600	120	3720	110	3380	330
FEB.	1984	9801	1120	659	17400	140	3670	120	3210	350
MAR.	1984	12403	997	584	19600	120	3890	110	3540	320
APR.	1984	7635	1180	697	14400	150	3120	130	2670	370
MAY	1984	7703	1030	608	12600	130	2620	110	2320	330
JUNE	1984	6046	1090	643	10500	130	2180	120	1930	350
JULY	1984	4835	1180	700	9130	150	2000	130	1700	370
AUG.	1984	5487	1080	638	9450	130	1970	120	1740	340
SEPT	1984	4352	1140	672	7900	140	1690	120	1460	360
TOTAL		104935	**	**	171000	**	34800	**	31100	**
WID.AV	/G.	287	1030	602	**	120	**	110	**	330

08188500 SAN ANTONIO RIVER AT GOLIAD, TX--Continued

Not Not Not DEC JAN PER NAK AFR NAY JUN JUN AUG SEP		SPECIFIC	CONDUCTANCE	(MICROMHOS/CM	AT 25	DEG. C),	WATER YEAR	OCTOBER	1983 TO	SEPTEMBER	1984	
2 935 1180 1030 1120 1130 1130 1200 1010 905 1220 1230 3 943 1170 1200 1070 1080 1150 1130 1120 1200 1070 1200 1070 1080 1150 1130 1120 1200 1070 1200 1070 1080 1150 1130 1120 1200 1200 1200 1070 1080 1150 1130 1140 1150 1200 1200 1140 1120 1200 1200 1200 120	DAY	OCT	NOV DE	C JAN			APR	MAY	JUN	JUL	AUG	SEP
7 1100	2 3 4	935 943 962	1180 103 1170 104 1210 106	0 1140 0 1110 0 1060	1070 1110 1130	1150 1160 1150	1130 1130 1140	1270 1260 1250	1010 1030 1050	905 1120 1240	1220 1240 1210	1230 1240 1250
13	7 8 9	1100 1080 1040	526 107 411 108 457 109	0 1030 0 1080 0 1040	1110 1120 1140	1140 1150 1160	1160 1180 1220	1260 1250 1280	934 1080 1160	1170 1200 1210	1220 1180 1170	1220 975 1020
170	12 13 14	950 765 785	630 108 720 112 830 113	0 882 0 900 0 718	1140 1160 1120	1190 1220 901	1100 1090 1080	1200 1240 1330	1130 1110 1130	1070 1190 1230	1210 1200 1230	1110 997 1020
\$\$ \$802	17 18 19	856 884 1020	1100 118 1120 117 1100 116	0 950 0 1030 0 1100	1120 1120 1130	777 646 718	1220 1210 1230	1140 1170 1180	1100 1110 1090	1260 1270 1260	1130 1090 796	1210 1190 1010
28	22 23 24	802 895 958	1180 118 1150 122 1160 121	0 1180 0 1160 0 1130	1120 1160 1120	1060 927 1000	1290 1280 1270	963 751 556	1040 1130 1150	1240 1260 1280	900 862 910	1130 1210 1220
Temperature, Water (Deg. C), Water Year October 1983 TO September 1984	27 28 29 30	1140 1180 1170 1180	1030 119 1010 117 1050 118 1090 117	0 1110 0 1110 0 1060 0 1020	1100 1090 1100	1000 1040 1100 1130	1180 1190 1230 1250	789 849 950 1020	1210 1190 1200 1240	1240 1200 1170 1150	1100 1160 1180 1220	1220 1230 1170 1140
DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 1 21.0 16.0 13.5 13.5 15.5 27.0 25.0 26.0 33.5 31.0 30.0 2 22.0 16.5 14.5 15.0 18.0 23.5 26.5 31.0 29.0 32.0 27.0 3 22.5 18.5 11.5 14.5 15.0 20.5 23.0 24.5 28.0 32.0 31.0 28.0 4 20.0 17.0 14.5 15.0 20.5 23.0 29.5 29.0 33.0 29.0 29.0 5 29.5 21.0 14.5 16.0 16.5 23.0 27.5 28.0 33.0 31.0 30.0 6 22.5 17.0 15.0 15.0 18.0 21.0 29.5 30.5 32.0 29.0 29.0 7 28.5 15.5 14.5 16.0 17.0 20.5 31.0 30.5 30.5 29.0 8 27.5 25.5 17.0 14.5 15.0 15.5 18.5 21.5 28.5 30.0 33.0 31.0 30.0 9 22.5 16.5 16.0 18.0 20.0 27.5 28.0 33.0 33.0 31.0 29.0 10 28.0 20.5 21.0 14.0 20.0 21.0 26.0 30.0 32.0 30.0 30.0 11 19.5 19.5 14.5 19.0 19.0 26.0 28.0 29.0 30.0 30.0 31.0 11 19.5 19.5 14.5 19.0 19.0 26.0 28.0 29.0 30.0 29.0 12 22.5 18.5 18.0 13.5 21.0 24.0 27.0 28.5 28.5 30.0 32.0 30.0 30.0 31.0 14 22.0 22.5 18.5 18.0 13.5 21.0 24.0 27.0 28.5 28.5 30.0 32.0 30.0 29.0 15 24.5 23.5 19.5 11.5 19.5 21.0 24.0 27.0 28.5 28.5 30.0 33.0 30.0 30.0 30.0 30.0 30.0 30			973 114	0 1030	1120	1030	1190	1120	1100	1200	1110	1150
DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 1 21.0 16.0 13.5 13.5 15.5 27.0 25.0 26.0 33.5 31.0 30.0 2 22.0 16.5 14.5 15.0 18.0 23.5 26.5 31.0 29.0 32.0 27.0 3 22.5 18.5 11.5 14.5 15.0 20.5 23.0 29.5 29.0 33.0 29.0 29.0 4 20.0 17.0 14.5 15.0 20.5 23.0 29.5 29.0 33.0 29.0 29.0 5 29.5 21.0 14.5 16.0 16.5 23.0 27.5 28.0 33.0 31.0 30.0 6 22.5 17.0 15.0 15.0 18.0 21.0 29.5 30.5 32.0 29.0 29.0 7 28.5 15.5 14.5 16.0 17.0 20.5 31.0 30.5 30.5 29.0 8 27.5 25.5 17.0 14.5 16.0 17.0 20.5 31.0 30.5 30.5 29.0 9 22.5 16.5 16.6 18.0 20.0 25.0 27.5 28.0 33.0 31.0 30.0 10 28.0 20.5 21.0 14.0 20.0 21.0 26.0 30.0 32.0 30.0 30.0 11 19.5 19.5 14.5 19.0 19.0 26.0 30.0 32.0 30.0 30.0 12 22.5 18.5 18.0 13.5 21.0 24.0 27.0 28.5 28.5 30.0 33.0 30.0 30.0 11 2 19.5 19.5 14.5 19.0 19.0 26.0 28.0 29.0 30.0 29.0 12 22.5 18.5 18.0 13.5 21.0 24.0 27.0 28.5 28.5 30.0 33.0 30.0 30.0 14 22.0 22.5 18.5 18.0 13.5 21.0 24.0 27.0 28.5 28.5 30.0 33.0 30.0 30.0 15 24.5 18.0 22.5 13.0 20.0 23.5 27.0 30.0 32.0 30.0 29.0 16 25.0 24.0 13.5 10.5 20.0 24.5 23.0 26.0 31.0 33.0 30.0 29.0 16 25.0 24.0 13.5 10.5 20.0 24.5 23.0 26.0 31.0 33.0 30.0 29.0 17 23.5 19.5 11.5 10.5 20.0 24.5 23.0 26.0 31.0 33.0 30.0 29.0 18 28.0 20.0 21.0 14.0 11.5 19.5 22.0 28.0 28.5 31.0 33.0 31.0 26.0 19 24.5 23.5 8.5 9.0 17.5 22.0 28.0 28.5 32.0 29.0 30.0 29.0 16 25.0 24.0 13.5 10.5 20.0 24.5 23.5 24.5 26.5 30.5 32.0 30.0 29.0 17 23.5 19.5 11.5 9.5 21.5 22.0 28.0 28.5 32.0 32.0 30.0 29.0 27.0 28.5 23.5 8.5 9.0 17.5 22.0 28.0 28.5 32.0 32.0 30.0 29.0 28.0 22.5 13.0 20.0 9.0 8.5 14.0 22.5 23.0 24.0 29.5 31.0 33.5 33.0 31.0 26.0 29 26.0 20.0 9.0 8.5 8.0 16.0 22.5 23.0 26.0 31.0 33.5 33.0 31.0 26.5 29 26.0 20.0 9.0 8.5 8.0 16.0 22.5 28.0 28.5 32.0 32.0 33.0 30.0 27.0 26 20.0 20.0 7.0 11.5 17.5 22.0 28.0 28.5 32.0 32.0 30.0 33.0 30.0 27.0 28 23.5 17.5 6.0 14.0 17.5 18.5 20.0 26.0 30.0 33.5 33.0 30.0 27.0 28 23.5 17.5 6.0 14.0 17.5 18.5 20.0 24.0 29.5 31.0 33.5 33.0 30.0 27.5 29 21.5 18.5 8.0 16.5 17.5 22.0 26.0 30.0 33.							S 045045-175	Na lan es		1000		
1	250					ONCE-DAI	LY				AUG	SED
1												
7 28.5 15.5 14.5 16.0 17.0 20.5 31.0 30.5 30.5 29.0 8 27.5 25.5 17.0 14.5 15.5 18.5 21.5 28.5 30.0 33.0 31.0 29.0 10 28.0 20.5 21.0 14.0 20.0 21.0 26.0 30.0 32.0 30.0 31.0 11 19.5 19.5 14.5 19.0 19.0 26.0 28.0 29.0 30.0 29.0 12 22.5 18.5 18.0 13.5 21.0 24.0 27.0 28.5 28.5 32.0 29.0 30.0 29.0 14 22.0 22.5 14.0 11.5 19.5 22.0 28.0 28.5 31.5 32.0 30.0 29.0 14 22.0 22.5 14.0 11.5 19.5 22.0 28.0 28.5	2 3 4		23.0 16. 22.5 18. 20.0 17.	5 14.5 5 11.5 0 14.5	15.0 14.5 15.0	18.0 19.0 20.5	23.5 24.5 23.0	26.5 28.0 29.5	31.0	29.0 32.0 33.0	32.0 31.0 29.0	27.0 28.0 29.0
12 22.5 18.5 18.0 13.5 21.0 24.0 27.0 28.5 28.5 32.0 39.0 30.0 29.0 13 24.0 18.0 22.5 13.0 20.0 23.5 27.0 30.0 32.0 30.0 29.0 15 24.5 23.0 15.5 10.5 21.0 23.5 24.5 26.5 30.5 32.0 29.0 29.0 16 25.0 24.0 13.5 10.5 20.0 24.5 23.0 26.0 31.0 33.0 29.0 27.0 17 23.5 19.5 11.5 9.5 21.5 23.0 24.5 25.5 31.0 33.5 30.0 27.0 17 23.5 19.5 11.5 9.5 21.5 23.0 24.5 25.5 31.0 33.5 30.0 27.0 18 28.0 21.0 11.0 10.0 20.5 23.5 25.5 26.0 30.0 33.0 31.0 26.0 29 24.5 23.5 8	7 8 9	28.5 27.5	25.5 17. 22.5 16.	5 14.5 0 14.5 5 16.0	16.0 15.5 18.0	17.0 18.5 20.0	20.5 21.5 25.0	31.0 28.5 27.5	30.5 30.0 29.0	33.0 31.0	30.5 31.0 30.0	29.0 29.0 30.0
17 23.5 19.5 11.5 9.5 21.5 23.0 24.5 25.5 31.0 33.5 30.0 27.0 18 28.0 21.0 11.0 10.0 20.5 23.5 25.5 26.0 30.0 33.0 31.0 26.5 19 24.5 23.5 8.5 9.0 17.5 22.0 28.0 24.5 30.5 32.0 31.0 26.5 20 26.0 20.0 9.0 8.5 14.0 24.0 25.0 31.0 32.0 31.0 26.5 21 22.0 22.0 9.5 8.0 16.0 22.5 28.0 28.5 32.0 31.0 32.0 31.0 26.0 22 20.0 20.0 7.0 11.5 17.5 23.0 24.0 29.5 31.0 34.0 31.0 26.0 23 21.5 20.0 9.5 12.5 19.0 23.0 25.0 29.5 33.0 33.0 31.0 27.5 23 21.5 20.0 9.5 12.5 <td>12 13 14</td> <td>22.5 24.0 22.0</td> <td>18.5 18.0 22.5 14.</td> <td>0 13.5 5 13.0 0 11.5</td> <td>21.0 20.0 19.5</td> <td>24.0 23.5 22.0</td> <td>27.0 27.0 28.0</td> <td>28.5</td> <td>28.5 30.0 31.5</td> <td>32.0 32.0 32.0</td> <td>29.0 30.0 30.0</td> <td>30.0 29.0 29.0</td>	12 13 14	22.5 24.0 22.0	18.5 18.0 22.5 14.	0 13.5 5 13.0 0 11.5	21.0 20.0 19.5	24.0 23.5 22.0	27.0 27.0 28.0	28.5	28.5 30.0 31.5	32.0 32.0 32.0	29.0 30.0 30.0	30.0 29.0 29.0
22 20.0 20.0 7.0 11.5 17.5 23.0 24.0 29.5 31.0 34.0 31.0 27.5 23 21.5 20.0 9.5 12.5 19.0 23.0 25.0 29.5 33.0 33.0 31.0 25.0 24 23.0 18.0 6.0 11.5 18.5 20.0 26.0 30.0 32.5 32.0 30.0 30.5 25 24.0 21.0 6.5 14.5 18.0 22.0 24.0 28.5 34.0 31.0 31.0 29.0 26 20.0 21.0 9.0 14.0 20.0 25.0 26.5 30.0 33.5 32.0 30.0 28.5 27 22.5 17.5 6.0 14.0 17.0 24.0 29.5 31.0 33.5 32.0 30.0 27.0 28 23.5 7.5 14.5 17.5 23.5 28.5 29.5 33.5 33.0 30.0 27.0 29 21.5 18.5 8.0 16.5 <td>17 18 19</td> <td>23.5 28.0 24.5</td> <td>19.5 11. 21.0 11. 23.5 8.</td> <td>5 9.5 0 10.0 5 9.0</td> <td>21.5 20.5 17.5</td> <td>23.0 23.5 22.0</td> <td>24.5 25.5 28.0</td> <td>25.5 26.0 24.5</td> <td>31.0 30.0 30.5</td> <td>33.5 33.0 32.0</td> <td>30.0 31.0 31.0</td> <td>27.0 26.0 26.5</td>	17 18 19	23.5 28.0 24.5	19.5 11. 21.0 11. 23.5 8.	5 9.5 0 10.0 5 9.0	21.5 20.5 17.5	23.0 23.5 22.0	24.5 25.5 28.0	25.5 26.0 24.5	31.0 30.0 30.5	33.5 33.0 32.0	30.0 31.0 31.0	27.0 26.0 26.5
27	22 23 24	20.0 21.5 23.0	20.0 7. 20.0 9. 18.0 6.	0 11.5 5 12.5 0 11.5	17.5 19.0 18.5	23.0 23.0 20.0	24.0 25.0 26.0	29.5 29.5 30.0	31.0 33.0 32.5	34.0 33.0 32.0	31.0 31.0 30.0	27.5 25.0 30.5
	27 28 29 30	22.5 23.5 21.5 19.0	17.5 6. 7. 18.5 8. 15.5 9.	0 14.0 5 14.5 0 16.5 0 14.5	17.0 17.5 17.5	24.0 23.5 22.0 21.5	29.5 28.5 26.0 24.5	31.0 29.5 28.0	33.5 33.5 32.0 33.5	33.0 31.0 31.0	30.0 32.0 31.0 31.0	27.0 26.5 21.5 22.0

08188600 GUADALUPE-BLANCO RIVER AUTHORITY CALHOUN CANAL FLUME NO. 1 NEAR LONG MOTT, TX

LOCATION.--Lat 28°29'44", long 96°46'18", Calhoun County, Hydrologic Unit 12100204, on right bank at concrete Parshall flume No. 1, 518 ft upstream from State Highway 185, 1,900 ft downstream from pumping station on Goff Bayou, and 1.1 mi northwest of Long Mott.

PERIOD OF RECORD.--March 1968 to Feburary 1970 (monthly discharge only), March 1970 to current year.

GAGE.--Water-stage and velocity recorders, duplex water-stage recorder, and Parshall flume. Datum of gage is 23.53 it National Geodetic Vertical Datum of 1929. Prior to Mar. 6, 1981, deflection-vane recorder.

REMARKS.--Records fair. Flow is diverted from Guadalupe River 550 ft upstream from Guadalupe River near Tivoli (station 08188800), and then through a system of canals, Hog Bayou, and Goff Bayou, a distance of 8.9 mi to the pumping station on Goff Bayou 1,900 ft upstream from flume No. 1. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE. -- 16 years (water years 1969-84), 96.3 ft3/s (69,770 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 311 ft³/s July 7, 1968; no flow at times in 1968-74 and 1977-84.

		DISCHAR	GE, IN CU	BIC FEET		D, WATER EAN VALUE	YEAR OCTOBE	R 1983 T	O SEPTEMBER	1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	130 139 144 144 137	.00 .00 .00 .00	36 26 6.0 .00 8.0	15 15 23 29 29	15 23 19 15 15	.00 .00 .00 .00	43 52 58 52 34	137 152 150 165 187	212 166 137 130 151	259 184 159 188 202	86 78 65 65 45	150 122 130 94 67
6 7 8 9	134 93 80 80 103	.00 16 38 38 24	15 17 15 15	33 45 45 53 60	15 33 36 29 29	23 30 30 21 15	.00 .00 32 40	194 216 191 142 139	166 175 186 202 192	209 224 230 230 230	23 15 37 58 76	67 73 86 86 125
11 12 13 14	119 115 107 92 86	15 15 15 23 29	10 9.0 6.0 .00	60 60 52 17	29 29 38 44 44	15 35 40 43 43	37 49 58 70 94	139 130 138 164 200	178 204 210 210 216	216 209 211 191 173	115 110 78 47 43	158 176 166 158 173
16 17 18 19 20	89 78 72 72 66	29 29 23 15	.00 .00 .00	.00 .00 .00	44 32 15 15	26 12 .00 .00	141 167 173 174 165	149 82 46 15	209 196 187 187 204	173 173 173 166 158	43 51 58 58 70	173 180 173 130 144
21 22 23 24 25	51 43 43 41 30	15 15 15 15 15	29 23 15 15	.00 .00 34 60 33	26 .00 38 58 44	32 32 15 15	142 126 115 123 159	20 34 63 104 138	225 222 216 216 216	158 158 164 158 129	113 147 153 127 115	124 110 115 110 112
26 27 28 29 30 31	22 15 20 29 32 33	15 15 41 46 29	56 63 72 56 23	15 15 15 15 15	29 13 .00 .00	50 58 58 78 67 43	166 161 124 101 112	185 212 230 230 230 230 239	225 230 249 265 259	94 81 72 84 86 86	110 125 157 181 187 132	140 158 149 117 101
TOTAL MEAN MAX MIN AC-FT	2439 78.7 144 15 4840	545.00 18.2 46 .00 1080	602.00 19.4 72 .00 1190	753.00 24.3 60 .00 1490	767.00 26.4 58 .00 1520	821.00 26.5 78 .00 1630	2785.00 92.8 174 .00 5520	4436 143 239 15 8800	6041 201 265 130 11980	5228 169 259 72 10370	2768 89.3 187 15 5490	3867 129 180 67 7670

CAL YR 1983 TOTAL 23376.00 MEAN 64.0 MAX 204 MIN .00 AC-FT 46370 WTR YR 1984 TOTAL 31052.00 MEAN 84.8 MAX 265 MIN .00 AC-FT 61590

08188750 GUADALUPE-BLANCO RIVER AUTHORITY CALHOUN CANAL FLUME NO. 2 NEAR LONG MOTT, TX

LOCATION.--Lat 28°30'09", long 96°45'40", Calhoun County, Hydrologic Unit 12100204, on left bank at concrete Parshall flume No. 2, 3,700 ft downstream from State Highway 185, 4,200 ft downstream from streamflow station 08188600, and 1.4 mi north of Long Mott.

PERIOD OF RECORD. -- October 1971 to June 1972 (monthly discharge only), July 1972 to current year.

GAGE.--Water-stage and velocity recorders, water-stage recorder, and Parshall flume. Datum of gage is 22.37 ft National Geodetic Vertical Datum of 1929. Prior to Mar. 6, 1981, deflection-vane recorders.

REMARKS.--Records poor. Flow is diverted from Guadalupe River 550 ft upstream from Guadalupe River near Tivoli (station 08188800), and then through a system of canals, Hog Bayou, and Goff Bayou, a distance of 8.9 mi to the pumping station on Goff Bayou 1,900 ft upstream from flume No. 1. Diversions to the Union Carbide Co. between flumes 1 (station 08188600) and 2 during the current year were 8530 acre-ft. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE .-- 13 years, 76.7 ft 3/s (55,570 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD. -- Maximum daily discharge, 282 ft 3/s June 23, 1975; no flow at times in 1972-84.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 MEAN VALUES AUG DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL SEP .00 .00 .00 .00 .00 .00 8.0 .00 .00 .00 9.0 .00 .00 -00 .00 .00 8.0 8.0 .00 .00 .00 -00 .00 9.0 9.0 .00 .00 .00 8.0 .00 .00 .00 .00 .00 9.0 7.0 14 23 7.0 .00 6.0 .00 .00 .00 8.0 .00 .00 .00 .00 .00 .00 .00 19 8.0 167 15 57 - 00 .00 .00 .00 .00 9.0 .00 .00 .00 .00 .00 .00 .00 .00 .00 8.0 .00 .00 .00 .00 .00 112 .00 .00 -00 -00 -00 .00 .00 .00 .00 27 43 7.0 -00 .00 6.0 .00 .00 215 5.0 .00 .00 .00 .00 8.0 .00 .00 ---. 00 ------TOTAL 245.00 330.00 21.06 2020.00 186.00 392.00 470.00 2501.00 67.9 MEAN 8.17 10.6 65.2 6.00 13.5 15.2 83.4 MAX MIN .00 . 00 .00 . 00 . 00 .00 AC-FT

CAL YR 1983 TOTAL 19036.00 MEAN 52.2 MAX 195 MIN .00 AC-FT 37760 WTR YR 1984 TOTAL 25886.00 MEAN 70.7 MAX 244 MIN .00 AC-FT 51340

08188800 GUADALUPE RIVER NEAR TIVOLI, TX

LOCATION.--Lat 28°30'20", long 96°53'04", Calhoun-Refugio County line, Hydrologic Unit 12100204, on right bank at diversion and saltwater barrier, one orifice located upstream and one downstream, 550 ft downstream from Calhoun County Irrigation Canal intake, 0.4 mi downstream from San Antonio River, 3.5 mi north of Tivoli, and at mile 10.2. Water-quality sampling site on left bank 474 ft upstream.

DRAINAGE AREA. -- 10.128 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- September 1965 to current year.

REVISED RECORDS. -- WDR TX-68-1: Drainage area.

GAGE .-- Duplex water-stage recorder. Datum of gage is 0.04 ft National Geodetic Vertical Datum of 1929.

REMARKS.--Many small diversions above station. Some regulation by powerplants. Upstream regulation same as that for Guadalupe River at Cuero (station 08175800) and San Antonio River at Goliad (station 08188500).

EXTREMES FOR PERIOD OF RECORD.--Maximum gage height (upstream from barrier), 13.7 ft Sept. 22, 1967; minimum, 1.2 ft July 2, 1984. Maximum gage height (downstream from barrier), 13.6 ft Sept. 22, 1967; minimum, 0.5 ft July 12, 14, 1967.

Maximum stage since at least 1936, that of Sept. 22, 1967.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in July 1936 reached a stage of 11 ft, present site and datum. Levees along the Navigation Canal from San Antonio Bay to Victoria were built in 1961 thus decreasing the flood plain.

EXTREMES FOR CURRENT YEAR.--Maximum gage height (upstream from barrier), 8.3 ft Oct. 18; minimum, 1.2 ft July 2. Maximum gage height (downstream from barrier), 8.2 ft Oct. 19; minimum, 0.7 ft July 19.

MAXIMUM DAILY GAGE HEIGHT, IN FEET, UPSTREAM AND DOWNSTREAM FROM SALTWATER BARRIER, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DAY	OCT up down	NOV up down	DEC up down	JAN up down	FEB up down	MAR up down	APR up down	MAY up down	JUNE up down	JULY up down	AUG up down	SEPT up down
1 2 3 4 5	4.4 4.3 4.2 4.0 4.2 3.8 4.2 3.3 4.2 2.4	3.8 3.7 3.8 3.7 3.9 3.7 3.9 3.7 4.3 4.1	3.0 2.9 3.0 2.9 3.1 3.1 3.2 3.1 3.2 3.1	2.5 2.4 2.5 2.3 2.5 2.4 2.5 2.4 2.5 2.4	3.2 3.1 3.0 2.9 3.0 2.9 2.8 2.7 2.8 2.7	2.3 2.2 2.3 2.2 2.6 2.5 2.6 2.5 2.5 2.4	4.1 2.7 4.1 2.7 4.1 2.5 4.1 2.3 4.0 2.1	4.0 2.6 4.0 2.5 4.0 2.7 3.9 2.4 3.9 2.7	3.9 2.5 3.9 2.5 4.0 2.7 4.0 2.8 4.0 2.8	2.4 1.8 3.3 1.5 3.8 1.9 3.7 1.9 3.8 1.6	3.8 2.1 3.8 2.4 3.9 2.3 3.8 2.3 3.9 2.3	4.1 2.5 4.1 2.5 4.0 2.5 4.0 2.6 4.0 2.6
6 7 8 9	4.2 2.5 4.2 2.5 4.1 2.5 4.1 3.5 4.9 4.8	6.2 6.0 7.1 6.9 7.8 7.7 8.2 8.1 8.2 8.1	3.2 3.1 3.0 2.9 2.9 2.8 3.0 2.9 3.0 2.9	2.5 2.4 2.5 2.4 3.0 2.9 5.7 5.5 6.8 6.7	2.6 2.5 4.1 2.6 4.1 2.8 4.2 2.8 4.2 3.0	2.4 2.3 2.5 2.3 2.4 2.3 2.3 2.2 2.4 2.2	4.0 2.4 4.1 2.9 4.0 2.4 4.0 2.4 4.0 2.6	4.0 3.0 4.0 3.0 3.9 2.3 3.9 2.2 3.9 2.3	4.0 2.9 4.0 2.9 4.0 2.9 4.0 3.0 4.0 2.9	3.8 1.6 3.8 1.6 3.8 1.7 3.8 1.7 3.7 1.7	4.0 2.5 4.0 2.4 4.0 2.4 4.2 2.3 4.2 2.5	4.3 2.3 4.2 2.2 4.1 2.2 4.2 2.0 4.2 2.0
11 12 13 14 15	4.8 4.7 4.3 4.1 4.1 4.0 4.3 3.8 4.3 3.8	8.0 7.9 7.3 7.2 7.0 6.9 6.4 6.3 5.6 5.5	3.0 2.9 2.8 2.7 2.6 2.5 2.5 2.4 2.3 2.2	6.8 6.7 6.9 6.7 6.8 6.7 6.4 6.3 6.4 6.3	4.2 3.0 4.2 2.9 4.3 4.0 4.3 4.1 4.2 4.0	5.5 5.3 6.0 5.8 6.1 6.6	4.0 2.5 4.0 2.8 4.1 2.6 4.1 2.7 4.0 2.3	3.9 2.3 3.9 2.1 3.8 2.0 3.8 2.0 3.8 1.8	4.0 2.9 3.9 2.5	3.7 1.7 3.6 1.8 3.6 1.7 3.5 2.0 3.4 1.9	4.2 2.5 4.2 2.5 4.1 2.3 4.0 2.3 4.1 2.4	3.9 2.2 3.8 2.2 3.8 1.8 3.8 1.8 3.8 2.0
16 17 18 19 20	4.6 4.3 7.3 7.2 8.3 8.0 8.3 8.2 8.1 8.0	4.6 4.5 4.2 4.1 4.0 3.9 3.9 3.8 3.7 3.6	2.3 2.2 2.3 2.2 2.4 2.3 2.3 2.2 2.4 2.3	5.5 5.4 4.6 4.5 4.0 3.9 3.5 3.4 3.1 3.0	3.4 3.2 3.2 3.0 2.8 2.6		3.9 1.8 3.9 2.1 3.9 2.3	3.9 2.3 4.0 2.8 4.0 3.0	3.8 2.3 3.8 2.3 3.9 2.3 3.8 2.2 3.8 2.2	3.4 1.6 3.4 1.5 3.4 1.7 3.4 1.4 3.4 1.5	4.1 2.2 4.0 2.3 4.0 2.3 4.1 2.4 4.1 2.5	3.8 1.6 3.8 2.0 3.8 2.4 3.9 2.5 4.1 2.8
21 22 23 24 25	8.0 7.7 8.1 8.0 8.1 8.0 8.0 7.9 7.6 7.5	3.6 3.5 3.6 3.5 3.5 3.4 3.6 3.5 3.6 3.5	2.3 3.1 2.3 2.1 2.3 2.1 2.3 2.1 2.3 2.1	3.0 2.8 3.1 3.0 3.4 3.2 3.7 3.5 4.9 4.8	3.2 3.0 3.2 3.0	4.7 4.6 4.1 4.0 3.7 3.6 3.7 3.6 3.7 3.6	3.9 2.0 3.9 2.0 3.9 2.1 3.9 2.3 3.9 2.3	4.0 3.2 4.0 3.0 4.0 3.1 4.0 3.1 4.0 3.1	3.8 2.1 3.7 1.8 3.7 1.8 3.6 1.7 3.6 1.5	3.6 1.8 3.5 1.8 3.5 1.9 3.6 1.6 3.6 1.8	4.1 2.6 4.0 2.3 4.0 2.8 4.0 2.8 4.1 2.7	4.3 3.4 4.4 3.3 4.2 3.1 4.0 3.0 4.0 2.9
26 27 28 29 30 31	6.9 6.7 6.2 6.0 5.5 5.4 5.0 4.9 4.7 4.6 4.2 4.1	3.5 3.4 3.3 3.2 3.2 3.1 3.0 2.9 3.1 3.0	2.3 2.1 2.6 2.3 2.6 2.4 3.8 2.1 2.3 2.0 2.3 2.1	5.0 4.9 4.9 4.8 4.7 4.6 4.4 4.3 3.9 3.8 3.6 3.5	3.3 3.2 2.6 2.5 2.5 2.4 2.3 2.2	3.4 3.3 3.4 3.3 2.9 2.8 2.4 2.3 4.0 2.1 4.0 2.3	4.0 2.8 4.0 2.5 4.0 3.0 3.9 2.5	4.0 2.9 4.0 2.7 4.0 2.6 3.9 1.8 3.9 1.9 3.9 2.3	3.6 1.4 3.6 1.5 3.5 1.5 3.6 1.5 3.7 1.8	3.8 1.8 3.8 1.8 3.1 1.8 2.2 1.9 3.9 1.9 3.8 2.1	4.0 2.7 4.0 2.6 4.0 2.5 4.0 2.5 4.1 2.6 4.0 2.5	4.0 2.7 3.8 2.3 3.8 2.3 3.7 2.0 3.8 1.8

08188800 GUADALUPE RIVER NEAR TIVOLI, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical analyses: October 1965 to current year. Chemical and biochemcial analyses: October 1968 to current year. Pesticide analyses: October 1970 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1965 to current year. WATER TEMPERATURES: October 1965 to current year.

INSTRUMENTATON.--Beginning July 1965, specific conductance was recorded continuously at this station. Beginning March 1981, water temperature was recorded continuously at this station. Continuous recording of specific conductance and water temperature was discontinued October 1982.

DAT	ſE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STANI ARD UNITS)	ATURI	E COBAL	TUR- BID- T ITY	DIS SOLV	- CEN	ED BIO- CHEM- T ICAL,	HARD- NESS (MG/L AS	HARD- NESS, NONCAR- BONATE (MG/L CACO3)
DEC 15		1400	840	7.	2 17.	. 5	5 19	9	.3	98 1.	6 300	38
JAN 25.		1645	830	8.	1 10.	.5 4	0 28	10	. 5	94 2.	6 280	36
MAR 07		1545	878	8.						95 1.		
APR												
JUN		1700	945	8.			0 25			99 1.		
13. AUG	••	1610	902	8.	2 28.	5 5	0 60	6	. 6	85 2.	0 270	27
07.	••	1245	1030	8.	2 29.	5 2	7 37	6	.1	83 3.	0 280	51
DAT		ALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM DIS- SOLVED (MG/L AS NA	SORP- TION RATIO	SIUM DIS- SOLVE	, LINITY FIELD D (MG/L AS	SULFAT DIS- SOLVI (MG/I	DIS- ED SOLV L (MG/	, RIDE, DIS- ED SOLVE L (MG/L	DIS- SOLVED (MG/L AS	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)
DEC 15.		88	19	69	2	, E	26	0 61	96	.4	0 15	510
JAN						4.5						
25. MAR		84	16	70	2	4.9	24	0 55	110	.3		500
07. APR		86	19	71	2	4.4	26	0 63	100	•4	0 9.8	510
24. JUN	••	89	20	80	2	4.7	27	0 71	120	.4	0 15	560
13.		77	18	78	2	4.7	24	0 61	120	.4	0 18	520
AUG 07.		81	19	110	3	5.5	23	0 78	150	.4	0 20	600
	DATE	SOLII RESII AT 10 DEG. SUS- PENDI (MG)	DUE SOLI 05 VOI C, TII - SUS ED PENI	A- E, NI G- TO DED (GEN, TRATE NI OTAL T MG/L (GEN, COTAL TO MG/L (1	GEN, 2+NO3 AM OTAL T MG/L (GEN, MONIA OR OTAL I MG/L (GEN, MARGANIC OF COTAL	RGANIC PH FOTAL T (MG/L (OTAL TO	BON, ANIC FAL G/L C)
	DEC 15		48	19	2.0	.030	2.0	.090	.91	1.0	.710	2.5
	JAN 25		76	31	1.7	.060	1.8	.300	.40	.70	.650	5.4
	MAR 07		47	3	4.1	.980	5.1	.110	.59	.70	1.00	3.5
-	APR 24		54	<2	1.4	.020	1.4	.040	.86	.90	.900	2.8
1.0	JUN 13		112	17	1.3	.010	1.3	.090	1.1	1.2	.830	3.4
	AUG											
	07	•	59	21	1.5	.030	1.5	.010	.99	1.0	.700	77
			DATE	TIME	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO-MIUM, DIS-SOLVED (UG/L AS CR)	(UG/L	DIS- SOLVED (UG/L		
			JAN 25 JUN	1645	3	120	<1	<10	3	3 28		
			13	1610	3	120	<1	<10		7 7		

08188800 GUADALUPE RIVER NEAR TIVOLI, TX--Continued

		D	SO (U	AD, NE IS- D LVED SO G/L (U	IS- D LVED SO G/L (U	CURY NI IS- I LVED SC G/L (U	DLVED SO	IS- D LVED SO G/L (U	NC, IS- LVED G/L ZN)		
		JAI 2: JUI	5	<1	11	•3	<1	<1	40		
			3	<1	9	<.1	<1	<1	28		
DATE	TIME	PCB, TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR.	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL	TERIAL	CHLOR- DANE, TOTAL	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL (UG/L)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
JUN											
13	1610	<.1	8	<.10	<1.0	<.01	<.1	<.1	5.0	<.01	1.3
DATE	DDE, TOTAL (UG/L)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL (UG/L)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL (UG/L)	DI- ELDRIN TOTAL (UG/L)	TERIAL	ENDO- SULFAN, TOTAL	ENDRIN, TOTAL	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL (UG/L)
JUN											
13	<.01	3.4	<.01	.1	.06	<.01	<.1	<.01	<.01	<.1	<.01
DATE	HEPTA- CHLOR, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL (UG/L)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL	METH- OXY- CHLOR, TOTAL (UG/L)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOTAL (UG/L)	METHYL TRI- THION, TOTAL (UG/L)
JUN 13	<.01	<.1	<.01	<.1	<.01	<.1	<.01	<.01	<.1	<.01	<.01
DATE	MIREX, TOTAL (UG/L)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL (UG/L)	PER- THANE TOTAL (UG/L)	TOX- APHENE, TOTAL (UG/L)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION	2,4-D, TOTAL (UG/L)	TOTAL	2,4,5-T TOTAL (UG/L)	SILVEX, TOTAL (UG/L)
JUN 13	<.01	<.1	<.01	<.1	<1	<10	<.01	.07	<.01	<.01	<.01

08189200 COPANO CREEK NEAR REFUGIO, TX LOCATION.--Lat 28°18'12", long 97°06'44", Refugio County, Hydrologic Unit 12100405, on right bank at bridge on Farm Road 774, 3.6 mi upstream from Alameda Creek, 8.1 mi east of Refugio, and 11.9 mi upstream from mouth.

DRAINAGE AREA. -- 87.8 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- June 1970 to current year.

GAGE.--Water-stage recorder. Datum of gage is 17.25 ft National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good except those for period of no gage-height record, which are poor. No known diversion above station. Recording rain gage is located at station.

AVERAGE DISCHARGE.--14 years, 54.2 ft 3/s (8.38 in/yr), 39,270 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $6,300 \text{ ft}^3/\text{s}$ Sept. 12, 1971 (gage height, 21.00 ft), from rating curve extended above $3,800 \text{ ft}^3/\text{s}$; no flow at times each year.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum stage since 1921, 22 ft in September 1967, from information by local

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 500 ft3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)
Oct. 10	0400	814	11.51
Oct. 20	1200	*1 970	14.72

Minimum, no flow for many days.

		DISCHAR	RGE, IN C	UBIC FEET	PER SECON	D, WATER EAN VALUE	YEAR OCTO	BER 1983	TO SEPIEM	DEK 1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEI
1	2.9	160	7.4	.00	41	4.6	. 01	.00	.00	.00	.00	.00
2	2.3	111	6.5	.00	37	4.8	. 01	.00	.00	.00	.00	.00
3	1.8	84	5.5	.00	35	4.5	. 01	.00	.00	.00	. 00	.00
4	1.4	67	4.6	.00	31	4.4	.00	.00	.00	.00	.00	.00
5	1.1	78	3.7	.00	26	4.3	.00	.00	.00	. 00	.00	. 00
6	.88	261	3.1	.00	20	4.7	.00	.00	.00	.00	.00	.00
7	.68	426	2.4	.00	15	17	. 00	.00	.00	.00	.00	. 0
8	.52	399	1.8	.00	12	13	.00	.00	.00	.00	.00	. 00
9	91	329	1.4	122	11	5.5	.00	.00	.00	.00	. 00	. 0
10	691	289	1.0	328	10	3.3	.00	.00	.00	.00	.00	.00
11	382	232	.90	296	9.2	2.4	.00	.00	.00	.00	.00	. 00
12	265	167	.80	230	8.2	1.8	.00	.00	.00	.00	.00	.00
13	183	119	.70	170	7.5	1.5	. 00	.00	.00	. 00	.00	. 00
14	107	88	.62	124	7.0	.90	.00	.00	.00	.00	.00	.00
15	72	64	.00	88	6.6	.80	.00	.00	.00	.00	. 00	. 00
16	49	55	.00	61	6.3	.61	.00	.00	.00	.00	.00	. 0
17	59	43	. 00	42	6.0	. 43	.00	.00	.00	.00	. 00	.0
18	421	40	.00	29	6.4	.36	.00	.00	.00	.00	.00	. 0
19	1360	36	.00	24	6.5	.80	.00	.00	. 00	. 00	.00	. 0
20	1920	35	.00	35	6.3	8.2	.00	.00	.00	.00	.00	.00
21	1860	31	.00	48	6.9	3.8	.00	.00	.00	.00	.00	. 0
22	1810	27	.00	45	6.6	2.1	.00	.00	.00	.00	.00	.0
23	1710	21	. 00	31	6.2	1.2	. 00	. 00	.00	.00	.00	. 0
24	1580	16	.00	68	5.9	.52	.00	.00	.00	.00	.00	.0
25	1270	14	.00	174	5.5	. 36	.00	.00	.00	.00	.00	. 0
26	998	13	.00	154	5.5	.13	.00	.00	.00	.00	.00	.00
27	743	11	.00	113	5.0	. 03	.00	.00	.00	.00	.00	. 0
28	554	10	.00	89	4.8	. 04	.00	.00	.00	.00	.00	. 00
29	409	9.3	.00	74	4.8	. 02	.00	.00	. 00	2.5	.00	. 00
30	292	8.2	.00	60		. 02	.00	.00	.00	1.6	.00	. 00
31	228		.00	47		. 01		.00		.13	.00	
	17065.58	3243.5	40.42	2452.00	359.2	92.13	. 03	.00	.00	4.23	.00	.00
1EAN	551	1 08	1.30	79.1	12.4	2.97	. 001	.000	.000	.14	.000	.00
IAX	1920	426	7.4	328	41	17	. 01	.00	.00	2.5	.00	.00
IIN	. 52	8.2	. 00	.00	4.8	. 01	. 00	.00	.00	.00	.00	. 00
FSM	6.28	1.23	. 02	.90	.14	. 03	.000	.000	.000	.002	.000	.000
N.	7.23	1.37	. 02	1.04	.15	. 04	.00	.00	.00	.00	.00	. 00
C-FT	33850	6430	80	4860	712	183	. 06	.00	.00	8.4	.00	. 00
AT VI	R 1983 TOT	AL 34741	QO ME	AN 95.2	MAX 2300	MIN .	00 CFSM	1.08 I	N 14.72	AC-FT 6	8910	

NOTE .-- No gage-height record Dec. 15 to Jan. 24.

COPANO CREEK BASIN

08189200 COPANO CREEK NEAR REFUGIO, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Chemical and biochemical analyses: June 1970 to current year. Pesticide analyses: June 1970 to September 1981.

DATE	STRE FLO INST IME TANE (CF	W, CON- AN- DUC' OUS ANC	IC - PH T- (STA E AR	ND- TEMI		D- D: Y SOI	GEN, (PE IS- CE LVED SAT	IS- DEMA LVED BIO ER- CHE ENT ICA CUR- 5 E	AND, D- HAR EM- NES AL, (MG	S NONC /L BONA (MG	SAR- TE L/L
DEC 14 1 JAN	600	. 62	540	7.7	16.0 76		6.4	65	2.1	110	2
25 1	338 213		167	7.6	11.0 78		9.2	83	3.5	42	0
MAR 06 1	210 16	2	211	7.6	14.5 70		9.6	94	3.7	45	4
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	
DEC 14	36	5.4	70	3	5.6	110	47	79	.10	16	
JAN 25 MAR	13	2.4	14	1	5.9	49	11	16	<.10	12	
06	13	3.1	23	2	8.3	41	15	35	<.10	4.2	
DATE	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)	
DEC 14	330	27	•01	.090	.10	.020	1.2	1.2	.100	17	
JAN 25	100	46	.25	.050	.30	.030	1.1	1.1	.080	15	
MAR 06	130	53	1.1	.280	1.4	.100	1.8	1.9	.100	19	
	DAT	TIM	ARSE DI SOL ME (UG AS	S- DIS VED SOLV /L (UG	ED SOL	S- DIS VED SOL /L (UG	M, COPP S- DIS LVED SOL	- DI VED SOL /L (UG	S- VED /L		
	JAN 25	133	8	2	51	<1	<10	4	260		
		DATE	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	ZINC, DIS- SOLVED (UG/L AS ZN)			
		JAN 25	<1	7	<.1	<1	<1	69			

MISSION RIVER BASIN 325

LOCATION.--Lat 28°17'30", long 97°16'44", Hydrologic Unit 12100406, on left bank at upstream side of upstream bridge of two bridges on U.S. Highway 77, 560 ft upstream from Missouri Pacific Railroad Co. bridge, and 0.2 mi southwest of Refugio.

DRAINAGE AREA. -- 690 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- July 1939 to current year.

REVISED RECORDS. -- WSP 1923: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1.00 ft National Geodetic Vertical Datum of 1929. Prior to Nov. 25, 1958, nonrecording gage at site 59 ft downstream at same datum. Nov. 26, 1958, to Apr. 18, 1963, nonrecording gage at present site and datum.

REMARKS.--Water-discharge records good. Several small diversions above station.

AVERAGE DISCHARGE .- - 45 years, 122 ft 3/s (2.40 in/yr), 88,390 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 79,000 ft³/s Sept. 12, 1971 (gage height, 38.25 ft); minimum observed, 0.7 ft³/s Oct. 7, 9, 1940, Aug. 18-20, Sept. 5, 1945, Dec. 29, 31, 1949, Jan. 1, 1950, July 13, Aug. 28, 1963, July 18, 19, 22-26, 31, Aug. 1, 2, 1971.

Maximum stage since about 1899, that of Sept. 12, 1971.

EXTREMES OUTSIDE PERIOD OF RECORD.--Floods in August 1914 and May 17, 1938, reached a stage of 32.3 ft, from information by local residents.

EXTREMES FOR CURRENT YEAR, -- Peak discharges above base of 3,000 ft 3/s and maximum (*):

Date	Time	Discharge (ft 3/s)	Gage height (ft)
Oct. 10	0900	3,460	20.59
Oct. 18	1400	5,200	23.99
Oct. 22	1500	*6,130	25.22

Minimum daily discharge, 1.7 ft 3/s Aug. 25-27.

DISCHARGE,	IN	CUBIC	FEET	PER	SECOND,	WATER	YEAR	OCTOBER	1983	TO	SEPTEMBER	1984
					A STA	AT TYATITE	CC					

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	13 13 13 13 12	73 69 66 63 79	38 38 38 38 38	29 29 29 29 29	44 46 47 45 40	28 29 29 29 29	23 23 24 24 23	24 24 23 23 22	17 16 16 16 16	10 12 9.7 9.3	5.3 4.1 4.8 5.1 4.8	3.0 5.1 4.5 4.9 5.4
6 7 8 9	12 12 12 90 2970	172 316 233 150 103	37 35 34 34 34	29 29 29 814 893	36 33 33 33 33	29 29 28 27 27	22 22 22 21 21	22 22 23 21 20	17 17 17 16 16	14 11 8.3 5.7 5.0	4.4 4.2 3.9 2.9 2.9	2.9 2.5 1.9 1.9
11 12 13 14 15	1560 598 410 212 105	77 65 58 55 52	34 34 33 33 33	264 123 81 63 53	33 32 57 62 42	27 28 29 29 29	21 20 20 21 22	20 20 20 20 20	15 15 14 16 15	4.8 3.8 3.9 3.5 3.8	2.9 2.9 4.0 7.0	1.9 1.9 1.9 4.7 3.3
16 17 18 19 20	65 1560 4930 2450 461	48 46 45 45 44	33 32 32 32 32 32	47 44 44 41 40	36 33 32 31 31	28 27 27 31 28	22 21 21 22 22	20 20 23 25 25	13 13 12 12 11	3.8 3.8 3.8 3.8	5.5 3.5 3.8 3.8 3.6	3.4 3.6 3.5 3.6 4.2
21 22 23 24 25	2860 5720 3450 806 345	43 43 43 42 41	32 31 31 30 29	38 37 37 119 199	32 32 32 30 29	28 26 26 26 26	25 25 24 23 23	23 21 19 19 18	10 9.0 9.0 9.0 8.4	4.0 4.0 4.0 4.3 5.4	2.3 1.9 2.0 2.0	4.6 5.2 5.0 4.5 3.9
26 27 28 29 30 31	197 135 109 95 85 79	42 41 40 38 38	29 29 29 29 29	219 127 79 58 47 44	29 28 28 28	26 26 25 24 23 23	24 25 25 25 25 25	18 18 17 17 17	8.0 7.5 6.5 6.6 7.2	6.2 5.8 5.5 5.5 5.5 5.5	1.7 1.7 1.9 1.9 1.9	3.3 3.0 2.9 2.9 2.9
TOTAL MEAN MAX MIN CFSM IN. AC-FT	29392 948 5720 12 1.37 1.58 58300	2270 75.7 316 38 .11 .12 4500	1019 32.9 38 29 .05 .05	3743 121 893 29 .18 .20 7420	1047 36.1 62 28 .05 .06 2080	845 27.3 31 23 .04 .05	681 22.7 25 20 .03 .04 1350	641 20.7 25 17 .03 .03	381.2 12.7 17 6.5 .02 .02 756	194.3 6.27 15 3.5 .009 .01 385	112.6 3.63 11 1.7 .005 .01 223	104.2 3.47 5.4 1.9 .005 .01 207

CAL YR 1983 TOTAL 67303.2 MEAN 184 MAX 9340 MIN 5.0 CFSM .27 IN 3.63 AC-FT 133500 WTR YR 1984 TOTAL 40430.3 MEAN 110 MAX 5720 MIN 1.7 CFSM .16 IN 2.18 AC-FT 80190

MISSION RIVER BASIN

08189500 MISSION RIVER AT REFUGIO, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical analyses: September 1961 to current year. Chemical and biochemical analyses: January 1968 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: September 1961 to September 1981. WATER TEMPERATURES: September 1961 to September 1981.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 100,000 micromhos Nov. 28, 1965; minimum daily, 85 micromhos Sept. 13, 1971.
WATER TEMPERATURES: Maximum daily, 39.0°C June 20, 1981; minimum daily, 0.0°C Jan. 18, 1977.

DATE	TI	STRE FLC INST ME TANE (CF	OW, COL	FIC N- P CT- (ST	RD A	MPER- TURE EG C)	TUR BID ITY (NTU	- DI SOL	SOI EN, (PE S- CE VED SAT	S- DEMA	ND, FOR - FEC M- 0.7 L, UM- AY (COL	M, TOCO KAL, FEC KF A MF (COL S./ PE	CCI AL, HARD- GAR NESS S. (MG/L R AS
OCT 11	. 18	15	902	250	6.8	24.5	62		6.0	72	2.9 1	400 1	600 62
JAN			702	230	0.0	24.3	02		0.0	12	2.,	,	
17 APR	. 10	30	45	1200	7.8	10.5	13		8.9	80	1.0	570	540 320
09 JUL	. 18	30	21	2030	7.8	23.5	14		9.2	110	1.1	40	800 470
09	17:	35	230	2700		30.5	16		7.7	104	1.6	110	250 470
	DATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	SOLVEI (MG/L	DIS- SOLVE (MG/L	DIS- D SOLVE (MG/	M, D L R	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	DIS- SOLVED (MG/L	(MG/L	SILICA, DIS- SOLVED (MG/L AS SIO2)
	OCT 11	11	20	2.8	14		.8	6.3	51	12	25	<.10	12
	17 APR	81	99	17	180		5	4.9	238	31	320	.20	27
	09 JUL	170	140	28	300		6	3.3	302	54	530	.40	43
	09	240	140	28	410		9	4.9	230	43	750	.30	41
		SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L	NITRO GEN, AMMONI DIS- SOLVE (MG/L	GEN A MON ORG D TO	TAL G/L	PHOS- PHORUS, TOTAL (MG/L	PHOS- PHORUS, DIS- SOLVED (MG/L	PHOS- PHORUS, ORTHO, DIS- SOLVED (MG/L	SEDI- MENT, SUS- PENDED	SEDI - MENT, DIS - CHARGE, SUS - PENDED	SED. SUSP. SIEVE DIAM. % FINER THAN
	DATE	(MG/L)	(MG/L)	AS N)	AS N)	AS	N)	AS P)	AS P)	AS P)	(MG/L)	(T/DAY)	.062 MM
	CT 11 AN	139	120	<.10	.08	0	1.8	.070	.030	.040	58	134	95
	17 PR	853	820	.14	.08	0	.40	.030	.010	.030	41	5.0	90
	09 UL	1300	1300	<.10	.02	0	.40	.040	.050	.010	. 93	5.3	53
	09	1720	1600	<.10	.10	0	.70	.040	.010	<.010	66	1.0	54

MISSION RIVER BASIN

327

08189500 MISSION RIVER AT REFUGIO, TX--Continued

DATE	TIME	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COBALT, DIS- SOLVED (UG/L AS CO)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB)
OCT										
11 JAN	1815	2	81	<.5	<1	<1	<3	6	130	4
17	1030	5	440	<.5	<1	<1	<3	4	35	1
APR 09 JUL	1830	6	600	20	<1	1	<1	<1	40	1
09	1735	8	600	<10	<1	<1	1.	2	20	<1
DATE	LITHIUM DIS- SOLVED (UG/L AS LI)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO)	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	VANA- DIUM, DIS- SOLVED (UG/L AS V)	ZINC, DIS- SOLVED (UG/L AS ZN)
OCT 11	<4	3	<.1	<10	18	<1	<1	90	<6	9
JAN 17	44	170	.1	<10	1	<1	<1	1200	7	4
APR 09	50	70	.2	<1	<1	<1	<1	2000	27	10
JUL 09	70	80	<.1	<1	6	2	<1	2800	28	10

328 ARANSAS RIVER BASIN

08189700 ARANSAS RIVER NEAR SKIDMORE. TX

LOCATION.--Lat 28°16'56", long 97°37'14", Bee County, Hydrologic Unit 12100407, on right bank 160 ft downstream from centerline of county road bridge, 3.8 mi downstream from confluence of West Aransas and Poesta Creeks, and 4.4 mi northeast of Skidmore.

DRAINAGE AREA. -- 247 mi 2.

PERIOD OF RECORD.--March 1964 to current year.

Water-quality records: Chemical analyses: October 1965 to September 1966. Sediment records: February 1966 to September 1975.

GAGE .-- Water-stage recorder. Datum of gage is 72.37 ft National Geodetic Vertical Datum of 1929.

REMARKS.--Records fair except those for periods of no gage-height record, which are poor. No known diversion. Chase Field Naval Air Station and city of Beeville discharge sewage effluent into the stream via Poesta Creek. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE. -- 20 years, 41.3 ft3/s (2.27 in/yr), 29.920 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 82,800 ft³/s Sept. 22, 1967 (gage height, 42.22 ft, from floodmark), from rating curve extended above 14,000 ft³/s on basis of slope-area measurements of 29,600 and 82,800 ft³/s; no flow at times in 1964-67 and 1971.

Maximum stage since at least 1914, that of Sept. 22, 1967.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of September 1954 reached a stage of 33 ft (discharge, 19,600 ft 3/s), from information by local resident.

EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 500 ft 3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)
Oct. 9	2300	*4,360	20.24
Oct. 21	1100	719	10.39

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

Minimum daily discharge, 0.62 ft3/s Aug. 31.

CAL YR 1983 TOTAL 10926.60

5695.63

WTR YR 1984 TOTAL

MEAN 29.9

MEAN 15.6

MAX

MAX

2080

1540

		DID OMINOD,	III CODIO		ME	AN VALUES	K COLOBBI	1,000 1	0 001101001	.,,,,		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.5 1.5 1.4 1.4	6.1 5.9 5.6 5.4 6.7	6.6 7.0 7.5 7.3 7.4	11 11 11 11 11	10 11 9.9 9.3 8.7	6.4 6.7 7.1 7.4 8.6	5.7 5.7 5.7 5.6 5.6	4.6 4.7 4.7 4.4 4.2	1.9 1.5 1.5 1.3	2.3 2.6 2.6 5.6 5.9	4.7 4.9 6.2 7.3	.69 .77 1.5 2.3 2.1
6 7 8 9 10	1.5 1.5 1.5 908 1540	81 88 24 13 8.8	7.6 7.2 7.1 7.5 8.2	10 10 10 24 27	8.1 7.7 8.2 8.3 8.1	7.9 7.5 7.5 7.5 7.7	5.4 5.4 5.4 5.2 5.2	4.1 3.3 3.2 2.9 2.4	1.3 1.4 1.4 1.4	2.8 1.7 1.3 1.2	14 24 50 23 12	1.9 1.5 1.4 1.4
11 12 13 14 15	122 145 64 32 20	8.5 7.8 6.5 5.9 5.4	9.2 9.4 8.7 8.7 8.5	11 8.2 7.4 7.1 6.8	8.1 8.6 9.6 10 8.4	8.3 9.0 7.9 7.9 7.7	5.2 5.1 5.1 4.9 4.9	2.3 2.3 2.3 2.3 2.3	1.3 1.3 6.2 2.8 1.8	.89 .89 1.1 1.2 .99	6.8 4.0 3.2 2.6 2.2	.99 1.1 1.3 1.2 1.2
16 17 18 19 20	15 60 38 26 14	4.8 4.4 4.4 4.4	8.6 8.9 9.3 9.3 8.7	6.9 7.1 7.3 7.5 7.7	8.3 7.8 7.5 7.3 7.9	7.7 7.7 7.7 8.3	4.7 4.6 4.6 4.6 4.4	2.3 2.7 4.8 37 37	1.5 1.3 1.4 1.5	.99 .99 .99 1.2 1.4	1.9 1.8 1.6 1.4	1.7 1.7 1.7 1.7
21 22 23 24 25	331 99 34 19	4.5 4.6 4.9 5.2 5.4	8.7 8.8 8.9 8.9	7.9 8.1 8.6 17 31	8.3 9.8 8.2 7.9 7.9	9.7 7.5 6.8 6.8	4.4 4.2 4.2 4.2 4.2	10 5.6 4.4 3.8 2.6	1.9 1.8 1.6 1.5	1.4 1.4 2.2 2.3 2.2	1.3 1.3 1.4 1.8 1.7	1.8 2.2 2.6 2.1 1.7
26 27 28 29 30 31	10 8.5 7.6 7.4 7.0 6.6	5.4 5.4 5.6 6.1	8.9 10 10 10 9.7	19 15 11 10 9.6 9.5	7.7 7.5 6.8 6.4	6.6 6.4 6.4 6.1 6.1 5.9	4.4 4.6 4.6 4.6	2.2 2.0 1.9 9.1 7.8 3.1	1.3 1.2 1.2 1.2 1.4	2.3 6.2 5.8 6.0 5.1 5.2	1.1 .99 1.6 1.2 .76	1.4 1.2 1.1 1.1
TOTAL MEAN MAX MIN CFSM IN. AC-FT	3538.9 114 1540 1.4 .46 .53 7020	353.5 11.8 88 4.4 .05 .05	265.5 8.56 10 6.6 .04 .04 527	358.7 11.6 31 6.8 .05 .05	243.3 8.39 11 6.4 .03 .04 483	232.6 7.50 11 5.9 .03 .04 461	147.0 4.90 5.7 4.2 .02 .02 292	186.3 6.01 37 1.9 .02 .03 370	49.8 1.66 6.2 1.2 .007 .01	77.71 2.51 6.2 .89 .01 .01	196.77 6.35 50 .62 .03 .03 390	45.55 1.52 2.6 .69 .006 .01

MIN 1.4

MIN .62

CFSM .12

CFSM . 06

IN 1.65

IN .86

AC-FT

21670

11300

ARANSAS RIVER BASIN 329

08189800 CHILTIPIN CREEK AT SINTON, TX

LOCATION.--Lat 28°02'48", long 97°30'13", San Patricio County, Hydrologic Unit 12100407, on left bank at upstream end of bridge on U.S. Highway 77, 0.2 mi upstream from Missouri Pacific Railroad Co. bridge, and 0.8 mi northeast of Sinton.

