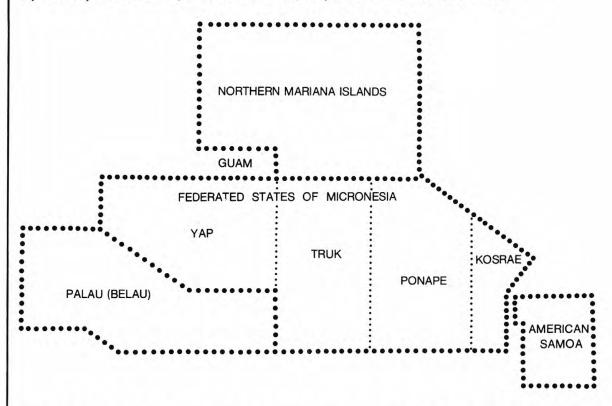

R (200) Ga3 Hawaii 1985, vol. 2

Water Resources Data Hawaii and other Pacific Areas Water Year 1985

Volume 2. Guam, Northern Mariana Islands, Federated States of Micronesia, Palau, and American Samoa

U.S. GEOLOGICAL SURVEY WATER-DATA REPORT HI-85-2 Prepared in cooperation with the Governments of Guam, Northern Mariana Islands, Federated States of Micronesia, Palau, American Samoa, and with other agencies

CALENDAR FOR WATER YEAR 1985


										1984	7									
	0	C	ΓО	В	E R			N () V	EN	1 B	E F	?		D I	E C	EN	1 B	E	?
S	М	Т	W	T	F	S	S	М	T	W	T	F	S	S	M	Т	W	Т	F	S
21	1 8 15 22 29	16 23		18		6 13 20 27	4 11 18 25		6 13 20 27	7 14 21 28		9 16 23	3 10 17 24	16 23	10 17		5 12 19 26	6 13 20 27	21	15 22
										1985	5									
	J	A !	V U	A	R Y			FE	В	RU	JA	R	/		1	м А	R (СН		
S	М	T	W	T	F	S	S	M	T	W	T	F	S	S	M	T	W	T	F	S
	7 14 21 28		16 23	24					19	6 13 20 27			2 9 16 23			19	6 13 20 27		22	
		A	P R	II	L				М	A	Y					J	U	N E		
S	М	Т	W	Т	F	S	S	М	Τ	W	Т	F	S	S	M	Т	W	Т	F	S
21	15	23	17 24	18	19	20	12 19	20	14 21	15 22	16 23	10 17 24	18 25	9 16 23	17	11 18 25	19	13 20	21	22
		JI	JL	Υ				ļ	U A	G	JS	Т			S E	Р.	ΓΕ	M E	3 E	R
S	М	Т	W	T	F	S	S	M	T	W	T	F	S	S	М	Т	W	Т	F	S
14 21	15	9 16 23	10 17 24	11 18 25	12 19 26	20 27	11 18	12 19	13 20	14 21	8 15 22	9 16 23	17 24	15 22	9 16 23	10 17 24	11 18	12 19	13 20	14 21

Water Resources Data Hawaii and other Pacific Areas Water Year 1985

Volume 2. Guam, Northern Mariana Islands, Federated States of Micronesia, Palau, and American Samoa

by Salwyn S. Chinn, Grace A. Tateishi, and Johnson J.S. Yee

U.S. GEOLOGICAL SURVEY WATER-DATA REPORT HI-85-2 Prepared in cooperation with the Governments of Guam, Northern Mariana Islands, Federated States of Micronesia, Palau, American Samoa, and with other agencies

UNITED STATES DEPARTMENT OF THE INTERIOR DONALD PAUL HODEL, Secretary

GEOLOGICAL SURVEY

Dallas L. Peck, Director

For information on the water program in Hawaii and other Pacific Areas write to District Chief, Water Resources Division U.S. Geological Survey 300 Ala Moana Boulevard, Rm. 6110 P.O. Box 50166 Honolulu, Hawaii 96850

1987

PREFACE

This volume of the annual hydrologic data report of Hawaii and other Pacific Areas is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by State, local, and Federal agencies, and the private sector for developing and managing our Nation's land and water resources. Hydrologic data for Hawaii and other Pacific Areas are contained in two volumes:

Volume 1. Hawaii

Volume 2. Guam, Northern Mariana Islands, Federated States of Micronesia, Palau, and American Samoa.

This report is the culmination of a concerted effort by dedicated personnel of the U.S. Geological Survey who collected, compiled, analyzed, verified, and organized the data, and who typed, edited, and assembled the report. In addition to the authors, who had primary responsibility for assuring that the information contained herein is accurate, complete, and adheres to Geological Survey policy and established guidelines, the following individuals contributed significantly to the collection, processing, and tabulation of the data:

David A. Beck Gregg N. Ikehara Lodie T. Piniol Isao Yamashiro Rose M. Maruoka Leonora K. Fukuda

This report was prepared in cooperation with the Governments of Guam, Northern Mariana Islands, Federated States of Micronesia, Palau, American Samoa, and with other agencies under the general supervision of Stanley F. Kapustka, District Chief, Hawaii.

REPORT DOCUMENTATION PAGE	1. REPORT NO. USGS/WRD/HD-87/218	2.	3. Recipient's Accession No.
4. Title and Subtitle	o for Univil and other Dea	: C: - A	5. Report Date February 1987
Water Year 1985. Vo	a for Hawaii and other Pac olume 2.	iric Areas,	6.
7. Author(s) Salwyn S. Chinn, Gra	ace A. Tateishi, and Johnso	on J. S. Yee	8. Performing Organization Rept. No. USGS-WDR-HI-85-02
9. Performing Organization Name a	nd Address		10. Project/Task/Work Unit No.
U.S. Geological Surv 300 Ala Moana Blvd. Honolulu, Hawaii 968		ion	11. Contract(C) or Grant(G) No. (C) (G)
U.S. Geological Surv	13. Type of Report & Period Covered Annual - Oct. 1, 1984 to Sept. 30, 1985		
300 Ala Moana Blvd. Honolulu, Hawaii 968			14.

15. Supplementary Notes

Prepared in cooperation with the Governments of Guam, Northern Mariana Islands, Federated States of Micronesia, Palau Islands, American Samoa, and with other agencies.

16. Abstract (Limit: 200 words)

Volume 2 of water resources data for the 1985 water year for other Pacific areas consists of records of stage, discharge, and water quality of streams and springs; stage of 2 lakes and a reservoir; and water levels and water quality in wells. This report contains discharge records for 31 gaging stations; stage only record for 3 gaging stations; water quality for 8 gaging stations; 6 partial-record stations; water temperature for 31 gaging stations; and water levels for 35 observation wells and water quality for 110 ground-water sites. Also included are 19 low-flow partial-record stations. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Governments and Federal agencies in other Pacific areas.

17. Document Analysis a. Descriptors

*Pacific area, *Hydrologic data, *Surface water, *Ground water, *Water quality, Flow rate, Gaging stations, Chemical analyses, Sediments, Reservoirs, Water temperatures, Sampling sites, Water levels.

b. Identifiers/Open-Ended Terms

c. COSATI Field/Group

18. Availability Statemen: No restriction on distribution. This report may be purchased from:	19. Security Class (This Report) UNCLASSIFIED	21. No. of Pages 142
National Technical Information Service Springfield, VA 22161	20. Security Class (This Page) UNCLASSIFIED	22. Price

CONTENTS

4			TTT
List of	gagi	ing stations, in downstream order, for which records are published	VI III
		and-water stations for which water-level and water-quality records	VII
		1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1
			1
		nydrologic conditions	2
		of termsorder and station number	2 11
		ystem for wells and miscellaneous sites	11
		of stage and water-discharge records	22
		n and computation of data	22
		of field data and computed results	23
		f discharge collected by agencies other than the Geological Surveya available	24
		ons.	24
		of water-quality records	24
		n and examination of data	24
		lysis	25
		perature	25 25
		ons	25
		of ground-water level records	26
		n of the data	26
		ATSTORE data	26
		s on techniques of water-resources investigations	27
		ion and water-quality records	29 71
		partial-record stations	71
		nts at miscellaneous sites	74
Analys	es of	samples collected at miscellaneous sites	75
		terminations of water temperature at gaging stations	78
		r records	83
		ter levels and quality of water listed by island	83 141
		ILLUSTRATIONS	
23.			
Figure	1.	Map showing locations of Pacific Islands	3
	3.	representative streams on Guam and Babelthuap Discharge during 1984 water year compared with median discharge for	4
	4.	representative streams on Yap and Ponape	5
	5.	representative streams on Kosrae and Tutuila	6
	6.	wells, and water-quality sites	12
	7.	wells, and water-quality sites Map of Babelthuap, Palau Islands, showing locations of gaging stations and	13
	0	water-quality sites	14
	8. 9.	Map of Koror, Palau Islands, showing locations of water-quality sites Map of Yap Islands, showing locations of gaging, low-flow partial-record	15
	10.	Map of Moen, Truk Islands, showing locations of gaging station, wells, and	16
	11.	water-quality sites	17
	12.	water-quality sites Map of Kosrae, showing locations of gaging stations	18 19
	13.	Map of Tutuila, Samoa Islands, showing locations of gaging, low-flow partial-	20
	14.	record stations, observation wells, and water-quality sites	21
	15.	Sketch showing local well numbering system	21

	Page
MARIANA_ISLANDS	
ISLAND OF SAIPAN	
South Fork Talofofo Stream (dct)	29
Lake Susupe (ect)	31
Tinaga River near Inarajan (dt)	33
Tolaeyuus River (head of Talofofo River):	
Imong River (head of Fena River) near Agat (dt)	34
Almagosa River near Agat (dt)	35
Maulap River near Agat (dt)	36
Fena Dam spillway near Agat (e)	37
Ugum River above Talofofo Falls, near Talofofo (dt)	38
Ylig River near Yona (dt)	39
PALAU ISLANDS	
Diongradid River, Babelthuap (dct)	40
Tabecheding River, Babelthuap (dct)	42
Kmekumel River, Babelthuap (dct)	44
Ngerdorch River:	10
South Fork Ngerdorch River, Babelthuap (dct)	46
YAP ISLANDS	10
Oatliw Stream, Yap (dt)	48
Qaringeel Stream, Yap (dt)	49
Airport Pond, Yap (e)	50
Burong Stream, Yap (dt)	51
Mukong Stream, Gagil-Tamil (dct).	52
Eyeb Stream, Gagil-Tamil (dct).	54
TRUK ISLANDS	-
Wichen River at altitude 18 m, Moen (dt)	56
ISLAND OF PONAPE	
Kiepw River:	
Nanpil River (dt)	57
Lewi River (dt)	
Luhpwor River (dt)	59
Lehn Mesi River (dt)	
ISLAND OF KOSRAE	
Melo River (dt)	61
Malem River (dt)	62
Tofol River (dt)	
SAMOA ISLANDS	
ISLAND OF TUTUILA	
Pago Stream at Afono (dt)	
Aasu Stream at Aasu (dt)	
Atauloma Stream at Afao (dt)	
Asili Stream at altitude 330 ft near Asili (dt)	
Leafu Stream at altitude 370 ft near Leone (dt)	
Afuelo Stream at Matuu (dt)	
Leafu Stream near Auasi (dt.)	7.0

Letters after well number designate type of data: (c) chemical, (t) water temperature, (w) water level

ARIANA ISLANDS			Pa
SLAND OF SAIPAN			
(14-0742-06)	150723145431170	(ct)	
(14-0742-07)	150737145431070	(ct)	
(14-0742-09)	150732145431270	(ct	
(14-0742-13)	150736145425370	(ct)	
(14-0743-10)	150728145431470	(ct)	
(14-0743-11)	150730145431370	(ct)	
(14-0743-13)	150736145430070	(c)	
(14-0743-17)	150730145435270 150737145440670	(ct)(ct)	
(14-0743-18) (14-0743-19)	150737145440870	(ct)	
(14-0743-13)	150731145440370	(ct)	
(14-0743-23)	150738145435870	(ct)	
(14-0743-24)	150743145435470	(ct)	
(14-0743-25)	150740145435570	(ct)	
(14-0743-26)	150733145435970	(ct)	
(14-0743-29)	150729145435570	(ct)	
(14-0843-04)	150843145434770	(ct)	
(14-1045-08)	151026145454970	(ct)	
(14-1045-09)	151032145460370	(w)	
(14-1143-02)	151127145434270	(ct)	
(14-1143-05)	151127145434070	(ct)	
(14-1144-07) (14-1244-08)	151130145445970 151246145443770	(w)(ct)	
(14-1244-09)	151250145444170	(ct)	
(14-1244-16)	151255145443770	(ct)	
(14-1344-14)	151312145441570	(ct),	
(14-1344-15)	151314145441570	(ct)	
(14-1344-17)	151312145443970	(ct)	
(14-1344-18)	151309145443870	(ct)	
(14-1344-19)	151309145443370	(ct)	
(14-1345-04)	151359145451570	(ct)	
SLAND OF GUAM			
(18-2645-07)	132624144452771	(w)	
(18-2647-01)	132615144470571	(w)	
(18-2647-12)	132626144471771	(ctw)	
(18-2648-02)	132644144480871	(w)	
(18-2745-03) (18-2745-07)	132758144450571	(w)(w)	
(18-2746-06)	132736144461671	(ctw)	
(18-2846-01)	132824144464271	(w)	
(18-2847-12)	132813144472771	(w)	
(18-2848-03)	132806144481871	(ctw)	
(18-3048-06)	133031144482371	(c)	
(18-3049-03)	133032144491871	(w)	
(18-3049-05)	133047144500171	(w)	
(18-3050-01)	133047144504671	(c)	
(18-3050-05)	133034144500871	(ctw)	
(18-3051-01)	133047144510171	(c)	
(18-3051-02)	133041144515271	(c)	
(18-3052-03)	133044144523771	(c)	
(18-3052-04) (18-3052-05)	133043144522671	(c)(c)	
(18-3052-06)	133043144521471	(c)	
(18-3148-02)	133115144484971	(w)	
(18-3149-05)	133119144491771	(ctw)	
(18-3150-10)	133120144505471	(ctw)	
(18-3151-01)	133103144511571	(c)	
(18-3249-02)	133224144495271	(ctw)	
(18-3355-01)	133338144553971	(c)	
(18-3455-31)	133414144551871	(ct)	
(18-3552-03)	133534144521271	(ct)	
(18-3552-04)	133522144523971	(ct)	
(18-3552-05)	133513144523771	(ct)	
(18-3553-01)	133513144532171	(ct)	
(18-3651-05)	133628144513271	(ctw)	
(18-3654-01)	133601144541571	(ct)	
CAROLINE ISLAND YAP ISLANDS	2		
(25-2904-01)	092919138045670	(ctw)	

Page CAROLINE ISLANDS -- Continued YAP ISLANDS -- Continued (25-2905-01) 092915138050270 119 (25-2905-02) 092920138050270 (25-2905-03) 092616138050670 121 (w)..... (25-2905-06) 092926138050470 121 (25 - 3109 - 01)093159138095870 122 (25 - 3109 - 02)093159138095870 (w)..... 122 (25-3109-03) 093157138095670 123 (25-3109-04) 093154138095370 (w)..... 123 (25 - 3210 - 01)093217138101270 (w)..... 124 TRUK ISLANDS (30-0034-01) 070000152342970 128 (ct).............. (30-2650-01) 072658151511970 (ct)..... 128 072654151511870 (30 - 2650 - 02)(ct)...... 072702151512570 (30-2651-01) (ct)........ 128 (30 - 2651 - 03)072706151512470 (ct)............. 128 (30-2750-03) 072708151512170 (ct)...... 128 (30-2751-01)072710151512570 (ct)...... 128 (30-5042-01)065018152422170 128 (30-5042-02) 065016152420970 (ct)..... 128 065013152422170 (30-5042-03)(ct)..... 125 (30-5042-04) 065015152420970 128 (30-5042-05) 065017152422370 (ct)...... 128 065341152435870 (ct).............. (30 - 5343 - 01)128 (30-5344-01) 065336152440270 126 (30 - 5344 - 02)065334152440370 (ct)....... 128 065335152440370 (30-5344-03) 128 (30-5344-04) 065337152440470 128 (30-5934-01) 065932152344570 (ct)..... 127 (30-5934-02) 065934152344170 128 MARSHALL ISLANDS MAJURO ATOLL (50-0802-01)070841171011801 (ct)..... 131 (50-0802-02)070850171021901 (c)..... 131 (50 - 0802 - 03)070849171011001 (ctw)..... 129 070854171011201 (50-0802-04)132 (50-0802-05) 070835171021501 133 (50 - 0802 - 06)070856171021401 133 (50-0802-07)070856171021402 (ct)...... 133 (50-0802-08) 070856171021403 (ct)....... 133 (50-0802-09)070854171020801 (ct)..... 133 (50-0802-10) 070854171020802 133 (50-0802-11) 070854171020803 133 (50-0802-12) 070854171020001 (ct)...... 133 (50-0802-13)070854171020002 133 (50-0802-14) 070854171020003 134 (50-0802-15) 070843171021001 (ct).... 134 (50-0802-17)070843171021003 (ct)..... 134 070843171021004 (50-0802-18)134 (50-0802-19) 070854171020004 134 (50-0802-20) 070856171021404 134 (50 - 0802 - 21)070854171020804 134 (50-0902-01) 070917171021101 134 134 (50-0902-02)070917171021102 (50 - 0902 - 03)070917171021103 134 SAMOA ISLANDS ISLAND OF TUTUILA (90-1639-08) 141623170393801 138 (90-1740-01)141703170405301 139 (90-1943-06) 141945170435301 (90-1943-20) 141928170435201 139 (ct)........ (90-1943-24) 141945170435401 (w)..... 135 141948170435701 (90-1943-28)(w)..... (90-1944-11) 141952170440201 139 (90-1944-12) 141951170440101 (ct)....... 139 (90-1944-13) 141929170441401 (ct).............. 139 (90-1944-15) 141952170444201 140 140 (90-2044-02) 142002170444201 (90-2045-03) 142055170455901 136 (w).... 142042170463001 (90-2046-03) (ct)............. 140 142110170444601 (90-2144-05) (ct)..... 140 (90-2144-12)142102170445601 137 (w)..... (90-2145-03) 142102170455801 140

Volume 2

INTRODUCTION

Water resources data for the 1985 water year for Hawaii and other Pacific areas consist of records of stage, discharge, and water quality of streams, springs, and reservoir; and waterlevels and water quality of wells. This report contains discharge records for 31 gaging stations; stage only records for 3 gaging stations; water quality for 8 gaging stations, 6 partial-record stations, water temperature for 31 stations; and water levels for 35 observation wells and water quality for 110 ground-water sites. Also included are data for 19 low-flow partial-record stations. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State, Territorial, and Federal agencies in the Pacific areas.

Records of discharge and stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological Survey water-supply papers entitled, "Surface Water Supply of the United States." Through September 30, 1960 (June 30, 1960, for Hawaii and other Pacific Areas), these water-supply papers were in an annual series and then in a 5-year series for 1961-65 and 1966-70. The records for other Pacific areas were contained in one volume entitled "Surface Water Supply of Mariana, Caroline, and Samoa Islands." Records of chemical quality, water temperatures, and suspended sediment were published from 1941 to 1970 in an annual series of water-supply papers entitled "Quality of Surface Waters of the United States." Records of groundwater levels were published from 1935 to 1974 in a series of water-supply papers entitled "Ground Water Levels in the United States." Water-supply papers are available in the libraries of the principal cities in the United States or may be purchased from the Branch of Distribution, U.S. Geological Survey, 1200 South Eads Street, Arlington, Virginia, 22202.

For water years 1961 through 1970, streamflow data were released by the Geological Survey in annual reports on a State-boundary basis. Water-quality records for water years 1964 through 1970 were similarly released either in separate reports or in conjunction with streamflow records.

Beginning with the 1971 water year, water data for streamflow, water quality, and ground water are published in official Survey reports on a State-boundary basis. These official Survey reports carry an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report HI-85-2."

In this volume, the spelling of names, drainage areas, and locations for most stations in Palau, Yap, Truk, Ponape, and Kosrae differ from those used in "Water Resources Data for Hawaii and other Pacific Areas", 1968 to 1980. These had been based on 1954 U.S. Army Map Service series W 856 maps with a scale of 1:25,000 and 10-meter contours (International spheroid). The revised names and figures were based on the 1981 USGS maps with 1:10,000 scale and 5-meter contours (Clarke spheroid of 1866).

The water-data reports are for sale, in paper copy or in microfiche, by the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia, 22161. Additional information, including current prices, for ordering specific reports may be obtained from the District Chief at the address given on the back of the title page or by telephone (808) 541-2820.

COOPERATION

The U.S. Geological Survey has had cooperative agreements for the systematic collection of streamflow records with the Government of Guam since 1953, with the Government of American Samoa since 1957, and with the other Pacific Islands since 1968. Organizations that supplied data are acknowledged in station descriptions. Organizations that assisted in collecting data through cooperative agreement with the Survey are:

Government of Guam, Joseph P. Ada, Governor.

Government of Northern Mariana Islands, P. P. Tenorio, Governor.

Federated States of Micronesia, T. Nakayama, President.

State of Yap, Petrus Tun, Governor.

State of Truk, Gideon Doone, Governor.

State of Ponape, Resio Moses, Governor.

State of Kosrae, Yosiwo George, Governor. Republic of Palau, Lazarus Salii, President.

Government of American Samoa, A. P. Lutali, Governor.

Assistance in the form of funds or services was given by the Public Works, U.S. Navy, and the Corps of Engineers, U.S. Army.

SUMMARY OF HYDROLOGIC CONDITIONS

Based on the records at six index streams in the area covered by this volume, as shown in figure 1; the annual mean runoff for 1985 water year was in the normal range at the index stations on Guam, Babelthuap, Ponape, and Kosrae, and in the excessive range (flow in the upper 25 percent of record) at the stations on Yap and Tutuila.

Streamflow at the Ylig River near Yona, Guam (fig. 2) was excessive for November, January, May, and June; normal for December, February through April, and July through September; and deficient (flow in the lower 25 percent of record) for the October. Annual mean runoff was 119 percent of the median.

At the Diongradid River (fig. 2) on the island of Babelthuap, Palau Islands, monthly mean was excessive for October, January, and September; normal for November, February through August; and deficient for December. Annual mean runoff was 102 percent of the annual median.

On the island of Yap, Caroline Islands, streamflow at the Qaringeel Stream (fig. 3) was excessive for October, November, January, June, and August; normal for February through May, July, and September; and deficient for December. Annual mean runoff was 149 percent of the annual median.

Streamflow at the Nanpil River in Ponape (fig. 3) was excessive for November, January, and February; normal for October, December, April, June, and August; and deficient for March, May, July, and September. Annual mean discharge was 96 percent of the annual median.

On the island of Kosrae, streamflow at the Melo River (fig. 4) was excessive for February and June; normal for October through January, and March through May; and deficient for July through September. Annual mean discharge was 97 percent of the annual median.

At Tutuila, American Samoa, streamflow at Aasu (fig. 4) was excessive for December, January, April, and June; normal for October, November, February, March, May, and July through September. Annual mean runoff was 130 percent of the annual median.

DEFINITION OF TERMS

Definition of terms related to streamflow, water-quality, and other hydrologic data are defined as follows:

Acre-foot (AC-FT, acre-ft) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to 43,560 cubic feet or 325,851 gallons or 1,233 cubic meters.

Algae are mostly aquatic single-celled, colonial, or multi-celled plants, containing chlorophyll and lacking roots, stems, and leaves.

Aquifer is a geologic formation, group of formations, or part of a formation that contains sufficient saturated permeable material to yield significant quantities of water to wells and springs.

Artesian means confined and is used to describe a well in which the water level stands above the top of the aquifer tapped by the well. A flowing artesian well is one in which the water level is above the land surface.

<u>Bacteria</u> are microscopic unicellular organisms, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants.

<u>Total coliform bacteria</u> are a particular group of bacteria that are used as indicators of possible sewage pollution. They are characterized as aerobic or facultative anaerobic, gram-negative, nonspore-forming, rod-shaped bacteria which ferment lactose with gas formation within 48 hours at 35° C. In the laboratory these bacteria are defined as all the organisms which produce colonies withing 24 hours when incubated at 35° C \pm 0.5 °C on M-Endoagar (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

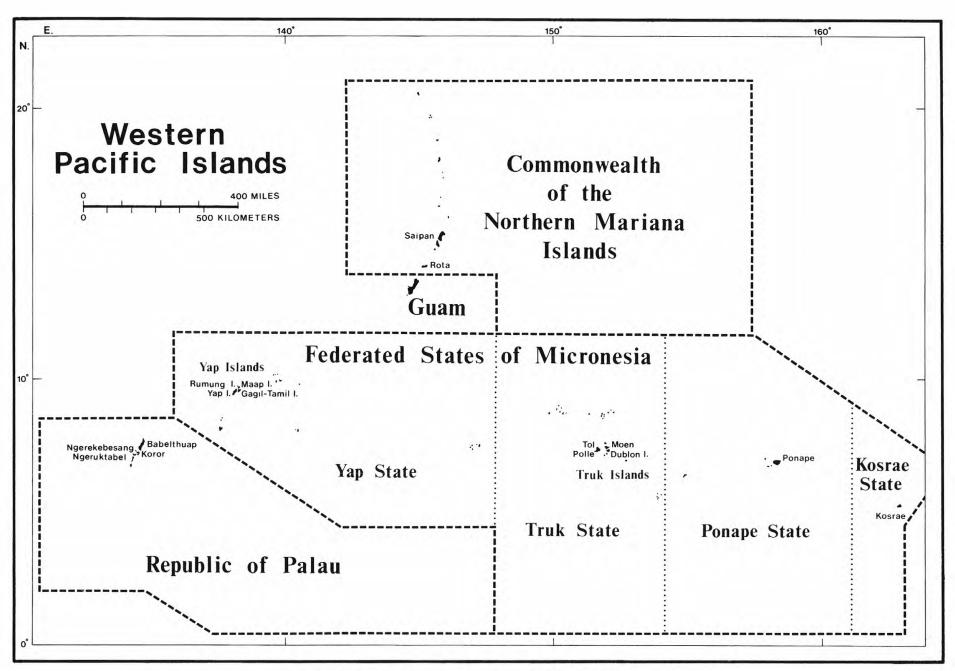
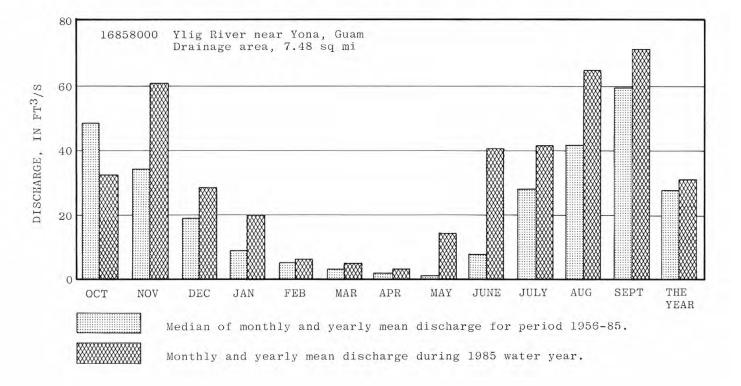



FIGURE 1. -- LOCATIONS OF WESTERN PACIFIC ISLANDS.

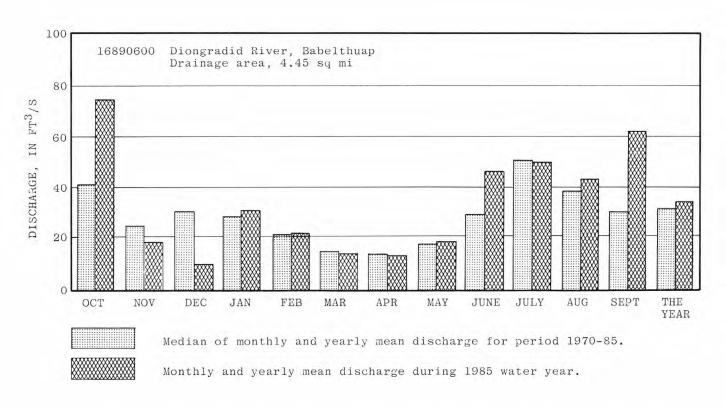
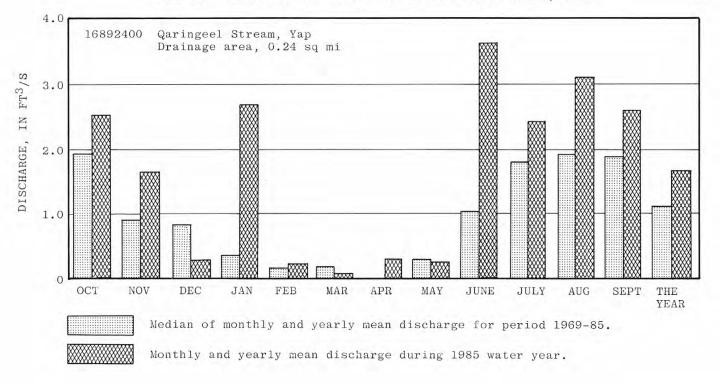



Figure 2.--Discharge during 1985 water year compared with median discharge for representative streams on Guam and Babelthuap.

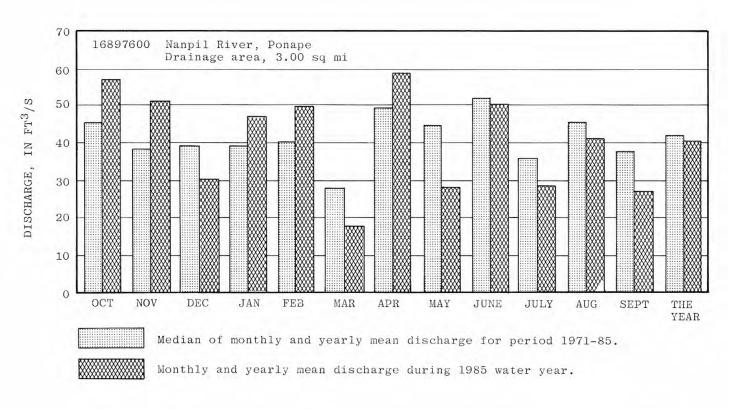
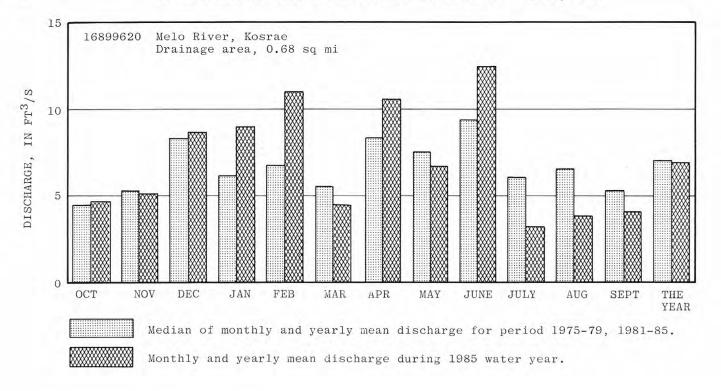



Figure 3.--Discharge during 1985 water year compared with median discharge for representative streams on Yap and Ponape.

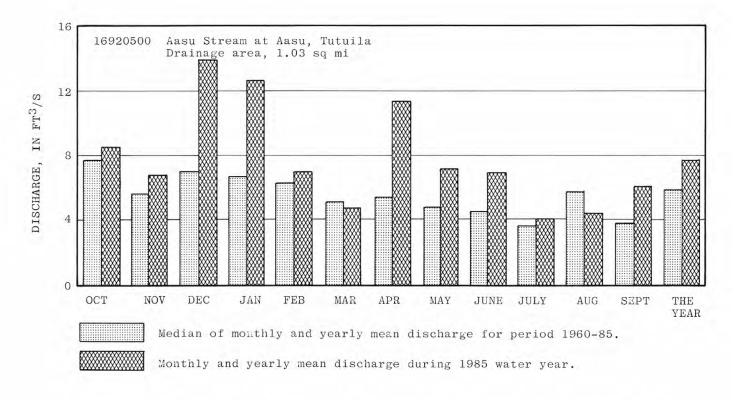


Figure 4.--Discharge during 1985 water year compared with median discharge for representative streams on Kosrae and Tutuila.

<u>Fecal coliform bacteria</u> are bacteria that are present in the intestine or feces of warm-blooded animals. They are often used as indicators of the sanitary quality of the water. In the laboratory they are defined as all organisms which produce blue colonies within 24 hours when incubated at $44.5^{\circ}\text{C} \pm 0.2^{\circ}\text{C}$ on M-FC agar (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 milliliter of of sample.

Fecal streptococcal bacteria are bacteria found also in the intestine of warm-blooded animals. Their presence in water is considered to verify fecal pollution. They are characterized as gram-positive, cocci bacterial which are capable of growth in brain-heart infusion broth. In the laboratory they are defined as all the organisms which produce red or pink colonies within 48 hours at $35^{\circ}\text{C} \pm 0.5^{\circ}\text{C}$ on KF Streptococcus agar (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

<u>Biochemical oxygen demand</u> (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, necessary for the decomposition of organic matter by microorganisms, such as bacteria.

Biomass is the amount of living matter present at any time, expressed as the weight per unit area or volume of habitat.

Ash mass is the mass or amount of residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of 500° C for 1 hour. The ash mass values of zooplankton and phytoplankton are expressed in g/m³ (grams per cubic meter), and periphyton and benthic organisms in g/m² (grams per square meter).

 $\underline{\text{Dry mass}}$ refers to the mass of residue present after drying in an oven at 60°C for zoo-plankton and 105°C for periphyton, until the mass remains unchanged. This mass represents the total organic matter, ash, and sediment, in the sample. Dry mass values are expressed in the same units as ash mass.

Organic mass or volatile mass of the living substance is the difference between the dry mass and the ash mass, and represents the actual mass of the living matter. The organic mass is expressed in the same units as for ash and dry mass.

Wet mass is the mass of living matter plus contained water.

Bottom material is the unconsolidated material of which a streambed, lake, pond, reservoir, or estuary bottom is composed.

Recoverable from bottom material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of only readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Total in bottom material is the total amount of a given constituent in a representative sample of bottom material. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total in bottom material."

CFS-day is the volume of water represented by a flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, 1.9835 acre-feet, or 646,317 gallons or 2,447 cubic meters.

<u>Chlorophyll</u> refers to the green pigments of plants. Chlorophyll \underline{a} and \underline{b} are the two most common pigments in plants.

<u>Coliform organisms</u> are a group of bacteria used as an indicator of the sanitary quality of the water. The number of coliform colonies per 100 milliliters is determined by the immediate or delayed incubation membrane filter method.

<u>Color unit</u> is produced by one milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale.

<u>Contents</u> is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage.

Continuing record station is a specified site which meets one or all conditions listed:

- 1. When chemical samples are collected daily or monthly for 10 or more months during the water year.
- 2. When water temperature records include observations taken one or more times daily.
- When sediment discharge records include those periods for which sediment loads are computed and are considered to be representative of the runoff for the water year.

<u>Control</u> designates a feature downstream from the gage that determines the stage-discharge relation at the gage. This feature may be a natural constriction of the channel, an artificial structure, or a uniform cross section over a long reach of the channel.

Control structure as used in this report is a structure on a stream or canal that is used to regulate the flow or stage of the stream or to prevent the intrusion of salt water.

<u>Cubic foot per second</u> (FT³/S, ft³/s) is the rate of discharge representing a volume of 1 cubic foot passing a given point during 1 second and is equivalent to 7.48 gallons per second or 448.8 gallons per minute or 0.02832 cubic meters per second.

<u>Discharge</u> is the volume of water (or more broadly, volume of fluid plus suspended sediment), that passes a given point within a given period of time.

Mean discharge (MEAN) is the arithmetic average of individual daily mean discharges during a specified period.

<u>Instantaneous discharge</u> is the discharge at a particular instant of time. If this discharge is reported instead of the daily mean, the heading of the discharge column in the table is "DISCHARGE (CFS)."

<u>Dissolved</u> is that material in a representative water sample which passes through a 0.45 micrometer membrane filter. This is a convenient operational definition used by Federal agencies that collect water data. Determinations of "dissolved" constituents are made on subsamples of the filtrate.

<u>Drainage area</u> of a stream at a specific location is that area, measured in a horizontal plane, enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into the river above the specified point. Figures of drainage area given herein include all closed basins, or noncontributing areas, within the area unless otherwise noted.

<u>Drainage basin</u> is a part of the surface of the earth that is occupied by a drainage system, which consists of a surface stream or a body of impounded surface water together with all tributary surface streams and bodies of impounded water.

<u>Gage height</u> (G.H.) is the water-surface elevation referred to some arbitrary gage datum. Gage height is often used interchangeably with the more general term "stage," although gage height is more appropriate when used with a reading on a gage.

<u>Gaging station</u> is a particular site on a stream, canal, lake, or reservoir where systematic observations of hydrologic data are obtained.

 $\underline{\text{Hardness}}$ of water is a physical-chemical characteristic that is commonly recognized by the increased quantity of soap required to produce lather. It is attributable to the presence of alkaline earths (principally calcium and magnesium) and is expressed as equivalent calcium carbonate (CaCO3).

<u>Hydrologic unit</u> is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as delineated by the Office of Water Data Coordination on the State Hydrologic Unit Maps; each hydrologic unit is identified by an 8-digit number.

 $\frac{\text{Microgram per gram}}{\text{(micrograms) of the element sorbed per unit mass (gram) of sediment.}}$

<u>Microgram per liter</u> (μ G/L, μ g/L) is a unit expressing the concentration of chemical constituents in solution as mass (micrograms) of solute per unit volume (liter) of water. One thousand micrograms per liter is equivalent to one milligram per liter.

<u>Partial-record station</u> is a particular site where limited streamflow and/or water-quality data are collected systematically over a period of years for use in hydrologic analyses.

<u>Particle size</u> is the diameter, in millimeters (mm), of suspended sediment or bed material determined by either sieve or sedimentation methods. Sedimentation methods (pipet, bottom-with-drawal tube, visual-accumulation tube) determine fall diameter of particles in either distilled water (chemically dispersed) or in native water (the river water at the time and point of sampling).

<u>Particle-size classification</u> used in this report agrees with recommendations made by the American Geophysical Union Subcommittee on Sediment Terminology. The classification is as follows:

Classification	Size	(mm)	Method of analysis
Clay	0.00024	- 0.004	Sedimentation.
Silt	.004	062	Sedimentation.
Sand	.062	- 2.0	Sedimentation or sieve
Gravel	2.0	- 64 0	Sieve

The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. Most of the organic material is removed and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native-water analysis.

<u>Percent composition</u> is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, mass, or volume.

<u>Pesticides</u> are chemical compounds used to control the growth of undesirable plants and animals. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides.

<u>Picocurie</u> (Pc,pCi) is one trillionth (1 x 10^{-12}) of the amount of radioactivity represented by a curie (Ci). A curie is the amount of radioactivity that yields 3.7 x 10^{10} radio-active disintegrations per second. A picocurie yields 2.22 dpm (disintegrations per minute).

<u>Polychlorinated biphenyls</u> (PCBs) are industrial chemicals that are mixtures of chlorinated biphenyl compounds having various percentages of chlorine. They are similar in structure to organochlorine insecticides.

<u>Sediment</u> is solid material that originates mostly from disintegrated rocks and is transported by, suspended in, or deposited from water; it includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are influenced by environmental factors. Some major factors are degree of slope, length of slope, soil characteristics, land usage, and quantity and intensity of precipitation.

<u>Suspended sediment</u> is the sediment that at any given time is maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid.

Suspended-sediment concentration is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 ft above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L).

<u>Suspended-sediment discharge</u> (tons/day) is the rate at which dry weight of sediment passes a section of a stream or is the quantity of sediment, as measured by dry weight or volume, that passes a section in a given time. It is computed by multiplying discharge times milligrams per liter times 0.0027.

 $\underline{Suspended-sediment\ load}\ is\ quantity\ of\ suspended\ sediment\ passing\ a\ section\ in\ a$ specified period.

<u>Total-sediment discharge</u> (tons/day) is the sum of the suspended-sediment discharge and the bedload discharge. It is the total quantity of sediment, as measured by dry weight or volume, that passes a section during a given time.

 $\underline{\text{Mean concentration}}$ is the time-weight concentration of suspended sediment passing a stream section during a 24-hour day.

<u>Solute</u> is any substance derived from the atmosphere, vegetation, soil, or rocks that is dissolved in water.

Specific conductance is a measure of the ability of a water to conduct an electrical current. It is expressed in microsiemens per centimeter at 25°C. Specific conductance is related to the type and concentration of ions in solution and can be used for approximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is about 65 percent of the specific conductance (in microsiemens). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water.

Stage-discharge relation is the relation between gage height (stage) and volume of water per unit of time, flowing in a channel.

Streamflow is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

<u>Suspended</u> (as used in tables of chemical analyses) refers to the amount (concentration) of the total concentration in a water-sediment mixture. The water-sediment mixture is associated with (or sorbed on) that material retained on a 0.45 micrometer filter.

Suspended recoverable is the amount of a given constituent that is in solution after the part of a respresentative water-suspended sediment sample that is retained on a 0.45 micrometer membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Determinations of "suspended, recoverable" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total recoverable concentrations of the constituent.

Suspended, total is the total amount of a given constituent in the part of a representative water-suspended sediment sample that is retained on a 0.45 micrometer membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total."

Determinations of "suspended, total" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total concentrations of the constituents.

Total, recoverable is the amount of a given constituent that is in solution after a representative water-suspended sediment sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Total is the total amount of a given constituent in a representative water-suspended sediment sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total." (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determines all of the constituent in the sample.)

<u>Time-weighted average</u> is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water that would be contained in a vessel or reservoir that had received equal quantities of water from the stream each day for the year.

 $\underline{\text{Tons per acre-foot}}$ indicates the dry mass of dissolved solids in 1 acre-foot of water. It is computed by multiplying the concentration in milligrams per liter by 0.00136.

Tons per day is the quantity of substance in solution or suspension that passes a stream section during a 24-hour day.

 $\underline{\text{Total load}}$ (tons) is the total quantity of any individual constituent, as measured by dry mass or volume, that is dissolved in a specific amount of water (discharge) during a given time. It is computed by multiplying the total discharge, times the mg/L of the constituent, times the factor 0.0027, times the number of days.

 $\underline{\text{Turbidity}}$ of a sample is the reduction of transparency due to the presence of particulate matter. In this report it is expressed Nephelometric turbidity units (NTU).

 $\underline{\mathtt{WDR}}$ is used as an abbreviation for "Water-Data Reports" in the summary REVISIONS paragraph to refer to previously published State annual basic-data reports.

Weighted average is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir.

 $\underline{\mathtt{WRD}}$ is used as an abbreviation for "Water-Resources Data" in the REVISED RECORDS paragraph to refer to State annual basic-data reports published before 1975.

 $\underline{\mathtt{WSP}}$ is used as an abbreviation for "Water-Supply Paper" in references to previously published reports.

DOWNSTREAM ORDER AND STATION NUMBER

Records are listed in a downstream direction along the main stream, and stations on tributaries are listed between stations on the main stream in the order in which those tributaries enter the main stream. Stations on tributaries entering above all main-stream stations are listed before the first main-stream station. Stations on tributaries to tributaries are listed in a similar manner. In the lists of gaging stations and water-quality stations in the front of this report the rank of tributaries is indicated by indention, each indention representing one rank.

As an added means of identification, each gaging station, partial-record station, and water-quality station has been assigned a station number. These are in the same downstream order used in this report. In assigning station numbers, no distinction is made between partial-record stations and continuous-record gaging stations; therefore, the station number for a partial-record station indicates downstream order position in a list made up of both types of stations. Water-quality stations located at or near gaging stations or partial-record stations have the same number as the gaging or partial-record station. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The complete 8-digit number for each station, such as 16858000 which appears just to the left of the station name includes the 2-digit number "16" plus the 6-digit downstream order number "858000." In this report, the records are listed in downstream order by islands. Locations of the stations are shown in figures 5-13.

NUMBERING SYSTEM FOR WELLS AND MISCELLANEOUS SITES

The 8-digit downstream order station numbers are not assigned to wells and miscellaneous sites where only random water-quality samples or discharge measurements are taken.

The well and miscellaneous site numbering system of the U.S. Geological Survey is based on the grid system of latitude and longitude. The system provides the geographic location of the well or miscellaneous site and a unique number for each site. The number consists of 15 digits. The first 6 digits denote the degrees, minutes, and seconds of latitude, the next 7 digits denote degrees, minutes, and seconds of longitude, and the last 2 digits (assigned sequentially) identify the wells or other sites within a 1-second grid. See figure 14.

The local well-numbering system for Pacific Areas was restructured to contain eight digits based on a non-arbitrary, unique one-minute grid system. One-minute parallel lines for both latitude and longitude are drawn on the map resulting in one-minute grids. Each grid is designated by a four-digit number. The first two digits represent minutes of latitude for the grid and the second two digits represent minutes of longitude for that grid.

To distinguish wells within a minute grid, two digits are added following the 4-digit minute-grid numbers with a dash separator. These two-digit numbers are assigned with the oldest well dug within the grid as 01 and increase chronologically, with few exceptions, to the latest dug.

Since it is possible to have a same 6-digit number for wells on different islands, a 2-digit number distinguishing each of the islands or geographic areas is added in front of the 6-digit number with a dash separator. For example, in the number 18-2647-01, the first two digits designate an island of geographic area, then the 4-digit minute-grid numbers followed by a 2-digit sequential number. See figure 15.

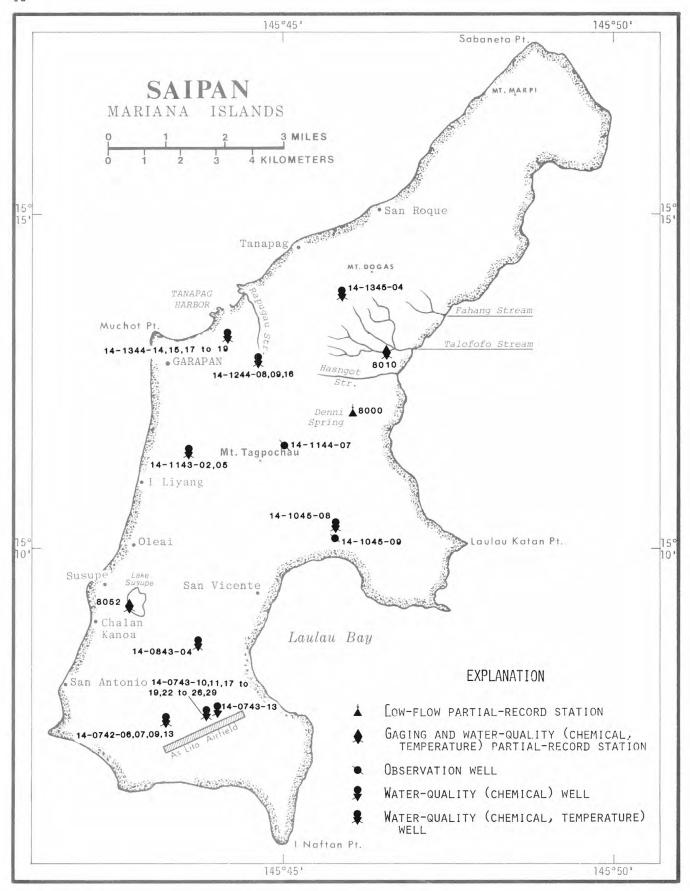


Figure 5.--Locations of gaging stations, observation wells, and water-quality sampling sites on Saipan.