DRAINAGE AREA. -- 128 mi2.

PERIOD OF RECORD .-- July 1970 to current year.

REVISED RECORDS. -- WRD TX-72-1: 1971(P).

GAGE.--Water-stage recorder. Datum of gage is 18.74 ft National Geodetic Vertical Datum of 1929.

REMARKS.--Records good except those for periods of no gage-height record, which are fair. No known diversions above station. An undetermined amount of water from oilfield operations enters stream upstream at various points. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE. -- 14 years, 47.5 ft3/s (5.04 in/yr), 34,410 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 22,300 ft³/s Sept. 12, 1971 (gage height, 29.10 ft), from rating curve extended above 13,400 ft³/s; no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stages since 1910, 30.27 ft Sept. 22, 1967, and 28.8 ft in April 1930, from information by local residents.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 600 ft 3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)
Oct. 9	2300	636	6.24
Oct. 21	0900	*4,460	16.47

Minimum, no flow for many days.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4	.00 .00 .00	.01 .00 .00	2.8 2.1 .50 .07	27 12 5.0 2.6	2.4 2.1 1.3 .83	.02 .11 .26	.00 .00 .00	. 01 . 01 . 01	.00 .00 .00	.86 .02 .00	.00 .00 .00	.00 15 22 11 39
5	.00	. 02	. 02	.62	. 39	.00	.00	. 01	. 00	.00	.00	39
6 7 8 9	.00 .00 .00 203 321	.11 .03 .69 5.5 3.5	.00 .00 .00	.26 .22 .16 400 150	.19 .14 .11 .11	.00 .00 .00 .00	.00 .00 .00 .00	.01 .01 .06 .02	.01 .01 .01 .02 .02	.00 .00 .00 .00	.00 .00 .00 .00	6.5 .22 .00 .00
11 12 13 14 15	60 48 21 8.7 3.3	.69 .11 .02 .00	.00 .00 .02 .00	40 4.5 .35 .23 .16	.11 .07 .03 .06	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	. 02 . 21 . 09 . 04 . 04	.00 .00 .00 .00	.00 .00 .00 .29	.00 .00 .00 .00
16 17 18 19 20	.76 2.6 141 24 49	.00 .00 .00	.00 .02 .02 .01	.11 .11 .09 .07	.03 .03 .04 .03	.00 .00 .00 .02	.00 .00 .00	.00 .08 .69 .06	.03 .02 .02 .01	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
21 22 23 24 25	3770 1620 164 51 23	.00 .00 .00	.00 .00 .00 .00	.02 .02 .02 .04	.06 .03 .02 .02	.00 .00 .00 .00	.00 .00 .00	.02 .01 .01 .00	.01 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00 .00
26 27 28 29 30 31	8.0 2.8 .83 .39 .16	.00 .00 .00 .00	.01 .00 .00 .00	57 20 6.8 2.9 1.6	.03 .00 .00 .00	.00 .00 .00 .00	.00 .02 .01 .02 .01	.00 .00 .00 .00	.00 .00 .01 .00	.26 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
TOTAL MEAN MAX MIN CFSM IN. AC-FT	6522.58 210 3770 .00 1.64 1.90 12940	10.69 .36 5.5 .00 .003 .00	124.59 4.02 60 .00 .03 .04 247	785.32 25.3 400 .02 .20 .23 1560	8.46 .29 2.4 .00 .002 .00	.44 .014 .26 .00 .000	.06 .002 .02 .00 .000	1.05 .034 .69 .00 .000 .000	1.18 .039 .60 .00 .000 .000	1.14 .037 .86 .00 .000 .000	.32 .010 .29 .00 .000	93.72 3.12 39 .00 .02 .03 186

CAL YR 1983 TOTAL 18814.44 MEAN 51.5 MAX 3770 MIN .00 CFSM .40 IN 5.47 AC-FT 37320 WTR YR 1984 TOTAL 7549.55 MEAN 20.6 MAX 3770 MIN .00 CFSM .16 IN 2.19 AC-FT 14970

08190000 NUECES RIVER AT LAGUNA, TX

LOCATION.--Lat 29°25'42", long 99°59'49", Uvalde County, Hydrologic Unit 12110101, on right bank 0.5 mi downstream from Sycamore Creek, 1.0 mi northeast of Laguna, and at mile 370.8.

DRAINAGE AREA. -- 737 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1923 to current year.

REVISED RECORDS. -- WSP 1562: 1930, 1931(M), 1932, 1939. WDR TX-83-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,119.72 ft National Geodetic Vertical Datum of 1929. Prior to Jan. 26, 1925, nonrecording gage at site 2 mi downstream at different datum.

REMARKS .-- Water-discharge records good. Many small diversions above station for irrigation.

AVERAGE DISCHARGE. -- 61 years, 147 ft 3/s (2.71 in/yr), 106,500 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 307,000 ft³/s Sept. 24, 1955, (gage height, 29.95 ft, in gage well, 32.7 ft, from floodmarks), from rating curve extended above 40,000 ft³/s on basis of float measurement of 110,000 ft³/s and slope-area measurements of 213,000 and 307,000 ft³/s; minimum, 2.6 ft³/s Mar. 14-16, 1957.

Maximum stage since at least 1866, that of Sept. 24, 1955.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in June 1913 reached a stage of about 29 ft, discharge 210,000 ft 3/s; flood of Sept. 21, 1923, reached a stage of about 26.5 ft, discharge 160,000 ft 3/s; from information by local residents. Discharges based on rating curve mentioned above.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 700 ft3/s and maximum (*):

Date	2	Time	Discharge (ft³/s)	Gage height (ft)
Oct.	20	2230	701	5.00
Nov.	5	1600	*1,080	5.36

Minimum daily discharge, 13 ft³/s Aug. 20-30, Sept. 10-15, 19-21, 23-28.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	57 57 57 57 57	131 128 133 195 439	116 116 115 112 109	85 85 85 84 83	76 76 75 73 71	60 59 57 58 57	50 50 48 48 49	39 38 35 35 35 34	26 26 27 27 27	23 22 21 21 20	16 16 16 15	14 14 14 14 14
6 7 8 9	57 57 57 92 92	363 234 197 177 161	107 106 105 105 104	82 81 86 95 96	71 70 70 70 70	56 58 57 57 57	48 53 50 48 48	34 33 32 32 32	37 32 31 31 29	20 19 19 19 19	15 15 14 15 14	14 14 14 14 13
11 12 13 14 15	87 79 75 72 71	161 158 154 150 148	101 99 98 98 96	92 87 85 84 83	70 69 69 68 67	55 56 54 55 55	48 46 48 45 45	32 32 31 31 31	28 27 27 27 27 26	19 19 19 18 18	14 14 14 14	13 13 13 13 13
16 17 18 19 20	69 68 68 67 168	147 144 142 138 135	95 94 93 92 92	83 83 82 81 80	67 67 66 66 65	54 54 53 52 52	44 44 43 43 43	33 33 33 32 31	26 25 25 25 25 24	18 18 18 17 17	15 15 14 14 13	14 14 14 13 13
21 22 23 24 25	377 223 176 153 139	134 133 128 127 125	91 90 89 87 87	80 79 80 78	65 65 64 64 63	52 51 51 50 51	41 42 41 41 40	30 29 30 29 28	24 24 23 23 23	17 17 17 18 21	13 13 13 13 13	13 14 13 13 13
26 27 28 29 30 31	133 130 131 131 133 133	124 123 121 119 117	87 87 87 87 86 85	78 76 76 75 74 77	63 60 63 61	51 50 48 49 48	40 38 40 39 38	28 28 29 28 27 26	22 22 22 23 23	20 19 19 18 17 16	13 13 13 13 13 14	13 13 13 14 14
TOTAL MEAN MAX MIN CFSM IN. AC-FT	3323 107 377 57 .14 .16 6590	4886 163 439 117 .21 .24 9690	3016 97.3 116 85 .13 .15	2555 82.4 96 74 .11 .12 5070	1964 67.7 76 60 .09 .10 3900	1666 53.7 60 48 .07 .08 3300	1341 44.7 53 38 .06 .07 2660	975 31.5 39 26 .04 .05	782 26.1 37 22 .03 .04 1550	583 18.8 23 16 .03 .03	436 14.1 16 13 .02 .02 .865	405 13.5 14 13 .02 .02 .803

CAL YR 1983 TOTAL 28543 MEAN 78.2 MAX 439 MIN 28 CFSM .10 IN 1.39 AC-FT 56620 WTR YR 1984 TOTAL 21932 MEAN 59.9 MAX 439 MIN 13 CFSM .08 IN 1.07 AC-FT 43500

08190000 NUECES RIVER AT LAGUNA, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical, biochemical, and pesticide analyses: January 1974 to current year.

DAT	E	TIME	FL INS TAN	EAM- OW, TAN- EOUS EFS)	SPE CIE CON DUC ANC	FIC N- CT- (CE	PH STAND- ARD NITS)	TEM		COLOR (PLAT- INUM- COBALT UNITS)	1	TUR- BID- LTY NTU)	OXYGE DIS- SOLVI (MG/1	S, (ED S	YGEN, DIS- OLVED PER- CENT ATUR- TION)	OXYG DEMA BIC CHE ICA 5 D (MG	ND, - - - - - - - - - - - - - - - - - - -	COLI- FORM, FECAL, 0.7 UM-MF (COLS./	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
JAN 26.		1012		78		396	8.0		13.0	<1		• 50	10	.0	99		.2	K15	К7
APR 19.		1730		43		389	8.2	2	23.0	5		.60	9	.2	113		.3	<1	K2
JUL 25.		1630		21		403	8.0	2	28.0				8	. 8	117			К1	
AUG 15.		1008		15		407	8.0	2	6.0	1		.60	6.	9	88		.6	K10	K21
DAT	E	HARD- NESS (MG/L AS CACO3)	NE NON BON (M	RD- SS, CAR- ATE G/L CO3)	(MG	UED	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)		3-	SODIUM AD- SORP- TION RATIO	SC (M	DTAS- SIUM, DIS- DLVED MG/L K)	ALKA- LINITY FIELD (MG/I AS CACOS	SU D S	LFATE IS- OLVED MG/L SO4)	CHL RID DIS SOL (MG AS	E, - VED /L	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)
JAN																			
26. APR	• •	190		21	54		14	7	.4	• 2		.80	17	2	13	14		.10	9.9
19. JUL	••	180		10	51		13	7	.3	.2		.70	17	1	15	11		.20	10
25. AUG	• •	22											17	2					
15.	• •	190		18	53		14	8	.0	.3		1.4	17	2	15	13		.10	13
	DATE	SOL	OF TI- TS, S- VED	RESII AT 10 DEG. SUS- PENDI	DUE 05 C, ED	SOLIDS VOLA- TILE, SUS- PENDED (MG/L	GE NITR TOT (MG	N, ATE AL /L	NITRO GEN, NITRIT TOTAL (MG/L AS N)	GE NO2+ TOT	AL /L	NIT GE AMMO TOT (MG AS	N, NIA OF AL I /L (GEN, GANIC OTAL MG/L S N)	NITR GEN, A MONIA ORGAN TOTA (MG/ AS N	M- + IC L L	PHOS- PHORUS TOTAL (MG/L AS P)	ORGA TOT (MG	NIC AL /L
	JAN 26		220		<2	<	,		<.01	0	.90	۷.,۱	010			80	<.01	0	.5
	PR 19		210		<2	<		.59	.01		.60		070	.23		30	<.01		.6
	UL 25									_									
	UG 15		220		9		3		<.01	0	.50	. (030	.17		20	<.01	0	1.3
				DA	ATE	TIMI	SO SO E (U	ENIC IS- LVED G/L AS)	BARIU DIS- SOLVE (UG/ AS B	D SO	MIUM OIS- LVED G/L CD)	MII DIS SOI (UC	S- LVED G/L	OPPER DIS- SOLVEI (UG/L AS CU)	DI SOL (UG	S- VED /L			
					5	1012		1		35	<1		<10	2	2	3			
				AUG 15		1008	3	<1		41	<1		<10	<1	1	3			
					JAI		LEAD, DIS- SOLVED (UG/L AS PB)	NE D SO (U	IS- LVED G/L MN)	MERCURY DIS- SOLVED (UG/L AS HG)	N S (1	ELE- IUM, DIS- OLVED UG/L S SE)	SILVE DIS SOLV (UG/ AS A	ED 5 L (G) A	ZINC, DIS- SOLVED (UG/L AS ZN)				
					AUG		<1		<1	.3		<1		<1	<3				
					1:	5	<1		<1	<.1		<1		1	<3				

NUECES RIVER BASIN

08190000 NUECES RIVER AT LAGUNA, TX--Continued

				,						
DATE	TIME	PCB, TOTAL (UG/L)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	ALDRIN, TOTAL (UG/L)	CHLOR- DANE, TOTAL (UG/L)	DDD, TOTAL (UG/L)	DDE, TOTAL (UG/L)	DDT, TOTAL (UG/L)	DI- AZINON, TOTAL (UG/L)	DI- ELDRIN TOTAL (UG/L)
JAN										
26	1012	<.1	<.10	<.01	<.1	<.01	<.01	<.01	<.01	<.01
DATE	ENDO- SULFAN, TOTAL (UG/L)	ENDRIN, TOTAL (UG/L)	ETHION, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL (UG/L)	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	LINDANE TOTAL (UG/L)	MALA- THION, TOTAL (UG/L)	METH- OXY- CHLOR, TOTAL (UG/L)	METHYL PARA- THION, TOTAL (UG/L)	METHYL TRI- THION, TOTAL (UG/L)
JAN										
26	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01
DA		EX, TH	RA- PER ION, THAN TAL TOTA G/L) (UG/	NE APHE	AL THI	I- 2,4	AL TOTA	L TOTAL	L TOTA	L
JAN							170 8			
26	<	.01	<.01	(.1	<1 <	.01 <	.01 <.	01 <.0	01 <.	01

08190500 WEST NUECES RIVER NEAR BRACKETTVILLE, TX

IOCATION.--Lat 29°28'21", long 100°14'10", Kinney County, Hydrologic Unit 12110102, at Wilson Ranch on Farm Road 3199, 1.3 mi upstream from Miguel Canyon, 16.0 mi northeast of Brackettville, and 40.2 mi upstream from mouth.

DRAINAGE AREA. -- 694 mi2.

PERIOD OF RECORD .-- September 1939 to September 1950, April 1956 to current year.

REVISED RECORDS. -- WSP 1312: 1949(M). WDR TX-83-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,326.79 ft National Geodetic Vertical Datum of 1929. Prior to Mar. 14, 1940, nonrecording gage at same site and datum.

REMARKS.--Records good except those below 1 ft^3/s , which are poor. In ordinary years, a large part of streamflow from the basin is lost by seepage into the Balcones Fault Zone of the Edwards and associated limestones above station. No known diversion above station. An observation of water temperature was made during the year.

AVERAGE DISCHARGE. -- 39 years (water years 1940-50, 1957-84), 36.2 ft 3/s (26,230 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $246,000 \text{ ft}^3/\text{s}$ Sept. 20, 1964, (gage height, 31.3 ft, from floodmark), from rating curve extended above $4,500 \text{ ft}^3/\text{s}$ on basis of slope-area measurements of 10,000, 51,000, 150,000, and $246,000 \text{ ft}^3/\text{s}$; no flow most of time.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1879, about 40 ft June 14, 1935 (discharge, 550,000 ft³/s, based on slope-area measurements of 580,000 ft³/s at site 33 mi upstream from gage) and 536,000 ft³/s (at site 24 mi downstream from gage, present site and datum), from gage-height relation of 1935 and 1955 flood peaks at site 0.6 mi upstream. Flood in 1900 reached a stage of about 34 ft, and flood of Sept. 24, 1955, reached a stage of 27.1 ft, from floodmark at present site (discharge, 150,000 ft³/s, by slope-area measurement).

EXTREMES FOR CURRENT YEAR.--Maximum discharge, $12,200 \text{ ft}^3/\text{s}$ Oct. 20 at 1530 hours (gage height, 12.36 ft), no other peak above base of 1,000 ft $^3/\text{s}$; no flow at times.

		DISCHARGE,	IN CUBIC	FEET	PER SECOND,	WATER YEAR N VALUES	OCTOBER	1983 TO	O SEPTEMBER	1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	8.9	3.6	.00	. 07	. 04	.00	.00	.00	.00	.11	.00
	.00	7.2	3.4	.00	.09	.04	.00	.00	.00	.00	.07	.00
3	.00	6.3	3.2	.00	.12	.03	.00	.00	.00	.00	.05	.00
2 3 4	.00	5.6	3.3	.00	.15							
5	.00					. 03	.00	.00	.00	.00	. 04	.00
3	. 00	162	3.0	.00	. 09	. 02	.00	. 00	. 00	.00	. 03	.00
6	.00	86	2.8	.00	.08	. 01	. 01	.00	.00	.00	.03	.00
7	.00	56	2.8	. 01	. 07	. 04	. 02	.00	.00	.00	. 03	.00
8	.00	44	2.6	. 02	. 06	. 03	. 03	.00	.00	.00	. 02	.00
9	280	35	2.6	. 03	. 05	. 02	. 02	.00	.00	.00	. 02	.00
10	80	27	2.4	.03	. 06	. 02	.01	.00	.00	.00	.00	.00
				.05	• 00	• 02	• 01	.00	• 00	.00	.00	• 00
11	18	22	2.2	. 04	. 07	. 02	.00	.00	.00	.00	.00	.00
12	12	19	2.3	. 06	. 08	.03	.00	.00	.00	.00	.00	.00
13	10	16	1.5	. 07	.10	. 04	.00	.00	.00	.00	.00	.00
14	8.8	13	1.5	.09	.07	.02	.00	.00	.00	.00	.00	.00
15	7.0	11	1.6	.10	.05	. 02	.00	.00	.00	.00	.00	.00
	7.0		1.0	. 10	.03	• 02	. 00	.00	.00	. 00	.00	• 00
16	5.6	9.5	1.8	.12	. 04	. 01	.00	.00	.00	.00	.00	.00
17	4.8	8.3	.97	.14	. 04	.00	.00	.00	.00	.00	.00	.00
18	4.2	7.5	1.0	.18	.03	.00	.00	.00	.00	.00	.00	.00
19	3.8	6.2	. 41	.21	. 03	.00	.00	.00	.00	.00	.00	.00
20	2590	6.3	.28	.24	.02	.00	.00	.00	.00	.00	.00	.00
21	963	6.0	.17	. 27	. 02	.00	.00	.00	.00	.00	.00	00
22	220	5.5	.09	.31								.00
23	132	4.8			. 01	.00	.00	.00	.00	.00	.00	.00
			. 04	.35	. 02	.00	. 00	.00	.00	.00	.00	.00
24	99	4.8	. 02	.45	. 03	.00	.00	.00	.00	.00	.00	.00
25	76	4.9	. 01	.50	. 03	.00	.00	.00	.00	. 02	.00	.00
26	55	4.5	.01	.19	. 04	.00	.00	.00	.00	.30	.00	.00
27	39	4.1	.00	.10	. 06	.00	.00	.00	.00	.21	.00	.00
28	30	4.0	.00	.06	.05	.00	.00	.00	.00	.15	.00	.00
29	22	3.9	.00	. 04	.05	.00	.00	.00	.00	.11	.00	.02
30	17	3.7	.00	.05		.00						
31	12						.00	.00	.00	.14	.00	. 06
31	12		.00	. 06		.00		.00		.17	.00	
TOTAL	4689.20	603.0	43.60	3.72	1.68	.42	. 09	.00	.00	1.10	.40	. 08
MEAN	151		1.41	.12	. 058		003	.000	.000	. 035	.013	.003
MAX	2590	162	3.6	.50	.15	.04	.03	.00	.00	.30	.11	.06
MIN	.00	3.7	.00	.00	.01	.00	.00	.00	.00	.00	.00	
AC-FT	9300	1200	86	7.4	3.3	. 8				2.2		.00
110-11	3300	1200	00	1.4	3.3	• 0	. 2	.00	.00	2.2	.8	. 2

CAL YR 1983 TOTAL 10792.30 MEAN 29.6 MAX 3830 MIN .00 AC-FT 21410 WTR YR 1984 TOTAL 5343.29 MEAN 14.6 MAX 2590 MIN .00 AC-FT 10600

NUECES RIVER BASIN

08192000 NUECES RIVER BELOW UVALDE, TX

IOCATION.--Lat 29°07'25", long 99°53'40", Uvalde County, Hydrologic Unit 12110103, on right bank at McDaniel Ranch, 5.7 mi upstream from bridge on U.S. Highway 83, 8.8 mi southwest of Uvalde, 18.2 mi downstream from West Nucces River, and at mile 338.7.

DRAINAGE AREA. -- 1.861 mi2.

PERIOD OF RECORD.--April 1939 to current year. October 1927 to April 1939, published as "near Uvalde"; records equivalent only during periods of floodflow.

REVISED RECORDS. -- WSP 1732: 1956(M). WDR TX-83-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 796.12 ft National Geodetic Vertical Datum of 1929. Oct. 4, 1927, to Apr. 30, 1939, water-stage recorder at site 6.2 mi upstream at different datum.

REMARKS.--Records good. Part of flow of Nueces River enters Edwards and associated limestones in the Balcones Fault Zone which crosses basin downstream from Laguna (station 08190000) and upstream from this station. At low stage, most of headwater flow enters this formation. Many small diversions above station for irrigation. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE. -- 45 years, 118 ft 3/s (85,490 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 189,000 ft³/s Sept. 24, 1955 (gage height, 24.61 ft, from floodmark), from rating curve extended above 34,000 ft³/s on basis of conveyance study and slope-area measurement of peak flow; no flow at times in 1951-57.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1836, 40.4 ft June 14, 1935, from floodmark (discharge at former site, 616,000 ft³/s, by slope-area measurement). Large floods also occurred in 1901 and 1913, stages unknown.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 37 ft 3/s Oct. 9 at 0500 hours (gage height, 3.54 ft), no peak above base of 250 ft 3/s; minimum daily, 2.1 ft 3/s Sept. 27.

		DISCHARGE,	IN CUBIC	FEET		WATER N VALUE	YEAR OCTOBER	1983	TO SEPTEMBER	1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	15	15	32	27	24	20	14	10	6.5	4.8	3.6	2.6
2	16	15	32	27	24	20	13	9.3	6.5	4.8	3.6	2.6
2 3 4 5	16	17	31	27	24	20	13	9.0	6.5	4.7	3.5	3.4
4	16	20	31	27	24	21	13	9.0	6.0	4.7	3.5	4.4
5	16	23	31	27	24	19	13	9.0	6.0	4.8	3.5	2.9
6	15	20	30	26	24	19	13	9.0	7.4	4.7	3.5	2.6
7	15	19	30	26	24	19	13	9.1	6.1	4.5	3.5	2.6
8	15	19	29	28	24	19	12	8.5	6.0	4.5	3.2	2.9
9	28	21	30	29	23	18	12	8.4	6.0	4.4	2.9	2.9
10	18	23	29	25	23	18	11	8.5	5.8	4.4	2.9	2.6
11	17	25	29	26	23	18	12	8.5	5.6	4.3	2.9	2.6
12	16	26	29	25	23	18	12	8.5	5.6	4.4	3.2	2.4
13	15	27	28	25	23	17	12	8.4	5.7	4.1	3.2	2.4
14	15	27	29	25	23	18	11	8.5	6.1	4.1	2.9	2.4
15	15	27	29	24	23	18	11	8.4	5.8	4.1	2.9	2.6
16	15	27	29	24	23	18	11	8.5	5.6	4.1	2.9	2.6
17	16	27	29	24	23	17	11	9.3	5.6	4.0	2.9	2.7
18	17	27	29	24	24	17	11	8.4	5.2	4.0	2.9	2.5
19	16	27	28	24	23	16	11	7.9	5.2	3.8	2.6	2.4
20	16	27	29	24	23	16	11	7.9	5.2 5.2	3.8	2.4	2.5
21	15	28	29	24	23	16	10	7.8	5.2	3.7	2.6	2.4
22	15	28	28	24	23	16	10	7.5	5.5	3.7	2.6	2.4
23	15	27	27	24	23	16	10	7.4	5.2	3.6	2.6	2.4
24	15	28	26	24	23	16	10	7.4	5.2	3.5	2.6	2.4
25	15	29	28	24	23	15	11	7.0	5.2	3.6	2.4	2.4
26	16	29	28	24	21	15	11	7.0	5.1	3.7	2.4	2.2
27	15	30	28	23	19	14	10	6.9	5.0	3.7	2.4	2.1
28	15	30	27	23	22	13	10	7.2	5.0	4.1	2.4	2.3
29	15	30	27	25	21	13	9.6	6.8	4.9	3.6	2.4	2.4
30	15	31	27	25		14	9.8	6.5	5.0	3.7	2.6	2.4
31	15		27	25		14		6.5		3.5	2.6	
TOTAL	494	749	895	779	667	528	341.4	252.1	169.7 1	27.4	90.1	78.0
MEAN	15.9	25.0	28.9	25.1	23.0	17.0	11.4	8.13	5.66	4.11	2.91	2.60
MAX	28	31	32	29	24	21	14	10	7.4	4.8	3.6	4.4
MIN	15	15	26	23	19	13	9.6	6.5	4.9	3.5	2.4	2.1
AC-FT	980	1490	1780	1550	1320	1050	677	500	337	253	179	155

CAL YR 1983 TOTAL 8848.0 MEAN 24.2 MAX 798 MIN 15 AC-FT 17550 WTR YR 1984 TOTAL 5170.7 MEAN 14.1 MAX 32 MIN 2.1 AC-FT 10260

08193000 NUECES RIVER NEAR ASHERTON, TX

LOCATION.--Lat 28°30'00", long 99°40'54", Dimmit County, Hydrologic Unit 12110103, on right bank 28 ft downstream from bridge on Farm Road 190, 0.1 mi downstream from El Moro Creek, 5.8 mi northeast of Asherton, and at mile 266.0 (revised).

DRAINAGE AREA. -- 4.082 mi2.

PERIOD OF RECORD. -- October 1939 to current year.

REVISED RECORDS . -- WSP 1118: 1944.

GAGE.--Water-stage recorder. Datum of gage is 470.92 ft National Geodetic Vertical Datum of 1929. Prior to Feb. 2, 1940, nonrecording gage at same site and datum.

REMARKS.--Records good. Part of flow of the Nueces River and its headwater tributaries enters the Edwards and associated limestones in the Balcones Fault Zone, which crosses basin between Laguna and Uvalde (stations 08190000 and 08192000, respectively). Considerable loss of flow into various permeable formations occurs downstream from the Balcones Fault Zone. Since March 1948, flow slightly regulated by Upper Nueces Reservoir (capacity, 7,590 acre-ft), 13 mi upstream. Many small diversions above station for irrigation. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE. -- 45 years, 178 ft 3/s (129,000 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 28,500 ft³/s Oct. 6, 1959 (gage height, 30.88 ft); no flow for many days each year.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1900, 33 ft June 17, 1935; flood of June 30, 1913, reached about same stage, from information by local residents.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 246 ft 3 /s Nov. 10 at 0600 hours (gage height, 4.97 ft), no peak above base of 2,000 ft 3 /s; no flow for many days.

		DISCHARGE,	IN CUBI	C FEET		WATER YEAR N VALUES	OCTOBER	1983	TO SEPTEMBER	1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	8.0	.17	.20	. 02	. 06	.00	.00	.00	.00	.00	.00	.00
2 3	6.0	.15	.26	. 03	.12	.00	.00	.00	.00	.00	.00	.00
4	4.7	. 42	. 26	. 04	.08	.00	.00	.00	.00	.00	.00	
5	2.8	.73	.20	.06	. 04	.00	.00	.00	.00	.00	.00	29
5	1.4	. 47	.18	.14	. 03	.00	.00	.00	.00	.00	.00	20
6	.71	.43	.11	.15	.07	.00	.00	.00	.00	.00	.00	16
7	. 34	. 34	. 05	.15	. 09	.00	.00	.00	. 00	. 00	. 00	8.0
8	.18	.21	. 03	3.3	.03	.00	.00	.00	.00	.00	.00	1.3
9	97	108	. 03	21	. 02	.00	.00	.00	.00	.00	.00	.13
10	40	231	.03	14	.02	.00	.00	.00	.00	.00	.00	. 01
11	39	158	. 03	4.3	. 02	.00	.00	. 00	.00	.00	.00	.00
12	34	96	. 02	1.8	. 02	.00	.00	.00	.00	.00	.00	.00
13	117	61	. 02	.79	. 02	.00	.00	.00	.00	.00	.00	.00
14	120	44	. 02	.40	.02	.00	.00	.00	.00	.00	.00	.00
15	87	30	. 01	.21	. 02	.00	.00	.00	.00	.00	.00	.00
16	59	21	.01	.15	. 02	.00	.00	.00	.00	.00	.00	.00
17	42	15	.00	.18	. 02	.00	.00	.00	.00	.00	.00	.00
18	28	10	.00	.25	. 02	.00	.00	.00	.00	.00	.00	.00
19	21	6.2	.00	.23	. 02	.00	.00	.00	.00	.00	.00	.00
20	17	3.3	.01	.22	. 02	.00	.00	.00	.00	.00	.00	.00
			• 1.1	. 22	• 02	.00	.00	.00	.00	.00	.00	.00
21	9.2	1.9	. 01	.19	. 05	.00	.00	.00	.00	.00	.00	.00
22	3.9	1.5	. 02	.14	. 09	.00	.00	.00	.00	.00	.00	.00
23	2.2	. 87	. 02	. 07	. 09	.00	.00	.00	.00	.00	.00	.00
24	1.6	.53	. 02	.12	. 07	.00	.00	.00	.00	.00	.00	.00
25	1.2	. 42	. 02	. 08	. 05	. 00	.00	.00	.00	.00	.00	.00
26	.87	.40	.02	.06	. 04	.00	.00	.00	.00	.00	.00	.00
27	.60	. 25	. 02	. 05	. 02	.00	.00	.00	.00	.00	.00	.00
28	.36	.24	. 02	. 03	. 01	.00	.00	.00	.00	.00	.00	.00
29	.20	.19	. 02	. 03	. 01	.00	.00	.00	.00	.00	. 00	.00
30	.14	.21	. 02	.03	121	.00	.00	.00	.00	.00	.00	.00
31	.12	122	. 02	. 07		.00		.00		.00	.00	
TOTAL	745.52	792.93	1.68	48.29	1.19	.00	.00	.00	.00	.00	.00	74.44
MEAN	24.0	26.4	. 054	1.56	. 041			.000		.000	.000	2.48
MAX	120	231	.26	21	.12	.00	.00	.00	.00	.00	.00	29
MIN	.12	.15	.00	. 02	.01	.00	.00	.00	.00	.00	.00	.00
AC-FT	1480	1570	3.3	96	2.4	.00	.00	.00	.00	.00	.00	148
110-11	1400	1370	3.3	90	2.4	. 00	.00	.00	• 00	.00	.00	140

CAL YR 1983 TOTAL 16524.13 MEAN 45.3 MAX 5000 MIN .00 AC-FT 32780 WTR YR 1984 TOTAL 1664.05 MEAN 4.55 MAX 231 MIN .00 AC-FT 3300

08194000 NUECES RIVER AT COTULLA, TX

IOCATION.--Lat 28°25'34", long 99°14'23", La Salle County, Hydrologic Unit 12110105, on left bank at downstream side of bridge on U.S. Highway 81, 0.4 mi upstream from Missouri Pacific Railroad Co. bridge, 0.8 mi southwest of Cotulla, 1.0 mi upstream from Lind Dam, and at mile 216.9.

DRAINAGE AREA. -- 5.171 mi2.

CAL YR 1983 TOTAL 11383.81 WTR YR 1984 TOTAL 2178.54

11383.81 MEAN 31.2 2178.54 MEAN 5.95

PERIOD OF RECORD.--November 1923 to current year. November 1923 to September 1926 monthly discharge only, published in WSP 1312; figures of daily discharge for Oct. 31, 1923, to Sept. 30, 1926, published in WSP 588, 608, and 628, have been found to be unreliable and should not be used. Gage-height records collected in this vicinity in 1914-17 and since 1922 are contained in reports of the National Weather Service.

REVISED RECORDS. -- WSP 1732: 1957 (M). WDR TX-83-3: Drainage area. See PERIOD OF RECORD.

GAGE.--Water-stage recorder. Datum of gage is 368.08 ft National Geodetic Vertical Datum of 1929. Oct. 31, 1923, to Aug. 3, 1924, nonrecording gage at approximate site of present gage at datum 7.28 ft higher. Aug. 4, 1924, to Nov. 19, 1934, nonrecording gage at site 5,000 ft downstream at datum 8.42 ft higher. Nov. 20, 1934, to July 14, 1938, water-stage recorder, and July 15, 1938, to Apr. 30, 1963, nonrecording gage, at present site and datum.

REMARKS.--Records good. Part of flow of Nueces River and its headwater tributaries enter the Edwards and associated limestones in the Balcones Fault Zone, which crosses basin between Laguna and Uvalde (stations 08190000 and 08192000, respectively). Considerable loss of flow into various permeable formations occurs downstream from the Balcones Fault Zone. Low flow is slightly regulated by small storage reservoirs above station, with most diverted above station by pumping (see REMARKS for Nueces River near Asherton, station 08193000).

AVERAGE DISCHARGE. -- 60 years (water years 1925-84), 268 ft³/s (194,200 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 82,600 ft³/s June 18, 1935 (gage height, 32.4 ft, from floodmark), from rating curve extended above 43,000 ft³/s on basis of slope-area measurement of peak flow; no flow at times each year.

Maximum stage since at least 1879, that of June 18, 1935.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 19, 1899, reached a stage of 29.7 ft, from information by local residents.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 246 ft³/s Nov. 12 at 0800 hours (gage height, 8.94 ft), no peak above base of 2,500 ft³/s; no flow most of time.

		DISCHARGE,	IN CUB	IC FEET		D, WATER YEAR EAN VALUES	OCTOBER	1983 TO) SEPTEMBER	1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	55	.53	.77	.00	. 09	.00	.00	.00	.00	.00	.00	.00
2	40	.38	.77	.00		.00	.00	.00	.00	.00	.00	.00
3	31	.28	.73				.00		.00	.00	.00	.00
4				.00	. 09	.00		.00				
	24	.33	.50	.00	. 07	.00	.00	.00	.00	.00	.00	.00
5	19	.89	.39	.00	.06	.00	.00	.00	.00	.00	.00	.00
6	16	1.0	.26	.00	. 04	.00	.00	.00	.00	.00	.00	.00
7	10	.65	.18	.00	. 03	.00	.00	.00	.00	.00	.00	.00
8	5.4	.51	.13	.00	. 02	.00	.00	.00	.00	.00	.00	.00
9	40	. 47	.13	26	. 02	.00	.00	.00	.00	.00	.00	.00
10	31	.30	.09	3.9	.03	.00	.00	.00	.00	.00	.00	.00
10	31	•30	.09	3.9	.03	.00	.00	.00	.00	.00	• 00	•00
11	97	43	. 09	1.9	. 03	.00	.00	.00	.00	.00	.00	.00
12	106	236	.04	1.7	.03	.00	.00	.00	.00	.00	.00	.00
13	80	180	. 03	1.5	.00	.00	.00	.00	.00	.00	.00	.00
14	65	115										
		113	. 02	1.2	.00	.00	.00	.00	.00	.00	.00	.00
15	128	74	.00	. 95	.00	.00	.00	.00	.00	.00	. 00	.00
16	151	49	.00	.52	.00	.00	.00	.00	.00	.00	.00	.00
17	111	35	.00	. 31	.00	.00	.00	.00	.00	.00	.00	.00
18	70	26	.00	.22	.00	.00	.00	.00	.00	.00	.00	.00
19	45	22	.00	.10	.00	.00	.00	.00	.00	.00	.00	.00
20	31	17	.00	.08	.00	.00	.00	.00	.00	.00	.00	.00
20	31	17	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
21	23	15	.00	.06	.00	.00	.00	.00	.00	.00	.00	.00
22	19	12	.00	. 06	.00	.00	.00	.00	.00	.00	.00	.00
23	17	9.8	.00	. 08	.00	.00	.00	.00	.00	.00	.00	.00
24	14	8.5	.00	.09	.00	.00	.00	.00	.00	.00	.00	.00
25	12	7.2	.00	. 09	.00	.00			.00	.00	.00	.00
23	12	1.2	• 00	. 09	.00	.00	.00	.00	• 00	.00	.00	.00
26	10	5.4	.00	.09	.00	.00	.00	.00	.00	.00	.00	.00
27	6.5	3.1	.00	. 06	.00	.00	.00	.00	.00	.00	. 00	.00
28	4.7	2.0	.00	.06	.00	.00	.00	.00	.00	.00	.00	.00
29	2.9	1.4	.00	.04	.00	.00	.00	.00	.00	.00	.00	.00
30	1.5	1.1										
			.00	. 04		.00	.00	.00	.00	.00	.00	.00
31	.84		.00	. 08		.00		.00		.00	.00	
TOTAL	1266.84	867.84	4.13	39.13	.60	.00	.00	.00	.00	.00	.00	.00
MEAN	40.9	28.9	.13	1.26	. 021		000	.000	.000	.000	.000	.000
MAX	151	236	.77	26	.09	.00	.00	.00	.00	.00	.00	.00
MIN	.84	.28	.00									
AC-FT				.00	.00	.00	.00	.00	.00	.00	.00	.00
AC-FI	2510	1720	8.2	78	1.2	.00	.00	.00	.00	.00	.00	.00

MIN .00 MIN .00

AC-FT 22580

MAX 2840

236

337

08194200 SAN CASIMIRO CREEK NEAR FREER, TX

IOCATION.--Lat 27°57'53", long 98°58'00", Webb County, Hydrologic Unit 12110105, at downstream side of bridge on State Highway 44 (revised), 11.4 mi upstream from mouth, and 22 mi northwest of Freer.

DRAINAGE AREA . -- 469 mi2.

PERIOD OF RECORD .-- January 1962 to current year.

GAGE.--Water-stage recorder. Datum of gage is 298 ft State Department of Highways and Public Transportation datum.

REMARKS .-- Water-discharge records good. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE. -- 22 years, 64.0 ft 3/s (46,370 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 82,000 ft³/s Oct. 17, 1971 (gage height, 26.87 ft), from rating curve extended above 21,000 ft³/s on basis of flow-through-culverts, contracted opening, and flow-over-road determination of 82,000 ft³/s; no flow for many days each year.

Maximum stage since at least 1946, that of Oct. 17, 1971.

EXTREMES OUTSIDE PERIOD OF RECORD.--Second highest stage, 26 ft (discharge 65,200 ft 3/s), occurred in 1954, from information by State Department of Highways and Public Transportation.

EXTREMES FOR CURRENT YEAR .-- Maximum discharge, 351 ft 3/s Oct. 14 at 1800 hours (gage-height, 11.84 ft), no peak abovebase of 500 ft3/s; no flow most of time. DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DAY												
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	.00	.00	.00	.00	.00	. 00	.00	.00	.00	.00	.00
2	.00	.00	.00	.00	.00	.00	.00	.00	.00	1.0	.00	.00
	.00	.00	.00	.00	.00	.00	.00	.00	.00	. 21	.00	.00
3 4	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
5	.00	5.0	.00		.00	.00	.00	.00	.00	.00	.00	.00
3	.00	3.0	. 00	.00	.00	.00	. 00	.00	.00	.00	. 00	. 00
6	.00	46	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
7	.00	58	.00	.00	.00	.00	.00	.00	.00	. 00	.00	.00
8	.00	19	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
9	26	1.7	.00	138	.00	.00	.00	.00	. 00	.00	.00	.00
10	8.6	.42	.00	37	.00	.00	.00	.00	.00	.00	.00	.00
11	26	.18	.00	4.8	.00	.00	.00	.00	.00	. 00	.00	.00
12	23	.08							.00	.00	.00	.00
			.00	.66	.00	.00	.00	.00			.00	.00
13	82	. 04	.00	.20	.00	.00	.00	.00	.00	.00		
14	293	. 02	.00	. 09	.00	.00	.00	.00	.00	.00	.00	.00
15	64	.00	.00	. 04	.00	. 00	.00	.00	.00	.00	.00	.00
16	9.3	.00	.00	.03	.00	.00	.00	.00	.00	.00	.00	.00
17	2.0	.00	.00	. 02	.00	.00	.00	.00	.00	.00	.00	.00
18	.56	.00	.00	. 02	.00	.00	.00	.00	.00	.00	.00	.00
19	. 21	.00	.00	. 02	.00	.00	.00	.00	.00	.00	.00	.00
20	.08	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
21	. 03	00	00	00	00	00	00	.00	.00	.00	.00	.00
		.00	.00	.00	.00	.00	. 00					
22	. 02	.00	.00	.00	.00	.00	.00	13	.00	.00	.00	.00
23	.00	• 00	.00	.00	.00	.00	. 00	2.4	.00	. 00	. 00	.00
24	.00	.00	.00	.00	.00	.00	.00	. 29	.00	.00	.00	.00
25	.00	.00	.00	.00	.00	.00	.00	. 04	.00	.20	.00	.00
26	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
27	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
28	.00	.00	.00	.00	.00	.00	.00	.00	.00	22	.00	.00
29	.00	.00	.00	.00	.00	.00	.00	.00	.00	7.6	.00	.00
30	.00	.00	.00	.00		.00	.00	.00	.00	.12	.00	.00
31	.00		.00	.00		.00		.00		.00	.00	
mom a r	F2/ 00	120 //	00	100.00	00		00	15 70	00	21 12	00	00
TOTAL	534.80	130.44	.00	180.88	.00	.00	.00	15.73	.00	31.13	.00	.00
MEAN	17.3	4.35	.000	5.83	.000		. 000	. 51	.000	1.00	.000	.000
MAX	293	58	.00	138	.00	.00	.00	13	.00	22	.00	.00
MIN	.00	.00	.00	.00	. 00	.00	.00	. 00	. 00	.00	.00	.00
AC-FT	1060	259	.00	359	.00	.00	.00	31	.00	62	.00	.00

.00 CAL YR 1983 TOTAL 1225.19 WTR YR 1984 TOTAL 892.98 MEAN 3.36 MEAN 2.44 MAX 293 MIN AC-FT 2430 892.98 MAX 293 AC-FT 1770 MIN .00

08194500 NUECES RIVER NEAR TILDEN, TX

LOCATION.--Lat 28°18'31", long 98°33'25", McMullen County, Hydrologic Unit 12110105, on right bank at downstream side of pier of bridge on State Highway 16, 1.8 mi upstream from Kings Branch, 10.5 mi south of Tilden, and at mile

DRAINAGE AREA. -- 8,093 mi2.

PERIOD OF RECORD .-- November 1942 to current year.

REVISED RECORDS. -- WSP 1512: 1947. WSP 1732: 1951(M). WDR TX-83-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 183.5 ft National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. Part of flow of Nueces River and its headwater tributaries enters Edwards and associated lime-stones in the Balcones Fault Zone, which crosses basin between Laguna and Uvalde (stations 08190000 and 08192000, respectively). Some loss of flow into various permeable formations occurs downstream from the Balcones Fault Zone. Some diversions for irrigation above station. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE .-- 41 years (water years 1944-84), 426 ft 3/s (308,600 acre-ft/yr).

MEAN 14.4 MAX

386

MIN .00

AC-FT

10440

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 76,500 ft3/s Sept. 24, 1967 (gage height, 26.57 ft); no flow at Maximum stage since about 1902, that of Sept. 24, 1967. Flood of Oct. 11, 1946, reached a stage of 26.46 ft (discharge, 70,000 ft3/s).

EXTREMES OUTSIDE PERIOD OF RECORD. -- Floods in June 1935 reached a stage of 23.7 ft and in July 1942 about 22 ft, from information by local residents.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 415 ft 3/s Oct. 16 at 1500 hours (gage height, 7.81 ft), no peak above base of 1,800 ft3/s; no flow for many days.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP .00 . 63 .00 100 2.2 1.4 .39 .62 . 01 .00 .03 .00 .00 3 88 1.9 1.2 .00 .00 .18 .34 .57 - 02 - 00 . 00 - 00 1.0 .20 70 .18 . 56 .00 .00 .00 .00 .00 .00 5 51 1.5 .93 . 21 .56 .00 .00 .00 .00 .00 .00 6 37 195 .77 .00 -28 .10 -62 .00 .00 .00 .00 .00 26 49 . 31 .00 .00 .64 . 07 .40 .00 . 00 .00 .00 .41 .00 8 19 136 .56 . 06 .34 . 04 .00 .00 .00 .00 70 240 24 . 56 - 06 . 31 . 05 . 00 . 00 . 00 . 00 .00 10 63 154 .67 49 .00 . 05 .00 .00 .00 .06 .36 .00 11 55 155 .70 368 .13 .47 . 03 . 00 . 00 .00 . 00 . 00 99 119 12 .64 180 .18 .56 - 02 .00 .00 .00 .00 .00 13 110 .59 .50 48 .18 . 01 .00 .00 .00 .00 .00 14 .00 100 17 .46 31 .56 .00 .00 .00 .00 .00 225 29 .00 .32 19 .13 .49 . 00 - 00 .00 .00 .00 16 386 152 .31 9.9 .12 .00 .00 .00 .00 .00 .00 . 00 17 259 127 .25 4.7 . 09 .35 .00 .00 .00 . 00 .00 18 152 90 .24 2.1 . 05 .24 .00 .00 .00 .00 .00 .00 66 . 05 1.2 .00 3.6 . 00 .00 .00 20 118 46 .24 .06 4.7 .00 12 .00 .00 .00 .00 33 .24 .71 .10 2.7 .00 3.2 .00 .00 .00 .00 .96 22 65 23 .24 . 09 1.1 .00 .00 .00 .00 .00 23 45 30 17 .24 . 52 . 09 .49 . 00 . 00 .00 .00 - 00 12 .84 .12 .15 .00 84 .00 .00 .00 .00 25 20 8.8 32 .17 . 05 .00 .00 .00 . 00 .00 26 15 7.2 .13 12 .00 .00 .00 .73 .24 - 04 .00 .00 27 12 5.4 .13 .53 . 52 . 04 .00 6.0 .00 .00 .00 .00 28 9.1 3.8 .13 .35 .63 . 02 .00 2.9 .00 .00 .00 .00 29 .00 6.6 2.6 .13 - 26 .63 00 1.4 - 00 - 00 - 00 - 00 2.2 .24 .00 .00 ---.00 .65 .00 .00 31 3.6 . 09 .38 .00 .28 .00 . 00 TOTAL 2548.1 1744.8 15.24 5.54 19.03 181.99 .00 746.35 .23 .09 .00 .00 . 003 MEAN 82.2 58.2 .49 24.1 .19 .008 .000 .000 .000 .61 5.87 .00 1.7 MAX 386 240 368 4.7 . 05 .00 MIN 3.6 1.5 . 09 . 11 . 05 .00 .00 . 00 .00 . 00 .00 . 00 AC-FT 5050 3460 30 1480 361 .00 .00 11 38 .5 .00 MAX CAL YR 1983 TOTAL 7631.10 MEAN 20.9 1200 MIN .00 AC-FT 15140 WTR YR 1984 TOTAL 5261.37

08195000 FRIO RIVER AT CONCAN, TX

LOCATION.--Lat 29°29'18", long 99°42'16", Uvalde County, Hydrologic Unit 12110106, on left bank 0.7 mi southeast of Concan Post Office, 15 mi upstream from Dry Frio River, and 222.8 mi upstream from mouth.

DRAINAGE AREA,--389 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1923 to September 1929, October 1930 to current year.

CAL YR 1983 TOTAL 26005.0 MEAN 71.2 WTR YR 1984 TOTAL 17877.0 MEAN 48.8

REVISED RECORDS.--WSP 1342: Drainage area. WSP 1512: 1926, 1931-32, 1934(M), 1935-36. WSP 1712: 1958. WSP 1923: 1954(M), 1957(M). WDR TX-83-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,203.71 ft National Geodetic Vertical Datum of 1929. Oct. 26, 1923, to July 28, 1924, nonrecording gage at site 86 ft upstream at datum 5.08 ft lower. July 29, 1924, to Oct. 3, 1930, nonrecording gage, and Oct. 4, 1930, to May 18, 1939, water-stage recorder, at site 130 ft downstream at present datum

REMARKS .-- Water-discharge records good. Many small diversions for irrigation above station.

AVERAGE DISCHARGE. -- 59 years (water years 1925-29, 1931-84), 112 ft3/s (3.91 in/yr), 81,140 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 162,000 ft³/s July 1, 1932 (gage height, 34.44 ft, from floodmarks), from rating curve extended above 44,000 ft³/s on basis of flow-over-dam measurement of 56,600 ft³/s and slope-area measurement of 162,000 ft³/s; no flow Aug. 5, 1956, to Jan 6, 1957.

Maximum stage since at least 1869, that of July 1, 1932.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,300 ft 3 /s Nov. 5 at 1700 hours (gage height, 5.51 ft), no other peak above base of 500 ft 3 /s; minimum daily, 5.8 ft 3 /s Aug. 12.

		DISCHARGE,	IN CUBIC	FEET		, WATER YEAR AN VALUES	OCTOBER	1983 T	O SEPTEMBER	1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	40 41 40 41 40	67 66 74 114 574	89 91 91 89 88	70 72 70 70 69	63 63 61 60 60	54 54 54 54 56	43 43 42 40 41	34 35 33 32 31	28 26 24 25 25	19 20 18 17	14 14 14 14 13	13 11 14 13
6 7 8 9	39 39 40 150 90	395 212 171 152 139	86 86 85 83	67 67 75 85 73	60 59 60 60	56 54 54 54 53	43 43 43 41 39	30 28 27 27 27	33 33 29 29 29	16 15 14 14 13	19 15 13 12 11	12 12 12 12 12
11 12 13 14 15	64 56 54 56 56	132 128 123 120 115	81 81 79 79 80	72 71 70 70 69	60 61 58 59	53 51 48 48 48	41 38 38 37 37	27 26 26 25 25	27 28 29 27 27	13 14 14 13 12	11 5.8 6.6 9.7	12 10 9.6 10
16 17 18 19 20	58 58 60 59 70	112 111 111 107 105	78 78 78 76 78	67 69 67 67	58 58 57 56 56	48 49 48 46 47	37 37 36 36 36 36	27 29 32 34 34	26 25 23 23 22	11 11 10 12 14	11 11 11 11 11	12 11 10 11
21 22 23 24 25	130 119 96 86 81	1 05 1 03 98 98 97	77 75 75 73 73	67 66 67 65 65	56 56 56 56 56	47 48 47 46 46	34 34 35 34 34	31 30 30 30 30 28	21 21 20 20 20	13 12 13 12 19	10 9.4 9.3 9.3 8.3	12 12 12 11 11
26 27 28 29 30 31	77 74 72 72 69 68	96 95 95 95 94	73 72 72 70 71 70	65 63 63 62 62 63	52 51 54 55	46 46 44 45 45	34 34 34 35 34	26 25 24 26 27 24	17 15 14 22 19	20 18 17 16 14	8.1 9.2 8.6 7.6 7.2 9.3	11 11 10 14 14
TOTAL MEAN MAX MIN CFSM IN. AC-FT	2095 67.6 150 39 .17 .19 4160	41 04 137 574 66 .34 .38 81 40	2463 79.5 91 70 .20 .23 4890	2115 68.2 85 62 .17 .19 4200	1680 57.9 63 51 .14 .15 3330	49.5 56 44 .12 .14	1133 37.8 43 34 .09 .10 2250	890 28.7 35 24 .07 .08 1770	726 24.2 33 14 .06 .07	455 14.7 20 10 .04 .04 902	333.4 10.8 19 5.8 .03 .03	349.6 11.7 14 9.6 .03 .03

MAX 574

MIN 30

MAX 574 MIN 5.8

IN 2.39

CFSM .18

CFSM .12

AC-FT 51580

08195000 FRIO RIVER AT CONCAN, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical, biochemical, and pesticide analyses: January 1974 to current year.

DATE	TIME	STREA FLOW INSTA TANEO (CFS	AM- CI I, CC AN- DU DUS AN	PE- FIC ON- ICT- ICE IHOS)	PH (STANI ARD UNITS)	AT	PER- URE G C)	COLO (PLA INUM COBA UNIT	T- LT	TUR- BID- ITY (NTU)	OXYG DI SOL (MG	EN, S- VED	DXYGEN DIS- SOLVE (PER- CENT SATUR- ATION	DEMA D BIG CHI ICA	AND, D- EM- AL, DAY	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
JAN 26	1342	64		421	8.	1	13.5		<1	.50	10	0.6	10	6	.4	К9	К8
APR 19	1345	38		399	8.	.2	21.0		5	.90		9.3	110	0	.2	К7	21
AUG 15	1530		.3	367	7.		29.0		2	1.0		8.9	12	1	.7	K2 1	К2
DATE	HARD- NESS (MG/L AS CACO3)	HARD NESS NONCA BONAT (MG/ CACO	R- DI E SC	CIUM S- DLVED MG/L S CA)	MAGNE SIUN DIS- SOLVE (MG/I AS MO	I, SOD DI ED SOL (M	IUM, S- VED G/L NA)	SODI AD SORP TIO RATI	- N O	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALK LINI FIE (MG AS CAC	TY S LD /L	SULFATI DIS- SOLVE (MG/L	D SOI	DE,	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)
JAN 26	220		17 6	52	15		7.3		.2	.80		200	17	13	3	.10	9.6
APR 19	190			3	14		7.2		.2	.90		180	16	12		.20	9.7
AUG 15	170			6	14		7.8		.3	1.5		153	19	13		.10	14
15	.,,						,		• 5	1		133	.,		١		
DAT	TUE! Di SOI	OF R	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	SOLII VOLA TILI SUS- PENDI (MG)	A- E, NI ED	GEN, TRATE COTAL (MG/L	NIT GE NITR TOT (MG AS	N, ITE N AL /L	NITRO GEN, 02+NO TOTAL (MG/L AS N)	GE 3 AMMO TOT (MG	N, NIA AL /L	NITRO GEN ORGANI TOTAL (MG/1 AS N)	O- GEI MOI IC ORG	ITRO- N,AM- NIA + GANIC OTAL MG/L S N)	PHOS PHORU TOTA (MG/ AS P	S, ORG	BON, ANIC FAL G/L C)
JAN 26.		240	2		<2		<.	010	. 7	0 <.	010			.20	<.0	10	.5
APR 19.		220	<2		<2	.29		010	.3	0 .	070		13	.20	<.0	10	.9
AUG 15.		210	1		1		<.	010	. 1	0 .	030				<.0	10	1.8
			DATE	T	IME	ARSENIC DIS- SOLVED (UG/L AS AS)	SOL (U	S-	CADMI DIS SOLV (UG/ AS C	UM MI S- DI ED SO L (U	RO- UM, S- LVED G/L CR)	COPPI DIS- SOLV (UG) AS	/ED	IRON, DIS- SOLVED (UG/L AS FE)			
			JAN 26	13	342	<1		34		<1	<10		3	5			
			AUG 15		530	<1		33		<1	<10		<1	6			
			,,,,,,,	DATE	LEAI DIS SOLV (UG) AS I	MO, NG-	ANGA- ESE, DIS- OLVED UG/L S MN)	MERC DI	URY S- VED /L	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SIL D SO (U	VER, IS- LVED G/L AG)	ZINC DIS SOLV (UG/ AS Z	, ED L			
				AN 26		<1	<1		<.1	<1		<1		4			
				UG 15		<1	<1		<.1	<1		1		<3			

NUECES RIVER BASIN
08195000 FRIO RIVER AT CONCAN, TX--Continued

DATE	TIME	PCB, TOTAL (UG/L)			CHLOR- DANE, TOTAL (UG/L)	DDD, TOTAL (UG/L)	DDE, TOTAL (UG/L)	DDT, A	DI- ZINON, TOTAL (UG/L)	DI- ELDRIN TOTAL (UG/L)
JAN 26 AUG	1342	<.	1 <.1	0 <.01	<.1	<.01	<.01	<.01	<.01	<.01
15	1530	<.	1 <.1	<.01	<.1	<.01	<.01	<.01	<.01	<.01
DATE	ENDO- SULFAN, TOTAL (UG/L)	ENDRIN TOTAL (UG/L	TOTAL	TOTAL	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	LINDANE TOTAL (UG/L)	MALA- THION, TOTAL (UG/L)	METH- OXY- CHLOR, TOTAL (UG/L)	METHYL PARA- THION, TOTAL (UG/L)	METHYL TRI- THION, TOTAL (UG/L)
JAN 26 AUG	<.01	<.0	1 <.0	(.01	<.01	<.01	<.01	<.01	<.01	<.01
15	<.01	<.0	1 <.0	<.01	<.01	<.01	<.01	<.01	<.01	<.01
DA	TO	REX, TOTAL T	HION, TO	HANE APH	TAL TH	TAL RI- 2,4 ION TOT G/L) (UG	AL TOTAL	TOTAL	TOTA	AL
JAN 26 AUG	<	.01	<.01	<.1	<1 <	(.01 <	.01 <.0	01 <.0	1 <	.01
		.01	<.01	<.1	<1 <	(.01	22 2		-	

08196000 DRY FRIO RIVER NEAR REAGAN WELLS, TX

LOCATION.--Lat 29°30'16", long 99°46'52", Uvalde County, Hydrologic Unit 12110106, on right bank 2.3 mi upstream from bridge on U.S. Highway 83, 3.1 mi upstream from Rocky Creek, 4.3 mi southeast of Reagan Wells, and 25.9 mi upstream from mouth.

DRAINAGE AREA. -- 126 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- September 1952 to current year.

REVISED RECORDS. -- WSP 1712: 1953. WSP 1923: 1955(M). WDR TX-83-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,335.2 ft State Department of Highways and Public Transportation datum.

REMARKS.--Water-discharge records good prior to July 23 and fair thereafter. Several small diversions above station.

AVERAGE DISCHARGE.--32 years, 33.7 ft 3/s (3.63 in/yr), 24,420 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 123,000 ft³/s Aug. 13, 1966 (gage height, 27.6 ft, from floodmark), from rating curve extended above 900 ft³/s on basis of slope-area measurements of 11,400, 30,700, 64,700, and 123,000 ft³/s; no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1875 occurred in 1880 (about 33 ft). Flood of June 14, 1935, reached a stage of 26.0 ft (discharge, 64,700 ft³/s, determined at site 2.6 mi upstream), and flood of July 1, 1932, reached a stage of 23 ft (discharge, 30,700 ft³/s, determined at site 2.0 mi upstream), from information by local residents.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 200 ft 3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)
Oct. 9	0500	208	3.18
Nov. 5	1100	*1,390	5.03

Minimum daily discharge, 0.04 ft3/s Sept. 2.