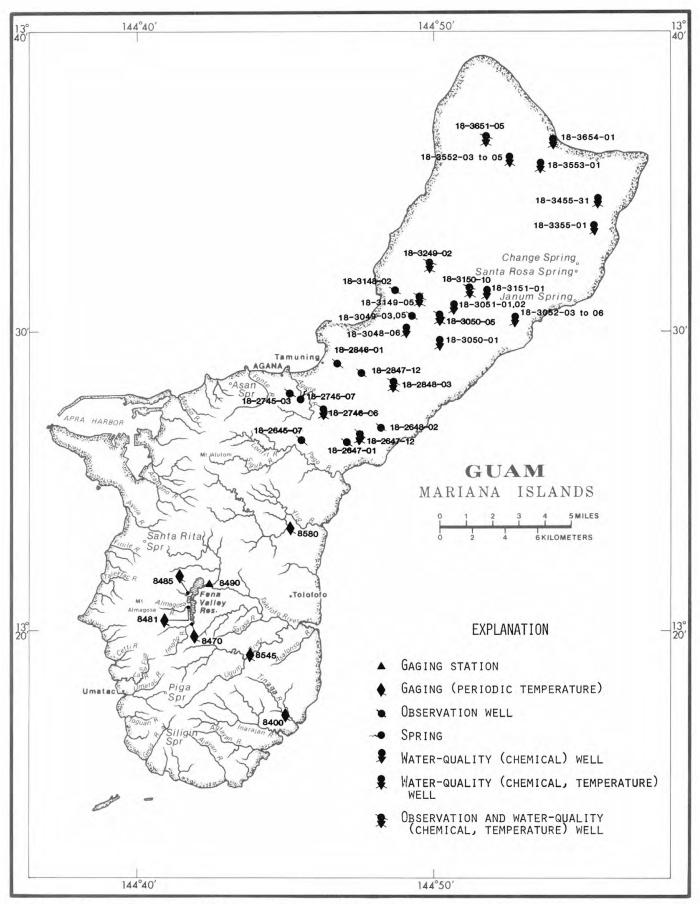


Figure 6.--Locations of gaging stations, observation wells, and water-quality sampling sites on Guam.

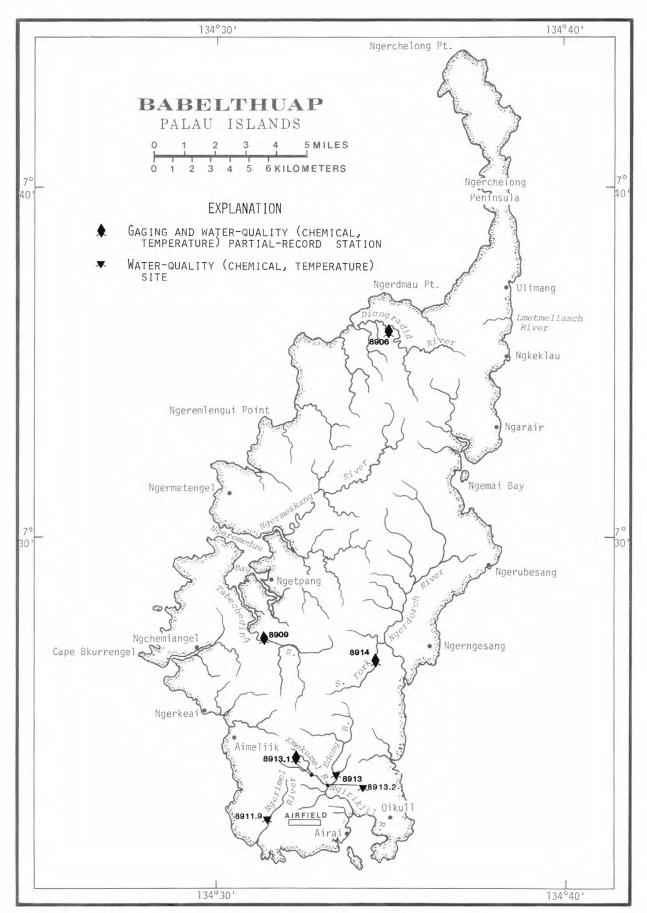


FIGURE 7.--LOCATIONS OF GAGING STATIONS AND WATER-QUALITY SITES ON BABELTHUAP.

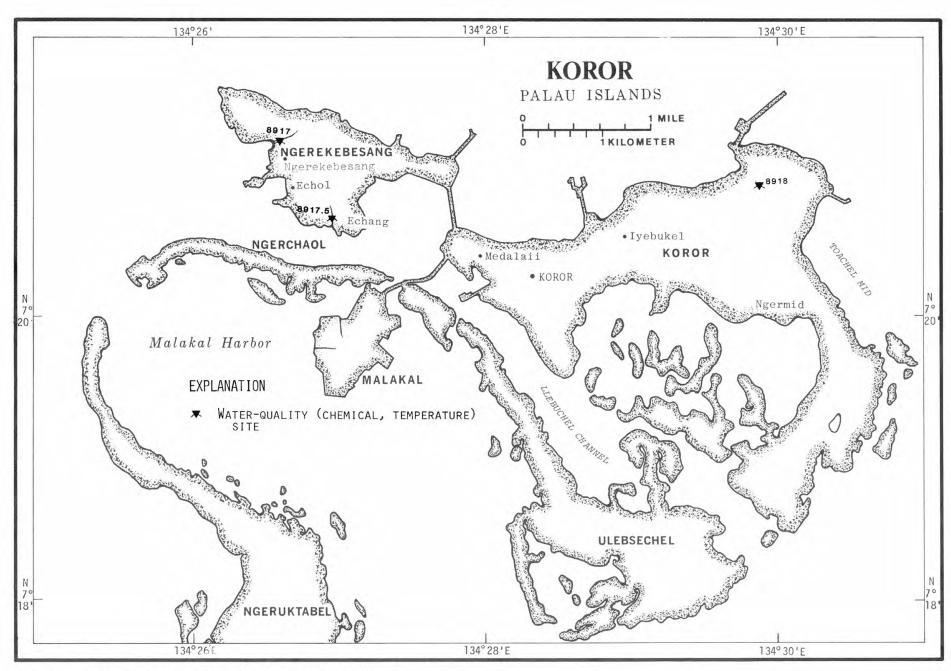


FIGURE 8.--LOCATIONS OF WATER-QUALITY SITES ON KOROR.

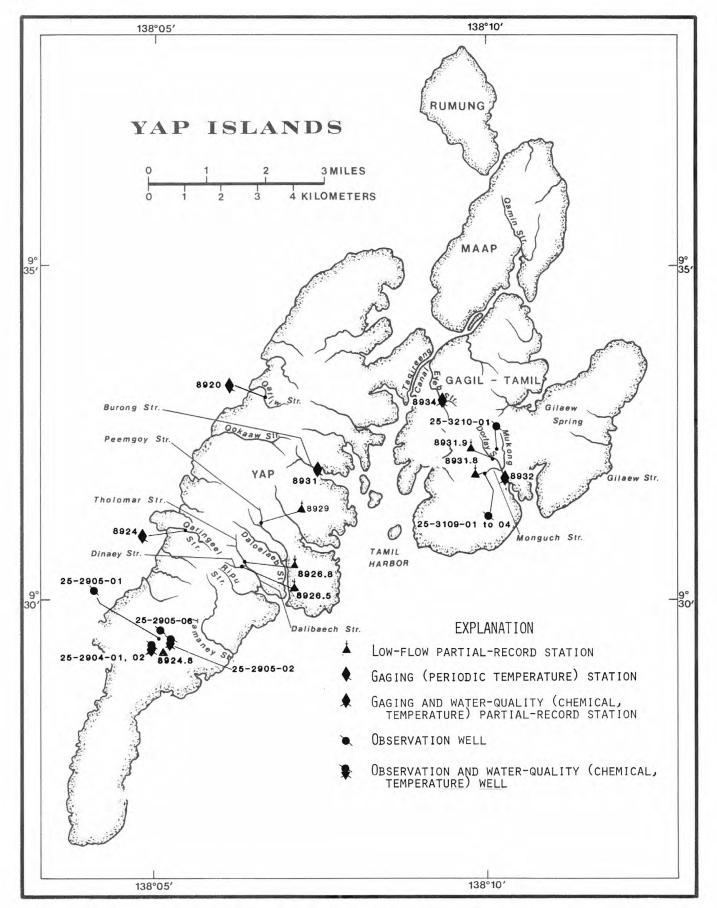


FIGURE 9.--LOCATIONS OF GAGING, LOW-FLOW PARTIAL-RECORD STATIONS, OBSERVATION WELLS AND WATER-QUALITY SITES ON YAP ISLANDS.

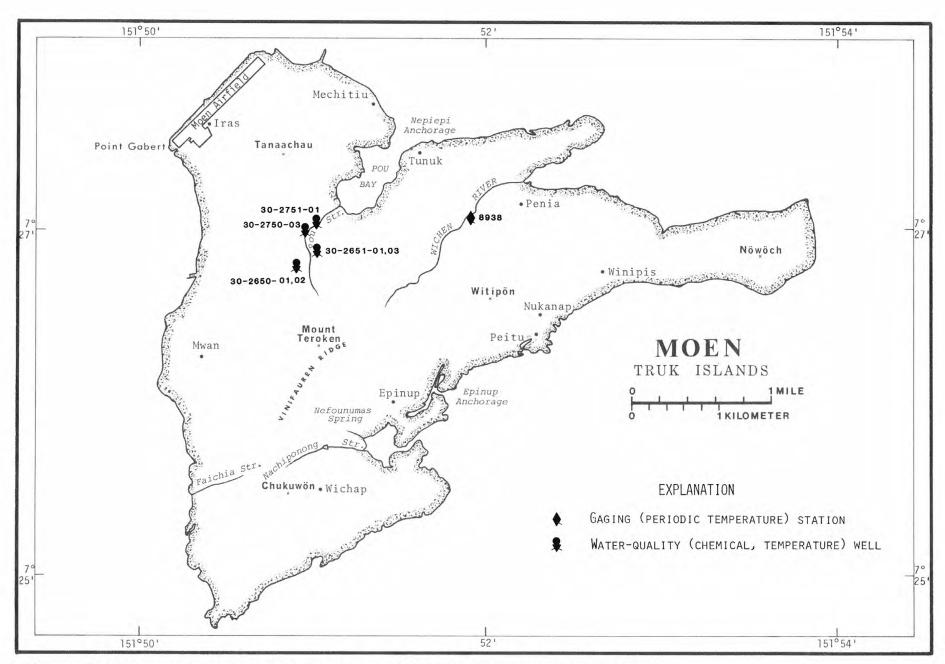


FIGURE 10.--LOCATIONS OF GAGING STATION, WELLS, AND WATER-QUALITY SAMPLING SITES ON MOEN.

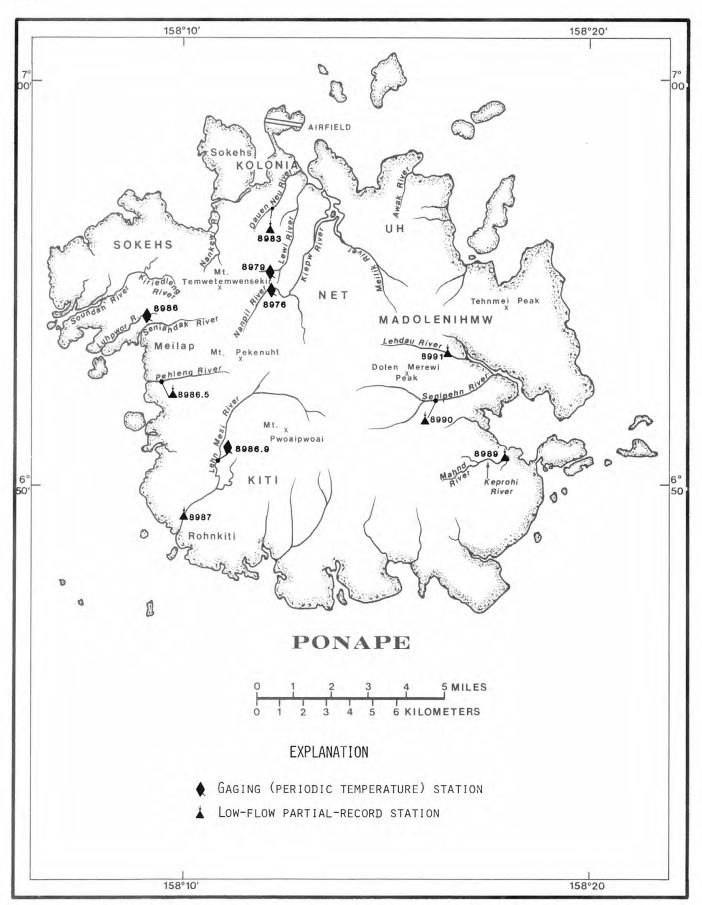


FIGURE 11.--LOCATIONS OF GAGING AND LOW-FLOW PARTIAL-RECORD STATIONS ON PONAPE.

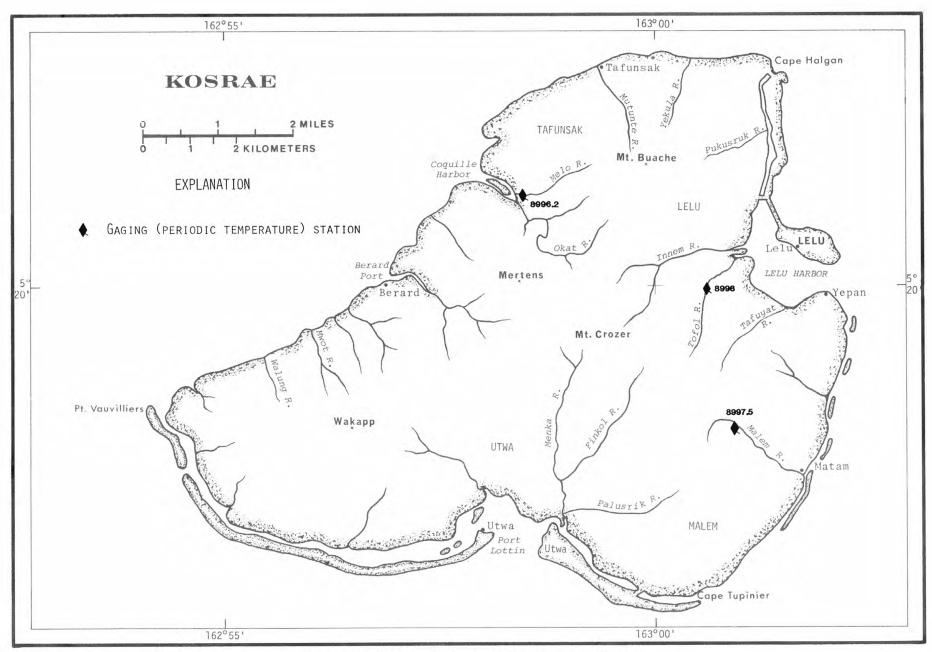


FIGURE 12. -- LOCATIONS OF GAGING STATIONS ON KOSRAE.

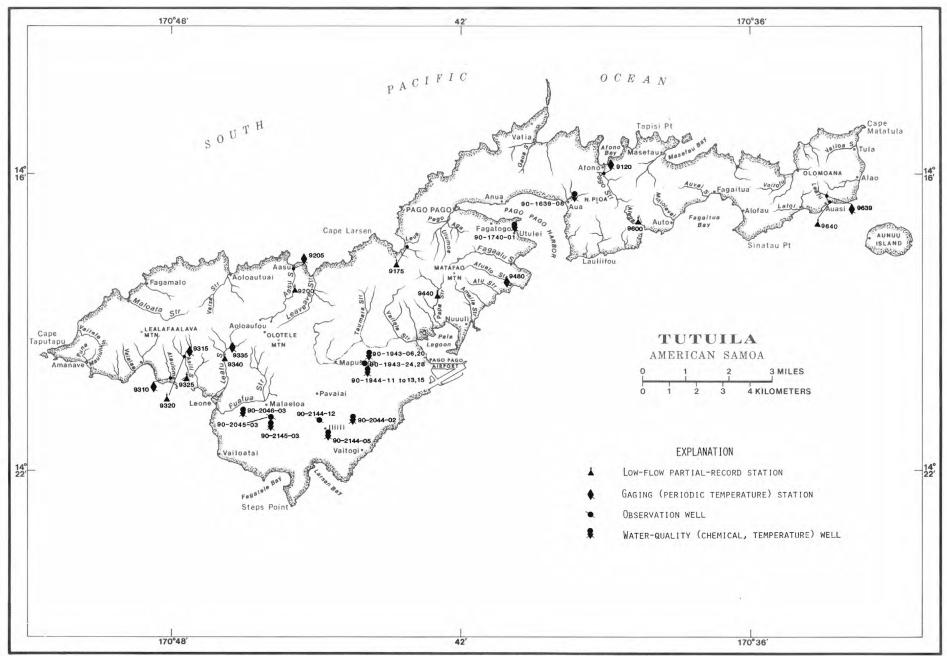


FIGURE 13. -- LOCATIONS OF GAGING, LOW-FLOW PARTIAL-RECORD STATIONS, OBSERVATION WELLS, AND WATER-QUALITY SAMPLING SITES ON TUTUILA.

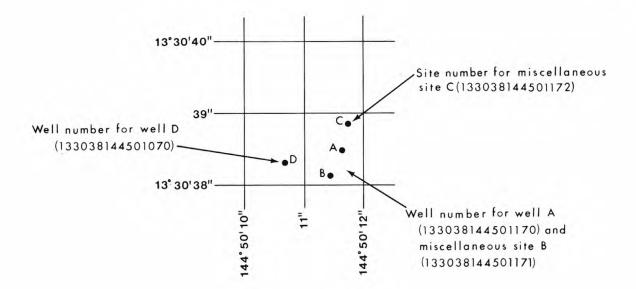


FIGURE 14.--SKETCH SHOWING SYSTEM FOR NUMBERING WELLS AND MISCELLANEOUS SITES.

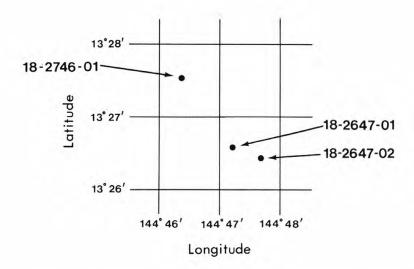


FIGURE 15.-- SKETCH SHOWING LOCAL WELL NUMBERING SYSTEM.

EXPLANATION OF STAGE AND WATER-DISCHARGE RECORDS

Collection and computation of data

The base data collected at gaging stations consist of records of stage and measurements of discharge of streams or canals, and stage, surface area, and contents of lakes or reservoirs. In addition, observations of factors affecting the stage-discharge relation or the stage-capacity relation, weather records and other information are used to supplement base data in determining the daily flow or volume of water in storage. Records of stage are obtained from either direct readings on a nonrecording gage or from a water-stage recorder that gives either a continuous graph of the fluctuations or a tape punched at selected time intervals. Measurements of discharge are made with a current meter, using the general methods adopted by the Geological Survey. These methods are described in standard text books, in Water-Supply Paper 888, and in U.S. Geological Survey Techniques of Water Resources Investigations, book 3, chapter A6.

For stream-gaging stations, rating tables giving the discharge for any stage are prepared from stage-discharge relation curves. If extensions to the rating curves are necessary to express discharge greater than measured, they are made on the basis of indirect measurements of peak discharge (such as slope-area or contracted-opening measurements, computation of flow over dams or weirs), step-backwater techniques, velocity-area studies, and logarithmic plotting. The daily mean discharge is computed from gage heights and rating tables, then the monthly and yearly mean discharges are computed from the daily figures. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the daily mean discharge is computed by the shifting-control method, in which correction factors based on individual discharge measurements and notes by engineers and observers are used in applying the gage heights to the rating tables. If the stage-discharge relation for a station is temporarily changed by the presence of aquatic growth or debris on the control, the daily mean discharge is computed by what is basically the shifting-control method.

At some stream-gaging stations, the stage-discharge relation is affected by the backwater from reservoirs, tributary streams, or other sources. This necessitates the use of the slope method in which the slope or fall in a reach of the stream is a factor in computing discharge. The slope or fall is obtained by means of an auxiliary gage set at some distance from the base gage. At some stations the stage-discharge relation is affected by changing stage; at these stations the rate of change in stage is used as a factor in computing discharge.

For some gaging stations there are periods when no gage-height record is obtained or the recorded gage height is so faulty that it cannot be used to computed daily discharge or contents. This happens when the recorder stops or otherwise fails to operate properly, intakes are plugged, the float is frozen in the well, or for various other reasons. For such periods the daily discharges are estimated on the basis of recorded range in stage, prior and subsequent records, discharge measurements, weather records, and comparison with records for other stations, in the same or nearby basins. Likewise daily contents may be estimated on the basis of operator's log, prior and subsequent records, inflow-outflow studies, and other information.

The data in this report generally comprise a description of the station and tabulations of daily and monthly figures. For gaging stations on streams or canals, a table showing the daily discharge and monthly and yearly discharge is given. For gaging station on lakes and reservoirs, a monthly summary table of stage and contents or a table showing the daily contents is given. Tables of daily mean gage heights are included for some streamflow stations and for some reservoir stations. Records are published for the water year, which begins on October 1 and ends on September 30.

The description of the gaging station gives the location, drainage area, period of record, notations of revisions of previously published records, type and history of gages, general remarks, average discharge, and extremes of discharge or contents. The location of the gaging station and the drainage area are obtained from the most accurate maps available. River mileage, given under "LOCATION" for some stations, is that determined and used by the Corps of Engineers or other agencies. Periods for which there are published records for the present station or for stations generally equivalent to the present one are given under "PERIOD OF RECORD."

Previously published streamflow records of some stations have been found to be in error on the basis of data or information later obtained. Revisions of such records are usually published along with the current records in one of the annual or compilation reports. In order to make it easier to find such revised records, a paragraph headed "REVISED RECORDS" has been added to the description of all stations for which revised records have been published. Listed therein are all the reports in which revisions have been published, each followed by the water years for which figures are revised in that report. In listing the water years only one number is given; for instance, 1965 stands for the water year October 1, 1964, to September 30, 1965. If no daily, monthly, or annual figures of discharge are affected by the revision, the fact is brought out by notations after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; "(m)" that only the instantaneous minimum was revised; and "(P)" that only peak discharge were revised. If the drainage area has been revised, the report in which the revised figures was first published is given.

The type of gage currently in use, the datum of the present gage above mean sea level, and a condensed history of the types, locations, and datums of previous gages used during the period of record are given under "GAGE." In references to datum of gage, the phrase "mean sea level" denotes "Sea Level Datum of 1929" as used by the Topographic Division of the Geological Survey unless otherwise qualified.

Information pertaining to the accuracy of the discharge records and to conditions which affect the natural flow of the gaging station is given under "REMARKS." For reservoir stations information on the dam forming the reservoir, the capacity, outlet works and spillway, and purpose and use of the reservoir is given under "REMARKS."

The average discharge for the number of years indicated is given under "AVERAGE DISCHARGE", it is not given for stations having fewer than 5 complete years of record or for stations where changes in water development during the period of record cause the figure to have little significance. In addition, the median of yearly mean discharges is given for stream-gaging stations having 10 or more complete years of record if the median differs from the average by more than 10 percent. Under "EXTREMES" are given first, the extremes for the period of record, second, information available outside the period of record, and last, those for the current year. Unless otherwise qualified, the maximum discharge (or contents) is the instantaneous maximum corresponding to the crest stage obtained by use of a water-stage recorder (graphic or digital), a crest-stage gage, or a nonrecording gage read at the time of the crest. If the maximum gage height did not occur on the same day as the maximum discharge (or contents), it is given separately. Similarly, the minimum is the instantaneous minimum unless otherwise qualified. For some stations, peak discharges are listed with EXTREMES FOR THE CURRENT YEAR; if they are, all independent peaks, including the maximum for the year, above the selected base with time of occurrence and corresponding gage heights are published in tabular format. The base discharge, which is given in the table heading, is selected so that an average of about three peaks a year will be presented. Peak discharges are not published for any canals, ditches, drains, or for any stream for which the peaks are subject to substantial control by man. Time of day is expressed in 24-hour local standard time; for example, 12:30 a.m. is 0030, 1:30 p.m. is 1330. The minimums for these stations are published in a separate paragraph following the table of peaks.

The daily table for stream-gaging stations gives the mean discharge for each day and is followed by monthly and yearly summaries. In the monthly summary below the daily table, the line headed "TOTAL" gives the sum of the daily figures. The line headed "MEAN" gives the average flow in cubic feet per second during the month. The lines headed "MAX" and "MIN" give the maximum and minimum daily discharges, respectively, for the month. Discharge for the month also may be expressed in cubic feet per second per square mile (line headed "CFSM"), or in inches (line headed "IN"), or in acre-feet (line headed "AC-FT"). Figures for cubic feet per second per square mile and runoff in inches are omitted if there is extensive regulation or diversion, if the drainage area includes large noncontributing areas, or if the average annual rainfall over the drainage basin is usually less than 20 inches. In the yearly summary below the monthly summary, the figures shown are the appropriate daily discharges for the calendar and water years.

Footnotes to the table of daily discharge are introduced by the word "NOTE." Footnotes are used to indicate periods for which the discharge is computed or estimated by special methods because of no gage-height record, backwater from various sources, or other unusual conditions. Periods of no gage-height record are indicated if the period is continuous for a month or more or includes the maximum discharge for the year. Periods of backwater from an unusual source, of indefinite stage relation, or of any other unusual condition at the gage site are indicated only if they are a month or more in length and the accuracy of the records is affected.

For most gaging station on lakes and reservoirs, the data presented comprise a description of the station and a monthly summary table of stage and contents. For some reservoirs a table showing daily contents or stage is given. A skeleton table of capacity at given stages is published for all reservoirs for which records are published on a daily basis, but is not published for reservoirs for which only monthly data are given.

Data collected at partial-record stations follow the information for continuous-record sites. Data for partial-record discharge stations are presented in two tables. The first is a table of discharge measurements at low-flow partial-record stations, and the second is a table of annual maximum stage and discharge at crest-stage stations. The tables of partial-record stations are followed by a listing of discharge measurements made at sites other than continuous-record or partial-record stations. Occasionally, a series of discharge measurements are made within a short time period to investigate the seepage gains or losses along a reach of a stream or to determine the low-flow characteristics of an area. Such measurements are also given in special tables following the tables of partial-record stations.

Accuracy of field data and computed results

The accuracy of streamflow data depends primarily on (1) the stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements and (2) the accuracy of observations of stage, measurements of discharge, and interpretations of records.

The station description under "REMARKS" states the degree of accuracy of the records. "Excellent" means that about 95 percent of the daily discharges are within 5 percent; "good", within 10 percent; and "fair" within 15 percent. "Poor" means that daily discharges have less than "fair" accuracy.

Figures of daily mean discharge in this report are shown to the nearest hundredth of a cubic foot per second for discharges of less than 1 cfs; to tenths between 1.0 and 10 cfs; to whole numbers between 10 and 1,000 cfs; and to 3 significant figures above 1,000 cfs. The number of significant figures used is based solely on the magnitude of the figure.

Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. For such stations, figures of cubic feet per second per square mile and of runoff in inches are not published unless satisfactory adjustments can be made for diversions, for changes in contents of reservoirs, or for other changes incident to use and control. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents, unless it is so stated. Even at those stations where adjustments are made, large errors in computed runoff may occur if adjustments or losses are large in comparison with the observed discharge.

Records of discharge collected by agencies other than the Geological Survey

The National Water Data Exchange, Water Resources Division, U.S. Geological Survey, National Center, Reston, VA 22092, maintains an index of water-data sites not published by the Geological Survey. Information on records available at specific sites can be obtained upon request.

Other data available

Information of a more detailed nature than that published for most of the gaging stations such as observations of water temperatures, discharge measurements, gage-height records, and rating tables is on file in the district office. Also most gaging-station records are available in computer-usable form and many statistical analyses have been made.

Information on the availability of unpublished data or statistical analyses may be obtained from the district office.

Publications

In each water-supply paper entitled, "Surface Water Supply of the United States" there is a list of numbers of preceding water-supply papers containing streamflow information for the area covered by that report. In addition, there is a list of numbers of water-supply papers containing detailed information on major floods in the area. Records for stations in Hawaii and other Pacific areas for the period October 1959 to September 1965, are in Water-Supply Paper 1937.

Two series of summary reports entitled, "Compilation of Records of Surface Waters of the United States" have been published; the first series covers the entire period of record through September 1950 (June 1950, for Hawaii), and the second series covers the period October 1950 to September 1960 (July 1950 to June 1960, for Hawaii and other Pacific areas). These reports contain summaries of monthly and annual discharge and monthend storage for all previously published records, as well as some records not contained in the annual series of water-supply papers. All records were reexamined and revised where warranted. Estimates of discharge were made to fill short gaps whenever practical. The yearly summary table for each gaging station lists the numbers of the water-supply papers in which daily records were published for that station. Records for stations in Hawaii and other Pacific areas are compiled in Water-Supply Paper 1319 through June 1950, in 1739 and 1751 for July 1950 to June 1960, in 1937 for October 1959 to September 1965, and 2137 for October 1966 to September 1970.

Special reports on major floods or droughts or of other hydrologic studies for the area have been issued in publications other than water-supply papers. Information relative to these reports may be obtained from the district office.

EXPLANATION OF WATER-QUALITY RECORDS

Collection and examination of data

Surface water samples for analyses usually are collected at or near gaging stations. The water-quality records are given immediately following the discharge records at these stations.

The descriptive heading for water-quality records gives periods of record for the various types of water-quality data (chemical, specific conductance, biological determination, water temperatures, sediment discharge), period of record, and extremes of pertinent data, and general remarks.

For ground-water records, no descriptive statements are given; however, the well number, depth of well, date of sampling and/or other pertinent data are given in the table containing the chemical analyses of the ground water.

Water analysis

Most methods for collecting and analyzing water samples are described in the U.S. Geological Survey Techniques of Water-Resources Investigations listed on a following page.

One sample can define adequately the water-quality at a given time if the mixture of solutes throughout the stream cross section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled through several vertical sections to obtain a representative sample needed for an accurate mean concentration and for use in calculating load.

Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis.

For chemical-quality stations equipped with digital monitors, the records consist of daily maximum, minimum, and mean values for each constituent measured and are based upon hourly punches beginning at 0100 hours and ending at 2400 hours for the day of record. More detailed records (hourly values) may be obtained from the district office.

Water temperature

Water temperatures are measured at most of the water-quality stations. In addition, water temperatures are taken at time of discharge measurements for water-discharge stations. Large streams have a small diel temperature change; shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams may be affected by waste-heat discharges.

At stations where recording instruments are used, either mean temperatures or maximum and minimum temperatures for each day are published.

Sediment

Suspended-sediment concentrations are determined from samples collected by using depth-integrating samplers. Samples usually are obtained at several verticals in the cross section, or a single or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross sections.

During periods of rapidly changing flow or rapidly changing concentration, samples may have been collected more frequently (twice daily or, in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided day method (time-discharge weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration time 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided day method. For periods when no samples were collected, daily loads of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspended-sediment loads for other periods of similar discharge.

At other stations, suspended-sediment samples were collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observations, such data are useful in establishing seasonal relations between quality and streamflow in predicting long-term sediment-discharge characteristics of the stream.

In addition to the records of the quantities of suspended sediment, records of the periodic measurements of the particle-size distribution of the suspended sediment and bed material are included.

Publications

The annual series of water-supply papers that contain information on quality of surface waters in Hawaii and other Pacific areas are listed below.

Water	WSP	Water	WSP	Water	WSP
year	No.	year	No.	year	No.
1964	1966	1967	2016	1970	2160
1965	1966	1968	2016		
1966	1996	1969	2150		

EXPLANATION OF GROUND-WATER LEVEL RECORDS

Collection of the data

Only ground-water level data from a basic network of observation wells are published herein. This basic network contains observation wells so located that the most significant data are obtained from the fewest wells in the most important aquifers.

Each well is identified by means of (1) a 15-digit number that is based on latitude and longitude and (2) a local number that is provided for local needs. See figures 14 and 15.

Measurements are made in many types of wells, under varying conditions of access and at different temperatures, hence, neither the method of measurement nor the equipment can be standardized. At each observation well, however, the equipment and techniques used are those that will ensure that measurements at each well are consistent.

Water-level measurements in this report are given in feet with reference to either mean sea level (ms1) or land-surface datum (1sd). Mean sea level is the datum plane on which the national network of precise levels is based; land-surface datum is a datum plane that is approximately at land surface at each well. If known, the altitude of the land-surface datum above mean sea level is given in the well description. The height of the measuring point (MP) above or below land-surface datum is given in each well description. Water levels in wells equipped with recording gages are reported for every fifth day and the end of each month (eom). To show the intraday variation in the ground-water levels caused by local pumping and tidal fluctuations, instantaneous maximum and minimum water levels are given with the mean water levels for the day.

Water levels are reported to as many significant figures as can be justified by the local conditions. For example, in a measurement of a depth to water of several hundred feet, the error in determining the absolute value of the total depth to water may be a few tenths of a foot, whereas the error in determining the net change of water level between successive measurements may be only a hundredth or a few hundredths of a foot. For lesser depths to water, the accuracy is greater. Accordingly, most measurements are reported to a hundredth of a foot, but some are given only to a tenth of a foot or a larger unit.

ACCESS TO WATSTORE DATA

The National <u>WATer Data STOrage</u> and <u>RE</u>trieval System (WATSTORE) was established for handling water data collected through the activities of the U.S. Geological Survey and to provide for more effective and efficient means of releasing the data to the public. The system is operated and maintained on the central computer facilities of the Survey at its National Center in Reston, Virginia.

WATSTORE can provide a variety of useful products ranging from simple data tables to complex statistical analyses. A minimal fee, plus the actual computer cost incurred in producing a desired product, is charged to the requester. Information about the availability of specific types of data, the acquisition of data or products, and user charges can be obtained locally from each of the Water Resources Division's district offices (see address given on the back of the title page).

General inquiries about WATSTORE may be directed to:

Chief Hydrologist U.S. Geological Survey 437 National Center Reston, Virginia 22092 The U.S. Geological Survey publishes a series of manuals describing procedures for planning and conducting specialized work in water-resources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, Section A of Book 3 (Applications of Hydraulics) pertains to surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises.

The reports listed below are for sale by the U.S. Geological Survey, Branch of Distribution, 604 South Pickett St., Alexandria, VA 22304 (authorized agent of the Superintendent of Documents, Government Printing Office). Prepayment is required. Remittance should be sent by check or money order payable to the U.S. Geological Survey. Prices are not included because they are subject to change. Current prices can be obtained by writing to the above address. When ordering or inquiring about prices for any of these publications, please give the title, book number, chapter number, and "U.S. Geological Survey Techniques of Water-Resources Investigations."

- 1-D1. Water temperature--influential factors, field measurement, and data presentation, by H. H. Stevens, Jr., J. F. Ficke, and G. F. Smoot: USGS--TWRI Book 1, Chapter D1. 1975. 65 pages.
- 1-D2. Guidelines for collection and field analysis of ground-water samples for selected unstable constituents, by W. W. Wood: USGS--TWRI Book 1, Chapter D2. 1976. 24 pages.
- 2-D1. Application of surface geophysics to ground-water investigations, by A. A. R. Zohdy, G. P. Eaton, and D. R. Mabey: USGS--TWRI Book 2, Chapter D1. 1974. 116 pages.
- 2-E1. Application of borehole geophysics to water-resources investigations, by W. S. Keys and L. M. MacCary: USGS--TWRI Book 2, Chapter E1. 1971. 126 pages.
- 3-Al. General field and office procedures for indirect discharge measurements, by M. A. Benson and Tate Dalrymple: USGS--TWRI Book 3, Chapter Al. 1967. 30 pages.
- 3-A2. Measurement of peak discharge by the slope-area method, by Tate Dalrymple and M. A. Benson: USGS--TWRI Book 3, Chapter A2. 1967. 12 pages.
- 3-A3. Measurement of peak discharge at culverts by indirect methods, by G. L. Bodhaine: USGS--TWRI Book 3, Chapter A3. 1968. 60 pages.
- 3-A4. Measurement of peak discharge at width contractions by indirect methods, by H. F. Matthai: USGS--TWRI Book 3, Chapter A4. 1967. 44 Pages.
- 3-A5. Measurement of peak discharge at dams by indirect methods, by Harry Hulsing: USGS--TWRI Book 3, Chapter A5. 1967. 29 pages.
- 3-A6. General procedure for gaging streams, by R. W. Carter and Jacob Davidian: USGS--TWRI Book 3, Chapter A6. 1968. 13 pages.
- 3-A7. Stage measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3, Chapter A7. 1968. 28 pages.
- 3-A8. Discharge measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3, Chapter A8. 1969. 65 pages.
- 3-A9. Measurement of time of travel and dispersion in streams by dye tracing, by E. F. Hubbard, F. A. Kilpatrick, L. A. Martens, and J. F. Wilson, Jr.: USGS--TWRI Book 3, Chapter A9. 1982. 44 pages.
- 3-A10. Discharge ratings at gaging stations, by E. J. Kennedy: USGS--TWRI Book 3, Chapter A10. 1984. 59 pages.
- 3-All. Measurement of discharge by moving-boat method, by G. F. Smoot and C. E. Novak: USGS--TWRI Book 3, Chapter All. 1969. 22 pages.
- 3-A13. Computation of continuous records of streamflow, by E. J. Kennedy: USGS--TWRI Book 3, Chapter A13. 1983. 53 pages.
- 3-A14. Use of flumes in measuring discharge, by F. A. Kilpatrick and V. R. Schneider: USGS--TWRI Book 3, Chapter A14. 1983. 46 pages.
- 3-A15. Computation of water-surface profiles in open channels. by Jacob Davidian: USGS--TWRI Book 3, Chapter A15. 1984. 48 pages.
- 3-B1. Aquifer-test design, observation, and data analysis, by R. W. Stallman: USGS--TWRI Book 3, Chapter B1. 1971. 26 pages.
- 3-B2. Introduction to ground-water hydraulics, a programed text for self-instruction, by G. D. Bennett: USGS--TWRI Book 3, Chapter B2. 1976. 172 pages.
- 3-B3. Type curves for selected problems of flow to wells in confined aquifers, by J. E. Reed: USGS-TWRI Book 3, Chapter B3. 1980. 106 pages.

- 3-C1. Fluvial sediment concepts by H. P. Guy: USGS--TWRI Book 3, Chapter C1. 1970. 55 pages.
- 3-C2. Field methods for measurement of fluvial sediment. by H. P. Guy and V. W. Norman: USGS--TWRI Book 3, Chapter C2. 1970. 59 pages.
- 3-C3. Computation of fluvial-sediment discharge, by George Porterfield: USGS--TWRI Book 3, Chapter C3. 1972. 66 pages.
- 4-Al. Some statistical tools in hydrology, by H. C. Riggs: USGS--TWRI Book 4, Chapter Al. 1968. 39 pages.
- 4-A2. Frequency curves, by H. C. Riggs: USGS--TWRI Book 4, Chapter A2. 1968. 15 pages.
- 4-B1. Low-flow investigations, by H. C. Riggs: USGS--TWRI Book 4, Chapter B1. 1972. 18 pages.
- 4-B2. Storage analyses for water supply, by H. C. Riggs and C. H. Hardison: USGS--TWRI Book 4, Chapter B2. 1973. 20 pages.
- 4-B3. Regional analyses of streamflow characteristics, by H. C. Riggs: USGS--TWRI Book 4, Chapter B3. 1973. 15 pages.
- 4-D1. Computation of rate and volume of stream depletion by wells by C. T. Jenkins: USGS--TWRI Book 4, Chapter D1. 1970. 17 pages.
- 5-Al. Methods for determination of inorganic substances in water and fluvial sediments by M. W. Skougstad and others, editors: USGS--TWRI Book 5, Chapter Al. 1979. 626 pages.
- 5-A2. Determination of minor elements in water by emission spectroscopy. by P. R. Barnett and E. C. Mallory, Jr.: USGS--TWRI Book 5, Chapter A2. 1971. 31 pages.
- 5-A3. Methods for analysis of organic substances in water, by D. F. Goerlitz and Eugene Brown: USGS--TWRI Book 5, Chapter A3. 1972. 40 pages.
- 5-A4. Methods for collection and analysis of aquatic biological and microbiological samples edited by P. E. Greeson, T. A. Ehlke, G. A. Irwin, B. W. Lium, and K. V. Slack: USGS--TWRI Book 5, Chapter A4. 1977. 332 pages.
- 5-A5. Methods for determination of radioactive substances in water and fluvial sediments, by L. L. Thatcher, V. J. Janzer, and K. W. Edwards: USGS--TWRI Book 5, Chapter A5. 1977. 95 pages.
- 5-A6. Quality assurance practices for the chemical and biological analyses of water and fluvial sedments, by L. C. Friedman and D. E. Erdmann: USGS--TWRI Book 5, Chapter A6. 1982. 181 pages.
- 5-C1. Laboratory theory and methods for sediment analysis. by H. P. Guy: USGS--TWRI Book 5, Chapter C1. 1969. 58 pages.
- 7-C1. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by P. C. Trescott, G. F. Pinder, and S. P. Larson: USGS--TWRI Book 7, Chapter C1. 1976. 116 pages.
- 7-C2. Computer model of two-dimensional solute transport and dispersion in ground water, by L. F. Konikow and J. D. Bredehoeft: USGS--TWRI Book 7, Chapter C2. 1978. 90 pages.
- 7-C3. A model for simulation of flow in singular and interconnected channels by R. W. Schaffrannek, R. A. Baltzer, and D. E. Goldberg: USGS--TWRI Book 7, Chapter C3. 1981. 110 pages.
- 8-Al. Methods of measuring water levels in deep wells. by M. S. Garber and F. C. Koopman: USGS--TWRI Book 8, Chapter Al. 1968. 23 pages
- 8-A2. Installation and service manual for U.S. Geological Survey manometers by J. D. Craig: USGS--TWRI Book 8, Chapter A2. 1983. 57 pages.
- 8-B2. Calibration and maintenance of vertical-axis type current meters. by G. F. Smoot and C. E. Novak: USGS--TWRI Book 8, Chapter B2. 1968. 15 pages.

GAGING-STATION RECORDS

MARIANA ISLANDS, ISLAND OF SAIPAN

16801000 SOUTH FORK TALOFOFO STREAM

LOCATION.--Lat 15°12'48" N., long 145°46'17" E., Hydrologic Unit 20100006, on left bank 0.4 mi upstream from confluence with Middle and North Forks, 1.4 mi south of Ogso Dogas, and 2.2 mi southeast of Tanapag.

DRAINAGE AREA. -- 0.64 mi². Area at site used prior to Mar. 31, 1971, 0.73 mi²

PERIOD OF RECORD. --October 1968 to current year. Low-flow records not equivalent prior to Mar. 31, 1971, due to undetermined amount of underflow between sites.

REVISED RECORDS. -- WDR HI-78-2: 1976-77(M), WDR HI-82-2: Drainage area.

GAGE.--Water-stage recorder. Concrete control since Mar. 31, 1971. Elevation of gage is 60 ft, from topographic map. Prior to Mar. 31, 1971, at site 0.2 mi downstream at different datum.

REMARKS .-- Records fair except for estimated daily discharges, which are poor. No diversion upstream.

AVERAGE DISCHARGE.--14 years (water years 1972-85), 1.34 ft3/s (971 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,100 ft³/s, Aug. 4, 1976, gage height, 8.15 ft, from rating curve extended above 59 ft³/s on basis of slope-area measurements at gage heights 7.30 and 8.15 ft; no flow at times.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,520 ft³/s Aug. 30, gage height, 6.25 ft, no other peak greater than base discharge of 400 ft³/s; minimum, 0.01 ft³/s, Apr. 7.