WTR YR 1984 TOTAL 3350.61

MEAN 9.15

MAX 420

DISCHARGE,	IN	CUBIC	FEET	PER	SECOND,	WATER	YEAR	OCTOBER	1983	TO	SEPTEMBER	1984
					MEAL	N VALUE	ES					

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	5.0	13	16	12	9.4	7.2	6.0	3.4	2.6	4.7	5.2	. 05
2	5.0	12	16	12	9.4	7.2	6.3	3.4	2.5	4.2	5.0	. 04
3	4.7	13	16	12	9.4		6.0	3.2	2.5	3.8	4.5	.09
3 4						7.2						
4	4.7	20	16	12	9.4	7.2	5.7	3.2	2.5	3.6	3.8	.14
5	4.7	420	16	12	9.0	7.2	5.7	3.0	3.5	3.4	3.4	.12
6	4.5	122	16	12	9.0	7.2	5.7	3.0	4.0	3.2	2.8	.12
7	4.5	64	15	12	9.0	7.2	6.6	2.8	3.5	3.0	2.1	.14
8	4.5	51	15	13	9.0	6.9	6.9	2.8	3.0	2.6	1.9	.14
9	47	41	15	16					3.0	2.4	1.7	
10					9.0	6.9	6.3	2.6				.12
10	24	36	15	12	9.0	6.9	5.5	2.8	2.8	2.4	1.4	. 07
11	22	32	14	11	9.0	6.9	5.2	2.6	2.8	2.3	1.3	. 05
12	19	30	14	11	9.8	7.5	5.2	2.4	3.0	2.1	1.1	. 05
13	18	27	14	11	9.0	7.5	5.2	2.3	3.6	2.0	1.3	.07
14	17	25	14	10								
					8.6	7.2	4.7	2.0	4.0	2.0	2.0	.07
15	16	24	14	10	8.2	7.2	4.7	2.0	4.0	1.8	2.1	.80
16	16	22	14	10	8.2	7.2	4.5	2.1	3.8	1.7	2.3	.80
17	15	21	14	9.8	8.2	7.2	4.5	2.8	3.6	1.7	2.0	.45
18	14	21	13	9.8	8.2	7.2	4.5	3.0	3.4	1.7	1.3	.43
19	14	21	13	9.8	8.2							
20	16					6.9	4.3	4.0	3.2	1.7	.89	.51
20	16	19	13	9.8	8.2	6.6	4.5	5.0	3.0	1.7	.72	.72
21	18	19	13	9.4	7.9	6.6	4.0	4.0	2.8	1.5	.51	1.1
22	17	19	13	9.0	7.9	6.6	3.6	3.4	2.6	1.7	.51	1.4
23	16	18	13	9.0	7.5	6.6	3.4	3.4	2.4	1.7	.80	1.8
24	16	17	13	9.0								
					7.5	6.6	3.4	3.4	2.3	1.7	.34	2.1
25	15	16	13	9.0	7.5	6.3	3.4	3.2	2.3	1.8	.18	2.3
26	14	16	13	9.0	7.5	6.3	3.6	3.0	2.1	1.8	.14	2.6
27	14	16	13	9.0	7.2	6.3	3.4	2.8	2.0	1.8	.12	3.0
28	13	16	12	9.0	7.2	6.0	3.4	2.8	2.4	2.3	.07	3.8
29	13	16	12		7.2							
				9.0		5.7	3.4	2.6	7.5	3.4	. 05	7.2
30	13	16	12	9.0		5.7	3.4	2.6	6.0	4.0	.18	5.5
31	13		12	9.0		5.7		2.6		4.7	.12	
TOTAL	437.6	1203	432	326.6	244.6	210.9	143.0	92.2	96.7	78.4	49.83	35.78
MEAN	14.1	40.1	13.9	10.5	8.43	6.80	4.77	2.97	3.22	2.53	1.61	1.19
MAX	47	420	16									
				16	9.8	7.5	6.9	5.0	7.5	4.7	5.2	7.2
MIN	4.5	12	12	9.0	7.2	5.7	3.4	2.0	2.0	1.5	. 05	. 04
CFSM	.12	.34	.12	. 09	. 07	. 06	. 04	. 03	. 03	. 02	. 01	. 01
IN.	.14	. 38	.14	.10	. 08	. 07	. 05	. 03	. 03	. 02	. 02	. 01
AC-FT	868	2390	857	648	485	418	284	183	192	156	99	71
CAT VP	1002 momis	5006 00	MDAN		W.W. 105	W	oner					
CAL YR	1983 TOTAL	5986.30	MEAN	16.4	MAX 420	MIN 3.4	CFSM	. 14 IN	1.90 AC-FT	11870		

MIN . 04

IN 1.07

AC-FT

6650

CFSM . 08

08196000 DRY FRIO RIVER NEAR REAGAN WELLS, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical, biochemical, and pesticide analyses: January 1974 to current year.

DATE,	TIME	INS TAN	REAM- LOW, STAN- NEOUS CFS)	CI CO DU AN	CE	PH (STAND- ARD UNITS)	AT	IPER- TURE IG C)	(I IN	DLOR PLAT- NUM- DBALT NITS)	-	TUR- BID- ITY NTU)	SC	(GEN, DIS- DLVED MG/L)	SC (F	GEN, DIS- DLVED PER- CENT TUR- TION)	BI CH IC	GEN AND, O- IEM- AL, DAY IG/L)	COLI- FORM, FECAL 0.7 UM-MF (COLS.	TO F KF (C	TREP- COCCI ECAL, AGAR OLS. PER 0 ML)
JAN 26	1542		9.0		383	8.0		13.5		<1		.40		11.4		115		.3	K		К9
APR 19	1030		4.5		378	8.2		19.5		5		.50		8.4		97		.2	3:	2	41
AUG 15	1322		1.8		390	8.1		29.0		4		.60		9.6		130		.6	K	5	К6
DATE	HARD- NESS (MG/L AS CACO3)	NON BON (M	ARD- ESS, ICAR- IATE IG/L ICO3)	DI: SO: (Me	CIUM S- LVED G/L CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SOL (M	OIUM, S- VED IG/L NA)	sc	DDIUM AD- DRP- FION ATIO	SC (I	OTAS- SIUM, DIS- DLVED MG/L S K)	LIN FI (M	KA- HTY ELD IG/L S CO3)	SO (M	FATE S- LVED G/L SO4)	RI DI SO (M	LO- DE, S- LVED G/L CL)	FLUO- RIDE, DIS- SOLVEI (MG/L AS F)	D S O	LICA, IS- OLVED MG/L AS IO2)
JAN	100		20			4.0								4.70							7.0
26 APR	190		22	5	6	13		6.1		. 2		.50		172		15	1	2	<.10)	7.3
19 AUG	180		17	5	4	12		6.3		.2		.50		168		16	1	1	.10)	8.8
15	190		15	5	6	13		6.9		.2		1.4		179		15	1	1	<.10)	12
DAT	SOI	OF STI-	SOLI RESI AT 1 DEG. SUS PEND (MG	DUE 05 C, ED	SOLIDS VOLA- TILE SUS- PENDER (MG/I	G NIT TO (M	RATE FAL G/L	NIT GE NITR TOT (MG AS	AL C/L	NITE GEN NO2+N TOTA (MG/ AS N	N, NO3 AL /L	GE	AL /L	GE	N, NIC AL /L	NITH GEN, A MONIA ORGAN TOTA (MG, AS N	AM- A + NIC AL /L	PHOS PHORUS TOTA (MG/S AS P	S, ORO L TO L (N	RBON, GANIC OTAL IG/L C)	
JAN 26. APR		210		<2		(2		<.	010		. 90	<.	010			<.	.20	<.0	10	.8	
19.		210		<2		(2	.29		010		. 30		080		.12		.20	<.0	10	1.0	
AUG 15.	•	220		12	0	2		<.	010		.10	٠,	030		.17		.20	<.0	10	1.8	
			DA	ГE	TIME	SOI (UC	ENIC IS- LVED G/L AS)	BARI DIS SOLV (UG AS	ED /L	CADMI DIS SOLV (UG/ AS C	S- VED /L	CHR MIU DIS SOL (UG AS	M, VED	COPP DIS SOL (UG AS	VED /L	IRON DIS SOLV (UG/ AS F	ED L				
			JAN 26.		1542		<1		33		<1		<10		3		<3				
			AUG 15.		1322		<1		44		<1		<10		<1		10				
				JAN 26	N 5	LEAD, DIS- SOLVED (UG/L AS PB)	NE D SO (U	NGA- SE, IS- LVED G/L MN)	SO (U	CURY DIS- DLVED G/L HG)	NI SC (U	LE- UM, OIS- LVED G/L SE)	SO (U	VER, IS- LVED G/L AG)	SO (U	NC, IS- LVED G/L ZN)					
				AUG	5	1		1		<.1		<1		<1		23					
						,										23					

NUECES RIVER BASIN

08196000 DRY FRIO RIVER NEAR REAGAN WELLS, TX--Continued

DATE	TIME	PCB, TOTAL (UG/L)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	ALDRIN, TOTAL (UG/L)	TOTAL	DDD, TOTAL (UG/L)	DDE, TOTAL (UG/L)	DDT, TOTAL (UG/L)	DI- AZINON, TOTAL (UG/L)	DI - ELDRIN TOTAL (UG/L)
JAN 26	1542	<.1	<.10	<.01	<.1	<.01	<.01	<.01	<.01	<.01
AUG	1342	\	1.10	1.01		1.01		1.01	1.01	1.01
15	1322	<.1	<.10	<.01	<.1	<.01	<.01	<.01	<.01	<.01
DATE	ENDO- SULFAN, TOTAL (UG/L)	ENDRIN, TOTAL (UG/L)	ETHION, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL (UG/L)	EPOXIDE TOTAL	LINDANE TOTAL (UG/L)	MALA- THION, TOTAL (UG/L)	METH- OXY- CHLOR, TOTAL (UG/L)	METHYL PARA- THION, TOTAL (UG/L)	METHYL TRI- THION, TOTAL (UG/L)
JAN 26 AUG	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01
15	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01
DA'	TO	EX, TH	ION, TH.	ANE APH	TAL TH	RI- 2,4	AL TOTA	AL TOT	AL TOT	AL
JAN 26 AUG	<	.01	<.01	<.1	<1 .	<.01 <	.01 <.	.01 <	.01	.01
		.01	<.01	<.1	<1 <	<.01 <	.01 <.	.01 <	.01 <	.01

08197500 FRIO RIVER BELOW DRY FRIO RIVER NEAR UVALDE, TX

LOCATION.--Lat 29°14'44", long 99°40'27", Uvalde County, Hydrologic Unit 12110106, on right bank 1.1 mi upstream from Farm Road 1023, 5.7 mi downstream from Dry Frio River, 6.3 mi downstream from bridge on U.S. Highway 90, 7.2 mi northeast of Uvalde, and 194.5 mi upstream from mouth.

DRAINAGE AREA . -- 631 mi2.

PERIOD OF RECORD.--September 1952 to current year. Sum of records published as Frio River at Knippa and Dry Frio River at Knippa for period September 1952 to September 1953 is equivalent to record for this station.

REVISED RECORDS. -- WDR TX-83-3: Drainage area.

GAGE .-- Water-stage recorder. Datum of gage is 882.47 ft National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. Part of flow of Frio River enters the Edwards and associated limestones in the Balcones Fault Zone, which crosses basin between Concan (station 08195000) and this station. Most of low flow enters this formation. Many diversions for irrigation above station.

AVERAGE DISCHARGE. -- 32 years, 28.4 ft 3/s (20,580 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 88,500 ft 3 /s Aug. 13, 1966 (gage height, 23.88 ft, from floodmark), from rating curve extended above 12,000 ft 3 /s on basis of slope-area measurements of 24,400, 53,000, and 88,500 ft 3 /s; no flow most of time each year.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1887, about 35 ft in 1894. Flood of July 1, 1932, reached a stage of about 30 ft. A higher flood than that of 1894 occurred prior to 1887. Above information by local residents.

EXTREMES FOR CURRENT YEAR .-- No flow for the year.

		DISCHARGE,	IN CUBIC	FEET	PER SECOND, MEA	WATER YEAR N VALUES	OCTOBER	1983 TO	SEPTEMBER	1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	.00	.00	.00	. 00	.00	.00	.00	.00	.00	.00	.00
2	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
3	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
3	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
5	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
6	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
7	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
8	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
9	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
10	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
11	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
12	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
13	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
14	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
15	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
16	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
17	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
18	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
19	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
20	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
21	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
22	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
23	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
24	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
25	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
26	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
27	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
28	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
29	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
30	.00	.00	.00	.00		.00	.00	.00	.00	.00	.00	.00
31	.00		.00	.00		.00		.00		.00	.00	
TOTAL	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
MEAN	.000	.000	.000	.000	.000		.000	.000	.000	.000	.000	.000
MAX	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
MIN	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
AC-FT	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00

CAL YR 1983 TOTAL 0.00 MEAN .000 MAX .00 MIN .00 AC-FT .00 WTR YR 1984 TOTAL 0.00 MEAN .000 MAX .00 MIN .00 AC-FT .00

08198000 SABINAL RIVER NEAR SABINAL, TX

LOCATION.--Lat 29°29'27", long 99°29'33", Uvalde County, Hydrologic Unit 12110106, on right bank 108 ft upstream from concrete dam, 2.3 mi downstream from mouth of Onion Creek, 12.5 mi north of Sabinal, and 41.6 mi upstream from mouth.

DRAINAGE AREA. -- 206 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1942 to current year.

REVISED RECORDS. -- WSP 1312: 1943(M), 1944(M), 1947(M).

GAGE.--Water-stage recorder. Datum of gage is 1,131.20 ft National Geodetic Vertical Datum of 1929. Prior to Apr. 9, 1971, at site 0.3 mi downstream at same datum.

REMARKS .-- Water-discharge records good. Several small diversions above station for irrigation.

AVERAGE DISCHARGE. -- 42 years, 55.5 ft 3/s (3.66 in/yr), 40,210 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 55,200 ft³/s June 17, 1958 (gage height, 28.3 ft, from floodmark, at present site), from rating curve extended above 6,900 ft³/s on basis of slope-area measurement of 55,200 ft³/s; no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1892, about 33 ft July 2, 1932, from information by local residents. There is a legend that a flood in the middle 1800's reached a stage of nearly 63 ft, see flood history for station 08198500.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2,820 ft³/s Nov. 5 at 1500 hours (gage height, 7.92 ft), no other peak above base of 1,000 ft³/s; minimum daily, 0.18 ft³/s Sept. 28.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

MEAN VALUES DAY OCT NOV DEC JUN JUL AUG SEP FEB MAR APR MAY JAN 8.8 28 18 8.1 5.0 3.8 88 3.7 2 8.8 11 35 29 34 28 18 12 8.1 5.0 .88 34 12 4.3 38 29 .88 8.8 29 10 18 8.1 101 36 33 18 7.6 .88 5 8.8 621 38 29 32 26 18 11 77 2.7 2.7 . 88 8.8 238 34 28 32 26 17 28 .88 33 27 33 26 .88 34 8 8.8 80 34 30 25 18 10 18 2.1 1.8 .88 34 69 126 34 26 18 9.3 16 1.3 . 88 10 12 61 34 32 9.3 1.3 26 17 14 1.8 .88 11 9.6 55 54 32 57 32 16 9.6 13 1.1 . 88 26 1.8 12 9.6 32 51 8.7 33 13 1.1 .88 26 16 1.3 13 9.3 51 30 32 .98 16 14 9.6 47 30 43 31 24 18 .89 15 9.6 45 31 40 32 24 14 8.1 12 1.3 .83 .70 16 9.6 41 30 40 30 24 14 9.4 1.0 .70 30 24 9.7 1.3 .70 17 9.6 44 29 41 14 8.0 1.1 9.6 45 29 18 42 7.4 1.1 14 19 9.6 29 23 20 11 37 27 40 29 22 13 .41 21 39 12 12 . 32 40 30 22 6.7 22 13 12 42 30 40 29 22 10 .28 29 1.1 44 30 41 20 12 9.6 5.0 1.1 .24 41 39 30 20 12 9.6 .21 5.0 1.6 25 11 40 27 29 39 26 11 39 29 39 28 12 .19 21 8.1 4.1 4.1 27 37 29 12 38 27 21 11 8.0 3.7 3.8 1.1 .19 28 11 37 28 34 26 19 10 4.6 .18 29 11 37 27 36 28 19 11 16 4.8 4.1 1.1 . 19 30 38 35 19 4.8 3.8 .19 ---11 31 11 27 34 19 . 88 TOTAL 2162 959 1280 896 729 363.5 17.90 436 321.5 47.36 76.8 MEAN 10.4 30.9 23.5 14.5 10.4 2.48 1.53 .60 12.1 MAX 15 621 38 126 34 29 18 16 77 5.0 3.8 .88 MIN 8.8 10 27 27 .15 19 10 8.0 3.7 1.1 .83 . 18 . 05 .20 **CFSM** .35 .15 . 05 . 01 .007 .003 .11 . 07 . 06 IN. . 06 39 . 07 . 01 .00 AC-FT 638 4290 1900 2540 1780 1450 865 638 152 94 36

CAL YR 1983 TOTAL 11863.30 MEAN 32.5 MAX 621 MIN 8.8 CFSM .16 IN 2.14 AC-FT 23530 WTR YR 1984 TOTAL 7610.56 MEAN 20.8 MAX 621 MIN .18 CFSM .10 IN 1.37 AC-FT 15100

08198000 SABINAL RIVER NEAR SABINAL, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical, biochemical, and pesticide analyses: January 1974 to current year.

HARD- NESS, CALCIUM SIUM, SODIUM, AD- SIUM, LINITY SULFATE RIDE, RIDE, NESS NONCAR- DIS- DIS- DIS- SORP- DIS- FIELD DIS- DIS- DIS- (MG/L BONATE SOLVED SOLVED SOLVED TION SOLVED (MG/L SOLVED SOLVED SOLVED AS (MG/L (MG/L (MG/L RATIO (MG/L AS (MG/L (MG/L (MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L	42 88
APR 20 1020 14 442 8.1 20.0 5 .70 8.2 95 .3 57 AUG 16 1550 1.1 460 7.9 27.0 4 .80 7.6 99 .7 33 HARD- MESS, CALCIUM SIUM, SODIUM, AD- SIUM, LINITY SULFATE RIDE,	
AUG 16 1550 1.1 460 7.9 27.0 4 .80 7.6 99 .7 33 HARD- MAGNE- SIUM, SODIUM, AD- SIUM, INITY SULFATE RIDE, RIDE, RIDE, RIDE, NESS, NONCAR- DIS- DIS- DIS- SOLVED SOLVED TION SOLVED MG/L SOLVED SOLVED SOLVED TION SOLVED MG/L SOLVED SOLVED SOLVED TION SOLVED MG/L SOLVED SOLVED SOLVED TOWN SOLVED MG/L AS (MG/L (MG/L (MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L	
HARD	68
27 240 37 73 14 7.7 .2 1.0 203 29 13 .20 APR 20 210 24 62 13 7.9 .2 1.0 185 32 12 .20 AUG 16 230 36 69 13 8.7 .3 1.7 190 29 13 .20 SOLIDS, SOLIDS, SUM OF RESIDUE SOLIDS, NITRO- SUM OF RESIDUE SOLIDS, NITRO- GEN, GEN, GEN, GEN, GEN, GEN, GEN, GEN,	LICA, DIS- OLVED MG/L AS 102)
APR 20 210 24 62 13 7.9 .2 1.0 185 32 12 .20 AUG 16 230 36 69 13 8.7 .3 1.7 190 29 13 .20 SOLIDS, SUM OF RESIDUE SOLIDS, NITRO- NITRO- NITRO- GEN, AM- CONSTI- AT 105 VOLA- GEN, GEN, GEN, GEN, GEN, GEN, MONIA + PHOS- CARBON, ORGANIC DIS- DIS- SUS- SUS- TOTAL SOLVED PENDED PENDED (MG/L (MG	
AUG 16 230 36 69 13 8.7 .3 1.7 190 29 13 .20 SOLIDS, SOLIDS, SUM OF RESIDUE SOLIDS, SUB- SUS- SUS- TOTAL SOLVED DIS- SUS- SUS- TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL SOLVED DATE (MG/L) (M	9.6
SOLIDS, SOLIDS, SUM OF RESIDUE SOLIDS, NITRO- NITRO- NITRO- NITRO- GEN, AMCONSTI- AT 105 VOLA- GEN, GEN, GEN, GEN, GEN, MONIA + PHOS- CARBON, ORGANIC TUENTS, DEG. C, TILE, NITRITE NO2+NO3 AMMONIA ORGANIC ORGANIC PHORUS, ORGANIC DIS- SUS- SUS- TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL SOLVED SOLVED PENDED PENDED (MG/L (MG	10
SUM OF RESIDUE SOLIDS, NITRO- GEN, MITRO- GEN, AM- GEN, GEN, GEN, GEN, GEN, GEN, GEN, GEN,	15
27 270 <2 <2 <.010 .50 <.010 <.20 <.010 .6 APR 20 250 3 <2 <.010 .10 .090 .11 .20 <.010 .7 AUG 16 260 2 1 <.010 <.10 .020 <.010 1.9 1.5	
20 250 3 <2 <.010 .10 .090 .11 .20 <.010 .7 AUG 16 260 2 1 <.010 <.10 .020 <.010 1.9 1.6	
16 260 2 1 <.010 <.10 .020 <.010 1.9 1.1	
DIS- DIS- DIS- DIS- DIS- DIS- DIS- SOLVED SOLVED SOLVED SOLVED SOLVED SOLVED TIME (UG/L (U	
JAN 27 0912 <1 35 <1 <10 2 5	
AUG 16 1550 <1 36 <1 <10 <1 10	
MANGA- LEAD, NESE, MERCURY NIUM, SILVER, ZINC, DIS- DIS- SOLVED SOLVED SOLVED SOLVED SOLVED (UG/L (UG/L (UG/L (UG/L DATE AS PB) AS MN) AS HG) AS SE) AS AG) AS ZN)	
JAN 27 <1 <1 .1 <1 7 AUG 16 1 9 <.1 <1 <1 4	

NUECES RIVER BASIN

08198000 SABINAL RIVER NEAR SABINAL, TX--Continued

DATE	TIME	PCB, TOTAL (UG/L)		. ALD	RIN, I	CHLOR- DANE, TOTAL JG/L)	DD TOTA (UG	AL T	OTAL T	OTAL T	INON, E	DI- LDRIN OTAL UG/L)
JAN 27	0912	۷.	1 (.1	0	<.01	<.1	<	.01	<.01		<.01	<.01
AUG 16	1550	۲.	1 (.1	0	<.01	<.1	<	.01	<.01	<.01	<.01	<.01
DATE	ENDO- SULFAN, TOTAL (UG/L)	EN DRIN TOTAL (UG/L	TOTAL	, CH	PTA- (LOR, E)	HEPTA- CHLOR POXIDE FOTAL (UG/L)	LINDA TOTA (UG	ANE T	ALA- HION, C OTAL T	OXY- F HLOR, T OTAL T	PARA- THION, TOTAL T	TRI- HION, OTAL UG/L)
JAN 27	<.01	<.0	1 <.0	1	<.01	<.01	<	.01	<.01	<.01	<.01	<.01
16	<.01	<.0	1 <.0	1	<.01	<.01	<	.01	<.01	<.01	<.01	<.01
DA	TO	EX, T	HION, TOTAL T	PER- HANE OTAL UG/L)	TOX- APHENE TOTAL (UG/L)	THI	I- ON	2,4-D, TOTAL (UG/L)	2, 4-DP TOTAL (UG/L)	2,4,5-T TOTAL (UG/L)	TOTAL	
JAN 27 AUG		.01	<.01	<.1	<	٠ <	.01	<.01	<.01	<.01	<.01	
16	<	.01	<.01	<.1	<	<	.01	<.01	<.01	<.01	<.01	

08198500 SABINAL RIVER AT SABINAL, TX

LOCATION.--Lat 29°18'05", long 99°28'46", Uvalde County, Hydrologic Unit 12110106, on left bank 80 ft downstream from bridge on U.S. Highway 90, 1,100 ft downstream from Southern Pacific Lines railroad bridge, 0.8 mi west of Sabinal, and 5.8 mi upstream from Ranchero Creek, and 223 mi upstream from mouth.

PERIOD OF RECORD .-- September 1952 to current year.

REVISED RECORDS . -- WDR TX-83-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 882.17 ft National Geodetic Vertical Datum of 1929. Prior to July 29, 1958, nonrecording gage, and July 29, 1958, to Mar. 19, 1964, water-stage recorder at site 80 ft upstream at same

REMARKS .-- Records fair. Several small diversions for irrigation above station. Most of low flow of the Sabinal River enters the Edwards and associated limestones in the Balcones Fault Zone, which crosses basin upstream from this station and downstream from Sabinal River near Sabinal (station 08198000). Several observations of water temperature were made during the year.

AVERAGE DISCHARGE. -- 32 years, 31.0 ft 3/s (22,460 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD .-- Maximum discharge, 73,300 ft3/s June 17, 1958 (gage height, 33.3 ft); no flow at times most years.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1890, 40 ft Aug. 24, 1919, from information by local residents. Flood of July 2, 1932, reached a stage of 31 ft (discharge, 60,000 ft 3/s), from information by Southern Pacific Lines. There is a legend that a flood in 1858 covered the townsite of Sabinal. The stage would have been 70 to 80 ft, which seems unlikely. However, it is possible that a flood occurred in 1858 that covered part of the townsite and was higher than any flood since that date.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 568 ft³/s Nov. 6 at 0300 hours (gage geight, 7.11 ft), no other peak above base of 100 ft³/s; minimum daily, 0.35 ft³/s June 1-3.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 MEAN VALUES DAY OCT NOV SEP DEC JAN FEB MAR APR MAY JUN JUL AUG . 42 .65 1.9 2 .42 .68 2.0 1.5 1.0 .78 .60 .47 .35 .54 .53 .54 1.4 1.0 .60 1.5 . 78 . 47 . 35 1.5 .75 .93 .42 1.3 1.0 .54 .54 5 . 42 1.9 1.5 1.0 .75 .55 . 45 . 44 . 54 .53 .52 6 228 1.0 .75 .55 .45 6.8 .53 .52 . 42 1.9 1.5 .75 . 54 .53 .52 33 .95 2.5 . 45 1.0 .70 2.0 8.3 1.9 .53 8 .95 1.0 .45 .54 .52 .70 - 54 . 52 1.4 . 95 . 70 .45 -60 10 1.2 4.3 1.8 1.4 .95 .54 .53 .52 .70 .60 .45 .60 .70 .53 .53 11 4.2 1.0 1.8 1.4 . 95 .70 .60 . 54 . 52 .90 4.0 12 1.8 .95 .70 .55 .56 .54 .52 1.4 .50 .90 3.9 1.8 1.4 .95 .45 . 54 .52 14 .91 3.8 1.8 1.4 .90 .70 .52 .44 .56 .54 .75 .52 15 .93 3.6 1.8 1.4 .90 .70 .52 .43 .56 .54 1.0 1.2 16 .98 .70 1.3 .92 .90 .43 .56 3.1 3.0 2.7 1.1 1.7 17 1.3 .90 .70 . 52 .43 . 56 . 54 .58 .65 18 .54 .52 1.3 -90 .70 . 43 . 56 . 56 . 49 19 .70 .43 .56 . 54 .56 .49 .96 .90 20 1.0 2.5 .85 .65 .49 21 .93 2.3 1.7 1.0 1.1 . 85 .65 .49 .40 . 54 . 54 .56 22 2.3 .54 .84 .85 .65 .49 .40 .54 .56 .60 23 .77 1.7 . 85 .65 . 49 .40 . 54 . 54 .56 .54 24 2.4 -68 1.6 1.1 .85 .65 .49 -40 - 54 - 54 - 56 - 54 25 .71 2.1 .54 1.6 1.1 .85 .65 . 49 .40 . 54 . 54 . 52 26 .74 2.1 1.6 1.1 80 .65 1,0 40 . 54 . 54 . 54 .52 27 .83 .54 2.1 .54 .54 .52 1.6 1.0 .80 .65 . 49 .40 .54 .50 .72 1.6 1.0 .60 .49 .40 .80 29 .71 2.0 1.6 1.0 .80 .60 .47 .38 . 54 . 54 .38 30 .69 2.0 .53 .54 1.6 1.0 .60 .47 .54 .50 .65 1.6 1.0 ---.60 ---.38 ---TOTAI. 24.51 339.73 54.5 39.8 26.35 21.39 18.37 13.56 23.14 16.72 18.22 17.34 .79 1.76 MEAN 11.3 1.28 .91 .69 2.5 .44 6.8 .54 1.3 1.2 1.6 MIN . 42 1.0 .60 AC-FT 108 49 674 52 42 36 27 46 33 34

MEAN 1.63 CAL YR 1983 TOTAL 594.58 WTR YR 1984 TOTAL 613.63 MEAN 1.68 MAX 228 MIN .35 AC-FT 1220

NUECES RIVER BASIN

08200000 HONDO CREEK NEAR TARPLEY, TX

LOCATION.--Lat 29°34'10", long 99°14'47", Medina County, Hydrologic Unit 12110107, on left bank 460 ft downstream from bridge on Ranch Road 462, 6.3 mi southeast of Tarpley, and 16.6 mi northwest of Hondo.

DRAINAGE AREA. -- 95.6 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- August 1952 to current year.

REVISED RECORDS. -- WSP 1712: 1957. WDR TX-83-3: Drainage area.

GAGE .-- Water-stage recorder. Datum of gage is 1,169.1 ft Magnolia Oil Co. datum.

REMARKS .-- Water-discharge records good. Several small diversions for irrigation above station.

AVERAGE DISCHARGE. -- 32 years, 37.6 ft3/s (5.34 in/yr), 27,240 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 69,800 ft³/s June 17, 1958 (gage height, 28.2 ft, from floodmark), from rating curve extended above 2,600 ft³/s on basis of slope-area measurements of 18,600 and 69,800 ft³/s; no flow at times in 1952-57, 1962-64, 1967, 1971, and 1984.

Maximum stage since at least 1907, that of June 17, 1958.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in July 1932 reached a stage of about 26 ft (discharge, 58,500 ft 3/s), from information by local resident.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 92 ft3/s Nov. 5 at 1500 hours (gage height, 2.02 ft), no peak above base of 500 ft3/s; no flow July 5 to Sept. 30.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

		DIDONARO	a, IN 00B	IO ILLI		EAN VALUES	nk outo.	1703	10 00110100	1704		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	3.5 3.3 3.3 3.3	3.8 3.8 3.8 8.5	10 12 11 10 10	6.2 7.6 6.5 6.5	8.6 9.0 8.2 8.2 7.9	5.0 4.7 4.7 4.7 4.4	2.9 3.3 2.9 2.5 2.7	1.3 1.5 1.1 1.0 .90	.37 .32 .28 .32 8.1	.24 .15 .10 .06	.00 .00 .00 .00	.00 .00 .00 .00
6 7 8 9	3.1 2.9 3.1 14 5.0	23 19 18 17 16	9.0 9.0 9.0 8.6 9.0	6.2 5.9 8.6 21 16	7.9 9.3 9.3 9.3 9.0	4.4 4.4 4.1 4.1	3.1 4.7 4.4 3.5 3.3	.70 .90 .70 .46	22 2.9 1.9 1.7 1.5	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
11 12 13 14 15	4.1 4.1 3.5 3.5 3.5	15 14 13 13 12	8.6 8.2 7.9 7.6 7.2	14 13 12 11 11	9.0 10 8.6 7.9 7.6	5.0 8.2 6.8 7.2 6.8	3.1 3.1 3.1 2.7 2.5	.41 .41 .41 .41	1.5 1.4 1.5 1.4	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
16 17 18 19 20	3.5 3.5 3.5 3.3 8.7	11 12 12 12 10	7.2 6.8 6.8 6.5 6.5	11 11 11 10 9.6	7.2 7.2 6.8 6.5 6.5	6.5 6.2 5.9 5.3 5.0	2.5 2.1 2.2 2.3 1.7	.70 1.3 2.1 1.3 1.2	1.0 .80 .70 .60	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00 .00
21 22 23 24 25	5.0 3.8 3.8 3.8 4.4	11 12 18 12 12	6.8 7.9 7.2 4.7 5.6	9.6 10 11 10 9.6	6.2 6.8 5.9 5.9	5.0 4.7 4.7 3.8 3.5	1.5 1.4 1.5 1.5	.90 1.0 .90 .80 .70	.46 .46 .41 .37	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
26 27 28 29 30 31	4.1 4.1 3.8 3.8 3.8 3.8	12 12 11 11 11	5.6 6.2 5.9 4.4 5.6 5.6	9.3 9.3 9.3 9.0 8.6 9.0	6.2 5.0 5.0 5.0	3.5 3.3 2.5 2.5 2.7 2.9	1.7 1.4 1.3 1.5 1.2	.60 .46 .70 .80 .60	.32 .28 .32 .28 .28	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
TOTAL MEAN MAX MIN CFSM IN. AC-FT	130.0 4.19 14 2.9 .05 .06 258	387.9 12.9 29 3.8 .15 .17 769	236.4 7.63 12 4.4 .09 .10 469	309.3 9.98 21 5.9 .12 .13 613	215.9 7.44 10 5.0 .09 .09 428	146.9 4.74 8.2 2.5 .06 .06 291	73.3 2.44 4.7 1.2 .03 .03 145	25.68 .83 2.1 .41 .01 .01	53.84 1.79 22 .28 .02 .02	.55 .018 .24 .00 .000 .000	.00 .000 .00 .00 .000 .000	.00 .000 .00 .00 .000
CAL YR WTR YR	1983 TOT.			17.5 4.32	MAX 304 MAX 29	MIN 2.3 MIN .00	CFSM .		2.76 AC-F			

08200000 HONDO CREEK NEAR TARPLEY, TX--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical, biochemical, and pesticide analyses: January 1974 to current year.

																охус	GEN.	OXYO	GEN	CO	LI-	ST	REP-
DATE	TIME	IN:	REAM- LOW, STAN- NEOUS CFS)	CI CO DU AN	FIC N- CT- CE HOS)	(ST	PH CAND- LRD CTS)	AT	PER- URE G C)	(P)	LOR LAT- JM- BALT ITS)	TU BI IT (NT	D- Y	SO	GEN, OIS- LVED G/L)	SOI (PE CE SAI	IS - LVED ER - ENT TUR - ION)	BIC CHI ICA 5 I	AND, O- EM-	FO FE O. UM (CO	RM, CAL,	FEG KF /	OCCI CAL, AGAR LS. ER
JAN 25	1250		9.5		423		8.2		11.0		<1		.50		11.4		107		.2		К7		K12
PR	1745		2.3		420		8.2		21.0		5	1	.0		9.4		111		.0		56		39
DATE	HAR NES (MG AS CAC	S /L	HARI NESS NONCA BONAT (MG) CACO	AR- FE /L	CALC: DIS- SOLV (MG) AS (ED L	MAG	NE- UM, S- VED	SODIU DIS- SOLVE (MG/ AS N	D L	SODIU AD- SORP- TION RATIO	JM -	POT SI DI SOI	CAS- LUM, IS- LVED G/L K)	ALKA LINIT FIEL (MG/ AS CACO	Y D L	SULFA DIS- SOLV (MG/ AS SO	/ED	CHLO RIDE DIS- SOLV (MG/ AS O	E, ZED	FLUC RIDI DIS SOLV (MG,	E, S- VED /L	
JAN																							
25 APR		210		40	66		11		6.			. 2		.1		70	40		11			.20	
18		190		42	57		12		8.	0		. 3		. 2	- 1	50	49	,	12			.30	
DATE	SILI DIS SOL (MG AS SIO	VED /L	SOLII SUM (CONST TUENT DIS SOLV (MG/	OF CI- CS, S- VED	SOLII RESII AT 10 DEG. SUS- PENDE (MG/	OUE OS C,	SOLI VOL TIL SUS- PENDI (MG	A- E, ED	NITROGEN NITRITOTA (MG/ AS N	řE L L	NITRO GEN, NO2+NO TOTAI (MG/I AS N)	3		AL G/L	NITR GEN ORGAN TOTA (MG/ AS N	ic L L	NITE GEN, A MONIA ORGAN TOTA (MG/ AS N	M- VIC L L	PHOS PHORU TOTA (MG/ AS P	JS, L L	CARBO ORGAL TOTA (MG,	NIC AL /L	
JAN					3, 11,											•							
25 APR 18	1	8.1		250		<2 6		<2	<.0		.2 <.1			010		12		20	<.0			.6	
10	-		-	240		0		\2	.0	10	(. 1	0				12		20	1.0	010		1.2	
			DA	ATE.	Tl	ME	SOI (U	ENIC IS- LVED G/L AS)	BARII DIS SOLVI (UG AS	ED /L	CADMI DIS SOLV (UG/ AS C	ED L	MI DI SO (U	IRO- UM, S- LVED IG/L CR)	COPP DIS SOL (UG AS	VED	SOI (UG	S- VED					
			JAN 25	i 	12	250		1		28		<1		<10		2		7					
				. 1	DATE	Si (EAD, DIS- OLVED UG/L S PB)	NI SC (I	ANGA- ESE, DIS- DLVED UG/L S MN)	SC (U	CURY DIS- DIVED IG/L HG)	NI D SO (U	LE- UM, IS- LVED G/L SE)) Si	LVER, DIS- OLVED UG/L S AG)	SO (U	NC, DIS- DLVED DIG/L ZN)						
					AN 25		1		2		<.1		<1		<1		9						
	DATE		T IME	TO	CB, OTAL G/L)	LI PO CI TO	APH- THA- ENES, OLY- HLOR. OTAL G/L)	TO	DRIN, DTAL JG/L)	DA TO	LOR- NE, TAL	TO	DD, FAL G/L)	T	DDE, OTAL UG/L)	TO	DT, TAL	AZ I TO	DI- INON, DTAL	TO	DI- LDRIN DTAL UG/L)		
J	JAN 25		1250		<.1		<.10		<.01	,	<.1	Á	<.01	,	<.01		<.01		<.01		<.01		

NUECES RIVER BASIN

08200000 HONDO CREEK NEAR TARPLEY, TX--Continued

DATE	ENDO- SULFAN, TOTAL (UG/L)	ENDRIN, TOTAL (UG/L)	TOTAL	TOTAL	, EPOXIDE TOTAL	LINDANE TOTAL (UG/L)	MALA- THION, C TOTAL T	OXY- PA	THYL METH RA- TRI HION, THIC PTAL TOTA IG/L) (UG/	I- ON, AL
JAN 25	<.01	<.01	<.0	1 <.0	1 <.01	<.01	<.01	<.01	<.01 <.	.01
DA JAN	TE (U	REX, THOTAL TO	HION, TOTAL T	HANE AP	HENE, T	TAL RI- 2,4-1 ION TOTAL G/L) (UG/I	L TOTAL	2,4,5-T TOTAL (UG/L)	SILVEX, TOTAL (UG/L)	
25	• • •	.01	<.01	<.1	<1	<.01 <.0	01 <.01	<.01	<.01	

353 08200700 HONDO CREEK AT KING WATERHOLE NEAR HONDO, TX

LOCATION.--Lat 29°23'26", long 99°09'04", Medina County, Hydrologic Unit 12110107, on left bank 0.3 mi downstream from county road low-water crossing, 3.1 mi north of Hondo, 7.8 mi upstream from Verde Creek, and 55.4 mi upstream from mouth.

DRAINAGE AREA. -- 149 mi2.

PERIOD OF RECORD .-- October 1960 to current year.

REVISED RECORDS . -- WDR TX-83-3: Drainage area.

GAGE .-- Water-stage recorder. Datum of gage is 897.87 ft National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. Most of the low flow of Hondo Creek enters Fault Zone, which crosses basin between Tarpley (station 08200000) and this station. Small diversions above station for irrigation, amounts unknown.

AVERAGE DISCHARGE. -- 24 years, 13.5 ft 3/s (9,780 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 46,900 ft³/s July 15, 1973 (gage height, 16.4 ft, from floodmark), from rating curve extended above 9,800 ft³/s on basis of contracted-opening measurement of peak flow; no flow most of time.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1875, 21 ft in September 1919, from information by local resident. Other floods occurred in July 1932, stage 18 ft and June 17, 1958, stage 17 ft.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 516 ft³/s June 5 at 0830 hours (gage height, 3.11 ft), no other peak above base of 500 ft³/s; no flow most of time.

*		DISCHARGE,	IN CUBIC	FEET		, WATER YEAR AN VALUES	OCTOBER	1983	TO SEPTEMBER	1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
3 4 5	.00	.00 .00	.00	.00	.00 .00 .00	.00 .00 .00	.00 .00	.00	.00 .00 56	.00	.00 .00	.00 .00
6 7 8	.00	.00 .00	.00	.00	.00 .00	.00 .00 .00	.00	.00	.28 .00	.00	.00 .00	.00
10	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
11 12 13 14 15	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
16 17 18 19 20	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
21 22 23 24 25	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
26 27 28 29 30 31	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
TOTAL MEAN MAX MIN AC-FT	.00 .000 .00	.00 .000 .00 .00	.00 .000 .00 .00	.00 .00 .00 .00	.00 .000 .00 .00	.00 .000 .00 .00	.00 .000 .00 .00	.00 .000 .00	105.28 3.51 56 .00 209	.00 .000 .00	.00 .000 .00 .00	.00 .000 .00

MEAN 3.49 CAL YR 1983 TOTAL 1275.57 MAX 600 MIN .00 AC-FT 2530 AC-FT 209 WTR YR 1984 TOTAL 105.28 MEAN MAX 56 .00

NUECES RIVER BASIN

08201500 SECO CREEK AT MILLER RANCH NEAR UTOPIA, TX

LOCATION.--Lat 29°34'23", long 99°24'10", Medina County, Hydrologic Unit 12110107, on right bank 200 ft upstream from county road crossing, 4.5 mi downstream from Cascade Creek, 7.9 mi southeast of Utopia, and 58.0 mi upstream from mouth.

DRAINAGE AREA. -- 45.0 mi2.

WTR YR 1984 TOTAL

745.43

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- May 1961 to current year.

REVISED RECORDS. -- WDR TX-83-3: Drainage area.

GAGE.--Water-stage recorder, crest-stage gages, and concrete control. Datum of gage is 1,265.8 ft Magnolia Oil Co. datum, adjustment unknown.

REMARKS.--Water-discharge records good except those for period of no gage-height record, which are fair. No known diversion above station.

AVERAGE DISCHARGE. -- 23 years, 17.6 ft 3/s (5.31 in/yr), 12,750 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 38,500 ft 3/s July 15, 1973 (gage height, 14.4 ft, from floodmark), from rating curve extended above 910 ft 3/s on basis of field estimate of flow over and around end of dam, 14,100 ft 3/s, and slope-area measurement of 52,600 ft 3/s; no flow for many days in 1963-64.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1901, 16.4 ft June 17, 1958, from floodmarks (discharge 52,600 ft³/s, by slope-area measurement of peak flow).

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 220 ft 3/s Jan. 9 at 0030 hours (gage height, 2.61 ft), no peak above base of 600 ft 3/s; minimum daily, 0.04 ft 3/s July 16-19, 21-23.

		DISCHARGE,	IN CUBI	C FEET		ND, WATER Y	YEAR OCTOBER	R 1983 TO	SEPTEMB	ER 1984		6.14
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.4 1.4 1.3 1.3	1.2 1.2 1.4 6.3	2.9 3.0 3.3 2.9 2.8	2.4 2.8 2.8 2.4 2.4	4.9 4.9 4.5 4.3	2.6 2.6 2.6 2.6 2.6	2.2 2.2 2.2 2.2 2.2 2.0	.79 .87 .91 .74	.32 .22 .17 .18	.36 .30 .19 .13	.27 .18 .18 .16	.06 .05 1.8 1.0
6 7 8 9 10	1.3 1.2 1.2 6.4 2.5	6.9 4.8 4.3 4.0 3.4	2.6 2.6 2.6 2.6 2.6	2.3 2.2 8.1 38 7.5	4.3 4.3 4.3 3.9 3.9	2.6 2.6 2.6 2.6 2.6	2.0 1.8 1.8 1.8	.58 .58 .50 .46 .36	10 2.4 1.5 1.2 1.1	.11 .09 .08 .07	.09 .09 .07 .07	.25 .18 .29 .26 .23
11 12 13 14 15	1.6 1.3 1.3 1.2	3.4 3.2 3.1 3.1 2.7	2.5 2.4 2.3 2.2 2.2	6.5 6.5 6.2 6.1 6.1	3.9 4.4 3.6 3.6 3.4	2.6 3.6 3.4 3.4 3.4	1.7 1.7 1.6 1.6	.36 .36 .35 .33	.78 .68 .82 1.3	.05 .05 .05 .05	.07 .07 .07 .07 .56	.17 .15 .15 .15
16 17 18 19 20	1.2 1.2 1.2 1.2 4.4	2.6 2.6 2.6 2.6 2.4	2.4 2.4 2.4 2.4 2.4	6.1 6.1 5.8 5.3 5.3	3.4 3.4 3.4 3.2 3.4	3.4 3.1 3.1 3.1 3.1	1.4 1.4 1.4 1.3	.39 .76 1.1 1.3	1.1 .84 .53 .38 .29	.04 .04 .04 .04	.42 .27 .24 .22 .17	.14 .10 .09 .09
21 22 23 24 25	2.9 1.6 1.4 1.4	2.5 3.0 8.3 3.5 3.1	2.4 2.3 2.2 3.4 1.9	5.3 5.4 5.7 5.4 5.3	3.4 3.4 3.4 3.4 3.1	2.8 2.8 2.8 2.8 2.8	1.2 1.2 1.2 1.1	1.2 1.1 .74 .52 .42	.29 .29 .27 .23	.04 .04 .04 .13	.23 .21 .17 .14 .11	.11 .08 .06 .05
26 27 28 29 30 31	1.3 1.3 1.3 1.3 1.3	3.1 3.4 3.1 3.1 3.1	2.4 2.2 2.3 2.3 2.0 2.1	5.3 5.2 4.9 4.9 4.7	3.0 2.3 2.3 2.6	2.8 2.6 2.6 2.6 2.4 2.4	1.1 1.1 1.1 1.0 .91	.36 .28 .40 .68 .65	.18 .17 .15 .17 .30	1.5 2.3 1.5 .95 .56	.11 .09 .09 .09 .09	.05 .05 .06 .10
TOTAL MEAN MAX MIN CFSM IN. AC-FT	51.5 1.66 6.4 1.2 .04 .04	119.0 3.97 21 1.2 .09 .10 236	77.0 2.48 3.4 1.9 .06 .07	187.7 6.05 38 2.2 .14 .16 372	106.2 3.66 4.9 2.3 .09 .09	87.6 2.83 3.6 2.4 .07 .08 174	45.91 1.53 2.2 .91 .04 .04	19.93 .64 1.4 .28 .02 .02	29.28 .98 10 .15 .02 .03 58	10.04 .32 2.3 .04 .007 .01	4.84 .16 .56 .07 .004 .00	6.43 .21 1.8 .05 .005 .01
CAL YR	1983 TOT					MIN 1.2	CFSM .11	IN 1.43				

CFSM . 05

IN .64 AC-FT 1480

MEAN 2.04 MAX 38 MIN .04

08201500 SECO CREEK AT MILLER RANCH NEAR UTOPIA, TX--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical, biochemical, and pesticide analyses: January 1974 to current year.

DATE	TIME	IN TA	REAM- C LOW, CO STAN- D NEOUS A	NCE	PH STAND- ARD NITS)	AT	PER- URE G C)	COLO (PL INUI COB UNI	AT- M- ALT	TUR- BID- ITY (NTU)	S	YGEN, DIS- OLVED MG/L)	SOI (PE CE SAT	S- VED	OXYG DEMA BIO CHE ICA 5 D (MG	AND,)- EM- AL, OAY	FOR FEG 0.7 UM-	CAL, 7 -MF LS./	STRE TOGOO FECA KF AG (COLS PER 100 M	CCI AL, GAR
JAN 25	1418		5.5	454	8.4		17.0		<1		50	10.5		113		.2		34	F	17
APR 20	1540		1.3	394	8.5	3	31.5		5		90	9.3		135		.4		230		K4
AUG 17	0952		.29	384	7.9		25.0		3	1.0)	7.4		93		.6		200		46
DATE	NE (M A	G/L	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIU DIS- SOLVE (MG/L AS CA	D SOL (MG	UM, S- VED /L	SODIU DIS- SOLVE (MG/ AS N	D L	SODIU AD- SORP- TION RATIO		POTAS- SIUM, DIS- SOLVED (MG/L AS K)	LINIT	Y .D 'L	SULFA DIS- SOLV (MG/ AS SO	ED L	CHLO RIDE DIS- SOLV (MG/ AS C	ED L	FLUG RIDI DIS SOLY (MG, AS I	E, S- VED /L	
JAN 25		220	61	70	12		6.	6		2	1.1	1	64	55		12			.20	
APR 20		180	67	53	12		7.				1.3		15	66		12			.20	
AUG 17		170	45	50	11		7.			3	1.7	1	25	54		13			.20	
DATE	SO (M	LVED G/L	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS RESIDU AT 105 DEG. C SUS- PENDED (MG/L)	E SOLI VOL , TIL SUS PEND	A- E, ED	NITR GEN NITRI TOTA (MG/ AS N	TE I	NITRO GEN, NO2+NO TOTAL (MG/L AS N)	3 Al	NITRO- GEN, MONIA COTAL (MG/L AS N)	GEN	I, IIC IL 'L	NITR GEN, A MONIA ORGAN TOTA (MG/ AS N	M- + IC L L	PHOS PHORU TOTA (MG/ AS P	S, L L	CARBO ORGAI TOTA (MG,	NIC AL /L	
JAN 25		8.5	260		2	<2	<.0	10	.4	0	<.010				30	<.0	10		.5	
APR 20 AUG		10	230	:	2	<2	.0	10	<.1	0	.100		20		30	<.0	10	2	2.1	
17		13	230	<	1	<1	<.0	10	.1	0	.040		16		20	<.0	10	2	2.0	
			DATE	TIM	SO: E (U	ENIC IS- LVED G/L AS)	BARI DIS SOLV (UG AS	ED /L	DIS SOLV (UG/ AS C	ED L	CHRO-MIUM, DIS- SOLVE (UG/L AS CR	COPF DIS D SOL (UG	VED	IRO DI SOL (UG AS	S- VED /L					
			JAN 25	1418	8	<1		28		<1	<1	0	4		4					
			AUG 17			<1		27		<1	<1		<1		7					
				DATE	LEAD, DIS- SOLVED (UG/L AS PB)	NI SC (I	ANGA- ESE, DIS- DLVED JG/L S MN)	SO1 (UC	CURY IS- LVED G/L HG)	SELE NIUN DIS SOLV (UG/ AS	1, S S- /ED 'L	ILVER, DIS- SOLVED (UG/L AS AG)	SO (U	NC, DIS- LVED G/L ZN)					- 1	
				25 UG	<1		<1		<.1		<1	<1		3						×
				17	<1		3		<.1		<1	<1		7						

NUECES RIVER BASIN

08201500 SECO CREEK AT MILLER RANCH NEAR UTOPIA, TX--Continued

DAT	E	TIME	TO	CB, OTAL G/L)	POI	HA- NES, LY- LOR. TAL	ALDRIN, TOTAL (UG/L)	DA TO	HLOR- ANE, OTAL G/L)	TO	DDD, DTAL	TO		DDT, TOTAL (UG/L)	AZ	DI- INON, DTAL JG/L)	EL	I- DRIN TAL G/L)
JAN 25.		1418		<.1		<.10	<.01		<.1		<.01		<.01	<.01		<.01		<.01
AUG 17.	••	0952		<.1		<.10	<.01		<.1		<.01		<.01	<.01		<.01		<.01
DAT		ENDO- SULFAN, TOTAL (UG/L)	TO	ORIN, OTAL JG/L)		LON, TAL G/L)	HEPTA- CHLOR, TOTAL (UG/L)	EPC TC	EPTA- HLOR DXIDE DTAL UG/L)	TO	DANE TAL	TH	LA- ION, TAL	METH- OXY- CHLOR, TOTAL (UG/L)	TI TO	ETHYL ARA- HION, DTAL JG/L)	TH TO	THYL RI- ION, TAL G/L)
JAN 25. AUG 17.		<.01 <.01		<.01 <.01		<.01	<.01 <.01		<.01 <.01		<.01 <.01		<.01 <.01	<.01 <.01		<.01 <.01		<.01 <.01
	DAT	TO	REX, OTAL G/L)	PAR THI TOT (UG	ON, AL	PER THAN TOTA (UG/	E APH	COX- IENE, OTAL IG/L)	TOT TR THI (UG	I-	2,4- TOTA (UG/	L	2, 4-D TOTAL (UG/L)	TO	,5-T TAL IG/L)	SILVE TOTA (UG/	L	
	JAN 25. AUG		.01	<	.01	<	.1	<1	<	.01	<.	01	<.0	1	<.01	<.	.01	
	17.		.01	<	.01	<	.1	<1	<	.01	<.	01	<.0	1	<.01	<.	.01	

08202700 SECO CREEK AT ROWE RANCH NEAR D'HANIS, TX

LOCATION,--Lat 29°21'43", long 99°17'05", Medina County, Hydrologic Unit 12110107, on left bank 2.9 mi north of D'Hanis and 8.0 mi downstream from Rocky Creek.

DRAINAGE AREA. -- 168 mi2.

PERIOD OF RECORD .-- November 1960 to current year.

GAGE.--Water-stage recorder. Datum of gage is 900.88 ft National Geodetic Vertical Datum of 1929. Prior to October 1970, published as "at Crook Ranch, near D'Hanis".

REMARKS.--Records good. All of low flow of Seco Creek enters Edwards and associated limestones in the Balcones Fault Zone, which crosses basin between Miller Ranch (station 08201500) and this station. No known diversion above station.

AVERAGE DISCHARGE .-- 23 years (water years 1962-84), 8.07 ft3/s (5,850 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 30,500 ft³/s July 15, 1973 (gage height, 26.0 ft, from floodmark), from rating curve extended above 16,000 ft³/s on basis of slope-area measurement of 35,800 ft³/s; no flow most of time each year.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1852, 35.7 ft May 31, 1935, from information by local resident. Other floods occurred Aug. 31, 1894, 33 ft; September 1919, 28 ft; July 2, 1932, 28.2 ft (discharge, 35,800 ft 3/s), by slope-area measurement; and June 17, 1958, 32.4 ft.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

EXTREMES FOR CURRENT YEAR. -- No flow during the year.

				7000	ME	AN VALUES			7	75 3579		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
2	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
3	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
4	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
5	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
6	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
7	.00	.00	.00	.00	.00	.00	.00	. 00	.00	.00	.00	.00
8	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
9	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
10	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
11	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
12	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
13	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
14	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
15	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
16	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
17	.00	.00	.00	.00	.00	.00	. 00	.00	.00	.00	.00	.00
18	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
19	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
20	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
21	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
22	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
23	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
24	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
25	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
26	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
27	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
28	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
29	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	. 00	.00
30	.00	.00	.00	.00		.00	.00	.00	.00	.00	.00	.00
31	.00		.00	.00		.00		.00		.00	.00	
TOTAL	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
MEAN	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
MAX	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
MIN	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
AC-FT	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00

CAL YR 1983 TOTAL 0.00 MEAN .000 MAX .00 MIN .00 AC-FT .00 WTR YR 1984 TOTAL 0.00 MEAN .000 MAX .00 MIN .00 AC-FT .00

08205500 FRIO RIVER NEAR DERBY, TX

LOCATION.--Lat 28°44'11", long 99°08'40", Frio County, Hydrologic Unit 12110106, on right bank 17 ft downstream from centerline of railroad tracks, 35 ft right of the Missouri Pacific Railroad Co. bridge abutment, 167 ft downstream from Interstate Highway 35, 917 ft downstream from Leona River, 2.5 mi south of Derby, and 115.1 (revised) mi upstream from mouth.

DRAINAGE AREA. -- 3,429 mi2.

PERIOD OF RECORD. -- August 1915 to current year.

REVISED RECORDS.--WSP 568: 1915-16, 1918-22. WSP 1312: 1917-18(M). WSP 1923: 1954. WDR TX-83-3: Drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 449.11 ft National Geodetic Vertical Datum of 1929. Aug. 1, 1915, to Apr. 21, 1931, nonrecording gage, and Apr. 22, 1931, to Mar. 6, 1940, water-stage recorder at same site and datum. Mar. 7, 1940, to May 4, 1972, water-stage recorder, and May 5 to Nov. 1, 1972, nonrecording gage at site 167 ft upstream at same datum.

REMARKS.--Records good. Part of flow of Frio River and its headwater tributaries enters the Edwards and associated limestones in the Balcones Fault Zone upstream from U.S. Highway 90 (see REMARKS for stations 08197500, 08200700, and 08202700). Considerable loss of flow into various permeable formations occurs downstream from the Balcones Fault Zone. Many small diversions for irrigation above station. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE. -- 69 years, 137 ft 3/s (99.040 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 230,000 ft³/s July 4, 1932 (gage height 29.45 ft, from floodmarks), from rating curve extended above 76,000 ft³/s on basis of slope-area measurement of peak flow; no flow at times most years.

Maximum stage since at least 1860, that of July 4, 1932.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 31 ft3/s Jan. 12 at 1800 hours (gage height, 1.03 ft), no peak above base of 1,100 ft3/s; no flow Apr. 14 to Sept. 30.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

					ME.	AN VALUES						
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	13 13 9.6 6.6 4.3	13 14 12 12 15	12 14 14 16 15	19 19 19 19 20	21 20 20 20 19	3.1 2.5 2.5 2.5 2.8	3.4 3.8 3.9 2.8 3.0	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
6 7 8 9	4.3 4.8 5.1 8.1 7.3	13 13 14 14 13	16 16 17 17 15	20 20 22 24 22	18 17 17 16 14	2.8 2.5 2.5 2.3 1.9	3.7 4.3 3.8 2.0 .53	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
11 12 13 14 15	8.6 8.3 12 14	14 15 14 15	14 12 14 15 17	21 28 30 24 24	14 14 14 14	1.9 2.6 1.5 1.9 2.4	.69 .63 .38 .00	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
16 17 18 19 20	12 11 10 9.2 9.2	14 15 16 15	17 17 17 18 18	23 23 23 23 23 23	14 13 12 11	2.1 1.9 1.9 4.6 4.5	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
21 22 23 24 25	10 10 10 11 11	16 17 14 13 10	18 20 20 19	23 23 24 24 25	11 10 8.1 6.9 6.3	5.6 5.3 4.3 3.1 1.7	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
26 27 28 29 30 31	11 14 15 16 15	8.8 7.5 8.1 10 12	19 20 20 23 23 20	26 25 25 23 23 24	4.8 4.8 2.8 3.5	1.8 2.3 2.1 1.7 2.8 3.2	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
TOTAL MEAN MAX MIN AC-FT	318.4 10.3 16 4.3 632	396.4 13.2 17 7.5 786	532 17.2 23 12 1060	711 22.9 30 19 1410	371.2 12.8 21 2.8 736	84.6 2.73 5.6 1.5 168	32.93 1.10 4.3 .00 65	.00 .000 .00 .00	.00 .000 .00	.00 .000 .00 .00	.00 .000 .00 .00	.00 .000 .00

CAL YR 1983 TOTAL 9853.87 MEAN 27.0 MAX 358 MIN .77 AC-FT 19550 WTR YR 1984 TOTAL 2446.53 MEAN 6.68 MAX 30 MIN .00 AC-FT 4850

359

08206600 FRIO RIVER AT TILDEN, TX

LOCATION.--Lat 28°28'02", long 98°32'50", McMullen County, Hydrologic Unit 12110108, on left end at downstream side of bridge on State Highway 16 in Tilden, 300 ft downstream from Leoncita Creek, 1.3 mi upstream from Salt Branch, 1.8 mi downstream from Big Slough, and 44.2 mi upstream from mouth.