DISCHARGE. IN CUBIC FEET PER SECOND. WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

		DISCHARGE,	IN CUB.	IC FEET I		AN VALUES	SAR OCTOR	DER 1904	IO SEPIEM	DEK 1963		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1.8	. 87	.93	.23	.69	.16	.04	.04	.30	.38	.94	6.2
2	1.5	.81	. 87	.23	. 47	.11	.04	.04	. 27	.34	.76	3.6
3	1.2	.81	.64	.16	.39	.09	.07	.04	.27	.34	.70	2.7
4	1.1	.75	. 58	.14	.39	.09	.04	.03	. 27	.38	.66	2.2
5	1.0	.75	.75	.13	.35	.08	.03	.04	.24	.30	.62	1.4
6	.98	.64	.58	.14	.29	.07	.02	.04	.22	.27	.94	2.1
7	.93	.64	. 52	.14	.26	.07	.02	.03	.20	. 24	.70	1.8
8	. 87	. 52	. 47	.14	.23	.06	.02	.02	.18	.24	7.8	1.7
9	.87	. 58	. 43	.19	.21	.06	.03	.04	.18	. 27	e1.7	2.2
10	.75	. 52	.43	.64	.21	.11	.08	.06	.34	.24	e1.0	1.7
11	.75	. 47	. 47	1.3	.19	.07	.11	.04	.24	.24	e.90	1.4
12	1.1	. 52	.39	.39	.19	.07	.09	.03	.22	.27	e.80	20
13	.81	. 52	.35	.32	.16	.06	.09	.03	3.3	.26	e.80	12
14	.98	. 52	.35	.26	.16	.06	.08	.02	3.9	.30	e.75	4.9
15	.81	1.4	.32	.26	.39	.06	.08	.02	1.4	.27	e7.0	3.6
16	.75	.64	.32	.23	.23	.07	.08	.16	1.9	.24	e2.0	3.3
17	.69	3.0	.29	.21	.21	.06	.09	. 47	1.1	.22	e1.7	2.8
18	.64	1.8	.29	.21	.19	.05	.08	.11	1.9	.50	e1.5	2.3
19	7.2	1.1	.26	.21	.19	.09	.08	10	1.5	.40	e7.0	2.1
20	20	.93	.26	.19	.16	.06	.07	2.9	.94	.30	e2.0	1.9
21	3.1	.81	.23	.82	.16	.05	.07	2.0	.70	. 27	e3.0	1.8
22	2.0	.75	.23	. 47	.14	.04	.08	1.0	.62	.38	e2.0	9.4
23	1.6	.81	.23	.29	.14	.04	.08	1.7	. 58	.38	e1.7	3.4
24	1.4	.64	.23	. 26	. 13	.04	.13	1.7	.50	.70	e1.3	2.3
25	2.5	. 58	.21	.23	.14	.04	.06	1.0	. 42	.94	e1.1	2.0
26	1.3	. 52	.21	.23	.14	.04	.06	.70	.42	8.3	e1.0	1.8
27	1.2	1.4	.19	.21	.14	.04	.05	. 58	.38	1.5	e1.3	3.5
28	1.3	.64	.19	.19	. 13	.03	.05	.50	.38	1.0	e1.0	3.5
29	1.1	.58	.16	.19		.03	.04	.46	.38	.82	1.5	6.2
30	.98	. 52	.14	2.0		.03	.05	.38	.50	2.1	71	4.3
31	. 93		.13	. 47		.03		.34		1.1	6.8	
TOTAL	62.14	25.04	11.65	11.08	6.68	1.96	1.91	24.52	23.75	23.49	131.97	118.1
MEAN	2.00	. 83	.38	.36	.24	.063	.064	.79	.79	.76	4.26	3.94
MAX	20	3.0	. 93	2.0	.69	.16	.13	10	3.9	8.3	71	20
MIN	.64	. 47	.13	.13	.13	.03	.02	.02	.18	.22	. 62	1.4
AC-FT	123	50	23	22	13	3.9	3.8	49	47	47	262	234
CAL YR	1984 T	OTAL 333.	30	MEAN	.91	MAX	31	MIN	.00	AC-FT	661	
WTR YR	1985 T	OTAL 442.	29	MEAN	1.21	MAX	71	MIN	.02	AC-FT	877	

e Estimated

MARIANA ISLANDS, ISLAND OF SAIPAN

16801000 SOUTH FORK TALOFOFO STREAM--Continued

	DATE	Т	IME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)		DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)	
	OCT .	1984						MAR ,	1985				
	03		025	77	77	25.5		01	1225	.28	99	25.0	
	03	1	050	1.2		25.5		JUN	20.5				
	DEC 14	n	950	.40	28.0	26.5		AUG	1040	.96	30.0	27.0	
	JAN ,		930	. 40	20.0	20.3		28	1545	1.1	22	26.0	
	30		000	1.9	26.0	25.0		28	1550	1.1		26.0	
				SPE-			-	HARD-		MAGNE-			SODIUM
		FL	EAM- OW, TAN-	CIFIC CON- DUC-	PH (STAND-	TEMPER-	HARD- NESS (MG/L	NESS, NONCAR- BONATE	DIS- SOLVE	DIS- SOLVED	SODIUM, DIS- SOLVED		AD- SORP- TION
DATE	TIME		EOUS FS)	TANCE (US/CM)	ARD UNITS)	ATURE (DEG C)	AS CACO3)	(MG/L CACO3)	(MG/L AS CA		(MG/L AS NA)	PERCENT SODIUM	RATIO
OCT													
03 AUG	1025				8.0	25.5	150	6	52	6.0	25	26	.9
28	1545		1.1	414	8.1	26.0	160	15	53	6.0	25	26	.9
	TO.	TAC-	ALK		CH	LO- FLUC	- 811 I		IDS,		TRO-	MAN	·GA
	S	TAS- IUM, IS-	LINI	TY SULI	FATE RI	DE, RIDI	E, DIS	- CON	STI- I	DIS- NO2-			
		LVED	(MG			LVED SOLV							VED
DAT		G/L K)	CAC			G/L (MG, CL) AS I						FE) AS	
OCT 03. AUG		.80	149		16 3	3 .	.10 2	.9	250	.34	<.10	17	22
28.		.80	142	10	15 3	3	.10 2	.8	246	.33	<.10	32	14

< Actual value is known to be less than the value shown.

16805200 LAKE SUSUPE

LOCATION.--Lat 15°09'15" N., long 145°42'42" E., Hydrologic Unit 20100006, on west shore, at the end of Sugar Mill Road, 0.5 mi southeast from the Administration building, Northern Marianas Government.

PERIOD OF RECORD. -- February 1981 to current year.

GAGE. -- Water-stage recorder. Datum of gage is at mean sea level.

REMARKS. -- Water-level records good.

WTR YR 1985 MEAN

2.37

MAX

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 4.61 ft, Oct. 19, 1982; lowest, 0.70 ft, June 13, 1983.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood of Aug. 12, 1978, reached a stage of 7.6 ft, from floodmarks.

EXTREMES FOR CURRENT YEAR. -- Highest water level, 3.21 ft, Sept. 1; lowest, 1.47 ft, Apr. 23-24.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985
MEAN VALUES

					111111	, vimono						
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	3.17	2.83	2.51	2.19	2.51	2.18	1.76	1.62	2.35	2.35	2.65	3.20
2	3.07	2.80	2.50	2.29	2.50	2.19	1.75	1.62	2.33	2.34	2.63	3.16
3	2.99	2.76	2.48	2.29	2.49	2.18	1.76	1.62	2.30	2.34	2.60	3.09
4	2.94	2.72	2.50	2.27	2.49	2.17	1.77	1.62	2.28	2.36	2.57	3.02
5	2.88	2.69	2.50	2.27	2.48	2.16	1.75	1.63	2.26	2.35	2.54	2.96
6	2.83	2.67	2.47	2.26	2.46	2.14	1.73	1.62	2.24	2.33	2.53	2.89
7	2.79	2.64	2.46	2.24	2.45	2.13	1.72	1.61	2.22	2.31	2.51	2.84
8	2.74	2.61	2.46	2.22	2.41	2.10	1.71	1.60	2.19	2.29	2.70	2.78
9	2.73	2.61	2.45	2.22	2.38	2.08	1.71	1.63	2.17	2.29	2.75	2.75
10	2.73	2.62	2.43	2.36	2.36	2.09	1.70	1.65	2.15	2.29	2.72	2.73
11	2.72	2.60	2.43	2.42	2.34	2.11	1.68	1.64	2.13	2.27	2.69	2.69
12	2.74	2.58	2.42	2.42	2.34	2.10	1.67	1.63	2.13	2.25	2.68	2.80
13	2.76	2.57	2.41	2.40	2.32	2.09	1.65	1.63	2.26	2.24	2.68	2.91
14	2.74	2.58	2.40	2.39	2.30	2.08	1.63	1.63	2.33	2.22	2.67	2.93
15	2.72	2.62	2.37	2.37	2.34	2.07	1.61	1.62	2.38	2.25	2.74	2.90
16	2.68	2.61	2.36	2.36	2.35	2.05	1.58	1.64	2.41	2.25	2.79	2.89
17	2,67	2.66	2.36	2.33	2.33	2.02	1.57	1.76	2.44	2.23	2.82	2.96
18	2.63	2.68	2.34	2.34	2.31	2.01	1.56	1.82	2.49	2.24	2.85	2.95
19	2.68	2.65	2.32	2.36	2,29	2.01	1.56	2.01	2.48	2.29	2.83	2.92
20	2.95	2.63	2.30	2.34	2.27	1.99	1.54	2.30	2.45	2.32	2.80	2.89
21	2.96	2.61	2.29	2.34	2.24	1.97	1.52	2.47	2.43	2.30	2.78	2.87
22	2.93	2.59	2.27	2.41	2.23	1.95	1.50	2.49	2.40	2.31	2.80	2.83
23	2.89	2.61	2.27	2.39	2.22	1.94	1.48	2.51	2.38	2.34	2.83	2.82
24	2.87	2.62	2.26	2.38	2.20	1.91	1.54		2.36	2.37	2.79	2.82
25	2.92	2.59	2.25	2.38	2.19	1.90	1.59	2.53	2.34	2.43	2.78	2.77
26	2.90	2.56	2.25	2.37	2.19	1.86	1.62	2.50	2,33	2.69	2.77	2:73
27	2.87	2.56	2.24	2.35	2.18	1.84	1.64	2.46	2.34	2.74	2.74	2.76
28	2.87	2.55	2.21	2.33	2.16	1.81		2.43	2.33	2.73	2.73	2.91
29	2.89	2.54	2.19	2.32		1.80	1.64	2.41	2.35	2.69	2.70	3.01
30	2.87	2.51	2.18	2.44		1.79	1.62	2.40	2.36	2.71	3.00	2.99
31	2.86		2.15	2.49		1.77		2.37		2.69	3.18	
MEAN	2.84	2.63	2.36	2.34	2.33	2.02	1.64	1.97	2.32	2.38	2.74	2.89
MAX	3.17	2.83	2.51	2.49	2.51	2.19	1.77	2.56	2.49	2.74	3.18	3.20
MIN	2.63	2.51	2.15	2.19	2.16	1.77	1.48	1.60	2.13	2.22	2.51	2.69
CAT VP	1984 ME.	AN 2	43 MAX	3.56	MIN	1.77						
	1005 15		40 110									

MIN

1.48

3.20

MARIANA ISLANDS, ISLAND OF SAIPAN

16805200 LAKE SUSUPE--Continued

DATE	TIME	SPE- CIFIC CON- DUC- TANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO
OCT											
02 AUG	1300	5380	8.2	35.0	660	500	99	100	890	74	15
30	1255	4200	7.7	30.0	570	420	91	84	580	68	11
DATE	POTAS- SIUM, DIS- SOLVED (MG/L	ALKA- LINITY LAB (MG/L AS	SULFATE DIS- SOLVED (MG/L	CHLO- RIDE, DIS- SOLVED (MG/L	FLUO- RIDE, DIS- SOLVED (MG/L	SILICA, DIS- SOLVED (MG/L AS	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED	SOLIDS, DIS- SOLVED (TONS PER	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L	IRON, DIS- SOLVED (UG/L	MANGA- NESE, DIS- SOLVED (UG/L
DATE	AS K)	CACO3)	AS SO4)	AS CL)	AS F)	SIO2)	(MG/L)	AC-FT)	AS N)	AS FE)	AS MN)
OCT											
02 AUG	28	158	190	1600	.10	4.0	3000	4.1	<.10	70	20
30	23	157	140	1200	.10	3.2	2200	3.0	<.10	110	30

< Actual value is known to be less than the value shown.

16840000 TINAGA RIVER NEAR INARAJAN

LOCATION.--Lat 13°17'10" N., long 144°45'04" E., Hydrologic Unit 20100003, on right bank 0.3 mi upstream from mouth, 0.9 mi northeast of Inarajan, and 4.5 mi south of Talofofo.

DRAINAGE AREA. -- 1.89 mi².

PERIOD OF RECORD. -- October 1952 to current year. Prior to October 1969, published as Pauliluc River near Inarajan.

REVISED RECORDS. -- WSP 2137: Drainage area.

GAGE.--Water-stage recorder and concrete control. Elevation of gage is 15 ft, from topographic map.

REMARKS.--Records good. No diversion upstream. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 33 years, 5.62 ft 3/s (4,070 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,980 ft³/s Oct. 15, 1953, gage height, 13.11 ft, from rating curve extended above 210 ft³/s; minimum, 0.15 ft³/s May 16, 21-23, 29, 1966, June 13, 29, 30, 1973.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 475 ${\rm ft}^3/{\rm s}$ Nov. 13, gage height, 4.59 ft, no other peak greater than base discharge of 400 ${\rm ft}^3/{\rm s}$; minimum, 0.62 ${\rm ft}^3/{\rm s}$ for several days in April and May.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

		DIBCHAROL,	IN CODIC	TLLI	ME.	AN VALUES	LAK OCTO	DER 1904 1	O BELLEN	DER 1905		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	6.1 5.3 4.7 4.5 5.8	11 13 7.9 6.9 6.2	5.2 5.7 5.1 50 36	3.5 3.5 3.2 3.1 2.8	1.9 1.9 1.9 1.8 1.9	1.3 1.2 1.2 1.2	.93 .91 .88 .87	.75 .77 .79 .86	1.8 1.8 2.6 2.6 2.2	3.4 5.3 5.3 4.2 3.6	5.1 4.3 4.2 4.6 6.4	16 25 17 9.0 6.8
6 7 8 9 10	18 10 5.3 5.2 8.4	14 6.9 5.9 5.6 5.9	8.3 7.1 6.1 5.6	2.7 2.6 2.5 5.5	1.8 1.7 1.7 1.7	1.3 1.3 1.3 1.2	.81 .79 .76 .75	.74 .69 .66 .66	2.0 1.8 1.7 1.6 1.5	3.3 3.6 3.6 3.3 3.1	6.3 22 9.1 5.6 6.1	6.8 6.4 6.2 5.8 5.5
11 12 13 14 15	6.1 4.9 4.4 5.3	5.6 5.3 e70 13 8.1	5.6 5.1 5.1 4.8 4.4	4.3 3.7 3.5 3.2 3.0	1.7 1.6 1.6 1.6 1.5	1.3 1.2 1.1 3.7 2.9	.75 .77 .74 .69	.69 .64 .62 .74	1.4 1.3 1.5 1.7 4.0	4.0 7.2 4.0 3.4 3.1	6.1 6.7 4.4 4.0 3.9	5.7 25 35 8.5 68
16 17 18 19 20	12 7.6 16 39 10	16 37 14 11 9.0	4.2 4.0 4.0 3.9 3.7	2.8 2.7 2.7 2.7 2.6	1.5 1.5 1.6 1.7	2.0 1.7 1.6 1.5	.68 .66 .66 .67	1.5 7.6 6.6 9.0	4.3 39 23 7.5 4.5	2.9 3.6 3.4 3.4 3.1	3.8 3.9 20 6.5 23	9.6 7.1 7.1 5.7 5.1
21 22 23 24 25	9.2 7.3 6.5 26	7.3 6.8 6.3 5.9 5.6	3.4 3.2 3.0 3.0 2.9	2.4 2.3 2.4 2.2 2.3	1.6 1.6 1.6 1.5	1.3 1.2 1.2 1.1	.63 .62 .62 .76	23 10 4.5 3.6 2.9	29 13 25 8.6 5.9	2.8 3.1 3.1 5.3 3.8	19 12 7.1 5.5 4.8	4.9 5.6 9.2 5.7 4.8
26 27 28 29 30 31	9.6 7.4 10 7.6 6.0 8.9	5.1 12 6.1 7.3 7.2	3.2 3.1 3.2 3.0 3.0 3.6	3.8 2.8 2.5 2.3 2.2 2.0	1.3 1.2 1.4 	1.1 1.1 1.0 .97 .96	.88 1.1 1.0 .88 .79	2.6 2.2 2.0 1.8 1.8	5.3 4.5 4.2 3.8 3.4	48 13 6.0 4.5 21 5.3	5.8 30 6.1 5.0 38 21	4.4 81 48 31 11
TOTAL MEAN MAX MIN AC-FT	335.1 10.8 39 4.4 665	341.9 11.4 70 5.1 678	220.5 7.11 50 2.9 437	97.8 3.15 10 2.0 194	45.5 1.62 1.9 1.2 90	43.02 1.39 3.7 .96 85	23.41 .78 1.1 .62 46	109.70 3.54 23 .62 218	210.5 7.02 39 1.3 418	192.7 6.22 48 2.8 382	310.3 10.0 38 3.8 615	486.9 16.2 81 4.4 966
CAL YR WTR YR		OTAL 1838 OTAL 2417		MEAN MEAN	5.02 6.62	MAX MAX	102 81	MIN MIN	.40 .62	AC-FT AC-FT	3650 4790	

e Estimated

16847000 IMONG RIVER NEAR AGAT

LOCATION.--Lat 13°20'17" N., long 144°41'55" E., Hydrologic Unit 20100003, on left bank 500 ft upstream from Fena Valley Reservoir, 1.4 mi south of Fena Dam spillway, and 4.1 mi southeast of Agat School.

DRAINAGE AREA. -- 1.95 mi².

PERIOD OF RECORD. -- March 1960 to March 1971. October 1971 to current year.

REVISED RECORDS. -- WSP 2137: Drainage area.

GAGE. -- Water-stage recorder and concrete control. Elevation of gage is 120 ft, from topographic map.

REMARKS.--Records fair except for estimated daily discharges, which are poor. No diversion upstream. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE.--24 years (water years 1961-70, 1972-85), 10.0 ft³/s (7,240 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 6,100 ft³/s Sept. 27, 1978, gage height, 11.3 ft, from outside floodmarks, and from rating curve extended above 58 ft³/s on basis of slope-area measurement of peak flow; minimum, 0.37 ft³/s May 21, 22, 26, 1966.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1,400 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
July 31 Aug. 7 Sept. 6	2000 0800 1330	1510 1720 *2680	5.62 6.03 *7.61	Sept. 13 Sept. 15	0615 0800	2000 1580	6.51 5.76

Minimum discharge, 1.6 ft³/s for several days in April and May.

		DISCHARGE,	IN CUBI	C FEET		, WATER YEAR AN VALUES	OCTOBE	R 1984 T	O SEPTEME	BER 1985		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	8.4 7.8 7.3 7.5 7.1	14 23 14 11	12 12 11 84 47	6.7 5.9 5.7 5.7 5.3	4.3 4.1 4.1 4.1 4.7	3.2 3.2 3.0 3.2 2.8	2.4 2.4 2.2 2.2 2.2	1.8 1.8 2.0 2.0	5.0 4.6 17 8.0 6.0	6.8 15 9.2 7.8 7.3	17 11 10 9.5	43 60 23 26 14
6 7 8 9	8.7 7.6 41 15	13 11 9.4 22 12	20 15 13 11	5.0 5.1 4.9 14 20	4.2 4.0 3.8 3.8 3.8	3.2 3.0 3.0 2.8 3.2	2.0 2.0 2.0 2.0 2.0	1.8 1.8 2.0 2.0	5.3 4.9 4.6 4.6 4.6	8.3 13 8.8 7.8 7.8	24 97 22 15 14	110 22 19 e20 e13
11 12 13 14 15	13 10 9.0 9.2 32	11 13 171 23 16	9.9 9.4 9.2 8.9 8.7	7.7 8.0 9.0 6.4 5.6	3.9 3.8 3.6 3.2 3.2	3.0 3.0 3.0 15 4.4	1.8 1.8 1.8 1.8	2.0 1.8 1.8 2.6 2.8	4.3 4.8 4.4 8.5	9.2 13 8.3 7.8 8.3	16 9.9 9.0 8.5 8.2	18 57 e130 e40 e70
16 17 18 19 20	28 17 19 34 16	37 53 25 18 15	8.3 8.2 8.2 7.7 6.8	8.1 5.6 5.3 4.9 4.7	3.0 3.2 3.5 3.5 3.5	3.2 3.0 3.0 3.0 2.8	1.6 1.6 1.6 2.0 1.8	21 25 27 14 65	17 69 29 11 8.8	13 7.8 7.8 7.8 7.8	9.2 11 44 31 63	e30 e20 e15 e13 e11
21 22 23 24 25	15 11 9.7 46 37	13 13 13 12 11	6.3 6.0 6.1 6.2 6.0	4.6 4.4 8.4 5.6 8.3	3.0 3.0 3.0 3.2 3.2	2.6 2.6 2.8 2.8 3.0	1.6 1.6 1.8 3.8 2.8	38 18 9.6 7.0 6.0	39 26 37 15 11	8.3 8.3 17 19 8.3	23 31 14 12 11	e10 e20 e17 e10 e9.0
26 27 28 29 30 31	23 20 18 14 11	11 13 11 20 15	6.2 6.0 6.5 5.9 5.8 7.1	8.1 5.4 4.9 5.0 4.6 4.4	3.0 3.0 4.1 	3.2 2.8 2.8 2.8 2.6 2.4	2.4 6.3 2.2 2.0 1.8	5.4 5.6 5.1 4.9 4.6 6.0	8.8 9.2 7.8 7.3 6.8	51 28 12 9.8 41 49	22 32 12 10 53 27	e8.0 e35 e50 e30 e20
TOTAL MEAN MAX MIN AC-FT	527.3 17.0 46 7.1 1050	654.4 21.8 171 9.4 1300	388.4 12.5 84 5.8 770	207.3 6.69 20 4.4 411	100.5 3.59 4.7 3.0 199	104.4 3.37 15 2.4 207	65.3 2.18 6.3 1.6 130	292.0 9.42 65 1.8 579	405.3 13.5 69 4.3 804	434.3 14.0 51 6.8 861	687.3 22.2 97 8.2 1360	963.0 32.1 130 8.0 1910
CAL YR WTR YR		OTAL 3165 OTAL 4829		MEAN MEAN	8.65 13.2			MIN MIN	1.6 1.6	AC-FT AC-FT	6280 9580	

16848100 ALMAGOSA RIVER NEAR AGAT

LOCATION.--Lat 13°20'43" N., long 144°41'36" E., Hydrologic Unit 20100003, on right bank 400 ft upstream from Fena Valley Reservoir and 3.5 mi southeast of Agat.

DRAINAGE AREA. -- 1.32 mi 2.

PERIOD OF RECORD. -- April 1972 to current year.

REVISED RECORD.--WDR HI-75-1: Drainage area. WDR HI-76-1: 1972(P), 1973(M), 1974-75(P).

GAGE.--Water-stage recorder and concrete control. Elevation of gage is 155 ft, from topographic map.

REMARKS.--Records good except for estimated daily discharges, which are fair. Up to 3.9 ft³/s diverted upstream for domestic use. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 13 years, 6.00 ft 3/s (4,350 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 2,650 ft³/s Sept. 27, 1978, gage height, 7.78 ft, from rating curve extended above 46 ft³/s on basis of slope-area measurement at gage height 7.32 ft; minimum, 0.13 ft³/s June 27, July 11, 12, 14, 16, 17, 1979, June 3-9, 1984.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 984 ft³/s Sept. 6, gage height, 5.64 ft, no other peak greater than base discharge of 700 ft³/s; minimum, 0.43 ft³/s Apr. 21-23.

		DISCHARGE,	IN CUBIC	FEET		, WATER YEA AN VALUES	R OCTOBI	ER 1984	TO SEPTEMB	ER 1985		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	4.6 4.0 4.0 3.2 2.9	7.4 12 8.6 6.9 5.8	6.3 6.1 6.0 43	2.4 2.1 1.8 1.7 1.6	1.5 1.4 1.4 1.3	1.1 .98 .93 .88 .84	.57 .57 .57 .64	.52 .52 .54 .55	1.4 1.0 11 5.5 3.5	2.9 7.4 3.9 2.9 2.5	21 12 9.3 7.5 7.1	24 56 27 16 11
6 7 8 9 10	4.8 3.0 2.5 22 8.3	5.6 5.2 4.6 22	27 14 10 7.8 6.3	1.5 1.5 1.5 6.6 9.0	1.3 1.2 1.2 1.2 1.2	.95 .89 .79 .74	.61 .55 .52 .52	.51 .47 .47 .47	2.4 1.7 1.3 1.0	3.0 5.7 4.1 3.6 3.6	6.3 60 24 18 15	50 15 13 13 9.4
11 12 13 14 15	6.5 4.7 4.0 4.0	7.8 8.2 125 29 16	5.5 5.3 5.0 4.7 4.2	4.1 3.7 4.4 3.7 3.1	1.2 1.1 1.1 1.0	.74 .68 .69 3.4 1.2	.50 .60 .56 .52	.67 .57 .54 .76	.93 1.3 .95 2.1 5.2	4.5 6.7 3.8 3.2 2.8	11 8.5 6.7 5.6 5.0	10 42 90 27 48
16 17 18 19 20	15 15 12 23 14	21 36 24 14 11	3.8 3.7 3.4 3.2 2.9	4.4 3.0 2.7 2.3 2.0	1.0 1.1 1.2 1.1	.86 .78 .80 .81	.51 .50 .47 .53 .47	12 24 20 11 31	7.5 45 26 11 6.9	6.3 2.8 3.3 2.9 2.1	5.3 5.3 30 15 34	20 13 11 8.7 7.5
21 22 23 24 25	10 6.3 5.0 29 34	8.8 7.2 6.4 5.6 5.3	2.7 2.4 2.1 2.1 1.9	1.7 1.6 3.7 2.6 3.0	.95 .95 .95	.73 .72 .76 .71	.46 .43 .47 1.1 .91	35 20 9.5 5.4 3.9	23 18 25 15 9.3	1.8 1.6 5.6 5.9 3.3	27 20 11 9.0 7.2	e6.5 e12 e10 e6.0 e5.0
26 27 28 29 30 31	23 16 13 9.1 7.2 6.1	5.1 8.1 5.6 11 6.2	1.8 1.9 2.1 1.9 1.8 2.7	4.6 2.9 2.5 2.2 2.0 1.7		.79 .69 .63 .61 .57	.90 4.7 .84 .67 .55	2.8 2.2 1.8 1.3 1.0 2.5	6.4 5.2 4.2 3.6 3.1	45 24 11 7.6 63 35	18 10 6.0 5.3 27	e4.5 e20 32 24 14
TOTAL MEAN MAX MIN AC-FT	328.2 10.6 34 2.5 651	451.4 15.0 125 4.6 895	239.6 7.73 48 1.8 475	91.6 2.95 9.0 1.5 182	31.58 1.13 1.5 .84 63	27.13 .88 3.4 .57	21.88 .73 4.7 .43 43	192.08 6.20 35 .47 381	249.68 8.32 45 .93 495	281.8 9.09 63 1.6 559	462.1 14.9 60 5.0 917	645.6 21.5 90 4.5 1280
CAL YR WTR YR		OTAL 1832. OTAL 3022.		MEAN MEAN	5.01 8.28		125 125	MIN MIN		AC-FT AC-FT	3630 6000	

16848500 MAULAP RIVER NEAR AGAT

LOCATION.--Lat 13°21'14" N., long 144°41'44" E., Hydrologic Unit 20100003, on right bank 100 ft from Fena Valley Reservoir and 3.2 mi southeast of Agat.

DRAINAGE AREA. -- 1.15 mi 2.

PERIOD OF RECORD .-- January 1972 to current year.

REVISED RECORDS. -- WRD Hawaii 1973: 1972. WRD HI-75-1: Drainage area.

GAGE. -- Water-stage recorder and concrete control. Elevation of gage is 130 ft, from topographic map.

REMARKS.--Records fair except for estimated daily discharges, which are poor. No diversion upstream. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 13 years, 5.17 ft 3/s (3,750 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,420 ft³/s Sept. 27, 1978, gage height, 9.2 ft, from rating curve extended above 23 ft³/s, on basis of slope-area measurements at gage heights 8.21 ft and 9.2 ft; minimum, 0.31 ft³/s June 28 to July 1, 1983.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 600 ft 3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Oct. 9	1130	1010	6.44	Aug. 5	0800	1360	7.32
Oct. 24	1815	747	5.79	Sept. 6	1330	*1380	*7.36
Nov. 13	0330	1050	6.55	Sept. 13	0615	954	6.31

Minimum discharge, 0.75 ft3/s Apr. 18-23, May 7-10.

		DISCHARGE	IN CUB	C FEET P	ER SECOND ME	, WATER Y AN VALUES	EAR OCTO	BER 1984 I	O SEPTEM	BER 1985		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	4.8 4.4 4.0 3.8 3.6	9.2 12 6.2 5.6 4.9	8.0 7.2 4.6 50	3.4 3.1 2.7 2.6 2.5	2.0 2.0 1.9 1.9 2.5	1.6 1.3 1.3 1.3	1.3 .96 .96 1.1	1.0 1.0 1.0 1.0	2.3 2.1 16 4.1 3.2	3.7 12 9.2 4.6 4.0	e17 e10 e8.0 e7.0 e6.5	e25 e43 e20 e13 e10
6 7 8 9	4.6 3.7 3.5 35 5.7	4.9 6.2 4.3 33 6.7	9.2 7.3 6.4 5.8	2.4 2.5 2.3 10	2.0 1.9 1.8 1.8	1.6 1.6 1.3 1.2	1.0 .89 .89 .89	.82 .82 .82 .82	2.7 2.4 2.2 2.1 2.0	4.4 12 4.5 3.8 5.1	e6.0 e45 e10 22 9.1	e40 e12 e8.0 e7.0 e6.5
11 12 13 14 15	7.0 5.3 4.9 5.2	5.4 7.4 117 13 8.0	5.9 5.2 4.8 4.5 4.4	4.0 3.3 3.4 2.9 2.9	1.9 1.7 1.7 1.6 1.6	1.3 1.1 1.1 5.9 2.1	.82 1.2 .96 .89	1.0 .89 .89 1.1 1.6	1.8 2.9 2.1 3.6 4.8	7.3 9.9 4.4 3.9 4.0	4.6 3.5 3.1 3.1 2.9	9.5 40 73 11 29
16 17 18 19 20	9.1 8.3 10 20 7.9	14 28 10 8.3 6.3	4.2 4.0 4.0 3.8 3.6	4.4 2.8 2.7 2.5 2.4	1.6 1.6 1.7 1.6 1.5	1.5 1.3 1.3 1.3	.89 .89 .82 .96 .82	15 8.9 12 5.4 31	7.7 36 14 6.7 6.3	8.3 3.9 4.2 4.0 3.2	3.5 3.3 27 8.3 32	9.2 8.2 6.4 5.7 5.6
21 22 23 24 25	7.3 5.4 4.6 43 24	6.3 5.2 4.9 4.3 4.1	3.5 3.3 3.2 3.2 3.0	2.3 2.4 4.5 2.8 5.2	1.5 1.3 1.3 1.3	1.2 1.1 1.3 1.6 1.3	.75 .75 .75 2.3 1.6	29 11 6.1 4.2 9.2	25 17 15 9.5 7.2	3.2 3.1 5.1 6.9 4.1	6.0 15 4.6 4.1	5.8 12 8.7 4.9 4.4
26 27 28 29 30 31	12 7.4 10 6.1 5.4 5.2	3.9 13 4.1 16 5.2	3.2 3.1 3.2 3.1 2.9 3.7	7.0 2.8 2.4 2.3 2.2 2.2	1.3 1.3 2.3	1.6 1.3 1.3 1.2 1.2	1.3 6.1 1.3 1.1	4.0 3.2 2.7 2.5 2.3 3.3	5.7 5.1 4.4 3.9 3.8	e40 e20 e10 e7.0 e50 e25	e9.0 e7.0 e5.5 e5.0 e25 e14	4.0 27 30 18 6.9
TOTAL MEAN MAX MIN AC-FT	295.2 9.52 43 3.5 586	377.4 12.6 117 3.9 749	229.3 7.40 50 2.9 455	109.9 3.55 11 2.2 218	47.7 1.70 2.5 1.3 95	46.1 1.49 5.9 1.1 91	35.86 1.20 6.1 .75 71	164.27 5.30 31 .82 326	221.6 7.39 36 1.8 440	290.8 9.38 50 3.1 577	340.1 11.0 45 2.9 675	503.8 16.0 73 4.0 999
CAL YR WTR YR		OTAL 1735 OTAL 2662		MEAN MEAN	4.74 7.29	MAX MAX	117 117	MIN MIN	.51 .75	AC-FT AC-FT	3440 5280	

16849000 FENA DAM SPILLWAY NEAR AGAT

LOCATION.--Lat 13°21'28" N., long 144°42'12" E., Hydrologic Unit 20100003, on left bank 3.5 mi southeast of Agat and 5.8 mi southwest of Yona.

DRAINAGE AREA. -- 5.88 mi².

PERIOD OF RECORD.--September 1951 to July 1952, November 1952 to current year. Daily mean gage heights published since October 1973.

REVISED RECORDS. -- WSP 2137: Drainage area. WDR HI-78-2: 1977 (M, m).

GAGE.--Water-stage recorder and concrete-dam control. Datum of gage is 111.35 ft above mean sea level (from U.S. Navy construction plans).

REMARKS.--Gage-height records good except for estimated daily gage-heights, which are fair. About 10 $\rm ft^3/s$ is diverted from Fena Valley Reservoir and tributary springs for military and civilian use. Discharge records represent flow over spillway only.

AVERAGE DISCHARGE. -- 20 years (1953-73), 17.9 ft3/s (12,970 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, not determined, occurred Oct. 15, 1953 (gage height, at least 4.5 ft); no flow for many days each year. Minimum recorded gage height, -21.86 ft, Aug. 4, 1983.

EXTREMES FOR CURRENT YEAR. -- Maximum gage height, 2.10 ft, Nov. 13; minimum, -6.33 ft May 16.

GAGE HEIGHT (FEET AT DATUM), WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985
MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	e.30	.21	.24	.18	.07	-0.79	-2.69	-5.04	-0.91	.09	.60	. 53
2	e.25	.28	. 25	.18	.03	-0.82	-2.78	-5.15	-0.93	.18	.33	.91
3	e.20	.23	.21	.15	.01	-0.87	-2.88	-5.25	-0.64	.22	.24	.62
4	e.20	.20	. 58	.14	-0.01	-0.93	-2.97	-5.35	-0.39	.14	.21	.50
5	e.15	.18	.70	.12	-0.01	-1.01	-3.08	-5.44	-0.36	.09	.22	.45
6	e.20	.18	.43	.10	.01	-1.05	-3.17	-5.54	-0.37	.08	.23	.80
7	e.20	.18	.32	.11	-0.02	-1.07	-3.26	-5.64	-0.39	.15	.83	.40
8	e.15	.16	.26	.10	-0.05	-1.16	-3.36	-5.75	-0.43	.18	.51	.31
9	e.35	.35	.23	.23	-0.08	-1.25	-3.47	-5.84	-0.48	.12	.41	.36
10	e.30	.29	.22	.41	-0.11	-1.33	-3.57	-5.93	-0.51	.10	.38	.28
11	e.25	.21	.21	.26	-0.13	-1.37	-3.67	-5.98	-0.55	.15	.34	.25
12	e.25	.21	.20	.20	-0.17	-1.47	-3.75	-6.07	-0.59	.20	.32	.65
13	e.20	1.12	.20	.20	-0.21	-1.55	-3.81	-6.17	-0.62	.14	.24	.87
14	e.20	.42	.18	.19	-0.25	-1.42	-3.91	-6.23	-0.61	.10	.21	.40
15	e.25	.30	.17	.18	-0.29	-1.32	-4.02	-6.29	-0.45	.08	.20	.69
16	e.25	.37	.17	.23	-0.32	-1.37	-4.12	-6.16	-0.18	.16	.22	.37
17	.24	. 52	.17	.19	-0.33	-1.43	-4.23	-5.19	. 57	.14	.25	.28
18	.21	.37	.17	.16	-0.36	-1.50	-4.13	-4.62	. 47	.11	.56	.25
19	.36	.28	.17	.14	-0.36	-1.56	-4.42	-4.30	.27	.12	.50	.22
20	. 22	.24	.16	. 13	-0.39	-1.63	-4.52	-3.55	. 17	.08	. 58	.21
21	.19	.22	.16	. 12	-0.44	-1.72	-4.63	-2.24	. 44	.06	.65	.21
22	.15	.22	.15	.10	-0.50	-1.80	-4.74	-1.29	.39	.05	. 53	.26
23	.13	.21	.14	.16	-0.55	-1.89	-4.85	-1.09	.43	.09	.40	.35
24	.37	.19	.15	.19	-0.56	-1.98	-4.81	-0.99	.32	.28	.33	.22
25	.50	.19	.14	.16	-0.62	-2.02	-4.85	-0.91	.24	. 17	.28	.18
26	.32	.20	.15	.28	-0.69	-2.08	-4.87	-0.82	.19	.68	.41	.16
27	.25	.28	.16	.18	-0.76	-2.14	-4.73	-0.82	.15	. 55	. 42	.40
28	.26	.20	. 17	.14	-0.78	-2.25	-4.74	-0.84	.13	.34	.35	.60
29	.20	,30	.15	.12		-2.35	-4.83	-0.87	.10	.26	.28	. 47
30	. 17	.28	.15	.09		-2.48	-4.93	-0.90	.08	.75	. 62	.32
31	.16	222	.18	.07		-2.59		-0.89	-2-	.55	. 50	
MEAN	.24	.29	.22	. 17	-0.28	-1.55	-3.99	-3.91	-0.15	.21	.39	.42
MAX	. 50	1.12	.70	.41	.07	-0.79	-2.69	-0.82	. 57	.75	.83	.91
MIN	.13	.16	.14	.07	-0.78	-2.59	-4.93	-6.29	-0.93	.05	.20	.16

CAL YR 1984 MEAN -6.69 MAX 1.12 MIN -18.25 WTR YR 1985 MEAN -0.66 MAX 1.12 MIN -6.29

16854500 UGUM RIVER ABOVE TALOFOFO FALLS, NEAR TALOFOFO

LOCATION.--Lat 13°19'16" N., long 144°44'01" E., Hydrologic Unit 20100003, about 300 ft upstream from Talofofo Falls, 0.9 mi north of NASA Tracking Station, and 3.5 mi southwest of main intersection in Talofofo village.

DRAINAGE AREA.--5.76 mi².

PERIOD OF RECORD . -- June 1977 to current year.

GAGE. -- Water-stage recorder. Elevation of gage is 130 ft, from topographic map.

REMARKS.--Records good except for estimated daily discharges, which are poor. No diversion upstream. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 8 years, 24.5 ft3/s (17,750 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,890 ft³/s Feb. 26, 1980, gage height, 14.2 ft, from flood-marks, from rating curve extended above 350 ft³/s on basis of slope-area measurement at gage height 14.2 ft; minimum, 3.4 ft³/s, June 27, 1978, July 14, 18, 19, 1979.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1,300 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Nov. 13 Aug. 20	0400 2000	1630 1720	7.90 8.07	Sept. 15	0930	*2350	*9.30

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

Minimum discharge, 5.7 ft3/s May 2.

			1, 3,40,400		ME	AN VALUES						
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	29	54	34	21	12	10	7.6	6.3	9.9	18	40	65
2	28	62	43	19	12	9.2	7.6	6.3	9.7	29	26	e115
1 2 3 4	25	40	32	19	11	9.0	7.5	6.8	23	21		49
4	25	33	203	e18	11	9.0	7.3	6.8	13	18		34
5	27	31	131	e17	12	8.9	7.3	6.2	11	17		32
6	39	55	59	e17	12	9.7	7.3	6.1	9.9	17	65	e100
6 7	27	34	49	e16	11	9.1	7.2	6.1	9.6	20		39
6	24	30	40	e16	11	8.6	7.0	6.1	9.5	19		30
8	56	109	36	e43	11	8.5	7.0			17		33
9								5.9	9.4			
10	37	39	33	62	11	10	7.0	5.9	9.5	23	32	28
11	31	36	33	23	11	9.2	7.0	6.6	9.2	22		35
12	26	34	30	35	11	8.9	7.3	6.4	9.0	40		e155
13	22	415	30	45	10	8.5	7.2	6.4	9.2	20		e145
14	25	63	28	21	10	33	6.9	7.5	11	17	22	44
15	81	49	27	19	9.9	14	6.8	7.5	24	16	21	e300
16	56	85	26	19	10	10	6.7	41	27	17	22	49
17	45	165	25	e18	11	9.4	6.8	71	139	17		39
18	95	68	25	e17	12	9.0	6.6	61	68	15		36
19	140	54	23	e16	11	9.2	7.1	53	26	15		33
20	51	47	22	e16	9.9	8.8	6.7	147	19	14		32
21	43	44	22	e15	9.7	8.5	6.3	87	117	14	69	49
22	34	40	e22	e14	9.8	8.5	6.3	40	62	14		47
23	30	39	21	e14	9.6	8.6	6.4	20	85	16		68
24	130	37	21	e13	9.7	8.5	11	15	44	27		e35
25	102	36	e20	e13	9.6	9.6	9.4	13	31	16		e30
23	102	30	620	613	9.0	9.0	3.4	13	31	10	20	630
26	61	37	e20	27	9.2	9.5	10	12	26	131		27
27	47	53	20	e16	9.0	8.8	9.2	12	27	51		181
28	49	36	21	e14	11	8.2	7.7	11	23	26		148
29	37	59	20	e13		8.0	6.9	10	20	20		99
30	33	42	20	e12		7.7	6.6	10	18	98	135	51
31	36		22	12		8.0		11		58	68	
TOTAL	1491	1926	1158	640	297.4	305.9	221.7	710.9	908.9	863	1528	2128
MEAN	48.1	64.2	37.4	20.6	10.6	9.87	7.39	22.9	30.3	27.8		70.9
MAX	140	415	203	62	12	33	11	147	139	131		300
MIN	22	30	20	12	9.0	7.7	6.3	5.9	9.0	14		27
		3820	2300	1270	590	607	440	1410	1800	1710		4220
AC-FT	2960	3020	2300	12/0	290	607	440	1410	1000	1/10	3030	4220
CAL YR			98.6	MEAN	24.0	MAX	415	MIN	4.0	AC-FT	17450	
WTR YR	1985 TO	IAL 121	78.8	MEAN	33.4	MAX	415	MIN	5.9	AC-FT	24160	

e Estimated

16858000 YLIG RIVER NEAR YONA

LOCATION.--Lat 13°23'28" N., long 144°45'06" E., Hydrologic Unit 20100003, on right bank 2.2 mi upstream from mouth, 1.9 mi southwest of Yona, and 5.6 mi south of Agana.

DRAINAGE AREA. -- 6.48 mi 2.

PERIOD OF RECORD. -- June 1952 to September 1985 (discontinued).

REVISED RECORDS. -- WSP 1937: 1957-58. WSP 2137: Drainage area.

GAGE. -- Water-stage recorder and concrete control. Elevation of gage is 20 ft, from topographic map.

REMARKS.--Records fair. No diversion upstream. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 33 years, 28.1 ft3/s (20,360 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 4,900 ft³/s Sept. 9, 1963, gage height, 19.77 ft, from floodmarks, from rating curve extended above 830 ft³/s on basis of slope-area measurements at gage heights 11.24 ft and 15.87 ft, maximum gage height, 22.80 ft Feb. 26, 1980; minimum, 0.07 ft³/s May 20, 1973, but may have been less during period of diversion from gage pool May 15 to June 20, 1966.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 2,000 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Nov. 13 July 31	0600 1500	*2870 2260	*16.50 14.33	Aug. 30	0730	2260	14.35

Minimum discharge, 1.4 ft3/s Apr. 21-23.

		DISCHARGE,	IN CUB	IC FEET PER		, WATER YEAR AN VALUES	OCTOBER	1984	TO SEPTEMBE	R 1985		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	26	33	26	22	8.8	6.3	2.5	2.8	8.1	17	54	120
2	23	71	43	11	8.0	5.9	2.3	2.6	7.8	18	36	124
3	23	27	22	13	8.0	5.7	2.3	3.6	34	18	28	69
2 3 4	20	23	222	9.7	7.6	5.5	2.3	4.8	13	15	25	47
5	19	22	117	9.2	7.8	5.3	2.7	2.9	10	14	72	33
6 7 8 9	31	21	40	8.6	8.3	5.5	2.4	2.8	8.7	17	148	44
7	19	23	32	8.6	7.6	5.1	2.3	2.6	7.9	31	92	57
8	18	19	28	8.1	7.6	4.0	2.1	2.3	7.6	15	39	30
9	72	53	25	71	7.3	3.7	2.1	3.0	12	14	32	123
10	24	21	23	128	7.3	3.7	2.0	2.5	9.9	13	33	31
11	20	19	22	23	8.0	3.9	2.0	2.8	9.0	21	25	31
12	18	24	20	18	6.8	3.7	2.3	2.6	7.9	24	24	173
13	19	700	19	16	6.6	3.4	2.4	2.3	7.2	14	23	97
14	18	50	18	25	6.1	22	2.1	2.4	12	13	20	52
15	41	36	17	14	5.9	9.5	1.9	6.5	23	40	25	74
16	23	77	16	13	5.9	6.1	1.8	10	23	14	23	41
17	19	122	15	11	5.7	5.0	1.9	32	221	13	24	32
18	19	59	14	9.7	6.3	4.5	1.7	129	49	12	122	28
19	90	50	14	8.8	6.8	4.4	1.6	20	26	11	67	25
20	31	35	13	8.8	6.1	4.2	1.6	14	22	11	71	23
21	26	31	12	8.6	5.5	3.9	1.5	26	396	9.8		23
22	102	27	11	8.6	4.9	3.6	1.4	14	48	9.8		22
23	30	27	11	9.1	4.9	4.7	1.5	12	51	15	30	53
24	101	24	11	8.6	4.7	3.6	4.1	9.7	35	19	26	21
25	35	22	10	8.3	5.1	4.1	4.5	90	36	11	24	19
26	30	21	10	84	4.7	3.7	5.4	20	26	209	40	18
27	24	106	9.8	15	4.5		25	14	47	85	53 *	380
28	27	23	10	12	5.9	3.1	6.1	12	24	25	24	138
29	22	27	9.9	11		2.8	4.0	11	21	20	21	192
30	20	23	9.2	10		2.5	3.1	9.7	19	140	560	41
31	20		14	8.8		2.6		8.7		407	107	
TOTAL	1010	1816	863.9		182.7	155.6	98.9	478.6	1222.1	1295.6		2161
MEAN	32.6	60.5	27.9	20.0	6.52		3.30	15.4	40.7	41.8		72.0
MAX	102	700	222	128	8.8	22	25	129	396	407	560	380
MIN	18	19	9.2	8.1	4.5	2.5	1.4	2.3	7.2	9.8		18
AC-FT	2000	3600	1710	1230	362	309	196	949	2420	2570	3990	4290
CAL YR WTR YR		OTAL 9274.			25.3 32.6			IIN IIN		AC-FT	18400 23640	

16890600 DIONGRADID RIVER, BABELTHUAP

LOCATION.--Lat 07°36'04" N., long 134°35'02" E., Hydrologic Unit 20100006, on right bank 0.3 mi upstream from left-bank tributary, 0.9 mi southeast of Ngetbong village school, and 2.4 mi upstream from confluence with Ngerchetang River.

DRAINAGE AREA. -- 4.45 mi².

PERIOD OF RECORD. -- October 1969 to current year. Prior to October 1980, published as Adeiddo River.

REVISED RECORDS.--WDR HI-75-1: 1970(M), 1972-73(P). WDR HI-81-2: Drainage area.

GAGE. -- Water-stage recorder. Elevation of gage is 15 ft, from topographic map.

REMARKS.--Records fair except for estimated daily discharges, which are poor. No diversion upstream.

AVERAGE DISCHARGE. -- 16 years, 32.5 ft 3/s (23,550 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,310 ft³/s Jan. 22, 1975, gage height, 15.44 ft, from rating curve extended above 410 ft³/s on basis of field estimate at gage height 15.44 ft; minimum, 2.1 ft³/s Apr. 14-17, 1983.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 600 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Sept. 12	0400	*1290	*10.77	Sept. 24	0900	681	7.66

DISCHARGE. IN CUBIC FEET PER SECOND. WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

Minimum discharge, 6.8 ft3/s Dec. 23.