DRAINAGE AREA . -- 4.493 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- July 1978 to current year.

GAGE .-- Water-stage recorder. Datum of gage is 216.04 ft National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good. Part of flow of Frio River and its headwater tributaries enter the Edwards and associated limestones in the Balcones Fault Zone, which crosses basin upstream from U.S. Highway 90 (see REMARKS for station 08205500). Considerable loss of flow into various permeable formations also occurs downstream from the Balcones Fault Zone. Many small diversions above station for irrigation.

AVERAGE DISCHARGE. -- 6 years, 152 ft 3/s (110,100 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 12,600 ft³/s May 19, 1980 at 0900 hours (gage height, 26.35 ft); no flow for many days from April to August 1984.

EXTREMES OUTSIDE PERIOD OF RECORD .-- Flood of July 1932 reached a stage of 38.44 ft, from information by local resident.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 159 ft 3/s Oct. 9 at 1900 hours (gage height, 4.77 ft), no peak above base of 1,500 ft 3/s; no flow for many days from April to August.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

MEAN VALUES AUG SEP DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL 8.2 6.0 1.8 .00 .24 9.4 23 6.8 10 19 5.4 1.8 . 04 .00 .00 - 04 .16 9.8 - 06 . 21 3 6.7 10 20 4.3 1.6 . 02 .00 - 00 9.2 23 10 21 . 07 . 02 8.6 1.2 .01 .00 5 9.7 9.3 11 20 22 1.0 . 01 . 02 . 27 .00 .00 2.8 2.5 2.3 6 8.6 11 12 18 20 . 01 .00 .00 - 00 - 86 . 87 . 00 .00 .00 . 00 .11 8 7.3 13 14 18 20 .00 .00 .00 - 07 . 00 12 13 19 20 2.0 2.3 . 00 . 02 - 00 - 04 10 44 11 13 19 20 2.0 . 02 .10 .82 .00 .00 . 03 28 42 11 13 21 .12 29 29 .00 .00 . 04 . 07 12 11 13 19 .08 1.8 . 07 . 21 .00 .00 . 06 13 29 13 21 19 .13 .00 . 41 . 07 .00 .20 14 27 13 13 20 .00 .27 15 23 13 13 18 18 . 07 .00 . 21 . 04 .00 .35 16 19 13 13 19 17 .00 .08 3.8 .00 25 .06 13 12 23 6.4 17 15 16 1.8 . 01 .00 .00 .18 18 16 15 1.8 .24 . 06 .00 -00 20 . 02 15 .00 .00 .30 2.0 20 15 13 13 20 14 8.1 .00 . 02 .34 13 13 13 20 13 .00 .00 1.3 2.6 . 01 .34 22 11 13 13 20 13 2.2 .00 1.4 .00 .00 .37 1.3 23 10 10 14 20 12 5.8 . 00 .59 .00 .00 .45 1.0 24 15 15 20 .87 17 12 7.0 - 00 . 37 - 00 - 00 .37 25 8.2 5.4 . 00 .18 .00 .00 26 7.3 15 22 8.9 3.9 . 01 - 53 -42 5.8 .00 . 07 .00 6.8 22 .59 .37 27 18 16 .00 - 03 . 02 - 00 6.8 12 23 .00 .59 . 41 .00 . 01 . 07 .00 6.8 23 23 .59 1.1 29 12 17 6.7 1.7 .00 .00 .10 12 30 .18 .00 .00 .00 31 6.8 17 23 1.8 .00 .16 .38 ---TOTAL. 491.2 361.6 410.0 54.22 6.71 28.25 647 91 90.1 -97 476.1 16.58 2.91 15.8 12.1 20.9 . 032 . 029 .94 13.2 16.4 3.3 1.75 . 22 MAX 61 18 17 29 23 7.0 .41 6.4 MIN 6.7 5.8 9.2 17 6.7 .00 00 . 00 . 00 .00 . 04 974 717 AC-FT 813 1280 944 179 33 108 1.9 1.8 13 56

CAL YR 1983 TOTAL 14353.07 MEAN 39.3 MAX 1750 MIN AC-FT 28470 WTR YR 1984 TOTAL 2583.64 MEAN 7.06 MAX 61 MIN .00 AC-FT 5120

08206600 FRIO RIVER AT TILDEN, TX--Continued

WATER-QUALITY RECORDS

LOCATION.--Lat 28°28'02", long 98°32'50", McMullin County, Hydrologic Unit 12110108, at left downstream end of State Highway 16 bridge in Tilden, 300 ft downstream from Leoncita Creek, 1.3 mi upstream from Salt Branch, and 1.8 mi downstream from Big Slough.

PERIOD OF RECORD .-- Chemical, biochemical, and pesticide analyses: July 1978 to current year.

DATE	TI	ME	STRE FLO INST TANE (CF	OW, CAN- COUS	SPE CIF CON DUC ANC	IC I- CT- CE	PH (STA AR UNIT	ND- D	AT	PER- URE G C)	COB	AT-	B	JR- ID- TY TU)	SOL	EN, S- VED	SOI (PE CE SAT	S- VED	OXYG DEMA BIC CHE ICA 5 I (MG	ND, M- L,	HARD- NESS (MG/L AS CACO3)
OCT 05	13	35		9.6		842		8.0		26.5		90	99	9		5.6		70		2.0	150
DATE	HAR NES NONC BONA (MG CAC	SAR- TE	(MG	S- LVED	SI SOI (MG	NE- LUM, S- LVED G/L MG)	SODI DIS SOLV (MG AS	ED /L	SO	DIUM AD- RP- ION FIO	SI		AS	ITY ELD G/L	SULF DIS SOI (MG	VED	(MG	E, VED		S- VED	SILICA, DIS- SOLVED (MG/L AS SIO2)
OCT 05		0	48	3	7	.1	140			5	8	3.1		250	5	6	110			.40	15
00	DATE CT	SUM CON TUE D SO	IDS, OF STI- NTS, IS- LVED G/L)	AT DEG SU: PEN	IDUE 105 . C,	VO TI SU PEN	IDS, LA- LE, S- DED G/L)	NIT TO (M	TRO- EN, RATE TAL G/L N)	G NIT TO (M	TRO- EN, RITE TAL G/L N)	NO2- TO (M	TRO- EN, +NO3 TAL G/L N)	AMM TO (Mc AS	TRO- EN, ONIA TAL G/L N)	ORGA TO' (Mc AS	TRO- EN, ANIC TAL G/L N)	GEN MON ORG. TO (M AS	TRO-, AM- IA + ANIC TAL G/L N)	PHOI TO	OS- RUS, TAL G/L P)
			DA	TE	TI	ME	ARSE DI SOL (UG AS	S- VED /L	SOLY (U		SOL (UG	S- VED	(UC	JM,	(UG	VED	SOL (UG	S- VED			
			OCT		13	35		5		74		<1		10		3		120			
				DA	re	LEA DI SOL (UG AS	S- VED /L	MANG NESI DI: SOL' (UG: AS I	E, S- VED /L	MERC DI SOL (UG AS	S- VED /L	SELI NIUI DI SOLI (UG AS	M, S- VED /L	SILVI DI: SOLV (UG AS	S- VED /L	ZING DIS SOLV (UG AS	S- VED /L				
				OCT 05			25		7		<.1		<1		<1		13				

08206700 SAN MIGUEL CREEK NEAR TILDEN, TX

LOCATION.--Lat 28°35'14", long 98°32'44", McMullen County, Hydrologic Unit 12110109, on left bank 25 ft downstream from State Highway 16, 0.3 mi upstream from mouth of Bruce Branch, 0.9 mi downstream from mouth of Far Live Oak Creek, 3 mi upstream from San Patricio Creek, 7 mi downstream from Clear Creek, 8.7 mi north of Tilden, and 12.9 mi upstream from mouth.

DRAINAGE AREA. -- 783 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- January 1964 to current year.

REVISED RECORDS. -- WDR TX-83-3: Drainage area.

GAGE .-- Water-stage recorder and crest-stage gage. Datum of gage is 242.95 ft National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good. There are five diversions above station, but amounts are unknown. At times, excess water from Bexar-Medina-Atascosa Counties Water Improvement District No. 1 system enters San Miguel Creek basin via Chacon Creek 52 mi upstream (amounts unknown).

AVERAGE DISCHARGE. -- 20 years, 63.9 ft 3/s (46,300 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 20,600 ft 3/s May 16, 1980 (gage height, 27.31 ft); no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum stage since 1919, 32.6 ft in 1942; stage of 1919 flood not known, from information by local residents.

EXTREMES FOR CURRENT YEAR .-- Maximum discharge, 371 ft 3/s June 14 at 2000 hours (gage height, 7.15 ft), no peak above base of 900 ft3/s; no flow for many days. DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

OCT	NOV										
	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
2.4	1.6	3.6	3.2	1.2	.24	.16	.97	.00	.00	.00	.00
2.2	1.6	3.7	2.8	2.0				.00	6.5	.00	.00
											.00
											.00
											.00
	2.4	2.9	2.4	2.0	• 32		. / 4	• 00		.00	.00
	2.6	2.8	2.2	1.8	.36	. 07	.11	.00		.00	.00
											.00
											.00
2.0	4.0	1.6	15	1.4	. 36	.16	. 01	.00	.00	.00	.00
34	.20	1.4	11	1.2	.36	.14	.00	.00	.00	.00	.00
11	. 07	1.4	3.0	. 97	. 36	. 24	.00	.00	.00	.00	.00
											.00
											.00
											.00
											.00
. 90	• 30	2.2	2.0	. 74	+ /4	. 30	.00	10	.00	. 00	.00
+53	.60	2.9	5.6	1.2	.36	. 36	.00	5.8	.00	.00	.00
.92	1.2	3.3	5.1	1.4	. 36	. 36	1.5	2.3	.00	.00	142
2.1	1.7	3.6	4.4	.36	.36	. 36	. 03	1.1	.00	.00	99
2.2	1.9	3.6	3.9	1.2	1.4	. 52	. 02	3.1	. 00	27	13
2.1	2.2	3.6	3.4	1.6	3.2	.52	. 01	5.0	.00	18	5.2
1 9	2.0	4.1	2.6	1.6	1 8	36	00	3.5	00	8.2	2.5
											.92
											.11
											.03
. 74	2.5	13	1.6	.97	. 24	. 04	.00	. 02	.00	. 01	. 02
.55	3.0	11	1.2	.74	.16	. 04	.00	.00	.00	.00	.00
.65	3.1	8.8	. 97	.24	.16	.16	.00	.00	.00	.00	.00
.74	3.2	6.9	.74	.16	-16	.16	.00	.00	.00	.00	.00
											.00
											.00
1.3		3.6	.97		.16		.00		.00	.00	
02 12	53 40	121 2	07 56	22 52	17 22	15 02	7 05	112 20	17 00	50 00	262.78
											8.76
											142
							. 00				.00
185	106	241	194	67	34	30	16	223	36	117	521
	11 4.9 2.4 1.5 .90 .53 .92 2.1 2.2 2.1 1.9 1.8 1.2 .94 .74 .55 .65 .65 .74 .85 1.1 1.3 9.3 1.3 9.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1	2.2 1.6 2.0 2.4 2.0 2.6 2.0 1.2 2.0 1.0 2.0 4.0 34 .20 11 .07 4.9 .07 2.4 .05 1.5 .13 .90 .36 .53 .60 .92 1.2 2.1 1.7 2.2 1.9 2.1 2.2 1.9 2.0 1.8 2.0 1.8 2.0 1.8 2.0 1.9 2.0 1.8 2.0 1.9 2.0 1.9 2.0 1.9 2.0 1.9 2.0 1.9 2.0 1.9 2.0 1.0 2.0 1.0 3.0 1.0 3	2.2 1.6 4.0 2.0 1.6 2.4 2.0 2.4 2.9 2.0 1.2 2.2 2.0 1.0 1.8 2.0 4.0 1.6 34 .20 1.4 11 .07 1.4 4.9 .07 1.4 4.9 .07 1.4 2.4 .05 1.5 1.5 .13 1.8 .90 .36 2.2 .53 .60 2.9 .92 1.2 3.3 2.1 1.7 3.6 2.2 1.9 3.6 2.1 2.2 3.6 1.9 2.0 4.1 1.8 2.0 4.7 1.2 2.3 4.1 .94 2.4 4.0 .74 2.5 13 .55 3.0 11 .65 3.1 8.8 .74 3.2 6.9 .85 3.4 5.1 </td <td>2.2 1.6 4.0 2.6 2.0 1.6 2.4 2.6 2.0 2.4 2.9 2.4 2.0 1.2 2.2 1.8 2.0 1.0 1.8 1.6 2.0 4.0 1.6 15 34 .20 1.4 11 11 .07 1.4 3.0 4.9 .07 1.4 2.6 2.4 .05 1.5 2.0 1.5 .13 1.8 1.4 .90 .36 2.2 2.8 .53 .60 2.9 5.6 .92 1.2 3.3 5.1 2.1 1.7 3.6 3.9 2.1 2.2 3.6 3.4 1.9 2.0 4.1 2.6 2.2 1.2 3.6 3.4 1.9 2.0 4.7 2.2 1.2 2.3 4.1 1.8 .94 2.4 4.0 4.6 .74 2.5<!--</td--><td>2.2 1.6 4.0 2.6 2.0 2.0 1.6 2.4 2.6 2.0 2.0 2.4 2.9 2.4 2.0 2.0 2.6 2.8 2.2 1.8 2.0 1.2 2.2 1.8 1.6 2.0 1.0 1.8 1.6 1.4 2.0 4.0 1.6 15 1.4 34 .20 1.4 11 1.2 11 .07 1.4 3.0 .97 4.9 .07 1.4 2.6 .97 2.4 .05 1.5 2.0 .74 1.5 .13 1.8 1.4 .74 .90 .36 2.2 2.8 .74 .53 .60 2.9 5.6 1.2 .92 1.2 3.3 5.1 1.4 2.1 1.7 3.6 4.4 .36 2.2 1.9 3.6 3.9 1.2 2.1 2.2 3.9 1.6 1.6<!--</td--><td>2.2 1.6 4.0 2.6 2.0 .52 2.0 1.6 2.4 2.6 2.0 .52 2.0 2.4 2.9 2.4 2.0 .52 2.0 2.6 2.8 2.2 1.8 .36 2.0 1.2 2.2 1.8 1.6 .24 2.0 1.0 1.8 1.6 1.4 .36 2.0 4.0 1.6 15 1.4 .36 34 .20 1.4 11 1.2 .36 11 .07 1.4 3.0 .97 .36 4.9 .07 1.4 3.0 .97 .36 2.4 .05 1.5 2.0 .74 .36 1.5 .13 1.8 1.4 .74 .52 .90 .36 2.2 2.8 .74 .74 .53 .60 2.9 5.6 1.2 .36 .92 1.2 3.3 5.1 1.4 .36 .92 1.2<!--</td--><td>2.2 1.6 4.0 2.6 2.0 .52 .11 2.0 1.6 2.4 2.6 2.0 .52 .11 2.0 2.4 2.9 2.4 2.0 .52 .11 2.0 2.6 2.8 2.2 1.8 .36 .07 2.0 1.0 1.8 1.6 1.4 .36 1.8 2.0 4.0 1.6 15 1.4 .36 .16 34 .20 1.4 11 1.2 .36 .14 11 .07 1.4 3.0 .97 .36 .36 2.4 .05 1.5 2.0 .74 .36 .36 2.4 .05 1.5 2.0 .74 .36 .36 1.5 .13 1.8 1.4 .74 .52 .36 .90 .36 2.2 2.8 .74 .74 .36 .53 .60 2.9 5.6 1.2 .36 .36 .92 1.2 3.3<!--</td--><td>2.2 1.6 4.0 2.6 2.0 .52 .11 1.6 2.0 1.6 2.4 2.6 2.0 .52 .11 1.4 2.0 2.6 2.8 2.2 1.8 3.6 .07 .11 2.0 1.2 2.2 1.8 1.6 .24 5.8 .04 2.0 1.0 1.8 1.6 1.4 .36 1.6 .01 2.0 1.0 1.8 1.6 1.4 .36 1.6 .01 34 .20 1.4 11 1.2 .36 .16 .01 34 .20 1.4 11 1.2 .36 .14 .00 11 .07 1.4 3.0 .97 .36 .24 .00 4.9 .07 1.4 2.6 .97 .36 .36 .00 2.4 .05 1.5 2.0 .74 .36 .36 .00</td><td>2.2 1,6 4,0 2.6 2.0 .52 .11 1,6 .00 2.0 1,6 2.4 2.6 2.0 .52 .11 1.4 .00 2.0 2,6 2,8 2.2 1,8 .36 .07 .11 .00 2.0 1,2 2,2 1,8 1,6 .24 5,8 .04 .00 2.0 1,0 1,8 1,6 1,4 .36 1,8 .02 .00 2.0 1,0 1,6 15 1,4 .36 1,6 .01 .00 2.0 4,0 1,6 15 1,4 .36 1,6 .01 .00 3.4 .20 1,4 11 1,2 .36 .14 .00 .00 4.9 .07 1,4 3,0 .97 .36 .24 .00 .00 4.9 .07 1,4 2,6 .97 .36 .36 .00 5.6 2.4 .05 1,5 2,0 .74 .36 .36<</td><td>2.2 1.6 4.0 2.6 2.0 .52 11 1.6 .00 5.3 2.0 1.6 2.4 2.6 2.0 .52 11 1.4 .00 4.4 2.0 2.6 2.8 2.2 1.8 .36 .07 .11 .00 .17 2.0 1.2 2.2 1.8 1.6 .24 5.8 .04 .00 .03 2.0 1.0 1.8 1.6 1.4 .36 1.8 .02 .00 .00 2.0 1.0 1.8 1.6 1.4 .36 1.6 .01 .00 .00 2.0 1.0 1.6 1.5 1.4 .36 1.6 .01 .00 .00 3.4 .20 1.4 1.1 1.1 1.2 .36 .00 .00 .00 4.9 .07 1.4 2.6 .97 .36 .36 .00 .00 .00<</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td></td></td></td></td>	2.2 1.6 4.0 2.6 2.0 1.6 2.4 2.6 2.0 2.4 2.9 2.4 2.0 1.2 2.2 1.8 2.0 1.0 1.8 1.6 2.0 4.0 1.6 15 34 .20 1.4 11 11 .07 1.4 3.0 4.9 .07 1.4 2.6 2.4 .05 1.5 2.0 1.5 .13 1.8 1.4 .90 .36 2.2 2.8 .53 .60 2.9 5.6 .92 1.2 3.3 5.1 2.1 1.7 3.6 3.9 2.1 2.2 3.6 3.4 1.9 2.0 4.1 2.6 2.2 1.2 3.6 3.4 1.9 2.0 4.7 2.2 1.2 2.3 4.1 1.8 .94 2.4 4.0 4.6 .74 2.5 </td <td>2.2 1.6 4.0 2.6 2.0 2.0 1.6 2.4 2.6 2.0 2.0 2.4 2.9 2.4 2.0 2.0 2.6 2.8 2.2 1.8 2.0 1.2 2.2 1.8 1.6 2.0 1.0 1.8 1.6 1.4 2.0 4.0 1.6 15 1.4 34 .20 1.4 11 1.2 11 .07 1.4 3.0 .97 4.9 .07 1.4 2.6 .97 2.4 .05 1.5 2.0 .74 1.5 .13 1.8 1.4 .74 .90 .36 2.2 2.8 .74 .53 .60 2.9 5.6 1.2 .92 1.2 3.3 5.1 1.4 2.1 1.7 3.6 4.4 .36 2.2 1.9 3.6 3.9 1.2 2.1 2.2 3.9 1.6 1.6<!--</td--><td>2.2 1.6 4.0 2.6 2.0 .52 2.0 1.6 2.4 2.6 2.0 .52 2.0 2.4 2.9 2.4 2.0 .52 2.0 2.6 2.8 2.2 1.8 .36 2.0 1.2 2.2 1.8 1.6 .24 2.0 1.0 1.8 1.6 1.4 .36 2.0 4.0 1.6 15 1.4 .36 34 .20 1.4 11 1.2 .36 11 .07 1.4 3.0 .97 .36 4.9 .07 1.4 3.0 .97 .36 2.4 .05 1.5 2.0 .74 .36 1.5 .13 1.8 1.4 .74 .52 .90 .36 2.2 2.8 .74 .74 .53 .60 2.9 5.6 1.2 .36 .92 1.2 3.3 5.1 1.4 .36 .92 1.2<!--</td--><td>2.2 1.6 4.0 2.6 2.0 .52 .11 2.0 1.6 2.4 2.6 2.0 .52 .11 2.0 2.4 2.9 2.4 2.0 .52 .11 2.0 2.6 2.8 2.2 1.8 .36 .07 2.0 1.0 1.8 1.6 1.4 .36 1.8 2.0 4.0 1.6 15 1.4 .36 .16 34 .20 1.4 11 1.2 .36 .14 11 .07 1.4 3.0 .97 .36 .36 2.4 .05 1.5 2.0 .74 .36 .36 2.4 .05 1.5 2.0 .74 .36 .36 1.5 .13 1.8 1.4 .74 .52 .36 .90 .36 2.2 2.8 .74 .74 .36 .53 .60 2.9 5.6 1.2 .36 .36 .92 1.2 3.3<!--</td--><td>2.2 1.6 4.0 2.6 2.0 .52 .11 1.6 2.0 1.6 2.4 2.6 2.0 .52 .11 1.4 2.0 2.6 2.8 2.2 1.8 3.6 .07 .11 2.0 1.2 2.2 1.8 1.6 .24 5.8 .04 2.0 1.0 1.8 1.6 1.4 .36 1.6 .01 2.0 1.0 1.8 1.6 1.4 .36 1.6 .01 34 .20 1.4 11 1.2 .36 .16 .01 34 .20 1.4 11 1.2 .36 .14 .00 11 .07 1.4 3.0 .97 .36 .24 .00 4.9 .07 1.4 2.6 .97 .36 .36 .00 2.4 .05 1.5 2.0 .74 .36 .36 .00</td><td>2.2 1,6 4,0 2.6 2.0 .52 .11 1,6 .00 2.0 1,6 2.4 2.6 2.0 .52 .11 1.4 .00 2.0 2,6 2,8 2.2 1,8 .36 .07 .11 .00 2.0 1,2 2,2 1,8 1,6 .24 5,8 .04 .00 2.0 1,0 1,8 1,6 1,4 .36 1,8 .02 .00 2.0 1,0 1,6 15 1,4 .36 1,6 .01 .00 2.0 4,0 1,6 15 1,4 .36 1,6 .01 .00 3.4 .20 1,4 11 1,2 .36 .14 .00 .00 4.9 .07 1,4 3,0 .97 .36 .24 .00 .00 4.9 .07 1,4 2,6 .97 .36 .36 .00 5.6 2.4 .05 1,5 2,0 .74 .36 .36<</td><td>2.2 1.6 4.0 2.6 2.0 .52 11 1.6 .00 5.3 2.0 1.6 2.4 2.6 2.0 .52 11 1.4 .00 4.4 2.0 2.6 2.8 2.2 1.8 .36 .07 .11 .00 .17 2.0 1.2 2.2 1.8 1.6 .24 5.8 .04 .00 .03 2.0 1.0 1.8 1.6 1.4 .36 1.8 .02 .00 .00 2.0 1.0 1.8 1.6 1.4 .36 1.6 .01 .00 .00 2.0 1.0 1.6 1.5 1.4 .36 1.6 .01 .00 .00 3.4 .20 1.4 1.1 1.1 1.2 .36 .00 .00 .00 4.9 .07 1.4 2.6 .97 .36 .36 .00 .00 .00<</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td></td></td></td>	2.2 1.6 4.0 2.6 2.0 2.0 1.6 2.4 2.6 2.0 2.0 2.4 2.9 2.4 2.0 2.0 2.6 2.8 2.2 1.8 2.0 1.2 2.2 1.8 1.6 2.0 1.0 1.8 1.6 1.4 2.0 4.0 1.6 15 1.4 34 .20 1.4 11 1.2 11 .07 1.4 3.0 .97 4.9 .07 1.4 2.6 .97 2.4 .05 1.5 2.0 .74 1.5 .13 1.8 1.4 .74 .90 .36 2.2 2.8 .74 .53 .60 2.9 5.6 1.2 .92 1.2 3.3 5.1 1.4 2.1 1.7 3.6 4.4 .36 2.2 1.9 3.6 3.9 1.2 2.1 2.2 3.9 1.6 1.6 </td <td>2.2 1.6 4.0 2.6 2.0 .52 2.0 1.6 2.4 2.6 2.0 .52 2.0 2.4 2.9 2.4 2.0 .52 2.0 2.6 2.8 2.2 1.8 .36 2.0 1.2 2.2 1.8 1.6 .24 2.0 1.0 1.8 1.6 1.4 .36 2.0 4.0 1.6 15 1.4 .36 34 .20 1.4 11 1.2 .36 11 .07 1.4 3.0 .97 .36 4.9 .07 1.4 3.0 .97 .36 2.4 .05 1.5 2.0 .74 .36 1.5 .13 1.8 1.4 .74 .52 .90 .36 2.2 2.8 .74 .74 .53 .60 2.9 5.6 1.2 .36 .92 1.2 3.3 5.1 1.4 .36 .92 1.2<!--</td--><td>2.2 1.6 4.0 2.6 2.0 .52 .11 2.0 1.6 2.4 2.6 2.0 .52 .11 2.0 2.4 2.9 2.4 2.0 .52 .11 2.0 2.6 2.8 2.2 1.8 .36 .07 2.0 1.0 1.8 1.6 1.4 .36 1.8 2.0 4.0 1.6 15 1.4 .36 .16 34 .20 1.4 11 1.2 .36 .14 11 .07 1.4 3.0 .97 .36 .36 2.4 .05 1.5 2.0 .74 .36 .36 2.4 .05 1.5 2.0 .74 .36 .36 1.5 .13 1.8 1.4 .74 .52 .36 .90 .36 2.2 2.8 .74 .74 .36 .53 .60 2.9 5.6 1.2 .36 .36 .92 1.2 3.3<!--</td--><td>2.2 1.6 4.0 2.6 2.0 .52 .11 1.6 2.0 1.6 2.4 2.6 2.0 .52 .11 1.4 2.0 2.6 2.8 2.2 1.8 3.6 .07 .11 2.0 1.2 2.2 1.8 1.6 .24 5.8 .04 2.0 1.0 1.8 1.6 1.4 .36 1.6 .01 2.0 1.0 1.8 1.6 1.4 .36 1.6 .01 34 .20 1.4 11 1.2 .36 .16 .01 34 .20 1.4 11 1.2 .36 .14 .00 11 .07 1.4 3.0 .97 .36 .24 .00 4.9 .07 1.4 2.6 .97 .36 .36 .00 2.4 .05 1.5 2.0 .74 .36 .36 .00</td><td>2.2 1,6 4,0 2.6 2.0 .52 .11 1,6 .00 2.0 1,6 2.4 2.6 2.0 .52 .11 1.4 .00 2.0 2,6 2,8 2.2 1,8 .36 .07 .11 .00 2.0 1,2 2,2 1,8 1,6 .24 5,8 .04 .00 2.0 1,0 1,8 1,6 1,4 .36 1,8 .02 .00 2.0 1,0 1,6 15 1,4 .36 1,6 .01 .00 2.0 4,0 1,6 15 1,4 .36 1,6 .01 .00 3.4 .20 1,4 11 1,2 .36 .14 .00 .00 4.9 .07 1,4 3,0 .97 .36 .24 .00 .00 4.9 .07 1,4 2,6 .97 .36 .36 .00 5.6 2.4 .05 1,5 2,0 .74 .36 .36<</td><td>2.2 1.6 4.0 2.6 2.0 .52 11 1.6 .00 5.3 2.0 1.6 2.4 2.6 2.0 .52 11 1.4 .00 4.4 2.0 2.6 2.8 2.2 1.8 .36 .07 .11 .00 .17 2.0 1.2 2.2 1.8 1.6 .24 5.8 .04 .00 .03 2.0 1.0 1.8 1.6 1.4 .36 1.8 .02 .00 .00 2.0 1.0 1.8 1.6 1.4 .36 1.6 .01 .00 .00 2.0 1.0 1.6 1.5 1.4 .36 1.6 .01 .00 .00 3.4 .20 1.4 1.1 1.1 1.2 .36 .00 .00 .00 4.9 .07 1.4 2.6 .97 .36 .36 .00 .00 .00<</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td></td></td>	2.2 1.6 4.0 2.6 2.0 .52 2.0 1.6 2.4 2.6 2.0 .52 2.0 2.4 2.9 2.4 2.0 .52 2.0 2.6 2.8 2.2 1.8 .36 2.0 1.2 2.2 1.8 1.6 .24 2.0 1.0 1.8 1.6 1.4 .36 2.0 4.0 1.6 15 1.4 .36 34 .20 1.4 11 1.2 .36 11 .07 1.4 3.0 .97 .36 4.9 .07 1.4 3.0 .97 .36 2.4 .05 1.5 2.0 .74 .36 1.5 .13 1.8 1.4 .74 .52 .90 .36 2.2 2.8 .74 .74 .53 .60 2.9 5.6 1.2 .36 .92 1.2 3.3 5.1 1.4 .36 .92 1.2 </td <td>2.2 1.6 4.0 2.6 2.0 .52 .11 2.0 1.6 2.4 2.6 2.0 .52 .11 2.0 2.4 2.9 2.4 2.0 .52 .11 2.0 2.6 2.8 2.2 1.8 .36 .07 2.0 1.0 1.8 1.6 1.4 .36 1.8 2.0 4.0 1.6 15 1.4 .36 .16 34 .20 1.4 11 1.2 .36 .14 11 .07 1.4 3.0 .97 .36 .36 2.4 .05 1.5 2.0 .74 .36 .36 2.4 .05 1.5 2.0 .74 .36 .36 1.5 .13 1.8 1.4 .74 .52 .36 .90 .36 2.2 2.8 .74 .74 .36 .53 .60 2.9 5.6 1.2 .36 .36 .92 1.2 3.3<!--</td--><td>2.2 1.6 4.0 2.6 2.0 .52 .11 1.6 2.0 1.6 2.4 2.6 2.0 .52 .11 1.4 2.0 2.6 2.8 2.2 1.8 3.6 .07 .11 2.0 1.2 2.2 1.8 1.6 .24 5.8 .04 2.0 1.0 1.8 1.6 1.4 .36 1.6 .01 2.0 1.0 1.8 1.6 1.4 .36 1.6 .01 34 .20 1.4 11 1.2 .36 .16 .01 34 .20 1.4 11 1.2 .36 .14 .00 11 .07 1.4 3.0 .97 .36 .24 .00 4.9 .07 1.4 2.6 .97 .36 .36 .00 2.4 .05 1.5 2.0 .74 .36 .36 .00</td><td>2.2 1,6 4,0 2.6 2.0 .52 .11 1,6 .00 2.0 1,6 2.4 2.6 2.0 .52 .11 1.4 .00 2.0 2,6 2,8 2.2 1,8 .36 .07 .11 .00 2.0 1,2 2,2 1,8 1,6 .24 5,8 .04 .00 2.0 1,0 1,8 1,6 1,4 .36 1,8 .02 .00 2.0 1,0 1,6 15 1,4 .36 1,6 .01 .00 2.0 4,0 1,6 15 1,4 .36 1,6 .01 .00 3.4 .20 1,4 11 1,2 .36 .14 .00 .00 4.9 .07 1,4 3,0 .97 .36 .24 .00 .00 4.9 .07 1,4 2,6 .97 .36 .36 .00 5.6 2.4 .05 1,5 2,0 .74 .36 .36<</td><td>2.2 1.6 4.0 2.6 2.0 .52 11 1.6 .00 5.3 2.0 1.6 2.4 2.6 2.0 .52 11 1.4 .00 4.4 2.0 2.6 2.8 2.2 1.8 .36 .07 .11 .00 .17 2.0 1.2 2.2 1.8 1.6 .24 5.8 .04 .00 .03 2.0 1.0 1.8 1.6 1.4 .36 1.8 .02 .00 .00 2.0 1.0 1.8 1.6 1.4 .36 1.6 .01 .00 .00 2.0 1.0 1.6 1.5 1.4 .36 1.6 .01 .00 .00 3.4 .20 1.4 1.1 1.1 1.2 .36 .00 .00 .00 4.9 .07 1.4 2.6 .97 .36 .36 .00 .00 .00<</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td></td>	2.2 1.6 4.0 2.6 2.0 .52 .11 2.0 1.6 2.4 2.6 2.0 .52 .11 2.0 2.4 2.9 2.4 2.0 .52 .11 2.0 2.6 2.8 2.2 1.8 .36 .07 2.0 1.0 1.8 1.6 1.4 .36 1.8 2.0 4.0 1.6 15 1.4 .36 .16 34 .20 1.4 11 1.2 .36 .14 11 .07 1.4 3.0 .97 .36 .36 2.4 .05 1.5 2.0 .74 .36 .36 2.4 .05 1.5 2.0 .74 .36 .36 1.5 .13 1.8 1.4 .74 .52 .36 .90 .36 2.2 2.8 .74 .74 .36 .53 .60 2.9 5.6 1.2 .36 .36 .92 1.2 3.3 </td <td>2.2 1.6 4.0 2.6 2.0 .52 .11 1.6 2.0 1.6 2.4 2.6 2.0 .52 .11 1.4 2.0 2.6 2.8 2.2 1.8 3.6 .07 .11 2.0 1.2 2.2 1.8 1.6 .24 5.8 .04 2.0 1.0 1.8 1.6 1.4 .36 1.6 .01 2.0 1.0 1.8 1.6 1.4 .36 1.6 .01 34 .20 1.4 11 1.2 .36 .16 .01 34 .20 1.4 11 1.2 .36 .14 .00 11 .07 1.4 3.0 .97 .36 .24 .00 4.9 .07 1.4 2.6 .97 .36 .36 .00 2.4 .05 1.5 2.0 .74 .36 .36 .00</td> <td>2.2 1,6 4,0 2.6 2.0 .52 .11 1,6 .00 2.0 1,6 2.4 2.6 2.0 .52 .11 1.4 .00 2.0 2,6 2,8 2.2 1,8 .36 .07 .11 .00 2.0 1,2 2,2 1,8 1,6 .24 5,8 .04 .00 2.0 1,0 1,8 1,6 1,4 .36 1,8 .02 .00 2.0 1,0 1,6 15 1,4 .36 1,6 .01 .00 2.0 4,0 1,6 15 1,4 .36 1,6 .01 .00 3.4 .20 1,4 11 1,2 .36 .14 .00 .00 4.9 .07 1,4 3,0 .97 .36 .24 .00 .00 4.9 .07 1,4 2,6 .97 .36 .36 .00 5.6 2.4 .05 1,5 2,0 .74 .36 .36<</td> <td>2.2 1.6 4.0 2.6 2.0 .52 11 1.6 .00 5.3 2.0 1.6 2.4 2.6 2.0 .52 11 1.4 .00 4.4 2.0 2.6 2.8 2.2 1.8 .36 .07 .11 .00 .17 2.0 1.2 2.2 1.8 1.6 .24 5.8 .04 .00 .03 2.0 1.0 1.8 1.6 1.4 .36 1.8 .02 .00 .00 2.0 1.0 1.8 1.6 1.4 .36 1.6 .01 .00 .00 2.0 1.0 1.6 1.5 1.4 .36 1.6 .01 .00 .00 3.4 .20 1.4 1.1 1.1 1.2 .36 .00 .00 .00 4.9 .07 1.4 2.6 .97 .36 .36 .00 .00 .00<</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td>	2.2 1.6 4.0 2.6 2.0 .52 .11 1.6 2.0 1.6 2.4 2.6 2.0 .52 .11 1.4 2.0 2.6 2.8 2.2 1.8 3.6 .07 .11 2.0 1.2 2.2 1.8 1.6 .24 5.8 .04 2.0 1.0 1.8 1.6 1.4 .36 1.6 .01 2.0 1.0 1.8 1.6 1.4 .36 1.6 .01 34 .20 1.4 11 1.2 .36 .16 .01 34 .20 1.4 11 1.2 .36 .14 .00 11 .07 1.4 3.0 .97 .36 .24 .00 4.9 .07 1.4 2.6 .97 .36 .36 .00 2.4 .05 1.5 2.0 .74 .36 .36 .00	2.2 1,6 4,0 2.6 2.0 .52 .11 1,6 .00 2.0 1,6 2.4 2.6 2.0 .52 .11 1.4 .00 2.0 2,6 2,8 2.2 1,8 .36 .07 .11 .00 2.0 1,2 2,2 1,8 1,6 .24 5,8 .04 .00 2.0 1,0 1,8 1,6 1,4 .36 1,8 .02 .00 2.0 1,0 1,6 15 1,4 .36 1,6 .01 .00 2.0 4,0 1,6 15 1,4 .36 1,6 .01 .00 3.4 .20 1,4 11 1,2 .36 .14 .00 .00 4.9 .07 1,4 3,0 .97 .36 .24 .00 .00 4.9 .07 1,4 2,6 .97 .36 .36 .00 5.6 2.4 .05 1,5 2,0 .74 .36 .36<	2.2 1.6 4.0 2.6 2.0 .52 11 1.6 .00 5.3 2.0 1.6 2.4 2.6 2.0 .52 11 1.4 .00 4.4 2.0 2.6 2.8 2.2 1.8 .36 .07 .11 .00 .17 2.0 1.2 2.2 1.8 1.6 .24 5.8 .04 .00 .03 2.0 1.0 1.8 1.6 1.4 .36 1.8 .02 .00 .00 2.0 1.0 1.8 1.6 1.4 .36 1.6 .01 .00 .00 2.0 1.0 1.6 1.5 1.4 .36 1.6 .01 .00 .00 3.4 .20 1.4 1.1 1.1 1.2 .36 .00 .00 .00 4.9 .07 1.4 2.6 .97 .36 .36 .00 .00 .00<	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

MEAN 20.2 .00 CAL YR 1983 TOTAL 7380.22 AC-FT 14640 MAX 3570 MIN WTR YR 1984 TOTAL 891.15 MEAN 2.43 MAX 142 AC-FT MIN .00 1770

08206700 SAN MIGUEL CREEK NEAR TILDEN, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Chemical and biochemical analyses: July 1978 to current year.

DATE	TI	ME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	CON- DUCT-	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	HARD- NESS (MG/L AS CACO3)
OCT 04	15	07	2.0	1260	7.6	27.5	10	6.6	8.8	113	2.1	410
DATE	HAR NES NONC BONA (MG CAC	S, AR- TE /L	CALCIUM DIS- SOLVEI (MG/L AS CA)	DIS- D SOLVEI (MG/L	SODIUM, DIS- SOLVED (MG/L	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)
OCT 04		200	130	20	110	2	12	210	200	160	.20	16
OC'	ATE T 4	SUM CON TUE D SO	OF RESTI- AT NTS, DE IS- SLVED PE	T 105 V EG. C, T SUS- S ENDED PE	OLA- CILE, NI GUS- CNDED (I	GEN, FRITE NO DTAL T MG/L (GEN, G 2+NO3 AMN OTAL TO MG/L (N	GEN, COMMINION OF THE TOTAL TO MG/L (N	TRO- GEN GEN, MON GANIC ORG DTAL TO MG/L (MG/L (MG/L AS	GANIC PHO DTAL TO MG/L (M G N) AS	RUS, ORG TAL TO G/L (M	BON, ANIC DTAL G/L C)
			DATE	TIME	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO-MIUM, DIS- SOLVED (UG/L AS CR)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)		
			OCT 04	. 1507	3	130	1	<10	2	44		
				DATE	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	ZINC, DIS- SOLVED (UG/L AS ZN)		
				OCT 04	33	92	<.1	<1	<1	22		

08208000 ATASCOSA RIVER AT WHITSETT, TX

LOCATION.--Lat 28°37'19", long 98°16'52", Live Oak County, Hydrologic Unit 12110110, on right bank at downstream side of bridge on Farm Road 99, 1.1 mi southwest of Whitsett, 4.2 mi downstream from La Parita Creek, and 12.9 mi upstream from mouth.

DRAINAGE AREA. -- 1,171 mi2.

PERIOD OF RECORD .-- September 1924 to May 1926, May 1932 to current year.

GAGE.--Water-stage recorder. Datum of gage is 159.04 ft National Geodetic Vertical Datum of 1929. Prior to May 8, 1926, nonrecording gage at bridge at site 200 ft upstream at 1.38 ft higher datum 1.38 ft higher. May 8, 1926, to Feb. 16, 1983, water-stage recorder at site 1,000 ft upstream at same datum.

REMARKS.--Records fair. Considerable losses of flow into various permeable formations occurs upstream from this station. The Campbellton water wells discharge into the Atascosa River 12 mi upstream from this station to supplement streamflow during dry periods. Records of the Lower Nueces River Water Supply District indicate that during the year, the Campbellton water wells discharged 919 acre-ft into the Atascosa River. There are several small diversions above station.

AVERAGE DISCHARGE. -- 53 years (water years 1925, 1933-84), 130 ft 3/s (94,180 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 121,000 ft³/s Sept. 23, 1967 (gage height, 41.3 ft, from floodmark), from rating curve extended above 24,000 ft³/s on basis of slope-area measurement of peak flow; no flow at times. Maximum stage since at least 1881, that of Sept. 23, 1967.

EXTREMES OUTSIDE PERIOD OF RECORD.--Second highest stage, 41 ft, discharge 106,000 ft3/s, occurred in September 1919.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 527 ft 3/s Oct. 9 at 2100 hours (gage height, 11.33 ft), no peak above base of 1,500 ft 3/s; no flow Aug. 24-31. DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

		DIDOMINOL	, 11, 00	DIG TEEL	ME	AN VALUE	ES COTO	DER 1905 I	O BELLEN	7LK 1904		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	27 25 24 23 22	11 11 10 9.5 8.3	8.2 8.4 8.5 8.9 9.3	6.3 6.3 6.6 6.7	10 10 9.8 9.3 9.0	6.5 6.6 6.4 6.4	5.2 5.1 5.1 4.8 4.7	1.7 1.8 1.8 1.7	3.1 3.0 2.1 2.5 3.0	3.3 3.3 3.2 2.9 3.0	.12 .12 .12 .12	1.0 3.1 3.7 3.6 3.7
6 7 8 9	21 20 19 258 315	13 10. 10 12 9.3	14 12 9.4 8.4 8.6	6.6 6.6 7.5 391 297	8.3 7.8 7.6 8.0 8.3	6.4 6.6 6.2 6.2 6.8	4.6 6.9 14 12 9.6	1.4 1.3 1.4 1.4	3.4 3.9 4.1 4.2 4.1	3.1 3.2 3.0 3.0 3.2	.12 .10 .10 .11	4.4 4.8 3.7 4.4 3.8
11 12 13 14 15	297 242 297 194 81	8.4 7.8 7.8 7.8 7.7	8.5 7.8 8.1 8.8 8.3	95 35 29 22 17	8.5 8.6 8.5 7.8 7.6	7.0 7.0 7.0 6.6 6.4	8.0 6.6 6.0 5.9 6.6	1.0 .82 .80 .71 .62	3.9 3.6 4.3 7.0 6.2	3.3 3.5 3.4 2.9 3.1	.11 .11 .11 .11	2.1 3.9 4.0 3.8 3.7
16 17 18 19 20	54 39 31 26 22	6.8 6.6 6.5 7.2 7.0	7.6 7.3 7.3 7.6 7.4	14 12 11 9.8 9.2	7.2 7.2 7.2 7.0 7.2	5.9 5.9 15 9.4 6.5	4.2 3.4 3.1 3.0 2.9	.68 4.4 11 23 36	3.6 3.8 22 16 9.4	3.0 2.1 .42 .19	.10 .09 .09 .09	4.2 5.3 4.8 4.0 3.8
21 22 23 24 25	31 32 24 21 17	6.4 6.3 6.7 6.3 6.8	7.4 7.0 6.5 6.4 6.2	9.1 8.7 8.6 12 41	7.4 7.4 7.2 6.8 6.7	6.2 6.0 9.0 6.6 6.0	2.6 2.3 2.1 2.0 1.9	21 18 12 9.0 6.4	6.2 4.8 4.5 4.3 3.8	.13 .13 .13 .13	.09 .09 .08 .00	3.7 4.0 4.5 3.9 3.4
26 27 28 29 30 31	15 14 13 13 12 11	8.0 8.9 8.1 8.2 8.4	6.6 6.4 6.4 6.5 6.5	38 27 20 15 12	6.8 6.6 6.5 6.5	5.8 5.6 5.4 5.4	2.1 2.1 2.0 2.0 1.8	5.1 4.5 4.1 3.8 3.3 3.1	3.5 3.3 3.1 3.1 3.1	.13 .14 .37 .20 .15	.00 .00 .00 .00	3.5 3.6 3.7 3.8 5.3
TOTAL MEAN MAX MIN AC-FT	2240 72.3 315 11 4440	251.8 8.39 13 6.3 499	246.6 7.95 14 6.2 489	1197.3 38.6 391 6.3 2370	226.8 7.82 10 6.5 450	208.4 6.72 15 5.3 413	142.6 4.75 14 1.8 283	184.83 5.96 36 .62 367	152.9 5.10 22 2.1 303	55.06 1.78 3.5 .13 109	2.41 .078 .12 .00 4.8	115.2 3.84 5.3 1.0 228
CAL YR WTR YR				AN 88.7 AN 13.7	MAX 9660 MAX 391	MIN MIN	.19 AC-H					

08210000 NUECES RIVER NEAR THREE RIVERS, TX (National stream-gaging accounting network)

LOCATION.--Lat 28°25'38", long 98°10'40", Live Oak County, Hydrologic Unit 12110111, on right bank at U.S. Highway 281, 1.0 mi downstream from Frio River, 2.2 mi south of Three Rivers, and at mile 100.2.

DRAINAGE AREA. -- 15,427 mi2, of which 5,490 mi2 is above Choke Canyon Dam. See Remarks.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--July 1915 to current year. Monthly discharge only for November 1919 to January 1920, published in WSP 1312.

REVISED RECORDS.--WSP 548: 1920-21. WSP 1562: 1916, 1918-21, 1922(M), 1923, 1929. WDR TX-83-3: Drainage area.

GAGE (revised).--Water-stage recorder and concrete control. Datum of gage is 99.26 ft National Geodetic Vertical Datum of 1929. Prior to Apr. 5, 1932, nonrecording gage at railroad bridge 0.8 mi upstream at datum 1.87 ft higher. Apr. 5, 1932, to Aug. 9, 1983, recording gage at a site 0.8 mi upstream at datum 1.87 ft higher.

REMARKS.--Water-discharge records good. Since about mid-July 1982, flow of the Frio River was impounded in Choke Canyon Reservoir (conservation-pool storage of 696,800 acre-ft), about 11 mi upstream on the Frio River. Part of flow of Nueces and Frio Rivers and their headwater tributaries enter the Edwards and associated limestones in the Balcones Fault Zone upstream from U. S. Highway 90 (see REMARKS for station 08205500). Considerable loss of flow into various permeable formations also occurs downstream from the Balcones Fault Zone. Many small diversions for irrigation and municipal supply above station. There is minor upstream regulation by small reservoirs and by ground-water supplements (see station 08208000 Atascosa River at Whitsett). Data collection platform at station.

AVERAGE DISCHARGE. -- 69 years, 837 ft 3/s (606,400 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 141,000 ft³/s Sept. 23, 1967 (gage height, 49.21 ft); no flow at times.

Maximum stage since about 1875, that of Sept. 23, 1967.

EXTREMES FOR CURRENT YEAR, -- Maximum discharge, 1,660 ft 3/s Oct. 10 at 0600 hours (gage height, 11.56 ft); minimum daily, 0.55 ft 3/s Aug. 29.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984
MEAN VALUES DAY OCT NOV DEC FEB APR MAY JUN JUL AUG SEP JAN MAR 1020 17 -60 36 7.6 16 7.3 5.9 1.6 2.9 746 1.6 2 1130 34 16 17 8.4 7.3 5.8 2.6 690 1.1 16 15 1.7 -62 32 1.9 .81 .63 4 200 31 13 8.0 15 8.6 4.6 1.6 2.3 705 .73 .63 5 120 31 13 7.8 14 8.3 4.4 1.6 2.1 666 .69 .61 6 93 404 11 8.4 13 2.4 579 4.5 14 16 78 842 8.7 12 7.3 5.1 1.6 2.5 457 .65 .62 2.1 2.6 14 8 66 260 7.4 307 8.6 11 6.6 1.6 294 3.0 2.3 133 13 1.6 10 1410 241 11 784 12 8.1 2.5 7.3 1.6 59 1.6 1.2 11 694 170 12 2.8 26 356 7.7 6.1 1.5 . 86 .83 2.8 3.2 2.8 1.5 3.4 2.4 2.3 .70 662 163 10 8.1 5.1 .74 9.9 13 802 137 208 11 . 63 .67 662 8.1 86 9.8 5.1 .60 .67 15 309 50 10 55 9.5 8.2 14 2.0 .59 .77 4.3 1.3 316 .72 16 38 11 45 9.4 7.9 4.7 1.3 184 1.9 .60 9.8 127 17 456 11 34 9.2 8.2 3.9 2.4 196 1.7 .75 310 134 10 27 9.6 8.9 3.2 7.3 196 1.6 19 186 100 9.7 23 9.4 10 3.0 126 207 1.5 2.1 . 87 20 77 9.4 9.6 170 18 11 2.7 13 227 1.4 1.1 .85 21 147 62 9.8 15 10 32 2.9 28 340 1.2 .77 .83 9.7 22 23 125 52 9.8 14 30 21 2.2 17 13 398 496 1.2 -66 .90 103 43 14 9.0 .60 24 83 36 8.9 15 2.1 504 1.2 25 71 33 8.0 20 8.5 15 2.0 6.1 499 1.2 . 57 .89 26 60 30 7.4 40 9.6 12 9.7 510 1.2 .57 .76 7.4 7.6 7.3 9.0 7.5 6.6 27 27 53 47 37 8.0 27 699 3.2 .57 .79 183 28 29 7.3 2.0 16 704 .56 .80 44 683 21 24 7.1 252 .90 30 41 7.9 20 19 6.2 1.8 5.6 678 1.1 31 39 ---7.9 17 ---6.0 3.7 3.5 .57 TOTAL 10568 3465 334.8 2423.6 315.1 320.7 129.1 317.1 6571.4 5604.1 45.59 38.37 MEAN 341 116 10.8 78.2 10.9 10.3 4.30 10.2 1.47 1410 784 15 704 9.8 MAX 842 17 16 32 126 746 14 7.3 2.1 MIN 7.1 39 1.9 6.0 .60 1.3 20960 6870 4810 636 76 AC-FT 625 256 629 13030 11120

CAL YR 1983 TOTAL MEAN 76888.60 211 MAX 17600 MIN AC-FT 152500 WTR YR 1984 TOTAL 30132.86 AC-FT MEAN 82.3 MAX 1410 MIN .55 59770

08210000 NUECES RIVER NEAR THREE RIVERS, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical analyses: October 1941 to September 1947, September 1950 to September 1952. Chemical and biochemical analyses: January 1968 to current year. Pesticide analyses: January 1968 to September 1982.

PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: September 1945 to September 1947, September 1950 to September 1952, October 1974 to September 1981. WATER TEMPERATURES: October 1975 to September 1981.

EXTREMES FOR PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE: Maximum daily, 4,310 micromhos Jan. 17, 1977; minimum daily, 157 micromhos May 26, 1975. WATER TEMPERATURES: Maximum daily, 32.0°C on several days during summer of 1977-78 and 1981; minimum daily, 7.0°C Jan. 2, 3, 1979.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)
NOV 10	1530	238	474	7.9	19.5	30	190	7.8	85	2.9	2100
JAN 23	1623	13	1500	7.6	9.0	20	14	10.1	87	3.6	K88
MAR 14	1133	7.9	2620	7.8	22.0	60	24	8.7	100	6.7	330
MAY 04	0920	1.6	3660	8.0	25.0	60	24	7.9	98	3.1	K29
JUL 16 SEP	1543	1.9	2410	7.9	32.8		10.44	8.5	119	3.0	46
04	1515	.62	5380	7.7	28.0	50	12	3.7	48	1.6	K12
DATE	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD-	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	DIS-	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
NOV 10	1400	100	0	36	2.4	52	2	6.0	101	50	50
JAN											
23 MAR	K56	290			11	190	5	13	221	150	260
14 MAY	98	470	230	150	22	360	8	14	238	300	480
04 JUL	620	740	430	250	27	490	8	24	313	390	830
16 SEP	67	460	250	150	20	320	7	37	207	250	500
04	K48	840	630	290	29	750	12	85	215	510	1300
DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)
NOV	4.0	14	070	270	0.70	10		0.50	40	20	210
10 JAN	.40		279	270	279	19	.15	.250	.40	.38	.210
23 MAR	.60	19	869	880	22	9	.57	.030	.60	.64	.920
14 MAY	1.0	23	1590	1500	49	12	.35	.150	.50	.49	1.50
04 JUL	.80	33	2310	2200	49	14	-47	.230	.70	.78	.320
16 SEP	4.6	25	1520	1400	55		.32	.080	.40	.37	.230
04	18	38	3350	3200	11	3	44	.020	<.10	<.10	.240

NUECES RIVER BASIN

08210000 NUECES RIVER NEAR THREE RIVERS, TX--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

SEDI-NITRO-NITRO-PHOS-SED. GEN, NITRO-GEN, AM-PHOS-PHORUS, MENT, SUSP. AMMONIA GEN, ORGANIC MONIA + PHOS-PHORUS, ORTHO, CARBON, ORGANIC SEDI-DIS-SIEVE CHARGE . DIS-ORGANIC PHORUS. DIS-MENT. DIS-DIAM. SOLVED TOTAL TOTAL TOTAL SOLVED SOLVED TOTAL SUS-SUS-% FINER (MG/L (MG/L (MG/L (MG/L (MG/L (MG/L (MG/L PENDED PENDED THAN .062 MM DATE AS N) AS N) AS N) AS P) AS P) AS P) AS C) (MG/L) (T/DAY) NOV .080 10 .150 1.4 .360 .100 365 235 79 10 ... 1.6 TAN 23... .920 .88 1.8 .490 .380 .320 9.8 15 .53 95 MAR 1.2 .480 9.6 62 1.40 .520 1.3 73 14 . . . 2.7 .660 MAY 04... .240 1.8 2.1 1.30 1.10 .850 11 44 .19 99 JUL .260 1.4 1.6 .490 .400 .430 10 6 .03 83 1605 04... .210 1.3 1.5 .800 .760 .650 9.6 27 99 BERYL-CHRO-ARSENIC BARIUM, LIUM, CADMIUM MIUM, COBALT, COPPER, IRON, LEAD, DIS-DIS-DIS-DIS-DIS-DIS-DIS-DIS-DIS-SOLVED SOLVED SOLVED SOLVED SOLVED SOLVED SOLVED SOLVED SOLVED TIME (UG/L (UG/L (UG/L (UG/L (UG/L (UG/L (UG/L (UG/L (UG/L DATE AS AS) AS BA) AS BE) AS CD) AS CR) AS CO) AS CU) AS FE) AS PB) NOV 10 ... 1530 6 69 <.5 <1 <1 <3 2 30 <1 JAN 23... 1623 <1 <1 4 31 1 6 110 <.5 <3 MAY 04... 9 <1 <1 40 <1 0920 300 <10 1 <1 JUL 2 16... 1543 9 200 <10 <1 2 6 MANGA-STRON-VANA-MOLYB-SELE-LITHIUM NESE, MERCURY DENUM, NICKEL, NIUM, SILVER, TIUM, DIUM, ZINC, DIS-SOLVED DIS-SOLVED DIS-SOLVED DIS-SOLVED DIS-DIS-DIS-DIS-DIS-DIS-SOLVED SOLVED SOLVED SOLVED SOLVED SOLVED (UG/L DATE AS LI) AS MN) AS HG) AS MO) AS NI) AS SE) AS AG) AS SR) AS V) AS ZN) NOV 10... 22 2 <.1 <10 2 <1 1 200 18 9 JAN 23... 68 110 <10 670 7 15 <.1 3 <1 <1 04... 160 420 <.1 3 4 <1 2000 4 20 .TIIT. 80 120 1100 12 20 16 ... <.1 6 <1

08210400 LAGARTO CREEK NEAR GEORGE WEST, TX

LOCATION.--Lat 28°03'34", long 98°05'48", Live Oak County, Hydrologic Unit 12110111, near right bank 75 ft downstream from bridge on U.S. Highway 281, 0.6 mi upstream from Dix Hollow, and 19.3 mi south of George West.

DRAINAGE AREA. -- 155 mi2.

PERIOD OF RECORD .-- April 1972 to current year.

GAGE .-- Water-stage recorder. Datum of gage is 197.77 ft National Geodetic Vertical Datum of 1929.

REMARKS .-- Records good. No known regulation or diversion.

AVERAGE DISCHARGE. -- 12 years, 1.66 ft3/s (1,200 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD .-- Maximum discharge, 6,350 ft3/s Aug. 11, 1980 (gage height, 16.50 ft); no flow most of

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since about 1887, 25.1 ft Oct. 17, 1971 (discharge, 33,500 ft³/s). Second highest stage, 24.3 ft occurred Sept. 12, 1971 (discharge, 29,500 ft³/s). The third and fourth highest floods occurred in 1914 and September 1967 (stages unknown).

EXTREMES FOR CURRENT YEAR .-- Maximum discharge, 146 ft3/s Oct. 20 at 2200 hours (gage height, 7.20 ft), no other peak above base of 50 ft3/s; no flow most of year.

		DISCHARGE,	IN CUBIC	FEET	PER SECOND, MEA	WATER YEAR N VALUES	OCTOBER	1983 TO	SEPTEMBER	1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
6 7 8 9	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
11 12 13 14 15	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
16 17 18 19 20	0 0 0 0 20	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
21 22 23 24 25	10 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
26 27 28 29 30 31	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0
TOTAL MEAN MAX MIN AC-FT	30 .97 20 .00 60	.000 .00 .00	.000 .00 .00	.000 .00 .00	.000 .00 .00	.000 .000 .00	0 .000 .00 .00	.000 .00 .00 .00	.000 .000 .00	.000 .000 .00	.000 .00 .00	.000 .00 .00

CAL YR 1983 TOTAL 31.07 MEAN .085 WTR YR 1984 TOTAL 30.00 MEAN .082 MAX 20 MIN .00 AC-FT 62 MAX 20 MIN .00 AC-FT 60 AC-FT 60

08210500 LAKE CORPUS CHRISTI NEAR MATHIS, TX

LOCATION.--Lat 28°02'17", long 97°52'15", San Patricio-Jim Wells County line, Hydrologic Unit 12110111, on right upstream corner of outlet tower at right end of Wesley E. Seale Dam on Nueces River, 0.6 mi upstream from bridge on State Highway 359, and 4.5 mi southwest of Mathis.

DRAINAGE AREA .-- 16,656 mi?.

PERIOD OF RECORD.--September 1948 to current year. Prior to October 1960, monthend records only. The Soil Conservation Service, U.S. Department of Agriculture, in cooperation with the Texas Board of Water Engineers (now Texas Department of Water Resources), collected fragmentary gage-height records in connection with sedimentation studies from Feb. 2, 1942, to July 10, 1947.

REVISED RECORDS .-- WSP 1923: 1953(M), 1957(M).

GAGE.--Nonrecording gage read twice daily. Supplemental water-stage recorder operated by city of Corpus Christi. Datum of gage is National Geodetic Vertical Datum of 1929. Prior to Oct. 1, 1957, nonrecording gage at various sites 0.2 mi upstream at datum 0.52 ft higher. Oct. 1, 1957, to Apr. 3, 1961, nonrecording gage near left end of Mathis Dam 0.2 mi upstream at present datum.

REMARKS.--Mathis Dam was completed and storage began July 24, 1934. The original capacity at spillway crest (elevation, 74.5 ft) was 54,000 acre-ft, but by March 1948 had decreased to 39,400 acre-ft because of sedimentation. Wesley E. Seale Dam was completed and deliberate impoundment began on Apr. 26, 1958, submerging the old Mathis Dam. Wesley E. Seale Dam is a rolled earthfill dam, 5,930 ft long, including two spillways. The 1,320-foot north spillway has 33 gates that are operated by movable hydraulic lifts. The 1,080-foot south spillway has 27 gates that are electrically operated from the control tower. The gates were repaired and modified in August 1966. All gates in both spillways are 37.5 by 8.75 ft wide. Water for municipal supply for the city of Corpus Christi is released down stream through a 4.0-foot-diameter cylinder valve and three 2.5- by 4.0-foot rectangular openings. The releases are diverted from the river at Calallen 35 mi downstream for domestic, municipal, irrigation, mining, and industrial uses in the Corpus Christi area. The city of Alice withdrew 6,470 acre-ft from the lake during the current year for municipal use. Figures given herein represent total contents. Data regarding the dam and lake are given in the following table:

	(feet)	(acre-feet)
Top of dam	106.0	
Top of north spillway gates	94.3	278,200
Top of south spillway gates	94.0	272,000
Crest of spillways	88.0	170,200
Lowest gated outlet (invert)	55.5	646

COOPERATION.--The capacity curve is from an October 1972 survey. Elevation record furnished by the city of Corpus Christi and reviewed by the Geological Survey.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 320,000 acre-ft Sept. 22, 1967, and Sept. 12, 1971; maximum elevation, 94.82 ft Sept. 22, 1967; minimum contents, 14,740 acre-ft May 5, 1951 (elevation, 67.62 ft).

EXTREMES (AT 0600) FOR CURRENT YEAR.--Maximum contents, 207,900 acre-ft Oct. 21, 22 (elevation, 90.4 ft); minimum, 102,800 acre-ft Sept. 28, 30 (elevation, 82.9 ft).

Capacity table	(elevation, in fee	et, and total contents,	in acre-feet)
93.190	86.0	141.300	89.0

82.0	93,190	86.0	141,300	89.0	185,500
83.0	103,900	87.0	155,400	90.0	201,400
84.0	115,500	88.0	170,200	91.0	217,900
85.0	128,000				10000

CONTENTS, IN ACRE-FEET, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 INSTANTANEOUS OBSERVATIONS AT 0600

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	196500	203000	198100	183900	183900	173200	161200	142700	131900	129300	125400	112000
2	198100	203000	198100	183900	182400	173200	159800	142700	130600	129300	124200	110800
3	199800	203000	198100	183900	183900	173200	161200	144000	130600	131900	124200	110800
4	199800	201400	196500	183900	182400	171700	159800	144000	129300	131900	122900	110800
5	199800	201400	196500		182400	173200	159800	144000	130600	133200	122900	110800
6	199800	201400	198100	183900	182400	173200	158300	144000	130600	134500	121600	110800
7	199800	203000	194900	182400	182400	171700	158300	142700	129300	134500	121600	109600
8	198100	204600	194900	182400	182400	171700	158300	142700	128000	134500	121600	109600
9	198100	204600	194900	183900	180800	171700	156900	141300	128000	135900	121600	109600
10	198100	204600	194900	187100	179300	170200	155400	138600	128000	134500	120400	108500
11	201400	204600	194900	185500	180800	170200	155400	138600	128000	134500	120400	108500
12	204600	204600	194900	185500	179300	170200	155400	135900	128000	134500	120400	108500
13	203000	204600	193400		180800	170200	155400	135900	128000	133200	119200	107300
14	203000	204600	194900	187100	179300	170200	154000	135900	128000	131900	119200	107300
15	203000	204600	193400	185500	179300	168700	154000	134500	126700	131900	119200	107300
16	203000	204600	191800	185500	179300	168700	152500	134500	126700	130600	119200	107300
17	203000	203000	191800	185500	179300	168700	152500	133200	125400	130600	117900	107300
18	204600	203000	191800	185500	177800	165700	151100	133200	125400	129300	117900	106200
19	204600	201400	193400	185500	179300	170200	149700	134500	125400	129300	116700	106200
20	204600	201400	191800	185500	180800	167200	149700	135900	125400	128000	116700	106200
21	207900	201400	190200	185500	177800	167200	149700	135900	125400	128000	116700	106200
22	207900	201400	191800	183900	177800	165700	149700	135900	125400	128000	115500	105100
23	206300	201400	190200	183900	177800	164200	148200	135900	125400	128000	115500	105100
24	204600	201400	193400	183900	176200	167200	146800	135900	125400	126700	115500	103900
25	206300	201400	191800	185500	176200	165700	146800	134500	125400	126700	114300	103900
26	206300	198100	188600	185500	173200	164200	145400	134500	125400	126700	114300	103900
27	204600	199800	187100	183900	179300	164200	145400	133200	125400	125400	114300	103900
28	204600	198100	187100	183900	176200	167200	145400	133200	126700	125400	113100	102800
29	204600	198100	190200	183900	174700	162700	142700	134500	126700	125400	113100	103900
30	204600	198100	185500	183900		162700	144000	133200	128000	125400	112000	102800
31	203000		185500	183900		161200		131900		125400	112000	
MAX	207900	204600	198100	187100	183900	173200	161200	144000	131900	135900	125400	112000
MIN	196500	198100	185500	182400	173200	161200	142700	131900	125400	125400	112000	102800
(†)	90.1	89.8	89.0	88.9	88.3	87.4	86.2	85.3	85.0	84.8	83.7	82.9
(‡)	+6500	-4900	-12600	-1600	-9200	-13500	-17200	-12100	-3900	-2600	-13400	-9200
CAL YR	1983 M	X 207900	MTN	125400	± -20800							

WTR YR 1984 MAX 207900 MIN 102800 ‡ -93

[†] Elevation, in feet, at end of month.
‡ Change in contents, in acre feet.

08211000 NUECES RIVER NEAR MATHIS, TX

LOCATION.--Lat 28°02'17", long 97°51'36", San Patricio-Jim Wells County line, Hydrologic Unit 12110111, on left bank 6 ft downstream from pier of bridge on State Highway 359, 200 ft downstream from Texas and New Orleans Railroad Co. bridge, 0.6 mi downstream from Wesley E. Seale Dam, 4 mi southwest of Mathis, and at mile 46.7.

DRAINAGE AREA . -- 16.660 mi 2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- August 1939 to current year.

GAGE.--Water-stage recorder. Datum of gage is 26.53 ft (revised) National Geodetic Vertical Datum of 1929. Prior to Aug. 29, 1984, at present site at datum 1.0 ft higher.

REMARKS.--Water-discharge records good. Flow is regulated by Lake Corpus Christi (station 08210500) 0.6 mi upstream. Upstream from Lake Corpus Christi, flow is affected by recharge to permeable formations, small diversions, and minor regulation. Water for municipal and industrial uses at Corpus Christi is released from Lake Corpus Christi above gage and is diverted from river at Calallen 34 mi downstream.

AVERAGE DISCHARGE. -- 45 years, 819 ft 3/s (593,400 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 138,000 ft³/s Sept. 24, 1967 (gage height, 48.7 ft, revised, from floodmark), present datum; minimum daily, 6.8 ft³/s Aug. 15, 1940.

Maximum stage since at least 1888, that of Sept. 24, 1967.

EXTREMES OUTSIDE PERIOD OF RECORD.--A stage of about 41 ft (revised), present datum, occurred Sept. 20, 1919, from information by Texas and New Orleans Railroad Co. and is the second highest known.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 550 ft³/s Dec. 28 at 2200 hours (gage height, 4.28 ft); minimum daily, about 64 ft³/s Sept. 3.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 MEAN VALUES SEP JUL AUG MAY JUN DAY OCT NOV DEC JAN FEB MAR APR 144 ---------TOTAL 96.4 MEAN MAX MIN AC-FT

CAL YR 1983 TOTAL MEAN 149 MAX 323 MIN 87 AC-FT WTR YR 1984 TOTAL MEAN 145 MAX 323 MIN 64 AC-FT 105400

08211000 NUECES RIVER NEAR MATHIS, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Chemical analyses: October 1947 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1947 to current year. WATER TEMPERATURES: October 1947 to current year.

REMARKS.--Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and regression relationships between each chemical constituent and specific conductance. Regression equations developed for this station may be obtained from the Geological Survey District office upon request.

EXTREMES FOR PERIOD OF DAILY RECORD .--SPECIFIC CONDUCTANCE: Maximum daily, 1,580 micromhos Apr. 19, 20, 1977; minimum daily, 216 micromhos Sept. 19, 1971. WATER TEMPERATURES (1947-76, 1980-84): Maximum daily, 36.0°C Aug. 8, 1964; minimum daily, 3.0°C Jan. 19, 1968.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum daily, 1,040 micromhos Sept. 30; minimum daily, 767 micromhos Feb. 20.
WATER TEMPERATURES: Maximum daily, 31.0°C Aug. 28, 29; minimum daily, 8.0°C Dec. 27-29.

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
APR 11	1032	171	801	8.2	22.5	210	52	68	9.5
DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)
APR 11	76	2	7.4	157	53	130	.30	17	460

MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1983 TO SEPTEMBER 1984

MONTH	YEAR	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
OCT.	1983	4217	957	538	6130	170	1890	73	835	260
NOV.	1983	4248	871	492	5650	140	1630	68	775	240
DEC.	1983	4943	816	463	6180	130	1700	64	852	230
JAN.	1984	4260	790	449	5170	120	1390	62	714	220
FEB.	1984	3959	773	440	4700	120	1240	61	651	220
MAR.	1984	4514	782	445	5420	120	1450	62	750	220
APR.	1984	5423	808	459	6710	130	1830	63	926	230
MAY	1984	5441	848	480	7050.	140	1990	66	970	230
JUNE	1984	5357	888	502	7260	150	2120	69	995	240
JULY	1984	4306	904	510	5930	150	1750	70	812	250
AUG.	1984	3557	943	531	5100	160	1560	72	696	250
SEPT	1984	2893	991	557	4350	180	1380	76	590	260
TOTAL		53118	**	**	69700	**	19900	**	9570	**
WTD. AV	7G.	145	858	486	**	140	**	67	**	240

08211000 NUECES RIVER NEAR MATHIS, TX--Continued

	SPECIFIC	CONDUCTANCI	(MICROMHOS/CM	AT 25	DEG. C), WAT	ER YEAR	OCTOBER	1983 TO	SEPTEMBER	1984	
DAY	OCT	NOV DE		FEB EQ	UIVALENT MEAN MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1010 1010 1010 1010 1010	916 83 912 83 909 82 908 82 897 83	799 8 802 9 800	776 778 775 775 778	778 775 779 776 777	796 800 800 804 808	826 822 830 835 832	870 886 884 890 896	881 851 895 892 896	914 918 924 926 922	949 950 954 951 962
6 7 8 9 10	996 998 995 997 972	896 83 892 82 896 82 911 82 887 81	8 806 7 807 4 793	773 776 774 775 770	778 779 783 779 778	805 805 807 804 806	833 838 849 852 839	892 881 882 879 869	872 873 889 898 894	933 941 927 930 936	957 964 972 971 967
11 12 13 14 15	973 966 928 950 955	872 81 885 81 888 81 884 82 873 82	4 801 6 796 1 790	772 773 774 776 772	778 779 782 783 778	805 805 809 812 811	840 842 846 846 845	879 881 884 881 896	890 900 907 908 906	937 939 937 943 946	969 972 983 982 1010
16 17 18 19 20	956 941 945 931 929	837 81 836 80 853 80 852 81 853 81	5 792 4 787 3 785	770 771 772 769 767	778 779 779 780 780	811 810 809 809 809	848 849 849 851 851	885 885 884 886 884	899 905 910 906 910	939 942 943 941 949	1010 1010 1010 1010 1010
21 22 23 24 25	913 910 907 911 915	883 81 853 81 870 81 842 80 845 81	0 782 2 783 9 782	770 773 771 770 770	782 783 783 781 782	816 815 814 812 811	857 853 858 861 861	890 892 900 898 895	920 918 920 920 920	952 953 956 963 968	1010 1010 1010 1010 1010
26 27 28 29 30 31	914 911 913 908 907 905	834 81 833 80 835 81 836 80 834 80	9 779 0 778 8 777 5 779	775 777 773 773	791 786 789 791 793 795	809 808 809 800 798	864 867 860 863 867 874	894 895 898 902 899	920 925 931 928 923 932	962 960 960 966 959 962	1020 1020 1010 1020 1040
MEAN	951	871 81	7 790	773	782	807	849	888	904	943	991
		mEM DELO I MAN	ne Hamen (one	a \		mon mn 10	mo gr	DEEMBER	100/		
DAY	OCT	NOV DE	RE, WATER (DEG C JAN	FEB	ONCE-DAILY MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	26.5 2 26.5 2	24.0 18. 24.0 18. 24.0 18. 24.0 18.	5 10.0 5 11.0 5 11.0	10.0 10.0 10.5 11.0	15.5 15.5 15.5	21.0 21.5 21.5 21.5 22.0	24.5 25.0 26.0 26.0 26.0	27.0 27.0 27.0 27.5 27.5	29.0 29.0 29.5 29.5 30.0	30.0 30.5 30.0 30.0 30.0	29.5 29.5 29.0 29.0 29.0
6 7 8 9	28.0 2	18. 18. 24.0 18. 44.0 18. 23.0 18.	0 10.5 0 10.5 0 10.0	11.0 11.0 11.5 11.0	15.5 17.0 17.0	22.0 22.0 23.0 22.0 22.0	26.0 26.0 25.0 26.0 26.0	27.0 28.0 28.0 27.5 27.5	30.0 30.0 30.0 30.0 30.0	30.0 30.5 29.5 29.5 29.5	29.0 29.0 29.0 29.0 29.5
11 12 13 14 15	27.5 2 27.0 2 27.5 2	3.0 18. 3.0 18. 3.5 17. 3.5 17. 3.0 18.	0 10.0 5 10.0 5 10.0	12.0 12.0 12.0 12.0 14.0	17.0 17.0 18.0	22.0 23.0 22.0 22.0 22.0	26.0 26.0 26.0 26.0 26.0	27.5 27.5 28.0 28.0 29.0	30.0 30.0 29.5 30.0 30.0	30.0 30.0 29.5 29.5 29.5	29.5 29.5 29.0 29.0 29.0
16 17 18 19 20	28.0 2 28.0 2 28.0 2	22.5 17. 22.0 17. 22.0 17. 22.0 16. 22.0 16.	0 10.5 0 10.0 5 9.0	17.0 17.0 17.0 16.5 16.5	18.5 18.5 19.5	23.0 23.0 23.0 23.5 23.5	26.0 25.0 25.0 25.0 26.0	29.0 29.0 29.0 29.0 29.0	30.0 30.0 30.0 30.0 30.0	30.0 30.0 30.0 30.5 30.5	29.0 28.5 28.5 28.5 29.0
21 22 23 24 25	28.0 2 28.0 2 28.0 2	2.0 16. 2.0 11. 1.0 11. 0.5 8. 0.5 8.	9.0 9.0 5 9.0	16.5 17.0 17.0 17.5 17.0	20.0 2 21.5 2 21.0 2	23.5 24.0 24.0 24.0	25.0 26.0 27.0 27.5 27.5	29.0 29.0 29.0 29.0 29.0	30.0 30.0 30.0 30.0 30.0	30.0 30.0 30.0 30.0 30.0	29.0 29.0 29.0 29.0 29.0
26 27 28 29 30 31	24.0 2 24.0 2 24.0 2 24.0 2	0.0 8. 0.0 8. 0.0 8. 0.0 8. 0.5 9.	0 10.5 0 11.0 0 11.5 0 10.0	17.0 15.5 15.5 15.5	22.0 2 21.0 2 21.0 2	24.5 24.5 24.5 24.5 24.5	28.0 28.0 28.0 28.0 28.0 27.0	29.5 29.5 29.0 29.0 29.0	30.0 30.0 30.0 30.0 30.0 30.0	30.0 30.5 31.0 31.0 30.0	28.0 27.0 27.0 26.0 24.0
				14.0			26.0				

372 OSO CREEK BASIN

08211520 OSO CREEK AT CORPUS CHRISTI, TX

LOCATION.--Lat 27°42'40", long 97°30'06", Nueces County, Hydrologic Unit 12110202, on left downstream end of bridge on Farm Road 763, 1.5 mi south of intersection of Farm Roads 763 and 665, 1.6 mi downstream from mouth of West Oso Creek, and 1.9 mi southwest of intersection of Farm Road 665 and State Highway 357.

DRAINAGE AREA. -- 90.3 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- September 1972 to current year.

GAGE .-- Water-stage recorder. Datum of gage is 1.91 ft below National Geodetic Vertical Datum of 1929.

REMARKS .-- Water-discharge records fair. No known diversions above station. An undetermined amount of water from oilfield operations enters stream upstream at various points. Recording rain gage is located at station.

AVERAGE DISCHARGE. -- 12 years, 33.9 ft 3/s (24,560 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 12,100 ft 3/s Aug. 10, 1980 (gage height, 29.37 ft); minimum, 0.25 ft 3/s Aug. 26, 27, 1973.

EXTREMES OUTSIDE PERIOD OF RECORD .-- A stage of 24.5 ft occurred in May 1968, from information by local resident.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2,640 ft 3/s Jan. 9 at 1900 hours (gage height, 21.94 ft), no other peak above base of 1,000 ft 3/s; minimum daily, 1.0 ft 3/s July 19, 21. DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

					ME	AN VALUES		2. 14.44				
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	11 9.2 8.7 7.0 7.0	6.1 6.1 6.2 16	2.5 2.4 2.4 2.1 2.3	3.4 3.0 2.6 2.5 2.6	15 14 15 11 8.7	4.6 4.6 4.9 5.0 5.0	3.8 3.7 3.8 3.8 3.4	2.9 2.8 2.9 2.7 2.8	1.7 1.7 1.8 1.7 2.0	1.9 2.6 8.4 11 6.8	3.9 5.1 2.3 2.0 1.9	1.6 1.7 18 8.1 3.8
6 7 8 9	6.9 6.9 6.9 6.9	15 9.6 7.9 37 51	2.0 2.0 2.0 2.1 2.2	2.4 2.2 2.4 1400 1180	7.6 7.1 6.8 6.6 6.3	4.5 4.2 4.2 4.3 4.4	3.4 3.8 3.8 3.7	2.6 2.0 1.7 1.7	2.3 2.4 2.3 2.3 2.1	3.9 3.1 2.6 2.6 2.4	1.8 1.7 1.8 1.8	3.3 1.8 1.5 1.9
11 12 13 14 15	6.8 12 9.0 8.8 9.2	32 19 9.5 6.5 5.8	2.0 1.9 2.0 1.9 2.0	373 125 49 23 14	6.4 6.4 6.0 5.5 6.2	4.3 4.5 4.5 4.5 4.6	3.4 3.6 3.6 3.6	1.8 2.1 1.8 1.4 1.3	1.9 1.8 1.9 2.0 2.1	2.2 2.4 1.8 2.0 2.1	1.5 1.6 2.9 2.8 2.6	1.6 1.6 1.6 1.4
16 17 18 19 20	8.2 7.9 7.6 7.2 8.5	5.8 3.1 3.2 3.2 2.8	2.3 2.3 2.3 2.5 2.6	10 7.9 7.2 6.2 6.2	6.2 5.9 5.5 5.1 4.8	4.3 4.3 5.5 4.3 3.8	3.3 3.3 3.4 3.4	1.2 1.1 7.0 4.6 3.9	2.2 2.5 2.2 1.7 1.9	2.0 1.2 1.6 1.0	2.6 2.3 1.8 1.8 2.1	1.6 1.6 1.6 1.6
21 22 23 24 25	338 232 65 26 15	2.8 3.1 3.2 2.9 2.5	2.6 2.4 2.3 2.3 2.2	7.6 7.8 10 20 352	4.9 5.1 5.1 5.0 5.1	3.8 3.8 3.9 3.9 3.8	3.2 3.1 3.0 2.9 2.8	3.1 2.5 1.8 1.8	2.0 2.4 2.1 1.8 2.3	1.0 2.1 2.3 2.4 2.4	2.1 2.1 2.0 2.4 2.2	2.3 2.6 2.2 2.0 2.0
26 27 28 29 30 31	9.5 7.6 7.0 6.6 6.4 6.1	2.4 2.1 2.2 2.9 2.9	2.2 2.7 4.0 3.3 2.6 3.3	274 61 28 18 13	4.9 4.4 4.3 4.4	3.8 4.0 4.2 4.6 4.2 3.9	2.9 2.9 2.9 3.3 2.9	1.6 1.6 2.1 2.1 1.8 1.7	2.2 2.2 2.2 2.4 2.5	2.6 2.6 2.5 2.8 2.0	2.9 3.1 2.9 2.6 2.2 2.1	1.8 1.5 1.6 1.7 2.2
TOTAL MEAN MAX MIN AC-FT	881.8 28.4 338 6.1 1750	287.8 9.59 51 2.1 571	73.7 2.38 4.0 1.9 146	4025.0 130 1400 2.2 7980	199.3 6.87 15 4.3 395	134.2 4.33 5.5 3.8 266	101.2 3.37 3.8 2.8 201	71.9 2.32 7.0 1.1 143	62.6 2.09 2.5 1.7 124	88.1 2.84 11 1.0 175	72.5 2.34 5.1 1.5 144	79.0 2.63 18 1.4 157
CAL YR WTR YR	1983 TOTA 1984 TOTA			1 19.7 MA 1 16.6 MA	X 1470 X 1400	MIN .59 MIN 1.0	AC-FT AC-FT	14260 12050				

OSO CREEK BASIN

08211520 OSO CREEK AT CORPUS CHRISTI, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical and biochemical analyses: July 1972 to current year. Pesticide analyses: July 1972 to September 1981.

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	TIME	STREA FLOW INSTA TANEO (CFS	, CON N- DUC US ANC	TIC I- P CT- (ST CE A	AND- T RD	EMPER- ATURE DEG C)	TUI BI IT	D- Y	OXYG DI SOL (MG	SO EN, (P S- C VED SA	DIS- DE LVED B ER- C ENT I TUR- 5	HEM- N CAL, (DAY	ARD- ESS MG/L AS ACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)
DEC 13	1124	2.	1 4	570	7.9	18.0	23			7.0	76	2.2	770	590
JAN 24	1125	22	1	790	7.6	12.0	290			8.6	80	6.0	470	340
MAR 06	1134	4.	2 5	820	8.1	14.5	8	. 8	1	1.7	116	2.5	980	770
APR 24	1130	3.	0 4	700	7.9	23.5	31			8.6	103	2.8	780	560
JUN 14	1654	1.	9 3	810	8.1	29.5	33			7.2	96	5.9	650	430
AUG 09	1530		66 6	600	8.2	29.5	16			9.4	126	4.8	1100	870
DATE	DIS SO: (MC	CIUM S- LVED G/L CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODI AC SORP TIC RATI	- ! N S0 O (!	OTAS- SIUM, DIS- OLVED MG/L S K)	ALK LINI FIE (MG AS	TY LD /L	SULFATE DIS- SOLVED (MG/L AS SO4)	DIS-	(MG/L		VED VL
DEC	. 240		42	650	11		1.4		180	250	1300	.8	n 2	:0
13 JAN 24			22	650 280	11		9.6		130	250 140	580	.3		4
MAR 06			56	840	12		14		210	290	1600	.6		6.4
APR 24			44	690	11		18		220	240	1300	.8		9
JUN 14			37	540	10		19		220	190	1000	.9		1
AUG 09			63	1000	14		22		195	280	2000	.8		5
DATE	TUEN DI SOI	OF I	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITR GEN NITRI TOTA (MG/ AS N	TE NOZ L TO L (N	ITRO- GEN, 2+NO3 OTAL MG/L S N)	NIT GE AMMO TOT (MG AS	N, NIA AL /L	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	MONIA	+ PHOS-	CARE ORGA TOT (MG AS	NIC CAL G/L
DEC						es e			0.00	6.0		1.50		
13 JAN		2600	-	6.3	.1		6.5		120	2.0	2.1	5.20		9.5
24 MAR		1300	512	1.4		20	1.5		30	1.6	2.9	1.30		7
06 APR		3200	12	3.7		80	4.7		340	1.9	2.2	3.70		5
JUN		2700	70	1.8	.1		1.9		090	2.3	2.4	6.80		1
AUG		2100	74	.79	.0		.80		050	1.9	1.9	3.70		0
09		DATI		SOI ME (UC	ENIC B IS- LVED S G/L	ARIUM, DIS- OLVED (UG/L	CADMI DIS SOLV (UG/	IUM S = VED 'L	CHROMIUM DIS- SOLY (UG	M, COP - DI VED SO /L (U	S- LVED S G/L (RON, DIS- OLVED UG/L S FE)		
		JAN				AS BA)	AS (AS (
		24. JUN 14.			16 13	300 100		<1 <1		70 <10	5	40 40		
		.,	DATE	LEAD, DIS- SOLVED (UG/L AS PB)	MANG NESE DIS SOLV (UG/ AS M	A- , MEH - I ED SC L (U	RCURY DIS- DLVED JG/L S HG)	SEL NIU DI	E- M, S- VED	SILVER, DIS- SOLVED (UG/L AS AG)	ZINC, DIS-	D		
			JAN 24	2	2	60	<.1		<1	<1	40)		
			JUN 14	<1	4	00	<.1		<1	<1	40)		

SAN FERNANDO CREEK BASIN

08211800 SAN DIEGO CREEK AT ALICE, TX

LOCATION.--Lat 27°45'59", long 98°04'31", Jim Wells County, Hydrologic Unit 12110204, at bridge on Edith Drive in Alice, 540 ft downstream from Texas and New Orleans Railroad Co. bridge, and 3.2 mi upstream from confluence with Chiltipin Creek.

DRAINAGE AREA . -- 319 mi2.

PERIOD OF RECORD. -- September 1963 to current year.

REVISED RECORDS .-- WDR TX-72-1: 1971.

GAGE. -- Water-stage recorder. Datum of gage is 189.60 ft National Geodetic Vertical Datum of 1929.

REMARKS.--Records good. Flow is affected at times by discharge from the flood-detention pools of ten floodwaterretarding structures with a combined detention capacity of 35,980 acre-ft. These structures control runoff from 170 mi in the San Diego-Rosita drainage basins.

AVERAGE DISCHARGE.--21 years, 8.67 ft3/s (6,280 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 19,200 ft 3/s Oct. 17, 1971 (gage height, 17.70 ft); no flow at times each year.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1928, 18.2 ft April 1949, equivalent gage height in channel modified in 1955, 17.2 ft, from information by local residents.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,040 ft3/s Oct. 21 at 0300 hours (gage height, 7.31 ft), no other peak above base of 250 ft3/s; no flow most of time.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

		pro ommor,	111 00010			AN VALUES	COLODER	1705				
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
2	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	6.9
3	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	4.0
3 4	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.32
5	.00	.00	.00	.00	.01	.00	.00	.00	.00	.00	.00	1.8
3	.00	.00	.00	.00	.01	.00	• 00	.00	.00	.00	.00	1.0
6	.00	. 02	.00	.00	.00	.00	.00	.00	.00	.00	.00	. 01
7	. 00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
8	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	6.3	.00
9	.67	.00	.00	. 21	.00	.00	.00	.00	.00	. 00	. 53	.00
10	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	. 02	.00
11	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
12	1.3	.00	.00	.00						.00	.00	.00
					.00	.00	.00	.00	.00			
13	. 02	.00	.00	.00	.00	.00	.00	.00	.00	.00	5.0	.00
14	.26	.00	.00	.00	.00	.00	.00	.00	.00	.00	87	.00
15	. 06	.00	.00	.00	.00	.00	.00	.00	.00	.00	12	.00
16	.01	.00	.00	.00	.00	.00	.00	.00	.00	.00	1.8	.00
17	. 01	.00	.00	.00	.00	.00	.00	. 01	.00	.00	. 25	.00
18	.07	.00	.00	.00	.00	.00	.00	. 05	.00	.00	. 03	.00
19	.15	.00	.00	.00	.00	.00	.00	. 01	.00	.00	.00	.00
20	12	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
21	457	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
22	58	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
23	13	.00	.00	.00	.00	.00		.00	.00	.00	.00	.00
24	2.4	.00	.00				.00					.00
				.00	.00	.00	.00	.00	.00	.00	.00	
25	.62	• 00	.00	. 29	.00	.00	.00	.00	.00	.00	.00	.00
26	.24	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
27	.10	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
28	. 04	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
29	. 02	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
30	.00	.00	.00	.00		.00	.00	.00	.00	.00	.00	.00
31	.00		.00	.00		.00		.00		.00	.00	
TOTAL	545.97	. 02	.00	.50	.01	.00	.00	. 07	.00	.00	112.93	13.03
MEAN	17.6	.001	.000	.016	.000		.000	.002	.000	.000	3.64	.43
MAX	457											
		. 02	.00	.29	.01	.00	.00	. 05	.00	.00	87	6.9
MIN	.00	.00	.00	.00	.00	.00	. 00	.00	.00	.00	.00	.00
AC-FT	1080	• 04	.00	1.0	. 02	.00	.00	.1	.00	.00	224	26

CAL YR 1983 TOTAL 920.81 MEAN 2.52 MAX 457 MIN .00 AC-FT 1830 WTR YR 1984 TOTAL 672.53 MEAN 1.84 MAX 457 MIN .00 AC-FT 1330

08211850 LAKE ALICE AT ALICE, TX

LOCATION.--Lat 27°47'25", long 98°03'39", Jim Wells County, Hydrologic Unit 12110204, on right bank just upstream from Alice Dam on Chiltipin Creek, 1.8 mi upstream from confluence of Chiltipin and San Diego Creeks, and 2.6 mi northeast of Alice.

DRAINAGE AREA. -- 150 mi2.

PERIOD OF RECORD. -- December 1964 to current year.

GAGE. -- Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by city of Alice).

GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by city of Alice).

REMARKS.--The lake is formed by a rolled earthfill dam 11,525 ft long. The dam consists of the main embankment 3,470 ft long and two protective levees. The west protective levee is 4,275 ft long and the east protective levee is 2,343 ft long. Storage began Oct. 26, 1964, and the dam was completed Mar. 16, 1965. The spillway, 1,000 ft wide, is located between the main embankment and the west levee. Collapsible flashboards, 3.5 ft high, were added to the crest of the spillway. The main spillway is 414 ft wide with thirteen 30-foot-wide slots for gates, but no gates have been installed at the present time. The main spillway is located between the main embankment and the east levee. The spillway is a concrete siphon-type spillway, 22.5 ft wide with a 3.5-foot opening, and is in the main embankment section. The dam is the property of the Alice Water Authority and was built to store water for use by the city of Alice. The area and capacity tables are based on revised maps surveyed in 1963. Flow is affected at times by discharge from flood-detention pools of eight floodwater-retarding structures with a combined detention capacity of 25,160 acre-ft. These structures control runoff from 131 mi². Records furnished by the city of Corpus Christi show that 6,460 acre-ft was diverted to Lake Alice from Lake Corpus Christi during the current year. Figures given herein represent total contents. Data regarding the dam and lake are given in the following table:

Elevation

Capacity

(feet)

Capacity

(acre-feet)

	(feet)	(acre-feet
Top of dam	205.0	-
Top of west levee	202.0	-
Top of collapsible flashboards	199.5	5,300
Top of east levee	199.0	4,910
Crest of main spillway	196.5	3,110
Crest of spillway	196.0	2,780
Crest of siphon spillway (lowest outlet)	196.0	2,780

COOPERATION .-- The area and capacity tables are furnished by the Alice Water Authority.

EXTREMES FOR PERIOD OF RECORD. -- Maximum contents, 4,780 acre-ft Sept. 12, 1971 (elevation, 198.83 ft, from floodmark); minimum, 14 acre-ft Feb. 3, 1965 (elevation, 185.67 ft).

EXTREMES FOR CURRENT YEAR .-- Maximum contents, 849 acre-ft Feb. 26 at 2000 hours (elevation, 192.25 ft); minimum, 275 acre-ft July 20, 21 (elevation, 190.45 ft).

Capacity table (elevation, in feet, and total contents, in acre-feet)

189.0	82	191.0	423	193.0	1,160
190.0	195	192.0	754	194.0	1,640

CONTENTS, IN ACRE-FEET, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 INSTANTANEOUS OBSERVATIONS AT 2400

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	635	718	655	581	758	814	740	555	438	328	315	503
2	624	718	655	581	773	814	743	555	414	333	315	551
3	618	718	662	581	773	814	740	551	406	315	317	558
4	621	718	662	581	776	814	729	535	403	293	320	561
5	618	718	666	581	784	818	711	523	406	286	330	551
6 7 8 9 10	618 624 631 638 648	718 718 718 718 718	655 655 655 655	581 581 581 628 618	780 776 780 784 791	818 818 814 814	701 711 715 708 708	516 510 507 500 475	406 403 394 391 391	288 291 288 300 295	330 336 336 344 349	542 532 523 510 500
11 12 13 14 15	648 648 683 683	718 718 718 718 718	652 648 638 624 621	618 624 624 624 624	791 788 791 784 795	810 822 822 818 818	701 694 690 676 669	447 438 438 441 444	389 386 400 400 397	300 298 300 300 300	355 358 406 412 417	484 481 475 466 453
16	683	708	624	631	795	814	659	466	400	300	409	444
17	676	701	624	635	787	810	652	478	400	295	414	429
18	701	694	635	645	803	799	645	497	400	295	423	429
19	701	694	635	645	795	795	645	507	391	279	426	423
20	694	694	635	648	803	795	635	510	389	277	423	412
21	718	687	641	648	806	780	628	500	380	279	423	412
22	718	687	638	662	814	780	621	500	375	284	432	412
23	718	690	638	669	814	780	608	500	372	286	438	414
24	718	687	631	683	818	780	594	500	363	286	441	414
25	718	680	624	715	818	762	588	484	352	288	456	417
26 27 28 29 30 31	708 708 708 718 718 718	680 673 669 666 669	614 608 588 578 581 581	718 725 733 733 740 751	841 818 814 814	773 769 758 754 747 747	588 581 568 568 561	478 475 475 469 453 450	344 330 325 312 333	286 293 298 305 307 307	459 459 462 462 459 475	417 417 423 429 435
MAX	718	718	666	751	841	822	743	555	438	333	475	561
MIN	618	666	578	581	758	747	561	438	312	277	315	412
(†)	191.90	191.76	191.50	191.99	192.16	191.98	191.44	191.09	190.68	190.58	191.17	191.04
(‡)	+80	-49	-88	+170	+63	-67	-186	-111	-117	-26	+168	-40

CAL YR 1983 MIN 503 WTR YR 1984 MAX 841 MIN 277 -203

Elevation, in feet, at end of month. Change in contents, in acre-feet.

SAN FERNANDO CREEK BASIN

08211900 SAN FERNANDO CREEK AT ALICE, TX

LOCATION.--Lat 27°46'20", long 98°02'00", Jim Wells County, Hydrologic Unit 12110204, on left bank 34 ft downstream from downstream bridge of two bridges on State Highways 44 and 359, 0.5 mi downstream from confluence of San Diego and Chiltipin Creeks, 2.3 mi upstream from head of Pintas Creek, and 2.7 mi northeast of Alice.

DRAINAGE AREA. -- 507 mi2.

PERIOD OF RECORD .-- December 1964 to current year.

GAGE. -- Water-stage recorder. Datum of gage is 161.68 ft National Geodetic Vertical Datum of 1929.

REMARKS.--Records good except those for periods of no gage-height record, which are fair. San Diego Creek joins Chiltipin Creek below Lake Alice to form San Fernando Creek. Flow is regulated by Lake Alice (station 08211850) 2.3 mi upstream from Chiltipin Creek since Oct. 26, 1964. For statement regarding regulation by Soil Conservation Service floodwater-retarding structures, see station 08211800. Records furnished by city of Alice show that 2,630 acre-ft of sewage effluent was discharged into San Diego Creek 1.3 mi upstream, which comprises most of the low flow. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE. -- 19 years (water years 1966-84), 23.7 ft3/s (17,170 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 26,800 ft³/s Sept. 12, 1971 (gage height, 16.51 ft); minimum daily, 0.2 ft³/s Aug. 2 and Sept. 16, 1965.

Maximum stage since at least 1949, that of Sept. 12, 1971. Another high stage for this period was 15.86 ft Sept. 23, 1967 (discharge, 16,900 ft³/s).

EXTREMES OUTSIDE PERIOD OF RECORD.--Other high stages since at least 1949 are 15.5 ft Sept. 9, 1962 (discharge, 14,600 ft³/s from field estimate), and 14.2 ft Sept. 14, 1951. Discharge for flood of Sept. 14, 1951, may have exceeded that for 1962 as the highway was raised between 1952 and 1962. Flood in 1951 was higher at site of discontinued station "San Fernando Creek near Alice." Flood in 1962 was higher than that of 1967 at site of discontinued station; there is a diversion into the Pintas Creek basin between the two gaging sites, and apparently this diversion was greater in 1967 than in 1962.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 772 ft³/s Oct. 21 at 1300 hours (gage height, 5.81 ft); minimum daily, 0.23 ft³/s Aug. 24.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

	MEÁN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1 2 3 4 5	.76 1.6 1.5 1.5	2.1 2.0 2.3 2.3 2.5	2.3 2.2 2.2 2.1 2.2	2.0 1.8 1.9 1.9	2.4 2.4 2.3 2.3 2.2	2.2 2.0 2.2 2.4 2.2	1.6 1.7 1.6 1.5	1.7 1.5 1.6 1.6	1.9 1.3 1.6 1.9 2.4	6.0 2.5 2.2 2.0 1.9	.98 1.4 1.4 1.8 2.5	.70 1.5 150 30 10	
6 7 8 9	1.2 1.8 3.3 3.0 2.8	2.8 2.5 2.4 2.7 2.3	2.3 2.5 2.3 2.3 2.1	1.6 1.8 1.9 3.0 2.0	2.2 2.4 2.4 2.3 2.2	2.2 2.3 2.2 2.3 2.2	2.0 2.1 1.9 1.7	1.8 1.5 1.9 1.5	2.4 1.8 1.0 1.6 1.2	2.2 1.4 2.2 1.7 2.0	1.9 2.4 1.5 1.8 1.2	3.0 1.5 2.5 1.7 1.1	
11 12 13 14	2.3 5.9 4.6 2.5 2.2	2.4 2.4 2.3 2.6 2.6	1.4 1.7 2.1 2.0 1.8	2.2 2.2 2.1 2.1 2.2	1.8 2.2 2.2 2.1 2.2	2.1 1.9 1.9 2.0 1.9	1.6 1.7 1.8 2.1 2.0	2.0 1.9 1.3 1.8 2.2	3.0 1.5 4.0 2.0 1.6	2.2 1.8 2.0 2.2 2.1	1.7 2.4 2.7 87 19	1.3 2.5 2.3 2.0 2.4	
16 17 18 19 20	1.9 3.1 3.9 2.4 2.2	2.8 2.6 2.6 2.5 2.3	1.8 2.1 2.1 2.2 2.1	2.3 2.4 2.4 2.4 2.4	2.5 2.5 2.5 2.4 2.5	1.8 1.6 2.4 2.1 1.8	1.7 1.9 1.9 2.1 2.2	2.5 2.3 2.7 2.3 2.0	2.2 1.7 2.1 1.3 1.9	1.8 1.3 1.0 .72 .70	5.4 3.1 2.4 1.8 1.8	2.7 2.1 1.9 1.7 2.0	
21 22 23 24 25	423 71 13 5.9 4.2	2.4 2.2 2.2 2.4 2.3	2.1 2.1 2.1 2.1 2.2	2.3 2.2 2.2 2.4 3.1	2.5 2.3 2.3 2.1 2.2	1.8 2.1 1.7 1.5 1.9	2.2 2.1 1.5 1.7 1.8	2.1 2.0 1.5 .45 2.3	1.7 1.4 1.3 1.4 1.6	1.7 2.0 2.2 1.7 1.4	1.2 .46 .51 .23	1.7 2.1 2.3 1.7 2.0	
26 27 28 29 30 31	3.1 2.9 2.8 2.6 2.5 2.4	2.2 2.1 3.2 2.4 2.2	2.3 2.4 2.3 2.3 2.2 2.2	2.5 2.5 2.1 2.2 2.2 2.3	2.1 2.2 1.9 1.8	1.6 1.4 1.4 1.5	1.8 1.7 1.5 1.9	1.5 2.3 2.3 1.9 2.0 1.6	1.7 1.4 1.5 5.0 20	1.4 1.3 1.5 2.3 2.4 1.7	2.0 1.6 .97 .74 .62	1.7 1.5 1.7 1.8 1.7	
TOTAL MEAN MAX MIN AC-FT	583.06 18.8 423 .76 1160	72.6 2.42 3.2 2.0 144	66.1 2.13 2.5 1.4 131	68.5 2.21 3.1 1.6 136	65.4 2.26 2.5 1.8 130	59.5 1.92 2.4 1.4 118	54.8 1.83 2.2 1.5 109	57.25 1.85 2.7 .45 114	75.4 2.51 20 1.0 150	59.52 1.92 6.0 .70 118	154.17 4.97 87 .23 306	241.10 8.04 150 .70 478	

CAL YR 1983 TOTAL 2065.80 MEAN 5.66 MAX 423 MIN .45 AC-FT 4100 WTR YR 1984 TOTAL 1557.40 MEAN 4.26 MAX 423 MIN .23 AC-FT 3090

NOTE. -- No gage-height record June 9 to July 12, Aug. 30 to Sept. 30.

RIO GRANDE BASIN 377

08364000 RIO GRANDE AT EL PASO, TX

LOCATION.--Lat 31°48'10", long 106°32'25", El Paso County, Hydrologic Unit 13030102, at gaging station on the downstream side of the Courchesne Bridge, 5.6 mi upstream from the Santa Fe Street-Juarez Avenue bridge between El Paso, Tex., and Cd. Juarez, Mex., and 1.7 mi upstream from the American Dam.

DRAINAGE AREA .-- 29,267 mi2.

PERIOD OF RECORD .-- Chemical analyses: February 1930 to current year.

REMARKS.--Records of specific conductance and discharge for water year 1984 are given in International Boundary and Water Commission Water Bulletins Nos. 53 and 54.

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS (MG/L AS CACO3)
OCT 18	0825	238	1920	8.3	16.5						440
NOV	1000					2.2	0.6	100	1100	1200	440
01 28 DEC	1325	152 98	1980 2070	8.2	16.0 9.0	23	8.6	100			430
21 JAN	0845	81	2140	8.1	4.5						450
04	1000 0835	62 53	2020 2220	8.2 8.3	7.5 2.0	9.5	10.8	103	420	530	450 460
FEB 16	0835	390	1080	7.9	1.0						260
MAR 01 21	0900 0845	100 762	1210 869	7.5 7.8	7.5 12.0	50	9.8	94	620	1100	320 230
APR 13	0930	701	1030	7.8	14.5						250
MAY 04	1400	672	950	8.2	20.0	95	8.2	105	210	170	250
15 JUN	1120	586	951	7.9	20.5					170	240
20 JUL	1015	1430	880	7.9	21.0		++				240
05 17 AUG	0900 0825	715 840	1000 959	8.2 8.1	24.5	68	6.8	95	670	1200	270 240
15 SEP	0855	723	1210	8.0	21.0		44				290
19	0900 0905	622	1210	7.9	19.5 17.0	150	=	= ==	11	===	250 290
DATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)
OCT 18	180	130	29	260	6	11	260	450	210		25
NOV 01 28	180 170	130 120	28 32	270 300	6 7	10 10	260	470 490	230 260	•70	24 27
DEC 21 JAN	170	130	30	310	7	10	280	480	260		25
04	160 180	130 130	30 32	320 320	7	10 10	280	490 520	250 270	•70	25 26
FEB 16 MAR	83	77	17	130	4	6.9	180	210	120		16
21	98 68	94 68	20 14	170 92	4 3	7.5 5.8	160	270 170	150 82	.60	19 15
13 MAY	84	77	15	120	3	6.7	170	210	100		1.7
15	58 72	73 72	15 15	120 110	3 3	7.4 6.8	170	210 200	98 82	•60	15 15
JUN 20 JUL	80	73	14	98	3	6.7	160	180	69		17
05 17	91 73	81 74	16 14	120 110	3	6.8	170	230 200	94 80	•60	19 18
AUG 15	110	85	18	150	4	8.3	180	260	120		22
05 19	100 100	75 86	16 19	140 150	4 4	7.0 8.1	190	240 250	110 130	.60	20 21

RIO GRANDE BASIN
08364000 RIO GRANDE AT EL PASO, TX--Continued

DATE	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS; DIS- SOLVED	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L	PHOS- PHORUS, TOTAL (MG/L	PHOS- PHORUS, DIS- SOLVED (MG/L	PHOS- PHORUS, ORTHO, DIS- SOLVED (MG/L	SEDI- MENT, SUS- PENDED	SEDI- MENT, DIS- CHARGE, SUS- PENDED	SED. SUSP. SIEVE DIAM. % FINER THAN
DATE	(FIG/L)	(MG/L)	AS N)	AS N)	AS N)	AS P)	AS P)	AS P)	(MG/L)	(T/DAY)	.062 MM
OCT											
18 NOV		1300						**			
01	1330	1300	.41	.100	1.0	.220	.150	.130	58	24	87
28		1400									
DEC											
21		1400									
JAN											
04	1440	1400	.32	.090	.50	.200	.150	.110	41	6.9	76
17		1500									
FEB											
16		680									
MAR				6.0						200	
01	861	860	.36	.100	.90	.280	.170	.140	104	28	81
21		540									
APR											
13		650								9.5.0	
MAY	(76	650	10	100							
04	676	650	.18	.190	1.6	.300	.120	.040	179	325	97
15 JUN		600									
20		550									
JUL		330					7.				
05	652	680							100	201	07
17	632	600							169	326	97
AUG		000									
15		770									
SEP		770							1	(2.5	-
05	707	700	.37	.030	1.2	.470	.070	.050	536		95
19		780	.37	.030	1.2	.470	.070	.050	330		93
		700						-			

08377200 RIO GRANDE AT FOSTER RANCH NEAR LANGTRY, TX (National stream-quality accounting network)

LOCATION.--Lat 29°46'50", long 101°45'20", Val Verde County, Hydrologic Unit 13040212, at gaging station 0.1 mi downstream from Terrell-Val Verde County line, 16.9 mi from Langtry, and 597.2 mi downstream from the American Dam at El Paso.

DRAINAGE AREA.--80,742 mi , United States and Mexico; from International Boundary and Water Commission Water Bulletin No. 44.

PERIOD OF RECORD.--Chemical analyses: April 1944 to current year. Chemical and biochemical analyses: October 1974 to current year. Pesticide analyses: October 1975 to September 1982.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1974 to September 1981. WATER TEMPERATURES: October 1974 to September 1981.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 2,110 micromhos Dec. 4, 1974; minimum daily, 225 micromhos May 2, 1981.
WATER TEMPERATURES: Maximum daily, 32.0°C June 13, 1977, July 25, 26 1979, July 4, 1980, and June 8, 1981; minimum daily, 9.0°C Jan. 12, 1975, Jan. 8, 1976, and Jan. 18, 1981.

DATE	TI	FLO INS	EAM- CI OW, CO TAN- DU EOUS AN	CT- (ST	RD	EMPER- ATURE DEG C)	TUR BIC ITY (NTU	D: SOI	SEN, (I	DIS- DEN DLVED B: PER- CI CENT IC ATUR- 5	YGEN MAND, IO- HEM- CAL, DAY MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STRE TOCOC FECA KF AG (COLS PER 100 M	CI L, HARD- AR NESS . (MG/L AS
OCT 12	14	30	823	700	7.5	23.0	2900		8.6	102	6.7	3300	62	00 180
FEB 08	12	55	884	1410	7.8	14.0	52		8.6	86	.8	50		60 320
JUN 06	13	20	1280	1230	7.6	27.0	540		8.8	116	1.2	140	1	20 270
AUG 15	14	15	5000	860	7.6	29.5	300		8.8	119	1.0	3500	40	00 220
D)ATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	DIS- SOLVEI (MG/L	SODIU DIS- SOLVE (MG/	M, D S	ODIUM AD- ORP- TION ATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATI DIS- SOLVEI (MG/L AS SO4)	DIS SOI (MG	DE, RI G- I LVED SC G/L (N	UO- DE, DIS- DLVED IG/L S F)	SILICA, DIS- SOLVED (MG/L AS SIO2)
oc														
1 FE	2 · · ·	48	58	7.7	78		3	5.6	130	170	34		1.0	20
O JU	8	150	91	22	180		5	6.1	170	350	140		1.7	25
	6	150	83	16	160		4	6.0	130	350	100		1.6	22
	5	120	74	9.1	83		3	5.4	100	240	34		1.0	16
D	ATE	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	DIS- SOLVED	GEN AMMON DIS	GEI IA MOI ORG ED TO	ITRO- N,AM- NIA + GANIC OTAL MG/L S N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, DIS- SOLVEI (MG/L AS P)	DIS-	SEI MEN SUS PEN	ME DI- I NT, CHA S- S NDED PE	NDED	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
oc			124				5.75	15.02						
1 FE	2 B	443	450	1.2	•2	40	2.2	4.50	.070	.070) 4	480	9960	100
JU 0	8 N	937	920	.93	.0	30	.70	.060	<.010	.030)	140	334	89
0 AU	6 G	824	820	1.0	.0	30	1.0	1.90	.010	.010	3	900 1	3500	100
	5	543	520	1.2	.0	10		5.80	.010	<.010	15	700 21	2000	100

RIO GRANDE BASIN

08377200 RIO GRANDE AT FOSTER RANCH NEAR LANGTRY, TX--Continued

DATE	TIME	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COBALT, DIS- SOLVED (UG/L AS CO)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB)
OCT 12	1430	8	97	<.5	<1	<1	<3	2	29	8
FEB	1430	0	91	1.3	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	VI.	(3	2	23	0
08 JUN	1255	11	82	<.5	<1	<1	<3	1	3	<1
06 AUG	1320	4	99	2	<1	<1	<3	3	27	1
15	1415	2	83	<1	<1	<1	<3	5	46	<1
DATE	LITHIUM DIS- SOLVED (UG/L AS LI)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO)	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	VANA- DIUM, DIS- SOLVED (UG/L AS V)	ZINC, DIS- SOLVED (UG/L AS ZN)
OCT 12	53	1	<.1	<10	45	1	<1	860	9	23
FEB 08 JUN	110	2	<.1	<10	1	2	<1	1900	9	8
06	100	<1	<.1	20	<1	1	<1	1400	10	33
AUG										

08407500 PECOS RIVER AT RED BLUFF, NM (National stream-quality accounting network station)

LOCATION.--Lat 32°04'30", long 104°02'21", in SW1/4NW1/4NE1/4 sec.1, T.26 S., R.28 E., Eddy County, Hydrologic Unit 13060011, on right bank at Red Bluff, 0.2 mi downstream from Red Bluff Draw, 1.6 mi northwest of the El Paso Natural Gas (Pecos River) compressor station, 5.2 mi north of the New Mexico-Texas state line, 5.5 mi upstream from Delaware River, and at mile 411.2.

DRAINAGE AREA. -- 19,540 mi², approximately (contributing area).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1937 to current year.

GAGE. -- Water-stage recorder. Datum of gage is 2,850.05 ft National Geodetic Vertical Datum of 1929.

REMARKS .-- Records good. Flow regulated by many reservoirs and diversion dams. Diversions and ground-water withdrawals above station for irrigation of about 202,000 acres, 1959 determination.

AVERAGE DISCHARGE. -- 47 years, (1938-84), 163 ft3/s, 118,100 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 111,000 ft³/s Aug. 23, 1966 (gage height, 33.32 ft), from rating curve extended above 32,000 ft³/s on basis of slope-area measurement of peak flow; minimum, 0.19 ft³/s Aug. 1, The flood of Aug. 23, 1966, exceeded all floods at this location.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood in October 1904 reached a stage of 28.0 ft, from information by Panhandle and Santa Fe Railway Co.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 14,400 ft³/s Aug. 11 (gage height, 17.83 ft³/s); minimum recorded, 14 ft³/s May 8, but may have been lower during periods of missing or fault gage-height record Apr. 19-21, June 12-17, or July 21-25.

DICCUARCE IN CURIC PEET DED CECOND LIAMED VEAR OCTOBER 1002 TO CERTEMBER 1004

		DISCHARGE,	IN CUBIC	FEET	PER	SECOND, MEA	, WATER YEA AN VALUES	R OCTOBE	IR 1983 TO	SEPTEMBER	1984		
DAY	OCT	NOV	DEC	JAN		FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	63	83	46	52		41	36	23	17	21	47	24	71
2	86	77	49	52		39	34	21	16	21	35	23	73
3	62	57	50	53		38	32	26	15	21	27	22	60
2 3 4 5	51	56	50	53		37	33	30	15	21	31	21	79
5	39	79	50	53		33	39	33	16	25	46	20	101
6 7 8	34	66	51	49		29	39	29	15	32	34	16	96
7	29	59	50	44		27	38	24	15	26	26	16	91
8	40	53	49	44		26	38	18	15	23	23	18	69
9	56	53	49	44		27	37	17	15	22	22	225	63
10	71	52	50	44		29	39	17	16	19	20	345	67
11	100	51	49	47		26	37	18	16	17	19	6290	71
12	60	51	50	47		26	35	18	16	14	18	7550	71
13	42	49	50	45		25	36	19	16	14	17	2880	72
14	34	48	50	42		29	34	19	15	14	16	691	70
15	31	48	44	41		31	33	18	15	14	15	1930	61
16	33	49	43	41		31	32	18	19	14	17	1510	61
17	43	49	47	41		31	33	18	98	14	22	691	58
18	56	47	51	43		33	31	16	135	15	21	548	69
19	55	47	52	43		30	28	14	29	18	19	304	58
20	42	46	52	42		26	26	14	26	24	16	180	55
21	56	48	52	42		26	25	14	33	30	15	180	53
22	67	46	52	42		27	24	17	35	37	15	214	52
23	59	46	52	42		29	20	21	30	38	15	200	63
24	47	46	51	43		31	19	22	26	38	15	164	65
25	49	46	50	44		31	19	19	26	34	15	117	66
26	48	48	53	43		35	19	17	27	31	16	89	64
27	45	47	54	43		35	19	18	28	30	18	74	79
28	54	47	54	42		33	19	19	33	48	17	69	114
29	65	48	54	42		34	18	20	35	310	17	73	83
30	89	47	56	42			18	19	27	125	18	89	88
31	91		52	42			20		23		21	80	
TOTAL	1697	1589	1562	1387		895	910	596	863	1110	673	24653	2143
MEAN	54.7	53.0	50.4	44.7		30.9	29.4	19.9	27.8	37.0	21.7	795	71.4
MAX	100	83	56	53		41	39	33	135	310	47	7550	114
MIN	29	46	43	41		25	18	14	15	14	15	16	52
AC-FT	3370	3150	3100	2750		1780	1800	1180	1710	2200	1330	48900	4250
CAL YR	1983 TOTA	L 13573	MEAN 3	7.2	MAX	163	MIN 15	AC-FT 2	6920				

WTR YR 1984 TOTAL 38078 MEAN 104 MAX 7550 382 RIO GRANDE BASIN

08407500 PECOS RIVER AT RED BLUFF, NM--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water year 1937 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: July 1937 to current year. WATER TEMPERATURES: October 1952 to current year.

SPECIFIC CONDUCTANCE: Maximum daily, 51,400 micromhos June 20, 1972; minimum daily, 268 micromhos Sept. 18, 1946. WATER TEMPERATURES: Maximum daily, 36.0°C July 31, 1966, July 13, 1970; minimum daily, 1.0°C Jan. 10, 11, 1962, Jan. 13, 1963, Dec. 19, 1980. EXTREMES FOR PERIOD OF DAILY RECORD .--

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	ITY	OXYGEN, DIS- SOLVED (MG/L)	CENT SATUR-	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS (MG/L AS CACO3)
OCT											
28 DEC	. 1130	54	8800	8.2	17.0	4.6	11.6	137	20	100	2200
28 FEB	. 1500	51	9000	8.0	4.5	5.1	11.5	101	10	30	2000
27 APR	. 1315	36	16400	8.1	9.0	6.9	11.6	118	3	54	2500
26 JUN	. 1500	17	22600	8.5	20.0	31	11.0	149	6	71	2700
27	. 1700	31	14700	8.1	31.5	34	7.9	124	20	8000	2500
AUG 30	. 1400	89	12200	8.5	20.5	2.6			37	37000	1800
DATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	SOLVED (MG/L	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVEI (MG/L AS K)	LINITY FIELD	SULFATE DIS- SOLVED (MG/L AS SO4)	DIS-	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)
OCT 28	. 2100	510	220	1500	14	51		1800	2800	.80	13
DEC 28			200	1400	14	37			2400	.80	12
FEB 27			270	2200	20	73	140		4000	.90	6.1
APR 26			330	3800	33	120	100		6600	.90	<1.0
JUN 27			260	2500	22	69			4400	.90	7.4
AUG											12
30			180	2300	25	66			3500	.60	
DATE	SOLIDS RESIDUR AT 180 DEG. (DIS- SOLVEI (MG/L)	SUM OF CONSTI- TUENTS, DIS- SOLVED	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS-	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	DIS-	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
OCT								3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			
DEC DEC			.80	.250	1.8	.120					
EEB 28			2.0	.320	1.1	.030			43	5.9	52
27 APR	. 9140	9100	.71	.480	1.9	.060	.020	.040		3.4	83
26 JUN	. 14800		<.10	.650	1.0	.040	.050	.020	64	2.9	95
27 AUG	. 10200	10000	<.10	.060	1.9	.120	.010	.020	101	8.5	96
30	. 8130	7900	.16	.180	1.7	.050	.020	.020	23	5.5	96
	DATE	TIME (U	DIS- DI OLVED SOI UG/L (U	RIUM, LI IS- DI IVED SO IG/L (U	IS- DLVED S IG/L (DMIUM M DIS- D OLVED S UG/L (IS- DOLVED SOUG/L (DIS- D DLVED S UG/L (IS- I OLVED SO UG/L (U	DIS- I DLVED SO JG/L (U	EAD, DIS- DLVED JG/L S PB)
(OCT										
Į.	28 APR	1130	1		(10	<1	<1	1	1	80	<1
	26 JUN	1500	1	100 <	(10	<1	<1	<1	<1	120	3
	27 AUG	1700	<1	300 <	(10	<1	6	<1	2	70	<1
	30	1400	2	<100	10		<1			80	

RIO GRANDE BASIN
08407500 PECOS RIVER AT RED BLUFF, NM--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	LITHIUM DIS- SOLVED (UG/L AS LI)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO)	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	VANA- DIUM, DIS- SOLVED (UG/L AS V)	ZINC, DIS- SOLVED (UG/L AS ZN)
OCT										
28	90	30	<.1	<1	5	2	<1	7200	67	30
APR			×						1.2.2	
26 JUN	130	100	.1	4	6	2	<1		65	30
27	120	50	.4	4	<1	1	<1	9600	65	20
AUG										
30	70	60	.2			2		6300	40	20

384

RIO GRANDE BASIN

08408500 DELAWARE RIVER NEAR RED BLUFF, NM

LOCATION.--Lat 32°01'23", long 104°03'15", in NE1/4SW1/4SE1/4 sec.23, T.26 S., R.28 E., Eddy County, Hydrologic Unit 13070002, near center of channel on downstream side of pier of bridge on U.S. Highway 285, 2.1 mi north of the New Mexico-Texas state line, 3.6 mi southwest of Red Bluff, 3.7 mi upstream from mouth and 14 mi south of Malaga. Mouth at Pecos River mile 405.6.