					ME	AN VALUES						
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	36	30	10	7.4	17	23	11	13	20	60		29
2	50	28	9.9	7.4	26	21	12	28	e50	48		29
3	e40	29	9.7	7.9	30	19	9.7	15	e40	47		29
4	e37	31	10	11	20	20	11	13	29	42	52	31
5	e35	27	13	14	19	20	15	12	26	47	49	31
6	e85	24	13	9.9	18	18	14	12	e40	54		30
7	60	23	10	16	17	19	41	20	34	80		26
8	64	22	9.1	29	16	18	23	15	30	61	53	26
9	158	22	8.9	19	16	17	16	15	27	54	44	87
10	145	21	8.6	35	15	18	16	20	27	49	40	43
11	116	19	8.6	60	14	16	14	21	33	48		36
12	132	18	8.6	166	14	15	12	23	28	51		263
13	100	18	8.4	69	13	15	11	22	30	45	40	81
14	110	17	10	50	25	14	11	17	28	47	48	82
15	89	18	16	46	15	14	12	19	33	41	e65	80
16	92	16	9.7	38	21	14	11	20	e45	42		63
17	143	15	8.9	34	28	13	15	20	46	38	44	56
18	108	13	8.4	36	19	12	12	24	41	35	39	52
19	91	13	7.9	40	18	12	16	28	38	36	38	48
20	80	13	7.4	32	16	12	12	27	42	50	e35	45
21	69	13	7.2	29	18	11	11	23	e65	36	e33	42
22	61	13	7.9	27	18	13	11	20	58	34	30	39
23	61	12	7.2	26	16	12	10	19	49	39	29	38
24	60	12	7.2	29	47	11	9.7	19	e70	37	39	144
25	53	12	7.9	26	38	11	19	18	e110	35	34	100
26	46	15	12	23	27	11	23	18	93	40	32	61
27	43	12	9.1	21	28	11	21	18	80	46	30	60
28	38	12	10	19	24	11	15	18	66	78	26	52
29	36	15	9.9	19		11	13	16	58	56	25	61
30	36	12	8.9	19		10	12	17	52	103	31	57
31	31	===	7.9	18		11		17		70		
TOTAL	2305	545	291.3	983.6	593	453	439.4	587	1388	1549	1330	1821
MEAN	74.4	18.2	9.40	31.7	21.2	14.6	14.6	18.9	46.3	50.0		60.7
MAX	158	31	16	166	47	23	41	28	110	103		263
MIN	31	12	7.2	7.4	13	10	9.7	12	20	34		26
AC-FT	4570	1080	578	1950	1180	899	872	1160	2750	3070		3610
CAL YR WTR YR			.89.9 .85.3	MEAN MEAN	30.6 33.7	MAX MAX	200 263	MIN MIN	7.2	AC-FT AC-FT	22200 24370	

e Estimated

CAROLINE ISLANDS, PALAU ISLANDS

16890600 DIONGRADID RIVER, BABELTHUAP--Continued

FLOW, TEMPER- INSTAN- ATURE, TEMPER-	STREAM- FLOW, TEMPER- INSTAN- ATURE, TANEOUS AIR (CFS) (DEG C)	TEMPER- ATURE
OCT , 1984 APR , 1985		
24 1030 52 25.0 04 1245	11 28.0	
NOV 24 1150	10 29.0	25.5
20 1325 13 30.0 26.5 MAY DEC 21 1320	23	26.0
20 1325 7.7 28.0 26.0 JUL		
JAN , 1985 10 1325	51 28.0	26.0
22 1200 26 28.0 25.0 AUG		
FEB 22 1235	32 28.0	25.5
27 1155 27 28.0 26.0		
SPE- HARD- STREAM- CIFIC HARD- NESS, CALCIUM FLOW, CON- PH NESS NONCAR- DIS- INSTAN- DUC- (STAND- TEMPER- (MG/L BONATE SOLVED	MAGNE- SIUM, SODIUM, DIS- DIS- SOLVED SOLVED	SODIUM AD- SORP- TION
TIME TANEOUS TANCE ARD ATURE AS (MG/L (MG/L	(MG/L (MG/L	PERCENT RATIO
DATE (CFS) (US/CM) UNITS) (DEG C) CACO3) CACO3) AS CA)	AS MG) AS NA)	SODIUM
OCT		
24 1030 52 42 6.8 25.0 15 0 2.8	1.9 3.1	31 .4
SOLIDS, POTAS- ALKA- CHLO- FLUO- SILICA, SUM OF SOLID		MANGA-
SIUM, LINITY SULFATE RIDE, RIDE, DIS- CONSTI- DIS		RON, NESE,
DIS- LAB DIS- DIS- DIS- SOLVED TUENTS, SOLV		DIS- DIS-
SOLVED (MG/L SOLVED SOLVED SOLVED (MG/L DIS- (TON		DLVED SOLVED
(MG/L AS (MG/L (MG/L (MG/L AS SOLVED PER DATE AS K) CACO3) AS SO4) AS CL) AS F) SIO2) (MG/L) AC-F		JG/L (UG/L S FE) AS MN)
OOM.		
OCT 2420 15 2.4 4.3 <.10 13 37 .	.05 .10	57 7

< Actual value is known to be less than the value shown.

16890900 TABECHEDING RIVER, BABELTHUAP

LOCATION.--Lat 07°27'03" N., long 134°31'29" E., Hydrologic Unit 20100006, on left bank 0.2 mi downstream from waterfall, 1.5 mi upstream from boat landing, and 1.6 mi east of forestry station.

DRAINAGE AREA. -- 6.07 mi².

PERIOD OF RECORD. -- October 1970 to current year. Prior to October 1980, published as Tabagaten River.

REVISED RECORDS. -- WDR HI-81-2: Drainage area.

GAGE. -- Water-stage recorder. Elevation of gage is 20 ft, from topographic map.

REMARKS.--Records fair except those above 500 ft³/s and for estimated daily discharges, which are poor.

AVERAGE DISCHARGE.--15 years, 48.7 ft³/s (35,280 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,580 ${\rm ft}^3/{\rm s}$ Dec. 23, 1973, gage height, 8.79 ft, from rating curve extended above 290 ${\rm ft}^3/{\rm s}$; minimum, 0.57 ${\rm ft}^3/{\rm s}$ Apr. 19, 1983.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 900 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Oct. 8 July 30	0300	*3000 1080	6.27	Sept. 12 Sept. 24	0230 0800	1360 1220	6.83 6.58

Minimum discharge, 13 ft³/s for several days in March.

		DISCHAR	GE, IN CUB	IC FEET	PER SECON	ID, WATER YEAR MEAN VALUES	OCTOBER	1984	TO SEPTEMB	BER 1985		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	e25	20	19	20	17	e60	e15	36	23	58	e80	125
2	e20	27	16	19	38	e45	e17	32	97	46	e100	119
2 3	e20	22	16	28	43	e35	e18	27	31	42	e65	125
4	e25	27	31	30	23	e35	e15	25	23	36	e55	82
5	e20	34	32	34	20	e30	e20	23	36		e50	82
3	e20	34	32	34	20	630	ezu	23	36	47	630	02
6	e60	23	34	26	19	e30	e25	21	23	73		102
7	e50	27	26	63	19	e25	e90	21	20	72	e60	68
8	e700	20	21	108	16	e25	e30	23	17	55	e60	70
9	e400	82	19	68	16	e23	e25	35	16	46	e50	135
10	e180	44	18	234	16	e21	e20	24	15	39		74
11	e110	31	21	242	15	e20	e17	23	58	56	e40	63
12	e110		17	e314	14			53	26	68		386
		26				e20	e17					
13	e80	24	16	e110	17	e18	e15	39	23	46		e140
14	e100	22	36	e80	83	e16	e17	30	26	39		e250
15	e65	20	69	e80	22	e15	e15	68	78	36	e70	e150
16	e60	19	31	e55	22	e15	e45	51	59	55	85	e100
17	e130	18	24	e50	42	e15	e60	76	58	41		e80
18	e100	16	21	e60	25	e15	e30	94	44	37		e100
19	e80	17	20	e45	22	e13	e25	151	34	33		e100
20	e65	15	19	e40	22	e13	e23	102	52	54		e70
	200	- 23	32		1.2			102	122		22	100
21	e55	14	17	e35	25	e15	e23	65	37	32		e60
22	e50	14	16	e30	109	e17	e20	45	33	28		e50
23	e60	14	15	e30	54	e20	e20	35	33	25		e45
24	69	14	16	e40	80	e15	e22	31	91	51	106	382
25	58	23	17	e35	96	e13	e35	29	221	36	94	195
26	42	100	75	26	53	e15	e60	25	93	42	79	106
27	42	33	24	24	46	e20	e90	22	73	54		80
28	34	23	52	22	e85	e13	e60	20	96	85		66
20					602	e13		20	59	62		88
29	29	20	32	20			51					
30	26	19	24	19		e13	41	25	48	e280	70.	70
31	23		20	18		e25		23		e90	272	
TOTAL	2888	808	814	2005	1059	668	961	1294	1543	1764	1996	3563
MEAN	93.2	26.9	26.3	64.7	37.8	21.5	32.0	41.7	51.4	56.9	64.4	119
MAX	700	100	75	314	109	60	90	151	221	280	272	386
MIN	20	14	15	18	14	13	15	20	15	25		45
AC-FT	5730	1600	1610	3980	2100	1320	1910	2570	3060	3500		7070
AC-r1	3/30	1000	1010	3900	2100	1320	1910	23/0	3000	3300	3900	7070
CAL YR			17744	MEAN	48.5			IIN IIN	10 13	AC-FT AC-FT	35200 38410	
WTR YR	1985	TOTAL	19363	MEAN	53.0	MAX	NUU N	IIN	13	AC-FT	38410	

e Estimated

CAROLINE ISLANDS, PALAU ISLANDS

16890900 TABECHEDING RIVER, BABELTHUAP--Continued

DATE OCT 23	TIME 0955	INSTAN- TANEOUS (CFS)	TANCE (US/CM)		TEMPER- ATURE (DEG C)	(MG/L AS CACO3)	BONATE (MG/L CACO3)	SOLVEI (MG/L AS CA)	(MG/L	(MG/L	PERCENT SODIUM	TION RATIO
	23	STREAM- FLOW,	SPE- CIFIC CON-	PH		HARD- NESS	HARD- NESS, NONCAR-	CALCIUM DIS-	DIS-	DIS-		SODIUM AD- SORP-
	26 APR 03 23	1050 1115 1130	48 17 20	28.0 28.0 29.0	26.5 26.5		23	1340	41	28.0	26.0	
	25 FEB	1115	35	27.0	25.5		15 SEP	1135	54		25.5	
	OCT , 1 23 NOV 19 JAN , 1	0955 1410	49 17	28.0	25.5 27.0		MAY , 1 22 JUL 05 AUG	1140 1145	45 34	28.0 27.5	26.0 26.0	
	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE,	TEMPER- ATURE (DEG C)		DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)	

< Actual value is known to be less than the value shown.

16891310 KMEKUMEL RIVER, BABELTHUAP

LOCATION.--Lat 07°23'14" N., long 134°32'42" E., Hydrologic Unit 20100006, 0.5 mi upstream from confluence with Edeng River and 1.1 mi north of Palau Mission Academy.

DRAINAGE AREA. -- 1.44 mi 2.

PERIOD OF RECORD.--September 1978 to current year. Low-flow partial-record station operated "at mouth" 1970-78. Prior to October 1980, published as Kumekumeyel River.

REVISED RECORDS. -- WDR HI-81-2: Drainage area.

GAGE. -- Water-stage recorder. Elevation of gage is 96.44 ft, from stadia survey.

REMARKS.--Records fair except for estimated daily discharges, which are poor. No diversion upstream.

AVERAGE DISCHARGE. -- 7 years, 9.37 ft3/s (6,790 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,560 ft³/s Apr. 13, 1979, gage height, 10.53 ft, from rating curve extended above 106 ft³/s on basis of slope-area measurement at gage height 10.53 ft; minimum, 0.18 ft³/s Apr. 14-17, 1983.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 450 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Oct. 8	2200	573	6.94	Sept. 12	-	500	4
June 16	1530	*651	*7.31	Sept. 24	-	450	-

Minimum discharge, 1.8 ft³/s Mar. 30.

		DISCHARGE,	IN CUB	IC FEET P		, WATER YEAR AN VALUES	R OCTOR	BER 1984 T	O SEPTEM	BER 1985		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	4.3 4.1 3.9 7.9 5.0	4.8 4.8 4.6 4.8 4.3	4.3 3.7 3.7 4.3 5.0	4.8 4.4 5.3 6.2 6.4	4.1 8.2 7.7 4.8 4.3	12 8.6 7.5 6.8 6.2	4.8 5.5 4.6 3.5 6.7	5.9 5.2 5.0 5.0	5.7 19 7.0 6.1 7.9	e11 e9.5 8.6 7.9 9.9	19 e25 16 13 15	14 20 16 12 13
6 7 8 9 10	8.2 13 54 54 31	4.8 5.7 4.3 7.4 8.5	5.5 3.9 3.7 3.4 4.3	7.1 12 21 14 e60	4.3 4.1 3.5 3.5 3.4	5.5 5.2 5.0 4.8 5.0	6.8 20 10 8.1 7.0	5.0 5.2 5.0 5.7 5.2	4.8 5.3 5.0 4.6 5.7	12 11 8.6 7.3 6.8	20 13 12 9.9 9.2	15 11 11 e40 15
11 12 13 14 15	19 15 34 25 16	5.3 4.3 8.8 5.3 4.3	3.9 3.0 3.0 7.4 9.0	e50 e70 27 20 21	3.2 2.9 2.9 9.6 4.1	4.3 3.7 3.5 3.2 3.0	5.9 5.3 5.0 4.6 4.8	4.4 5.9 4.8 4.1 5.2	14 6.4 5.3 7.2 28	7.5 9.4 6.4 6.1 6.6	8.4 7.7 9.6 9.8 8.6	14 e100 20 51 28
16 17 18 19 20	16 24 23 18 14	4.1 3.9 3.7 3.7 3.4	4.4 4.3 3.7 3.5 3.4	14 12 12 9.7 8.6	3.9 5.3 3.7 4.8 3.9	2.9 2.9 2.6 2.4 2.2	8.2 7.3 5.3 5.3 5.0	7.6 6.8 9.2 30 16	57 23 16 e13 e13	9.0 7.5 6.2 6.1 6.8	11 7.5 6.6 6.2 5.7	21 16 17 14 12
21 22 23 24 25	12 10 11 9.0 8.1	3.2 3.2 3.0 3.2 7.4	3.2 3.0 2.9 2.9 3.2	7.7 7.0 6.6 7.0 6.1	5.0 25 10 11 18	2.2 3.4 3.0 2.2 2.1	4.6 4.3 4.1 3.7	9.0 7.7 6.6 6.6	e10 e9.0 e9.0 e18 e50	5.2 5.0 12 7.7 5.9	5.5 5.2 5.2 9.4 6.1	8.6 11 9.7 e80 18
26 27 28 29 30 31	7.5 7.7 6.4 5.9 5.5 5.3	12 6.6 5.3 4.4 4.3	16 5.7 7.0 6.1 5.5 4.4	5.5 5.2 5.0 4.6 4.4 4.1	10 11 13 	2.7 5.0 2.5 2.5 2.1 8.5	11 13 10 7.9 6.4	5.5 5.3 5.2 5.0 5.5	e18 e13 e18 e11 e10	15 20 30 e15 e70 21	5.2 5.0 5.0 e15 10 e25	16 13 12 17 16
TOTAL MEAN MAX MIN AC-FT	477.8 15.4 54 3.9 948	153.4 5.11 12 3.0 304	147.3 4.75 16 2.9 292	448.7 14.5 70 4.1 890	195.2 6.97 25 2.9 387	133.5 4.31 12 2.1 265	215.7 7.19 20 3.5 428	220.5 7.11 30 4.1 437	420.0 14.0 57 4.6 833	371.0 12.0 70 5.0 736	329.8 10.6 25 5.0 654	661.3 22.0 100 8.6 1310
CAL YR WTR YR		OTAL 3645 OTAL 3774		MEAN MEAN	9.96 10.3	MAX MAX	55 100	MIN MIN	2.4	AC-FT AC-FT	7230 7490	

e Estimated

CAROLINE ISLANDS, PALAU ISLANDS

16891310 KMEKUMEL RIVER, BABELTHUAP--Continued

	DATE	T	IME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER ATURE AIR (DEG C	, TEM	PER- URE G C)		DAT		I IME T	TREAM- FLOW, NSTAN- ANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE	
	OCT ,	1984							MAY	, 1985					
	26 NOV	0	945	7.6	-	-	25.5		03. 29.		L340 L205	4.9 5.0	29.0		
	28	1	155	5.4	28.	0 :	26.0		JUL	••	1203	3.0	29.5	20,5	
	JAN ,	1985							02.	:	1220	9.3	28.0	26.0	
	30 MAR	1	125	4.3	28.	0 :	25.5		AUG 12.		1200	8.1	28.0	26.0	
	04 APR	1	105	6.4	29.	0	26.0								
	02	1	205	5.1	28.	0	26,5								
DATE	TIME	FL INS TAN	EAM- OW, TAN- EOUS	SPE- CIFIC CON- DUC- TANCE (US/CM)	PH (STANI ARD UNITS)	AT	PER- URE	HARD- NESS (MG/L AS CACO3)	HARD NESS NONCA BONAT (MG/	R- DE E SC L (I	LCIUM IS- DLVED MG/L S CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT	SODIUM AD- SORP- TION RATIO
OCT															
26	0945		7.6	69	7.3	3	25.5	31		3	7.0	3.4	3.9	21	.3
DA	1 SC (1)	OTAS- SIUM, OIS- OLVED MG/L S K)	ALK LINI LA (MG AS CAC	TY SUI B DI /L SC (N	FATE I S- I DLVED S IG/L	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVE (MG/L AS F)	DIS SOL D (MG	CA, S - C VED T	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLVI (TONS	5, GH - NO2- ED DI S SOI (MC	IS- I LVED SO G/L (I	RON, NE DIS- D DLVED SO JG/L (U	NGA- SE, IS- LVED G/L MN)
OCT															
26		.20	29		1.2	4.3	<.1	.0 2	2	59	. (08 4	<.10	67	7

< Actual value is known to be less than the value shown.

16891400 SOUTH FORK NGERDORCH RIVER, BABELTHUAP

LOCATION.--Lat 07°26'19" N., long 134°34'28" E., Hydrologic Unit 20100006, on right bank 0.3 mi from left-bank tributary, 1.3 mi west of Rrai village, and 1.5 mi upstream from confluence with North Fork Ngerdorch River.

DRAINAGE AREA.--2.44 mi².

PERIOD OF RECORD. -- March 1971 to current year. Prior to October 1980, published as South Fork Ngardok River.

REVISED RECORDS.--WDR HI-75-1: 1971(M), 1972, 1973(P), 1974. WDR HI-81-2: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 25 ft, revised, from topographic map.

REMARKS. -- Records good. No diversion upstream.

AVERAGE DISCHARGE. -- 14 years, 19.1 ft3/s (13,840 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 5,750 ft³/s Dec. 13, 1974, gage height, 9.19 ft, from rating curve extended above 65 ft³/s on basis of field estimate at gage height 7.57 ft; minimum, 0.48 ft³/s Apr. 16-17, 1983.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 750 ft³/s and maximum (*):

Date	1	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Oct. Sept.	8 12	2030 0330	*3180 1320	*7.02 4.92	Sept. 24	0800	1070	4.52

Minimum discharge, 3.8 ft3/s Dec. 23.

		DISCHARGE,	IN CUBIC	FEET	PER		WATER YEAR N VALUES	OCTOBER	1984	TO SEPTEMBE	R 1985		
DAY	OCT	NOV	DEC	JAN		FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	9.3 8.1 7.5 10 8.7	9.3 8.7 8.7 9.3 8.1	5.9 5.4 5.0 7.5 7.1	7.1 6.7 8.7 9.3 9.9		7.1 12 12 8.1 7.1	26 18 15 14 12	6.3 6.7 6.7 6.3 7.5	9.3 8.7 7.5 7.1 7.1	7.5 22 9.3 7.5	19 15 14 13 23	33 40 26 22 20	38 43 40 27 24
6 7 8 9	24 21 346 159 72	8.1 8.7 7.1 15 9.9	8.1 5.9 5.0 5.0 5.0	9.3 24 33 25 107		6.7 6.7 6.3 5.9 5.9		9.3 34 14 9.9 8.1	7.1 6.7 8.1 9.3 6.7	8.7 7.1 6.7 6.3 6.3	37 31 23 20 16	50 23 23 19 16	20 17 20 92 27
11 12 13 14 15	42 42 33 39 26	8.7 7.5 7.1 6.7 6.7	5.9 4.6 4.6 13	81 117 46 33 31		5.9 5.4 5.9 27 7.5	8.1 7.5 7.1 6.7 6.3	7.1 6.7 6.3 6.7 6.3	6.3 8.1 6.7 6.3 9.9	7.5 6.7 9.3 8.1	18 20 16 14 16	14 12 15 13 18	21 227 56 101 66
16 17 18 19 20	24 52 42 33 26	6.3 5.9 5.4 5.9 5.4	7.1 5.9 5.9 5.9 5.0	23 21 24 19 16		7.5 9.9 6.7 7.1 6.7		17 22 11 9.9 8.7	8.1 9.3 12 43 37	16 17 16 12 14	23 21 17 14 15	23 13 12 9.9 9.3	38 32 39 39 27
21 22 23 24 25	22 18 19 20 19	5.2 5.0 5.0 5.0 5.9	5.0 5.0 4.2 4.6 5.4	14 13 12 15 12		10 38 18 26 29	5.9 7.1 7.5 5.9 5.0	7.5 6.7 6.3 6.3 7.1	19 14 12 11 10	11 10 9.9 29 75	12 12 10 15 12	8.7 8.1 8.7 19 45	23 23 22 176 55
26 27 28 29 30 31	16 16 13 12 11 9.9	29 16 8.1 7.1 6.3	8.1 8.7 13 8.7 7.1	9.9 9.9 8.7 8.1 7.5		18 16 35 	5.9 7.5 5.0 5.4 5.0 9.3	21 32 16 12 9.9	9.3 8.7 8.1 7.5 9.3 7.1	28 23 27 19 16	16 20 37 27 116 34	20 16 19 17 25 116	36 31 25 27 25
TOTAL MEAN MAX MIN AC-FT	1200.5 38.7 346 7.5 2380	251.1 8.37 29 5.0 498	225.6 7.28 24 4.2 447	769.2 24.8 117 6.7 1530		357.4 12.8 38 5.4 709	266.7 8.60 26 5.0 529	35.3 11.2 34 6.3 665	340.3 11.0 43 6.3 675	511.9 17.1 75 6.3 1020	696 22.5 116 10 1380	713.7 23.0 116 8.1 1420	1437 47.9 227 17 2850
CAL YR WTR YR		OTAL 6576		MEAN MEAN		18.0 19.5			MIN MIN		AC-FT AC-FT	13040 14090	

CAROLINE ISLANDS, PALAU ISLANDS

16891400 SOUTH FORK NGERDORCH RIVER, BABELTHUAP--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

	DATE	T	IME	STREAM FLOW INSTA TANEO (CFS	, N- US	TEMPER- ATURE, AIR (DEG C)	TEMPE ATUR (DEG	E		D	OATE	T		FLOO INST. TANEO (CF:	W, AN- OUS	TEMP ATU AI (DEG	RE,	TEMP ATU (DEG	RE	
	OCT ,	1984								MA	Y , 1	985								
	25 NOV		.045	17			26	.0			3		200	12		3	0.0	2	7.0	
	21		.045	5.	2	29.0	25	.5		1	1	1	320	14			22	2	7.0	
	JAN , : 28 FEB		.220	9.	0	30.0	27	. 0		AU 2 SE	3	1	200	7	. 8	2	9.0	2	7.0	
	28 APR	1	.115	14		28.0	26	. 5			4	1	325	112		2	7.0	2	6.0	
	11	1	135	6.	9		26	. 0												
	25		.050	6.		29.5	26													
DATE	TIME	FI INS	REAM- .OW, STAN- SEOUS SFS)	SPE CIFI CON DUC TANC (US/C	C - E	PH (STAND- ARD UNITS)	TEMPE ATUR (DEG	R- E	HARD- NESS (MG/L AS CACO3)	NE NON BON (M	ARD- CSS, ICAR- IATE IG/L ACO3)	DI SO	CIUM S- LVED G/L CA)	MAG SI DI: SOL (MG AS I	UM, S- VED /L	SODI DIS SOLV (MG	ED	PERC SOD	ENT IUM	SODIUM AD- SORP- TION RATIO
OCT																				
25	1045		17		41	7.3	26	.0	15		0		2.7	2	.0	3	.1		31	. 4
DAT	S D SO (M	IAS- IUM, IS- LVED G/L K)	ALK LINI LA (MG AS CAC	TY S B /L	ULFA DIS- SOLV (MG/ S SC	PED SOI	DE, S- LVED G/L	FLUO- RIDE, DIS- SOLVE (MG/L AS F)	D (MG AS	VED	SOL	OF TI- TS, S-	SOLII DIS SOLV (TON PER AC-I	S- TED IS	NIT GE NO2+ DI SOL (MG AS	N, NO3 S- VED /L	SOL (UG	S- VED	MANO NESE DIS SOLV (UG,	;, 5- 7ED 'L
25.		, 10	17		2	2.4	4.5	<.1	0 1	.5		40		.05	<	.10		49		6

< Actual value is known to be less than the value shown.

16892000 QATLIW STREAM, YAP

LOCATION.--Lat 09°32'58" N., long 138°06'41" E., Hydrologic Unit 20100006, on right bank 90 ft below confluence with major tributary, 0.5 mi upstream from mouth, and 2.6 mi northwest of Colonia.

DRAINAGE AREA. -- 0.31 mi².

PERIOD OF RECORD .-- January 1982 to current year.

GAGE. -- Water-stage recorder and concrete control. Elevation of gage is 40 ft, from topographic map.

REMARKS.--Records fair. No diversion upstream. Periodic determinations of water temperature for the current year are published elsewhere in this report.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 874 ft³/s June 21, 1982, gage height, 5.96 ft, from rating curve extended above 10 ft³/s; no flow at times each year.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 200 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
June 17	2200 1530	365 *430	4.22 *4.48	Aug. 13	0830	253	3.65

No flow for many days.

		DISCHARGE,	IN CUBIC	FEET	PER SECOND, MEA	WATER YEAR AN VALUES	OCTOBER	1984 1	O SEPTEMBE	R 1985		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4	.01 .02 .02	.13 7.8 7.7 .88	.11 .05 .03	3.8 9.7 7.5 1.5	.03 .06 .04	.00 .01 .02 .02	.04 .03 .02	.30 .06 .05	3.2 .13 4.4 3.7	.06 .08 .08	1.7 .94 .63	.51 5.1 1.2 .34
5	.02	. 23	6.3	. 57	.02	.02	.06	.03	.39	.96	9.7	7.4
6 7 8 9 10	.05 .88 2.2 1.5 1.2	.13 .08 .08 .11	2.9 .39 .13 .08	.39 2.6 7.8 2.8 5.0	.01 .01 .01 .02 6.5	.01 .01 .01 .01	.05 .01 .03 .28	.01 .01 .00 .00	.88 3.2 .34 .13	.19 4.3 .94 .45 .34	1.7 .30 .11 .10	.76 .16 .11 .08
11 12 13 14 15	4.2 .51 .16 .08	.08 .06 .05 .04	.05 .05 .05 .06	5.4 1.6 5.1 .63	1.3 .16 .08 .06	.02 .01 .01 .00	.05 .02 .01 .00	.03 .03 .94 .19	.05 .13 .13 .11	1.3 1.4 .19 1.2 .23	.03 .03 14 3.5 .45	.57 .88 .51 1.8 1.2
16 17 18 19 20	12 3.8 2.0 1.6 3.5	.04 21 6.0 .88 .23	.52 .23 .05 .04	.34 .13 2.8 1.8 .27	.02 .02 .02 .02 .03	.06 .06 .10 .08	.00 .00 .02 .10	.30 2.6 .83 .82 .19	.70 35 13 5.2 1.3	.06 .23 .05 .03	9.1 3.0 .45 .13	10 .51 .16 .13 .10
21 22 23 24 25	8.1 12 3.7 .70 5.5	.11 .08 .10 3.0 2.0	.03 .02 .02 .02 .02	.10 .23 .19 17 6.3	.03 .03 .04 .05	.11 .10 .06 .04	.11 .11 .06 .06	.13 .08 .04 .03	9.5 2.7 2.3 26 9.5	.03 .02 .01 .01	.08 .08 .92 .39	.06 .06 2.8 1.5
26 27 28 29 30 31	1.3 8.5 1.4 .30 .16	.30 .11 .08 .45 .13	.02 .03 .03 .02 .02	3.3 .88 .30 .19 .08	.02 .01 .01	.03	.00 .00 .76 .13	.10 .05 .03 .02 .04	.88 1.1 .23 .10 .08	5.4 1.4 6.5 3.1 1.3	.45 1.8 .88 9.8 9.1 1.8	.10 .06 .07 1.4
TOTAL MEAN MAX MIN AC-FT	75.61 2.44 12 .01 150	51.97 1.73 21 .04 103	11.84 .38 6.3 .02 23	89.29 2.88 17 .05 177	8.69 .31 6.5 .01	1.40 .045 .23 .00 2.8	6.80 .23 4.5 .00	8.06 .26 2.6 .00 16	125.20 4.17 35 .05 248	31.30 1.01 6.5 .01 62	94.42 3.05 23 .03 187	53.99 1.80 16 .06
CAL YR WTR YR	1984 TO	OTAL 373.		MEAN MEAN	1.02 1.53			IIN IIN		AC-FT	741 1110	

16892400 QARINGEEL STREAM, YAP

LOCATION.--Lat 09°31'02" N., long 138°05'31" E., Hydrologic Unit 20100006, on right bank at Qaringeel and 0.3 mi southwest of Dalipeebinaew School.

DRAINAGE AREA. -- 0.24 mi².

PERIOD OF RECORD. --April 1968 to current year. Prior to October 1980, published as Aringel Stream.

GAGE.--Water-stage recorder and concrete control. Elevation of gage is 15 ft, from topographic map.

REMARKS.--Records fair. No diversion upstream. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 17 years, 1.10 ft3/s (797 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 674 $\rm ft^3/s$ July 13, 1981, gage height, 7.82 ft, from rating curve extended above 20 $\rm ft^3/s$; no flow at times.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 200 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Oct. 22	1230	204	4.95	Aug. 29	0630	322	5.78
Jan. 13	0230	325	5.80	Sept. 5	0530	208	4.98
June 17	2300	*408	*6.35	Sept. 16	0230	212	5.02
June 24	0800	240	5.23	Sept. 30	1400	230	5.16
Aug. 4	1500	391	6.24	-			

No flow for many days.

		DISCHARGE,	IN CUBI	C FEET PER		, WATER YEAR AN VALUES	OCTOBER	1984	TO SEPTEMB	ER 1985		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	.44	.16 4.1	.27 .14	2.3 7.1	.02	.01	.00	.33	.16 .20	.03	5.6 2.0	.81 4.2
3 4 5	.30 .25 .14	4.9 .80 .27	.08 .13 4.9	.92 .51	.01 .01 .01	.01 .01 .00	.00 .00 .02	.05 .02 .02	3.0 1.8 .33	.04 .02 3.2	1.5 10 7.8	1.8 1.6 10
6	.10	.30	1.4	.27	.01	.00	.04	.01	.27	.45	1.5	1.1
7 8	1.3	.18	.42	1.6	.01	.00	.04	.01	2.3	1.8	.54	.54
9 10	3.0	.07	.13	1.4	.01 2.5	.64	.08	.00	.13	.23	.23	1.3
11 12 13 14 15	.51 .58 .51 1.1 .69	.06 .08 .04 .02	.05 .02 .02 .02	3.4 1.1 9.0 .65	1.1 .20 .25 .10	.05 .02 .01 .01	.03 .01 .01 .01	.01 .01 .74 .27	.03 .08 .14 .39	.23 .30 .20 9.4 1.4	.11 .10 8.7 3.4	2.5 2.3 3.6 2.4 2.1
16 17 18 19 20	8.6 1.9 1.7 1.4 2.6	.02 22 5.0 .58 .27	.04 .04 .02 .01	.73 .30 4.0 1.4 .36	.02 .01 .01 .01	.01 .01 .01 .00	.00 .00 .30 .39	.10 2.6 1.1 .67	2.0 30 12 3.5 .97	16 7.3 1.4 .58 .23	13 5.8 .39 .08	19 .46 .16 .11
21 22 23 24 25	8.7 14 2.1 1.2 8.1	.25 .25 .39 3.2 3.1	.01 .01 .01 .01	.16 .16 .14 16 5.6	.01 .01 .01 .01		2.3 1.1 .27 .72 .54	.13 .06 .03 .02	4.8 1.6 7.1 25 6.5	.10 .07 .05 .04	.13 .10 .07 .05	.03 .02 5.0 .77 .18
26 27 28 29 30 31	1.3 8.1 1.5 .54 .27	.36 .16 .16 .36 .39	.01 .00 .00 .00	1.7 .92 .39 .18 .08	.01 .01 .01	.00 .00 .00 .00	.23 .13 .07 .05	.01 .01 .01 .01 .01	.18 .46 .26 .08 .04	4.2 5.4 10 4.9 2.4 3.8	1.1 1.4 .97 19 5.1 5.6	.07 .05 .08 1.1 15
TOTAL MEAN MAX MIN AC-FT	77.84 2.51 14 .10 154	47.66 1.59 22 .02 95	8.15 .26 4.9 .00 16	82.60 2.66 16 .04 164	4.45 .16 2.5 .01 8.8	1.22 .039 .64 .00 2.4	8.49 .28 2.3 .00	6.76 .22 2.6 .00	107.94 3.60 30 .03 214	74.65 2.41 16 .02 148	95.53 3.08 19 .04 189	77.24 2.57 19 .02 153
CAL YR WTR YR		OTAL 319. OTAL 592.		MEAN MEAN	.87 1.62			IIN IIN		AC-FT AC-FT	634 1180	

16892480 AIRPORT POND, YAP

LOCATION.--Lat 09°29'14" N., long 138°05'08" E., Hydrologic Unit 20100006, on northwest shore of pond, behind Pacific Missionary Aviation facilities, and north of former landing strip.

PERIOD OF RECORD. -- October 1983 to current year.

GAGE. -- Water-stage recorder. Datum of gage is at mean sea level.

REMARKS. -- Records good except for estimated daily water levels, which are fair.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 34.38 ft, Jume 18, 1985; lowest, 28.19 ft, June 1, 1984.

EXTREMES FOR CURRENT YEAR.--Highest water level, 34.38 ft, June 18; lowest, 31.22 ft, Apr. 17.

GAGE HEIGHT (FEET AT DATUM), WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	32.81	33.08	e32.9	32.67	32.90	32.14	31.48	32.15	31.85	32.91	e33.2	33.13
2	32.98	33.15	e32.9	32.79	32.88	32.09	31.44	32.12	31.85	32.88	e33.2	33.19
3	32.97	33.45	32.88	33.17	32.85	32.05	31.38	32.08	32.09	32.87	e33.0	33.20
4	32.92	33.29	32.87	33.13	32.83	32.01	31.35	32.07	32.19	32.84	e32.9	33.11
5	32.88	33.19	32.95	33.05	e32.8	31.96	31.42	32.04	32.20	33.05	e33.2	33.27
6	32.84	33.14	33.03	32.95	e32.8	31.90	31.41	32.04	32.20	33.06	e33.3	33.20
7	32.83	33.12	32.98	32.96	32.70	31.86	31.37	32.01	32.33	33.04	e33.1	33.11
8	32.97	33.05	32.93	33.10	32.68	31.93	31.33	31.96	32.36	33.00	e32.9	33.03
9	33.12	32.99	32.88	33.19	32.66	32.13	31.53	31.91	32.35	32.93	e32.8	32.97
10	33.13	32.95	32.85	33.20	32.73	32.11	31.53	31.86	32.33	32.88	e32.7	32,96
11	33.15	32.92	32.81	33.44	32.81	32.09	31.50	31.81	32.30	32.87	e32.7	32.99
12	33.08	32.88	32.78	33.43	32.78	32.07	31.45	31.77	32.29	32.91	e32.5	33.04
13	33.03	32.85	32.74	33.37	32.75	32.03	31.40	31.76	32.28	32.87	e32.6	33.05
14	33.16	32.80	32.71	33.26	32.71	31.97	31.34	31.73	32.25	32.86	e33.3	33.09
15	33.22	32.78	32.68	33.16	32.67	31.93	31.29	31.70	32.30	32.83	e33.2	33.06
16	33.33	e32.8	32.67	33.10	32.64	31.91	31.24	31.69	32.36	32.79	e33.5	33.63
17	33.25	e33.0	32.66	33.03	32.58	31.90	31.23	31.77	32.40	32.78	e33.3	33.30
18	33.20	e33.5	32.65	33.02	32.54	31.85	31.38	31.77	34.05	32.75	e33.2	33.16
19	33.21	e33.3	32.63	33.05	32.51	31.79	31.55	31.78	33.49	32.74	e33.1	33.07
20	33.26	e33.1	32.64	33.00	32.48	31.75	31.57	31.75	33.28	32.73	33.04	33.01
21	33.37	e33.0	32.54	32.94	32.45	31.72	31.55	31.69	33.29	32.71	32.97	32.96
22	33.56	e32.9	32.49	32.92	32.40	31.69	31.59	31.78	33.32	32.68	32.91	32.91
23	33.45	e32.8	32.44	32.89	32.47	31.64	31.56	31.69	33.23	32.40	32.88	32.94
24	33.30	e32.8	32.40	33.08	32.35	31.59	31.55	31.66	33.61	32.13	32.85	33.04
25	33.39	e33.0	32.36	33.47	32.32	31.58	31.57	31.65	33.75	32.19	32.82	32.98
26	33.37	e33.0	32.32	33.27	32.27	31.60	31.48	31.62	33.38	e32.8	32.80	32.93
27	33.40	e33.0	32.27	33,20	32.23	31.63	31.43	31.57	33.20	e33.0	32.79	33.11
28	33.45	e32.9	32.23	33.12	32.18	31.63	31.39	31.52	33.08	e33.2	32.85	33.28
29	33.32	e32.9	32.19	33.06		31.60	31.34	31.46	33.00	e33.1	33.33	33.26
30	33.21	e32.9	32.16	33.00	-:-	31.55	32.01	31.47	32.95	e33.0	33.44	33.63
31	33.13		32.17	32.95		31.50		31.55		e32.9	33.24	
MEAN	33.17	33.02	32.64	33.10	32.61	31.85	31.46	31.79	32.72	32.83	33.02	32.02
MAX	33.56	33.50	33.03	33.47	32.90	32.14	32.01	32.15	34.05	33.20	33.50	33,63
MIN	32.81	32.78	32.16	32,67	32.18	31,50	31.23	31.46	31.85	32.13	32.50	.00

WTR YR 1985 MEAN 32.52 MAX 34.05 MIN .00

e Estimated

16893100 BURONG STREAM, YAP

LOCATION.--Lat 09°32'05" N., long 138°07'19" E., Hydrologic Unit 20100006, on left bank at Dugor, 0.25 mi upstream from mouth, and 0.5 mi northeast of Mount Gamuw.

DRAINAGE AREA. -- 0.23 mi2.

PERIOD OF RECORD. -- April 1968 to current year.

REVISED RECORDS. -- WDR HI-79-2: Drainage area, 1968-78(P).

GAGE. -- Water-stage recorder and concrete control. Elevation of gage is 15 ft, from topographic map.

REMARKS.--Records good. No diversion upstream. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE.--17 years, 0.933 ft3/s (676 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD, --Maximum discharge, 550 ft³/s June 21, 1982, gage height, 5.45 ft, from rating curve extended above 15 ft³/s; no flow at times.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 100 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
June 18 June 24	0100 1130	*360 152	*4.80 3.79	Sept. 16 Sept. 23	0200 1800	133 184	3.66 3.98
Aug 4	1600	146	3.75				

No flow for many days.

		DISCHARGE,	IN CUB	IC FEET PE		, WATER YEAR AN VALUES	OCTOR	BER 1984 T	O SEPTEM	BER 1985		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.02	.09	.05	1.6	.07	.00	.05	.60	.88	.07	1.1	.50
2	.02	2.4	.03	5.1	.07	.00	.04	.13	.13	.06	.53	3.1
3	.01	5.4	.03	7.5	.06	.00	.01	.07	2.7	.05	.40	1.0
4	.02	.75	.05	1.0	.04	.00	.01	.04	2.3	.05	8.7	. 53
5	.01	.27	3.6	.34	.02	.00	.07	.02	.37	.65	8.8	5.7
6	.00	.18	2.0	.20	.01	.00	.06	.01	1.4	.22	1.6	.80
7	.00	.13	.37	.70	.00	.00	.02	.00	3.7	2.4	. 53	.30
8	.01	.08	.14	4.3	.00	.00	.01	.00	.40	.60	.22	.20
9	.05	.06	.10	1.8	.00	.07	.05	.00	.14	.20	.16	.16
10	. 47	.05	.07	2.7	4.0	.05	.04	.00	.10	.18	.11	.13
11	1.1	.05	.05	4.6	1.1	.02	.02	.00	.07	.22	.09	.85
12	. 47	.05	.03	1.1	.20	.01	.01	.00	.42	1.2	.10	1.3
13	.18	.03	.02	2.7	.09	.00	.00	.21	.34	.27	9.7	4.0
14	.30	.01	.02	. 57	.06	.00	.00	.11	.24	1.3	2.0	2.3
15	.34	.01	.02	.37	.03	.00	.00	.05	.80	. 44	.65	1.5
16	9.4	.01	.43	.24	.02	.04	.00	.13	. 53	.18	8.9	14
17	3.2	16	.30	.16	.01	.03	.00	1.6	4.2	.20	2.2	.60
18	1.0	5.3	.11	1.0	.01	.01	.02	.34	32	.13	.60	.27
19	.85	.65	.07	1.1	.00	.00	.07	.37	3.5	.09	. 27	.18
20	3.2	.22	.04	.27	.00	.00	.02	.24	1.4	.09	.20	.10
21	6.8	.13	.02	.14	.00	.00	.01	.24	3.9	.06	.14	.09
22	11	.09	.01	.11	.00	.00	.01	.08	2.4	.05	.10	.07
23	2.9	.08	.01	.10	.00	.00	.00	.04	.60	.03	.09	9.8
24	.65	2.2	.00	12	.00	.00	.24	.04	19	.02	.09	2.0
25	4.9	1.9	.00	5.8	.00	.00	.09	. 34	7.6	.06	.07	. 57
26	1.4	.34	.00	2.1	.00	.00	.03	.09	.70	2.8	.18	.22
27	7.0	. 14	.00	.75	.00	.00	.01	.04	.40	1.1	. 57	.14
28	1.3	.10	.00	.40	.00	.09	. 43	.02	.20	6.2	. 44	.13
29	.40	.09	.00	.27		.07	.20	.02	.11	4.5	6.9	.10
30	.20	.08	.00	.14		.02	4.7	.02	.08	2.8	7.2	11
31	.13		.01	.10		.01		.01		.65	1.0	
TOTAL	57.33	36.89	7.58	59.26	5.79	.42	6.22	4.86	90.61	26.87	63.64	61.64
MEAN	1.85	1.23	.24	1.91	.21	.014	.21	.16	3.02	. 87	2.05	2.05
MAX	11	16	3.6	12	4.0	.09	4.7	1.6	32	6.2	9.7	14
MIN	.00	.01	.00	.10	.00	.00	.00	.00	.07	.02	.07	.07
AC-FT	114	73	15	118	11	.8	12	9.6	180	53	126	122
CAL YR WTR YR		OTAL 253. OTAL 421.		MEAN MEAN	.69 1.15		16 32	MIN MIN	.00	AC-FT AC-FT	504 835	

16893200 MUKONG STREAM, GAGIL-TAMIL

LOCATION.--Lat 09°32'05" N., long 138°10'18" E., Hydrologic Unit 20100006, on right bank 0.2 mi upstream from mouth and 0.9 mi south of U.S. Coast Guard LORAN station.

DRAINAGE AREA. -- 0.50 mi².

PERIOD OF RECORD.--Occasional low-flow measurements, water years 1972-75, December 1974 to June 1978, July to September 1978, stage-discharge relation indefinite due to blocked control. October 1978 to current year.

REVISED RECORDS. -- WDR HI-79-2: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 5 ft, from topographic map.

REMARKS.--Records fair except for estimated daily discharges, which are poor. At times some water is pumped from upstream for village use.