DRAINAGE AREA. -- 689 mi2.

PERIOD OF RECORD.--April 1912 to September 1913, May 1914 to June 1915, October 1937 to current year. Published as "near Malaga, N. Mex." 1912-13, and as "near Angeles, Tex." 1914-15.

GAGE.--Water-stage recorder. Datum of gage is 2,900.66 ft National Geodetic Vertical Datum of 1929. Prior to May 1914, at site 3.0 mi upstream at different datum. May 1914 to June 1915 at site 2.5 mi downstream at different datum.

REMARKS.--Records good. One small upstream diversion. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE. -- 47 years (1938-84), 13.0 ft3/s, 9,420 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 81,400 ft³/1 Oct. 2, 1955 (gage height, 27.0 ft, from floodmarks), from rating curve extended above 6,500 ft²/s on basis of slope-area measurements at gage heights, 12.84 ft, 17.55 ft, and 27.0 ft; no flow many days most years.

Maximum discharge since at least 1911 is that of Oct. 2, 1955.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 5,650 ft³/s at 2200 hours Aug. 11 (gage height, 9.89 ft), no other peak above base of 1,700 ft³/s; no flow Aug. 3-7.

		DISCHARGE,	IN CUBIC	FEET		, WATER YEAR AN VALUES	OCTOBER	1983	TO SEPTEMBER	1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	541 114 55 16 9.0	2.7 2.7 2.7 3.0 48	2.5 2.6 2.6 2.5 2.4	2.8 2.8 2.9 2.9 2.8	2.7 2.7 2.7 2.6 2.6	2.4 2.4 2.4 2.4 2.5	2.3 2.2 2.1 2.1 2.2	1.8 1.7 1.6 1.5	.75 .76 1.3 2.4 .73	3.2 4.7 2.2 1.8 1.5	.06 .04 .00 .00	3.7 3.6 13 5.5 3.5
6 7 8 9 10	6.7 5.4 17 10 9.1	23 5.7 3.5 2.9 2.7	2.4 2.6 2.6 2.7 2.7	2.8 2.8 3.0 3.0 2.9	2.6 2.6 2.6 2.6 2.6	2.5 2.4 2.3 2.3 2.3	2.1 2.1 2.1 2.1 2.0	1.4 1.3 1.3 1.3	.56 .51 .39 .32 .25	1.4 1.2 1.1 .94 .83	.00 .00 .11 374 368	3.1 2.9 2.8 2.7 2.6
11 12 13 14 15	5.9 3.9 3.6 3.4 3.3	2.6 2.6 2.5 2.4 2.4	2.6 2.6 2.5 2.6 2.5	2.7 2.7 2.7 2.7 2.8	2.6 2.4 2.4 2.4 2.4	2.3 2.3 2.3 2.4 2.4	2.0 2.0 2.1 2.0 2.1	1.3 1.2 1.1 1.1	.28 1.6 .80 .51	.68 .62 .61 .58	846 960 56 27 88	2.5 2.4 2.4 2.3 2.3
16 17 18 19 20	3.2 3.1 4.0 3.7 3.6	2.4 2.5 2.4 2.3 2.3	2.5 2.6 2.6 2.6 2.6	2.8 2.8 2.8 2.8 2.7	2.4 2.4 2.4 2.4 2.4	2.4 2.3 2.3 2.3 2.3	2.1 2.1 2.1 2.1 2.0	3.1 10 5.6 2.3 1.3	96 48 25 132 24	.34 .25 .18 .19	21 14 11 9.3 8.1	2.5 2.5 2.4 2.3 2.3
21 22 23 24 25	3.3 3.0 2.9 2.8 2.7	2.3 2.4 2.4 2.4 2.5	2.8 2.7 2.7 2.7 2.7	2.7 2.7 2.7 2.7 2.7	2.4 2.4 2.5 2.4 2.4	2.3 2.2 2.2 2.2 2.2	1.9 2.0 2.0 2.0 1.9	.92 .79 .75 .73	6.8 8.3 4.4 2.8 2.4	.17 .14 .10 .05	6.9 6.1 5.5 5.2 5.0	2.3 2.3 2.2 2.2 2.2
26 27 28 29 30 31	2.7 2.8 2.8 2.7 2.7 2.7	2.5 2.5 2.5 2.5 2.5	2.7 2.8 2.9 2.8 2.8 2.7	2.7 2.7 2.7 2.7 2.7 2.7	2.4 2.4 2.3 2.4	2.3 2.2 2.2 2.2 2.2 2.2	1.7 1.7 1.8 1.7 1.8	.76 .82 .73 .75 .80	2.1 2.1 11 50 7.8	.09 .18 .29 .21 .14	4.7 4.2 4.0 3.8 3.6 3.5	2.5 2.7 2.7 2.8 2.8
TOTAL MEAN MAX MIN AC-FT	852.0 27.5 541 2.7 1690	145.8 4.86 48 2.3 289	81.6 2.63 2.9 2.4 162	85.9 2.77 3.0 2.7 170	72.1 2.49 2.7 2.3 143		60.4 2.01 2.3 1.7 120	51.91 1.67 10 .73 103	434.27 14.5 132 .25 861	24.50 .79 4.7 .05 49	2835.11 91.5 960 .00 5620	92.0 3.07 13 2.2 182

CAL YR 1983 TOTAL 2163.00 MEAN 5.93 MAX 541 MIN .00 AC-FT 4290 WTR YR 1984 TOTAL 4807.19 MEAN 13.1 MAX 960 MIN .00 AC-FT 9540

08410000 RED BLUFF RESERVOIR NEAR ORLA, TX

LOCATION.--Lat 31°54'04", long 103°54'35", Reeves County, Hydrologic Unit 13070001, at right end of Red Bluff Dam on the Pecos River, 2.8 mi upstream from Salt Creek, and 5.2 mi north of Orla.

DRAINAGE AREA. -- 20,720 mi2, approximately (contributing area).

PERIOD OF RECORD. -- February 1937 to current year. Monthly contents only for some periods, published in WSP 1312. GAGE .-- Nonrecording gage. Datum of gage is 0.43 ft below National Geodetic Vertical Datum of 1929.

REMARKS.--The reservoir is formed by a rock-faced earthfill dam 9,200 ft long. The dam was completed and storage began in September 1936. The dam and reservoir are owned and operated by the Red Bluff Water Power Control District. The water is used for power development and for irrigation from Mentone to Grandfalls. The uncontrolled emergency spillway, 790 ft wide, is a cut through natural ground located to the right of right end of dam. The controlled service spillway is equipped with 12 tainter gates that are 25 by 15 ft high. Inflow is regulated by many reservoirs and diversions dams. The capacity curve is based on Geological Survey topographic map, survey of 1925. Figures given herein represent total contents. Data regarding the dam and reservoir are given in the following table:

Gage height

Capacity

	(feet)	(acre-feet)
Top of dam	2,856.0	-
Crest of spillway	2,845.0	340,000
Top of gates (top of conservation pool)	2,842.0	310,000
Crest of spillway	2,827.0	166,500
Lowest gated outlet (invert)	2.764.0	3,000

COOPERATION .-- Gage-height records and capacity curve were furnished by the Red Bluff Water Power and Control District.

EXTREMES (AT 0800) FOR PERIOD OF RECORD.--Maximum contents observed, 352,000 acre-ft Sept. 27-28, 1941 (gage height, 2,846.2 ft), observed on nonrecording gage at service spillway (affected by variable drawdown due to flow through tainter gates); minimum observed, 11,080 acre-ft May 13, 1948 (gage height, 2,781.4 ft).

EXTREMES (AT 0800) FOR CURRENT YEAR.--Maximum contents observed, 91,500 acre-ft Aug. 16-30, Sept. 4 (gage height, 2,814.5 ft); minimum observed, 35,280 acre-ft Oct. 1 (gage height, 2,798.4 ft).

Capacity table (gage height, in feet, and total contents, in acre-feet)

2,798.0	34,400	2,810.0	71,500
2,804.0	50,000	2,815.0	94,000

CONTENTS, IN ACRE-FEET, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 INSTANTANEOUS OBSERVATIONS AT 0800

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	35280	39500	42000	44300	46700	47000	45800	43000	43000	48200	46700	91000
2	36380	39500	42000	44600	47000	47000	45500	43000	43000	48500	46700	91000
2	36600	39750	42000	44600	47000	47000	45500	43000	43000	48500	46700	91000
4	36840	39750	42000	44900	47000	47000	45500	42750	43250	48500	46700	91500
5	36840	40250	42250	44900	47000	47000	45500	42750	43250	48500	46700	91000
3	30040	40230	42230	44900	47000	47000	43300	42730	43230	40300	40700	31000
6	37080	40500	42250	44900	47000	47000	45500	42500	43250	48500	46700	91000
7	37080	40500	42500	45200	47000	47000	45200	42500	43250	48500	46700	91000
8	37320	40500	42500	45200	47300	47000	45200	42500	43250	48500	46700	91000
9	37320	40750	42500	45200	47300	47000	45200	42250	43250	48200	46700	91000
10	37320	40750	42750	45500	47300	47000	44900	42250	43250	48200	48500	91000
2.5												
11	37560	41000	42750	45500	47300	47000	44900	42250	43000	48200	50300	91000
12	37560	41000	43000	45500	47300	47000	44900	42000	43000	48200	63500	91000
13	37560	41000	43000	45500	47300	47000	44900	42000	43000	48200	76400	90500
14	37800	41000	43000	45800	47300	47000	44600	42000	43000	47900	80000	90500
15	37800	41000	43000	45800	47300	47000	44600	41750	43000	47900	82250	90500
	27222	//		10221	12.71	10021	1.77.22	17-22	1,1526			
16	37800	41000	43000	45800	47300	47000	44600	41750	42750	47900	85850	90500
17	38040	41250	43250	45800	47300	47000	44600	42250	43250	47900	88100	90500
18	38040	41250	43250	45800	47300	47000	44300	42750	43250	47900	89000	90000
19	38280	41250	43250	45800	47300	47000	44300	43000	43500	47600	90000	90000
20	38280	41250	43500	46100	47300	47000	44300	43250	47000	47600	91000	90000
21	38520	41500	43500	46100	47300	47000	44000	43250	47000	47600	91000	90000
22	38520	41500	43500									
23				46100	47300	46700	44000	43250	47000	47600	91000	90000
	38760	41500	43500	46100	47000	46700	44000	43250	47300	47300	91000	90000
24	38760	41500	43500	46400	47000	46700	43750	43250	47300	47300	91000	90000
25	38760	41500	43500	46400	47000	46400	43750	43250	47300	47300	91000	90000
26	39000	41500	43750	46400	47000	46700	43500	43250	47300	47300	91500	90000
27	39000	41750	43750	46400	47000	46400	43500	43250	47300	47000	91500	90000
28	39000	41750	43750	46700	47000	46100	43500	43000	47600	47000	91500	89500
29	39250	41750	44000	46700	47000	46100	43250	43000	47600	47000	91500	89500
30	39250	42000	44000	46700	100 5 5 5 5							
31	39250					45800	43250	43000	48200	47000	91500	89500
31	39230		44300	46700		45800		43000		47000	91000	
MAX	39250	42000	44300	46700	47300	47000	45800	43250	48200	48500	91500	91500
MIN	35280	39500	42000	44300	46700	45800	43250	41750	42750	47000	46700	89500
(†)	2801.1	2801.2	2802.1	2802.9	2803.0	2802.6	2801.7	2801.6	2803.4	2803.0	2814.4	2814.1
(‡)	+4850	+2750	+2300	+2400	+300	-1200	-2550	-250	+5200	-1200	+44000	-1500
	. 4030	. 2750	. 2300	.2400	.300	-1200	-2330	-230	. 5200	-1200	. 44000	-1300

CAL YR 1983 MAX 57900 MIN 34190 -8100 MAX 91500 MIN 35280 + +55100

[†] Elevation, in feet, at end of month.
‡ Change in contents, in acre-feet.

08412500 PECOS RIVER NEAR ORLA, TX

LOCATION.--Lat 31°52'21", long 103°49'52", Reeves County, Hydrologic Unit 13070001, on right bank at bridge on Farm Road 652, 5.5 mi downstream from Salt Creek (Screw Bean Arroyo), 5.9 mi northeast of Orla, and 8.5 mi downstream from Red Bluff Reservoir.

DRAINAGE AREA. -- 21,210 mi², approximately (contributing area).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- May 1937 to current year.

REVISED RECORDS .-- WSP 928: 1937.

GAGE.--Water-stage recorder. Datum of gage is 2,730.86 ft National Geodetic Vertical Datum of 1929. Prior to Nov. 16, 1969, at site 6.9 mi downstream at datum 12.81 ft lower.

REMARKS.--Water-discharge records fair. Most of flow is released from storage in Red Bluff Reservoir (station 08410000). Occasional runoff from draws between dam and station. Many diversions above Red Bluff Reservoir for irrigation.

AVERAGE DISCHARGE.--47 years (water years 1938-84), 159 ft3/s (115,200 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 23,700 ft³/s Sept. 29, 1941 (gage height, 20.74 ft), site and datum then in use; no flow at times in 1946 and 1965.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,590 ft³/s June 19 at 2130 hours (gage height, 14.34 ft); minimum daily, 2.2 ft³/s Feb. 12, 13.

DISCUADOR IN CURTO PEET DED CECOND WATER VEAD COTORED 1002 TO CEPTEMBER 1984

		DISC	CHARGE, IN	CUBIC FE	EET PER	SECOND, WAT MEAN VALUES	TER YEAR	OCTOBER 1	983 TO SE	PTEMBER 19	184	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	15.0 13.0 11.0 10.0	7.9 7.5 7.9 8.7 31.0	10.0 9.9 9.0 7.8 6.9	8.5 9.1 11.0 11.0	4.7 4.6 4.3 3.9 3.5	32 32 32 31 31	36 36 35 34 33		5.7 5.2 4.8 5.7 4.4	13.0 14.0 14.0 10.0 9.4	8.9 8.9 8.4 7.9 8.9	41 42 72 45 42
6 7 8 9	10.0 9.5 9.1 9.4 9.4	12.0 11.0 9.6 8.9 8.5	6.9 6.6 6.5 5.9 6.4	13.0 10.0 9.7 9.7 9.7	3.6 3.8 3.3 2.8 2.5	31 31 31 31 31	33 32 32 30 28		4.4 4.4 3.6 3.3 3.3	9.4 7.9 7.9 6.9	8.4 8.4 10.0 15.0 30.0	43 44 46 50 53
11 12 13 14 15	8.8 9.0 9.1 8.7 8.5	8.7 9.0 8.7 8.6 8.3	6.3 6.3 6.1 6.2	10.0 9.0 8.4 7.4 7.4	2.5 2.2 2.2 2.3 5.4	30 30 30 30 30	29 24 23 22 21	40.0 40.0 42.0 44.0 46.0	3.0 2.7 3.0 3.3 4.4	7.4 10.0 6.1 6.1 6.5	20.0 35.0 50.0 32.0 20.0	57 55 57 59 58
16 17 18 19 20	8.7 8.8 8.1 41.0 18.0	9.8 10.0 11.0 10.0 10.0	5.7 6.1 6.1 6.5 6.5	7.5 7.3 7.1 7.3 7.4	7.7 9.3 8.4 8.4 9.7	30	21 22 23 23 23	33.0 59.0 84.0 134.0 36.0	3.3 3.6 5.2 838.0 844.0	6.1 6.5 6.5 6.5 6.9	19.0 17.0 15.0 14.0 13.0	58 64 68 71 69
21 22 23 24 25	12.0 11.0 10.0 9.5 9.6	10.0 10.0 10.0 11.0	6.9 6.5 6.9 5.8 5.5	7.0 6.8 7.1 6.7 6.2	52.0 36.0 35.0 34.0 34.0	30 32 34 47 50	23 23 23 24 24	16.0 10.0 6.9 5.9 6.2	129.0 68.0 49.0 41.0 35.0	6.9 6.9 7.4 7.4 7.4	11.0 11.0 11.0 12.0 12.0	69 69 66 64 56
26 27 28 29 30 31	7.8 8.6 8.1 8.0 7.8 7.9	11.0 11.0 11.0 11.0	5.0 8.1 7.6 7.6 7.3 7.9	6.2 5.6 5.1 4.7 5.1 4.7	33.0 33.0 33.0 32.0	51 52 45 51 39 36	29 31 33 33 31	5.5 5.1 5.6 3.7 4.4 5.2	26.0 22.0 28.0 26.0 19.0	7.9 7.9 7.9 7.9 7.9 8.4	12.0 12.0 17.0 42.0 41.0	47 48 48 43 47
TOTAL MEAN MAX MIN AC-FT	335.4 10.8 41 7.8 665	313.1 10.4 31 7.5 621	213.1 6.87 10 5.0 423	246.7 7.96 13 4.7 489	417.1 14.4 52 2.2 827	1079 34.8 52 29 2140	834 27.8 36 21 1650	985.5 31.8 134 3.7 1950	2198.3 73.3 844 2.7 4360	251.5 8.11 14 6.1 499	571.8 18.4 50 7.9 1130	1651 55.0 72 41 3270
CAL YR	1983 TOT	AL 10486	.6 MEAN	28.7 M	IAX 178	MIN 4.8	AC-FT	20800				

CAL YR 1983 TOTAL 10486.6 MEAN 28.7 MAX 178 MIN 4.8 AC-FT 20800 WTR YR 1984 TOTAL 9096.5 MEAN 24.9 MAX 844 MIN 2.2 AC-FT 18040

08412500 PECOS RIVER NEAR ORLA, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Chemical analyses: July 1937 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1937 to current year. WATER TEMPERATURES: March 1953 to current year.

REMARKS.--October 1937 to September 1969, this station was published as 08410100 Pecos River below Red Bluff Dam, near Orla. Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and regression relationships between each chemical constituent and specific conductance. Regression equations developed for this station may be obtained from the Geological Survey District office upon request.

EXTREMES FOR PERIOD OF DAILY RECORD .--

EVENTED FOR PERIOD OF DALLE RECORD. -SPECIFIC CONDUCTANCE: Maximum daily, 29,400 micromhos May 16, 1978; minimum daily, 1,600 micromhos June 19, 1984. WATER TEMPERATURES: Maximum daily, 31.0°C Aug. 13, 1978, and Aug. 13, 1982; minimum daily, 0.0°C on several days during winter months of 1982-84.

EXTREMES FOR CURRENT YEAR .--

SPECIFIC CONDUCTANCE: Maximum daily, 26,200 micromhos Oct. 3; minimum daily, 1,600 micromhos June 19. WATER TEMPERATURES: Maximum daily, 30.0°C July 20, Aug. 7; minimum daily, 0.0°C on several days during December and January.

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DAT	re.	TIM	STREA FLOV INSTA E TANEO	AN- DUC	TIC I- CT- TEM CE AT	PER- URE G C)	HARD- NESS (MG/L AS CACO3)	HARI NESS NONCA BONA (MG) CACO	S, AR- FE /L	CALC: DIS- SOLV (MG, AS (VED SOL'	UM, SODI S- DIS- VED SOLVI /L (MG)	ED /L
OCT 27.		140	5 8	3.7 18	900	18.0	3400	31	100	850	300	3100	
JAN 05.		125	5 12	19	600	7.0	3500	34	400	890	310	3600	
APR 11.		153	0 31	16	000	19.0	2900	28	300	690	290	2700	
MAY 31.		161	0 5	5.9 17	100	28.0	3100	30	000	730	300	3000	
AUG 23.		092	5 13	16	300	27.0	2800	27	700	710	260	2800	
	DAT	E	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFA DIS- SOLV (MG/ AS SO	TE RI DI ED SC L (N	ILO- DE, S- DLVED IG/L G CL)	FLUC RIDE DIS SOLV (MG, AS I	E, S- /ED /L	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	
	OCT 27. JAN		24	59	240	2300	550	10	1.	. 2	5.2	12000	
	05. APR		27	54	130	2800	590	0	1.	4	9.8	14000	
	11.		22	63	92	2700	460	0	1.	0	1.9	11000	
	31.		24	58	67	2700	490	0	1.	.1	4.0	12000	
	23.		24	57	98	2600	450	0	1.	0	1.9	11000	

08412500 PECOS RIVER NEAR ORLA, TX--Continued

MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1983 TO SEPTEMBER 1984

MONTH	YEAR	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
OCT.	1983	335.4	21000	14600	13200	6400	5810	2900	2640	*
NOV.	1983	313.1	18500	12700	10700	5500	4630	2700	2250	*
DEC.	1983	213.1	15100	10200	5860	4300	2460	2300	1310	*
JAN.	1984	246.7	19200	13200	8770	5700	3810	2700	1820	*
FEB.	1984	417.1	16300	11100	12400	4700	52 70	2400	2730	*
MAR.	1984	1079	15800	10700	31100	4500	13100	2400	6880	*
APR.	1984	834	16300	11000	24900	4700	10500	2400	5450	*
MAY	1984	985.5	15900	10800	28600	4500	12100	2400	6320	*
JUNE	1984	2198.3	4690	3110	18400	1300	7450	750	4440	870
JULY	1984	251.5	17400	11800	8040	5100	3440	2500	1730	*
AUG.	1984	571.8	16200	11000	17000	4700	7210	2400	3720	*
SEPT	1984	1651	15600	10500	46900	4400	19700	2300	10400	*
TOTAL		9096.5	**	**	226000	**	95500	**	49700	**
WTD.AV	/G.	25	13600	9200	**	3900	**	2000	**	**

	SPECIF	IC CONDUC	CTANCE ((MICROMHOS/CM	AT 25 EQ	DEG. C), UIVALENT	WATER YEAR MEAN	OCTOBER	1983 TO	SEPTEMBER	1984	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	17900	19000	14900		18100	15800	15900	16100	17100	18000	16600	15700
2	21100	18900	14600	19600	18500	15900	16300	16100	17200	17500	16800	15800
3	26200	18800	13200	19500	18200	15700	16400	16200	17300	17400	16700	11700
4	25100	18900	14900	19600	18600	15800	16200	16200	15200	17600	16900	13600
5	24100	15000	14300	19900	18700	16000	16200	16100	16700	17800	16700	16200
6	22800	13400	14600	19000	18500	15900	16300	16200	17000	17900	16800	16500
7	22000	19800	13100	19100	18400	15800	16200	16200	17600	17800	16800	16400
8	21600	19700	14300	19600	18600	15700	16300	16300	17800	17700	16500	16200
9	21100	20600	14100	19000	18400	15900	16300	16200	17800	17800	14900	16100
10	20700	21000	16800	19500	18500	15800	16400	16100	17700	17800	16200	16000
11	21100	20800	15700	19600	18600	16000	16400	16000	17700	17700	18200	15800
12	21000	20200	13300	19600	18700	15900	16300	16100	17500	17400	20500	15700
13	21100	19600	14100	18500	18600	16000	16200	16200	17600	17600	17400	15700
14	21100	19500	13400		18500	15900	16300	16100	17400	17400	13100	15600
15	21500	19400	15100		18600	15900	16200	16200	17200	17500	13200	15600
16	21300	19000	14700	18800	18600	15800	16300	15700	17000	17500	14100	15500
17	21000	18400	12300	17400	18300	15900	16100	16300	16900	17400	15000	15600
18	20800	18100	13800	18600	18400	15600	16200	15500	16700	17400	14700	15400
19	19500	18200	14200	18800	18300	15800	16300	14800	1600	17300	15200	15600
20	22200	18400	17000	19200	17700	15900	16400	14600	2000	17300	15700	15600
21	21500	18300	14600	19300	15500	15800	16500	14700	9200	17200	16200	15700
22	21700	18500	14300	19400	15600	15900	16400	16100	12100	17400	16400	15600
23	21800	18300	13600	18900	15700	16000	16300	17000	14800	17100	16300	15800
24	21100	18200	14400	19100	15800	15600	16300	17100	15900	17000	16600	15700
25	19900	18600	14900	19100	15700	15400	16400	17300	16700	17000	16900	15600
26	19000	18900	15300	19200	15800	15500	16300	17200	17000	16600	17000	15700
27	18500	19100	14700	19100	15700	15500	16400	17400	17300	16700	17200	15600
28	19000	19200	17000	19000	15600	15600	16200	17200	15900	16800	16900	15800
29	19200	19300	18200		15700	15500	16100	17400	16600	16900	16000	16000
30	19300	19500	19800			15600	16200	17200	18400	17000	15900	16600
31	19300		20300			15800		17100		16500	15800	
MEAN	21100	18800	15000	19100	17600	15800	16300	16300	15600	17400	16200	15600

		TEMPE	ERATURE,	WATER (DEG.	c),	WATER YEAR ONCE-DAILY		1983 TO	SEPTEMBER	1984		
DAY	OCT	NOV	DEC	JAN	FEB		APR	MAY	JUN	JUL	AUG	SEP
1	22.0	17.0	6.0	4.0	5.0		15.0	18.0		28.0		25.0
2	23.5	18.5	7.0	5.0	8.0		18.0	18.0	25.0	27.0		26.0
3	23.5	19.0	9.0	5.0	7.0	15.0	17.0	19.0			25.0	23.0
4	23.0	19.0	9.0	5.5	7.0	13.0	15.0	21.0	22.5	27.0	25.0	22.0
5	22.0	18.0	9.0	5.0	7.0		13.0	20.0		27.0	25.0	22.0
6	23.0	16.0	7.0	7.0	9.0		16.0	21.0	24.0	26.5	26.0	24.0
7	22.5	16.0	5.0	7.0	7.0		13.0	20.0	25.0	27.0	30.0	22.0
8	21.0	17.0	5.0	7.5	8.5	14.0	16.0			27.0	27.0	25.0
9	21.0	15.0	6.0	7.5	7.0		17.0	19.0		27.0	25.0	25.0
10	19.0	15.0	7.0	7.0	8.0		16.0	21.0		26.5	23.0	25.0
11	19.0	12.0	7.0	6.0	10.0	9.0	16.0	22.0	26.0	27.0	24.0	25.0
12	19.0	13.0	8.0	6.0	7.5		16.0	21.0		26.0	26.0	25.0
13	19.0	12.0	8.0	5.0	8.0		16.0	21.0		26.0	26.0	25.0
14	17.0	15.0	7.5	4.0	9.0		14.0	21.0		24.0	25.0	23.5
15	18.0	13.0	6.5	3.5	10.0		17.0	21.0		26.0	26.0	23.0
16		12.0	6.0	2.0	9.0	14.0	16.0	21.0	25.0	25.0		21.0
17	19.0	11.5	7.0	3.0	9.0		16.0			26.0	25.0	22.0
18	20.0	12.0	1.0	2.0	10.0		19.0	20.0		26.0	26.0	22.0
19	19.5	10.0	1.0	.0	9.5		18.0	22.0		26.0	26.5	23.0
20	15.0	9.0	1.0	.0			19.0	21.0		30.0	27.0	21.0
21	14.5		1.0	•0	6.0	15.0	17.0	23.0	24.0	27.0	27.0	19.5
22	15.0	10.0	.0		7.5		16.0	26.0			28.0	25.0
23	17.0	9.0	1.0	3.0	9.0		17.0	26.0		28.0	26.0	23.0
24	15.5	7.0		8.0	9.0		18.0	25.0		26.0	25.5	23.0
25	16.0	7.0		5.0	9.5		19.0	25.0		26.0	26.0	24.0
26	15.0	8.0		6.0	9.5	15.0	18.0	26.0	27.0		26.0	17.0
27	15.0	6.0	3.0	5.5	7.0			20.0	3010		26.0	17.0
28	15.0	5.0	4.0	6.0	7.0			25.0		26.0	20.0	19.0
29	13.0	5.5	.0	7.0	7.0			20.0		20.0	27.0	16.0
30	16.0	5.0	.0								26.0	
31	17.0	5.0	.0	7.5 5.0				21.0		27.0	20.5	16.0
MEAN	18.5	12.0	4.5	5.0	8.0	13.5	16.5	21.5	25.0	26.5	26.0	22.5

DAY

08414500 REEVES COUNTY WATER IMPROVEMENT DISTRICT NO. 2 CANAL NEAR MENTONE, TX

- LOCATION.--Lat 31°37'57", long 103°34'30", Loving County, Hydrologic Unit 13070001, on right bank 173 ft downstream from headgate, 5.3 mi south of Mentone, and 15 mi northwest of Pecos.
- PERIOD OF RECORD.--February 1922 to July 1925, August 1939 to May 1941, March 1942 to September 1957, and March 1964 to current year. Records from August 1939 to October 1940, not equivalent because diversion was not included. Published as "Farmers Independent Canal near Porterville" 1922-25.
- GAGE.--Water-stage recorder. Concrete weir since Mar. 1, 1964. Altitude of gage is 2,640 ft, from topographic map. Prior to July 22, 1925, at site 250 ft downstream at different datum. Mar. 10, 1939, to Oct. 4, 1940, at site 2.5 mi downstream at different datum. Oct. 5, 1940, to Feb. 19, 1943, at site 123 ft upstream at datum 1.10 ft higher. Feb. 20, 1943, to Mar. 1, 1954, at site 123 ft upstream at present datum.
- REMARKS.--Records good. Local runoff is deleted from daily discharge record. Water is diverted from right bank of Pecos River and is used for irrigation between Mentone and Pecos.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

AUG

SEP

- AVERAGE DISCHARGE.--38 years (water years 1923-24, 1940, 1943-57, 1965-84), 7.75 ft3/s (5,610 acre-ft/yr).
- EXTREMES FOR PERIOD OF RECORD .-- Maximum daily discharge, 160 ft 3/s June 14, 1922; no flow at times each year.

				MEA	AN VALUES					
OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	
0	0	0	. 0	0	0	0	0	0	0	

DAI	001	NOV	DEC	JAN	FED	MAK	APK	MAI	JUN	JUL	AUG	SEF	
1	0	0	0	0	0	0	0	0	0	0	0	0	
2	ő	0	0	0	0	0	0	ő	ő	ő	0	0	
3	ő	Ö	0	0	0	0	Ö	0	ő	ő	0	0	
1.	0	0	0			0	0	0	0	0	0	0	
4	0		0	0	0				•	0	0	0	
5	0	0	0	0	0	0	0	0	0	0	0	0	
6	0	0	0	0	0	0	0	0	0	0	0	0	
7	0	0	0	0	0	0	0	0	0	0	0	0	
8	0	0	0	0	0	0	0	0	0	0	0	0	
.9	0	0	0	0	0	0	0	0	0	0	0	0	
10	0	0	0	Ö	Ö	ő	Ŏ	Ö	0	Ö	Ŏ	Ö	
11	0	0	0	0		0	0	0	0	0	0		
12	0	0	0	0	0	0	0	0	0			0	
13	0	0		0	0	0				0	0	0	
13			0	0	0	0	0	0	0	0	0	0	
14	0	0	0	0	0	0	0	0	0	0	0	0	
15	0	0	0	0	0	0	0	0	0	0	0	0	
16	0	0	0	0	0	0	0	0	0	0	0	0	
17	0	0	0	0	0	0	0	0	0	0	0	0	
18	0	0	0	Ů.	ŏ	Ů.	Ö	Ŏ	Ö	Ö	Ö	Ö	
19	0	0	0	Õ	ő	ŏ	ŏ	Ö	ŏ	ŏ	ŏ	Õ	
20	Ö	Ö	Ö	0	Ö	ő	ő	Ö	Ö	ő	ő	0	
		Ü	O	· ·	· ·	. 0	· ·			0	· ·	U	
21	0	0	0	0	0	0	0	0	0	0	0	0	
22 23	0	0	0	0	0	0	0	0	0	0	0	0	
23	0	0	0	0	0	0	0	0	0	0	0	0	
24	0	0	0	0	0	0	0	0	0	0	0	0	
24 25	0	0	0	0	0	0	0	0	0	0	0	Ö	
0.6		•								-	4		
26	0	0	0	0	0	0	0	0	0	0	0	0	
27	0	0	0	0	0	0	0	0	0	0	0	0	
28	0	0	0	0	0	0	0	0	0	0	0	0	
29	0	0	0	0	0	0	0	0	0	0	0	0	
30 31	0	0	0	0		0	0	0	0	. 0	0	0	
31	0		0	0		0		0		0	0		
TOTAL	0	0	0	0	0	0	0	0	0	0	0	0	
MEAN	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	
MAX	.00	.00	.00	.00	.00	.000	.00	.000	.00	.00	.00	.00	
MIN	.00	.00		•00				.00				.00	
AC-FT	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	
AC-FI	•00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	

CAL YR 1983 TOTAL 0.79 MEAN .002 MAX .12 MIN .00 AC-FT 1.6 WTR YR 1984 TOTAL 0.00 MEAN .000 MAX .00 MIN .00 AC-FT .00

391

08415000 WARD COUNTY WATER IMPROVEMENT DISTRICT NO. 3 CANAL NEAR BARSTOW, TX LOCATION.--Lat 31°34'28", long 103°30'04", Ward County, Hydrologic Unit 13070001, on left bank 96 ft upstream from concrete culvert that crosses canal, 2 mi downstream from headgate, and 10.5 mi northwest of Barstow.

PERIOD OF RECORD. -- August 1939 to May 1941, August to September 1941, December 1941 to September 1957, and March 1964 to current year.

GAGE.--Water-stage recorder. Altitude of gage is 2,600 ft, from topographic map. Prior to Dec. 14, 1940, at site 1.75 mi upstream at datum 2.98 ft higher. Dec. 14, 1940, to May 26, 1941, at site 1.4 mi upstream at datum 1.72 ft higher.

REMARKS.--Records fair. Local runoff is deleted from daily discharge record. Water is diverted from the left bank of Pecos River, and is used for irrigation in the vicinity of Barstow. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE.--36 years (water years 1940, 1943-57, 1965-84), 8.56 ft3/s (6,200 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 189 ft3/s Sept. 28, 1978; no flow at times each year.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 MEAN VALUES DAY OCT NOV DEC FEB APR MAY JUN JUL AUG SEP JAN MAR .00 .17 .00 .06 0 0 0 0 0 0 0 0 .00 .16 .00 .04 0 0 3 .00 .16 .00 .07 0 0 0 0 0 0 0 .00 .15 .00 -07 0 0 0 0 0 0 0 0 .15 ŏ .00 .02 .05 0 0 0 0 0 0 0 6 .00 .15 0 0 0 0 .04 .04 0 0 0 0 .00 0 .14 -04 -00 0 0 0 0 0 0 0 5.60 .12 .00 .04 0 0 0 27.00 .11 .04 .00 0 10 16.00 .11 .04 .00 0 0 0 0 0 0 0 0 11 6.20 .08 .04 0 0 0 .00 0 3.90 .08 12 .05 .00 0 0 0 0 0 00 ŏ 13 .00 0 0 0 .04 0 0 0 .06 .07 .00 0 0 15 1.60 .06 .07 .00 0 Ö 0 0 0 0 0 0 16 .03 0 1.60 .05 .00 0 0 0 0 17 1.30 .04 .04 .00 0 0 .04 18 1.90 .05 .00 0 0 0 0 0 0 0 0 5.00 .04 .04 .00 0 0 0 0 0 0 0 20 98.00 .04 0 0 0 0 0 0 0 .04 .00 0 21 80.00 .04 .00 0 0 0 0 0 .04 0 0 0 22 49.00 .04 0 .04 .00 0 0 23 29.00 .03 .04 .00 Ö 0 0 24 19.00 .02 .04 .00 0 0 0 0 0 0 0 0 25 .02 0 0 0 0 14.00 0 0 0 .06 .00 0 26 27 0 8.40 .02 .09 .00 0 0 0 0 0 0 0 6.90 .02 .08 .00 0 0 0 0 0 0 0 0 28 .02 .05 .00 0 Ö 0 0 29 3.70 .00 .03 .00 0 0 0 30 .24 .00 .05 .00 0 0 0 0 0 0 0 31 0 0 .18 ---.05 .00 ---0 ---0 TOTAL .33 389.02 2.19 1.26 0 0 0 0 0 0 0 n .000 .000 .000 .000 MEAN .073 .000 .000 .000 12.5 .041 .000 MAX 98 .09 .07 .00 .00 .00 .00 .00 .00 .00 .00 MIN .00 .00 .00 .00 .00 .00 .00 .00 .00 AC-FT 772 4.3 2.5 .00 .00 .00 .00 .00 .00 .00 .00

2033.47 MEAN MIN .00 AC-FT 4030 WTR YR 1984 TOTAL 392.80 MEAN 1.07 MAX 98 MIN .00

08418000 WARD COUNTY IRRIGATION DISTRICT NO. 1 CANAL NEAR BARSTOW, TX

LOCATION.--Lat 31°32'26", long 103°29'42", Ward County, Hydrologic Unit 13070001, on left bank 0.6 mi downstream from headgate and 7.9 mi northwest of Barstow.

PERIOD OF RECORD. --February 1922 to September 1925 (published as "Barstow Canal near Barstow"), August 1939 to May 1941, October 1941 to September 1957, and March 1964 to current year.

GAGE.--Water-stage recorder. Concrete weir since Nov. 20, 1968. Altitude of gage is 2,600 ft from topographic map. Prior to Aug. 15, 1939, at site about 3,000 ft upstream at different datum.

REMARKS.--Records good. Local runoff is deleted from daily discharge record. Water is diverted from left bank of Pecos River and is used for irrigation in the vicinity of Barstow. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE. -- 40 years (water years 1923-25, 1940, 1942-57, 1965-84), 26.0 ft3/s (18,840 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD .-- Maximum daily discharge, 385 ft3/s Aug. 30, 1923; no flow at times each year.

		DISCHARGE,	IN CUBIC	FEET		, WATER YEAR AN VALUES	OCTOBER	1983 TO	SEPTEMBER	1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	30 31 11 .20 .16	.10 .10 .10 .10	.10 .10 .10 .10	.00 .00 .10 .20	.00 .00 .00 .00	.84 .81 .32 .22 .11	.00 .00 .00	.00 .00 .00 .00	.02 .00 .00 .00	.20 .10 .10 .10	.30 .30 .30 .20	.00 .00 .04 .11 .40
6 7 8 9	.10 .08 .00 .10	.13 .28 .41 .24	.10 .10 .10 .10	.15 .10 .10 .20	.00 .00 .00 .00	.11 .10 .11 .10	.00 .00 .00	.01 .03 .00 .03 .06	.00 .00 .00 .00	.00 .00 .00 .00	.20 .20 .20 .10	.60 .75 .76 .54
11 12 13 14 15	.00 .00 .00 .00	.15 .13 .10 .10	.04 .04 .00 .00	.10 .10 .10 .10	.10 .10 .10 .10	.10 .09 .09 .09	.00 .00 .00	.08 .06 .02 .00	.00 .00 .00 .00	.00 .00 .00	.20 .20 .20 .10	.05 .00 .00 .00
16 17 18 19 20	.10 .10 .18 .12	.10 .10 .10 .10	.00 .00 .00	.10 .10 .10 .10	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.08 .08 .22 .22	.00 .00 .00 .00	.04 .10 .10 .00	.10 .10 .10 .00	.20 .20 .17 .12
21 22 23 24 25	.12 .15 .20 .20	.10 .11 .10 .10	.00 .00 .00 .00	.00 .00 .00	.07 .00 .09 .70	.00 .00 .00 .00	.00 .00 .00 .00	.22 .52 .21 .18	.00 .00 .00 3.0 7.0	.10 .10 .10 .00	.00 .00 .00 .00	.11 .12 .12 .13 .14
26 27 28 29 30 31	.16 .14 .11 .10 .10	.10 .10 .10 .10	.00 .00 .00 .00	.00 .00 .00 .00	.69 .57 .54 .69	.00 .00 .00 .00	.00 .00 .00 .00	.11 .10 .10 .09 .09	5.8 3.4 2.2 .20 .30	.04 .10 .10 .00 .24	.00 .00 .02 .00 .00	.15 .00 .07 .00
TOTAL MEAN MAX MIN AC-FT	74.83 2.41 31 .00 148	3.81 .13 .41 .10 7.6	1.02 .033 .10 .00 2.0	2.05 .066 .20 .00 4.1	4.88 .17 .87 .00 9.7	3.19 .10 .84 .00 6.3	.00 .000 .00 .00	2.88 .093 .52 .00 5.7	21.92 .73 7.0 .00 43	1.82 .059 .30 .00 3.6	3.22 .10 .30 .00 6.4	5.29 .18 .76 .00

CAL YR 1983 TOTAL 1283.49 MEAN 3.52 MAX 53 MIN .00 AC-FT 2550 WTR YR 1984 TOTAL 124.91 MEAN .34 MAX 31 MIN .00 AC-FT 248

08431700 LIMPIA CREEK ABOVE FORT DAVIS, TX (Hydrologic bench-mark station)

LOCATION.--Lat 30°36'48", long 104°00'04", Jeff Davis County, Hydrologic Unit 13070005, on left downstream side of bridge on State Highway 118, about 1,400 ft upstream from Jones Creek, and 6.8 mi west of Fort Davis.

DRAINAGE AREA. -- 52.4 mi2.

PERIOD OF RECORD .-- October 1965 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 5,175.00 ft National Geodetic Vertical Datum of 1929. Prior to Mar. 1, 1979, at site 600 ft upstream at datum 3.71 ft higher.

REMARKS.--Water-discharge records good. No diversion above station. Recording rain gage at station.

AVERAGE DISCHARGE. -- 19 years, 3.11 ft3/s (0.81 in/yr), 2,250 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 8,610 ft 3 /s June 19, 1984 (gage height, 9.00 ft, from floodmark), present datum, from rating curve extended above 720 ft 3 /s on basis of slope-area measurement of 8,610 ft 3 /s; no flow at times each year.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum stage since at least 1925, about 9.00 ft in 1939, from information by local resident.

EXTREMES FOR CURRENT YEAR. -- Maximum discharge, 8,610 ft³/s June 19 at 0200 hours (gage height, 9.00 ft, from floodmark), no other peak above base of 1,000 ft³/s; no flow most of year.

DISCHARGE. IN CUBIC FEET PER SECOND. WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

		DISCHARGE,	IN CUB	IC FEET	PER SECON	D, WATER EAN VALU		OCTOBE	R 1983	ro septe	MBER 1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR		APR	MAY	JUN	JUL	AUG	SEP SEP
1	91.00	1.40	0	0	0	0	r	0	0	.0	8.60	.13	.45
2	.00	1.40	0	0	0	0		0	0	.0	4.70	.10	.40
3 4	.00	1.90	0	0	0	0		0	0	.0	3.50	.09	.50
4	.00	2.20	0	0	0	0)	0	0	.0	85.00	.08	.45
5	.00	1.40	0	0	0	0		0	0	.0	27.00	.07	.40
6	3.90	1.20	0	0	0	0		0	0	.0		.09	
7	2.70	1.00	0	0		0		0	0	.0		.13	
8	1.60	1.00	0	0	0	0		0	0	.0		47.00	
9	1.60	.68	0	0	0	0		0	0	.0		6.70	
10	1.60	.68	0	0	0	0		0	0	.0	3.90	42.00	.00
11	1.20	.68	0	0	0	0		0	0	83.0		31.00	
12	1.00	.56	0	0	0	0		0	0	.0		12.00	
13	1.00	. 44	0	0	0	0		0	0	16.0		6.40	
14	.82	.44	0	0	0	0		0	0	1.5	9.90	4.20	
15	.82	. 44	0	0	0	0		0	0	.0	9.90	3.20	.00
16	.68	.44	0	0	0	0		0	0	26.0		3.50	
17	.68	. 34	0	0	0	0		0	0	568.0		2.60	
18	.68	. 34	0	0	0	0		0	0	503.0		2.10	
19	1.30	. 34	0	0	0	0		0	0	1700.0		1.60	
20	41.00	.34	0	0	0	0		0	0	338.0	5.90	1.60	.00
21	19.00	.24	0	0	0	0		0	0	208.0		1.30	
22	10.00	.34	0	0	0	0		0	0	282.0		1.00	
23	9.20	- 56	0	0	0	0		0	0	148.0		.95	
24	7.60	-34	0	0	0	0		0	0	80.0		.87	
25	6.20	. 24	0	0	0	0		0	0	43.0	.45	.57	.00
26	5.50	.24	0	0	0	0		0	0	25.0		.51	
27	4.40	.24	0	0	0	0		0	0	73.0		. 51	
28	3.40	.16	0	0	0	0		0	0	75.0	.28	.51	
29	2.70	.01	0	0	0	0		0	0	34.0	. 28	.51	
30	2.20	.00	0	0		0		0	0	17.0		. 40	
31	1.60		0	0		0			0		.17	.40	
TOTAL	223.38	19.59	0	0	0	0		0	0	4220.5	249.46	172.12	
MEAN	7.21	.65	.000	.000	.000	.000		.000	.000	141	8.05	5.55	
MAX	91	2.2	.00	.00	.00	.00		.00	.00	1700	85	47	
MIN	.00	.00	.00	.00	.00	.00		.00	.00	.00	.17	.07	
CFSM	.14	.01	.000	.000	.000	.000		.000	.000	2.69	.15	.11	
IN.	.16	.01	.00	.00	.00	.00		.00	.00	3.00	.18	.12	
AC-FT	443	39	.00	.00	.00	.00		.00	.00	8370	495	341	
(††)	4.03	.68	.16	.36	0	0		0	3.43	7.57	1.80	.23	0
CAL YR			MEAN	.94	MAX 93		.00	CFSM			AC-FT 681		11.46
WTR YR	1984 TOT	AL 4887.76	MEAN	13.4	MAX 1700	MIN	.00	CFSM	.26 IN	3.47	AC-FT 9690	11	18.26

tt Rainfall, in inches.

08431700 LIMPIA CREEK ABOVE FORT DAVIS, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Chemical analyses: May 1965 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
OCT 19	0905	1.1	190	7.2	18.0	1.0				
JUN 19	1845	731	125	7.2	19.0	140	11.2	146		- ::
20 20 25	1250 1445 1400	259 195 43	150 145 149	7.3 7.2 7.4	20.5 25.5 25.5	90 120 8.7	10.2 10.2 6.6	136 132 97	56	43
DATE	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT 19	62	2	20	2.9	7.0	.4	3.1	60	15	4.7
JUN 19 20 25	40 49 47 55	3 4 9 7	13 16 15 18	1.8 2.3 2.2 2.5	5.1 6.1 6.3 6.9	.4 .4 .4	2.7	37 46 38 48	15 15 17 16	3.3 3.2 3.7 3.5
DATE	FLUO- RIDE DIS- SOLVI (MG/I AS F)	DIS- SOLVE ED (MG/I L AS	AT 180 DEG. DIS- SOLVE	E SUM OF CONSTRUCT TUENTS DIS-	GEN, I- NO2+NO3 S, DIS- SOLVEI ED (MG/L	GEN 3 AMMON: DIS-	GEN, AM IA MONIA ORGANI ED TOTAL L (MG/L	+ PHOS- C PHORUS TOTAL (MG/L	SOLVE	ORTHO, DIS- D SOLVED (MG/L
OCT 19 JUN 19 20 25		40 32 40 28 40 33 40 32 50 31	11 11 12 11 12	8 9 0 11 7 10	95 .24 10 .32 00 .33	2 .03	10 1.1 20 1.1	.22	0 .17 0 .18	0 .150 0 .140
DATE	TIME	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO-MIUM, DIS-SOLVED (UG/L AS CR)	COBALT, DIS- SOLVED (UG/L AS CO)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB)
JUN 19 20	1845 1445	<1 <1	38 5	<.0 <1.0	<1 <1	<1 <1	<3 <3	3 2	240 270	5 <1
	ITHIUM DIS- SOLVED (UG/L AS LI)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO)	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	VANA- DIUM, DIS- SOLVED (UG/L AS V)	ZINC, DIS- SOLVED (UG/L AS ZN)
JUN 19 20	5 6	18 21	<.1 <.1	<10 <10	<1 1	<1 <1	<1 <1	67 84	<6 <6	28 30
DA		AL D SO (U TIME A	PHA, AL DIS- SU LVED TO G/L (U S A	PHA, BESP. IN TAL SO	ROSS GRO ETA, BET DIS- SUS DLVED TOT DI/L (PCT AS AS -137) CS-1	FA, BI SP. 1 FAL SC I/L (1 S AS	ETA, BE DIS- SU OLVED TO PCI/L (P S SR/ AS	TA, 2 SP. D TAL SOL' CI/L RA SR/ ME	IS- D WED, SOL DON EXT THOD TI	NIUM IS- VED, RAC- ON G/L)
JUN 19.		345 <	2.2 4	1	3.5 2	7	3.0 2	4	.10	.08

08436500 PECOS COUNTY WATER IMPROVEMENT DISTRICT NO. 2 (UPPER DIVERSION) CANAL NEAR GRANDFALLS, TX

LOCATION.--Lat 31°18'43", long 102°55'10", Ward County, Hydrologic Unit 13070001, on left bank about 2.5 mi upstream from bridge on State Highway 18, 4.6 mi southwest of Grandfalls, and 12.5 mi downstream from headgate of canal.

PERIOD OF RECORD.--March 1922 to July 1925 (published as "Imperial Highline Canal near Grandfalls"), August 1939 to September 1957, and March 1964 to current year.

GAGE.--Water-stage recorder. Concrete weir since Dec. 8, 1947. Altitude of gage is 2,455 ft, from topographic map. Prior to Aug. 21, 1939, water-stage recorder at site 8.5 mi upstream at different datum. Aug. 21 to Oct. 3, 1939, and May 25 to Aug. 4, 1941, staff gage, and Oct. 4, 1939, to May 21, 1941, and Aug. 5, 1941, to Sept. 30, 1957, water-stage recorder at site 2.5 mi downstream at different datum.

REMARKS.--Records good. Local runoff is deleted from daily discharge record. Water is diverted from right bank of Pecos River and is used for irrigation and to supply water for Imperial Reservoir. Water is released from Imperial Reservoir into Pecos County Water Improvement District No. 2 canal and into Pecos County Water Improvement District No. 3 canal for irrigation.

AVERAGE DISCHARGE.--39 years (water years 1924, 1940-57, 1965-84), 28.9 ft³/s (20,940 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD. -- Maximum daily discharge, 368 ft3/s Sept. 18, 1923; no flow at times each year.

		DISCHARGE,	IN CUBIC	FEET		WATER YEA N VALUES	R OCTOBER	1983	TO SEPTEMBER	1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
2	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
3	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
3 4	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
5	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
6	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
7	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
8	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
10	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
11	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
12	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
13	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
14	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
15	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
16	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
17	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
18	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
19	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
20	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
21	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
22	.00	.00	.00	.00	.00	.00	.00	2.0	.00	.00	.00	.00
23	.00	.00	.00	.00	.00	.00	.00	.92	.00	.00	.00	.00
24	.00	.00	.00	.00	.00					.00	.00	.00
25	.00	.00	.00	.00	.00	.00	.00	.00	46 152	.00	.00	.00
26	.00	.00	.00	.00	.00	.00	.00	.00	102	.00	.00	.00
27	.00	.00	.00	.00	.00	.00	.00	.00	21	.00	.00	.00
28	.00	.00	.00	.00	.00	.00	.00	.00	13	.00	.00	.00
29	.00	.00	.00	.00	.00	.00	.00	.00	8.6	.00	.00	.00
30	.00	.00	.00	.00		.00	.00		.10	.00	.00	.00
31	.00		.00	.00		.00		.00		.00	.00	
TOTAL	.00	.00	.00	.00	.00	.00	.00	2.92	342.70	.00	.00	.00
MEAN	.000	.000	.000	.000							.000	
MAX	.000	.000	.000	.000	.000	.000	.000	.094	11.4	.000		.000
					.00	.00	.00	2.0	152	.00	.00	.00
MIN	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
AC-FT	.00	.00	.00	.00	.00	.00	.00	5.8	680	.00	.00	.00

CAL YR 1983 TOTAL 1679.99 MEAN 4.60 MAX 176 MIN .00 AC-FT 3330 WTR YR 1984 TOTAL 345.62 MEAN .94 MAX 152 MIN .00 AC-FT 686

08437500 PECOS COUNTY WATER IMPROVEMENT DISTRICT NO. 2 CANAL NEAR IMPERIAL, TX

LOCATION.--Lat 31°16'38", long 102°43'54", Pecos County, Hydrologic Unit 13070001, on left bank about 2.4 mi west of Imperial and 7.7 mi downstream from Imperial Reservoir.

PERIOD OF RECORD.--April 1940 to Mry 1941, March 1942 to September 1957, and March 1964 to current year. Records since March 1942 are equivalent to earlier records if diversions to Pecos County Water Improvement District No. 3 canal near Imperial (station 08437600) are added to flow past this station.

GAGE.--Water-stage recorder. Wooden weir June 1, 1943, to Feb. 29, 1964, and concrete weir since Mar. 1, 1964. Altitude of gage is about 2,400 ft, from topographic map. Prior to July 11, 1940, at site 1.5 mi upstream at different datum. July 12, 1940, to Mar. 23, 1942, at site 2.5 mi upstream at datum 3.36 ft higher. Mar. 24, 1942, to May 31, 1943, at site 0.5 mi upstream at datum 0.70 ft higher.

REMARKS.--Records good. Local runoff is deleted from daily discharge record. Water is diverted from Imperial Reservoir (on right bank of Pecos River) for irrigation in the vicinity of Imperial, and at times includes water diverted from the Pecos River through Cut Around Canal. The total flow at this station does not include water diverted from canal 75 ft upstream, or water diverted into Pecos County Improvement District No. 3 canal (see station 08437600) 0.6 mi upstream.

AVERAGE DISCHARGE. -- 35 years (water years 1943-57, 1965-84), 11.2 ft3/s (8,110 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 144 ft³/s July 27, 28, 31, Aug. 1, 1945; no flow at times each year.

		DISC	HARGE, IN C	CUBIC FEET	PER S	SECOND, WATER MEAN VALUES	YEAR O	OCTOBER 1983	TO SEE	PTEMBER 1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	.00 .00 .00	.0 .0 .0	0 0 0 0	0 0 0
6 7 8 9	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	.00 .00 .00	.0 14.0 16.0 16.0 13.0	0 0 0 0	0 0 0 0
11 12 13 14	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	.00 .00 .00	5.9 .0 .0 .0	0 0 0 0	0 0 0 0
16 17 18 19 20	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	.00 .00 .00	.0 .0 .0	0 0 0 0	0 0 0 0
21 22 23 24 25	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	.00 .00 .00	.0 .0 .0	0 0 0 0	0 0 0 0
26 27 28 29 30 31	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	2.20 .12 .00 .00	.0 .0 .0 .0	0 0 0 0	0 0 0 0
TOTAL MEAN MAX MIN AC-FT	.000 .000 .00	.000 .00 .00	.000 .00 .00	.000 .000 .00	.000 .00 .00	.000 .00 .00	.000 .00 .00	.000 .00 .00	2.32 .077 2.2 .00 4.6	64.9 2.09 16 .00 129	.000 .00 .00	.000 .00 .00
CAL YR WTR YR		77.56 67.22	MEAN .21 MEAN .18	MAX 35 MAX 16	MIN MIN	.00 AC-FT	154 133					

08437600 PECOS COUNTY WATER IMPROVEMENT DISTRICT NO. 3 CANAL NEAR IMPERIAL, TX LOCATION.--Lat 31°16'51", long 102°44'26", Pecos County, Hydrologic Unit 13070001, on left bank about 220 ft upstream from bridge on Farm Road 11, 0.3 mi downstream from headgate (Pecos No. 2 canal), and 2.9 mi west of Imperial.

PERIOD OF RECORD. -- March 1940 to September 1941, March 1942 to September 1957, and March 1964 to current year.

GAGE.--Water-stage recorder. Concrete weir since Mar. 7, 1944. Altitude of gage is 2,390 ft, from topographic map. Prior to Jan. 10, 1941, at site 350 ft downstream at datum 6.79 ft lower. Jan. 10, 1941, to Mar. 29, 1942, at site 200 ft downstream at datum 3.65 ft lower.

REMARKS.--Records good. Local runoff is deleted from daily discharge record. Water is diverted from Imperial Reservoir (on right bank of Pecos River), 7.6 mi upstream, for irrigtion in the vicinity of Imperial, and at times includes water diverted from the Pecos River by Cut Around Canal.

AVERAGE DISCHARGE.--36 years (water years 1941, 1943-57, 1965-84), 8.37 ft3/s (6,060 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 175 ft³/s Aug. 11, 1940; no flow at times each year.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 MEAN VALUES DAY NOV SEP OCT DEC JAN. FEB MAR APR MAY JUN JUL AHG .0 ŏ .0 .0 .0 4.7 21.0 13.0 ŏ ŏ .0 .0 .0 .0 .0 n .0 .0 .0 Ö .0 .0 .0 .0 .0 .0 -0 .0 .0 .0 .0 .0 .0 Õ .0 ------TOTAL 38.7 n MEAN .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 MAX .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 MIN .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 AC-FT .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

CAL YR 1983 WTR YR 1984 TOTAL 49.40 MEAN .14 MAX 21 MIN .00 TOTAL 38.70 MEAN .11 MAX 21 MIN .00 AC-FT

08437700 WARD COUNTY WATER IMPROVEMENT DISTRICT NO. 2 CANAL NEAR GRANDFALLS, TX

LOCATION.--Lat 31°22'13", long 103°00'24", Ward County, Hydrologic Unit 13070001, on left bank 1,550 ft upstream from Farm Road 1776, 2.3 mi downstream from headgate, and 9.5 mi west of Grandfalls.

PERIOD OF RECORD. -- August 1939 to September 1941, November 1941 to September 1957, and March 1964 to current year.

GAGE.--Water-stage recorder. Concrete weir since Feb. 17, 1947. Altitude of gage is 2,460 ft, from topographic map. Prior to Jan. 10, 1941, at site 1.75 mi downstream at different datum. Jan. 11, 1941, to Feb. 16, 1947, at site 50 ft downstream at present datum.

REMARKS.--Records fair. Local runoff is deleted from the discharge record. Water is diverted from the left bank of the Pecos River for irrigation in the vicinity of Grandfalls. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE. -- 36 years (water years 1940, 1943-57, 1965-84), 17.9 ft3/s (12,970 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 198 ft3/s Apr. 9, 1947; no flow at times each year.