AVERAGE DISCHARGE. -- 9 years (water years 1976-77, 1979-85), 1.98 ft³/s (1,430 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 153 $\rm ft^3/s$ June 21, 1982, gage height, 4.10 ft, from rating curve extended above 18 $\rm ft^3/s$; minimum, 0.02 $\rm ft^3/s$ May 17-23, 1983.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 50 ft3/s and maximum(*):

		Dis	charge	Gag	ge height					Discharge	Gage	height
Date	Ti	me (f	t ³ /s)		(ft)		Date	Ti	ime	(ft^3/s)		(ft)
Nov. 17	7 16	330	50		3,05		June 18	01	.00	*63	**	3.29
		DISCHARGE,	IN CUBI	C FEET	PER SECOND,	WATER Y		R 1984 T	O SEPTEM	BER 1985		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.4 1.5 1.4 1.6 1.2	2.5 5.0 10 4.2 2.7	1.3 1.2 1.1 1.2 8.5	4.7 2.9 6.6 3.1 2.1	1.2 1.6 1.4 1.2	.69 .69 .96 .69	.63 .57 .52 .52	2.0 1.1 .89 .69	2.5 1.4 4.2 2.7 1.6	1.6 1.7 1.8 1.5 3.3	5.1 2.7 2.3 2.6 6.3	e2.4 e5.4 e3.2 e2.4 e7.8
6 7 8 9	1.1 3.0 3.5 2.1 3.2	2.3 2.1 2.0 1.8 2.1	7.1 2.6 1.9 1.6 1.4	1.5 e2.0 e7.0 e4.0 e4.5	.96 .89 .89 .89	.57 .52 1.1 1.7 1.2	2.6 1.1 .75 .75	. 52 . 47 . 52 . 52 . 47	2.6 6.7 2.1 1.5 1.2	2.1 5.3 2.5 1.6 1.4	3.2 2.4 2.1 2.1 1.7	e3.5 e2.6 e3.3 e2.8 e2.6
11 12 13 14 15	3.2 2.1 2.0 2.5 2.4	3.3 2.8 1.9 2.0	1.4 1.2 1.2 1.2	e4.9 3.5 3.6 2.7 3.0	3.5 1.5 1.2 1.0	.69 .57 .52 .47	. 57 . 52 . 47 . 42 . 42	.52 .52 1.8 1.4 1.4	1.1 2.9 3.0 2.5 3.2	1.5 1.6 1.2 2.8 1.7	1.9 3.2 12 4.2 3.0	e2.3 2.1 1.9 2.6 2.2
16 17 18 19 20	6.1 5.4 2.8 2.4 3.8	2.1 17 11 3.8 2.5	1.8 1.6 1.3 1.2	2.4 1.9 2.8 2.5 1.8	.89 .82 .75 .89	1.2 .89 .69 .63	. 42 . 47 . 89 . 96 . 69	1.8 4.2 3.3 2.8 1.5	2.1 6.7 19 4.9 3.2	1.3 1.4 1.2 1.2	9.4 5.1 3.4 2.5 2.6	9.5 2.7 2.1 2.0 1.7
21 22 23 24 25	7.1 12 5.4 3.5 8.3	2.0 1.8 1.8 2.6 3.0	.89 .82 .75 .69	1.5 1.8 1.8 8.8	.96 .75 .69 .82	.63 .57 .52 .47	.57 .57 .52 4.2 3.3	1.4 1.0 .89 2.0 2.2	2.8 2.7 e2.6 e19 e8.8	1.1 .96 .89 .82	2.0 1.8 1.6 1.5	1.6 1.9 3.7 3.9 1.9
26 27 28 29 30 31	4.3 7.1 3.8 2.7 2.3 2.0	1.8 1.5 1.4 1.4	.69 .69 .63 .63	4.1 1.5 2.5 2.1 1.6 1.4	.69 .69 .69	.63 .63 .82 .69 .63	1.1 .82 .89 1.4 6.0	1.4 .96 .82 .82 1.2	e4.4 e3.3 e2.4 2.0 1.6	6.2 3.1 9.6 3.5 2.5 4.0	3.6 2.3 1.8 e8.4 e7.0 e3.2	1.6 1.4 1.4 2.8
TOTAL MEAN MAX MIN AC-FT	111.2 3.59 12 1.1 221	101.2 3.37 17 1.4 201	49.16 1.59 8.5 .63 98	104.6 3.37 10 1.4 207	33.91 1.21 5.3 .69 67	22.47 .72 1.7 .47 45	34.08 1.14 6.0 .42 68	41.08 1.33 4.2 .47 81	124.7 4.16 19 1.1 247	71.53 2.31 9.6 .82 142	112.4 3.63 12 1.4 223	95.3 3.18 10 1.4 189
CAL YR WTR YR	1984 TO	OTAL 674. OTAL 901.		MEAN MEAN	1.84 2.47	MAX MAX		MIN MIN	.06	AC-FT AC-FT	1340 1790	

e Estimated

CAROLINE ISLANDS, YAP ISLANDS

16893200 MUKONG STREAM, GAGIL-TAMIL--Continued

	DATE	Т	IME	STRE FLO INST TANE (CE	OW, CAN- EOUS	TEMP	RE,	TEMPEI ATURI (DEG (E		D	ATE	Т	IME	FLO INS	EAM- OW, IAN- EOUS FS)	AI	RE,	TEMPI ATUI (DEG	RE	
	OCT , 1	984									AP	R , 1	985								
	15	1	145	2	2.4	2	7.5	26	. 5		1	6	1	400		.44	2	27.5	2	7.0	
	19	1	305	2	2.2			26	. 5		MA	Y									
	NOV										0	8	1	105		. 58	2	28.0	2	7.0	
	08	1	010	2	2.0	2	8.0	26	. 5		2	9	0	930		.77	2	28.0	2	7.0	
	29	1	.035	3	1.4	2	8.5	27	. 0		JU	N									
	JAN , 1	1985									2	8	1	140		2.4	2	26.5	2	5.5	
	15	1	.035		3.1	2	7.5	26	. 5		JU	L									
	FEB										2	2	1	230		.95	2	27.5	2	3.5	
	06	1	205		.92	2	7.5	26	.5		AU	G									
	26	1	135		.70		7.5	27	.0		1	5	1	120		2.7	2	27.5	2	5.0	
	MAR										SE										
	14	1	335		.48	2	8.0	27	. 5			2	1	105		2.2	2	28.5	2	7.5	
	28		135		.93			27													
	28		145		.93	2	8.0	27	. 0												
DATE	TIME	FI INS	REAM- LOW, STAN- NEOUS CFS)	CI CO DI TAI	PE- FIC ON- UC- NCE /CM)	PH (STA AR UNIT	ND- D	TEMPE ATUR (DEG	R- (E	IARD- IESS MG/L AS CACO3)	NON BON (M	RD- SS, ICAR- IATE IG/L ACO3)	DI SO (M	CIUM S- LVED G/L CA)	S D SO (M	GNE- IUM, IS- LVED G/L MG)		3-	PERC SOD		SODIUM AD- SORP- TION RATIO
MAR																					
28	1135		, 93		84	6	.6	27	. 5	25		3		4.1		3.5		5.6		33	.5
	PO	TAS-	ALK	A-			CHI	. 0-	FLUO-	SILI	CA.	SOLI		SOLI	DS.		RO-			MAN	GA-
		IUM.	LINI		SULF	ATE	RII		RIDE.	DIS		CONS		DI		NO2+		IRC	N.	NES	
	D	IS-	LA	В	DIS	-	DIS	3-	DIS-	SOI	VED	TUEN	TS.	SOL	VED	DI	s-	DI	s-	DI	s-
	SO	LVED	(MG	/L	SOL	VED			SOLVED) (MG	3/L		S-	(TO			VED		VED	SOL	
	(M	G/L	AS		(MG	/L	(MC		(MG/L	AS			VED	PE		(MG		(UC	J/L	(UG	
DAT		K)	CAC	(3)	AS S				AS F)	SIC			(L)		FT)	AS			FE)	AS I	
MAR													,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								
28.		.20	22			3.3	,	3.5	<.10)	9.1		48		.06		. 10		610		200
20.		. 20	22			5.5					0.1		40		.00		. 10		010		200

< Actual value is known to be less than the value shown.

16893400 EYEB STREAM, GAGIL-TAMIL

LOCATION.--Lat 09°33'02" N., long 138°09'03" E., Hydrologic Unit 20100006, on left bank 0.6 mi southeast of the Tagireeng Canal bridge and 1.2 mi northwest of the Coast Guard LORAN Station.

DRAINAGE AREA. -- 0.32 mi², revised.

PERIOD OF RECORD .-- January 1982 to current year.

GAGE. -- Water-stage recorder and concrete control. Elevation of gage is 15 ft, from topographic map.

REMARKS.--Records fair except for estimated daily discharges, which are poor. No diversion upstream.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 490 ft³/s June 21, 1982, gage height, 6.22 ft, from rating curve extended above 14 ft³/s; minimum, 0.01 ft³/s for many days in May 1983.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 150 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
June 17	2400	*244	*4.93	Aug. 13	1000	177	4.39
		2					

Minimum discharge, 0.24 ft³/s, Apr. 14-17.

		DISCHARGE,	IN CUBI	C FEET PER		, WATER YEAR AN VALUES	OCTOBE	R 1984 T	O SEPTEMBE	R 1985		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.0 1.2 1.1 1.1 .97	2.1 8.4 5.0 4.2 2.9	1.2 1.0 1.0 1.2	4.3 3.5 4.8 2.2 1.5	1.3 1.6 1.3 .97	.54 .64 .90 .54	.54 .49 .44 .44	1.7 1.1 .90 .76 .69	2.8 1.3 4.5 2.1 1.3	1.6 1.5 1.6 1.4 3.4	5.5 3.5 3.2 5.6 12	2.2 5.6 2.9 2.2 8.6
6 7 8 9	.90 8.7 4.0 2.2 3.5	2.4 1.9 1.7 1.5	5.1 2.1 1.6 1.3 1.3	1.3 1.7 7.8 3.7 4.2	.83 .69 .64 .69	.44 .39 .54 1.1	1.9 .64 .44 .59 .49	.64 .59 .64 .59	2.2 5.8 2.0 1.4 1.3	1.6 4.9 2.0 1.4 1.3	4.2 2.9 2.4 2.2 1.6	3.2 2.3 3.2 2.7 2.6
11 12 13 14 15	3.9 2.3 2.1 2.1 2.0	2.7 1.9 1.3 1.2	1.1 .97 .97 .97	4.8 3.0 3.5 2.3 2.6	1.7 1.0 .83 .69	.44 .39 .34 .29 .58	.44 .34 .34 .29 .24	.83 .64 2.6 1.3 1.3	1.2 1.1 3.7 2.1 2.4	1.6 1.3 1.0 2.0 1.2	1.4 3.5 21 4.2 3.0	2.2 e2.2 e1.8 e2.0 e1.8
16 17 18 19 20	5.7 4.6 3.2 2.6 4.0	1.1 25 14 4.2 2.7	1.3 1.2 .90 .76 .69	2.0 1.6 2.0 2.0 1.3	.59 .59 .59 .64	1.0 .69 .54 .49	.24 .29 .64 .69	1.7 3.6 5.8 2.4 2.4	1.7 13 e27 e4.0 e2.6	.90 2.1 1.0 .90	11 6.4 3.5 2.6 2.6	e12 e2.8 e1.9 e1.7 e1.6
21 22 23 24 25	9.0 16 8.0 4.2 9.4	2.2 2.0 2.0 3.0 2.7	.64 .59 .49 .44	1.2 1.3 1.3 13	.64 .59 .64 .64		.39 .34 .34 5.5 2.1	1.9 1.3 1.1 1.3 1.5	e2.3 e2.1 2.1 27 14	.97 .76 .76 .83	2.1 1.9 1.9 1.6 1.5	e1.5 e1.8 e3.5 e3.6 e1.8
26 27 28 29 30 31	5.2 8.1 3.9 2.7 2.3 2.0	1.5 1.3 1.3 1.5 1.3	.44 .44 .44 .39 .39	4.4 2.7 2.6 2.0 1.5	.51 .59 .59	.64 .97 .64	1.1 .76 1.3 1.1 7.8	1.2 .90 .76 .76 .90	4.2 3.0 2.2 1.9 1.6	4.9 2.9 11 5.7 3.5 6.6	4.2 2.9 2.2 6.1 7.8 3.7	e1.5 e1.3 e1.3 e2.4 e13
TOTAL MEAN MAX MIN AC-FT	127.97 4.13 16 .90 254	105.5 3.52 25 1.1 209	43.43 1.40 12 .39 86	101.5 3.27 13 1.2 201	26.67 .95 4.9 .51 53		1.34 1.04 7.8 .24 62	43.90 1.42 5.8 .59 87	143.9 4.80 27 1.1 285	72.62 2.34 11 .76 144	138.2 4.46 21 1.4 274	97.2 3.24 13 1.3 193
CAL YR WTR YR		OTAL 625.		MEAN MEAN	1.71 2.60	MAX MAX	25 27	MIN MIN		C-FT C-FT	1240 1880	

e Estimated

CAROLINE ISLANDS, YAP ISLANDS

16893400 EYEB STREAM, GAGIL-TAMIL--Continued

	DATE	FI INS TIME TAI	STAN- AT	AIR .	EMPER- ATURE DEG C)		T ATE	FI INS	STAN- A	AIR A	MPER- TURE EG C)
	DAIL		JES) (DI	30 C) (.	DEG C)	D	ALL	(1	,FB) (D.	LG C) (D.	LO C)
00	CT , 1984					AF	R , 1985				
	20 OV	0920	5.8	26.0	25.5	1 MA		.215	.31	28.0	27.0
	08	1340	1.8	28.0	27.0	0	8	1945	.71	27.5	26.5
	29	1225	1.4	27.0	26.5	JU	IN				
DI	EC					0	4 1	.015	2.6	27.0	26.5
	13	1350	. 92	28.5	27.0	2	8 1	.030	2.5	28.0	27.5
J	AN , 1985					JU	IL				
	15	1300	2.7	28.0	27.0	2	2 1	350	.73	27.5	26.5
F	EB					AU	IG				
	06	1035	.91	27.0	26.0	2	0 1	110	3.2	27.5	26.5
	26	1000	.52	26,5	26.0	SE	P				
M	AR					1	2	950	2.2	27.5	26.0
	14	1000	.28	27.0	26.5						
	28	1035	1.3		27.5						
	28	1045	1.3	28.0	26.5						
DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	PH (STAND- ARD UNITS)	TEMPER ATURE (DEG C	AS	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	
MAR											
28	1035	1.3	6.6	27.	5 29	2	6.1	3.3	4.2	24	.3
				140	12.00		SOLIDS,	21.12.5	NITRO-		1002
	POTAS-			CHLO-		SILICA,	SUM OF	SOLIDS,	GEN,	22.20	MANGA-
	SIUM,	LINITY	SULFATE		The state of the s	DIS-	CONSTI-	DIS-	NO2+NO3		NESE,
	DIS-	LAB	DIS-	DIS-	DIS-	SOLVED	TUENTS,	SOLVED	DIS-	DIS-	DIS-
	SOLVED		SOLVED	SOLVE		(MG/L	DIS-	(TONS	SOLVED		
DATE	(MG/L AS K)	AS CACO3)	(MG/L AS SO4)	(MG/L AS CL		AS SIO2)	SOLVED (MG/L)	PER AC-FT)	(MG/L AS N)	(UG/L AS FE)	(UG/L AS MN)
MAR											
28	.40	27	4.1	4.7	<.10	20	59	.08	<.10	180	14

 $[\]leq$ Actual value is known to be less than the value shown.

16893800 WICHEN RIVER AT ALTITUDE 18 M, MOEN

LOCATION.--Lat 07°27'01" N., long 151°51'56" E., Hydrologic Unit 20100006, on left bank at Peniesence, 0.3 mi upstream from mouth, and 1.4 mi west of Saint Xaviers Academy.

DRAINAGE AREA. -- 0.57 mi².

PERIOD OF RECORD.--April 1955 to March 1956 (published as "at Peniesence"), June 1968 to January 1980, May 1980 to May 1983, February 1984 to current year. All figures of discharge above 3 ft³/s prior to April 1956, published in WSP 1751, are unreliable and should not be used.

REVISED RECORDS. -- WSP 2137, WDR HI-79-2: Drainage area.

GAGE.--Water-stage recorder and concrete control since Mar. 29, 1973. Elevation of gage is 60 ft, from topographic map. Prior to Apr. 1, 1956, nonrecording gage at site 100 ft downstream at different datum.

REMARKS.--Records poor. No diversion upstream. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 14 years, 3.12 ft 3/s (2,260 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 910 ft³/s June 4, 1972, gage height, 6.80 ft, from rating curve extended above 28 ft³/s; minimum, 0.01 ft³/s Apr. 16-19, 1977, Apr. 8, 1983:

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 200 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Oct. 17	0300	327 224	4.08	Jan. 7	1330	*417	*4.68

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

Minimum discharge, 0.05 ft3/s Mar. 26, 27.

		DISCHARGE	, IN COD.	IC PEEL I		AN VALUES		DER 1904 1	naliae o	DEK 1905		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.37 .65 .45 3.2 3.1	3.2 2.6 7.0 4.3 3.3	3.1 19 14 8.0 6.2	1.5 3.3 19 14 6.5	2.7 2.3 1.8 1.3	.65 .55 .45 .37	.19 .15 1.0 .37	13 8.0 5.0 2.5 1.5	.70 1.0 .70 .50	9.0 8.6 12 9.0	1.8 9.1 3.1 2.3 2.3	.27 .27 .27 1.0 .41
6 7 8 9 10	1.8 1.0 1.6 1.3 2.6	3.1 2.6 2.3 2.0 2.0	5.0 5.0 4.5 3.8 3.6	5.0 70 22 8.8 7.8	1.0 .80 .60 .45	.30 .30 .24 .24	3.4 1.2 .55 .30 .24	1.0 2.5 2.0 14 7.0	.30 .30 .30 .60	5.0 4.0 3.0 12	2.8 2.0 2.8 4.5 3.8	2.3 31 12 3.1 .94
11 12 13 14 15	4.3 6.5 3.3 2.3 1.8	2.0 1.8 1.6 3.2 28	3.6 3.6 3.3 2.8 2.6	5.0 3.8 2.8 3.3 2.6	.37 .37 .45 .30	.19 .19 .15 .30 .24	.15 .15 .11 .11 3.2	4.0 2.5 1.8 1.4 1.4	18 10 5.0 9.0 6.0	5.0 3.0 2.0 1.0 .80	2.6 6.7 6.8 4.0 2.8	1.0 5.2 4.5 9.6 6.2
16 17 18 19 20	19 50 22 10 7.4	23 14 7.7 7.1 6.8	2.4 2.3 2.3 2.3 2.6	2.1 2.0 1.8 1.6 1.6	.19 .30 .19 .37	.19 .11 .15 .15	20 6.2 2.9 12	15 13 6.0 2.0 2.0	5.0 4.0 12 8.0 4.0	.60 .50 1.0 .90 1.6	2.1 6.6 4.3 2.3 .60	2.3 3.4 2.7 4.0 1.6
21 22 23 24 25	5.0 3.6 37 19 8.8	8.5 10 6.5 6.8 6.8	2.1 1.8 1.8 1.6 1.8	1.5 1.5 2.4 2.3 2.0	15 4.5 2.8 2.0 1.4	.11 .15 .11 .11	16 6.5 5.0 3.6 4.8	3.0 1.3 1.3 .90	3.0 1.8 1.3 1.0	1.0 .80 .60 1.3 1.0	.25 .15 .15 .40	1.5 .95 .60 .52
26 27 28 29 30 31	6.2 10 6.5 4.8 3.8 3.1	8.0 5.6 4.5 3.8 3.3	1.5 1.3 1.2 1.0 1.5	8.0 7.0 5.0 3.5 3.2 2.8	1.0 .76 .76 	.08 .08 .37 .65 .30	5.0 15 7.4 5.3 7.4	.40 .40 .38 .40 .50	.80 .70 1.0 .90 .90	.88 .76 .65 8.6 4.0 2.3	.25 .60 .39 .25 .55	.51 .45 .30 .49
TOTAL MEAN MAX MIN AC-FT	250.47 8.08 50 .37 497	191.4 6.38 28 1.6 380	117.1 3.78 19 1.0 232	223.7 7.22 70 1.5 444	64.85 2.32 21 .19 129	7.73 .25 .65 .08	139.87 4.66 20 .11 277	115.18 3.72 15 .38 228	98.55 3.28 18 .30 195	122.89 3.96 12 .50 244	76.90 2.48 9.1 .15 153	98.06 3.27 31 .27 195
WTR YR	1985 T	OTAL 1506	5.70	MEAN	4.13	MAX	70	MIN	.08	AC-FT	2990	

16897600 NANPIL RIVER

LOCATION.--Lat 06°55'09" N., long 158°11'59" E., Hydrologic Unit 20100006, on left bank 0.1 mi upstream from diversion dam and 1.3 mi upstream from Kiepw River.

DRAINAGE AREA. -- 3.00 mi².

PERIOD OF RECORD. -- March 1970 to current year. Prior to October 1980, published as Nanepil River.

REVISED RECORDS.--WDR HI-76-1: 1970(M), 1971-72(P), 1973(M), 1974(P), 1975(M). WDR HI-81-2: Drainage area.

GAGE. -- Water-stage recorder. Elevation of gage is 370 ft, from topographic map.

REMARKS.--Records fair except for estimated daily discharges, which are poor. No diversion upstream. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 15 years, 44.3 ft 3/s (32,100 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 8,820 ft³/s Aug. 4, 1976, gage height, 9.68 ft, from rating curve extended above 168 ft³/s on basis of slope-area measurement at gage height 9.68 ft; minimum, 0.54 ft³/s Apr. 19, 1983.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2,080 ${\rm ft}^3/{\rm s}$ Oct. 16, gage height 6.57 ft, no peak greater than base discharge of 3,200 ${\rm ft}^3/{\rm s}$; minimum, 4.1 ${\rm ft}^3/{\rm s}$ Mar. 11, 13.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 MEAN VALUES DAY OCT NOV DEC JAN FEB APR MAY JUN AUG SEP MAR JUL e41 7.8 e50 e25 9.8 8.0 6.4 9.3 9.0 7.8 7.8 7.6 9.9 8.7 6.2 9.0 e40 8.0 9.0 5.3 6.9 e65 5.1 5.1 e30 4.7 e17 4.5 e20 4.7 e25 e20 9.5 e15 7.6 e60 9.8 9.3 5.6 e60 9.3 8.5 6.9 e25 7.8 2.1 e20 6.4 e15 5.8 8.0 e10 6.2 e10 5.8 e9.0 e10 e8.0 e6.5 9.8 e20 9.8 8.0 e40 e70 7.8 9.8 6.4 7.8 ---6.2 e45 9.3 e150 TOTAL 1789.6 941.8 1466.9 1383.5 553.0 863.9 1517.0 896.7 810.1 MEAN 57.7 52.3 30.4 47.3 49.4 17.8 59.6 27.9 50.6 28.9 41.8 27.0 MAX 7.8 9.3 MIN 5.8 7.8 7.8 5.1 6.4 8.0 AC-FT CAL YR 1984 TOTAL 13210.9 MEAN 36.1 MAX MIN AC-FT 2.1 WTR YR 1985 TOTAL 14874.5 MEAN 40.8 MAX MIN 4.5 AC-FT

e Estimated

16897900 LEWI RIVER

LOCATION.--Lat 06°55'32" N., long 158°12'18" E., Hydrologic Unit 20100006, on right bank at road and pipeline crossing, 300 ft upstream from right-bank tributary, and 2.4 mi upstream from mouth.

DRAINAGE AREA .-- 0.46 mi².

PERIOD OF RECORD. -- March 1970 to current year. Prior to October 1980, published as Lui River.

REVISED RECORDS. -- WDR HI-81-2: Drainage area.

GAGE. -- Water-stage recorder. Elevation of gage is 290 ft, from topographic map.

REMARKS.--Records fair except for estimated daily discharges, which are poor. No diversion upstream. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 15 years, 5.29 ft 3/s (3,830 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,190 ft³/s Aug. 4, 1976, gage height, 5.92 ft, from rating curve extended above 37 ft³/s, on basis of slope-area measurement at gage height 5.92 ft; minimum, 0.02 ft³/s Apr. 18, 19, 1983.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 441 ft³/s Aug. 31, gage height, 4.27 ft, no peak greater than base discharge of 500 ft³/s; minimum, 0.43 ft³/s Mar. 18.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

					ME	AN VALUES						
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	3.1	2.5	7.4	e3.0	1.4	5.3	7.0	1.4	5.0	18	1.4	11
2	2.2	5.0	5.0	e8.0	.90	2.4	10	1.1	6.6	4.8	2.7	6.0
3	2.7	19	10	e17	2.0	1.6	6.0	1.0	3.1	5.3	1.7	2.7
4	1.7	3.4	5.0	e15	1.1	1.4	3.9	.95	1.8	3.5	1.4	2.1
5	3.0	2.1	3.5	e17	.90	1.4	12	.85	1.4	2.1	1.8	3.1
6	7.9	1.6	e3.5	e35	.75	1.0	17	2.1	1.0	1.6	3.3	2.9
7	19	1.3	e2.5	e13	.70	.90	3.8	1.9	1.5	1.4	2.3	6.6
8	9.5	3.3	e1.7	e7.5	.55	.95	13	5.8	1.5	1.4	3.0	2.8
9	4.2	14	e1.5	e5.0	.49	.75	9.4	8.4	14	1.9	5.8	3.2
10	22	4.0	e2.0	e4.5	.55	.65	5.2	3.9	4.5	7.0	5.5	2.8
11	19	2.1	e20	e15	.70	. 55	19	2.3	2.3	2.6	5.1	4.5
12	4.4	1.8	e8.0	e5.0	3.7	.55	4.2	2.8	1.6	1.7	10	2.4
13	2.8	15	e6.0	e3.5	1.3	. 52	2.5	3.2	2.9	6.0	29	1.9
14	2.6	12	e3.5	e2.0	.85	1.1	2.2	2.9	3.2	13	6.1	1.7
15	1.6	14	e2.3	1.4	.65	1.0	2.9	2.1	17	5.2	e25	1.4
16	37	5.2	e1.7	1.7	3.2	.60	4.8	7.3	8.3	7.0	e10	1.1
17	15	5.2	e1.5	2.0	23	. 52	11	7.2	8.2	3.6	e8.0	1.0
18	5.5	8.3	e1.3	1.3	7.4	.49	5.5	3.4	19	2.1	e4.0	5.4
19	2.6	3.8	e1.1	4.0	12	1.0	6.6	2.8	34	2.1	e2.5	2.1
20	1.6	6.1	e1.0	3.9	5.3	2.0	24	1.9	6.2	2.8	e2.5	1.5
21	1.9	5.6	e.90	6.1	6.8	.90	13	1.4	12	2.9	e4.0	8.5
22	13	4.5	e.95	3.8	18	2.6	5.3	1.4	5.8	2.3	e20	3.6
23	4.6	2.6	e.90	3.8	3.4	11	3.5	1.2	6.8	3.8	e4.0	1.9
24	2.6	4.0	e2.3	4.8	4.6	2.9	3.8	1.4	7.0	2.7	e2.5	1.4
25	2.3	13	e2.3	3.8	9.0	1.4	2.9	1.0	4.1	2.8	e1.7	2.1
26	2.7	12	e3.0	2.5	4.2	.90	1.9	.85	3.2	2.3	e1.3	2.1
27	2.5	5.9	e2.0	1.6	2.5	.85	1.8	3.0	3.6	1.5	2.2	2.4
28	2.1	3.4	e3.5	1.4	10	.70	1.6	5.8	3.1	13	2.6	1.9
29	1.5	3.4	e15	1.2		. 52	1.5	9.0	1.9	4.4	1.8	1.3
30	7.5	24	e7.0	1.0		.55	1.1	5.8	2.1	2.3	1.4	6.2
31	3.6		e7.0	1.2		.95		18		1.7	1.7	
TOTAL MEAN MAX	211.7 6.83 37	208.1 6.94 24	133.35 4.30 20	196.0 6.32 35	125.94 4.50 23	47.95 1.55 11	206.4 6.88 24	112.15 3.62 18	192.7 6.42 34	132.8 4.28 18	174.3 5.62 29	97.6 3.25 11
MIN	1.5	1.3	.90	1.0	.49	.49	1.1	.85	1.0	1.4	1.3	1.0
AC-FT	420	413	264	389	250	95	409	222	382	263	346	194
CAL YR WTR YR			47.72 38.99	MEAN MEAN	4.23 5.04	MAX MAX	37 37	MIN MIN	.18	AC-FT AC-FT	3070 3650	

16898600 LUHPWOR RIVER

LOCATION.--Lat 06°54'09" N., long 158°09'07" E., Hydrologic Unit 20100006, on left bank about 300 ft upstream from 50-ft waterfall, 0.2 mi downstream from highway bridge, and 0.2 mi west of Pwakorokot Hill.

DRAINAGE AREA. -- 0.72 mi².

CAL YR 1984 TOTAL

WTR YR 1985 TOTAL

2852.05

3659.4

MEAN

MEAN

7.79

10.0

MAX

MAX

PERIOD OF RECORD. -- September 1972 to current year. Prior to October 1980, published as Lupwor River.

REVISED RECORDS. -- WDR HI-81-2: Drainage area.

GAGE. -- Water-stage recorder. Elevation of gage is 145 ft, from topographic map.

REMARKS.--Records fair. No diversion upstream. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 13 years, 8.76 ft 3/s (6,350 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,090 ft³/s Aug. 4, 1976, gage height, 8.26 ft, from rating curve extended above 47 ft³/s, on basis of estimate of peak flow; minimum, 0.13 ft³/s May 4, 5, 1983.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 835 ft³/s Aug. 15, gage height, 5.79 ft, no other peak greater than base discharge of 750 ft³/s; minimum, 1.4 ft³/s Feb. 10.

DISCUADOR IN CUDIO EPET DED CECOND MATER VEAD COTODER 1004 TO CERTEMBER 1004

		DISCHARGE,	IN CUBIC	FEET P	ER SECOND,	WATER YE	AR OCTOBER	1984 T	O SEPTEMBER	1985		
					MEA	N VALUES						
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	20	3.8	10	5.3	2.6	13	10	4.2	7.3	12	4.7	15
2	11	8.3	9.3	9.1	2.0	7.8	13	4.0	11	8.6	9.0	16
3	11	34	18	17	4.6	6.0	18	3.7	6.9	8.6	5.9	9.6
4	7.6	13	11	14	2.7	5.0	11	3.0	5.2	6.9	4.5	7.8
5	5.9	8.0	7.6	16	2.5	6.4	19	2.6	4.5	5.3	6.9	8.6
6	11	5.9	6.4	44	2.0	4.2	24	4.5	3.8	5.1	27	13
7	29	4.6	5.1	20	1.8	3.4	10	4.0	4.3	4.5	9.8	25
8	45	3.9	4.2	13	1.6	3.4	14	6.9	4.3	3.8	6.8	11
9	21	13	3.6	11	1.6	2.6	12	11	27	7.8	15	9.8
10	37	6.6	3.9	9.3	1.4	2.3	7.1	7.3	8.3	16	15	8.0
11	47	4.6	20	22	1.8	2.1	14	5.0	5.2	8.3	12	10
12	16	3.9	9.6	9.3	11	2.0	7.6	4.7	6.2	5.9	25	6.4
13	9.8	24	7.8	7.3	4.1	1.8	5.9	6.6	4.8	17	14	5.5
14	13	21	5.7	5.7	2.9	4.1	5.5	5.1	11	33	20	5.9
15	8.8	30	4.7	4.6	2.6	3.8	5.9	3.9	16	19	91	4.7
16	20	10	4.2	5.2	7.3	2.3	7.1	8.6	13	12	20	4.1
17	17	11	3.6	5.9	32	1.8	13	16	9.3	8.3	17	3.7
18	12	14	3.2	4.0	17	1.6	9.8	9.8	24	6.4	11	12
19	8.3	8.6	2.9	11	20	2.0	16	17	56	6.2	9.0	5.9
20	6.2	15	2.6	7.3	13	2.0	38	10	12	5.9	13	4.8
21	8.5	14	2.4	8.6	12	1.6	28	7.1	21	6.9	11	11
22	16	9.3	2.2	6.8	21	4.7	15	5.7	11	5.2	27	8.6
23	29	6.8	2.0	6.6	8.6	17	9.8	4.7	11	5.3	21	5.9
24	6.6	6.6	2.4	6.6	7.3	7.3	7.3	4.0	11	4.8	19	4.6
25	5.3	26	2.5	5.1	13	4.3	7.6	3.4	7.3	4.6	14	7.9
26	4.6	31	2.6	4.6	10	3.4	6.0	3.0	6.2	4.2	9.8	6.6
27	3.8	14	2.4	3.4	6.8	2.9	7.1	3.8	34	3.8	8.3	19
28	3.4	9.0	3.4	3.0	22	2.6	5.9	6.7	12	20	9.0	9.3
29	2.9	8.3	15	2.7		2.3	5.1	10	7.3	9.0	6,9	6.4
30	7.3	26	8.3	2.5		2.1	4.2	5.5	7.1	6.4	11	9.3
31	5.1	1	8.0	2.6	V-1-1	2.3		12		5.2	11	
TOTAL	449.1	394.2	194.6	293.5	235.2	128.1	356.9	203.8	368.0	276.0	484.6	275.4
MEAN	14.5	13.1	6.28	9.47	8.40	4.13	11.9	6.57	12.3	8.90	15.6	9.18
MAX	47	34	20	44	32	17	38	17	56	33	91	25
MIN	2.9	3.8	2.0	2.5	1.4	1.6	4.2	2.6	3.8	3.8	4.5	3.7
AC-FT	891	782	386	582	467	254	708	404	730	547	961	546

.68

1.4

AC-FT

AC-FT

5660

7260

MIN

MIN

47

91

16898690 LEHN MESI RIVER

LOCATION.--Lat 06°50'41" N., long 158°11'02" E., Hydrologic Unit 20100006, on left bank 3.2 mi upstream from mouth, 1.7 mi southwest of Mount Tolenpwoaipwoai, and 4.5 mi south of Mount Temwetemwensekir.

DRAINAGE AREA. -- 2.31 mi², revised.

PERIOD OF RECORD. -- November 1981 to current year.

GAGE. -- Water-stage recorder. Elevation of gage is 260 ft, from topographic map.

REMARKS.--Records fair except for estimated daily discharges, which are poor. Periodic determinations of water temperature for the current year are published elsewhere in this report.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 7,740 ft³/s, May 8, 1982, gage height, 10.14 ft, from rating curve extended above 126 ft³/s; minimum, 4.5 ft³/s for several days in April and May, 1983.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 3,000 ft3/s and maximum (*):

Date Time (ft ³ /s) (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Feb. 16 2400 *3060 *6.86	June 19	0130	3030	6.83

Minimum discharge, 16.0 ft3/s Mar. 30.

		DISCHARGE,	IN CUBI	C FEET	PER S		, WATER YEAR AN VALUES	OCTOBER	1984	TO SEPTEM	BER 1985		
DAY	OCT	NOV	DEC	JAN		FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	129	39	73	48		37	109	107	52	72	124	135	58
2	80	78	88	105		24	55	143	43	87	84	132	76
3	97	145	192	243		96	42	134	34	82	89	62	43
3													
4	55	54	90	148		38	36	83	29	49	72		32
5	42	41	56	218		31	42	132	28	38	58	59	40
6	63	32	66	283		26	29	187	57	32	43	57	60
7	46	29	50	156		24	26	75	55	40	35	44	72
8	79	25	39	112		21	31	213	129	52	32	40	43
9	47	78	32	100		19		e100	73	129	85	231	50
10	82	39	46	70		18	22	e60	53	58	132		86
11	272	39	289	182		31	20	e160	36	36	74	61	92
12	96	47	99	73		140	19	e70	42	74	50	151	76
13	57	178	74	62		41	21	e50	93	93	57	106	43
14	100	163	54	47		28	55	e60	74	76	196		36
15	57	253	42	37		25	48	e70	49	144	102	128	29
16	e290	96	34	46		263		e100	189	100	76		30
17	e150	124	31	64		e390		e150	148	114	51		35
18	108	158	31	36		e200	19	73	62	165	40		77
19	83	69	29	130		e150	21	171	50	402	51	79	50
20	55	210	28	84		e100	34	401	39	108	106	87	41
21	104	185	25	123		102	22	208	32	196	91	210	65
22	252	129	24	68		126	107	96	32	97	62		
23	98	73	22	74		54	198	65	28	75	53		
24	61	66	33	84		70	102	60	40	68	44		
25	47	119	31	55		138	42	46	28	49	51		43
23	47	113	31	33		130	42	40	20				43
26	40	179	36	45		118	29	36	22	47	42	41	42
27	36	91	26	36		60	24	109	48	60	35	39	
28	36	56	107	36		276	22	90	126	139	110		
29	28	72	251	32			19	70	164	65	57		55
30	69	174	97	27			16	69	87	59	44		
			78	28			33		154		55		
31	58		70	20			33		154	200	22	31	
TOTAL	2817	3041	2173	2852		2646	1313	3388	2096	2806	2201		
MEAN	90.9	101	70.1	92.0		94.5	42.4	113	67.6	93.5	71.0		
MAX	290	253	289	283		390	198	401	189	402	196		
MIN	28	25	22	27		18	16	36	22	32	32	39	29
AC-FT	5590	6030	4310	5660		5250	2600	6720	4160	5570	4370	5690	3040
CAL YR WTR YR		OTAL 26064 OTAL 297		MEAN MEAN		1.2			IN IN	8.1 16	AC-FT AC-FT	51700 58980	

e Estimated

16899620 MELO RIVER

LOCATION.--Lat 05°20'30" N., long 162°58'33" E., Hydrologic Unit 20100006, on left bank 0.5 mi upstream from mouth and 1.3 mi southwest of Mount Mutunte.

DRAINAGE AREA. -- 0.68 mi².

PERIOD OF RECORD. -- October 1974 to September 1979, June 1980 to current year.

REVISED RECORDS. -- WRD HI-81-2: Drainage area.

GAGE. -- Water-stage recorder and concrete control. Elevation of gage is 20 ft, from topographic map.

REMARKS.--Records poor. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 10 years (water years 1975-79, 1981-85), 6.77 ft³/s (4,900 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 784 ft³/s Mar. 22, 1976, gage height, 5.78 ft, from rating curve extended above 17 ft³/s; minimum, 0.11 ft³/s for several days in April 1983.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 330 ft³/s Feb. 20, gage height, 3.70 ft, no other peak greater than base discharge of 300 ft³/s; minimum, 1.15 ft³/s Nov. 1.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

		2100111110	a, 11 001	10 1001 1		AN VALUES		2211 100 1 1	o burran	DIN 1003		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	3.4	1.3	6.2	e5.2	e4.0	15	e14	e3.5	e28	5.9	4.7	8.2
2	3.0	3.7	6.7	e5.0	e3.8	4.7	e5.0	e7.0	e13	5.6	3.0	2.8
3	2.8	2.1	17	4.7	e3.5	3.6	e4.0	e3.5	e10	4.1	3.5	2.4
4	3.2	1.7	e8.0	4.1	e3.2	8.9	e6.0	e2.7	e7.0	4.7	2.8	4.1
5	2.8	1.5	e6.0	4.9	e3.0	4.7	e8.0	e2.2	e18	4.0	3.0	2.2
6	3.7	1.3	e5.0	8.4	3.2	3.4	e5.0	e2.0	e8.0	2.6	2.4	2.0
7	3.0	1.6	e4.5	5.7	3.2	2.8	e3.5	e1.7	e6.0	2.5	2.1	e1.8
8	2.8	3.8	e5.5	22	3.9	23	e3.5	e3.0	e7.0	2.1	2.1	e5.0
9	2.6	2.0	e22	e8.0	2.4	7.8	e3.0	e10	e10	12	8.1	e4.0
10	5.4	1.6	e9.0	e18	2.4	4.7	e8.0	e4.0	e12	3.6	3.6	e2.3
11	9.6	1.7	e7.5	e50	3.4	3.6	7.0	e2.5	e35	2.4	3.4	e3.0
12	4.5	1.6	e35	e20	17	3.0	7.3	e20	e15	2.1	5.8	e1.8
13	3.0	7.4	e16	e15	26	4.0	3.8	e7.0	e10	2.5	3.6	e2.8
14	2.8	6.3	e11	e10	10	3.2	9.2	e4.0	e10	5.3	8.5	e2.0
15	4.9	e3.0	e8.5	e9.8	6.2	2.6	34	e3.8	e8.0	2.8	4.0	e1.7
16	9.1	e15	e7.0	e7.0	14	2.1	19	e3.5	e7.5	2.0	6.8	e1.5
17	12	e7.5	e6.0	e6.0	11	2.0	28	e3.0	e7.0	1.7	3.4	e1.5
18	4.5	e4.5	e5.0	e5.2	35	1.6	13	e2.5	e7.0	2.6	e3.0	e2.0
19	3.4	e3.2	e4.0	e5.0	54	1.3	8.1	e3.0	e10	1.7	e2.7	e1.5
20	6.6	e10	e3.8	e4.5	53	2.1	e22	e2.2	e10	1.3	e3.5	e5.0
21	16	e6.0	e3.5	e3.8	13	1.8	e36	e1.8	e30	1.5	e3.0	e10
22	6.9	e3.5	e3.0	e5.0	7.5	2.1	e17	e4.5	e20	1.7	e5.0	e15
23	5.7	e2.7	e2.8	e3.5	5.0	2.4	e11	e2.5	e13	1.9	e4.0	e3.5
24	4.7	e2.2	e6.0	e3.0	5.0	4.1	e8.5	e1.8	e17	5.9	e3.5	e2.5
25	3.8	e17	e4.5	e2.7	6.9	3.0	e7,0	e3.0	e12	2.1	e4.0	e9.5
26	4.0	e9.0	e10	e2.5	4.1	2.0	e6.0	e25	e9.0	1.5		2.8
27	2.5	e12	e14	e2.2	3.4		e8.5	e17	6.2	2.1	e3.0	2.4
28	2.1	e8.0	e8.0	e2.0	3.6	e2.0	e6.0	e16	10	1.6	e2.8	3.1
29	2.0	e7.2	e7.0	e20		e1.7	e5.0	e10	5.5	1.2	2.6	7.0
30	1.7	6.9	e6.0	e9.0		e8.0	e4.0	e15	9.2	1.2	2.2	5.9
31	1.5		e5.4	e5.0		e4.0		e20		5.6	2.4	
TOTAL	144.0	155.3	263.9	277.2	310.7	136.9	320.4	207.7	370.4	97.8	116.0	119.3
MEAN MAX	4.65	5.18 17	8.51 35	8.94	11.1 54	4.42	10.7 36	6.70	12.3	3.15	3.74 8.5	3.98
MIN	1.5	1.3	2.8	2.0	2.4	1.3	3.0	1.7	5.5	1.2	2.1	15
AC-FT	286	308	523	550	616	272	636	412	735	194	230	1.5 237
	1984 T		7.65 19.6	MEAN MEAN	6.47	MAX MAX	52 54	MIN MIN	.26 1.2	AC-FT AC-FT	4700 5000	

16899750 MALEM RIVER

LOCATION.--Lat 05°17'35" N., long 163°00'54" E., Hydrologic Unit 20100006, on left bank 0,9 mi upstream from mouth and 2.0 mi southeast of Mount Finkol.

DRAINAGE AREA. -- 0.76 mi².

PERIOD OF RECORD. -- July 1971 to March 1981, March 1982 to current year.

REVISED RECORDS. -- WDR HI-81-2: Drainage area.

GAGE.--Water-stage recorder and concrete control. Elevation of gage is 95 ft, from stadia survey.

REMARKS.--Records fair except for estimated daily discharges, which are poor. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE.--12 years (1972-80, 1983-85), 6.70 ft3/s (4,850 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,550 ft³/s Mar. 22, 1976, gage height, 6.20 ft, from rating curve extended above 110 ft³/s; minimum, 0.07 ft³/s Apr. 30, May 1, 1983.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 209 ft³/s May 27, gage height, 4.18 ft, no peak greater than base discharge of 350 ft³/s; minimum, 0.24 ft³/s Oct. 5.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

					ME	AN VALUES						
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1.7	1.3	5.7	3.2	e3.5	23	10	3.2	24	8.8	3.0	5.6
2	.97	2.0	4.7	3.0	e3.3	8.0	4.7	6.7	27	5.7	2.4	2.6
3	.76	1.5	19	2.6	e2.5	5.7	3.9	5.4	9.9	4.7	1.9	1.6
4	.90	1.3	8.8	2.9	e2.2	5.5	6.8	3.8	7.5	4.7	1.8	2.2
5	. 53	1.2	5.5	2.6	2.0	4.5	9.4	3.0	5.9	4.5	1.9	1.5
6	3.2	.90	4.7	8.5	2.4	3.6	6.1	3.0	20	3.5	2.1	1.7
7	1.9	. 83	3.9	e7.0	2.6	3.3	4.1	2.6	7.7	3.0	1.7	1.5
8	.97	1.4	8.7	e24	2.4	17	4.1	2.2	5.7	3.2	1.6	1.7
9	.76	1.1	32	e8.0	1.9	8.2	3,5	2.9	9.2	7.7	3.6	1.6
10	2.1	1.0	10	e20	2.1	4.5	11	6.9	8.2	4.5	2.0	1.5
11	9.1	.83	8.2	e50	2.4	3.8	13	3.8	17	3.2	1.8	1.8
12	3.3	.76	28	e15	19	3.2	14	3.2	43	3.7	3.8	1.2
13	1.3	3.6	13	e10	25	6.0	6.4	26	16	2.6	2.9	1.8
14	.97	4.4	9.6	e8.0	8.2	11	14	8.0	8.8	6.9	5.9	1.3
15	3.5	1.8	6.8	10	4.7	6.6	18	4.6	6.6	3.8	3.5	1.2
16	16	15	5.5	6.6	8.8	3.6	12	4.0	4.7	2.9	4.2	1.0
17	15	5.7	4.5	5.5	7.7	2.7	28	3.5	4.5	2.4	2.6	1.3
18	3.9	3.8	3.8	4.5	10	2.4	12	3.0	6.1	3.9	2.1	2.0
19	2.7	3.5	3.3	4.3	12	2.1	8.2	2.7	7.2	2.6	1.8	1.3
20	6.2	14	3.0	4.5	24	2.0	28	2.7	12	2.2	2.4	3.2
21	24	8.8	2.6	3.8	23	2.0	40	2.3	38	2.2	2.0	7.9
22	6.8	3.6	2.3	6.6	10	2.3	14	2.2	28	2.3	3.6	13
23	4.5	2.9	2.2	3.5	7.3	4.4	8.8	4.2	13	2.5	2.7	3.0
24	3.5	2.2	6.4	2.9	14	6.6	7.3	3.2	23	11	2.2	2.7
25	2.7	18	4.7	2.4	19	3.9	9.7	2.2	12	3.9	2.3	6.9
26	2.7	7.8	9.6	2.3	7.6	3.0	5.9	4.0	8.8	3.2	2.0	3.9
27	2.2	15	14	2.0	5.7	2.4	4.9	34	9.9	2.4	1.4	2.3
28	1.7	6.1	6.7	1.9	4.9	2.2	4.1	16	9.2	2.5	1.3	1.8
29	1.7	5.8	4.5	e20		1.9	4.5	21	7.3	1.9	1.1	2.7
30	1.6	6.7	3.5	e8.0	777	7.3	3.9	9.3	9.5	1.7	. 97	2.3
31	1.3		2.9	e5.0		4.4		12		3.1	1.2	
TOTAL MEAN	128.46 4.14	142.82	248.1	258.6 8.34	238.2 8.51	167.1 5.39	320.3	211.6	409.7 13.7	121.2	73.77 2.38	84.1 2.80
MAX	24	18	32	50	25	23	40	34	43	11	5.9	13
MIN	. 53	.76	2.2	1.9	1.9	1.9	3.5	2.2	4.5	1.7	. 97	1.0
AC-FT	255	283	492	513	472	331	635	420	813	240	146	167
CAL YR WTR YR	1984 TO		9.40 3.95	MEAN MEAN	5.93 6.59	MAX MAX	69 50	MIN MIN	. 43	AC-FT AC-FT	4300 4770	

16899800 TOFOL RIVER

LOCATION.--Lat 05°19'10" N., long 163°00'24" E., Hydrologic Unit 20100006, on left bank 25 ft downstream from right-bank tributary, 0.9 mi upstream from mouth, and 1.3 mi northeast of Mount Finkol.

DRAINAGE AREA. -- 0.53 mi².

PERIOD OF RECORD. -- June 1971 to September 1979, March 1980 to current year.

GAGE.--Water-stage recorder and concrete control. Elevation of gage is 98 ft, from stadia survey.

REMARKS.--Records fair. Water is diverted through 8-in pipe from dam upstream for domestic use. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 13 years (1971-79, 1981-85), 5.67 ft 3/s (4,110 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 1,560 ft³/s Nov. 10, 1981, gage height, 5.97 ft, from rating curve extended above 79 ft³/s; minimum, 0.01 ft³/s Apr. 1, 1983.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 197 ft³/s Oct. 16, gage height, 3.28 ft, no peak greater than base discharge of 450 ft³/s; minimum, 0.30 ft³/s Sept. 19.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985
MEAN VALUES

					ME	AN VALUES						
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1.1	1.1	4.2	2.9	3.1	19	12	3.6	18	7.6	1.7	3.8
2	.70	.88	4.2	2.8	3.1	7.3	4.3	3.6	24	5.7	1.3	1.4
3	. 58	1.1	14	2.6	2.7	5.9	4.0	5.9	12	4.7	1.2	.94
4	.70	1.0	6.4	2.5	2.2	6.0	4.9	3.3	8.9	5.0	1.1	1.4
5	.50	.94	4.5	2.3	1.9	4.7	6.5	2.6	7.1	4.3	.82	1.1
6	.94	.88	3.6	5.1	2.0	3.6	4.3	2.1	16	3.3	.88	.98
7	.62	1.0	3.2	4.2	2.1	3.1	3.3	1.9	7.3	2.8	.82	.62
8	.46	1.0	4.5	19	1.9	14	3.5	1.6	5.9	2.6	.76	3.0
9	.42	.88	18	6.2	1.9	6.6	2.9	2.6	6.1	6.0	2.6	2.0
10	1.4	.82	7.3	15	1.5	4.3	13	8.9	8.8	2.7	1.1	1.1
11	5.1	.70	5.9	42	1.8	3.3	11	3.5	12	1.8	1.1	1.4
12	1.9	. 82	20	14	14	2.9	12	2.3	31	1.5	2.3	.70
13	1.1	4.1	13	11	18	4.0	6.6	18	14	1.5	.88	1.3
14	.82	6.4	9.2	8.1	6.6	4.5	14	6.2	9.7	3.9	4.5	.76
15	1.9	2.3	6.8	7.8	4.3	3.1	20	3,8	9.9	1.9	2.2	.62
16	11	14	5.7	5.7	7.6	1.9	15	3.6	7.6	1.4	3.7	.50
17	11	7.1	5.0	5.2	8.9	1.6	23	3.5	6.4	1.1	1.9	.50
18	2.7	4.1	4.3	4.3	9.8	1.2	12	2.6	6.3	1.4	1.5	.76
19	1.9	2.5	3.6	4.2	9.5	1.2	7.8	2.2	6.2	1.1	1.2	. 54
20	3.7	9.1	3.2	3.8	18	1.1	19	2.7	11	.94	1.7	4.0
21	16	5.5	2.9	3.1	19	1.1	32	2.0	28	.82	1.1	6.0
22	5.2	3.1	2.6	4.1	10	1.3	14	1.7	18	. 92	2.2	5.8
23	4.2	2.7	2.3	2.8	7.6	1.4	9.5	4.1	12	1.2	1.4	1.2
24	3.1	2.1	4.9	2.5	13	3.7	7.6	2.5	15	4.9	1.1	.94
25	2.5	15	3.9	2.2	14	1.9	5.7	1.7	13	1.5	1.4	4.5
26	2.3	7.0	5.9	1.9	7.1	1.3	4.5	2.9	9.6	.94	1.1	2.3
27	1.9	10	7.8	1.8	6.4	1.3	7.6	23	7.6	1.4	. 95	1.6
28	1.6	5.0	4.7	1.5	5.9	1.6	6.7	16	10	1.1	.76	1.7
29	1.5	4.9	3.8	16		1.3	5.4	16	7.6	. 82	.62	1.9
30	1.3	4.5	3.2	7.8		6.6	5.0	9.2	10	.74	.66	1.9
31	1.2		3.1	4.0		3.2	555	14		1.7	.66	
TOTAL	89.34	120.52	191.7	216.4	203.9	124.0	297.1	177.6	359.0	77.28	45.21	55.26
MEAN	2.88	4.02	6.18	6.98	7.28	4.00	9.90	5.73	12.0	2.49	1.46	1.84
MAX	16	15	20	42	19	19	32	23	31	7.6	4.5	6.0
MIN	.42	.70	2.3	1.5	1.5	1.1	2.9	1.6	5.9	.74	. 62	. 50
AC-FT	177	239	380	429	404	246	589	352	712	153	90	110
	1984 T		5.39	MEAN	4.93	MAX	65	MIN	.14	AC-FT	3580	
WTR YR	1985 T	OTAL 195	57.31	MEAN	5.36	MAX	42	MIN	.42	AC-FT	3880	

16912000 PAGO STREAM AT AFONO

LOCATION.--Lat 14°16'03" S., long 170°39'02" W., Hydrologic Unit 20100001, on left bank 0.2 mi south of Afono and 0.3 mi upstream from mouth.

DRAINAGE AREA. -- 0.60 mi².

PERIOD OF RECORD. --October 1958 to current year. Prior to July 1960, published as Afono Stream at Afono.

REVISED RECORDS. -- WSP 1937: Drainage area.

GAGE. -- Water-stage recorder and concrete control. Elevation of gage is 30 ft, from topographic map.

REMARKS.--Records good. About 0.06 ${\rm ft}^3/{\rm s}$ is diverted upstream for domestic use in Afono. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 26 years (water years 1960-85), 3.45 ft3/s (2,500 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 1,350 ${\rm ft}^3/{\rm s}$ July 5, 1969, gage height, 5.49 ft, from rating curve extended above 52 ${\rm ft}^3/{\rm s}$; minimum, 0.11 ${\rm ft}^3/{\rm s}$ Sept. 15, 16, 1983.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 210 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Dec. 27	0300	414	3.91	Apr. 15	1200	*845	*4.87
Jan. 12	0500	402	3.88	Sept. 24	0730	514	4.16
Feb 21	2000	288	3 56	200			

Minimum discharge, 0.20 ft3/s Sept. 1-3.

		DISCHARGE	, IN CUBIC	FEET :	PER SECOND	, WATER YE. AN VALUES	AR OCTOBE	R 1984 T	O SEPTEM	BER 1985		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.23 .22 .82 .70	21 18 5.7 4.0 3.2	.87 1.8 18 12 4.0	5.2 3.8 3.0 2.5 2.4	2.5 2.4 2.2 2.1 1.8	1.8 1.8 2.5 1.8 1.4	.43 .37 .62 .60 2.3	2.6 3.4 23 12 11	1.4 7.9 10 4.3 4.9	1.3 1.1 .96 .87	2.6 3.0 1.8 1.2 1.0	.70 .62 .55 .49
6 7 8 9	2.7 1.2 .87 .87 5.8	2.5 2.1 1.7 1.6 1.3	2.5 18 5.7 3.8 5.9	2.1 5.1 5.2 15	2.7 3.4 4.2 2.5 1.9	1.7 1.3 1.2 1.3 1.1	1.0 4.7 3.0 2.9 1.9	23 9.9 6.0 4.2 3.5	2.4 1.9 1.6 1.4	1.5 1.6 1.0 .87	.96 .87 .78 .70	.32 .32 .37 .32 .71
11 12 13 14 15	2.8 1.7 8.4 19 5.3	1.8 4.0 1.8 1.4	4.2 2.5 2.8 2.5 1.9	8.1 106 17 11 6.7	1.9 2.2 4.9 3.6 2.5	1.0 .96 .96 .96	2.2 1.7 9.8 5.8	6.1 7.7 3.6 3.2 4.9	1.2 1.1 1.3 3.0	.62 .62 .55 .55	.78 .70 .70 .55	9.8 3.6 1.7 1.0
16 17 18 19 20	21 5.9 3.2 2.1 1.6	1.0 .87 .96 .78	1.8 1.8 2.0 2.8 2.4	10 5.4 4.6 5.2 3.7	1.9 1.6 1.4 1.3	.78 .70 .70 .78 .62	8.5 4.2 3.2 7.0 4.9	3.6 2.4 1.9 1.7 1.6	3.6 2.9 3.0 2.1 5.4	2.5 2.1 .96 .70	.70 .89 1.1 .78 .55	.62 .55 .55 .55
21 22 23 24 25	15 4.0 2.9 34 5.7	.70 .70 .62 .55	4.7 3.6 2.6 33 8.3	3.8 2.8 2.4 2.1 1.9	15 42 7.5 4.4 4.0	.55 .62 .49 .49	3.0 2.2 1.9 2.2 3.2	1.6 1.3 1.2 1.4 1.1	3.6 11 3.2 2.4 1.9	.49 .49 .49 3.5 5.8	1.4 1.2 1.2 1.1 3.1	1.9 3.6 1.8 59 6.2
26 27 28 29 30 31	3.8 2.7 1.9 1.7 1.6 2.8	1.0 .62 .49 .49	14 82 15 48 20 7.5	1.8 1.7 15 7.0 3.2 2.5	2.8 2.2 1.9	.49 .70 .49 .49 .55	6.8 5.4 3.7 7.1 3.8	1.0 1.0 1.1 1.1 4.3 2.1	1.8 1.6 1.4 1.3	3.1 5.2 2.9 4.9 3.6 3.0	2.8 2.5 1.6 1.1 .87	3.4 2.7 1.9 1.6 1.3
TOTAL MEAN MAX MIN AC-FT	175.51 5.66 34 .22 348	82.76 2.76 21 .49 164	335.97 10.8 82 .87 666	281.2 9.07 106 1.7 558	128.0 4.57 42 1.2 254	30.08 .97 2.5 .49	175.42 5.85 71 .37 348	152.5 4.92 23 1.0 302	110.5 3.68 20 1.1 219	54.09 1.74 5.8 .49 107	38.79 1.25 3.1 .55 77	107.96 3.60 59 .32 214
CAL YR WTR YR	1984 To	OTAL 1153 OTAL 1672		MEAN MEAN	3.15 4.58	MAX MAX		MIN MIN	.14	AC-FT AC-FT	2290 3320	

SAMOA ISLANDS, ISLAND OF TUTUILA

16920500 AASU STREAM AT AASU

LOCATION.--Lat 14°17'51" S., long 170°45'30" W., Hydrologic Unit 20100001, on right bank at Aasu and 200 ft upstream from mouth.

DRAINAGE AREA, -- 1.03 mi².

PERIOD OF RECORD . -- October 1958 to current year.

REVISED RECORDS. -- WSP 1937: Drainage area. WSP 2137: 1959-60(P), 1961(M), 1962-65(P).

GAGE. -- Water-stage recorder and concrete control. Elevation of gage is 5 ft, by hand levels from high-tide mark.

REMARKS.--Records good except for estimated daily discharges, which are fair. Small diversion upstream for domestic use. Recording rain gage located at station. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 26 years (water years 1960-85), 6.12 ft³/s (4,430 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 498 ft³/s Sept. 7, 1972, gage height, 5.16 ft, from rating curve extended above 20 ft³/s on basis of slope-area measurement at gage height 4.57 ft; minimum, 0.12 ft³/s Oct. 21, 23, 24, 27, 1974.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 202 ft³/s Apr. 14, gage height, 3.65 ft, no other peak greater than base discharge of 180 ft³/s; minimum, 1.3 ft³/s Sept. 1.

		DISCHARGE,	IN CUBIC	FEET	PER SECOND, MEAN	WATER Y		ER 1984 7	O SEPTEM	BER 1985		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4	1.5 1.4 2.2 2.8	26 20 14 12	2.5 2.8 30 14	17 13 11 9.8	4.9 4.3 3.8 3.6	4.0 4.8 7.4 4.3	2.8 2.5 4.8 4.3	8.4 9.5 20 e10	9.9 13 11 8.4	5.4 4.6 3.4 3.0	4.7 5.4 4.8 4.0	4.3 4.0 3.8 3.4
5	9.9	10	12	8.8	3.6	3.6	8.7	e11	8.1	3.0	3.4	3,2
6 7 8 9 10	5.2 3.0 2.7 7.0	9.2 9.5 7.4 6.4 5.5	11 12 9.5 7.8 6.7	8.1 8.0 8.1 11 21	9.7 11 11 7.4 6.1	3.8 3.4 6.3 13 6.4	5.2 7.0 6.1 13 8.8	e17 e10 e9.4 9.2 8.1	6.7 6.4 6.1 5.8 5.9	5.2 11 5.2 4.0 3.6	3.2 3.0 2.8 2.7 3.4	3.0 2.8 2.8 2.7 4.0
11 12 13 14 15	13 8.4 11 17 15	6.4 9.2 6.1 5.2 4.3	6.1 5.5 5.2 9.7 8.3	14 56 30 25 19	6.1 6.8 12 15 9.8	5.4 5.2 4.6 4.0 3.8	6.7 7.5 16 23 35	11 11 8.8 8.0 8.4	4.6 4.0 3.8 8.0	3.4 3.0 3.0 2.8 3.0	4.0 2.8 2.7 2.6 2.8	12 8.4 6.1 5.2 4.0
16 17 18 19 20	20 15 12 11 9.2	3.8 3.6 3.6 3.2 3.0	6.2 7.8 6.7 8.9	16 13 11 10 9.2	8.8 7.8 7.0 6.1 6.1	3.6 3.4 8.6 5.8 e5.2	26 20 17 16 12	7.0 6.1 5.2 4.6 4.6	7.8 6.4 5.8 5.5 6.5	5.5 4.6 3.0 2.7 2.5	3.4 4.2 5.5 3.6 4.0	3.6 3.4 3.4 3.2 3.0
21 22 23 24 25	8.4 7.0 6.1 14 9.2	2.8 5.0 3.6 3.0 6.1	12 9.2 7.8 18 19	8.4 7.0 6.1 5.5 4.9	5.2 11 6.7 5.2 4.3	e4.6 e4.0 e3.8 e3.8 e3.6	11 8.8 7.8 7.4 8.0	5.5 4.0 3.6 3.4 3.2	5.9 11 7.8 5.8 5.5	2.4 2.2 2.2 5.2 3.8	9.7 5.5 4.3 3.8 7.7	3.2 3.6 6.3 22 15
26 27 28 29 30 31	7.0 5.8 5.2 5.5 4.9 6.4	5.2 3.4 2.7 2.7 3.0	22 34 24 47 32 22	4.3 4.4 14 8.8 6.1 4.9	4.0 4.5 4.0 	e3.4 e3.2 5.0 3.2 3.7 3.2	8.0 8.7 13 14 9.5	3.0 3.0 2.8 2.8 4.2 3.9	5.2 4.6 4.3 4.6 3.8	5.2 6.6 5.3 5.2 3.8 4.2	8.1 6.7 5.5 6.2 5.2 4.6	13 12 9.8 8.8 7.4
TOTAL MEAN MAX MIN AC-FT	259.8 8.38 20 1.4 515	205.9 6.86 26 2.7 408	430.7 13.9 47 2.5 854	393.4 12.7 56 4.3 780	195.8 6.99 15 3.6 388	148.1 4.78 13 3.2 294	338.6 11.3 35 2.5 672	226.7 7.31 20 2.8 450	207.2 6.91 15 3.8 411	128.0 4.13 11 2.2 254	140.3 4.53 9.7 2.6 278	187.4 6.25 22 2.7 372
CAL YR WTR YR		OTAL 2167. OTAL 2861		MEAN MEAN	5.92 7.84	MAX MAX	47 56	MIN MIN	.47 1.4	AC-FT AC-FT	4300 5680	

e Estimated

16931000 ATAULOMA STREAM AT AFAO

LOCATION.--Lat 14°20'10" S., long 170°48'02" W., Hydrologic Unit 20100001, on left bank at Afao, 100 ft upstream from highway bridge, and 300 ft upstream from mouth.

DRAINAGE AREA. -- 0.24 mi².

PERIOD OF RECORD . -- October 1958 to current year.

REVISED RECORDS. -- WSP 1937: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 20 ft, by hand levels from high-tide mark.

REMARKS.--Records good. No diversion upstream. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE.--26 years (water years 1960-85), 1.48 ft³/s (1,070 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 815 $\rm ft^3/s$ Oct. 28, 1979, gage height, 4.47 ft, from rating curve extended above 30 $\rm ft^3/s$; minimum, 0.04 $\rm ft^3/s$ Oct. 24-26, 28-31, Nov. 1, 1974.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 180 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Dec. 3	0300	*520	*3.80	Apr. 15	1100	468	3.65
Dec. 24	0330	225	2.84	Apr. 28	2300	285	3.08
Dec. 27	0100	245	2.92	June 16	0600	324	3.23
Mar. 13	1330	415	3.50	Sept. 24	0630	201	2.73
Apr 5	0600	193	2. 69	-			

Minimum discharge, 0.50 ft3/s, Sept. 7.

		DISCHARGE,	IN CUBIC	FEET		ND, WATER MEAN VALU		OBER 198	4 TO SEPTE	MBER 1985		
DAY	OCT	NOV	DEC	JAN	FER	MAR.	APR	MA	y jun	JUL	AUG	SEP
1	.33	8.2	.36	4.4	1.1	1.3	.49			.98	1.5	.36
2	.33	3.8	. 43	2.3	1.2	1.3	. 44			.74	.72	.36
3	.33	1.3	30	1.8	1.2	2.2	3.6	4.1		.67	.59	.61
4	1.2	. 87	3.5	1.4	. 87		3.8	2.4		.80	.40	.36
5	6.0	.69	1.9	1.4	.80	1.6	8.7	2.5	1.8	1.0	.36	.33
6	3.2	.69	2.1	2.4	6.7	1.0	1.4	2.4			.36	.30
7	15	. 87	1.4	2.4	3.9	. 87		2.7			.36	.30
8	.80	.69	1.2	3.3	2.6	3.1	2.4	1.8		.69	.33	.36
9	1.5	.64	1.1	2.0	1.4	3.8	2.0	1.3			.33	.36
10	2.0	. 59	. 87	9.6	1.2	1.3	1.1	1.2	. 87	.49	. 57	.66
11	1.9	.95	.81	4.0	1.2	1.0	.94			. 44	. 97	1.8
12	.94	. 92	.80	44	1.4	1.5	2.7	1.6			.40	.87
13	5.4			7.6	4.3	7.3	6.9	1.1			.33	. 59
14	7.5	.59	5.7	6.0	7.4	1.8	9.4	1.7		.36	.35	.59
15	3.0	. 54	2.7	3.5	1.6	1.3	37	1.5	9.4	.36	.40	. 44
16	6.4	1.1	1.3	2.8	1.0	1.0	3.9	1.0		.49	.76	.36
17	3.0	.69	1.2	1.9	.94		2.2	. 8		. 44	1.3	.33
18	2.0	. 64	1.3	1.6	.94		5.5	. 7		.36	1.1	.30
19	1.4	. 54	1.2	1.5	1.0	3.0	3.0	.6			.59	.30
20	1.1	.49	1.3	1.3	.94	1.3	1.6	.7	9 1.8	.30	.80	.33
21	.74	.49	1.5	1.2	1.7	1.0	1.2	1.2		.30	.74	.36
22	.69	.54	1.3	1.2	5.4	. 87				.30	.64	.51
23	.69	. 44	1.2	1.2	2.0	.94				. 33	.54	.91
24	1.8	. 40	23	1.1	4.2	.93				1.6	.49	31
25	.69	. 47	6.4	1.1	3.0	.80	1.5	. 5	4 .87	. 54	1.3	1.6
26	.64	.51	8.8	1.0	2.0	.74		.5				.87
27	.64	. 44	25	3.2	1.3	.69		. 5	4 .74		1.0	.69
28	. 54	.51	13	4.8	1.2	1.3	6.7	. 4	9 .69	1.3	.69	.85
29	.59	.46	30	2.8				2.7	.91		.64	.69
30	. 44	. 44	10	1.8				4.4		.64	.51	. 59
31	1.1		3.5	1.4	0-61	.49		2.3		.69	.40	
TOTAL	71.89		183.61	126.0	62.49						20.46	47.98
MEAN	2.32	1.01	5.92	4.06	2.23						.66	1.60
MAX	15	8.2	30	44	7.4	7.3					1.5	31
MIN	.33	.40	.36	1.0	.80	.49	. 44				.33	.30
AC-FT	143	60	364	250	124	101	244	10	5 157	52	41	95
CAL YR	1984 TO	OTAL 630	. 46	MEAN	1.72	MAX	30	MIN	.17	AC-FT	1250	
WTR YR		OTAL 875		MEAN	2.40	MAX	44	MIN	.30	AC-FT	1740	

16931500 ASILI STREAM AT ALTITUDE 330 FT NEAR ASILI

LOCATION.--Lat 14°19'34" S., long 170°47'38" W., Hydrologic Unit 20100001, on right bank 1.3 mi northwest of Leone, 1.5 mi southwest of Aoloaufou, and 0.8 mi upstream from mouth.

DRAINAGE AREA. -- 0.32 mi².

PERIOD OF RECORD, -- October 1977 to current year.

GAGE. -- Water-stage recorder. Elevation of gage is 330 ft, from topographic map.

REMARKS.--Records good. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 8 years, 2.54 ft3/s (1,840 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 635 ft³/s, Oct. 28, 1980, gage height, 4.73 ft, from rating curve extended above 14 ft³/s; minimum, 0.20 ft³/s Aug. 16, 1983.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 205 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Dec. 3	0330	*464	*4.36	Apr. 28	2030	329	3.98
Apr. 15	1300	346	4.03	June 15	0130	225	3.58

Minimum discharge, 0.55 ft³/s, Dec. 2.

		DISCHARGE	, IN CUBIC	C FEET PE		WATER YEAR IN VALUES	OCTOBER	1984 T	O SEPTEMBE	R 1985		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.61 .58 .67 1.5 7.0	12 9.1 5.4 3.9 2.9	.58 .80 26 5.4 3.3	5.4 3.8 2.9 2.3 2.0	1.3 1.4 1.5 1.2	1.5 1.8 2.0 1.3	1.1 1.0 2.9 1.8 5.6	2.7 2.4 4.4 3.4 3.5	6.0 5.3 4.3 2.8 3.1	2.0 1.3 1.2 1.0 .99	1.9 1.4 1.8 1.3	1.5 1.4 1.9 1.3
6 7 8 9 10	4.9 2.5 2.0 4.8 7.3	2.3 2.2 1.7 1.4 1.2	3.9 3.3 2.3 2.0 1.9	2.0 3.5 3.0 2.6 7.8	4.2 4.3 3.5 2.3 2.0	1.3 1.2 3.3 4.2 2.1	2.3 2.4 2.0 3.8 2.6	7.3 3.9 3.1 2.6 2.2	2.3 2.0 2.9 1.8 1.9	4.3 5.6 1.8 1.5 1.4	1.2 1.1 1.1 1.0 1.6	1.1 1.0 1.0 .99 1.7
11 12 13 14 15	7.6 4.9 8.4 11 8.6	3.1 4.4 1.4 1.1	1.5 1.3 1.3 3.3 3.0	6.1 25 12 9.2 6.7	1.9 2.3 5.0 8.2 4.3	1.8 1.7 3.5 1.9	2.1 4.7 7.0 8.6 31	3.6 2.5 1.8 2.2 2.5	1.5 1.4 1.3 5.1	1.3 1.2 1.2 1.1 1.1	1.9 1.1 .99 .95	5.1 2.9 2.2 2.0 1.7
16 17 18 19 20	13 7.6 4.9 3.5 2.7	1.1 .95 1.1 .91 .87	2.0 2.7 2.2 2.8 2.7	5.4 3.8 3.2 2.6 2.2	3.3 2.7 2.3 2.0 1.7	1.4 1.8 4.7 3.4 2.8	8.8 5.8 5.6 4.7 3.3	1.7 1.4 1.3 1.3	6.3 3.8 2.9 2.7 2.3	1.5 1.2 .99 .91	2.1 2.6 2.3 1.7 2.0	1.4 1.3 1.2 1.2
21 22 23 24 25	2.4 1.8 1.9 6.1 2.5	.83 1.1 .79 .75	3.1 2.6 2.4 12 9.1	1.9 1.7 1.4 1.3	1.7 3.2 1.7 1.8 1.4	2.4 1.9 1.7 1.6	3.0 2.3 2.0 1.8 2.2	1.7 1.1 1.1 1.0 .99	2.6 8.0 2.7 2.2 1.9	.79 .79 .86 2.3 1.2	2.4 1.9 1.8 1.7 4.0	1.4 1.5 2.9 25 6.2
26 27 28 29 30 31	2.0 1.7 1.4 1.7 1.3 3.2	.71 .64 .61 .73 .67	12 22 15 26 13 8.0	1.2 1.7 3.8 2.2 1.6 1.4	1.4 1.3 1.2	1.3 1.2 2.6 1.4 1.3	2.2 4.1 6.9 5.1 3.3	.95 .99 .95 1.7 3.5 2.0	1.7 1.5 1.4 1.6 1.3	2.2 2.4 1.8 1.3 1.2	3.4 3.1 2.5 2.6 2.0 1.7	4.2 3.1 2.7 2.1 1.8
TOTAL MEAN MAX MIN AC-FT	130.06 4.20 13 .58 258	65.58 2.19 12 .61 130	197.48 6.37 26 .58 392	130.9 4.22 25 1.2 260	70.2 2.51 8.2 1.1 139		40.0 4.67 31 1.0 278	71.18 2.30 7.3 .95 141	96.6 3.22 12 1.3 192	48.50 1.56 5.6 .79 96	57.34 1.85 4.0 .95 114	84.19 2.81 25 .99 167
CAL YR WTR YR		OTAL 907 OTAL 1154	.49	MEAN MEAN	2.48 3.16	MAX MAX		IIN IIN		C-FT C-FT	1800 2290	

16933500 LEAFU STREAM AT ALTITUDE 370 FT, NEAR LEONE

LOCATION.--Lat 14°19'31" S., long 170°46'50" W., Hydrologic Unit 20100001, on left bank 900 ft upstream from village stream intake, 1.1 mi north of Leone, and 1.0 mi southwest of Aoloaufou.

DRAINAGE AREA. -- 0.31 mi².

PERIOD OF RECORD, -- October 1977 to current year.

REVISED RECORDS. -- WDR HI-79-2: 1978(P).

GAGE. -- Water-stage recorder. Elevation of gage is 370 ft, from topographic map.

REMARKS.--Records good. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 8 years, 4.60 ft 3/s (3,330 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 400 ft³/s Dec. 3, 1984, gage height, 6.70 ft, from rating curve extended above 48 ft³/s; minimum, 32 ft³/s Aug. 9, 1983, Aug. 21, 1984.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 160 ft³/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	•	Time	Discharge (ft ³ /s)	Gage height (ft)
Dec. 3	0300	*400	*6.70	May	6	0100	175	4.45
27	0100	189	4.59		30	2130	171	4.41
Jan. 7	2100	180	4.50	June	14	2030	187	4.57
Apr. 15	0900	224	4.94	Sept.	24	0100	201	4.71
28	2400	226	4 96					

Minimum discharge, 0.86 ft³/s Oct. 3.

		DISCHARGE	IN CUB	IC FEET P		, WATER YE AN VALUES	AR OCTO	BER 1984 T	O SEPTEM	BER 1985		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.94 .90 1.0 1.7	30 22 13 8.3 5.8	1.2 2.1 46 13 8.1	11 7.9 6.2 5.4 4.7	2.2 2.3 2.2 2.0 2.0	2.2 3.0 5.1 2.1 1.9	1.6 1.6 4.7 3.1 6.0	4.9 4.4 7.4 5.7 5.9	11 8.6 5.6 4.9 5.1	2.8 2.0 1.8 1.6 1.4	3.0 2.3 2.9 2.0 1.8	2.2 2.0 2.5 1.8 1.6
6 7 8 9 10	5.2 2.9 2.4 6.0	4.5 4.5 3.2 2.8 2.4	7.9 7.2 4.8 4.4 4.1	4.6 7.1 4.8 6.6	6.8 7.1 4.7 3.4 2.9	1.8 3.5 2.8 5.8 3.0	2.9 3.8 4.3 6.4 4.0	14 6.2 5.4 5.5 4.0	3.7 3.3 3.3 2.6 2.6	4.4 6.9 2.3 2.0 2.0	1.7 1.7 1.6 1.5 3.3	1.5 1.4 1.4 1.4 2.1
11 12 13 14 15	8.3 6.4 13 20 15	3.1 4.2 2.6 2.2 2.0	3.5 3.3 3.3 8.5 5.1	9.6 53 28 19	3.0 3.5 7.0 9.8 4.7	2.6 2.6 2.9 2.2 2.0	3.5 9.4 16 22 57	5.5 3.6 3.2 4.4 4.3	2.1 2.2 2.2 11 16	1.8 1.8 1.7 1.6 1.7	2.4 1.5 1.4 1.4	6.7 3.5 2.8 2.7 2.4
16 17 18 19 20	21 14 9.0 6.4 4.8	2.0 1.8 1.8 1.6 1.5	4.4 5.1 4.9 8.0 5.9	8.5 6.1 4.5 3.6 3.1	4.1 3.5 3.1 2.9 2.2	1.8 2.8 5.7 4.8 3.7	24 13 10 8.1 5.3	3.0 2.5 2.3 2.1 2.0	5.9 5.6 4.3 3.5 3.2	2.3 1.6 1.4 1.3	2.2 3.2 2.6 1.9 3.3	2.2 2.0 1.9 1.8 2.0
21 22 23 24 25	4.3 3.2 2.7 7.5 3.8	1.4 3.1 2.1 1.6 1.4	5.6 5.1 4.8 20	3.2 2.8 2.5 2.4 2.2	2.2 4.6 2.2 1.9 1.8	2.9 2.4 2.2 2.1 1.9	4.4 3.4 3.1 3.0 3.2	2.8 1.9 1.8 1.7 1.6	3.2 12 3.9 3.5 3.2	1.1 1.1 1.1 3.9 1.7	3.7 2.5 2.4 2.3 5.0	2.4 2.2 6.2 49
26 27 28 29 30 31	3.1 2.7 2.4 2.7 2.2 5.2	1.5 1.3 1.2 1.5 1.4	20 39 30 59 31 18	2.0 2.1 6.9 3.1 2.5 2.3	1.7 1.7 1.6	1.8 1.7 5.1 2.1 2.1	3.4 6.4 8.0 9.2 5.6	1.4 1.4 1.4 2.6 6.0 3.4	2.8 2.4 2.2 2.4 2.0	4.4 4.1 2.8 2.3 2.1 2.1	3.9 3.6 3.1 3.2 2.7 2.4	8.3 6.5 4.7 3.3 2.9
TOTAL MEAN MAX MIN AC-FT	198.74 6.41 21 .90 394	135.8 4.53 30 1.2 269	402.3 13.0 59 1.2 798	251.7 8.12 53 2.0 499	97.1 3.47 9.8 1.6 193	88.4 2.85 5.8 1.7 175	256.4 8.55 57 1.6 509	122.3 3.95 14 1.4 243	144.3 4.81 16 2.0 286	70.3 2.27 6.9 1.1 139	77.9 2.51 5.0 1.4 155	146.4 4.88 49 1.4 290
CAL YR WTR YR	1984 TO	OTAL 1662 OTAL 1991		MEAN MEAN	4.54 5.46	MAX MAX	59 59	MIN MIN	.36 .90	AC-FT AC-FT	3300 3950	

16948000 AFUELO STREAM AT MATUU

LOCATION.--Lat 14°18'07" S., long 170°41'07" W., Hydrologic Unit 20100001, on left bank 0.2 mi northwest of Matuu and 0.3 mi upstream from mouth.

DRAINAGE AREA. -- 0.25 mi².

PERIOD OF RECORD.--March 1958 to current year. Frior to July 1960, published as Matuu Stream at Matuu.

REVISED RECORDS. -- WSP 1937: Drainage area. WSP 2137: 1958-65.

GAGE. -- Water-stage recorder. Elevation of gage is 80 ft, from topographic map.

REMARKS.--Records good. Small diversion upstream for domestic use since September 1972. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 27 years, 1.47 ft3/s (1,070 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 535 ft³/s May 3, 1985, gage height, 4.70 ft, from rating curve extended above 26 ft³/s on basis of slope-area measurement of peak flow; minimum, 0.01 ft³/s Sept. 16, 17, 20-26, 28, 29, 1975, Apr. 5-7, 1976.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 160 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date		Time	Discharge (ft ³ /s)	Gage height (ft)
Oct. 5	0830	180	3.03	Apr.	15	1000	225	3.30
24	0600	216	3.25	May	3	0400	*535	*4.70
Dec. 27	0300	191	3.10	June	14	1900	220	3.27
Jan. 12	0530	183	3.05	Sept. 2	24	0900	262	3.50

Minimum discharge, 0.02 ft3/s, Oct. 1, 3.

		DISCHARGE,	, IN CUBI	C FEET	PER SECOND ME.	, WATER Y AN VALUES	YEAR OCTOR	BER 1984 7	O SEPTEM	BER 1985		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	.03	19 9.8	.33	.85	.53	.47	.06	.60 1.6	5.7	.22	.66 1.3	.11
3	.18	2.4	8.9	.46	.50	.53	.18	40	4.8	.14	.36	.09
4	.05	1.3	2.1	.36	.30	.25	.18	11	1.7	.11	.23	.10
5	19	1.2	1.2	.33	.55	.19	.42	3.0	2.1	.10	.16	.07
6	.93	.65	2.1	.42	3.0	1.6	.13	7.3	.85	.16	.13	.06
7	.46	. 50	11	.84	3.4	.38	3.0	3.8	.60	.19	.09	.08
8	.30	.70	2.0	2.0	2.2	. 83	.60	1.5	. 55	.13	.10	.09
9	.55	. 55	.91	4.6	.75	.78	1.8	.91	.39	.11	.07	.10
10	2.4	.33	1.0	7.0	.60	.30	2.3	.75	.36	.10	.08	.20
11	1.1	2.4	.70	2.7	.50	.37	2.2	1.4	.23	.10	.33	4.2
12	.50	2.8	.36	41	. 53	.21	1.6	1.2	.33	.08	.09	1.7
13	6.5	.91	.36	4.5	.80	.21	3.4	.91	.45	.08	.09	.46
14	8.6	.61	.28	3.6	1.5	.19	9.0	.70	9.7	.07	.08	.21
15	3.5	.42	.17	2.2	.65	.18	29	4.1	8.3	.10	.35	.14
16	18	1.3	.19	3.9	. 42	.14	2.1	1.2	1.3	.28	.78	.11
17	2.7	.70	.21	1.2	.28	.13	.91	.65	1.5	.19	.28	.09
18	1.1	. 55	.33	.91	.21	4.8	8.8	.42	1.5	.09	. 42	.07
19	.65	.36	.40	.70	.19	.40	9.2	.36	.60	.08	.21	.07
20	. 42	.19	1.1	.60	.17	.21	1.8	.36	1.6	.07	1.4	.09
21	7.2	.14	1.8	.60	.16	.25	.80	.46	1.5	.07	.65	.21
22	1.3	3.8	.70	.39	1.3	.22	.55	.19	6.0	.08	.62	.14
23	3.9	2.2	.46	.33	.39	. 14	.46	.25	.85	.09	. 55	.26
24	28	.55	10	.33	1.1	.11	.79	.28	.46	2.1	.39	40
25	2.6	1.1	4.7	.25	1.0	.11	.88	.25	.30	1.6	1.7	1.8
26	1.2	1.4	9.5	.23	.39	.08	1.5	.23	.23	1.3	.98	.70
27	.80	.42	15	.23	. 42	.14	1.6	.23	. 17	1.8	.91	.70
28	.55	.28	7.1	7.4	.32	.10	4.9	.42	. 17	1.2	.33	.46
29	.65	.69	22	2.2		.08	2.8	.69	.24	1.6	.23	.39
30	.39	1.0	5.8	.65		.09	.83	1.2	.17	1.0	.14	.33
31	4.8		1.5	.50		.08		.98		.60	.10	
TOTAL	118.41		113.15	91.83	22.72	14.01	91.85	86.94	66.65	14.00	13.81	53.11
MEAN	3.82	1.94	3.65	2.96	.81	. 45	3.06	2.80	2.22	. 45	. 45	1.77
MAX	28	19	22	41	3.4	4.8	29	40	14	2.1	1.7	40
MIN	.03	.14	. 17	.23	. 16	.08	.06	.19	. 17	.07	. 07	.06
AC-FT	235	116	224	182	45	28	182	172	132	28	27	105
CAL YR		OTAL 583		MEAN	1.59	MAX	37	MIN	.03	AC-FT	1160	
WTR YR	1985 TO	OTAL 744	. /3	MEAN	2.04	MAX	41	MIN	.03	AC-FT	1480	

16963900 LEAFU STREAM NEAR AUASI

LOCATION.--Lat 14°16'27" S., long 170°34'26" W., Hydrologic Unit 20100001, on right bank 35 ft upstream from upper village intake, 0.1 mi north of Auasi, and 0.2 mi upstream from mouth.

DRAINAGE AREA. -- 0.11 mi².

PERIOD OF RECORD. -- February 1972 to current year.

REVISED RECORDS. -- WDR HI-75-1: 1972(P), 1973-74.

GAGE. -- Water-stage recorder. Elevation of gage is 120 ft, from topographic map.

REMARKS.--Records fair except for estimated daily discharges, which are poor. No diversion upstream. Periodic determinations of water temperature for the current year are published elsewhere in this report.

AVERAGE DISCHARGE. -- 13 years, 0.33 ft 3/s (239 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 234 ft³/s Dec. 5, 1980, gage height, 4.43 ft, from recorded range in stage, from rating curve extended above 19 ft³/s; minimum, 0.02 ft³/s several days in 1976 and many days in 1983, 1984.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 30 ft3/s and maximum (*):

Date		Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Sept.	16	1200	35	2.35	Apr. 26	0300	44	2.50
	24	0500	30	2.26	May 5	1900	36	2.36
Dec.	4	0800	31	2.27	12	1530	*144	*3.68
	24	0630	52	2.63	June 2	2130	46	2.54
	2.7	0430	140	1000				

Minimum discharge, 0.03 ft3/s for many days.

		DISCHARGE	, IN CUE	IC FEET		, WATER YEAR AN VALUES	OCTOBER	1984	TO SEPTEMB	ER 1985		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.03	.90	.04	e.25	.13	.09	.05	.17	.07	.05	.07	.04
2	.03	.39	.05	e.15	.15	.09	.06	.20	1.1	.05	.11	.04
3	.08	.19	.51	e.15	.13	.09	.06	.82	.49	.05	.06	.03
4	.08	.15	1.0	e.13	.09	.09	.07	.59	.15	.04	.04	.04
5	.07	.09	.17	e.13	.13	.08				.04		.03
3	.07	.09	.17	e.12	.13	.00	.10	1.6	.13	.04	.04	.03
6	.06	.08	. 58	e.11	.23	.08	.06	1.6	.08	.04	.04	.03
7	.05	e.07	1.0	e.25	.15	.08	.22	1.2	.07	.04	.04	.03
8	.05	e.07	.73	e.30	. 53	.08	.22	.39	.06	.04	.04	.03
9	.05	e.06	.32	e.85	. 17	.08	.19	.21	.05	.04	.04	.04
10	.21	e.06	1.1	e.90	.11	.07	.09	.17	.06	.04	.04	.06
11	.19	e.08	.29	e.40	.21	.07	.07	1.2	.05	.04	.06	.34
12	.19	e.20	.15	e10	.11	.07	.07	2.4	.05	.03	.04	.11
13	.60	e.08	.11	e3.0	.09	.15	. 26	. 57	.06	.04	.04	.04
14	1.6	e.07	.13	e.70	.12	.08	.48	.26	.10	.03	.04	.03
15	.26	e.06	.09	e.35	.08	.07	3.0	2.6	.36	.03	.04	.03
16	5.0	e.06	.08	. 53	.08	.06	.23	.32	.09	.05	.04	.03
17	. 57	e.05	.09	. 26	.07	.07	.13	.19	.18	.04	.04	.03
18	. 17	e.05	.07	.29	.07	.06	.11	.15	.15	.04	e.04	.03
19	.09	e.04	.09	.29	.07	.05	.19	.13	.09	.04	e.04	.03
20	.08	e.04	.07	.24	.07	.05	.11	.09	.40	.04	.04	.12
21	. 56	e.04	.11	.19	.36	.05	.09	.09	.14	.04	.04	.07
22						.08	.08			.04	.04	.06
	.19	e.04	.09	. 17	. 40			.09	.13			
23	.23	e.03	.08	.15	. 47	.05	.08	.08	.09	.04	.04	.04
24	4.1	e.03	6.1	. 13	.26	.05	.06	.08	.07	.07	.04	2.8
25	.39	e.04	.70	.11	.26	.05	.07	.07	.06	.06	.05	. 23
26	.17	e.04	.90	.11	. 17	.05	1.0	.07	.06	.05	.05	.11
27	.13	e.03	e14	.11	.13	.06	.26	.07	.05	.07	.05	.08
28	.09	e.03	e1.5	.58	.11	.05	.21	.07	.05	.12	.04	.07
29	.08	e.03	e8.0	.32		.05	.35	.08	.05	.17	.04	.05
30	.08	.04	e2.0	.17		.05	.15	.08	.05	.07	.04	.05
31	.14		e.50	.13		.05		.07		.09	.04	
		2.27			1000						2 12	3 24
TOTAL	15.62	3.14	40.65	21.44	4.95	2.15	8.12	15.71	4.54	1.63	1.41	4.72
MEAN	.50	.10	1.31	.69	.18	.069	. 27	.51	.15	.053	.045	.16
MAX	5.0	.90	14	10	. 53	.15	3.0	2.6	1.1	. 17	.11	2.8
MIN	.03	.03	.04	.11	.07	.05	.05	.07	.05	.03	.04	.03
AC-FT	31	6.2	81	43	9.8	4.3	16	31	9.0	3.2	2.8	9.4
CAL YR WTR YR			.64	MEAN MEAN	.27	MAX MAX		MIN MIN	.02	AC-FT AC-FT	196 246	

e Estimated

As the number of streams on which streamflow information is likely to be desired far exceeds the number of stream-gaging stations feasible to operate at one time, the Geological Survey collects limited streamflow data at sites other than stream-gaging stations. When limited streamflow data are collected on a systematic basis over a period of years for use in hydrologic analyses, the site at which the data are collected is called a partial-record station. Data collected at these partial-record stations are usable in low-flow or flood-flow analyses, depending on the type of data collected. In addition, discharge measurements are made at other sites not included in the partial-record program. These measurements are generally made in times of base flow or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Records collected at partial-record stations are presented in two tables. The first is a table of discharge measurements at low-flow partial-record stations, and the second is a table of annual maximum stage and discharge at crest-stage stations. Discharge measurements made at miscellaneous sites for both low flow and high flow are given in a third table.

Low-flow partial-record stations

Measurements of streamflow in the area covered by this report made at low-flow partial-record stations are given in the following table. Most of these measurements were made during periods of base flow when streamflow is primarily from ground-water storage. These measurements, when correlated with the simultaneous discharge of a nearby stream where continuous records are available, will give a picture of the low-flow potentiality of the stream. The column headed "Period of record" shows the water years in which measurements were made at the same, or practically the same, site.

Discharge measurements made at low-flow partial-record stations during water year 1985 Measurements Drainage Period Station Station name Location area of Date Discharge (ft^3/s) No. mi record Caroline Islands, Yap Islands Lat 09°30'32" N., long 138°06'15" E., 0.04 16892650 Dinaey Stream, 1980-85 9-16-85 0.19 at upper Gitaem Reservoir, 0.4 mi Yap northwest of water-treatment plant. 16892680 Tholomar Stream Lat 09°30'37" N., long 138°06'18" E., .10 1965#, 9-16-85 .56 1968-744, about 500 ft upstream from upper above reservoir, Gitaem Reservoir and 1.4 mi south-1980-85 Yap west of Colonia. Lat 09°31'07" N., long 138°06'36" E., 16892900 Peemgoy Stream, 1968-82#. 9-17-85 1.11 100 ft upstream from Taalgum Stream, 1985 Yap 0.3 southeast of Mount Peemgoy, and 1.0 mi northwest of Protestant Mission Church. 16893180 Monguch Stream, Lat 09°31'59" N., long 138°09'57" E., 1980-85 9-16-85 .49 Gagil-Tamil 0.7 mi northeast of Tamel Elementary School and 1.0 mi south of Coast Guard LORAN station. 16893190 Dorfay Stream, Lat 09°32'08" N., long 138°10'13" E., .20 1981-85 9-16-85 .58 Gagil-Tamil 0.2 mi upstream from mouth and 0.9 mi northeast of Tamilang Elementary School. Caroline Islands, Island of Ponape Lat 06°56'47" N., long 158°11'55" E., .75 16898300 1970-75≠. 1-30-85 2.85 Dauen Neu 1975-76, 7-20-85 3.94 0.48 mi southwest of Ponape Island River Central School and 1.7 mi upstream 1981-82, 8-29-85 4.05 from bridge at mouth. 1984-85 Lat 06°52'27" N., long 158°09'26" E., 2.01 16898650 1981-82, 9-16-85 7.98 Pheleng River at road crossing near mouth, 0.25 1985 mi north of Doletikitik Hill. 16898700 Lehn Mesi Lat 06°49'24" N., long 158°10'11" E., 8.32 1971. 9-18-85 76.3 River at at foot bridge, 0.6 mi upstream 1973. hanging from mouth. 1976-77. 1981-83. bridge 1985

[#] Operated as a continuous-record gaging station.

[#] At station 16892700, 800 ft downstream.

			Duning	Donied	Measur	ements
Station No.	Station name	Location	Drainage area mi ²	Period of record	Date	Discharge (ft ³ /s)
		Caroline Islands, Island of PonapeC	ontinued			
16898900	Keprohi River	Lat 06°50'40" N., long 158°17'57" E., 150 ft upstream from road bridge and 0.46 mi northeast of Ponape Agriculture Trade School.	2.05	1981-85	9-10-85	11.1
16899000	Senipehn (formerly Senpen) River	Lat 06°52'28" N., long 158°16'17" E., 0.1 mi downstream from confluence of two branches, 0.5 mi southeast of Merewi Hill, and 1.5 upstream from mouth.	6.04	1971, 1973, 1976-77, 1980-81 1983, 1985	9-10-85	61.5
16899100	Lehdau (formerly Lataw) River	Lat 06°52'59" N., long 158°16'15" E., 0.1 mi upstream from left-bank tributary, 0.4 mi northeast of Merewi Hill, and 1.4 mi upstream from mouth.	2.44	1971, 1973, 1976-77, 1980-81, 1983, 1985	9-10-85	8.27
		Samoa Islands, Island of	Tutuila			
16917500	Leele Stream at mouth at Fagasa	Lat 14°17'28" S., long 170°43'09" W., on left bank at Fagasa and 200 ft upstream from mouth.	.23	1966-76≠, 1977, 1981-85	8- 7-85 9- 6-85	
16920000	Aasu Stream near Aasu	Lat 14°18′16″ S., long 170°45′29″ W., 300 ft downstream from 100-ft waterfall, 0.5 mi south of Aasu, and 0.5 mi upstream from mouth.	.82	1959-63, 1968, 1974-76, 1978-79, 1981, 1983, 1985	9-17-85	1.13
16932000	Asili Stream near Asili	Lat 14°19'46" S., long 170°47'42" W., 0.4 mi north of Asili and 0.5 mi upstream from mouth.	.55	1959-61, 1963-65, 1968, 1970, 1974-77, 1981-85	8-13-85	.53
16932500	Asili Stream at Asili	Lat 14°20'04" S., long 170°47'40" W., 100 ft upstream from highway bridge at Asili and 0.1 mi upstream from mouth.	.66	1958-59≠, 1960-61, 1963-65, 1967-69, 1974-77, 1981-85	8-13-85	.90
16934000	Leafu Stream near Leone	Lat 14°19'47" S., long 170°46'55" W., 30 ft upstream from reservoir, 0.9 mi upstream from mouth, and 1.0 mi north of Leone.	.69	1959-64, 1968-69, 1971-74, 1976-77, 1981-85	8- 9-85	.70
16944000	Papa Stream near Nuuuli	Lat 14°18'31" S., long 170°42'29" W., 0.3 mi upstream from Tauese Stream and 0.9 mi northwest of Nuuuli.	. 57	1959-61, 1963-64, 1967-68, 1974-78, 1981-85	7-23-85 9- 6-83	
16960000	Alega Stream at Alega	Lat 14°16'58" S., long 170°38'19" W., on left bank 300 ft upstream from left-bank tributary, 0.2 mi northwest of Alega, and 0.3 mi upstream from mouth.	.19	1958-76≠, 1977-78, 1981-85	8- 7-85 9- 6-85	

[#] Operated as a continuous-record gaging station.