		DISC	CHARGE, IN	CUBIC F		ECOND, WATEAN VALUES	TER YEAR O	CTOBER 19	33 TO SEP	TEMBER 19	84	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.00 .11 11.00 11.00 8.50	.17 .15 .11 .09	9.0 8.5 9.3 8.5 8.5	16.0 13.0 16.0 19.0	9.1 10.0 9.5 9.4 9.6	7.4 8.5 8.0 11.0 17.0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
6 7 8 9	7.10 6.00 5.40 4.60 3.80	.10 .13 .13 .07	7.0 6.1 6.3 6.2 7.2	8.7 4.3 5.5 32.0 20.0	9.0 8.7 8.6 9.5 9.8	10.0 9.1 8.5 8.5 9.1	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
11 12 13 14 15	3.10 2.80 2.20 1.70 1.20	.19 .18 .02 3.00 16.00	9.0 8.7 8.8 8.3 8.3	16.0 14.0 14.0 15.0 14.0	9.6 9.6 8.1 8.5 9.7	9.1 9.1 9.1 8.5 8.5	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
16 17 18 19 20	1.10 .81 .39 1.50 .76	9.40 9.10 8.30 6.60 5.80	8.0 8.3 8.6 8.9 9.2	14.0 13.0 13.0 14.0 14.0	8.5 9.7 9.1 8.5 8.5	3.6 .0 .0 .0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
21 22 23 24 25	.40 .37 .44 .51	5.60 6.50 6.00 6.40 7.40	8.9 10.0 11.0 9.7 8.1	14.0 13.0 13.0 14.0 13.0	9.1 9.1 8.5 7.4 7.4	.0 .0 .0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
26 27 28 29 30 31	.45 .32 .29 .21 .20	8.00 7.00 7.60 8.50 10.00	6.5 13.0 16.0 17.0 19.0	13.0 12.0 12.0 11.0 11.0	8.0 8.5 17.0 6.3	.0 .0 .0 .0	0 0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0
TOTAL MEAN MAX MIN AC-FT	77.64 2.50 11 .00 154	132.79 4.43 16 .02 263	297.9 9.61 19 6.1 591	427.5 13.8 32 4.3 848	264.3 9.11 17 6.3 524	145.0 4.68 17 .00 288	.00 .00 .00	.000 .00 .00	.000 .00 .00	.000 .00 .00	.000 .00 .00	.000 .00 .00
CAL YR WTR YR		TAL 1008. TAL 1345.				1IN .00 1IN .00	AC-FT 200 AC-FT 267					

08446500 PECOS RIVER NEAR GIRVIN, TX

LOCATION.--Lat 31°06'47", long 102°25'02", Pecos County, Hydrologic Unit 13070008, on right bank 2.1 mi upstream from Comanche Creek, 3.8 mi northwest of Girvin, and 7.2 mi upstream from bridge on U.S. Highway 67. Water-quality sampling site on left bank 7.2 mi downstream.

DRAINAGE AREA .-- 29,560 mi2 approximately, for contributing area of supplementary gage 7.2 mi downstream.

PERIOD OF RECORD.--August 1939 to current year.
Water-quality records.--Chemical analyses: October 1939 to June 1941, October 1946 to September 1947, October 1953 to September 1982. Pesticide analyses: October 1968 to September 1974.

GAGE.--Water-stage recorder with concrete control and measuring flume. Datum of gage not determined. Supplementary water-stage recorder, used as regular gage prior to July 17, 1951, is now used only for peaks exceeding about 400 ft³/s, 7.2 mi downstream at datum 2,269.65 ft National Geodetic Vertical Datum of 1929.

REMARKS.--Records poor. Flow is largely regulated by Red Bluff Reservoir (station 08410000). Numerous diversions above station for irrigation.

AVERAGE DISCHARGE. -- 45 years, 82.6 ft3/s (59,840 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 20,000 ft³/s Oct. 5, 1941 (gage height, 20.49 ft, at supplementary gage); minimum daily, 1.9 ft³/s June 19, July 14, 1982.

Maximum stage since at least 1932, that of Oct. 5, 1941.

EXTREMES FOR CURRENT YEAR .-- Maximum discharge, 220 ft3/s Oct. 21 at 0100 hours (gage height, 2.81 ft); minimum daily, 4.5 ft 3/s Aug. 21.

		DISCHARGE,	IN CUBIC	FEET	PER SECOND, MEA	WATER YEAR N VALUES	COTOBER	1983 T	O SEPTEMBER	1984		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	11	25 24	13 12	18 19	17 17	18 18	22 22	20 20	14 13	35.0	5.6 5.4	5.3 5.8
2 3 4	11	19 17	13	19	17 17	18 18	22 22	20 20	12 14	21.0 15.0	5.2	6.3
5	21	15	14	19	17	18	22	20	13	12.0	4.8	6.3
6 7 8 9	41 19 17 16	19 33 24 17	14 14 14 14	17 17 17 17	17 17 17 17	18 18 18 18	22 22 22 22	19 19 19 19	11 11 12 13	10.0 9.1 8.1 7.3	4.8 4.8 6.2 6.4	6.8 6.8 6.8
10	17	14	15	17	17	18	25	19	14	7.5	5.2	6.8
11 12 13 14 15	15 13 12 11	14 14 14 16 18	16 15 15 16 15	17 17 18 18 19	17 17 17 17 18	18 18 18 18	24 24 24 24 24	19 19 19 19	14 13 14 13	10.0 13.0 12.0 11.0 9.0	4.8 4.8 4.7 4.7	6.8 6.3 12.0 11.0 8.7
16 17 18 19 20	11 12 12 34 146	28 39 38 32 27	16 16 16 17 16	20 20 19 19	18 18 18 18	18 18 18 18	23 23 23 23 23	19 19 19 19	14 14 15 17 18	8.8 8.6 8.4 8.2 8.0	4.6 4.6 4.6 4.6	8.0 7.4 7.4 7.4 7.4
21 22 23 24 25	110 30 16 12 12	24 22 20 17 16	16 16 17 17 15	19 19 19 19	18 18 18 18	18 18 18 19 20	22 22 22 22 22 22	19 19 38 27 19	19 19 17 17 15	7.8 7.6 7.4 7.2 7.0	4.5 5.8 6.3 5.3 5.8	7.4 7.4 7.4 8.0 9.4
26 27 28 29 30 31	12 12 12 12 12 12	14 13 13 12 12	16 17 22 21 18 17	19 19 19 18 17	18 18 18 18	21 22 22 22 22 22 22	21 21 21 21 21	19 19 19 19 19	14 14 13 12 21	6.8 6.6 6.4 6.2 6.0 5.8	5.8 5.8 5.8 5.8 5.8	9.4 10.0 12.0 14.0 13.0
TOTAL MEAN MAX MIN AC-FT	706 22.8 146 11 1400	610 20.3 39 12 1210	486 15.7 22 12 964	568 18.3 20 17 1130	508 17.5 18 17 1010	22 18	673 22.4 25 21 1330	618 19.9 38 16 1230	433 14.4 21 11 859	326.8 10.5 35 5.8 648	162.1 5.23 6.4 4.5 322	244.4 8.15 14 5.3 485

CAL YR 1983 TOTAL 6160.0 WTR YR 1984 TOTAL 5919.3 MEAN 16.9 MAX 146 MIN 2.0 AC-FT 12220 MIN 4.5 AC-FT 11740 MEAN 16.2 MAX 146

08447020 INDEPENDENCE CREEK NEAR SHEFFIELD, TX

LOCATION.--Lat 30°27'07", long 101°43'58", Terrell County, Hydrologic Unit 13070010, on left bank 0.5 mi downstream from Joe Chandler Ranch Headquarters, 1.0 mi upstream from mouth, 6 mi downstream from bridge on Farm Road 1217, and 17 mi southeast of Sheffield.

DRAINAGE AREA. -- 763 mi2.

PERIOD OF RECORD .-- January 1974 to current year.

GAGE.--Water-stage recorder. Datum of gage is 1,883 ft National Geodetic Vertical Datum of 1929, by Topographic Division plane table survey.

REMARKS.--Records good. The Chandler Estate and the Roden Ranch have permits to divert 243 and 530 acre-ft annually, respectively. Rain gage and gage-height satellite telemeter at station. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE .-- 10 years, 28.5 ft3/s (20,650 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 78,100 ft³/s Sept. 20, 1974 (gage height, 16.74 ft), from rating curve extended above 130 ft³/s on basis of slope-area measurement of peak flow; minimum, 13 ft³/s July 26, 1974, and Nov. 16, 1977.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,100 ft³/s Oct. 25 at 1130 hours (gage height, 3.92 ft), no other peak above base of 700 ft³/s; minimum daily, 14 ft³/s Aug. 21.

		DISC	HARGE, I	IN CUBIC FEI		COND, WAT	ER YEAR	OCTOBER 198	33 TO SEP	TEMBER 1984	4	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	17 17 21 21 19	31 30 49 43 43	28 28 28 28 27	24 24 28 23 26	26 24 24 23 23	23 23 23 23 25	23 24 23 22 22	19 18 17 18 18	16 16 17 18 17	19 18 18 18	17 17 16 18 16	16 15 17 17 17
6 7 8 9	18 18 20 33 23	41 41 42 41 40	27 27 27 27 27	26 26 26 26 25	23 23 23 23 23	26 26 27 26 26	22 22 22 22 20	18 18 18 19	18 17 17 16 17	18 18 18 19 21	16 16 16 16 16	16 16 16 16
11 12 13 14 15	21 20 18 19	39 38 32 31 31	27 27 27 26 26	24 24 24 24 24	23 23 23 23 23	26 26 24 23 23	20 20 19 19	19 19 19 18 18	17 16 17 24 21	19 19 19 19 19	16 16 17 17 16	17 17 17 18 18
16 17 18 19 20	19 19 19 20 245	31 31 31 31 29	26 26 26 26 26	24 24 24 24 24	23 23 23 22 22	23 23 23 23 23	19 20 20 19	19 22 27 22 20	19 19 19 19	17 18 18 18 18	16 16 16 16	18 19 18 17 16
21 22 23 24 25	51 27 24 21 357	29 30 31 27 27	26 26 26 25 24	24 24 24 24 24	22 22 22 22 22 23	23 23 23 23 23 23	18 19 19 19	19 19 22 23 20	18 16 16 16 16	16 16 17 17 18	14 16 16 16 15	17 17 19 18 18
26 27 28 29 30 31	87 43 36 33 33 31	27 28 28 28 28	24 24 24 24 24 24	23 23 23 23 23 24	23 23 23 23	23 22 22 23 23 23	18 17 18 19 19	19 18 19 19 19	16 16 46 27 19	17 17 17 16 16	16 15 16 16 15	18 19 21 22 20
TOTAL MEAN MAX MIN AC-FT	1369 44.2 357 17 2720	1008 33.6 49 27 2000	808 26.1 28 24 1600	753 24.3 28 23 1490	666 23.0 26 22 1320	736 23.7 27 22 1460	600 20.0 24 17 1190	600 19.4 27 17 1190	563 18.8 46 16 1120	549 17.7 21 16 1090	497 16.0 18 14 986	526 17.5 22 15 1040

CAL YR 1983 TOTAL 8535 MEAN 23.4 MAX 357 MIN 13 AC-FT 16930 WTR YR 1984 TOTAL 8675 MEAN 23.7 MAX 357 MIN 14 AC-FT 17210

OXYGEN, OXYGEN

COLI-

FORM

STREP-

TOCOCCI

08447410 PECOS RIVER NEAR LANGTRY, TX (National stream-quality accounting network)

LOCATION.--Lat 29°48'10", long 101°26'45", Val Verde County, Hydrologic Unit 13040212, at gaging station 7.4 mi east of Langtry, 15.0 mi upstream from confluence with the Rio Grande, and 638.2 mi downstream from the American Dam at

DRAINAGE AREA, -- 35, 179 mi2,

PERIOD OF RECORD.--Chemical analyses: October 1954 to current year. Chemical and biochemical analyses: October 1974 to current year. Pesticide analyses: October 1975 to September 1982.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1980 to current year. WATER TEMPERATURES: November 1980 to current year.

C DF

INSTRUMENTATION .-- Beginning November 1980, specific conductance and water temperature are recorded continuously at this

REMARKS.--Interruptions in the record were due to malfunctions of the instrument. Where maximum or minimum specific conductance values are not shown, mean value is estimated. Records of discharge for water year 1984 are given in International Boundary and Water Commission Water Bulletins Nos. 53 and 54. Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and regression relationships between each chemical constituent and specific conductance. Regression equations developed for this station may be obtained from the Geological Survey District office upon request.

EXTREMES FOR PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: Maximum daily, 6,000 micromhos Mar. 21, 22, 1981; minimum daily, 230 micromhos Oct. 11, 1981. WATER TEMPERATURES: Minimum daily, 32.5°C June 8, 1981; minimum daily, 1.5°C Dec. 26, 27, 1983.

EXTREMES FOR CURRENT YEAR. --SPECIFIC CONDUCTANCE: Maximum daily, 3,190 micromhos Apr. 26; minimum daily, 450 micromhos Oct. 20. WATER TEMPERATURE: Minimum daily, 1.5°C Dec. 26, 27.

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	TIM	STRE FLC INST E TANE (CF	CAM- COW, CAN- E	PE- CIFIC CON- DUCT- NCE MHOS)	PH (STAN ARE UNITS)	TEMPE ATURI (DEG (R- BI E IT		OXYGE DIS SOLV (MG/	EN, (S - /ED S	DIS- SOLVE PER- CENT SATUR TION	D BIO CHE ICA - 5 D	M- L,	FORM FECA 0.7 UM-N (COLS	AL, AF	FECA KF AG (COLS PER 100 M	AR	HARD- NESS (MG/L AS CACO3)	
OCT 12	103	0	109	1960	7	.8	23	. 0	.80		9.8	11	7	.3		(11	4	50	390)
DEC																				
O6 FEB	151		195	2630		.8	14.		.20		.6	11		1.6	r	(13		25	570	
08 APR	102	0	163	2990	7	.9	12.	. 0	.60	9	9.9	9	6	. 7		21		24	630	1
04 JUN	101	5	139	3040	7	.9	20	.0 1	. 2	9	8.8	11	3	.6	k	(15		20	620)
06 AUG	093	5	117	2900	7	.8	25	. 5	.90	9	7	12	6	1.0		48		50	530)
15	095	0	87	2200	7	.6	28.	. 5	.90	9	0.6	12	9	1.2		22		38	430	1
	DATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	SOLV (MG/	UM ED S L (MAGNE- SIUM, DIS- OLVED MG/L S MG)		5-	SODIUM AD- SORP- TION RATIO	s (POTAS - SIUM, DIS - OLVED MG/L S K)	ALKA LINIT FIEI (MG/ AS CACO	Y ,D L	SULFATE DIS- SOLVED (MG/L AS SO4)	I S	CHLO- RIDE, DIS- GOLVED MG/L AS CL)	RI SC (N	LUO- IDE, DIS- DLVED MG/L S F)	SO (M A	LVED G/L	
	12 DEC	280	86		43	27	0	6		5.7	1	10	250	4	60		.80		11	
	06 EB	410	130		60	37	0	7		6.4	1	60	350	6	40		.80		14	
-1	08	460	140		67	421	0	8		6.8	1	70	390	7	20		.90		13	
	O4	480	140		66	400	0	7		7.4	1	40	400	7	00		.90		13	
	06	430	110		61	380	0	7		7.0		98	370	6	30		.80		11	
	15	320	90		49	300	0	6		5.9	1	10	280	4	90		.80		13	
	DATE	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	TUENT: DIS	F I- NO S, - S ED (ITRO- GEN, 2+NO3 DIS- OLVED MG/L S N)	AMMO DI SOI (MO	TRO- EN, ONIA IS- LVED G/L N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PH T	PHOS- ORUS, OTAL MG/L S P)	PHOS PHORU DIS SOLV (MG/ AS P	S, ED L	PHOS- PHORUS, ORTHO, DIS- SOLVED (MG/L AS P)	S	EDI- ENT, US- PENDED MG/L)	CHA S PE	EDI- ENT, DIS- ARGE, SUS- ENDED	SI D % F T	ED. USP. EVE IAM. INER HAN 2 MM	
	12 DEC	1210	12	00	.34		. 060	1.1		.060	<.0	10	.040		20		5.9		35	
	06	1690	17	00	1.0	<.	010	.40		.010	.0	10	<.010		15		7.9		89	
	08	1940	19	00	1.1		030	.40		<.010	<.0	10	.020		3		1.3		33	
	PR 04 UN	1880	18	00	.75		060	.20		<.010	<.0	10	.030		4		1.5		79	
	06	1710	16	00	.20		050	.90		.010	.0	10	.010		2		.63		33	
	UG 15	1350	13	00	<.10		070	- 22		<.010	<.0	10	<.010		6		1.4		95	

RIO GRANDE BASIN 08447410 PECOS RIVER NEAR LANGTRY, TX--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	T IME	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COBALT, DIS- SOLVED (UG/L AS CO)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB)
OCT 12	1030		240	<.5		<1	<3	<1	9	1
FEB	1030		240	(.5	-	(1)	.(3	(1	9	110.
08 JUN	1020	3	<100	<10	<1	<1	<1	<1	20	<1
06 AUG	0935	<1	<100	<10	1	<1	<1	1	30	2
15	0950	<1	<100	<10	5	3	5	5	3900	<5
DATE	LITHIUM DIS- SOLVED (UG/L AS LI)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO)	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	VANA- DIUM, DIS- SOLVED (UG/L AS V)	ZINC, DIS- SOLVED (UG/L AS ZN)
OCT	DIS- SOLVED (UG/L AS LI)	NESE, DIS- SOLVED (UG/L AS MN)	DIS- SOLVED (UG/L AS HG)	DENUM, DIS- SOLVED (UG/L AS MO)	DIS- SOLVED (UG/L AS NI)	NIUM, DIS- SOLVED (UG/L AS SE)	DIS- SOLVED (UG/L AS AG)	TIUM, DIS- SOLVED (UG/L AS SR)	DIUM, DIS- SOLVED (UG/L AS V)	DIS- SOLVED (UG/L AS ZN)
ОСТ 12	DIS- SOLVED (UG/L	NESE, DIS- SOLVED (UG/L	DIS- SOLVED (UG/L	DENUM, DIS- SOLVED (UG/L	DIS- SOLVED (UG/L	NIUM, DIS- SOLVED (UG/L	DIS- SOLVED (UG/L	TIUM, DIS- SOLVED (UG/L	DIUM, DIS- SOLVED (UG/L	DIS - SOLVED (UG/L
OCT 12 FEB 08	DIS- SOLVED (UG/L AS LI)	NESE, DIS- SOLVED (UG/L AS MN)	DIS- SOLVED (UG/L AS HG)	DENUM, DIS- SOLVED (UG/L AS MO)	DIS- SOLVED (UG/L AS NI)	NIUM, DIS- SOLVED (UG/L AS SE)	DIS- SOLVED (UG/L AS AG)	TIUM, DIS- SOLVED (UG/L AS SR)	DIUM, DIS- SOLVED (UG/L AS V)	DIS- SOLVED (UG/L AS ZN)
OCT 12 FEB	DIS- SOLVED (UG/L AS LI)	NESE, DIS- SOLVED (UG/L AS MN)	DIS- SOLVED (UG/L AS HG)	DENUM, DIS- SOLVED (UG/L AS MO)	DIS- SOLVED (UG/L AS NI)	NIUM, DIS- SOLVED (UG/L AS SE)	DIS- SOLVED (UG/L AS AG)	TIUM, DIS- SOLVED (UG/L AS SR)	DIUM, DIS- SOLVED (UG/L AS V)	DIS- SOLVED (UG/L AS ZN)

MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1983 TO SEPTEMBER 1984

MONTH	YEAR	DISCHARGE (CFS-DAYS)	CONDUCT - ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
OCT.	1983	12343	1150	657	21900	240	8110	130	4470	240
NOV.	1983	6997	2130	1230	23200	460	8700	260	4820	430
DEC.	1983	5605	2700	1580	23900	600	9070	330	5040	550
JAN.	1984	5725	2890	1700	26300	650	10000	360	5570	580
FEB.	1984	4767	3010	1770	22800	680	8700	380	4850	600
MAR.	1984	4640	2970	1750	21900	660	8330	370	4640	590
APR.	1984	3994	3070	1810	19500	690	7450	380	4150	610
MAY	1984	3512	3000	1770	16800	670	6400	380	3560	600
JUNE	1984	2936	2700	1580	12500	600	4740	330	2640	540
JULY	1984	3381	2330	1350	12400	510	4650	280	2580	470
AUG.	1984	2621	2020	1170	8270	440	3090	240	1710	420
SEPT	1984	3037	1940	1120	9200	420	3430	230	1900	400
TOTAL		59558	**	**	219000	**	82700	**	45900	**
WTD.AV	VG.	163	2330	1360	**	510	**	290	**	470

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBE	ER		NOVEMBE	ER		DECEMBE	R		JANUAR	Y
1 2 3 4 5	===	===	2490 2440 2400 2300 2260	2290 2410 2420 2460	2130 2290 2410 2410	2190 2360 2420 2440 1750	===	===	2480 2500 2520 2550 2580	2890 2850 2810 2770 2690	2850 2810 2770 2700 2660	2870 2840 2780 2730 2670
6 7 8 9 10	===	 	2220 2210 2190 2180 2170	===	===	1810 1830 1850 1890 1910		===	2630 2640 2620 2610 2600	2730 2750 2760 2770 2780	2670 2730 2740 2730 2750	2700 2740 2760 2750 2760
11 12 13 14 15	2080 2110 2110	2060 2050 2100	2130 2070 2080 2100 2090		===	1940 1980 2000 2040 2060	2730 2760	2710 2700	2610 2680 2740 2720 2730	2790 2840 2870 2890 2910	2740 2790 2840 2850 2870	2760 2810 2850 2870 2890
16 17 18 19 20	===	===	2080 2060 2070 1850 450		===	2070 2100 2110 2150 2180	2740 2750 2760 2770 2780	2720 2710 2720 2730 2760	2730 2730 2740 2750 2770	2910 2910 2950 2980 3010	2890 2900 2910 2930 2980	2900 2900 2930 2960 2990
21 22 23 24 25	===	===	570 750 950 1200 1150			2210 2240 2260 2300 2320	2790 2780 2800 2780 2840	2750 2720 2740 2750 2780	2770 2760 2770 2770 2800	3030 3040 3050 3040 3040	3000 3020 3010 3010 3010	3020 3030 3030 3030 3030
26 27 28 29 30 31	1610 2270 2320 2100 2130	1510 1640 2100 2050 2060	1400 1560 1980 2240 2060 2090			2330 2360 2390 2420 2440	2860 2870 2880 2880 2880 2880	2790 2840 2830 2820 2820 2820	2820 2850 2860 2840 2850 2860	3060 3040 3070 3060 3050 3050	3010 3030 3020 3020 3040 3020	3040 3040 3040 3040 3040 3040
MONTH	2320	1510	1860	2460	2130	2150	2880	2700	2710	3070	2660	2900
DAY	MAX	MIN FEBRUAR	MEAN Y	MAX	MIN MARCH	MEAN	MAX	MIN APRIL	MEAN	MAX	MIN MAY	MEAN
1 2 3 4 5	3040 3020 3000 3030 3060	3010 2970 2960 2990 3020	3030 2990 2980 3010 3040	3050 3020 3000 2990 2990	3000 2970 2970 2910 2930	3020 3000 2990 2960 2980	3050 3040 3050 3080 3060	3010 3020 3000 3020 3020	3030 3030 3030 3040 3040			3120 3100 3110 3070 3080
6 7 8 9	3070 3080 3060 3050 3050	3040 3030 3020 3020 3010	3050 3060 3040 3040 3030	3000 3000 2950 2930 2950	2930 2890 2870 2910 2860	2970 2950 2920 2920 2930	3070 3050 3040 3060 3050	3030 3010 3010 3000 3030	3040 3040 3030 3030 3040			3060 3070 3100 3110 3140
11 12 13 14	3040 3020 3030 3020 3040	3000 2990 2980 2990 3000	3010 3010 3010 3000 3010	2950 2950 2950 2940 2940	2930 2890 2910 2920 2920	2940 2930 2930 2930 2930	3090 3050 3100 3080 3080	3030 3030 3050 3050 3050	3060 3040 3070 3070 3070			3150 3130 3140 3150 3140
16 17 18 19 20	3040 3020 3010 3020 3020	2990 2990 2980 2990 3000	3010 3010 3000 3010 3010	2960 2960 2950 2960 2960	2750 2920 2920 2930 2920	2930 2950 2940 2950 2940	3080 3080 3080 3080 3110	3050 3040 3040 3040 3040	3060 3060 3060 3060 3070			31 00 2990 291 0 2840 285 0
21 22 23 24 25	3040 3050 3010 3000 2980	2990 2980 2960 2960 2900	3010 3010 2990 2980 2960	2960 2990 2990 3010 3020	2940 2960 2970 2980 2980	2950 2980 2990 3000 3000	3070 3080 3120 3150 3180	3040 3050 3080 3090 3110	3060 3060 3090 3110 3130			2870 2900 2910 2920 2930
26 27 28 29 30 31	2990 3010 3030 3050	2930 2990 3000 3000	2970 3000 3010 3030	3010 3000 3000 3020 3030 3070	2960 2960 2980 2990 3010 3000	2980 2990 3000 3000 3020 3040	3190 3160 3160 3130	3110 3120 3120 3120 	3140 3130 3130 3130 3140			2910 2920 2900 2880 2890 2910
MONTH	3080	2900	3010	3070	2750	2970	3190	3000	3070			3010

08447410 PECOS RIVER NEAR LANGTRY, TX--Continued

	SPECIFIC	CONDUCTAN	NCE (MICH	ROMHOS / CM	AT 25	DEG.	C), V	NATER YEA	R OCTOBER	1983	TO	SEPTEMBER	1984	Continued
DAY	MAX	MIN	MEAN	MAX	MI	N MEA	AN	MAX	MIN	MEAN		MAX	MIN	MEAN
		JUNE			JU	LY			AUGUST				SEPTEME	ER
1			2920			237	70			2020				2050
2			2930			231				2030				2090
3			2910			234				2040				1900
4			2890			240				2060				1840
5			2840			242				2070				1820
6	2810	2790	2800			244	40			2050		1610	1440	1480
7	2810	2790	2800			247				2040		1670	1500	1600
8	2800	2760	2780			250				2020		1970	1670	1810
9	2810	2760	2780			252				2000		2110	1980	2060
10	2810	2770	2780			255				1990		2170	2100	2140
11	2770	2720	2740			256	50			2010		2190	2110	2170
12	2750	2710	2730			254				2000		2210	2130	2190
13	2740	2650	2710			255				2020		2220	2140	2200
14	2660	2610	2640			257				2000		2230	2010	2180
15	2660	2560	2630			259				2010		2230	2080	2180
16	2640	2540	2600			256	50			2030		2230	2130	2180
17	2580	2460	2510			255				2000		2230	2130	2190
18	2550	2490	2520			256				1960		2220	2130	2190
19	2630	2550	2590			253				1940		2200	2110	2170
20	2640	2580	2620			255				1970		2190	1970	2140
21	2650	2610	2630			256	50			1990		2210	2120	2170
22	2680	2600	2650			258				2010		2190	2120	2180
23	2680	2630	2660			254	.0			2040		2190	2130	2180
24	2690	2650	2670			248				2000		2200	2170	2190
25	2680	2650	2670			201				2010		2180	2120	2160
26	2690	2650	2670			204	10			2030		2180	2130	2160
27	2680	2650	2670			206				2050		2170	1290	1950
28	2000	2030	2630			207				2060		1770	1120	1530
20			2540			209				2090		1550	1110	1280
29										2120		1780	1560	1660
30			2500			211				2080		1700	1300	1000
31						207	U							
MONTH	2810	2460	2700			240	00			2020		2230	1110	2000

		7	remperature	E, WATER (D	EG. C),	WATER YEA	R OCTOBER	1983 TO	SEPTEMBER	1984		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		ОСТОВЕ	ER		NOVEMB	ER		DECEMB	ER		JANUAR	Y
1				22.0	20.0	21.0				4.0	2.5	3.5
2				22.0	20.5	21.5				6.0	4.5	5.5
3				22.0	21.0	21.5				8.0	6.0	7.0
4				22.0	21.0	21.5				9.0	8.0	8.5
5				22.0	22.0	22.0				10.0	9.0	9.5
6										11.5	10.5	11.0
7										12.5	12.0	12.0
8										12.5	12.5	12.5
9										13.0	12.5	12.5
10										12.5	11.0	11.5
11										11.0	10.0	10.5
12	23.5	22.5	23.0						***	10.5	9.0	9.5
13	22.0	20.5	21.5							9.5	8.5	9.0
14	20.5	20.0	20.5				12.5	12.0	12.5	9.5	8.5	9.0
15							12.5	11.5	12.0	9.5	8.0	9.0
16							12.0	10.5	11.0	8.5	8.0	8.0
17							10.5	9.5	10.0	8.0	7.5	8.0
18							10.0	8.0	9.0	7.5	6.5	7.0
19							8.0	6.5	7.0	6.5	5.5	6.0
20							7.0	5.5	6.5	5.5	5.0	5.5
21							6.0	5.5	6.0	5.0	4.0	4.5
22							5.5	4.5	5.0	4.0	4.0	4.0
23							5.0	4.5	5.0	5.5	4.5	5.0
24							4.5	2.5	3.5	7.5	5.5	7.0
25							2.5	2.0	2.0	9.5	8.0	9.0
26							2.5	1.5	2.0	11.0	9.5	10.5
27	21.5	20.5	21.0				2.5	1.5	2.0	12.0	11.0	11.5
28	20.5	19.5	20.0				3.5	2.5	3.5	12.0	11.5	12.0
29	20.5	19.0	19.5				3.5	3.0	3.0	13.0	12.0	12.5
30	21.0	19.5	20.0				3.5	2.5	3.0	13.5	12.0	12.5
31	21.5	20.0	20.5				3.0	2.5	3.0	12.0	11.5	12.0
MONTH	23.5	19.0	21.0	22.0	20.0	21.5	12.5	1.5	6.0	13.5	2.5	9.0

08447410 PECOS RIVER NEAR LANGTRY, TX--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984--Continued

		TEMPERA	TURE, WATE	R (DEG. C)	, WATER	YEAR OCTOB	SER 1983 TO	SEPTEMB	ER 1984C	Continued		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUAR	Y		MARCH			APRIL			MAY	
1 2 3 4 5	11.5 11.0 11.0 12.5 12.5	10.5 10.5 10.5 11.0 12.0	10.5 10.5 11.0 12.0 12.5	12.5 13.5 15.5 17.5 17.5	11.0 12.0 13.5 15.5 14.5	12.0 13.0 15.0 17.0 16.0	19.0 20.0 19.5 20.0 19.5	17.0 18.0 18.5 18.5 18.0	18.5 19.0 19.0 19.0			
6 7 8 9	13.0 12.5 12.5 13.5 14.5	12.0 11.5 11.5 12.0 13.5	12.5 12.0 12.0 13.0 14.5	14.5 14.5 14.5 16.0 17.0	14.0 13.5 13.5 14.5 16.0	14.5 14.0 14.5 15.5 16.5	19.5 20.5 20.5 22.0 21.5	18.0 18.5 19.0 20.0 20.5	19.0 19.5 19.5 21.0 21.0			
11 12 13 14 15	17.0 17.5 16.5 16.5	15.0 16.0 16.0 15.0	16.5 17.0 16.0 16.0	16.5 17.5 18.0 20.0 21.5	16.0 16.0 17.5 18.0 20.0	16.5 17.0 18.0 19.5 21.0	22.5 22.5 23.5 23.0 22.5	20.5 21.0 21.0 21.0 21.0	21.5 22.0 22.5 22.5 21.5			
16 17 18 19 20	15.5 16.5 16.5 16.0 14.5	15.0 15.0 15.5 14.5 12.5	15.5 16.0 16.5 15.5 14.0	22.5 23.5 23.0 22.0 20.5	21.5 22.0 22.0 19.0 19.0	22.0 22.5 22.5 21.0 19.5	22.5 22.5 22.5 22.5 24.5	20.5 20.5 20.5 20.5 21.5	21.5 21.5 21.5 21.5 21.5 23.0			
21 22 23 24 25	12.5 12.5 13.0 14.5 16.0	12.0 12.0 12.0 13.0 14.5	12.5 12.0 13.0 14.0 15.5	20.0 19.5 20.5 19.5 20.0	18.5 18.5 19.0 18.5 18.5	19.5 19.0 20.0 19.0 19.5	24.0 23.5 24.0 24.0 25.0	21.5 21.5 21.5 22.0 22.0	23.0 22.5 22.5 23.0 23.5			
26 27 28 29 30 31	16.5 14.0 13.0 12.0	14.0 12.5 11.5 11.5	15.5 13.5 12.5 12.0	20.0 20.0 19.0 18.5 17.5	19.0 18.5 17.5 16.5 16.5	19.5 19.5 18.5 17.5 17.0 17.5	26.0 25.0 25.0 24.0	23.0 22.5 22.5 23.5	24.5 24.0 24.0 24.0			
MONTH	17.5	10.5	14.0	23.5	11.0	18.0	26.0	17.0	21.5			
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEMB	ER
1 2 3 4 5	===	===	===							28.0	27.0	27.5
6 7 8 9	27.0 28.5 28.5 28.5 28.5	25.5 25.5 26.0 26.0 26.5	26.0 27.0 27.0 27.5 27.5							27.5 28.0 28.5 28.5 28.0	25.0 25.0 25.5 26.0 26.0	26.5 26.5 27.0 27.0 27.0
11 12 13 14	27.5 27.5 27.0 26.5 27.0	25.5 25.0 25.0 24.5 25.0	26.0 26.0 26.0 25.5 26.0							28.0 27.5 28.0 28.0 27.0	25.5 25.5 25.5 26.0 25.5	26.5 26.5 26.5 27.0 26.0
16 17 18 19 20	28.0 28.5 28.5 29.0 28.5	25.5 26.0 26.0 26.0 26.0	26.5 27.0 27.0 27.0 27.0							26.5 27.5 27.0 26.5 27.0	24.5 24.5 25.0 24.5 24.5	25.5 26.0 26.0 25.5 25.5
21 22 23 24 25	29.0 29.5 30.0 30.5 31.0	26.0 26.5 26.5 27.5 27.5	27.5 28.0 28.5 29.0 29.5							27.0 27.0 27.0 28.0 26.5	24.5 25.0 25.0 25.5 24.0	26.0 26.0 26.0 26.5 25.0
26 27 28 29 30	31.0 31.0	28.0	29.5 29.5 							24.0 23.0 19.5 19.0 20.5	21.5 19.0 18.5 18.0 18.5	23.0 22.0 19.5 18.5 19.5
31										28.5	18.0	25.0
MONTH	31.0	24.5	27.5							20.3	10.0	23.0

08449400 DEVILS RIVER AT PAFFORD CROSSING NEAR COMSTOCK, TX

LOCATION.--Lat 29°40'35", long 101°00'00", Val Verde County, Hydrologic Unit 13040302, on left bank 10 mi east of Comstock, and 25.5 mi upstream from mouth.

DRAINAGE AREA. -- 3,961 mi2.

PERIOD OF RECORD .-- Chemical and biochemical analyses: January 1978 to current year.

PERIOD OF DAILY RECORD. --WATER TEMPERATURES: February 1978 to current year.

INSTRUMENTATION .-- Beginning October 1980, specific conductance and water temperature are recorded continuously at this station.

REMARKS.--Interruptions in the record were due to malfunctions of the instruments. Where maximum or minimum specific conductance values are not shown, mean value is estimated. Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and regression relationships between each chemical constituent and specific conductance. Regression equations developed for this station may be obtained from the Geological Survey District office upon request.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 513 micromhos Dec. 30, 1984; minimum daily, 105 micromhos Oct. 20, 1983.
WATER TEMPERATURES (1978-82): Maximum daily, 32.5°C Aug. 24, 26, 1981; minimum daily, 3.5°C Jan. 11, 1982.

EXTREMES FOR CURRENT YEAR .--SPECIFIC CONDUCTANCE: Maximum daily, 513 micromhos Dec. 30; minimum daily, 105 micromhos Oct. 20.

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	TIM	STRE FLO INST E TANE (CF	W, CON AN- DUC OUS ANC	IC T- (S E	PH TAND- ARD ITS)	TEMPE ATUR	E ITY	- DI SOL	S - VED	OXYG DI SOL (PE CE SAT AT I	S - VED R- NT UR-	OXYGEN DEMAND BIO- CHEM- ICAL, 5 DAY (MG/L	FORM FECA 0.7 UM-1 (COL	M, TOCO AL, FEC KF A MF (COL S./ PE	CCI AL, GAR S. R	HARD- NESS (MG/L AS CACO3)
OCT 11	153	0	189	360	7.7	25	.0 1.:	3 1	0.2		127		8	к3	26	180
06	121			396	7.5	14			1.4		112	1.		K13	22	190
EB 07	113			415	7.9	11			0.4		97		8	кз	K6	200
PR 03	111			390	7.9	18			0.2		112	1.			K10	190
UN 05	110			360	7.5						126	1.		32	32	170
JG 14	121			365	7.5	24			0.1		134	1.		24	35	170
	DATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGN SIUI DIS	E- M, SC - I ED SC L (DIUM, DIS- DLVED MG/L S NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	LII F:	LKA- NITY IELD MG/L AS ACO3)	SUI DI SC (N	LFATE IS - DLVED IG/L SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SIL	ICA, S- LVED G/L
	T 11	31	49	14		8.6	.3	1.4		150		9.0	14	.30		15
	06	23	54	14		8.4	.3	1.3		170		9.2	13	.30		13
	EB 07	16	55	14		8.1	.3	1.3		180		9.1	15	.30		12
	PR 03	17	50	15		8.8	.3	1.5		170		9.3	15	.30		13
	UN 05	15	45	15		8.8	.3	1.3		160		8.5	14	.30		15
	UG 14	15	45	15		8.8	.3	1.4		160		8.4	11	.30		16
	DATE	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO GEN NO2+NO DIS SOLVI (MG/1 AS N)	D3 AM	ITRO- GEN, MONIA DIS- OLVED MG/L S N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHO I SO (N	HOS- DRUS, DIS- DLVED MG/L S P)	OF DI SOI	OS- PRUS, ETHO, S- LVED G/L P)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	SII SII DI % FI	LAM.
	CT 11	328	200	1.3	3	.060	.90	.060		<.010		.010	10	5.1		91
	EC 06	202	220	1.6		<.010	.30	.010		.010	<	.010	12	6.7		56
	EB 07	196	220	1.6	5	.050	.40	<.010	<	(.010		.010	18	9.4		53
	PR 03 UN	201	210	1.3	3	.040	.20	. 01 0	<	. 010		.030	15	7.2		74
	UN 05 UG	213	200	1.1		.120	.80	.020		.010		.010	13	5.4		92
	14	193	200		9	.050		<.010		. 010	<	.010	24	9.1		93

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

08449400 DEVILS RIVER AT PAFFORD CROSSING NEAR COMSTOCK, TX--Continued

DATE	T IME	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COBALT, DIS- SOLVED (UG/L AS CO)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB)
OCT									-	
11 FEB	1530	1	130	<.5	<1	<1	<3	1	7	3
07 JUN	1135	1	110	<.5	1	<1	<3	<1	<3	<1
05	1105	<1	270	2.0	<1	<1	<3	<1	<3	<1
AUG 14	1210	<1	120	1.0	<1	2	<3	1	5	<1
DATE	LITHIUM DIS- SOLVED (UG/L AS LI)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO)	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	VANA- DIUM, DIS- SOLVED (UG/L AS V)	ZINC, DIS- SOLVED (UG/L AS ZN)
OCT 11	12	<1	<.1	<10	<1	<1	<1	490	9	19
FEB 07	15	2	<.1	<10	5	<1	<1	490	8	6
JUN 05	13	<1	<.1	<10	<1	<1	<1	470	9	43
AUG 14	5	1	<.1	<10	<1	<1	<1	460	8	9

MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1983 TO SEPTEMBER 1984

MONTH	YEAR	DISCHARGE (CFS-DAYS)	S PEC IF IC CONDUCT - ANCE (MICRO - MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS - SOLVED SOLIDS (TONS)	DIS - SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
OCT.	1983	20498	210	138	7660	9.5	525	5.8	318	120
NOV.	1983	6112	359	209	3450	15	241	9.2	151	180
DEC.	1983	6323	414	225	3850	16	272	10	174	190
JAN.	1984	6376	375	212	3640	15	256	9.4	162	180
FEB.	1984	5473	385	218	3210	15	226	9.6	143	190
MAR.	1984	5330	373	214	3080	15	216	9.4	136	180
APR.	1984	4789	383	217	2800	15	197	9.6	124	180
MAY	1984	4805	368	212	2750	15	193	9.3	121	180
JUNE	1984	4365	379	216	2540	15	178	9.5	112	180
JULY	1984	4002	396	221	2390	16	168	9.9	1 06	190
AUG.	1984	3827	392	220	2270	15	160	9.8	101	190
SEPT	1984	4038	405	224	2440	16	172	10	1 09	190
TOTAL		75938	**	**	40100	**	2800	**	1760	**
WID.AV	/G.	207	337	195	**	14	**	8.6	**	170

408

08449400 DEVILS RIVER AT PAFFORD CROSSING NEAR COMSTOCK, TX--Continued

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

	SPEC	CIFIC CON	IDUCTANCE	(MICROMHOS/CN	1 AT 2	5 DEG. C),	WATER YEAR	OCTOBER	1983 TO	SEPTE	MBER	1984		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN		MAX	MIN	MEAN	
		OCTOBE	CR .	1	OVEMB	ER		DECEMBE	R			JANUAR	Y	
1 2			355 350	367 368	353 349	359 360	122		370 370		486 485	480 467	482 478	
2 3 4 5			353 349	371 368	344 347	359 357			370 371		485	472 476	477 484	
			345	365	295	334			371		492	480	486	
6 7			350 355	326 361	289 322	308 350	375	366	371 371		492 497	476 484	484	
8 9			347 340	374 371	361 343	366 358	381 381	372 363	376 374	1 4	500 293	240 275	430 285 295	
10 11	353	350	345 352	372 375	346 362	357 368	387	361 371	377 383		302	289 296		
12	358	336 350	351	373 376	361	367 359	395 396	380	389		307 316	297 304	303 303 311	
13 14 15	362 382 360	350 352	355 357 354	377 375	339 333 342	356 359	404 407	384 385 393	390 395 402		318 323	293 311	312 318	
16	360	353	356	376	351	367	413	398	404		331	319		
17	367 360	350	354 353	373 377	361 356	367 368	416 423	401	410 418		337 343	329 333	332 338	
18 19 20	357 318	346 331 105	350 164	380 378	355 365	367 370	429 435	423 428	427 431		342	337 342	327 332 338 340 344	
	203	133	168	376	366	371	438	432	435		353	346		
21 22 23 24 25	258	207	237 285	378 375	358 358 353	369 367	445 448	436 444	440 446		356 359	351 340	350 354 354 358 353	
24 25			350 413	373 378	353 359	365 370	454 478	448 452	452 463		361 363	352 341	358	
26 27	460	406	431 401			368	465	458	463		365 367	353 347	361	
28	474 363 363	347 350 351	355 357			365 367 369	470 471 481	456 460 469	465 468 474		368	347 347 359	358 359 368	
29 30 31	366 369	354 350	360 359			370	513 486	473 479	485 483	1	372 376 383	364 354	370 374	
MONTH	474	105	340	380	289	361	513	361	414		500	240	374	
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN		MAX	MIN	MEAN	
		FEBRUAR	Y		MARCH	ł		APRIL				MAY		
1 2	382 383	365 360	377 376	389 388	377 383	385 385	374 370	362 348	368 361		387 389	379 344	382 372	
2 3 4	389 390	377 371	384 382	391 388	380 354	385 378	395 398	359 371	375 387 393		387 388	343 373 351	367 381 377	
5	393	368	380	390	374	383	401	387			386			
6 7	400 404 402	378 393	393 397	391 388	366 373 379	379 381	398 395	386 371	392 386		386 388	341 352	370 373	
8 9 10	399 399	389 386 384	396 394 392	388 387 385	374 362	382 382 377	397 398 394	359 375 368	381 386 383		383 384 387	341 359 370	370 373 364 375 378	
11	394	358	384	390	376	384	397	381	387		384	371	377	
12 13	391 390	367 374	380 384	387 386	351 373	372 377	396 394	357 365	378 385		384 380	365 361	374 372	
14 15	394 389	382 363	388 379	384 374	367 357	375 368	392 391	364 361	380 378		378 383	359 359	372 374	
16	394	381	387	378	363 363	370	392	358	379		37.7	365	370	
17 18	392 392	382 361	386 378	377 377	353	369 368	396 395	386 383	391 390		369 372	352 354	359 365 368	26
19 20	388 392	367 371	379 384	374 372	355 353	366 365	396 395	351 377	385 389		376 375	350 344	368 367	
21	392	363	379	378	360	370	396	361	381		379	362	374	
22 23	392 393 394	367 363 379	386 381	375 371	363 350	369 363	393 395	360 386	383 390		378 377	364 365	373 371	
24 25	394	381	388 388	372 377	352 363	366 370	396 394	379 375	388 385		375 367	355 352	367 359	
26 27	388 390	377 379	382 384	373 371	346 354	365 365	389 386	376 360	382 379		365 364	351 345	358 355	
28 29	389 391	371 378	381 385	372 374	357 365	366 370	389 385	378 354	384 373		358 369	322 330	343 357	
30 31				376 370	365 344	370 361	385	375	380		368 371	359 353	364 365	
MONTH	404	358	385	391	344	373	401	348	383		389	322	368	

	SPECIFIC	CONDUCTA	NCE (MICE	ROMHOS/CM	AT 25	DEG. C),	WATER YEA	R OCTOBE	1983	TO SEPTEMBER	1984	-Continue
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEMI	BER
1	360	349	354			385			378	427	398	406
2	359	352	355			388			375	421	396	402
3	360	348	354			395			377	431	370	399
4	365	348	356			397			378	417	385	400
5	365	351	359			400			376	438	396	407
6			357			395			373	454	400	412
7			365			399			375	463	396	409
8			368			403			379	454	389	409
9	32.7		373			406			381	456	387	405
10			375			408			375	423	389	400
11	22.5		378			410			376	448	388	402
12			382			411			378	454	387	403
			384			410			371	447	388	402
13									365	432	392	400
14 15			379 376			413 416	441	364	398	455	389	408
15	(370			410		304		433	307	
16			380			412	414	395	406	456	396	415
17			383			404	444	399	411	454	397	415
18			385			405	445	400	411	472	357	411
19			390			410	440	401	409	478	350	421
20			394			413	445	400	407	468	395	412
21			391			415	441	393	408	479	403	428
22			393			418	444	398	406	477	398	417
23			395			413	442	400	407	437	398	413
24			396			405	452	400	408	470	390	412
25			398			355	442	396	408	478	389	414
26						265	401	202	200	4.50	201	411
26			400			365	404	393	399	458	381	
27			402			369	440	395	409	443	397	419
28			392			372	450	396	409	439	309	389
29			387			374	455	394	406	437	311	372
30			381			375	458	297	392	480	326	404
31						378	422	373	393			
ONTH	365	348	379			397	458	297	392	480	309	407
		т	EMPERATURI	E, WATER (D	EG. C),	WATER YEA	AR OCTOBER	1983 TO S	EPTEMBER	1984		
Y	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBE	R		NOVEMB	ER		DECEMBE	R		JANUA	RY
												0 5
1				23.0	21.0	22.0				11.5	5.5	8.5
2				24.0	21.5	22.5				11.5	10.0	11.0

			TEMPERATUR	E, WATER (D	EG. C),	WATER YEA	R OCTOBER 1	983 TO	SEPTEMBER	1984		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		остов	ER		NOVEMBI	ER		DECEMB	ER		JANUAR	Y
1				23.0	21.0	22.0				11.5	5.5	8.5
2				24.0	21.5	22.5				11.5	10.0	11.0
3				22.5	22.0	22.0				11.5	9.5	10.5
4				25.0	22.0	23.0				15.0	11.0	12.5
5				27.5	21.5	25.0				17.5	11.0	13.5
6				28.5	23.0	25.0				17.5	12.5	15.0
7				27.5	22.0	24.0	15.5	12.5	14.0	16.5	13.5	15.0
8				23.5	22.0	22.5	17.0	10.5	14.0			
9				23.0	17.5	21.5	18.5	14.0	16.0			
10				23.5	15.5	19.0	22.0	14.0	17.0			
11				20.0	16.0	18.0	18.5	13.5	16.0	444	2-1-	
12	24.0	18.0	20.0	21.0	15.0	18.0	16.5	12.0	14.0			
13	21.5	14.5	18.0	24.0	16.5	20.0	16.0	11.0	13.5			
14	21.5	15.5	18.5	24.0	17.0	20.5	18.0	11.5	13.5			
15	22.5	18.0	20.0	22.5	15.5	19.0	15.5	10.0	13.0			
16	23.0	19.5	21.0	19.5	14.5	17.0	14.0	8.5	11.5			
17	25.5	21.5	23.0	20.0	15.0	17.0	13.5	8.0	11.0			
18	24.5	23.0	23.5	22.0	16.0	19.0	10.0	5.5	8.5			
19	23.5	22.0	23.0	20.0	13.5	17.5	9.0	3.5	6.5			
20	26.0	22.5	24.5	19.0	12.0	15.5	7.5	6.5	7.0			
21	25.0	18.0	23.0	20.0	14.5	17.0	9.0	5.5	7.5			
22	26.0	15.5	20.0	23.5	16.0	20.0	8.5	1.5	5.5			
23	28.0	15.5	20.5	17.0	13.5	15.0	8.5	5.0	6.5			
24	28.5	18.0	22.0	18.0	11.0	14.5	5.5	1.0	3.0			
25	25.0	18.0	20.5	16.5	11.5	14.5	6.5	1.0	4.0			
26	26.0	15.5	19.0				5.0	2.5	4.0	14221		
27	24.5	15.0	20.0				9.5	3.0	6.5			
28	23.0	17.5	20.5				7.0	2.5	6.0			
29	23.0	19.5	21.0				6.5	1.0	3.0			
30	23.5	20.5	21.5				6.5	4.0	5.0			
31	24.0	20.5	22.0				7.5	3.0	5.0			
MONTH	28.5	14.5	21.0	28.5	11.0	19.5	22.0	1.0	9.5	17.5	5.5	12.5

RIO GRANDE BASIN
08449400 DEVILS RIVER AT PAFFORD CROSSING NEAR COMSTOCK, TX--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984--Continued MIN MEAN MEAN MAX MEAN MIN MEAN MAX MIN DAY MAX MIN MAY APRIL MARCH FEBRUARY 18.5 21.5 25.0 19.5 22.0 16.0 23.5 20.5 12.0 22.0 25.5 27.5 19.0 31.0 ---21.0 ---26.0 17.5 2 ------23.0 25.0 15.0 19.5 33.0 3 31.0 23.0 26.0 ---31.0 22.0 25.5 27.5 15.5 20.5 16.0 20.0 37.5 24.5 29.5 5 20.5 13.5 17.0 24.0 17.5 20.5 38.0 27.0 23.5 27.0 11.0 18.0 6 34.0 31.5 25.0 21.5 29.5 18.0 22.5 14.0 24.5 12.5 18.5 28.5 29.5 22.5 8 9 16.5 12.0 19.5 22.0 15.5 18.5 25.0 27.5 18.5 23.0 21.5 25.5 22.0 10 23.5 16.0 19.5 26.0 20.5 22.5 25.5 18.5 19.5 23.5 27.5 20.0 23.5 22.5 20.0 21.5 27.0 18.0 22.0 30.5 11 24.5 21.5 28.5 21.5 30.5 19.5 24.0 19.0 17.5 31.0 25.0 24.0 15.0 12 23.0 29.5 25.0 12.0 28.0 23.5 27.0 24.0 25.0 22.0 29.5 23.5 25.5 21.5 17.5 14 13.5 25.0 23.5 28.5 23.0 19.5 31.0 24.5 27.0 16.5 21.0 15 16.5 22.5 24.0 27.0 17.5 21.0 26.0 30.0 25.5 27.0 13.5 16 20.5 17.5 24.5 22.5 15.0 21.5 26.5 22.0 24.0 19.5 17.0 26.5 25.5 17 22.0 23.0 25.0 15.0 19.5 29.5 26.0 25.0 19.0 18 32.0 33.0 23.5 27.5 19.0 20.0 19 21.0 14.5 17.0 25.0 21.0 30.5 20.5 25.5 36.5 23.5 28.5 30.0 15.0 20 15.5 11.5 13.5 19.0 22.0 24.0 29.0 28.5 17.5 21.5 9.5 15.5 24.5 23.0 23.5 23.5 35.0 26.0 30.0 21.5 32.0 17.0 24.0 17.0 25.5 22 11.5 12.0 19.5 20.0 23.5 29.5 18.0 23 32.5 14.0 19.5 31.5 15.0 21.5 26.5 20.0 28.0 24.5 25 25.0 17.5 21.0 23.0 17.5 21.0 28.5 21.0 28.0 31.5 25.0 18.0 25.5 20.5 22.5 30.5 23.5 26.5 26 21.5 14.0 25.0 23.0 30.5 27.0 22.5 22.5 18.5 23.0 19.0 10.5 14.0 18.0 21.5 31.0 18.0 25.0 28.5 21.0 35.0 28.0 10.5 15.5 28 13.5 17.5 27.5 35.5 13.0 18.0 25.5 19.5 23.0 29 21.5 22.0 25.5 17.0 21.5 30 27.0 20.0 23.0 17.0 22.0 31 ---30.0 17.0 26.0 22.5 38.0 18.0 31.5 11.0 22.0 32.5 15.0 MONTH 30.5 9.5 MEAN MIN MIN MEAN MAX DAY MAX MIN MEAN MAX MIN MEAN MAX SEPTEMBER JULY AUGUST JUNE 23.5 20.0 27.5 29.0 21.0 25.0 ---------24.0 ------25.5 22.5 ---------4 5 28.5 23.0 31.0 26.5 ---24.0 6 ------------------------------------10 ---------25.0 ---------12 ------13 14 15 ---------31.0 20.0 20.5 29.0 ---------33.5 27.0 31.5 20.0 16 ---32.5 27.0 17 ------21.0 20.5 27.5 27.5 ------18 ---20.0 ---19 ------34.0 20.0 28.5 21 33.5 28.5 ---22 33.0 20.0 27.0 ---29.0 21.5 34.0 34.0 24 ---------25 ---33.5 23.0 29.0 33.0 21.0 28.0 26 27 33.5 21.5 28.5 ---------21.0 21.5 27.5 33.0 ---28.0 28.0 29 ------------------35.0 29.5 30 ---31 ---35.0 20.0 28.0 20.0 MONTH 31.0 25.0

08450900 RIO GRANDE BELOW AMISTAD DAM NEAR DEL RIO, TX

LOCATION.--Lat 29°25'30", long 101°27'00", Val Verde County, Hydrologic Unit 13080001, 2.2 mi downstream from Amistad Dam and 10 mi northwest of Del Rio.

DRAINAGE AREA. -- 123, 143 mi2.

PERIOD OF RECORD. -- Chemical analyses: July 1968 to current year.

REMARKS.--The flow is controlled largely by releases from Amistad Reservoir. Records of daily mean discharge for water year 1984 are given in International Boundary and Water Commission Water Bulletins Nos. 53 and 54.

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE		STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, CONONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
OCT	0.70.5	4000	222	12.0					
20 NOV	0 72 5	1880	898	7.9	21.0	230	120	65	16
16 DEC	0800	727	1060	7.9	14.0	270	160	73	21
21 JAN	0800	396	1090	8.0	11.5	270	150	74	20
18	0820	448	1080	8.2	9.5	270	140	75	20
FEB 17	1555	374	1080	8.1	13.5	280	150	78	20
MAR 21	0805	2480	1080	8.0	15.0	270	140	75	20
APR 23	1325	516	1070	7.9	21.0	270	150	74	21
MAY 16	0737	8860	1070	8.0	19.0	270	140	74	21
JUN 20	0730	1850	1100	8.1	19.0	280	150	76	21
JUL 18	0733	3670	1100	8.1	19.5	290	150	80	22
AUG 15	0740	1830	1120	8.0	21.0	280	140	76	21
SEP 19	0735	1340	1110						
1,2	0733	1340	1110	7.8	24.5	280	150	77	21
DATE	SODIUM DIS- SOLVED (MG/L AS NA)	SORP- TION RATIO	POTAS- SIUM DIS- SOLVEI (MG/L AS K)	, LINITY	SULFATE D DIS- SOLVEI (MG/L	DIS- SOLVE (MG/L	AS	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	
OCT	1.7								
NOV	99	3	4.6	. 11	0 190	99	15	550	
16 DEC	120	3	5.0	11	0 230	130	18	660	
21 JAN	120	3	5.0	12	0 240	130	18	680	
18 FEB	120	3	4.6	13	0 230	130	17	670	
17	130	4	4.9	13	0 240	130	18	700	
MAR 21	120	3	4.7	13	0 230	130	17	670	
APR 23	120	3	4.6	12	0 230	130	17	670	
MAY 16	120	3	4.9	13	0 230	130	17	670	
JUN 20	130	4	4.6	13		130	18	700	
JUL 18	130	3	5.0	14		130	18	700	
AUG 15	130	4	5.0	14		130	18	700	
SEP 19	130	4	4.9						
19	130	4	4.9	13	0 240	130	19	700	

08459000 RIO GRANDE AT LAREDO, TX (National stream-quality accounting network)

LOCATION.--Lat 27°29'45", long 99°29'30", Webb County, Hydrologic Unit 13080002, at gaging station 1.1 mi downstream from the highway bridge between Laredo and Nuevo Laredo, Tamaulipas, Mex., and 891.0 mi downstream from the American

DRAINAGE AREA. -- 132,578 mi2, United States and Mexico; from International Boundary and Water Commission Water Bulletin

PERIOD OF RECORD. -- Chemical analyses: July 1955 to current year. Chemical, biochemical, and sediment analyses: January 1973 to current year. Pesticide analyses: October 1978 to September 1979.

PERIOD OF DAILY RECORED. --SPECIFIC CONDUCTANCE: October 1974 to current year. WATER TEMPERATURES: October 1974 to current year.

REMARKS .-- Records of discharge for water year 1984 are given in International Boundary and Water Commission Water Bulletins Nos. 53 and 54.

EXTREMES FOR PERIOD OF DAILY RECORD. -SPECIFIC CONDUCTANCE: Maximum daily, 1,690 micromhos June 1, 1963; minimum daily, 214 micromhos Sept. 26, 1964.

EXTREMES FOR CURRENT YEAR .--

SPECIFIC CONDUCTANCE: Maximum daily, 1,200 micromhos Apr. 29, May 1, 2; minimum daily, 451 micromhos Oct. 23, 24.