					Measur	ements
Station No.	Station name	Location	Drainage area mi ²	Period of record	Date	Discharge (ft ³ /s)
		Samoa Islands, Island of Tutu:	ilaConti	nued		
16964000	Leafu Stream at Auasi	Lat 14°16'28" S., long 170°34'26" W., above second waterfall, 0.1 mi north of Auasi and 0.2 mi upstream from mouth.	, 0.12	1959-61, 1963-65, 1968-71, 1976, 1981, 1983,	9- 6-85	0.01

(16899780)

Discharge measurements made at miscellaneous sites during water year 1985 Measurements Measured Drainage previously Discharge (ft³/s) Tributary to Stream Location (water Date area mi² years) Caroline Islands, Palau Islands Lat 07°36'11" N., long 134°34'50" E., 0.25 at trail crossing, 300 ft upstream from Diongradid River and 0.7 mi southeast of Ngetbong village Pacfic 1974-82 9- 5-85 Ngechutrong 1.81 River, Babelthuap Ocean 9-25-85 1.92 (16890620) school. Lat 07°35'48" N., long 134°34'13" E., 1.51 0.7 mi south of Ngetbong village school and 0.9 mi upstream from 1974-77, Ngerchetang Pacific 9- 5-85 9.35 River, Babelthuap 1980-82 Ocean (16890650) Diongradid River. Lat 07°31'16" N., long 134°33'16" E., 7.14 0.6 mi upstream from unnamed left-bank trubutary, 2.0 mi east of Imeong Village, and 5.8 mi 9- 4-85 Ngermeskang Pacific 1973-82 33.1 River, Babelthuap 9-26-85 Ocean 145 (16890700) upstream from mouth. Lat 07°27'45" N., long 134°31'38" E., .34 0.2 mi upstream from unnamed right-bank tributary, 1.1 mi east of forestry station, and 2.5 mi 9- 4-85 Pacific 1973-82 5.72 2.16 Ngetpang 9-23-85 River, Babelthuap Ocean (16890800) upstream from mouth. Caroline Islands, Island of Kosrae Lat 05°21'45" N., long 162°59'20" E., at dam, 0.6 mi upstream from mouth, and 1.2 mi north of Mount Mutunte. Mutunte Pacific 1971-82+, 9-23-85 1.90 River Ocean 1983 (16899500) Lat 05°18'38" N., long 162°00'47" E., at old Japanese dam, 0.75 mi upstream from mouth, and 1.5 mi east of 1974-75, 9-23-85 Tafuyat Pacific 1.75 1977-83 River Ocean

Mount Finkol.

[#] Operated as a continuous-record gaging station.

Samples are collected at sites other than gaging stations and partial-record stations to give better areal coverage in a river basin. Such sites are referred to as miscellaneous sites.

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

CAROLINE ISLANDS, PALAU ISLANDS

16891190 NGERIMEL RESERVOIR, BABELTHUAP (LAT 07°22'00" N., LONG 134°32'08" E.)

DATE	TIME	SPE- CIFIC CON- DUC- TANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO
APR 01	1115	100	7.0	31.0	34	0	8.0	3.3	4.6	23	. 4
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
APR 01	.40	33	3.1	4.8	<.10	21	65	.09	<.10	260	55

16891300 EDENG RIVER, BABELTHUAP (LAT 07°23'00" N., LONG 134°33'07" E.)

DATE	TIME	FL INST TAN	EAM- OW, AN- EOUS FS)	SPE- CIFIC CON- DUC- TANCE (US/CM)	PH (STANI ARI UNITS) A	PER- TURE EG C)	HARD- NESS (MG/L AS CACO3)	HARD NESS NONCAL BONATE (MG/I CACO	, CAI R- D: SOI L (I	LCIUM IS- LVED MG/L S CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	DIS SOLVE (MG	- D /L PE	RCENT ODIUM	SODIUM AD- SORP- TION RATIO
OCT																
22 APR	1415		35	65	6.	. 9	26.0	25		0	4.9	3.0		.6	24	. 3
01	1035				6.	. 9	27.5	15		2	3.0	1.9	5	. 4	43	.6
DATE	S D SO (M	TAS- IUM, IS- LVED G/L K)	ALKA LINIT LAB (MG/ AS CACO	Y SULI DIS L SOI (MC	S- LVED G/L	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE DIS- SOLVI (MG/I AS F	DIS SOI ED (MC	ICA, SI S- CO LVED TI G/L	OLIDS, UM OF ONSTI- UENTS, DIS- SOLVED (MG/L)	SOLI DI SOL (TO PE AC-	DS, G S- NO2 VED D NS SC R (M	TRO- EN, E+NO3 IS- DLVED IG/L EN)	IRON, DIS- SOLVED (UG/L AS FE)	(UG,	E, S- VED /L
OCT		10	24		2 2				19	51		0.7	- 10	68		7
APR		.10	24		2.2	4.2	<,:	LU	ra	51		.07	<.10	08		,
01		.20	13		3.4	8.9	<,:	10	8.6	40		.05	<.10	960		120

< Actual value is known to be less than the value shown.

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

CAROLINE ISLANDS, PALAU ISLANDS--Continued

16891320 KMEKUMEL RIVER AT MOUTH, BABELTHUAP (LAT 07°23'04 N., LONG 134°33'01 E.)

DATE	TIME	SPE- CIFIC CON- DUC- TANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO
APR											
02	1205	97	7.30	27.5	38	2	8.8	3.9	4.2	19	.3
							SOLIDS.		NITRO-		
	POTAS-	ALKA-		CHLO-	FLUO-	SILICA,	SUM OF	SOLIDS,	GEN,		MANGA-
	SIUM,	LINITY	SULFATE	RIDE,	RIDE,	DIS-	CONSTI-	DIS-	NO2+NO3	IRON,	NESE,
	DIS-	LAB	DIS-	DIS-	DIS-	SOLVED	TUENTS,	SOLVED	DIS-	DIS-	DIS-
	SOLVED	(MG/L	SOLVED	SOLVED	SOLVED	(MG/L	DIS-	(TONS	SOLVED	SOLVED	SOLVED
	(MG/L	AS	(MG/L	(MG/L	(MG/L	AS	SOLVED	PER	(MG/L	(UG/L	(UG/L
DATE	AS K)	CACO3)	AS SO4)	AS CL)	AS F)	SIO2)	(MG/L)	AC-FT)	AS N)	AS FE)	AS MN)
APR											
02	.30	36	3.4	7.5	<.10	23	73	.10	<.10	110	13

16891700 UNNAMED WEST COAST STREAM, NGEREKEBESANG (LAT 07°21'17" N., LONG 134°26'32" E.)

DATE		STREAM- FLOW, INSTAN- FANEOUS (CFS)	SPE- CIFIC CON- DUC- TANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	AS	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO
APR												
01	1445	.05	97	6.4	27.0	29	3	7.1	2.7	6.7	33	.6
	POTAS SIUN DIS- SOLVI (MG/1	M, LINI LAI ED (MG	TY SULE B DIS /L SOI	FATE RI S- DI LVED SC	DE, RI S- D DLVED SC		S- CONS LVED TUEN G/L DI	OF SOLI	DS, GES- NO24 VED DI	S- DI	ON, NES	S- VED
DATE	AS K	CAC	03) AS S	504) AS	CL) AS	F) SIC	02) (MG	/L) AC-	FT) AS	N) AS	FE) AS	MN)
APR 01		40 26		2.8	9.4	<.10	25	70	.09	.12	60	9

< Actual value is known to be less than the value shown.

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

CAROLINE ISLANDS, PALAU ISLANDS--Continued

16891750 UNNAMED SOUTH COAST STREAM, NGEREKEBESANG (LAT 07°20'42" N., LONG 134°26'54" E.)

DATE	TIME	FL INS TAN	EAM- OW, TAN- EOUS	SPE- CIFIC CON- DUC- TANCE (US/CM)	PI (STA AI UNI	AND- RD	TEMP: ATU: (DEG	ER- (I	ARD- ESS MG/L AS ACO3)	NON BON (M	RD- SS, CAR- ATE G/L CO3)	DI: SO: (M	CIUM S- LVED G/L CA)	DI SOI (MC	ENE- IUM, IS- LVED E/L MG)	SODI DIS SOLV (MG AS	- ED /L	PERC	ENT DIUM	SODIUM AD- SORP- TION RATIO
APR																				
01	1410		.06	51		8.6	2	7.0	13		1		2.7	į	1.6	4	. 4		42	. 5
DATE	S D SO (M	TAS- IUM, IS- LVED G/L K)	ALKA LINIT LAB (MG/ AS CACO	Y SULL DI L SO (M	FATE S- LVED G/L SO4)	CHLC RIDE DIS- SOLV (MG/ AS C	E, /ED /L	FLUO- RIDE, DIS- SOLVED (MG/L AS F)		VED	SOL	OF TI-	SOLID DIS SOLV (TON PER AC-F	ED IS	NIT GE NO2+ DI SOL (MG AS	N, NO3 S- VED /L	IRO DI SOL (UG AS	S- VED /L	MANO NESI DIS SOL' (UG,	E, S- VED /L
APR							_					35								10
01		.10	12		3.4	5.	. 5	<.10]	19		44		06	<	.10		170		12

16891800 ELODESACHEL SPRING, KOROR (LAT 07°20'47" N., LONG 134°29'57" E.)

				SPE-						HARD-			MAG	NE-					SODIUM
		STR	EAM-	CIFIC				HA	RD-	NESS,	CAL	CIUM	SI	UM,	SODI	UM,			AD-
		FL	OW,	CON-	P	H		NE	SS	NONCAR-	DI	S-	DI	S-	DIS-	-			SORP-
		INS	TAN-	DUC-	(ST	AND-	TEMPER-	(M	G/L	BONATE	SC	LVED	SOL	VED	SOLVI	ED			TION
	TIME		EOUS	TANCE		RD	ATURE	A	S	(MG/L	(M	G/L	(MG	/L	(MG,	/L	PERCE	NT	RATIO
DATE		(C	FS)	(US/CM)	UNI	TS)	(DEG C)	CA	(CO3)	CACO3)	AS	CA)	AS	MG)	AS I	NA)	SODI	UM	
APR																			
01	1145		.30	153		7.8	27.0	i)-	72	9	2	3	3	.5	4	. 8		13	.3
										SOL	IDS.			NITI	RO-				
	POT	CAS-	ALKA	-		CHLC)- FL	UO-	SILIC	A, SUM	OF	SOLI	os,	GEI	Ν,			MANG	A-
	S	CUM,	LINIT	Y SUL	FATE	RIDE	E, RI	DE,	DIS-	CON	STI-	DIS	3-	NO2+1	103	IRON		NESE	
	D	IS-	LAB	DI	S-	DIS-	- D	IS-	SOLV	ED TUE	NTS,	SOLV	/ED	DIS	5-	DIS	-	DIS	-
	SOI	VED	(MG/	L SO	LVED	SOLV	ED SC	LVED	(MG/	L D	IS-	(TON	IS	SOL	VED	SOLV	ED	SOLV	ED
	(MC	J/L	AS	(M	G/L	(MG/	/L (M	IG/L	AS	SO	LVED	PER	3	(MG	/L	(UG/	L	(UG/	L
DATE	AS	K)	CACO	3) AS	SO4)	AS C	CL) AS	F)	SIO2) (M	G/L)	AC-I	T)	AS 1	(1/2	AS F	E)	AS M	N)
APR																			
01		.20	63		6.6	5.	. 8	<.10	20		100		14		. 15	1	70		23

< Actual value is known to be less than the value shown.

DATE	TIME	INSTAN- TANEOUS	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)	D	ATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)
			MAI	RIANA ISLA	ANDS, ISLAND	OF GUAL	м			
	168400	000 -	TINAGA 1	RIVER NR	INARAJAN, GUA	M (LAT	13 17 1	10 LONG 14	4 45 04)	
OCT , 198	4 1405	6.6	27.5	26.5	FE 2	B , 19	85 1435	1.2	28.5	27.0
NOV 15	1240	8.0	27.5	26.0		8	1245	5.6	29.0	27.5
DEC 12	1245	5.1	28.5	27.0	SE 2	P 4	1455	5.0	28.0	27.0
	168	347000	- IMON	G RIVER N	R AGAT, GUAM	(LAT 1	3 20 17	LONG 144	41 55)	
DEC , 198		6.6	07.0	26.0		N , 19		- 1	20.0	07.0
20 MAR , 198 12	1115 5 1045	6.6 2.9	27.0	26.0 27.0	2	0	1145	7.4	28.0	27.0
12	1015	2.0	20.0	47.0						
	168483	100 -	ALMAGOS.	A RIVER N	EAR AGAT, GUA			43 LONG 14	4 41 36)	
NOV , 198	1320	26	28.0	27.0	2	N , 19 0	85 1325	6.4	28.0	27.0
DEC 20	1250	2.6	27.0	26.0	SE 1	0	1435	8.7	28.5	27.0
MAR , 198	1230	.71	28.5	27.0						
	1684	8500	- MAULAP	RIVER NE.	AR AGAT, GUAM	(LAT	13 21 1	4 LONG 144	41 44)	
NOV , 198	1500	11	27.0	26.5	JU	N , 19	85 1440	4.7		28.0
DEC 20	1525	3.5	27.0	26.0	SE		1635	5.8	28.5	27.0
MAR , 198	35 1425	1.1	29.0	27.0						
16854500		- IIGIIM DIV	FR AR TA	IOFOFO FA	LLS, NR TALOF	OFO G	TIAM (TA	т 13 10 16	S LONG 14	4 44 01)
OCT , 198		OGOIT KIV	EK AD IA	LOPOFO PA		L , 19		1 15 15 16	LONG 14	4 44 01)
16 NOV	1410	34	28.0	27.0		1	1515	24	27.5	26.5
15 JAN , 198	1420 35	44	27.5	26.5		9	1425	22	29.0	27.0
30	1240	12	27.0	26.0	2	6	1320	24	28.5	27.0
	16	858000	- YLIG	RIVER NR	YONA, GUAM (LAT 13	23 28	LONG 144	5 06)	
OCT , 198	1320	23	27.5	26.5		IG , 19	1500	24	29.0	27.5
DEC 12	1545	21	28.0	27.0	SE	P	1335	22	28.5	
JUL , 198	35 1325	26	27.5	26.5						
				CAROLINE	ISLANDS, YAP	ISLAND	S			
	16892	000 -	QATLIW	STREAM, Y	AP, YAP ISLAM	IDS (LA	T 09 32	58 LONG	138 06 41)
OCT , 198	1410	3.2	27.0	25.5	(N , 19	0955	.45	27.0	25.5
NOV 09	0940	.11	27.0	26.0	AU		1410	.20	27.5	
DEC 03	1015	.04	27.0	25.5	SE		1110	.11	26.5	
JAN , 198 16	1135	.38	27.0	26.0	1	.7	1040	, 65	26.5	25.5

PERIODIC DETERMINATIONS OF TEMPERATURES WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

		STREAM- FLOW, INSTAN-	TEMPER- ATURE,	TEMPER-			STREAM- FLOW, INSTAN-	TEMPER- ATURE,	TEMPER-
DATE	TIME	TANEOUS (CFS)	AIR (DEG C)	ATURE (DEG C)	DATE	TIME	TANEOUS (CFS)	AIR (DEG C)	(DEG C
			CAROLI	NE ISLANDS, YA	P ISLANDSCon	tinued			
1	6892400	- (QARINGEEL	STREAM, YAP,	YAP ISLANDS (L	AT 09 31	02 LONG	138 05 31)
CT , 198					JUN , 19			224.0	-15-1
20 OV	1230	2.1	26.0	26.0	03 28	1515 1515	1.4	27.5 28.0	26. 27.
09 EC	1045	.08	27.0	26.0	AUG 21	0935	.14	26.5	25.
03 AN , 198	1135	.10	27.5	26.5	SEP 17	0900	.52	26.5	25.
16	0955	.73	27.0	26.0	1/,	0300	.52	20.5	25.
	168931	100	- BURONG	STREAM, YAP, Y	AP ISLANDS (LA	T 09 32	05 LONG 1	38 07 19)	
CT , 198			00.5	05.5	JUN , 19			07.5	25
20 V	1100	4.4	26.5	25.5	03 27	1020 1445	4.4	27.5 27.5	25. 26.
08 29	1440 1430	.05	28.0 27.0	26.5 26.5	AUG 19	1435	.20	26.5	26.
AN , 198 16	5 1520	.21	27.5	26.5	SEP 16	1225	3.8	26.0	25.
AR 29	1205	.06	27.0	26.0					
			6	ADOLINE TOLAND	C TOUT TO AND	NG.			
			C	AROLINE ISLAND	S, TRUK ISLAND	12			
16893	800	- WICH	EN RIVER	AT ALT 18M, MO			07 27 01	LONG 151	51 56)
EB , 198 11	1135	.37		26.5	FEB , 19 25	985 1350	1.4		28.
			CAR	OLINE ISLANDS,	ISLAND OF PON	NAPE			
		16897600	- NA	NPIL RIVER, PO	NAPE (LAT 06	55 09 LO	NG 158 11	59)	
CT , 198	1030	37	29.0	24.0	APR , 19	985 1035	58	26.0	23.
OV					25		19	28.0	23
06 21	1230 1015	14 39	28.0 28.0	23.0 23.0	MAY 07	1030	12	28.0	24
EC 04	1005	43	28.0	23.0	JUN 04	0950	15	28.0	24
AN , 198 15	0930	12	28.0	23.0	JUL 02	1025	38	27.0	23
31	0955	7.2	28.0	24.0	19	1455	15	26.0	24
EB 08	1145	6.2	27.0	25.0	AUG 14	1110	24	28.0	
28	1025	27	27.0	24.0	27	1020	10	29.0	
					SEP				25
IAR 12 28	0930 0915	5.1 8.7	28.0 28.0	24.0 23.0		1105 1050	22 24	28.0 28.0	25 24
AR 12			28.0		SEP 12 26	1105 1050	24	28.0 28.0	25 24
AR 12 28	0915	8.7	28.0	23.0	SEP 12 26 MAPE (LAT 06 5:	1105 1050 5 32 LON	24	28.0 28.0	24 25 24 24
OV , 198	0915 34 0945	8.7 16897900 1.5	28.0 - I 28.0	23.0 EWI RIVER, PON 23.0	SEP 12 26 MAPE (LAT 06 5: MAY , 1: 07	1105 1050 5 32 LON	24	28.0 28.0	25 24
OV , 198 06 21	0915 34 0945 1240	8.7 16897900 1.5 6.0	28.0 - I 28.0 29.0	23.0 EWI RIVER, PON 23.0 24.0	SEP 12 26 NAPE (LAT 06 5: MAY, 1: 07 JUN 04	1105 1050 5 32 LON 985 1225	24 G 158 12 1.4 1.6	28.0 28.0 18) 29.0 29.0	25 24 24 25 25
AR 12 28 OV , 198 06 21 EC 04 AN , 198	0915 34 0945 1240 1150	8.7 16897900 1.5 6.0 4.7	28.0 - I 28.0 29.0	23.0 LEWI RIVER, PON 23.0 24.0 25.0	SEP 12 26 NAPE (LAT 06 5: MAY , 1: 07 JUN 04 18 JUL	1105 1050 5 32 LON 985 1225 1225 1300	24 G 158 12 1.4 1.6 19	28.0 28.0 18) 29.0 29.0 28.0	25 24 24 25 25 24
OV , 198	0915 34 0945 1240 1150	8.7 16897900 1.5 6.0	28.0 - I 28.0 29.0	23.0 EWI RIVER, PON 23.0 24.0	SEP 12 26 NAPE (LAT 06 5: MAY , 1: 07 JUN 04	1105 1050 5 32 LON 985 1225	24 G 158 12 1.4 1.6	28.0 28.0 18) 29.0 29.0	25 24 24 25
AR 12 28 0V , 198 06 21 EC 04 AN , 198 15 31 EB	0915 34 0945 1240 1150 35 1055 1310	8.7 16897900 1.5 6.0 4.7 1.5 .82	28.0 - I 28.0 29.0 29.0 28.0 30.0	23.0 .EWI RIVER, PON 23.0 24.0 25.0 24.0 26.0	SEP 12 26 MAPE (LAT 06 5: MAY , 1: 07 JUN 04 18 JUL 02 20 AUG	1105 1050 5 32 LON 985 1225 1225 1300 1235 1050	24 G 158 12 1.4 1.6 19 4.8 1.6	28.0 28.0 18) 29.0 29.0 29.0 29.0 29.0	25 24 24 25 25 24 24 24
AR 12 28 OV , 198 06 EC 04 AN , 198 15 31 EB 28 AR	0915 34 0945 1240 1150 35 1055 1310 0925	8.7 16897900 1.5 6.0 4.7 1.5 .82 2.0	28.0 - I 28.0 29.0 29.0 28.0 30.0 28.0	23.0 .EWI RIVER, PON 23.0 24.0 25.0 24.0 26.0 23.0	SEP 12 26 NAPE (LAT 06 5: MAY, 1: 07 JUN 04 18 JUL 02 20 AUG 14 27	1105 1050 5 32 LON 985 1225 1300 1235	24 G 158 12 1.4 1.6 19 4.8	28.0 28.0 18) 29.0 29.0 28.0 29.0	25 24 24 25 25 24 24
AR 122 28 06 21 21 204 04 15 EB 28	0915 34 0945 1240 1150 35 1055 1310	8.7 16897900 1.5 6.0 4.7 1.5 .82	28.0 - I 28.0 29.0 29.0 28.0 30.0	23.0 .EWI RIVER, PON 23.0 24.0 25.0 24.0 26.0	SEP 12 26 AAPE (LAT 06 5: MAY , 1: 07 JUN 04 18 JUL 02 AUG 14	1105 1050 5 32 LONG 985 1225 1300 1235 1050	24 G 158 12 1.4 1.6 19 4.8 1.6 5.2	28.0 28.0 18) 29.0 29.0 28.0 29.0 29.0 29.0	25 24 24 25 25 24 24 24 24

1155

6.2

28.0

24.0

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)		DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)
			CAROLINE	ISLANDS,	ISLAND OF	PONAPE	Continue	ed		
		16898600	- LU	HPWOR RIV	ER, PONAPE	(LAT 06	54 09 L	ONG 158 09	07)	
OCT , 198	0945	22	28.0	24.0		APR , 19	1010	9.7	27.0	23.0
NOV 07	1300	4.6	29.0	25.0		MAY 08	1000	7.9	28.0	24.0
DEC 05	0940	7.7	28.0	24.0		JUN 05	0950	4.4	29.0	25.0
JAN , 198	0935	6.1	27.0	24.0		20 JUL	1005	11	28.0	24.0
16	0920 0945	4.1	28.0 28.0	24.0		08	1520 1400	6.8	28.0	24.0 25.0
FEB				24.0		AUG				
07 26 MAR	1600 0910	1.8	28.5	27.5 24.0		13 28 SEP	1020 0950	14 11	28.0 28.0	24.0 24.0
14	0935 0900	2.8 3.6	29.0 28.0	25.0 24.0		24	1020	3.0	29.0	25.0
		16898690	- LEH	n mesi ri	VER, PONAP	E (LAT 06	5 50 41	LONG 158 1	1 02)	
OCT , 198						MAY , 19	985			
12 25	1100 1105	90 48	28.0 29.0	24.0 25.0		16 30	1400 1215	67 92	28.0 29.0	24.0 25.0
19	1635	62	29.0	25.0		JUN 13	1245	42	29.0	25.0
JAN , 198 22	1145	71	28.0	24.0		27 JUL	1435	37	29.0	25.0
FEB 09	1215	20	30.0	25.0		12	0700 1215	30 56	27.0 29.0	23.0 25.0
MAR 05 APR	1145	46	29.0	25.0		AUG 08 20	1310 1110	34 50	29.0 28.0	25.0 24.0
17 MAY	1135	124	28.0	24.0		SEP 19	1535	40	29.0	24.0
02	1110	48	28.0	25.0			1000		20.0	21.0
			CAR	OLINE ISL	ANDS, ISLA	ND OF KOS	SRAE			
		16899620	- M	ELO RIVER	KOSRAE (G 162 58 3	3)	
OCT , 198		3.2	27.5	26.0		FEB , 19	985 1540	5.2	28.0	26.0
		16899750	- M	ALEM RIVE	R, KOSRAE	(LAT 05 1	17 35 LO	NG 163 00	54)	
OCT , 198	1615	3.4	27.5	26.0		MAY , 19	985 1115	5.0	29.5	26.0
30 FEB , 198	1040	1.6	27.5	26.0		30 JUN	1450	7.6	29.0	26.5
05	1415 0945	1.9 7.4	26.0 27.0	25.5 25.5		18	1420 1345	4.2 8.2	29.0 28.0	26.0 26.0
APR 15	1040		28.0	25.5		SEP 12	0925	1.1	29.0	25.5
25	1345	7.4	28.5	25.5		24	1005	2.8		26.0
0.05		16899800	- Т	OFOL RIVE	R, KOSRAE			NG 163 00	24)	
OCT , 19:	1340	1.2	28.0	26.0		MAY , 19	985 0940	12	29.0	25.5
FEB , 198	1555	1.8	26.0	25.5		JUL 17	1400	.87	28.5	26.0
MAR 13 APR	0845	2.1	26.0	25.0		30 AUG 29	1320 1550	.84	27.0	26.0 26.5
15 25	1235 0945	16 5.2	27.0 26.0	26.0 26.0		SEP 12	1320	. 54	28.0	26.5
MAY 16	0845		27.5	26.0						2010

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)		DAT	E	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)
			SA	MOA ISLAN	DS, IS	LAND OF T	UTUI	LA			
	16912	2000	- PAGO S	TREAM AT	AFONO,	TUTUILA	(LAT	14 16	03 LONG 17	0 39 02)	
OCT , 198	1110	5.4	26.0	24.0		MAY 08.		85 1110	6.2	26.0	24.0
DEC 12	1325	2.5	28.0	26.0		JUN 18.		1020	3.2	25.0	23.0
JAN , 198 24	85 1305	2.0	24.0	22.0		JUL 19.	140	0830	.78	26.0	24.0
FEB 28	1055	1.9	26.0	24.0		AUG 26.		0930	2.8	26.0	24.0
APR 02	1120	.36	24.0	22.0		SEP 12.		0915	4.0	26.0	24.0
	1692	0500	- AASU S	STREAM AT	AASU,	TUTUILA (LAT	14 17 5	1 LONG 170	45 30)	
NOV , 19	84 0920	9.4	26.0	24.0		JUN 07.		0840	6.1	26.0	24.0
DEC 20	0920	11				JUL		0940			22.0
JAN , 19 25	85		26.0	24.0		AUG			3.8	24.0	22.0
FEB	0920	4.8	26.0	24.0		15. SEP		0925	3.5	24.0	
27 MAR	0935	3.8	26.0	23.0		17. 26.		0920 0805	3.4	24.0 24.0	22.0 23.0
28 MAY 09	0930	2.4 9.1	26.0	24.0							
00	0010	0.1	20.0	24.0							
	169310	00 -	ATAULOMA	A STREAM	AT AFAC), TUTUILA	(LA	T 14 20	10 LONG	170 48 02)
OCT , 19 02	84 0820	.35	24.0	22.0		MAY 22.		1300	.65	24.0	22.0
DEC 11	1130	1.0	25.0	24.0		JUN 27.		1220	.73	26.0	24.0
FEB , 19 19	85 0955	. 87	26.0	24.0		JUL 09.		1105	. 55	26.0	24.0
MAR 21	1120	1.0	26.0	24.0		29. AUG	• •	1125	.88	26.0	24.0
APR 27	0840	1.8	24.0	24.0		14. 30.		0840 1050	.33	25.0 24.0	24.0 22.0
169	31500	- ASI	LI STR AT	F ALT 330	FT, NE	ASILI,TU	TUIL	A (LAT	14 19 34 I	LONG 170	47 38)
OCT , 19	84	2.4	12.0			APR	, 19			2075	
25 NOV	0925	2.6	26.0	24.0		30. MAY		0950	3,3	26.0	24.0
DEC DEC	0920	.65	24.0	22.0		JUN		1015	1.1	24.0	22.0
18 JAN , 19		2.0	26.0	24.0		11. 27.		0930 1010	1.5	24.0 26.0	22.0 24.0
08 21	1125 1005	2.8	26.0 24.0	24.0 22.0		JUL 09.		0855	1.4	26.0	24.0
FEB 11	0955	1.7	26.0	24.0		AUG		0920	1.3	26.0	24.0
MAR 13	0820	1.4	26.0	24.0		13. 30.		0855 0845	.95 2.0	26.0 24.0	24.0 22.0
1693	3500	- LEAF	U STR AT	ALT 370	FT, NR	LEONE, TU	TUII	A (LAT	14 19 31 1	LONG 170	46 50)
OCT , 19	84 1025	.85	24.5	24.0		APR 23.		1030	3.2	26.0	24.0
30 NOV	0930	2.2	26.0	24.0		MAY 20.		1035	2.0	26.0	24.0
19 DEC	0825	1.6	24.0	22.0		JUN 24.		1015	3.4	26.0	24.0
07 JAN , 19	0830	5.8	24.0	24.0		JUL 08.		1110	2.2	26.0	24.0
09 21	1240 1250	2.9	26.0 24.0			26. AUG		0900	1.3	24.0	22.0
FEB 11	1215	3.0	26.0			09. 27.		1000 0935	1.5	24.0 24.0	24.0 22.0
MAR 14	0900	2.2	26.0			SEP		0935	3.0	24.0	
	3000	۵.2	20.0	24.0		00.		0010	5.0	24.0	0

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)		DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)
			SAMOA I	ISLANDS, ISLAND	OF TUTUILACo	ntinue	d		
	169480	00	- AFUELO	STREAM AT MATU	U, TUTUILA (LAT	14 18	07 LONG 1	70 41 07)	
OCT , 19	0.4				APR , 198	5			
11	0920	1.2	24.0		30	1225	.83	26.0	24.0
16	0835	4.2	26.0	24.0	MAY				
NOV		112	42.7	0.000	30	1225	.81	24.0	22.0
16	0900	.22	24.0	22.0	JUN	1100	0.0	01.0	20.0
DEC 18	1215	.18	26.0	24.0	12 JUL	1100	. 26	24.0	22.0
JAN , 19		.10	20.0	24.0	02	1055	.11	26.0	24.0
29	1310	2.0	26.0	24.0	AUG	1000		20.0	21.0
FEB					02	0920	1.3	26.0	24.0
15	1025	.62	24.0	22.0	SEP				
MAR					04	0830	. 11	24.0	22.0
19	1210	.39	26.0	24.0					
	1696390	10 -	LEAFII S'	TREAM NEAR AUAS	T THTHTIA (LAT	14 16	27 LONG 1	70 34 26)	
	100000				-, (
NOV , 19					MAY , 198				
30 DEC	1310	.04	24.0	22.0	21 JUN	0955	.09	25.5	24.0
26	1130	. 65	28.0	24.0	03	1015	.39	26.0	24.0
JAN , 19			-		12	1310	.05	24.0	
16	1015	. 54	25.0	24.0	JUL				
29	0845	.32	26.0	24.0	04	0905	.04		
FEB				100	17	0940	.05	24.0	22.0
19	1255	.05	26.0	24.0	AUG				
MAR	0000			00.0	06	0925	.04	24.0	24.0
19	0930	.05	24.0	22.0	SEP	1000	0.0	04.0	00.0
APR	1016	.06	26.0	24.0	18	1000	.03	24.0	22.0
24	1015	.06	26.0	24.0					

83

MARIANA ISLANDS, ISLAND OF SAIPAN

151032145460370. Local number, 14-1045-09 Hakmang Well 78.

LOCATION.--Lat 15°10'22" N., long 145°45'51" E., Hydrologic Unit 20100006, 0.8 mi west-southwest of the Hakmang Communication station and 2.3 mi northeast of San Vicente Village. Owner: Government of the Northern Mariana

AQUIFER. -- Tagpochau Limestone.

WELL CHARACTERISTICS.--Drilled artesian well, depth 369 ft, diameter 12 in.

DATUM. -- Elevation of land-surface datum is 229 ft. Measuring point: Top of casing, about 230 ft above mean sea

PERIOD OF RECORD. --Water-level recorder, March 1973 to May 1976, March 1977 to September 1978, December 1980 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 21.03 ft above mean sea level, Aug. 24, 1985; lowest, 18.33 ft above mean sea level, Aug. 26, 27, 1985.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1		18.89		18.85	18.88	18.93	18.85	18.86	18.83	18.78	18.85	
2		18.88		18.84	18.90	18.93	18.87	18.87	18.80	18.78	18.85	
3	18.91	18,90		18.85	18.90	18.91	18.85	18.86	18.79	18.76	18.86	
4	18.89	18.91		18.84	18.91	18.90	18.83	18.83	18.79	18.79	18.86	
5	18.90	18.89		18.84	18.91	18.91	18.80	18.82	18.80	18.78	18.87	
6	18.91	18.89	122	18.85	18.91	18.92	18.81	18.78	18.78	18.75	18.88	
7	18.93	18.88		18.83	18.90	18.93	18.83	18.75	18.79	18.76	18.90	
8	18.92	18.88		18.84	18.91	18.93	18.85	18.76	18.79	18.75	18.93	
9	18.90	18.86		18.86	18.91	18.92	18.83	18.77	18.78	18.77	18.87	
10	18.88	18.86		18.88	18.92	18.92	18.81	18.79	18.77	18.77	18.88	
11	18.90	18.85		18.88	18.90	18.91	18.78	18.77	18.81	18.77	18.95	
12	18.90	18.86		18.86	18.88	18.91	18.76	18.78	18.84	18.75	18.90	
13	18.90	18.85		18,84	18.87	18.89	18.77	18.81	18.82	18.73	18.89	
14	18.88	18.83	18.89	18.82	18.85	18.88	18.73	18.84	18.82	18.74	18.90	
15	18.88	18.84	18.89	18.81	18.85	18.88	18.74	18.82	18.84	18.76	19.04	
16	18.88	18.85	18.90	18.81	18.86	18.86	18.73	18.83	18.85	18.76		
17	18.88	18.83	18.91	18.82	18.86	18.87	18.73	18.83	18.83	18.77		
18	18.89	18.84	18.89	18.85	18.85	18.88	18.73	18.83	18.81	18.78		
19	19.20	18.83	18.87	18.85	18.85	18.88	18.72	18.84	18.84	18.80		
20		18.86	18.88	18.86	18.85	18.88	18.70	18.98	18.86	18.81	18.92	
21		18.83	18.88	18.87	18.87	18.88	18.71	18.78	18.81	18.84	19.00	
22	18.82	18.83	18.89	18.86	18.88	18.88	18.71	18.83	18.80	18.85	19.04	
23	18.97	18.81	18.88	18.87	18.89	18.88	18.72	18.89	18.79	18.86	18.98	
24	18.99	18.83	18.87	18.91	18.89	18.87	18.75	18.84	18.80	18.88	21.03	
25	18.99	18.81	18.88	18.90	18.89	18.87	18.79	18.87	18.80	18.87	18.69	
26	18.89	18.82	18.88	18.91	18.89	18.87	18.81	18.86	18.79	18.89	18.33	
27	18.93	18.81	18.88	18.89	18,90	18.87	18.82	18.86	18.75	18.90	18.33	
28	18.93	18.82	18.88	18.90	18.92	18.86	18.81	18.87	18.75	18.88	18.47	
29	18.90	18.83	18.87	18.90		18.87	18.86	18.84	18.76	18.86	18.66	
30	18.92		18.85	18.89		18.87	18.86	18.87	18.77	18.87		
31	18.91	7-5-	18,85	18.89		18.85		18.85		18.80		
MEAN				18.86	18.89	18.89	18.79	18.83	18.80	18.80	222	
MAX				18.91	18.92	18.93	18.87	18.98	18.86	18.90	7222	
MIN				18.81	18.85	18,85	18.70	18.75	18.75	18.73		

MARIANA ISLANDS, ISLAND OF SAIPAN

151130145445970. Local number, 14-1144-07 Akgak Well 31.

LOCATION.--Lat 15°11'30" N., long 145°44'59" E., Hydrologic Unit 20100006, 1.2 mi south of Capitol Hill and 2.5 mi north of San Vicente Village. Owner: Government of the Northern Mariana Islands.

AQUIFER. -- Tagpochau Limestone.

WELL CHARACTERISTICS. -- Drilled perched water-table well, depth 290 ft, diameter 12 in.

DATUM.--Elevation of land-surface datum is 615 ft. Measuring point: Top of casing, 615.37 ft above mean sea level.

PERIOD OF RECORD. -- Water-level recorder, July 1982 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 407.97 ft above mean sea level, Dec. 24, 1982; lowest, 371.34 ft above mean sea level, July 21, 1984.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	379.00	379.60	380.21	379.73	378.75	379.99	379.11	378.04	378.02	377.57	377.20	379.42
2	378.98	379.61	380.27	379.80	378.75	379.69	379.11	378.03	378.12	377.55	377.19	379.53
3	379.01	379.63	380.28	379.93	378.75	379.53	379.04	377.99	378.19	377.54	377.17	379.58
4	379.05	379.65	380.28	379.89	378.74	379.52	378.96	377.97	378.15	377.52	377.17	379.63
5	379.08	379.68	380.28	379.80	378.74	379,66	378,82	377.96	378.10	377.50	377.18	379.70
6	379.13	379.72	380.27	379.70	378.73	379.90	378.74	377.96	378.07	377.49	377.17	379.75
7	379.17	379.75	380.26	379.61	378.72	380.14	378.69	377.95	378.05	377.48	377.16	379.81
8	379.18	379.79	380.25	379.55	378.70	380.30	378.63	377.95	377.99	377.46	377.15	379.85
9	379.19	379.81	380.23	379.51	378.69	380.35	378.61	377.93	377.96	377.45	377.13	379.89
10	379.19	379.82	380.21	379.46	378.68	380.39	378.62	377.87	377.91	377.44	377.14	379.94
11	379.20	379.83	380.18	379.34	378.67	380.49	378.62	377.85	377.90	377.43	377.15	379.96
12	379.20	379.88	380.16	379.24	378.66	380.64	378.58	377.84	377.87	377.41	377.16	379.97
13	379.20	379.96	380.14	379.21	378.65	380.63	378.57	377.83	377.83	377.36	377.16	380.06
14	379.20	379.98	380.13	379.15	378.64	380.35	378.57	377.81	377.82	377.30	377.18	380.09
15	379.19	379.99	380.13	379.10	378.64	380.05	378.51	377.78	377.82	377.29	377.19	380.12
16	379.20	380.01	380.07	379.07	378.68	379.97	378.52	377.76	377.83	377.28	377.23	380.17
17	379.20	380.15	380.04	379.11	378.80	379.93	378.51	377.76	377.82	377.26	377.32	380.18
18	379.20	380.38	380.03	379.07	379.15	379.92	378.39	377.76	377.78	377.24	e377.4	380.19
19	379.20	380.35	380.02	379.01	379.11	379.94	378.34	377.75	377.73	377.21	e377.5	380.20
20	379.30	380.31	380.01	379.04	378.91	379.87	378.29	377.75	377.75	377.20	e377.7	380.26
21	379.48	380.27	379.99	379.11	378.92	380.04	378.27	377.76	377.76	377.20	e377.8	380.29
22	379.52	380.23	379.94	379.00	379.31	379.95	378.25	377.78	377.73	377.19	e377.9	380.38
23	379.53	380.23	379.89	378.92	379.85	379.63	378.21	377.83	377.71	377.18	e378.0	380.48
24	379.58	380.21	379.87	378.88	380.48	379.49	378.19	377.83	377.70	377.17	378.11	380.54
25	379.59	380.21	379.84	378.85	380.98	379.57	378.17	377.83	377.68	377.17	378.21	380.61
26	379.59	380.20	379.81	378.81	381.34	379.68	378.15	377.84	377.66	377.18	378.24	380.70
27	379.60	380.21	379.80	378.80	381.00	379.69	378.11	377.85	377.63	377.17	378.26	380.81
28	379.60	380.22	379.78	378.78	380.43	379.84	378.07	377.85	377.61	377.16	378.32	380.90
29	379.60	380.22	379.76	378.76		379.50	378.06	377.86	377.59	377.20	378.41	381.02
30	379.60	380.23	379.74	378.76		379.28	378.05	377.85	377.58	377.20	378.67	381.12
31	379.60		379.71	378,76		379.17		377.84		377.20	379.18	
MEAN	379.30	380.00	380.05	379.22	379.20	379.91	378.49	377.86	377.85	377.32	377.60	380.17
MAX	379.60	380.38	380.28	379.93	381.34	380.64	379.11	378.04	378.19	377.57	379.18	381.12
MIN	378.98	379.60	379.71	378.76	378.64	379.17	378.05	377.75	377.58	377.16	377.13	379.42

CAL YR 1984 MEAN 374.81 MAX 380.38 MIN 371.36 WTR YR 1985 MEAN 378.91 MAX 381.34 MIN 377.13

e Estimated

MARIANA ISLANDS, ISLAND OF SAIPAN

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

150736145425370 - 14-0742-13 KOBLER 116A, SAIPAN

		SPE-				HARD-		MAGNE-
		CIFIC			HARD-	NESS,	CALCIUM	SIUM,
		CON-	PH		NESS	NONCAR-	DIS-	DIS-
		DUC-	(STAND-	TEMPER-	(MG/L	BONATE	SOLVED	SOLVED
	TIME	TANCE	ARD	ATURE	AS	(MG/L	(MG/L	(MG/L
DATE		(US/CM)	UNITS)	(DEG C)	CACO3)	CACO3)	AS CA)	AS MG)
AUG								
30	1225	7950	7.1	28.5	1100	910	170	170
								NITRO-
		SODIUM	ALKA-		CHLO-	FLUO-	SILICA.	GEN.
	SODIUM,	AD-	LINITY	SULFATE	RIDE,	RIDE,	DIS-	NO2+NO3
	DIS-	SORP-	LAB	DIS-	DIS-	DIS-	SOLVED	DIS-
	SOLVED	TION	(MG/L	SOLVED	SOLVED	SOLVED	(MG/L	SOLVED
	(MG/L	RATIO	AS	(MG/L	(MG/L	(MG/L	AS	(MG/L
DATE	AS NA)		CACO3)	AS SO4)	AS CL)	AS F)	SIO2)	AS N)
AUG								
30	1200	16	212	290	2400	<.10	9.6	1.8

150730145431370 - 14-0743-11 KOBLER FIELD 111, SAIPAN

DATE	TIME	SPE- CIFIC CON- DUC- TANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO
OCT											
05	1040	4770	6.9	29.0	710	500	160	75	670	67	11
							SOLIDS,		NITRO-		
	POTAS-	ALKA-		CHLO-	FLUO-	SILICA,	SUM OF	SOLIDS,	GEN,		MANGA-
	SIUM,	LINITY	SULFATE	RIDE,	RIDE,	DIS-	CONSTI-	DIS-	NO2+NO3	IRON,	NESE,
	DIS-	LAB	DIS-	DIS-	DIS-	SOLVED	TUENTS,	SOLVED	DIS-	DIS-	DIS-
	SOLVED	(MG/L AS	SOLVED	SOLVED	SOLVED	(MG/L AS	DIS- SOLVED	(TONS PER	SOLVED (MG/L	SOLVED (UG/L	SOLVED
DATE	(MG/L AS K)	CACO3)	(MG/L AS SO4)	(MG/L AS CL)	(MG/L AS F)	SIO2)	(MG/L)	AC-FT)	AS N)	AS FE)	(UG/L AS MN)
DAIL	AS A)	CACOS	AS SU4)	AS CL)	AS I)	3102)	(116/11)	AC-FI)	AS N)	AS FE)	AS PIN)
OCT											
05	18	210	150	1300	<.10	8.9	2500	3.4	3.4	160	<10

< Actual value is known to be less than the value shown.

MARIANA ISLANDS, ISLAND OF SAIPAN

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

150736145430070 - 14-0743-13 KOBLER FIELD 113, SAIPAN

DAT		CIF	ON- PH JC- (STA) JCE ARI	ND- (MC	RD- NE: SS NONG S/L BON. S (MG	G/L (MC		UM, SODIU S- DIS- VED SOLVE /L (MG/	D L PERCE		0- 2- 0-
AUG											
30.	12	00 2	2500	7.0	540	320 160	34	290		53	5
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
AUG	2.1		122	200	5334		-2505				44.5
30	14	225	57	580	<.10	8,3	1300	1.7	4.0	70	<10

150740145435570 - 14-0743-25 ISLEY FIELD 107, SAIPAN

DATE	TIME	SPE- CIFIC CON- DUC- TANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO
OCT											
03 AUG	1620	1850	7.0	28.5	400	200	120	24	210	53	5
29	0910	1920	++	28.5		99))	77	44	2-	
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
OCT											
03 AUG	6.6	196	41	410	<.10	6.9	940	1.3	5.1	54	6
29				420							

< Actual value is known to be less than the value shown.

MARIANA ISLANDS, ISLAND OF SAIPAN

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

151026145454970 - 14-1045-08 HAKMANG 76, SAIPAN

DATE	TIME	SPE- CIFIC CON- DUC- TANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO
OCT											
02 AUG	1440	936	7.2	28.5	360	160	130	9.0	50	23	1
29	1155	1050		28.5			7==			3	
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
OCT											
02 AUG	1.6	204	14	96	<.10	22	440	.61	1.8	5	1
29	144			140							

151127145434070 - 14-1143-05 GUALO RAI 154, SAIPAN

DATE	TIME	SPE- CIFIC CON- DUC- TANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO
OCT											
04 AUG	1140	3960	7.1	30.5	760	630	190	69	540	60	9
30	1040	5050	6.8	30.5	990	780	230	100	610	57	9
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
OCT 04 AUG	16	133	95	1200	.10	6.6	2200	3.0	1.4	160	<10
30	1.1	206	110	1500	.10	7.4	2700	3.6	1.3	120	<10

< Actual value is known to be less than the value shown.

MARIANA ISLANDS, ISLAND OF SAIPAN

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

151255145443770 - 14-1244-16 SQ 9 AS RAPUGAO, SAIPAN

		SPE-				HARD-		MAGNE-	
		CIFIC			HARD-	NESS,	CALCIUM	SIUM,	SODIUM,
		CON-	PH		NESS	NONCAR-	DIS-	DIS-	DIS-
		DUC-	(STAND-	TEMPER-	(MG/L	BONATE	SOLVED	SOLVED	SOLVED
	TIME	TANCE	ARD	ATURE	AS	(MG/L	(MG/L	(MG/L	(MG/L
DATE		(US/CM)	UNITS)	(DEG C)	CACO3)	CACO3)	AS CA)	AS MG)	AS NA)
AUG									
29	1730	1360	6.9	27.5	360	130	130	9.2	120
DATE	SODIUM AD- SORP- TION RATIO	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
AUG									
29	3	233	21	250	<.10	11	3.3	81	5

151312145443970 - 14-1344-17 WELL 148 AS RAPUGAO, SAIPAN

DATE	TIME	SPE- CIFIC CON- DUC- TANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO
OCT											
14 AUG	1415	865	6.9	28.0	300	98	110	5.8	50	26	1
29	1700	805		28.0	(22)						
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
OCT											
14 AUG	4.8	201	12	95	<.10	9.5	410	. 55	3.1	7	<1
29				90							

89

MARIANA ISLANDS, ISLAND OF SAIPAN

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

151309145443870 - 14-1344-18 WELL 149 AS RAPUGAO, SAIPAN

DAT		PE (STA) IME AF UNII	AND- TEMPI RD ATU	RE AS	S NONC /L BONA (MG	SS, CALC CAR- DIS TE SOL	IUM SI - DI VED SOL		- ED /L PERCE)- ?-)
OCT 04.	16	520	6.9 2	7.5	370	140 130	10	120		41 :	3
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
OCT 04	2.3	222	12	270	<.10	9.9	690	. 93	3.1	40	3

151309145443370 - 14-1344-19 WELL 150 AS RAPUGAO, SAIPAN

OCT 04 1510 6.9 28.0 330 110 14 130	46
	46
AUG	10
29 1710 2300 28.5	
NITRO-	
	IGA-
AD- SIUM, SULFATE RIDE, RIDE, DIS- NO2+NO3 IRON, NE	SE,
SORP- DIS- DIS- DIS- SOLVED DIS- DIS- D	IS-
그렇게 되었다. 그는 그렇게 하는 것이 하는 것이 없는 것이었다면 없는 것이었다면 없는 것이 없는 것이었다면 없어 없는 것이었다면 없는 것이었다면 없는 것이었다면 없는 것이었다면 없는 것이었다면 없어요.	VED
	5/L
DATE AS K) AS SO4) AS CL) AS F) SIO2) AS N) AS FE) AS	MN)
OCT	
04 3 3.5 26 260 <.10 10 2.4 14 AUG	2
29 550	

< Actual value is known to be less than the value shown.