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

	CE I	PH TAND- ARD ITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	SOLVED (PER- CENT SATUR- ATION)	BIO- CHEM- ICAL, 5 DAY (MG/L)	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)
NOV 08 1452 3710	785	8.1	23.0	180	7.6	89	2.9	K67000
JAN								
25 1553 840 MAR	1020	8.4	10.0	8.4	12.0	106	4.2	K19000
15 0918 2080 MAY	1080	8.0	21.5	16	7.8	90	1.1	3300
	1100	8.1	26.5	11	8.0	102	3.0	100000
	1080	8.2	29.0	24	7.9	105	1.6	K5800
05 1500 3960	960	8.0	28.0	250	6.4	83	2.4	K18000
FECAL, HARD- N KF AGAR NESS NO (COLS. (MG/L BO PER AS (NCAR- I NATE S MG/L	ALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)
NOV	***						100	1.50
08 K17000 230 JAN	110	68	14	71	2	4.2	120	150
25 K18000 300 MAR	150	86	20	97	3	3.5	150	210
15 610 290	150	80	22	120	3	4.6	140	230
MAY 02 21000 310 JUL	190	82	24	130	3	5.1	120	280
18 K2880 270 SEP	150	75	20	120	3	4.8	120	230
05 4800 240	130	67	17	100	3	5.5	110	200
RIDE, RIDE, D DIS- DIS- S SOLVED SOLVED ((MG/L (MG/L	LICA, RI IS- AT OLVED I MG/L AS S	OLIDS, ESIDUE F 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)
NOV								
08 73 .60 JAN	14	489	470				.76	
25 110 .70 MAR	10	620	630				.55	
15 120 .90 MAY	13	687	670	.39	.010	.40	.37	.050
02 150 1.0	14	762	760				<.10	
JUL 18 130 1.0	16	682	670				.24	
SEP 05 110 .90	15	595	580			119.	.46	

RIO GRANDE BASIN

08459000 RIO GRANDE AT LAREDO, TX--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	MONÍA +	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	PHOS- PHORUS, ORTHO, DIS- SOLVED (MG/L AS P)	PHENOLS TOTAL (UG/L)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
NOV	120			0.70	000	0.50		220	2210	0.0
08 JAN	.130		1.7	.270	.030	.050		330	3310	99
25	.100		.30	.050	.020	.010		14	32	95
MAR 15	.100	.45	.50	.040	.010	.010		55	309	87
MAY 02	.080		.70	.120	.070	.050	2	27	56	89
JUL										
18 SEP	.030		.40	.050	<.010	<.010	2	76	731	94
05	.120		.90	.330	.020	.030		492	5260	99
DATE	TIME	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COBALT, DIS- SOLVED (UG/L AS CO)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB)
NOV	1/50	2	0.7				40	2		/1
08 JAN	1452	3	87	<.5	<1	<1	<3	2	9	<1
25 MAY	1553	4	81	<.5	<1	<1	<3	1	7	<1
02 JUL	1605	2	110	<.5	<1	<1	<3	1	<3	<1
18	1746	3	100	<1.0	<1	<1	<3	2	6	<1
DATE	LITHIUM DIS- SOLVED (UG/L AS LI)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO)	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	VANA- DIUM, DIS- SOLVED (UG/L AS V)	ZINC, DIS- SOLVED (UG/L AS ZN)
NOV										
08 JAN	41	<1	<.1	<10	2	<1	<1	1000	7	5
25	46	4	<.1	<10	<1	<1	<1	1400	<6	8
MAY 02	66	5	<.1	<10	2	<1	<1	1400	6	10
JUL 18	60	2	<.1	<10	1	<1	<1	1400	<6	10

RIO GRANDE BASIN 08459000 RIO GRANDE AT LAREDO, TX--Continued

MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1983 TO SEPTEMBER 1984

MONTH	YEAR	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
OCT.	1983	104780	878	543	154000	93	26400	180	50500	250
NOV.	1983	68270	901	557	103000	96	17700	180	33800	260
DEC.	1983	45146	943	583	71000	100	12300	190	23500	260
JAN.	1984	44306	1000	619	74100	110	13200	210	24900	270
FEB.	1984	49179	1020	631	83800	110	15200	210	28400	280
MAR.	1984	67100	1080	664	120000	120	22300	230	41400	280
APR.	1984	106510	1110	681	196000	130	36800	240	67800	280
MAY	1984	179424	1060	653	317000	120	58300	220	108400	280
JUNE	1984	44043	977	603	71 700	110	12700	200	24000	270
JULY	1984	101780	1060	651	179000	120	32900	220	61200	280
AUG.	1984	96870	1110	681	178000	130	33500	240	61800	280
SEPT	1984	77240	1110	681	142000	130	26700	240	49200	280
TOTAL		984648	**	**	1689000	**	308000	**	575000	**
WTD.AVO	G.	2690	1030	635	**	120	**	220	**	270

	SPECIF	IC CONDU	CTANCE	(MICROMHOS/CM				OCTOBER	1983 TO	SEPTEMBER	1984	
DAY	OCT	NOV	DEC	JAN	FEB	UIVALENT MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1120	1050	942	986	991	1040	1120	1200	921	1050	1060	1140
2	1110	1060	947	1060	970	1060	1120	1200	897	1020	1090	1120
3	1120	1070	935	1050	961	1070	1110	1190	983	1010	1100	1120
4	1110	1070	920		977	1090	1100	1180	906	990	1100	1120
5	1070	1070	771	1000	971	1090	1110	1170	919	1040	1090	1020
6	1080	1060	910		978	1070	1110	1110	938	1050	1110	1050
7	1100	962	856	972	951	1060	1110	1090	905	1050	1110	1100
8	1100	586	885	994	994	1090	1110	1090	938	1060	1110	1110
9	1080	483	886		1010	1080	1100	1090	913	1080	1110	1080
10	1030	732	881	982	1030	1080	1100	1090	689	1070	1110	1090
11	865	847	905		1030	1070	1090	1100	950	1060	1130	1100
12	686	854	916	1000	1040	1060	1100	1090	951	1070	1120	1110
13	738	886	914	1010	1050	1070	1100	1100	1010	1040	1130	1110
14	704	922	905	1010	1050	1070	1090	1110	997	1060	1120	1120
15	599	933	891	1020	1040	1080	1100	1080	988	1030	961	1110
16	715	965	959	1020	1050	1090	1100	1080	1010	1050	1110	1120
17	893	960	1020	1030	1050	1090	1110	1090	1010	1060	1120	1110
18	1000	918	933	1030	1060	1090	1100	1050	1020	1060	1120	1120
19	1040	883	938	1040	1070	1090	1080	1030	1010	1070	1120	1120
20	1070	899	932	1060	1070	831	1130	1020	1010	1090	1120	1120
21	1080	892	940	1020	1090	1080	1130	908	1010	1080	1110	1110
22	923	894	953	978	1100	1100	1150	935	1020	1080	1120	1110
23	451	928	971	992	1090	1100	1150	959	1020	1080	1110	1120
24	451	837	995	994	1110	1090	1160	1000	1040	1080	1120	1120
25	480	953	1010	995	1120	1100	1170	947	1030	1090	1130	1130
26	588	939	1010	990	1080	1110	1170	1020	1020	1080	1120	1110
27	690	945	1030	984	1030	1110	1180	1020	903	1090	1110	1130
28	836	944	1010	961	1000	1110	1190	1010	1020	1070	1120	1120
29	952	946	990	959	1000	1110	1200	1010	1040	1060	1120	1120
30	1030	926	980	978		1110	1190	1010	1040	1020	1120	1120
31	1050		949	979		1120		1000		972	1120	
MEAN	896	914	938	1000	1030	1080	1130	1060	970	1060	1110	1110

08461300 RIO GRANDE BELOW FALCON DAM, TX

LOCATION.--Lat 26°33'25", long 99°10'05", Starr County, Hydrologic Unit 13090001, U.S. Tailrace at Falcon Dam.

DRAINAGE AREA.--159,270 mi², United States and Mexico; from International Boundary and Water Commission Water Bulletin No. 44.

PERIOD OF RECOD. -- Chemical analyses: July 1955 to current year.

REMARKS.--Records of specific conductance and discharge for water year 1984 are given in International Boundary and Water Commission Water Bulletins Nos. 53 and 54.

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	1	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	NONCAR- BONATE (MG/L	ALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
OCT 25	1545	425	1180	8.0	25.0	290	190	76	25
NOV 22	0930	512	1150	7.8	23.0	290	190	76	24
DEC									24
20 JAN	0945	18	1190	7.8	16.5	280	180	73	
19 FEB	1000	5500	1160	8.0	14.0	280	170	76	23
15 MAR	1100	18	1120	7.9	11.0	290	180	75	24
19	0945	1080	1140	7.8	18.0	290	180	77	23
APR 16	1115	12300	1150	7.8	22.0	290	180	78	24
MAY 21	1315	1320	1150	7.8	24.5	290	180	75	24
JUN 19	1030	3050	1120	7.9	27.0	280	180	74	23
JUL 17	1030	1340	1130	8.0	26.5	290	180	77	23
AUG 20	1100	2600	1140	7.8	26.5	270	170	68	24
SEP 25	1045	687	1140	7.6	25.5	260	170	66	24
DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	SORP- TION RATIO	POTAS SIUM DIS- SOLVE (MG/L AS K)	, LINIT FIEL D (MG/ AS	Y SULFAT D DIS- L SOLVE (MG/L	DIS- D SOLVI (MG/I	DIS- SOLVED ED (MG/L AS	SOLII SUM OR CONSTI TUENTS DIS- SOLVE (MG/I	L- S,
OCT 25	140	4	5.5	1	00 280	140	13	74	•0
NOV 22	130	3	5.4		98 280	140	13	73	30
DEC 20	130	3	5.9	1	00 280	150	12	73	0
JAN 19	130	3	5.0	1	10 270	140	12	72	.0
FEB 15	130	3	5.2	1	10 270	130	12	71	0
MAR 19	130	3	4.7		10 270	140	11	72	
APR	277						11		
16 MAY	130	3	4.8		10 280	140		73	
21 JUN	130	3	5.0	1	10 270	140	11	. 72	.0
19 JUL	130	4	4.7	10	00 270	140	12	71	0
17 AUG	130	3	5.3	1	10 260	140	12	71	0
20	140	4	5.3		97 270	130	13	71	0
SEP 25	140	4	5.3		95 270	150	14	73	30

08464700 RIO GRANDE AT FORT RINGGOLD, RIO GRANDE CITY, TX

LOCATION.--Lat 26°22'05", long 98°48'20", Starr County, Hydrologic Unit 13090001, at gaging station about 1 mi downstream from Rio Grande City, 3.9 mi downstream from mouth of Rio San Juan, and 1,014.3 mi downstream from the American Dam at El Paso.

DRAINAGE AREA.--174,362 mi², United States and Mexico; from International Boundary and Water Commission Water Bulletin

PERIOD OF RECORD. -- Chemical analyses: January 1959 to current year.

REMARKS.--Records of specific conductance and discharge for water year 1984 are given in International Boundry and Water Commission Water Bulletins Nos. 53 and 54.

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

			SPE-				HARD-		MAGNE -	
		STREAM- FLOW,	CIFIC CON-	PH		HARD- NESS	NESS, NONCAR-	CALCIUM DIS-	SIUM, DIS-	
DATE	TIME	INSTAN- TANEOUS (CFS)	DUCT - ANCE (UMHOS)	(STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	(MG/L AS CACO3)	BONATE (MG/L CACO3)	SOLVED (MG/L AS CA)	SOLVED (MG/L AS MG)	
OCT										
17 NOV	1400	1270	1250	7.8	25.0	300	190	80	25	
14 DEC	1400	1030	907	7.6	26.5	250	140	70	18	
19	1145	2310	1230	7.6	11.0	290	190	75	25	
JAN 16	1315	6170	1170	8.0	18.5	290	180	76	24	
FEB 13	1315	944	956	7.9	20.0	250	130	72	18	
MAR 20	1308	2050	1180	7.8	20.5	300	190	80	24	
APR						290	180	78	24	
18 MAY	1200	12000	1160	7.6	23.5					
15 JUN	1330	5230	1190	7.8	24.5	290	170	75	24	
12 JUL	1115	3610	1160	7.7	29.0	280	170	74	23	
17	1200	2630	1210	7.8	30.5	280	180	74	24	
AUG 14	1130	3720	1130	7.8	29.0	260	160	66	23	
SEP 17	1230	636	1390	7.7	20.0	290	190	75	26	
DATE	SODIU DIS- SOLVE (MG/ AS N	D TION	SIUM DIS- SOLVE	I, LINITY FIELD (MG/I	Y SULFATI D DIS- L SOLVEI (MG/L	DIS- D SOLVI (MG/	DIS- SOLVEI ED (MG/L L AS	CONSTI	- , D	
OCT 17	150	4	5.5		10 310	160	13	81	0	
NOV										
14 DEC	96	3	4.2		10 200	110	9.1			
19 JAN	140	4	5.8	3 10	00 290	160	- 11	77	0	
16 FEB	130	3	5.1	1	10 280	140	12	73	0	
13 MAR	100	3	4.5	12	20 200	120	7.4	59	0	
20	130	3	4.8	3 11	10 290	140	10	74	0	
APR 18	130	3	5.1	- 11	10 280	140	11	73	0	
MAY 15	140	. 4	5.4	12	20 270	150	11	75	0	
JUN 12	140	4	5.0) 1:	10 280	140	12	74	0	
JUL 17	140	4	5.4		00 270	160	13	75	0	
AUG		4				130	11	70		
14 SEP	140		5.4		95 270					
17	180	5	5.3	10	00 320	200	14	88		

08466300 RIO GRANDE NEAR LOS EBANOS, TX

LOCATION.--Lat 26°14'15", long 98°33'49", Hidalgo County, Hydrologic Unit 13090001, on Farm Road 886 at U.S. Border Port of Entry near Los Ebanos and at mile 204.37.

PERIOD OF RECORD. -- Chemical analyses: June 1977 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)		HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
OCT 18	1245	800	1410	7.8	25.0	350	230	92	28
NOV			1410				1000		
14 DEC	1530	1060	1180	7.6	25.0	310	190	85	23
19 JAN	1245	1750	1240	7.8	12.0	310	200	82	25
16	1415	6330	1190	7.9	19.0	290	180	77	24
13	1400	818	1180	8.0	20.5	310	170	88	23
MAR 20	1350	1460	1300	7.8	23.0	320	200	85	25
APR 18	1245	12100	1170	7.6	23.5	300	180	82	24
MAY 15	1400	8700	1210	7.8	25.0	300	180	79	24
JUN 12	1415	5820	1180	7.7	29.0	290	180	76	24
JUL 17	1300	2260	1240	7.9	30.0	320	200	85	26
AUG 14	1230	4080	1170	7.9	30.0	260	160	65	24
SEP 17	1320	345	1750	7.8	19.0	380	250	97	33
DATE	SODIUM DIS- SOLVED (MG/L AS NA	SORP- TION RATIO	M POTAS SIUM DIS- SOLVE (MG/I AS K)	I, LINITY FIELD CD (MG/I AS	SULFATI D DIS- L SOLVEI (MG/L	DIS- SOLVE (MG/L	AS	CONSTI	- , D
OCT 18	170	4	5.6	12	20 320	190	14	891	0
NOV									
DEC DEC	130	3	4.7	12	20 240	170	11	740	U
19	140	4	5.5	11	0 280	170	11	78	0
JAN 16 FEB	130	3	5.0	11	0 280	140	12	731	0
13 MAR	140	4	4.3	14	0 230	170	8.4	750	0
20	150	4	4.7	12	20 300	170	10	820	0
APR 18	130	3	5.3	12	20 280	140	11	740	0
MAY 15	140	4	5.2	. 12	20 280	150	12	760	0
JUN 12	140	4	4.9	11	0 280	150	13	750	0
JUL 17	150	4	5.5	12	280	160	13	790	0
AUG 14	140	4	5.4	. 9	7 280	140	11	720	0
SEP 17	230	5	6.1	13	380	270	16	1100	0

08469200 RIO GRANDE BELOW ANZALDUAS DAM, TX

LOCATION.--Lat 26°08'00", long 98°20'05", Hidalgo County, Hydrologic Unit 13090002, at gaging station 0.5 mi downstream from Anzalduas Dam, 12.2 mi from Hidalgo, and 1,077.1 mi downstream from the American Dam at El Paso.

DRAINAGE AREA. -- 176,112 mi2, United States and Mexico; from International Boundary and Water Commission Water Bulletin

PERIOD OF RECORD. -- Chemical analyses: March 1959 to current year. Pesticide analyses: October 1968 to September 1971.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1977 to current year.

REMARKS.--Records of and discharge for water year 1983 are given in International Boundary and Water Commission Water Bulletins Nos. 52 and 53. Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and regression relationships between each chemical constituent and specific conductance. Regression equations developed for this station may be obtained from the Geological Survey District office upon request.

EXTREMES FOR PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE: Maximum daily, 3,310 micromhos Feb. 12, 1984; minimum daily, 392 micromhos Feb. 27, 1983.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum daily, 3,310 micromhos Feb. 12; minimum daily, 618 micromhos Oct. 28.

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
OCT									
21	0930	500	1220	7.7	24.5	300	180	84	22
NOV 22 DEC	0820	530	1260	7.7	24.0	340	210	93	25
23	1130	550	1330	7.9	11.0	320	210	84	26
JAN 17 FEB	1145	1650	1180	8.0	12.0	290	180	77	24
14	0900	100	2100	8.0	19.0	440	280	120	35
MAR									
20	0905	800	1540	7.8	22.0	380	250	100	31
APR 18 MAY	1530	3650	1200	7.6	24.5	300	180	81	24
15	0930	6500	1260	7.9	25.0	300	180	80	24
JUN 14 JUL	0840	3000	1260	7.6	27.0	290	180	76	25
20	0815	1050	1410	7.8	27.0	310	200	79	27
AUG 15 SEP	1310	1500	1260	7.9	28.5	270	180	68	25
19	0815	150	1490	7.7	25.5	330	210	87	28

DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	
OCT									
21 NOV	140	4	5.7	120	230	170	12	740	
22	140	3	4.9	130	260	180	11	790	
DEC 23	150	4	5.9	110	310	170	11	820	
JAN									
17 FEB	140	4	5.1	110	290	150	12	760	
14	280	6	5.3	160	400	370	11	1300	
MAR	400			400	0.10		-	000	
20 APR	190	4	5.1	130	340	230	10	980	
18	140	4	4.9	120	290	150	11	770	
MAY							March 197		
15	150	4	5.0	120	290	160	12	790	
JUN 14	150	4	5.3	110	290	170	13	800	
JUL									
20	170	4	5.7	110	320	200	14	880	
AUG 15	160	4	5.4	97	290	170	11	790	
SEP									
19	180	4	5.9	120	300	230	15	920	

RIO GRANDE BASIN 419

08469200 RIO GRANDE BELOW ANZALDUAS DAM, TX--Continued MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1983 TO SEPTEMBER 1984

MONTH	YEAR	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- MHOS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
OCT.	1983	30413	1270	784	64300	170	14100	270	21900	310
NOV.	1983	27561	1310	804	59900	170	13000	270	20400	310
DEC.	1983	31107	1370	845	71000	190	15600	290	24100	330
JAN.	1984	35483	1270	783	75000	170	16100	270	25800	310
FEB.	1984	11097	1850	1160	34700	300	8870	360	10900	440
MAR.	1984	27897	1500	927	69900	210	15900	310	23300	360
APR.	1984	91940	1230	753	187000	160	39400	260	64600	300
MAY	1984	88024	1300	799	190000	170	41200	270	64800	310
JUNE	1984	72 530	1330	820	161000	180	34900	280	54700	320
JULY	1984	52 9 7 0	1270	782	112000	170	23900	270	38400	310
AUG.	1984	39920	1230	756	81500	160	17200	260	28100	300
SEPT	1984	16315	1460	904	39800	210	9080	300	13300	350
TOTAL		52 52 5 7	**	**	1145000	**	249000	**	390000	**
WTD.AV	/G.	1435	1310	807	**	180	**	280	**	320

	SPECI	FIC CONDU	CTANCE	(MICROMHOS/CM	AT 25 EO	DEG. C),	WATER YEAR	R OCTOBER	1983 TO	SEPTEMBER	1984	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	909	1370	1370		1770	1700	1390	1210	1600	1350	1300	1360
2	858	1320	1370		1760	1680	1380	1220	1460	1320	1350	1390
3	873	1300	1400	1340	1810	1540	1390	1210	1430	1300	1360	1370
3 4	1230	1290	1480	1360	1800	1380	1320	1210	1420	1230	1390	1300
5	1850	1280	1350		1800	1400	1250	1220	1440	1200	1230	1300
6	1630	1250	1260	1360	1970	1450	1310	1220	1390	1210	1200	1300
7	1880	1820	1340	1310	2370	1670	1250	1220	1320	1200	1190	1280
8	1550	1110	1330		2640	1680	1210	1210	1200	1220	1190	1270
8	1480	1290	1280		3140	1600	1210	1220	1250	1290	1200	1270
10	1440	1220	1270		3170	1460	1200	1250	1290	1300	1190	1270
11	1370	1290	1280	1200	3170	1380	1210	1230	1290	1280	1180	1280
12	1220	1010	1250	1210	3310	1340	1200	1240	1280	1250	1190	1290
13	1250	1210	1230		2850	1350	1200	1240	1270	1190	1180	1280
14	912	1130	1310		2070	1240	1190	1230	1260	1190	1170	1260
15	1010	1120	1390		1830	1450	1210	1250	1360	1220	1170	1280
16	1220	1160	1360	1200	1720	1590	1200	1280	1350	1200	1270	1330
17	1180	1160	1350	1170	1600	1740	1200	1390	1330	1220	1270	1360
18	959	1160	1350		1500	1800	1200	1310	1310	1240	1260	1480
19	1540	1160	1360	1180	1480	1740	1200	1370	1270	1270	1210	1500
20	1450	1200	1330		1420	1580	1200	1420	1270	1430	1180	1510
21	1200	1270	1300	1240	1440	1490	1230	1200	1270	1330	1200	1550
22	1500	1270	1280	1240	1450	1430	1220	1250	1330	1300	1180	1730
23	1290	1230	1300	1250	1500	1390	1220	1280	1340	1290	1200	1950
24	1050	1240	1270	1240	1540	1390	1220	1400	1570	1280	1190	2230
25	761	1210	1270	1250	1540	1390	1220	1750	1560	1320	1200	2260
26	717	1380	1300	1440	1570	1420	1220	1880	1280	1370	1270	2110
27	623	1450	1320	1350	1610	1440	1210	2180	1260	1540	1220	2010
28	618	1370	1680		1550	1470	1230	2240	1320	1390	1260	1870
29	844	1440	1790		1680	1500	1210	2170	1300	1370	1220	1940
30	1720	1410	1460			1510	1220	2220	1310	1300	1240	1930
31	1430		1240			1500		1850		1290	1350	
MEAN	1210	1270	1350	1310	1970	1510	1240	1440	1340	1290	1230	1540

420 RIO GRANDE BASIN

08475000 RIO GRANDE NEAR BROWNSVILLE, TX (National stream-quality accounting network)

LOCATION.--Lat 25°52'35", long 97°27'15", Cameron County, Hydrologic Unit 13090002, at International Boundary and Water Commission gaging station, 1,000 ft downstream from El Jardin pumping plant, 6.8 mi below International Bridge between Brownsville and Matamoros, Tamps., Mex., and 48.8 mi above the Gulf of Mexico.

DRAINAGE AREA. -- 176,333 mi2.

PERIOD OF RECORD. -- Chemical analyses: October 1967 to January 1968. Chemical and biochemical analyses: October 1974 to current year. Pesticide analyses: October 1975 to September 1982. Sediment analyses: October 1970 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: April 1967 to September 1983. WATER TEMPERATURES: October 1966 to September 1983. SUSPENDED-SEDIMENT DISCHARGE: February 1966 to September 1983.

REMARKS .-- Records of discharge furnished by International Boundary and Water Commission.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 4,130 micromhos May 29, 1972; minimum daily, 337 micromhos Sept. 3, 1967.
WATER TEMPERATURES (1966-69, 1970-75, 1977-83): Maximum daily, 35.0°C on several days during summer months of 1982 and 1983; minimum daily, 8.0°C Jan. 10, 1967.
SEDIMENT CONCENTRATIONS: Maximum daily mean, 6,000 mg/L Feb. 28, 1983; minimum daily mean, 4 mg/L Apr. 26, 1970,
Aug. 16, 18, 24, 27, 1977.
SEDIMENT LOADS: Maximum daily, 181,000 tons Feb. 28, 1983; minimum daily, 0.12 tons Aug. 26, 1983.

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	тп	STRE FLO INST ME TANE (CF	AM- CI W, CC AN- DU OUS AN	PE- IFIC ON- ICT- ICE IHOS)	PH (STAI AR UNITS	ND- D	TEMPE ATUR (DEG	RE-	TUR- BID- ITY (NTU)	SOL	SEN, (S-	YGEN DIS - OLVE PER - CENT AT UN	DEMA D BIO CHE ICA C 5 D	ND, - M- L, AY	COL. FORM FECA 0.7 UM-1 (COLS 100 I	M, TO AL, F KF MF (C	TRE. COC ECA AG OLS PER O M	CI L, H. AR NI	ARD- ESS MG/L AS ACO3)	
NOV 09	14:	25	991	1590		8.4	24	. 5	43		9.0	10	07	3.1	K84	400	K26	00	360	
JAN 24			187	1310		8.0		.5	7.1	12	2.0	10)4	1.4	K	300	2	00	320	
MAY 03			30	1260		8.3		0.0	26		0.6	14		1.9		K48		13	310	
JUL 16			569	1300		8.5		.5	26		7.8	10		2.4		170		77	310	
10	13.	+0	309	1300		0.0	23		20		. 0	10	/3	2.4	K	170	K	,,	310	
	DATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIU DIS- SOLVE (MG/I AS CA	D So	AGNE- SIUM, DIS- OLVED MG/L S MG)	SOI (M	DIUM, IS - LVED IG/L IS NA)	SODI AD SORP TIO RATI)-)-)N	POTAS - SIUM, DIS - SOLVED (MG/L AS K)	ALKA LINIT FIEL (MG/ AS CACO	Y D L	SULFATE DIS- SOLVED (MG/L AS SO4)	1	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO RIDE DIS SOLV (MG/ AS F	ED L	SILICA DIS - SOLVA (MG/1 AS SIO2)	ED L	
	NOV 09 JAN	220	96		28	17	0	4		5.8	1	33	300		210		80	9.	. 7	
	24 MAY	200	84		26	14	0	4		5.2	1	21	290	1	160		80	11		
	03 JUL	190	82		25	14	0	4		5.4	1	16	300		160		90	11		
	16	210	80		26	16	0	4	-	5.6	1	03	290		180	1.	0	12		
		SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NO2- D: SOI	TRO- EN, +NO3 IS- LVED G/L N)	GE AMMO DI	NÍA S- VED S/L	NITRO GEN, AM MONIA ORGANI TOTAL (MG/L AS N)	l- + 1 .C Pl	PHOS - HORUS , FOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVE (MG/L AS P)	, P	PHOS - PHORUS, ORTHO, DIS - OLVED MG/L S P)	S U	EDI- ENT, JS- ENDED	SEDI- MENT, DIS- CHARGE SUS- PENDE (T/DAY	, D	SED. SUSP. SIEVE DIAM. FINEI THAN .062 M	· R	
	ov																			
	09 AN	953	900		.13		060	1.1		.080	<.01	0	.030		64	171		84	4	
	24 AY	796	790		.17		080	. 5	0	.040	. 01	0	. 010		13	6.	6	99	9	
	03 UL	810	800		.18	<.	010	.9	0	.070	. 02	0	.010		48	3.	9	96	6	
	16	824	820	•	<.10		040	.6	0	.060	<.01	0	<.010		27	42		9	5	

RIO GRANDE BASIN 08475000 RIO GRANDE NEAR BROWNSVILLE, TX--Continued

421

WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984

DATE	TIME	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COBALT, DIS- SOLVED (UG/L AS CO)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB)
NOV 09	1425	3	120	<.5	<1	<1	<3	1	6	<1
JAN	1423	3	120	(.5	11	71	/3	-	0	11
24 MAY	1555	3	93	<.5	<1	<1	<3	1	5	2
03 JUL	1435	3	110	<.5	<1	<1	<3	1	4	<1
16	1540	3	110	<1.0	1	<1	<3	1	6	4
DATE	LITHIUM DIS- SOLVED (UG/L AS LI)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO)	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	VANA- DIUM, DIS- SOLVED (UG/L AS V)	ZINC, DIS- SOLVED (UG/L AS ZN)
NOV 09	70	<1	<.1	10	3	<1	4	1700	<6	7
JAN 24 MAY	58	18	<.1	<10	2	<1	<1	1500	<6	10
03	63	2	<.1	<10	4	<1	<1	1400	<6	7
JUL 16	63	<1	<.1	<10	<1	<1	<1	1600	<6	29

Because the number of streams on which streamflow information is likely to be desired far exceeds the number of stream-gaging stations feasible to operate at one time, the Geological Survey collects limited streamflow data at sites other than continuous stream-gaging stations. When limited streamflow data are collected on a systematic basis over a period of years for use in hydrologic analyses, the site at which the data are collected is called a partial-record station. In addition, discharge measurements are made at other sites not included in the partial-record program. These measurements are generally made in times of drought or flood to give better areal coverage of those events. The data collected for special reasons are called measurements at miscellaneous sites.

Streamflow data collected at partial-record stations where water-quality data other than observations of water temperature are not obtained are presented in two tables. The first is a table of discharge measurements at low-flow partial-record stations; the second to a table of annual maximum stage and (or) discharge at crest-stage stations. Discharge measurements made at miscellaneous sites for both low and high flows are given in a third table. Discharge measurements and water-quality data collected at partial-record stations are presented in downstream order in the section of this report entitled "Gaging-station records."

Low-flow partial-record stations

Measurements of streamflow at low-flow partial-record stations that are not published in the gaging-station section are given in the following table. Most of the measurements of low flow were made during periods when streamflow was sustained primarily by ground-water discharge. These measurements, when correlated with the simultaneous discharge of a nearby stream where continuous records are available, will indicate the low-flow potential of the stream. The years listed in the column headed "Period of record" identifies the water years in which measurements were made at the same or at practically the same site.

Discharge measurements made at low-flow partial-record station during water year 1984 Measurements Drainage Discharge (ft3/s) Station no. Station name Location of Date area (sq mi) record Colorado River basin Lat 31°11'06", long 100°43'51", Irion County, at headquarters ranchhouse, 500 ft upstream from 08129500 1944-58+. 10-18-83 Dove Creek Spring (a) 9.58 11-30-83 near Knickerbocker 1959-84 9.76 Dove Creek, 1.8 mi upstream from Stilson Dam 1-25-84 10.2 2-29-84 10.3 on Dove Creek, and 8.5 mi southwest of Knicker-3-27-84 9.33 bocker. 5- 1-84 6-14-84 7-24-84 8.78 8.58 7.61 9-13-84 8.15 08131300 Lat 31°20'13", long 100°28'46", Tom Green County, 1,000 ft upstream from Pecan Creek and about 9 1963-84 10-17-83 1.43 South Concho River (a) above Pecan Creek near San Angelo, mi south of San Angelo (discontinued). 1-24-84 14.1 08143900 Springs at Fort Lat 30°50'03", long 100°05'37", Menard County, (a) 1902. at Fort McKavett. 1905. McKavett, Tex. 1922, 1942. 1948-49 1951-52, 1955-56, 1958-84 Lat 31°11'44", long 98°42'42", San Saba County, 150 ft upstream from bridge on U.S. Highway 1939, 8.20 08146500 San Saba Springs, (a) 1-18-84 7-2-84 7.21 at San Saba, Tex. 1952, 190 at San Saba and 0.8 mi east of courthouse. 1957 1959-84 Lat 30°15'43", long 99°56'01", Edwards County, 3.7 mi upstream from Paint Creek, 5.7 mi south of Telegraph, and 18.7 mi southwest of Junc-08149400 South Llano River 1939. 1-24-84 (a) 16.5 7-27-84 near Telegraph, 1952, 1956 1959-84 Lat 30°16'12", long 99°55'22", Edwards County, about 3 mi upstream from Paint Creek, about 5 mi south of Telegraph, and about 18 mi south-08149500 1939, 1-24-84 14.1 Seven Hundred (a) Springs near Telegraph, Tex. 1952, 1955-56, 7-27-84 13.2 west of Junction. 1959-84 Lat 30°14'35", long 98°39'25", Gillespie County, at downstream side of Ranch Road 1623 at Stonewall, 0.6 mi upstream from Salt Banch 1979-84 11-14-83 11.3 08153050 Pedernales River 4-30-84 5.77 near Stonewall. 6-11-84 7-23-84 5.99 1.53 and at mile 68.9. 9- 4-84 2.48 Lat 30°15'33", long 97°48'17", Travis County, on 7-25-84 .23 1982-84 08155370 Skunk Hollow Creek 0.13 outlet control structure to pond 1 at Barton Creek Square Mall, 0.2 mi north of intersection 7-26-84 .07 below pond 1 at Austin, Tex. 8-15-84 . 36 of Tamarron Boulevard, and State Highway 1, and 4.0 mi west southwest of State Capitol in Austin. Lat 30°15'48", long 97°46'19", Travis County, just upstream from upper dam of Barton Creek swimming pool in Zilker Park and upstream from 1919-84 2-22-84 0 08155400 125 Barton Creek above 6-29-84 0 Barton Springs at Austin, Tex. 8-22-84 0 ŏ all springs known as Barton Springs at Austin. 9-19-84

[†] Operated as a continuous-record station.

a Not applicable.

Drainage Period Station no. Station name Discharge (ft³/s) Location Date of area (sq mi) record Guadalupe River basin 08168000 Lat 29°45'33", long 98°08'23", Comal County, two springs located 400 and 500 ft west of the Guadalupe_River, 600 ft downstream from the Hueco Springs near New Braunfels. 10-17-83 12- 1-83 1944-84 8.0 (a) 4.6 1-24-84 2.0 mouth of Elm Creek, and 4.2 mi north of New 2-29-84 1.1 4-17-84 .83 Braunfels. 5-31-84 .19 0 7-13-84 0 8-23-84 08168600 Blieders Creek Lat 29°43'14", long 98°07'23", Comal County, at 1962-84 1-31-84 0 Grove Avenue crossing in northwest New Braun-fels and 0.25 mi upstream from mouth. at New Braunfels. 6-11-84 0 Tex. 08168700 Panther Canyon at Lat 29°42'47", long 98°08'14", Comal County, at Landa Park Drive crossing in Landa Park at New 1962-84 1-31-84 0 New Braunfels. 6-11-84 Tex. Braunfels. Nueces River basin Lat 29°09'15", long 99°44'35", Uvalde County, at old road crossing on White's Ranch, 2.0 mi downstream from Cooks Slough, and 4.7 mi south-Leona River spring flow near Uvalde, 08204000 1935-65†. 10-19-83 15.0 (a) 1966-84 11-29-83 18.0 1-18-84 19.0 Tex. east of Uvalde. 2-29-84 11.0 4-24-84 2.6 6-12-84 8- 8-84 0 9-17-84 0 Rio Grande basin Lat 30°56'01", long 103°50'43", Jeff Davis County, 375 ft downstream from source of spring, 3.5 mi southwest of Toyahvale, and 7.0 08425500 Phantom Lake Spring near Toyahvale, 1931-331, 10-27-83 .83 (a) 1942-66t, 12- 1-83 .84 1967-84 2-15-84 . 54 mi southwest of Balmorhea. 4-11-84 .67 .77 5-31-84 8-22-84 16.0 3.10 08427000 Giffin Springs at Lat 30°56'51", long 103°47'19", Reeves County, 2,000 ft northwest of post office in Toyahvale. 2-15-84 (a) 1919, Toyahvale, Tex. 1922-23, 7-11-84 4.59 1925, 1932-33†, 1941-84 Lat 30°56'34", long 103°47'16", Reeves County, on South Canal at Toyahvale, 540 ft downstream from headgate at pool of springs, and 4.0 mi 1931-33†. 10-27-83 23.3 08427500 San Solomon Springs (a) 1941-65†, 24.5 at Toyahvale, 2-15-84 1966-84 31.1 29.0 2-15-84 southwest of Balmorhea. 4-11-84 27.8 5-31-84 27.3 7-11-84 39.1 33.4 8-22-84 Lat 30°53'20", long 102°51'59", Pecos County, on outlet canal of Pecos County Water Improvement District No. 1 in Fort Stockton, 0.2 mi up-1899-08444500 Comanche Springs at (a) 2-13-84 0 Ö 1935. Fort Stockton. 1936-641, Tex. stream from bridge on U.S. Highway 290, and 1965-84 0.5 mi downstream from head of springs (discontinued). 1896, 10-11-83 37.0 08456300 c/ Las Moras Springs Lat 29°18'33", long 100°25'13", Kinney County, (a) 34.0 in springflow pool at Brackettville, 160 ft south of U.S. Highway 90, and 1,550 ft upstream from bridge on Brackettville-Fort Clark Road. 1899-11- 8-83 at Brackettville. Tex. 1900, 12-15-83 36.0 1902, 1904-06, 24.0 1-11-84 2-14-84 17.0 1910, 3-12-84 14.0 1912. 4-10-84 14.0 5- 8-84 8.3 1925. 1928, 6-12-84 9.8 1951-84 7-10-84 5.1 8-14-84 9.3 9-11-84

[†] Operated as a continuous-record station.

a Not applicable.

c Records were furnished by the International Boundary and Water Commission.

Crest-stage partial-record stations

The following table contains annual maximum stage and (or) discharge at partial-record stations operated primarily for the purpose of defining the flooding characteristics of the streams. At stations where discharge is given, or is footnoted "to be determined", a stage-discharge relation has been, or will be, defined by discharge measurements obtained by current meter or by indirect procedures. Water-stage recorders are located at these flood-hydrograph stations to facilitate complete hydrograph definition. At stations where only the maximum stage is given (discharge column is dashed), data are generally collected for use in stage-frequency studies of flood-profile definition. Gages at these stations usually consist of a device that will register the peak stage occuring between inspections of the gage. The years used in the column "Period of record" identify the years in which the annual maximum has been determined.

		Annual maximum stage and (or) discharge during			Annu	al maximum	
Station no.	Station name	Location	Drainage area (sq mi)	Period of record	Date	Gage height (feet)	Dis- charge (ft /s)
		Colorado River basin					
08142000	Hords Creek at Coleman, Tex.	Lat 31°50'50", long 99°25'25", Coleman County, on right bank in city park, 1,250 ft downstream from bridge on U.S. Highways 84 and 283 and State Highway 206, 1 mi north of courthouse in Coleman, 3.9 mi downstream from Bachelor Creek, 12 mi downstream from Hords Creek Dam, and at mile 14.3.	107	1941-76†, 1971-84	6- 6-84	5.97	1,600
08155550	West Bouldin Creek at Riverside Drive, Austin, Tex.	Lat 30°15'49", long 97°45'17", Travis County, on upstream side of eastbound bridge on Riverside Drive in Austin.	3.12	1975-84	10-11-83	2,50	152
08158100	Walnut Creek at Farm road 1325 near Austin, Tex.	Lat 30°24'35", long 97°42'41", Travis County, on downstream side of bridge on Farm Road 1325 and 9.5 mi north of the State Capitol Building in Austin.	12.6	1975-84	7-24-84	5.39	281
08158300	Ferguson Branch at Springdale Road, Austin, Tex.	Lat 30°19'53", long 97°39'12", Travis County, on downstream side of bridge on Springdale Road in Austin.	1.63	1975-84	:	a<4.80 b<2.30	(c)
08158380	Little Walnut Creek at Georgian Drive, Austin, Tex.	Lat 30°21'15", long 97°41'52", Travis County, on left upstream side of bridge on Georgian Drive in Austin.	-	1983-84	7-24-84	6.91	721
08158880	Boggy Creek (South) at Circle S Road, Austin, Tex.	Lat 30°10'50", long 97°46'55", Travis County, on downstream side of bridge on Circle S Road in Austin.	3.58	1976-84	11- 5-83	6.05	797
08158930	Williamson Creek at Manchaca Road, Austin, Tex.	Lat 30°13'16", long 97°47'36", Travis County, on downstream side of bridge on Manchaca Road in Austin.	19.0	1975-84	11- 5-83	6.70	1,320
08159180	Dogwood Creek near McDade, Tex.	Lat 30°14'29", long 97°17'03", Bastrop County, in Camp Swift and 4 mi southwest of McDade.	.53	1980-84	-	<4.05	(c)
08159185	Dogwood Creek at Highway 95 near McDade, Tex.	Lat 30°13'49", long 97°19'03", Bastrop county, at bridge on State Highway 95 and 5.7 mi southwest of McDade.	5.03	1980-84		<3.50	(c)
		Guadalupe River basin					
08169500	Guadalupe River at New Braunfels, Tex.	Lat 29°41'52", long 98°06'23", Comal County, Comal Mills in New Braunfels and 0.4 mi up- stream from Interstate Highway 35.	1,652	1898- 1902, 1915-27†, 1974-84	2- 9-84	10.00 (
08173900	Guadalupe River at Gonzales, Tex.	Lat 29°29'49", long 97°27'17", Gonzales County, at Gonzales Hydro Station in Gonzales and 1.4 mi upstream from U.S. Highway 183.	-	1977-84	6- 6-84	17.61	•
08177820	Olmos Creek at Hildebrand Street, San Antonio, Tex.	Lat 29°27'56", long 98°28'01", Bexar County, at upstream side of bridge on Hildebrand Street, 0.8 mi downstream from Olmos dam in San Antonio.	34.8	1980-84	10- 9-83	5.80	-
08177900	San Antonio River at Navarro Street, San Antonio, Tex.	Lat 29°25'50", long 98°29'24", Bexar County, at bridge on Navarro Street in San Antonio.	-	1973-84	8-15-84	d633.59	•
	A CONTROL OF THE STREET			1			

Operated as a continuous-record station.

Period October 1 to March 13.
Period March 13 to September 30.
Not determined. b

Elevation, in feet, above National Geodetic Vertical Datum of 1929. Less than.

	Annua	maximum stage and (or) discharge during water year	13040011	Unided	Annu	al maximum	6.1
Station no.	Station name	Location	Drainage area (sq mi)	Period of record	Date	Gage height (feet)	Dis- charge (ft /s
		Guadalupe River basinContinued					
08177920	San Antonio River at Dolorosa Street, San Antonio, Tex.	Lat 29°25'24", long 98°29'32", Bexar County, just downstream from Dolorosa Street in San Antonio.	-	1980-84	12- 3-83	20.95	
08178100	San Pedro Creek at Santa Rosa Street, San Antonio, Tex.	Lat 29°25'51", long 98°29'49", Bexar County, at bridge on Santa Rosa Street in San Antonio.	-	1973-84	8-15-84	d640.50	•
08178350	Martinez Creek at Fredericksburg Road, San Antonio, Tex,	Lat 29°27'22", long 98°31'04", Bexar County, at bridge on Fredericksburg Road in San Antonio.	-	1973-84	8-15-84	d 680. 57	•
08178400	Alazan Creek at West Martin Street, San Antonio, Tex.	Lat 29°25'51", long 98°30'51", Bexar County, at bridge on West Martin Street in San Antonio.	-	1973-84	1984	d<634.70	•
08178450	Apache Creek at South Zarzamora Street, San Antonio, Tex.	Lat 29°24'47", long 98°31'42", Bexar County, at bridge on South Zarzamora Street in San Antonio.	•	1973-84	5-19-84	d627.66	-
08178500	San Pedro Creek at Furnish Street, San Antonio, Tex.	Lat 29°24'22", long 98°30'38", Bexar County, at bridge on Furnish Street in San Antonio.	3	1973-84	8-15-84	d603.86	-
08178550	San Antonio River at Ashley Street (Berg's Mill), San Antonio, Tex.	Lat 29°20'04", long 98°27'20", Bexar County, at bridge on Ashley Street in San Antonio.		1973-84	5-19-84	d511.79	
08178640	West Elm Creek at San Antonio, Tex.	Lat 29°37'23", long 98°26'29", Bexar County at mid-channel, 1.8 mi upstream from East Elm Creek, 2.1 mi upstream from Farm Road 1604, and 7.0 mi north of San Antonio International Airport.	2.45	1976-84	9- 3-84	3.06	13
08178645	East Elm Creek at San Antonio, Tex.	Lat 29°37'04", long 98°25'41", Bexar County, at mid-channel, 2.1 mi upstream from West Elm Creek, and 2.4 mi upstream from Farm Road 1604.	2.33	1975-84	1984	<3.10	-
		Nueces River basin					
08207220	Rutledge Hollow at 7th Street, Poteet, Tex.	Lat 29°02'07", long 98°34'18", Atascosa County, in city of Poteet at 7th Street and 2.0 mi above Atascosa River.	9.74	1979-84	6-18-84	419.32	
08207300	Atascosa River at U.S. Highway 281, Pleasanton, Tex.	Lat 28°57'44", long 98°28'51", Atascosa County, at bridge on U.S. Highway 281 in Pleasanton.	•	1973-84	1984	<341.17	•
08211500	Nueces River at Calallen, Tex.	Lat 27°52'34", long 97°37'32", Nueces County, at the Cunningham pumping station in Corpus Christi, and 0.4 mi upstream from Calallen dam.	16,920	e1915-50, 1983-84	1-29-84	4.87	65
		San Fernando Creek basin					
08212300	Tranquitas Creek at Kingsville, Tex.	Lat 27°31'33", long 97°52'02", Kleberg County, at bridge on U.S. Highway 77 Business Route in Kingsville, 4.9 mi above San Fernando Creek, and 5.9 mi downstream from Tranquitas Dam.	48.5	1965-82, 1984	1984	<1.74	•

d Elevation, in feet, above National Geodetic Vertical Datum of 1929. e Gage heights only during 1918-50. < Less than.</p>

DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

Measurements of streamflow at points other than gaging stations of partial-record stations are given in the following table:

Discharge measurements made at miscellaneous sites during water year 1984 Measured Measurements Drainage previously Discharge (ft³/s) Stream Tributary to Date (water (sq mi) years) Guadalupe River basin Lat 29°27'56", long 98°28'04", Bexar County, just below Hildebrandt Street in San Antonio, Tex. San Antonio 12- 1-83 7- 6-84 San Antonio River 1951-52, 0 Springs 1959-62, 1972, 1974-77, 1979-84 Lat 29°26'42", long 98°30'06", Bexar County, at San Pedro Park in San Antonio, Tex. San Pedro San Pedro Creek 1933-35, 12- 1-83 7- 6-84 1.3 1951-52, 1958-61, Springs 1966, 1971, 1974-77, 1979-84 Rio Grande basin Lat 29°27'10", long 100°37'30", Kinney County, on Mays Ranch and about 16 mi northwest of Mud Springs Mud Creek 1939-41, 10-18-83 19.0 1952-53, 11-17-83 22.0 1962, 1965-84 12-15-83 1-11-84 20.0 Brackettville, Tex. 2-14-84 22.0 3-13-84 20.0 4-10-84 21.0 18.0 5- 8-84 6-12-84 17.0 7-10-84 8-14-84 12.0 14.0 9-11-84 12.0 Lat 29°24'10", long 100°27'15", Kinney County, on C. C. Belcher Ranch and 7.5 mi northwest of Brackettville, Tex. Pinto Springs 1939-41, 1952-53, 0 Pinto Creek 10-18-83 1.8 1.7 1.3 0 11-17-83 12-15-83 1965-84 4-10-84 5- 8-84 6-12-84 0 7-10-84 8-14-84 9-11-84 0

 $[\]underline{1}/$ Measurements by International Boundary and Water Commission.

INDEX

Pag	Page
Accuracy of field data and computed results 2	2 Comanche Springs at Fort Stockton
	7 Computation of data
Agencies other than Geological Survey, records	Concho River, at San Angelo
collected by	3 at Paint Rock
	7 Control, definition of 9
	5 Cooperation
	3 Copano Creek near Refugio323-324
	5 Crest-stage partial-record measurements424-425 3 Crest-stage partial-record station, definition of 22
	Cubic foot per second (Ft ³ /s, ft ³ /s), definition of 9
at U.S. Highway 281 at Pleasanton	Cubic foot per second per square mile, definition of 9
Bacteria, definition of	Data, accuracy of field, and computed results 22
Barton Creek, above Barton Springs at Austin 42	collection and computation of
at Loop 360, Austin	
near Camp Craft Road	
	B Definition of terms
near Westbrook 54-5	Delaware River near Red Bluff, NM
	Devils River at Pafford Crossing near Comstock406-410
	7 Diatoms, definition of
Big Sandy Creek, near Elgin	
near McDade 193	
Biochemical oxygen demand (BOD), definition of	
Biomass, definition of	B Dissolved, definition of
	Dogwood Creek, at Highway 95 near McDade
near Kyle 246	near McDade
	Dove Creek at Knickerbocker
Blue-green algae, definition of	Dove Creek Spring near Knickbocker
	Drainage area, definition of
Bottom material, definition of	Drainage basin, definition of
	Dry Frio River near Reagan Wells342-345
near Eden	Dry mass, definition of
	East Elm Creek at San Antonio 425
	Ecleto Creek near Runge
	Elm Creek at Ballinger
	Examination of data
Chemical oxygen demand (COD), explanation of	Explanation, of stage and water-discharge records 18
Chiltipin Creek at Sinton	of surface-water quality records
Chlorophyll, definition of	Fecal coliform bacteria, definition of
	Fecal streptococcal bacteria, definition of 8
near Falls City307-312	
	Frio River, at Concan
Coleto Creek Reservoir, (Condenser No. 1) near Fannin.266-267	below Dry Frio River near Uvalde
inflow (Guadalupe Diversion) near Schroeder 264	
near Victoria	
(outlet) near Victoria	Gage height, definition of
	Gaging station, definition of
	Gaging-station records
Color unit, definition of	Garcitas Creek near Inez230-231 Giffin Springs at Toyahvale423
above Silver	Green algae, definition of
at Austin	Guadalupe-Blanco River Authority Calhoun Canal,
at Bastrop194-195	
at Colorado City	Flume No. 2 near Long Mott
at Robert Lee	above Comal River at New Braunfels
at Wharton211-215	at Comfort
at Winchell	at Cuero258-259
below Austin	at Gonzales
near Ballinger 73-76	at New Braunfels
near Bay City 216	at Sattler 240
near Cuthbert	at Victoria
near San Saba120-123	
Colorado River near Stacy 99-102	Guadalupe River near Tivoli320-322
Colorado River basin, crest-stage partial-record	Guadalupe River basin, crest-stage partial-record
stations in	stations in
low-flow partial-record stations in	gaging-station records in233-322
Comal River at New Braunfels 242	

428 INDEX

Page	Page
Hardness, definition of	National stream-quality accounting network (NASQAN),
Helotes Creek at Helotes	
Hondo Creek, at King Waterhole near Hondo	Natural substrates
near Tarpley350-352	near Speaks
Hords Creek, at Coleman 424	Networks and programs, special
	ND, definition of
Hords Creek Lake near Valera	
Hydrologic bench-mark station	near Carlsbad 90
Hydrologic conditions 3	North Fork Guadalupe River near Hunt 233
Hydrologic unit	Nueces River, at Calallen
Illustrations	
Independence Creek near Sheffield	below Uvalde
Index427-429	
Instantaneous discharge, definition of	near Mathis
THE TOUR CETON TO THE TENED TO	near Tilden
Johnson Creek near Ingram 235	Nueces River basin, crest-stage partial-record
Locarto Crock noon Coomes West	station in
Lagarto Creek near George West	
Lake Austin at Austin140-145	
Lake Brownwood near Brownwood	
Lake Buchanan near Burnet	Olmos Creek, at Dresden Drive, San Antonio272-273 at Hildebrandt Street, San Antonio
	Olmos Reservoir at San Antonio
	Onion Creek, at U.S. Highway 183 near Austin189-191
Lake J. B. Thomas near Vincent 29-30	near Driftwood177-178
	Organic mass, definition of
Lake Surveys (Water Quality):	Organism count/area, definition of
E. V. Spence Reservoir near Robert Lee 66-71	Organisms count/volume, definition of
	Oso Creek at Corpus Christi372-373
Town Lake at Austin	Other data available
	Panther Canyon at New Braunfels 423
Austin, Lake, at Austin140-145	
Brownwood, Lake, near Brownwood	Particle size, definition of
	Pecan Bayou near Mullin111-114
Champion Creek Reservoir near Colorado City 45-46	Pecan Creek near San Angelo
Clyde, Lake, near Clyde	
Colorado City, Lake, near Colorado City	Canal near Imperial
E. V. Spence Reservoir near Robert Lee 66-71	diversion) canal near Grandfalls 395
	Pecos County Water Improvement District No. 3
J. B. Thomas, Lake, near Vincent	canal near Imperial
Nasworthy, Lake, near San Angelo 87-88	near Girvin
O. C. Fisher Lake at San Angelo 91-92	near Langtry401-405
Olmos Reservoir at San Antonio	마른 사람들은 아이들은 그는 아이들은 그는 아이들은 아이들은 아이들은 아이들은 아이들은 아이들은 아이들은 아이들은
Town Lake at Austin	
Travis, Lake, near Austin	near Stonewall 422
	Percent composition, definition of
	Periphyton, definition of
near Edna218-221	
Lavaca River basin, gaging-station records in218-229	
	Phantom Lake Spring near Toyahvale
Limpia Creek above Fort Davis	
Little Walnut Creek at Georgian Drive, Austin 424	Placedo Creek near Placedo 232
Llano River, at Llano128-130	
near Junction	Plum Creek, at Lockhart
Lorence Creek at Thousand Oaks Boulevard, San Antonio.278-279	Polychlorinated biphenyls, definition of
Low-flow partial-record measurements422-423	Programs, special networks and
Low-flow partial-record station, definition of 22	Publications of techniques of water-resources investigations
Martinez Creek at Fredericksburg Road, San Antonio 425	Thivestigations
Mean concentration, definition of	Radiochemical program
	Records of discharge collected by agencies other
Medina Canal near Riomedina	than the Geological Survey
Medina River, at Bandera284-285	
at San Antonio293-294	Redgate Creek near Columbus 209
near Macdona	Reeves County Water Improvement District No. 2 canal near Mentone
Methylene blue active substance, definition of 10	canal near Mentone
Micrograms per gram, definition of	Rio Grande, at El Paso377-378
Micrograms per liter, definition of	at Fort Ringgold, Rio Grande City
Middle Concho River above Tankersley	at Foster Ranch near Langtry
Miscellaneous measurements 426	below Amistad Dam near Del Rio 411
Mission River at Refugio325-327	below Anzalduas Dam418-419
National Geodetic Vertical Datum of 1929 (NGVD).	below Falcon Dam
definition of	near Brownsville420-421

INDEX 429

Page	Page
Rio Grande basin, discharge measurements at miscellaneous sites	Stage-discharge relation, definition of
gaging-station records in	Streamflow 3
gaging-station records published by International Boundary and Water Commission	definition of
low-flow partial-record stations in 423	Suspended, recoverable, definition of
Runoff in inches, definition of	Suspended sediment, definition of
Rutledge Hollow at 7th Street, Poteet 425	Suspended-sediment concentration, definition of 14 Suspended-sediment discharge, definition of 14
Sabinal River, at Sabinal	Suspended-sediment load, definition of
near Sabinal	Suspended, total, definition of
at upper station at San Antonio280-281	
San Antonio River, at Ashley Street (Berg's Mill),	Temperature, collection and examination 24
	Terms, definition of
at Goliad314-317	
at Navarro Street, San Antonio 424	Tons per day, definition of
at San Antonio275-277	Total coliform bacteria, definition of
near Elmendorf	Total (in bottom material)
San Casimiro Creek near Freer	
	Total load (tons), definition of
Sandies Creek near Westhoff	Total organism count, definition of
near Louise	
San Fernando Creek at Alice 376	Town Lake at Austin
San Fernando Creek basin, crest-stage partial-	Tranquitas Creek at Kingsville
records in	
San Marcos River at Luling247-248	
San Marcos River spring flow at San Marcos 244	Walnut Creek, at Dessau Road, Austin168-169
San Miguel Creek near Tilden	
at Santa Rosa Street, San Antonio	
San Saba River, at Menard 115	Ward County Irrigation District No. 1 canal
at San Saba	near Barstow
San Saba Springs at San Saba	Ward County Water Improvement District No. 2 canal near Grandfalls
	Ward County Water Improvement District No. 3 canal
Seco Creek, at Rowe Ranch near D'Hanis	near Barstow
at Miller Ranch near Utopia	Water analysis, explanation of
	Water quality
Seven Hundred Springs near Telegraph 422	Water temperature, explanation of
Shoal Creek, at 12th Street, Austin	WDR, definition of
	Weighted average, definition of
Slaughter Creek, at Farm Road 1826 near Austin181-182	
	West Mustang Creek near Ganado227-229
	West Nueces River near Brackettville
	Wet mass, definition of
South Llano River near Telegraph 422	at Manchaca Road, Austin 424
Special networks and programs	at Oak Hill183-185
	WRD, definition of
Springs at Fort McKayett	
Stage, explanation of	Zooplankton, definition of

FACTORS FOR CONVERTING INCH-POUND UNITS TO INTERNATIONAL SYSTEM UNITS (SI)

The following factors may be used to convert the inch-pound units published herein to the International System of Units (SI). This report contains both the inch-pound and SI unit equivalents in the station manuscript descriptions.

Multiply inch-pound units		
	Length	
inches (in)	2.54x10 ¹ 2.54x10 ⁻²	millimeters (mm) meters (m)
feet (ft)	3.048x10 ⁻¹	meters (m)
miles (mi)	1.609x10°	kilometers (km)
	Area	
acres	$4.047x10^{3}$	square meters (m ²)
	4.047×10^{-1}	square hectometers (hm ²)
	4.047×10^{-3}	square kilometers (km ²)
square miles (mi ²)	2.590x10°	square kilometers (km²)
	Volume	
gallons (gal)	3.785x10°	liters (L)
	3.785x10°	cubic decimeters (dm ³)
	3.785×10^{-3}	cubic meters (m ³)
million gallons	3.785×10^3	cubic meters (m ³)
	3.785×10^{-3}	cubic hectometers (hm³)
cubic feet (ft ³)	2.832×10^{1}	cubic decimeters (dm ³)
	2.832×10^{-2}	cubic meters (m ³)
cfs-days	2.447×10^3	cubic meters (m ³)
0	2.447×10^{-3}	cubic hectometers (hm³)
acre-feet (acre-ft)	1.233×10^3	cubic meters (m ³)
	1.233×10^{-3}	cubic hectometers (hm³)
	1.233x10 ⁻⁶	cubic kilometers (km³)
	Flow	
cubic feet per second (ft ³ /s)	2.832x101	liters per second (L/s)
	2.832x10 ¹	cubic decimeters per second (dm³/s)
	2.832x10 ⁻²	cubic meters per second (m ³ /s)
gallons per minute (gal/min)	6.309×10^{-2}	liters per second (L/s)
	6.309×10^{-2}	cubic decimeters per second (dm ³ /s)
	6.309x10 ⁻⁵	cubic meters per second (m³/s)
million gallons per day	4.381x10 ¹	cubic decimeters per second (dm ³ /s)
	4.381x10 ⁻²	cubic meters per second (m ³ /s)
	Mass	
tons (short)	9.072x10 ⁻¹	megagrams (Mg) or metric tons

U.S. DEPARTMENT OF THE INTERIOR Geological Survey 649 Federal Building, 300 East 8th Avenue Austin, TX 78701

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE \$300
SPECIAL 4TH CLASS BOOK RATE