MARIANA ISLANDS, ISLAND OF SAIPAN

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

151359145451570 - 14-1345-04 TANAPAG SPRING 2, SAIPAN

DATE	TIME	SPE- CIFIC CON- DUC- TANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	PERCENT SODIUM	SODIUM AD- SORP- TION RATIO
OCT											
05	0920	517	7.3	28.0	190	0	50	16	40	30	1
							SOLIDS,		NITRO-		
	POTAS-	ALKA-		CHLO-	FLUO-	SILICA.	SUM OF	SOLIDS,	GEN,		MANGA-
	SIUM,	LINITY	SULFATE	RIDE,	RIDE,	DIS-	CONSTI-	DIS-	NO2+NO3	IRON,	NESE,
	DIS-	LAB	DIS-	DIS-	DIS-	SOLVED	TUENTS,	DLVED	DIS-	DIS-	DIS-
	SOLVED	(MG/L	SOLVED	SOLVED	SOLVED	(MG/L	DIS-	(TONS	SOLVED	SOLVED	SOLVED
	(MG/L	AS	(MG/L	(MG/L	(MG/L	AS	SOLVED	PER	(MG/L	(UG/L	(UG/L
DATE	AS K)	CACO3)	AS SO4)	AS CL)	AS F)	SIO2)	(MG/L)	AC-FT)	AS N)	AS FE)	AS MN)
OCT							4.0				
05	6.6	223	16	23	.20	66	350	.48	<.10	71	38

< Actual value is known to be less than the value shown.

MARIANA ISLANDS, ISLAND OF SAIPAN

						SPE-		CHLO-
	LOCAL					CIFIC		RIDE,
	IDENT-	LAT-	LONG-	DATE		CON-		DIS-
	I-	I-	I-	OF		DUC-	TEMPER-	SOLVED
GMARION NIMPED					TTME			
STATION NUMBER	FIER	TUDE	TUDE	SAMPLE	TIME	TANCE	ATURE	(MG/L
						(US/CM)	(DEG C)	AS CL)
150723145431170	14-0742-06	15 07 23	145 43 11	08-30-85	1120	5550	28.0	1600
150737145431070	14-0742-07	15 07 37	145 43 10	08-30-85	1150	3910	28.5	1100
150732145431270	14-0742-09	15 07 32	145 43 12	08-30-85	1140	8740	29.0	2600
150728145431470	14-0743-10	15 07 28	145 43 14	08-30-85	1130	6370	28.5	1800
150730145435270	14-0743-17	15 07 30	145 43 52	08-29-85	0950	835	29.0	160
150737145440670	14-0743-18	15 07 37	145 44 06	08-29-85	0955	2060	29.0	470
150749145434170	14-0743-19	15 07 49	145 43 41	08-29-85	0900	2350	29.0	550
150731145440370	14-0743-22	15 07 31	145 44 03	08-29-85	0935	2700	29.0	680
150738145435870	14-0743-23	15 07 38	145 43 58	08-29-85	0920	1880	29.0	440
150743145435470	14-0743-24	15 07 43	145 43 54	08-29-85	0905	2620	29.0	640
150733145435970	14-0743-26	15 07 27	145 43 44	08-29-85	0940	1830	29.0	400
150729145435570	14-0743-29	15 07 29	145 43 55	08-29-85	1005	2060	30.0	460
150843145434770	14-0843-04	15 08 43	145 43 47	08-29-85	1035	4460	30.0	1200
151127145434270	14-1143-02	15 11 27	145 43 42	08-30-85	1030	1680	29.5	390
151246145443770	14-1244-08	15 12 46	3 145 44 37	08-29-85	1640	2000	27.5	460
151250145444170	14-1244-09	15 12 50	145 44 41	08-29-85	1650	7050	29.0	2100
151312145441570	14-1344-14	15 13 12	2 145 44 15	08-30-85	0905	5460	28.5	1600
151314145441570	14-1344-15	15 13 14	145 44 15	08-30-85	0930	11900	28.5	3600

MARIANA ISLANDS, ISLAND OF GUAM

132624144452771. Local number, 18-2645-07 Ordot Well A-20.

LOCATION.--Lat 13°26'24" N., long 144°45'27" E., Hydrologic Unit 20100003, at Ordot School, 1.4 mi west of junction of Routes 4 and 10, Ordot. Owner: Government of Guam.

AQUIFER. -- Mariana Limestone and Alutom formation.

WELL CHARACTERISTICS .-- Drilled parabasal water-table well, depth reported 120 ft, diameter 6 in.

DATUM.--Elevation of land-surface datum is 137 ft. Measuring point: Top of casing, 141.74 ft above mean sea level.

PERIOD OF RECORD. -- Water-level recorder, January 1974 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 54.03 ft above mean sea level, Oct. 21, 1980; lowest, 32.76 ft above mean sea level, June 21, 22, 1984.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	42.85	44.28	46.32	45.09	42.66	39.90	37.92	36.61	37.67	41.65	42.36	44.50
2	42.98	44.26	46.38	44.96	42.58	39.82	37.86	36.61	37.70	41.77	42.53	44.67
3	43.14	44.27	46.43	44.84	42.48	39.73	37.80	36.61	37.71	41.85	42.68	44.86
4	43.24	44.26	46.47	44.75	42.38	39.66	37.72	36.60	37.72	41.91	42.81	45.13
5	43.30	44.25	46.50	44.61	42.29	39.60	37.66	36.58	37.77	41.96	42.94	45.33
6	43.34	44.25	46.60	44.50	42.17	39.49	37.61	36.57	37.83	42.01	43.07	45.59
7	43.36	44.21	46.65	44.38	42.08	39.40	37.57	36.55	37.88	42.06	43.15	45.73
8	43.34	44.15	46.70	44.28	41.99	39.33	37.51	36.53	37.93	42.09	43.20	45.85
9	43.31	44.10	46.75	44.20	41.86	39.26	37.44	36.50	37.94	42.14	43.27	46.01
10	43.30	44.06	46.80	44.10	41.76	39.18	37.37	36.46	37.93	42.23	43.42	46.16
11	43.31	44.02	46.80	43.97	41.65	39.12	37.32	36.43	37.92	42.29	43.56	46.35
12	43.34	44.02	46.80	43.88	41.56	39.06	37.28	36.40	37.86	42.33	43.62	46.55
13	43.38	43.97	46.80	43.84	41.45	38.97	37.23	36.37	37.82	42.39	43.66	46.71
14	43.43	43.95	46.75	43.81	41.34	38.88	37.16	36.34	37.77	42.43	43.71	46.89
15	43.51	44.07	46.70	43.78	41.26	38.83	37.10	36.32	37.72	42.45	43.72	47.12
16	43.63	44.23	46.65	43.73	41.18	38.77	37.08	36.30	37.68	42.42	43.70	47.29
17	43.69	44.37	46.60	43.70	41.07	38.72	37.05	36.28	37.70	42.38	43.65	47.50
18	43.73	44.56	46.50	43.64	40.95	38.66	37.01	36.28	37.87	42.34	43.62	47.65
19	43.78	44.80	46.41	43.60	40.85	38.63	36.94	36.31	38.15	42.31	43.60	47.77
20	43.84	45.00	46.34	43.55	40.77	38.59	36.88	36.36	38.40	42.26	43.60	47.85
21	43.91	45.30	46.26	43.47	40.69	38.54	36.85	36.48	38.63	42.19	43.67	47.88
22	43.95	45.50	46.17	43.36	40.59	38.48	36.82	36.62	38.93	42.12	43.75	47.92
23	44.02	45.70	46.08	43.31	40.48	38.42	36.79	36.75	39.32	42.07	43.88	47.93
24	44.13	45.90	45.99	43.26	40.37	38.36	36.75	36.92	39.71	41.98	44.03	47.94
25	44.16	45.95	45.87	43.17	40.28	38,31	36.71	37.07	40.05	41.91	44.12	48.01
26	44.17	46.04	45.78	43.10	40.20	38.24	36.68	37.18	40.37	41.86	44.16	48.10
27	44.19	46.10	45.68	43.01	40.12	38.18	36.65	37.30	40.69	41.84	44.22	48.17
28	44.23	46.14	45.60	42.95	40.00	38.13	36.62	37.41	41.01	41.87	44.25	48.23
29	44.25	46.20	45.46	42.87		38.10	36.61	37.53	41.27	42.03	44.27	48.40
30	44.28	46.26	45.32	42.81		38.05	36.60	37.60	41.51	42.16	44.28	48.70
31	44.30		45.21	42.75		37,97		37.64		42.27	44.35	
MEAN	43.66	44.81	46.30	43.78	41.32	38.85	37.15	36.69	38.62	42.12	43.58	46.89
MAX	44.30	46.26	46.80	45.09	42.66	39.90	37.92	37.64	41.51	42.45	44.35	48.70
MIN	42.85	43.95	45.21	42.75	40.00	37.97	36,60	36.28	37.67	41.65	42.36	44.50

WTR YR 1985 MEAN 41.99 MAX 48.70 MIN 36.28

132644144480871. Local number, 18-2648-02 BPM Well 1.

LOCATION.--Lat 13°26'44" N., long 144°48'08" E., Hydrologic Unit 20100003, on lot number 2287, 0.2 mi southeast of junction of Routes 15 and 10, Mangilao. Owner: Ana P. Diaz.

AQUIFER. -- Coralline Limestone, probably Miocene age.

WTR YR 1985 MEAN

MAX

2.71

WELL CHARACTERISTICS. -- Drilled basal water-table well, depth reported 235 ft, casing diameter 12 in.

DATUM. -- Elevation of land-surface datum is 210 ft. Measuring point: Top of casing, 209.86, revised, ft above mean sea level.

PERIOD OF RECORD. -- Occasional measurements, February 1972 to December 1973. Water level recorder, January 1974 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 4.45 ft above mean sea level, May 22, 1976; lowest, 1.89 ft above mean sea level, Feb. 11, 12, 1983.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 MEAN VALUES OCT NOV JUL AUG SEP DAY DEC JAN FEB MAR APR MAY JUN 3.01 2.85 2.78 2.67 2.67 2.74 2.56 2.82 2.47 2.73 2.76 2.72 3.01 2.80 2.77 2.65 2.68 2.75 2.57 2.84 2.47 2.71 2.81 2.74 3 2.70 2.84 2.48 2.80 2. 75 2 91 2.80 2.77 2.63 2.73 2.59 2.70 2.81 2.79 2.78 2.63 2.74 2.71 2.63 2.84 2.46 2.70 2.77 2.74 4 5 2.70 2.78 2.79 2.83 2.62 2.76 2.67 2.82 2.46 2.67 2.77 2.74 6 2.79 2.62 2.74 2.75 2.89 2.79 2.73 2.66 2.77 2.45 2.65 2.76 7 2.75 2.71 2.93 2.63 2.80 2.75 2.67 2.72 2.43 2.62 2.76 2.73 8 2.76 2.67 2.93 2.64 2.79 2.76 2.68 2.69 2.40 2.59 2.78 2.72 9 2.76 2.65 2.91 2.69 2.79 2.77 2.70 2.66 2.39 2.57 2.77 2.69 10 2.77 2.63 2.92 2.77 2.80 2.76 2.70 2.65 2.37 2.55 2.75 2.65 11 2.78 2.62 2.95 2.80 2.80 2.74 2.69 2.62 2.36 2.57 2.64 2.74 12 2.79 2.63 2.93 2.82 2.80 2.72 2.67 2.60 2.37 2.57 2.74 2.66 13 2.79 2.78 2.93 2.79 2.80 2.71 2.67 2.58 2.39 2.57 2.72 2.69 14 2.79 3.01 2.90 2.76 2.72 2.68 2.56 2.81 2.40 2.56 2.69 2.72 15 2.78 3.01 2.87 2.72 2.79 2.73 2.69 2.57 2.40 2.56 2.67 2.74 16 2.78 2.95 2.70 2.84 2.77 2.72 2.69 2.56 2.42 2.55 2.69 2.76 17 2.79 2.97 2.88 2.69 2.76 2.71 2.71 2,55 2.45 2.52 2.69 2.75 18 2.80 2.94 2.87 2.66 2.75 2.70 2.74 2.55 2.50 2.75 2.52 2.67 2.65 19 2 79 2.93 2.83 2.75 2.70 2.74 2.57 2.58 2. 52. 2.66 2. 73 20 2.92 2.91 2.76 2.65 2.73 2.74 2.72 2.57 2.65 2.53 2.68 2.74 2.1 2.93 2.89 2.74 2.65 2.75 2.72 2.72 2.56 2.70 2.54 2.71 2.72 22 2.93 2.86 2.75 2.65 2.76 2.71 2.72 2.57 2.78 2.55 2.69 2.68 23 2.93 2.86 2.78 2.67 2.76 2.70 2.73 2.55 2.86 2.57 2.68 2.64 24 2.94 2.84 2.75 2.67 2.75 2.69 2.73 2.51 2.90 2.60 2.65 2.62 25 3.11 2.84 2.71 2.67 2.73 2.68 2.72 2.48 2.89 2.63 2.64 2.63 26 3.07 2.83 2.69 2.66 2. 72. 2.68 2.73 2 47 2.84 2.66 2.63 2.65 27 3.03 2.80 2.71 2.67 2.74 2.79 2.73 2.66 2.46 2.72 2.61 2.67 28 3.01 2.80 2.65 2.75 2.71 2.73 2.63 2.76 2.46 2.74 2.61 2. 75 29 3.00 2.80 2.70 2.64 ---2.61 2.77 2.47 2.74 2.74 2.65 2.88 30 2.93 2.79 2.70 2.64 ---2.59 2.79 2.46 2.73 2.73 2.68 3.02 31 2.91 2.67 2.66 2.57 2.46 2.74 2.69 MEAN 2.87 2.82 2.68 2.76 2.81 2.70 2.69 2.61 2.56 2.62 2.71 2.72 MAX 3.01 2.90 3.11 2.95 2.82 2.81 2.77 2.79 2.84 2.74 2.81 3.02 MIN 2.75 2.62 2.67 2.62 2.67 2.57 2.56 2.46 2.36 2.52 2.62 2.61

MIN

2.36

3.11

MARIANA ISLANDS, ISLAND OF GUAM

132824144464271. Local number, 18-2846-01 ACEORP Tunnel.

LOCATION.--Lat 13°28'24" N., long 144°46'42" E., Hydrologic Unit 20100003, behind Navy Telephone Exchange, 0.35 mi southwest of junction of Routes 1 and 14, Tamuning. Owner: U.S. Navy, Public Works Department.

AQUIFER. -- Mariana Limestone.

WELL CHARACTERISTICS.--Dug basal water-table well consisting of an inclined shaft, three skimming tunnels, and a large pump room. Tunnels 1 and 2 are 150 ft each and tunnel 3 is 700 ft in length.

DATUM.--Elevation of land-surface datum is 180 ft. Measuring point: Top of wooden recorder shelf, 9.28 ft above mean sea level.

PERIOD OF RECORD. -- Water-level recorder, October 1954 to May 1965, March 1973 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 4.95 ft above mean sea level, May 22, 1976; lowest, 1.70 ft above mean sea level, Feb. 12, 1983.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985
MEAN VALUES

NOV DEC JAN FEB MAR APR MAY JUN JUL

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2.76	2.78	2.53	2.57	2.56	2.64	2.49	2.79	2.35	2.55	2.59	2.52
2	2.68	2.71	2.59	2.56	2.62	2.62	2.52	2.78	2.35	2.52	2.59	2.51
3	2.61	2.65	2.62	2.53	2.63	2.60	2.57	2.78	2.37	2.51	2.56	2.50
4	2.59	2.60	2.62	2.52	2.62	2.57	2.60	2.77	2.37	2.50	2.54	2.50
5	2.57	2.56	2.64	2.47	2.63	2.59	2.60	2.73	2.36	2.48	2.53	2.49
6	2.57	2.53	2.70	2.46	2.62	2.62	2.58	2.65	2.36	2.45	2.53	2.48
7	2.58	2.50	2.73	2.44	2.61	2.65	2.58	2.59	2.34	2.43	2.56	2.47
8	2.59	2.49	2.75	2.48	2.60	2.65	2.61	2.55	2.32	2.41	2.56	2.45
9	2.60	2.47	2.77	2.58	2.63	2.66	2.62	2.54	2.30	2.37	2.52	2.42
10	2.62	2.48	2.79	2.71	2.63	2.65	2.61	2.53	2.28	2.36	2.48	2.39
11	2.64	2.45	2.82	2.67	2.62	2.62	2.59	2.49	2.28	2.36	2.49	2.38
12	2.69	2.45	2.77	2.63	2.60	2.59	2.57	2.45	2.31	2.38	2.50	2.44
13	2.71	2.52	2.72	2.58	2.65	2.58	2.57	2.42	2.34	2.38	2.45	2.50
14	2.68	2.60	2.67	2.51	2.67	2.61	2.57	2.43	2.34	2.36	2.42	2.55
15	2.66	2.57	2.67	2.48	2.64	2.62	2.57	2.46	2.32	2.37	2.43	2.57
16	2.67	2.57	2.73	2.47	2.70	2.60	2.58	2.48	2.36	2.35	2.47	2.57
17	2.71	2.59	2.73	2.53	2.72	2.58	2.61	2.47	2.40	2.33	2.48	2.58
18	2.72	2.61	2.69	2.52	2.67	2.59	2.64	2.51	2.45	2.31	2.47	2.55
19	2.80	2.64	2.63	2.49	2.67	2.63	2.62	2.54	2.49	2.35	2.52	2.55
20	2.88	2.69	2.60	2.49	2.68	2.63	2.58	2.55	2.53	2.35	2.65	2.54
21	2.87	2.70	2.63	2.50	2.67	2.63	2.57	2.53	2.71	2.38	2.62	2.53
22	2.87	2.72	2.67	2.54	2.68	2.61	2.59	2.51	2.74	2.40	2.59	2.47
23	2.87	2.73	2.68	2.57	2.67	2.60	2.59	2.48	2.74	2.40	2.55	2.44
24	2.91	2.72	2.66	2.58	2.65	2.60	2.60	2.43	2.70	2.48	2.52	2.43
25	2.94	2.69	2.62	2.57	2.62	2.59	2.61	2.40	2.66	2.57	2.52	2.43
26	2.93	2.66	2.59	2.54	2.61	2.60	2.65	2.39	2.59	2.65	2.45	2.43
27	2.89	2.60	2.65	2.49	2.64	2.64	2.65	2.38	2.52	2.70	2.44	2.51
28	2.89	2.54	2.63	2.49	2.65	2.59	2.70	2.41	2.50	2.65	2.45	2.67
29	2.98	2.55	2.59	2.50		2.53	2.72	2.41	2.51	2.58	2.48	2.83
30	3.00	2.52	2.55	2.51		2.51	2.75	2.38	2.54	2.57	2.57	2.87
31	2.92		2.52	2.51		2.49		2.36		2.58	2.58	
MEAN	2.75	2.60	2.66	2.53	2.64	2.60	2.60	2.52	2.45	2.45	2.52	2.52
MAX	3.00	2.78	2.82	2.71	2.72	2.66	2.75	2.79	2.74	2.70	2.65	2.87
MIN	2.57	2.45	2.52	2.44	2.56	2.49	2.49	2.36	2.28	2.31	2.42	2.38

WTR YR 1985 MEAN 2.57 MAX 3.00 MIN 2.28

95

MARIANA ISLANDS, ISLAND OF GUAM

132813144472771. Local number, 18-2847-12 Barrigada Well 2 (A-16).

LOCATION.--Lat 13°28'13" N., long 144°47'27" E., Hydrologic Unit 20100003, at Carbullido School, 0.6 mi west of junction of Routes 8 and 10, Barrigada. Owner: Public Utility Agency of Guam.

AQUIFER. -- Mariana Limestone, probably Pliocene age.

WTR YR 1985 MEAN

3.65

MAX

WELL CHARACTERISTICS.--Drilled basal water-table well, depth reported 215 ft, diameter 12 in.

DATUM. -- Elevation of land-surface datum is 207 ft. Measuring point: Top of casing, 208.00 ft above mean sea level.

PERIOD OF RECORD. -- Water-level recorder, June 1974 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 6.71 ft above mean sea level, May 22, 1976; lowest, 2.83 ft above mean sea level, Feb. 11, 12, 1983.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 1 3.86 3.84 3.70 3.65 3.61 3.68 3.53 3.75 3.37 3.65 3.67 3.71 2 3.81 3.76 3.69 3.65 3.65 3.68 3.54 3.77 3.37 3.63 3.67 3.69 3.66 3.63 3.69 3 3.74 3.70 3.69 3.67 3.57 3.77 3.37 3.62 3.66 4 3.69 3.67 3.71 3.62 3.67 3.63 3.62 3.76 3.37 3.61 3.64 3.69 5 3.66 3.65 3.75 3.63 3.74 3.37 3.72 3.58 3.68 3.63 3.58 3.63 6 3.65 3.62 3.81 3.54 3.68 3.65 3.62 3.69 3.37 3.71 3.54 3.63 7 3.70 3.66 3.59 3.85 3.53 3.68 3.67 3.62 3.63 3.35 3.51 3.63 8 3.66 3.58 3.85 3.54 3.66 3,68 3.63 3.60 3.33 3.49 3.67 3.67 9 3.66 3.56 3.83 3.58 3.68 3.70 3.64 3.58 3.31 3.47 3.65 3.64 10 3.68 3.56 3.85 3.69 3.69 3.70 3.64 3.55 3.29 3.44 3.63 3.61 11 3.69 3.54 3.87 3.75 3.68 3.67 3.63 3.51 3.28 3.44 3.62 3.59 3.72 12 3 53 3.85 3.73 3.66 3.65 3.61 3.48 3.29 3.45 3.62 3.61 13 3.74 3.77 3.85 3.68 3.68 3.64 3.61 3.45 3.44 3.63 3.32 3.60 14 3.73 3.82 3.62 3.70 3.69 4.11 3.63 3.60 3.43 3.33 3.43 3.56 15 3.70 4.01 3.79 3.59 3.69 3.67 3.61 3.44 3.33 3.43 3.54 3.71 16 3.70 3.89 3.76 3.56 3.71 3.66 3.62 3.47 3.34 3.42 3.56 3.72 17 3.72 3 87 3.80 3.58 3.73 3.64 3.63 3.48 3.39 3.41 3.56 3.72 18 3.73 3.86 3.78 3.61 3.71 3.63 3.66 3.50 3.62 3.41 3.54 3.71 3.64 19 3.79 3.85 3 59 3.74 3.70 3.66 3.54 3.64 3.41 3.56 3.70 20 3.87 3.83 3.73 3.58 3.71 3.67 3.61 3.55 3.64 3.83 3.70 3.41 2.1 3.90 3.84 3.72 3.58 3.71 3.67 3.60 3.54 3.75 3.42 3.82 3.67 22 3.89 3.81 3.75 3.60 3.71 3.66 3.61 3.53 3.91 3.43 3.76 3.64 23 3.90 3.80 3.77 3.63 3.71 3.66 3.61 3.50 3.88 3.45 3.71 3.63 24 3.91 3.78 3.76 3.64 3.69 3.66 3.62 3.47 3.84 3.48 3.67 3,62 25 3.96 3.78 3.72 3.64 3.67 3.65 3.62 3.45 3.81 3.55 3.66 3.61 26 3.96 3.76 3.69 3.62 3.66 3.64 3.64 3.44 3.72 3.63 3.63 3.62 27 3.95 3.73 3.71 3.58 3.67 3.66 3.66 3.39 3.73 3.60 3.64 3.67 28 3.94 3.72 3.72 3.56 3.68 3.64 3.68 3.39 3.64 3.76 3.59 3.87 3.95 29 3.72 3.68 3.57 ---3.60 3.71 3.41 3.64 3.72 3.60 4.04 30 3.95 3.66 3.58 3.56 3.64 3.65 4.32 3.71 3.72 3.40 3.68 31 3.95 3.64 3.57 ---3.54 3.38 3.66 3.71 ---MEAN 3.80 3.75 3.76 3.61 3.68 3.65 3.62 3.54 3.51 3.53 3.64 3.71 MAX 3.96 4.11 3.87 3.75 3.73 3.70 3.72 3.77 3.91 3.76 3.83 4.32 MIN 3.65 3.53 3.64 3.53 3.61 3.54 3.28 3.41 3.54 3.53 3.38 3.59

MIN

4.32

3.28

132806144481871. Local number, 18-2848-03 Barrigada Exploratory Well Ex-9.

LOCATION.--Lat 13°28'06" N., long 144°48'18" E., Hydrologic Unit 20100003, near P.C. Lujan Elementary School Radio Barrigada. Owner: Government of Guam.

AQUIFER. -- Barrigada Limestone.

WELL CHARACTERISTICS. -- Drilled basal water-table well, sounded depth 513 ft, borehole diameter 8 in.

DATUM.--Elevation of land-surface datum is 238 ft. Measuring point: Top of surface casing, 239.41 ft above mean sea level

PERIOD OF RECORD. --Occasional measurements, September 1981 to June 1985. WATER LEVEL: Water-level recorder, July 1985 to September 1985. WATER QUALITY: 1981 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 3.45 ft above mean sea level, Oct. 28, 1981; lowest, measured, 2.29 ft above mean sea level, Feb. 18, 1983.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1				442		h3.00				2.95	3.03	2.98
2										2.93	3.05	2.98
3										2.91	3.03	2.97
4	h2.96									2.91	3.02	2.98
5		5 222								2.89	3.02	2.98
6									h2.80	2.86	3.02	2.96
7										2.84	3.03	2.94
8										2.80	3.06	2.91
9		1 1		h2.77				h3.03		2.78	3.03	2.88
10	222	777		200			7.77		222	2.75	2.99	2.83
11										2.77	2.97	2.84
12							h3.05			2.78	2.99	2.87
13										2.79	2.95	2.92
14				h2.82						2.77	2.93	2.97
15								10001		2.75	2.94	2.99
16										2.74	2.95	3.00
17										2.73	2.92	3.00
18				222		200		(2.73	2.91	3.00
19										2.75	2.92	2.98
20		h3.04								2.76	3.04	3.00
21						h3.01				2.77	3.07	2.96
22										2.80	3.02	2.92
23										2.83	2.99	2.89
24										2.87	2.94	2.87
25		244								2.92	2.93	2.87
26	222						222		242	2.99	2.91	2.87
27	222								222	3.07	2.89	2.90
28									h2.90	3.06	2.88	2.96
29									2.94	3.03	2.91	3.02
30									2.94	3.00	2.94	3.10
31	277	1725						977	255	3.00	2.99	1,555
MEAN	444	444								2.86	2.98	2.94
MAX										3.07	3.07	3.10
MIN										2.73	2.88	2.83

h Tape measurement.

132806144481871 - 18-2848-03 BARRIGADA EXP WELL EX-9, GUAM--Continued

			SPE-		CHLO-				SPE-		CHLO-
			CIFIC		RIDE,				CIFIC		RIDE,
		SAM-	CON-		DIS-			SAM-	CON-		DIS-
		PLING	DUC-	TEMPER-	SOLVED			PLING	DUC-	TEMPER-	SOLVED
	TIME	DEPTH	TANCE	ATURE	(MG/L		TIME	DEPTH	TANCE	ATURE	(MG/L
DATE		(FEET)	(US/CM)	(DEG C)	AS CL)	DATE		(FEET)	(US/CM)	(DEG C)	AS CL)
JAN						MAR					
09	0935	260	2870	28.0	800	21	1155	360	33100	28.0	12000
09	1020	330	3510	28.0	980	21	1320	400	48100	28.0	18000
09	1055	340	3490	28.0	980	21	1405	450	50800	28.0	19000
09	1135	350	16000	28.0	5100	21	1500	500	51200	28.0	20000
09	1210	360	29900	28.0	10000	JUN					
09	1250	380	44500	27.5	16000	06	1005	260	3810	28.0	1000
09	1330	400	49500	27.5	18000	06	1035	330	3370	27.5	900
09	1415	500	53500	27.5	20000	06	1110	340	3410	27.5	900
MAR						06	1145	350	18100	27.5	5900
21	0910	260	4080	28.0	1200	06	1220	360	34800	27.5	12000
21.,.	0950	330	3510	28.0	950	06	1300	380	42900	27.5	16000
21	1030	340	3680	28.0	1000	06	1335	400	48200	27.5	18000
21	1110	350	16900	28.0	5400						

133032144491871. Local number, 18-3049-03 Harmon Loop School Well M-10A.

LOCATION.--Lat 13°30'32" N., long 144°49'18" E., Hydrologic Unit 20100003, at Harmon Loop School, Dededo. Owner: Public Utility Agency of Guam.

AQUIFER .-- Barrigada Limestone.

WTR YR 1985 MEAN

2.65

MAX

WELL CHARACTERISTICS. -- Drilled basal water-table well, depth reported 288 ft, casing diameter 8 in.

DATUM.--Elevation of land-surface datum is 227 ft. Measuring point: Top of casing, 228.62 ft above mean sea level.

REMARKS.--Well was abandoned in 1973 because of oil taste and high iron content.

PERIOD OF RECORD. -- Water-level recorder, January 1974 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 4.61 ft above mean sea level, May 23, 1976; lowest, 1.94 ft above mean sea level, Feb. 10-12, 1983.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

		MAILK LLV.	LL, IN IL	LI ADOVE I		AN VALUES		SCIODER 1.	304 TO DE	TEMBER 1.	303	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2.83	2.95	2.54	2.55	2.55	2.71	2.65	2.92	2.50	2.67	2.67	2.60
2	2.76	2.85	2.57	2.55	2.58	2.70	2.65	2.93	2.50	2.67	2.68	2.57
3	2.72	2.76	2.61	2,52	2.61	2.69	2.66	2.94	2.51	2.66	2.67	2.57
4	2.67	2.71	2.61	2.50	2,60	2.69	2.69	2.94	2.51	2.63	2.66	2.56
5	2.64	2.66	2.65	2.47	2.63	2.68	2.70	2.93	2.52	2.61	2.66	2.56
6	2.63	2.64	2.73	2.44	2.63	2.69	2.70	2.88	2.51	2.58	2.66	2.56
7	2.65	2,59	2.77	2.43	2.63	2.70	2.70	2.82	2.51	2.55	2.67	2.57
8	2.65	2.58	2.77	2.45	2.62	2.71	2.72	2.76	2.48	2.52	2.67	2.56
9	2.64	2.55	2.76	2.52	2.64	2.72	2.72	2.72	2.48	2.50	2.67	2.54
10	2.65	2.54	2.76	2.58	2.66	2.72	2.73	2.70	2.45	2.50	2.65	2.52
11	2.68	2.51	2.79	2.60	2.66	2.70	2.73	2.68	2.44	2.50	2.64	2.50
12	2.73	2.50	2.77	2.59	2.65	2.69	2.72	2.66	2.45	2.50	2.65	2.52
13	2.76	2.57	2.74	2.56	2.68	2.69	2.72	2.65		2.51		2.55
14	2.74	2.66	2.71	2.51	2.72	2.69	2.71	2.65	2.49	2.50	2.60	2.57
15	2.72	2.66	2.68	2.49	2.71	2.70	2.71	2.65	2.48	2.51	2.57	2.60
16	2.70	2.65	2.72	2.46	2.74	2.69	2.73	2.67	2.49	2.47	2.59	2.62
17	2.70	2.67	2.71	2.45	2.74	2.66	2.75	2.67	2.51	2.43	2.59	2.64
18	2.72	2.68	2.67	2.52	2.73	2.67	2.77	2.67	2.54	2.43	2.59	2.66
19	2.77	2.68	2.61	2.50	2.72	2.69	2.79	2.69	2.55	2.44	2.59	2.65
20	2.83	2.71	2.59	2.50	2.73	2.69	2.76	2.66	2.58	2.45	2.61	2.64
21	2.87	2.77	2.60	2.49	2.71	2.70	2.77	2.64	2.61	2.46	2.65	2.63
22	2.88	2.77	2.60	2.50	2.71	2.69	2.77	2.60	2.68	2.48	2.64	2.59
23	2.92	2.79	2.64	2.51	2.72	2.69	2.77	2.59	2.69	2.51	2.64	2.56
24	2.96	2.74	2.64	2.52	2.71	2.69	2.79	2.58	2.69	2.55	2,63	2.55
25	2.97	2.71	2.60	2.53	2.70	2.69	2.79	2.57	2.69	2.59	2.64	2.52
26	2.99	2.68	2.58	2.51	2.70	2.69	2.80	2.58	2.67	2.68	2.61	2.49
27	2.98	2.62	2.62	2.49	2.70		2.81	2.57	2.66	2.74	2.54	2.51
28	3.00	2.57		2.49	2.71		2.83	2.58	2.65	2.74	2.00	2.56
29	3.08	2.56	2.59	2.50		2.67	2.86	2.57	2.66	2.70	2.56	2.63
30	3.09	2.55	2.56	2.51		2.64	2.89	2.57	2.68	2.68	2.62	2.68
31	3.07		2.53	2.52		2.65		2.55		2.66	2.63	
MEAN	2.81	2.66	2.66	2.51	2.67	2.69	2.75	2.70	2.56	2.56	2.63	2.58
MAX	3.09	2.95	2.79	2.60	2.74	2.72	2.89	2.94	2.69	2.74	2.68	2.68
MIN	2.63	2.50	2.53	2.43	2.55		2.65	2.55	2.44	2.43	2.54	2.49

MIN

2.43

3.09

99 MARIANA ISLANDS, ISLAND OF GUAM

133047144500171. Local number, 18-3049-05 Well M-11.

LOCATION. -- Lat 13°30'49" N., long 144°49'58" E., Hydrologic Unit 20100003, at intersection of Harmon Loop School Road and Route 1 at Dededo. Owner: Public Utility Agency of Guam.

AQUIFER. -- Barrigada Limestone.

WTR YR 1985 MEAN

3.32

MAX

4.10

WELL CHARACTERISTICS.--Drilled basal water-table well, depth reported 325 ft, casing diameter 8 in.

DATUM.--Elevation of land-surface datum is 294 ft. Measuring point: Top of casing, 295.82 ft above mean sea level.

PERIOD OF RECORD. -- Water-level recorder, July 1977 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 4.76 ft above mean sea level, Oct. 2, 1980; lowest, 2.46 ft above mean sea level, Feb. 12, 1983.

	И	ATER LEVEL,	IN FEET	ABOVE M		VEL, WATER VALUES	YEAR	OCTOBER 1984	TO SE	PTEMBER 1985		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	3.82	3.58	3,21	3.11	3.15	3.23	3.14	3.42	3.17	3.54	3.47	3.44
2	3.70	3.48	3.22	3.11	3.19	3.23	3.18	3.43	3.16	3.47	3.44	3.42
3	3.60	3.39	3.25	3,10	3.21	3.20	3.22	3.44	3.15	3.41	3.42	3,40
4	3.52	3.33	3.25	3.08	3.22	3.17	3.25	3.43	3.13	3.37	3.41	3.50
5	3.46	3.29	3.27	3.06	3.23	3.17	3.25	3.41	3.12	3.33	3.41	3.52
6	3.42	3,26	3.32	3.05	3.24	3.21	3.23	3.35	3.10	3,29	3.68	3.44
7	3.39	3.23	3.40	3.05	3.23	3.25	3.23	3.31	3.10	3.26	3.81	3.41
8	3.37	3.21	3.44	3.06	3.22	3.26	3.26	3.30	3.08	3.23	3.42	3.38
9	3.35	3.18	3.44	3.11	3.23	3.27	3.28	3.27	3.08	3.19	3.40	3.34
10	3.34	3.15	3.46	3.15	3.24	3.27	3.26	3.23	3.06	3.15	3.38	3.31
11	3.35	3.13	3.48	3.17	3.24	3.25	3.24	3.19	3.05	3.14	3.38	3.29
12	3.38	3.13	3.47	3,23	3.23	3.22	3.22	3.17	3.06	3.15	3.38	3.31
13	3.39	3.15	3.44	3.21	3.24	3.23	3.22	3.13	3.09	3.15	3.35	3.34
14	3,38	3.24	3.39	3.20	3.28	3.21	3.22	3.12	3.07	3.13	3.32	3.35
15	3.34	3.51	3.35	3.19	3.26	3.23	3.22	3.12	3.07	3.14	3.30	3.71
16	3.32	3.63	3.36	3.17	3.28	3.22	3.23	3.13	3.07	3.12	3.40	4.06
17	3.32	3.61	3.35	3.18	3.30	3.19	3.26	3.13	3.09	3.10	3.34	4.06
18	3.32	3.73	3.32	3.19	3.33	3.20	3.29	3.13	3.31	3.09	3.30	3.91
19	3.36	3.88	3.28	3.17	3.27	3.26	3.27	3.16	3.76	3.10	3.36	3.79
20	3.42	3.82	3,25	3.15	3,28	3.26	3.23	3.33	3.69	3.10	3.56	3.68
21	3.45	3.74	3.24	3.15	3.28	3.27	3.22	3.45	3.61	3.12	3.54	3.60
22	3.47	3.67	3.26	3.14	3.27	3.26	3.25	3.45	3.62	3.14	3.49	3.51
23	3.50	3.62	3.27	3.19	3.28	3.24	3.26	3.39	3.77	3.16	3.44	3.43
24	3.53	3.55	3.26	3.20	3.26	3.24	3.26	3.34	3.76	3.20	3.39	3.37
25	3.55	3.49	3.24	3.20	3.24	3.24	3.28	3.36	3.68	3.26	3.38	3.38
26	3.57	3.44	3.21	3.17	3.22	3.25	3.27	3.34	3.58	3.31	3.34	3.41
27	3.58	3.36	3.22	3.13	3.23	3.28	3.29	3.31	3.53	3.37	3.32	3.42
28	3.58	3.30	3.22	3.12	3.24	3.24	3.31	3.29	3.54	3.45	3.31	3.44
29	3.66	3.26	3.19	3.12		3.19	3.34	3.28	3.55	3.52	3.50	3.54
30	3.69	3.23	3.15	3.13		3.16	3.39	3.23	3.55	3.51	3.70	4.10
31	3.69		3.11	3.13		3.14		3.20		3.49	3.50	
MEAN	3.48	3.42	3,30	3.14	3.25	3.23	3.25	3.29	3,32	3.26	3.43	3.53
MAX	3.82	3.88	3.48	3.23	3.33	3.28	3.39		3.77		3.81	4.10
MIN	3.32	3.13	3.11	3.05	3.15	3.14	3.14		3.05		3.30	3.29

MIN

3.05

MARIANA ISLANDS, ISLAND OF GUAM

133119144491771. Local number, 18-3149-05 Wettengel Exploratory Well Ex-7.

LOCATION.--Lat 13°31'19" N., long 144°49'17" E., Hydrologic Unit 20100003, 200 ft east of junction of Routes 1 and 3, Wettengel. Owner: Government of Guam.

AQUIFER . -- Barrigada Limestone.

WELL CHARACTERISTICS.--Drilled basal water-table well, sounded depth 698 ft, borehole diameter 8 in., casing diameter 6 in., cased to 10 ft.

DATUM.--Elevation of land-surface datum is 283 ft. Measuring point: Top of 6-inch diameter surface casing, 283.31 ft above mean sea level.

PERIOD OF RECORD . --

WATER LEVEL: Occasional measurements, August 1981 to May 1983.
Water-level recorder, June 1983 to current year.

WATER QUALITY: 1981 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 3.78 ft above mean sea level, Aug. 12, 1981, Aug. 28, 29, 1984; lowest, 2.78 ft above mean sea level, June 6, 7, 1983.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 MEAN VALUES

OCT 3.22	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
	4.000										
	3.40	3.00	3.11	3.10	3.16	3.12	3.31	2.89	3.10	3.10	3.06
3.16	3.24	3.03	3.11	3.14	3.15	3.13	3.33	2.88	3.07	3.10	3.05
3.09	3.14	3.07	3.08	3.16	3.13	3.17	3.33	2.87	3.02	3.09	3.06
3.08	3.10	3.08	3.05	3.15	3.11	3.21	3.33	2.88	3.02	3.07	3.04
3.07	3.07	3.11	3.03	3.17	3.12	3.21	3.30	2.88	2.99	3.07	3.04
3.07	3.03	3.18	3.00	3.17	3.15	3.20	3.23	2.88	2.96	3.07	3.04
3.08		3.22	2.99	3.17	3.19	3.19	3.17	2.87	2.93	3.08	3.03
3.10	3.01	3.24	3.02	3.16	3.20	3.21	3.14	2.86	2.91	3.10	3.01
3.09	2.98	3.24	3.08	3.18	3.21	3.23	3.11	2.84	2.88	3.09	3.00
3.09	2.98	3.28	3.13	3.19	3.21	3.23	3.08	2.82	2.87	3.07	2.97
3.13	2.95	3.30	3.14	3.19	3.19	3.21	3.06	2.82	2.88	3.06	2.96
								2.84	2.89	3.07	2.99
3.21	3.02	3.25	3.10	3.20	3.16		3.00	2.87	2.89	3.04	3.03
3.18	3.07	3.22	3.05	3.23	3.17		3.00	2.87	2.87	3.01	3.08
3.14	3.05	3.20	3.04	3.20	3.17	3.17	3.01	2.86	2.87	3.00	3.11
3.11	3.05	3.25	3.01	3.23	3.16	3.19	3.03	2.87	2.86	3.04	3.13
3.11	3.06	3.25	3.04	3.24	3.15	3.21	3.02	2.90	2.84	3.06	3.14
3.13	3.08	3.21	3.05	3.21	3.15	3.23	3.02	2.93	2.83	3.06	3.13
3.21	3.08	3.17	3.03	3.19	3.18	3.21	3.04	2.95	2.85	3.06	3.13
3.30	3.13	3.14	3.04	3.20	3.19	3.18	3.05	2.97	2.85	3.10	3.12
3.32	3.17	3.15	3.04	3.18	3.20	3,17	3.04	3.04	2.87	3.11	3.09
3.35	3.18	3.17	3.06	3.18	3.19	3.17	3.03	3.08	2.90	3.09	3.06
3.38	3.19	3.19	3.08	3.19	3.19	3.18	3.01	3.12	2.93	3.08	3.03
3.40	3.16	3.18	3.09	3.17	3.20	3.18	2.97	3.11	2.98	3.06	3.01
3.41	3.12	3.15	3.09	3.15	3,20	3.19	2.95	3.09	3.05	3,09	3.00
3.43	3.09	3.13	3.07	3.13	3.20	3.20	2.93	3.06	3.10	3.06	3.00
3.42	3.05	3.18	3.05	3.16	3.23	3.22	2.92	3.04	3.15	3.01	3.04
3.44	3.00	3.18	3.05	3.16	3.20	3.24	2.94	3.05	3.13	3.01	3.08
3.53	3.00	3.15	3.06		3.15	3.26	2.95	3.07	3.10	3.03	3.13
					3.13				3.07	3.09	3.17
3.51		3.09	3.07		3.12		2.90		3.08	3.09	
3.24	3.08	3.17	3.06	3.18	3.17	3.20	3.07	2.94	2.96	3.07	3.06
											3.17
3.07	2.95	3.00	2.99	3.10	3.11	3.12	2.90	2.82	2.83	3.00	2.96
	3.07 3.08 3.10 3.09 3.13 3.18 3.21 3.18 3.14 3.11 3.13 3.21 3.30 3.32 3.35 3.38 3.40 3.41 3.43 3.42 3.44 3.53 3.51 3.24 3.53	3.07 3.07 3.07 3.03 3.08 3.01 3.10 3.01 3.09 2.98 3.13 2.95 3.18 2.96 3.21 3.02 3.18 3.07 3.14 3.05 3.11 3.05 3.11 3.06 3.13 3.08 3.21 3.08 3.21 3.08 3.21 3.08 3.21 3.08 3.21 3.08 3.21 3.08 3.21 3.08 3.21 3.08 3.21 3.08 3.21 3.08 3.21 3.08 3.21 3.08 3.21 3.08 3.21 3.08 3.21 3.08 3.21 3.08 3.21 3.08 3.30 3.13	3.07 3.07 3.11 3.07 3.03 3.18 3.08 3.01 3.22 3.10 3.01 3.24 3.09 2.98 3.28 3.13 2.95 3.30 3.18 2.96 3.28 3.21 3.02 3.25 3.18 3.07 3.22 3.14 3.05 3.25 3.11 3.05 3.25 3.11 3.06 3.25 3.13 3.08 3.21 3.21 3.08 3.17 3.30 3.13 3.14 3.32 3.17 3.15 3.35 3.18 3.17 3.38 3.19 3.19 3.40 3.16 3.18 3.41 3.12 3.15 3.43 3.09 3.13 3.42 3.05 3.18 3.43 3.09 3.18 3.44 3.00 3.18 3.53 3.00 3.15 3.53 2.99 3.11 3.51 3.09 3.24 3.08 3.17 3.53 3.40 3.30	3.07 3.07 3.11 3.03 3.07 3.03 3.18 3.00 3.08 3.01 3.22 2.99 3.10 3.01 3.24 3.02 3.09 2.98 3.24 3.08 3.09 2.98 3.28 3.13 3.13 2.95 3.30 3.14 3.18 2.96 3.28 3.13 3.21 3.02 3.25 3.10 3.18 3.07 3.22 3.05 3.14 3.05 3.25 3.04 3.11 3.05 3.25 3.04 3.11 3.06 3.25 3.04 3.13 3.08 3.21 3.05 3.21 3.08 3.17 3.03 3.30 3.13 3.14 3.04 3.32 3.17 3.15 3.04 3.35 3.18 3.17 3.06 3.35 3.18 3.17 3.06 3.40 3.16 3.18 3.09 3.41 3.12	3.07 3.07 3.11 3.03 3.17 3.07 3.03 3.18 3.00 3.17 3.08 3.01 3.22 2.99 3.17 3.10 3.01 3.24 3.02 3.16 3.09 2.98 3.24 3.08 3.18 3.09 2.98 3.28 3.13 3.19 3.13 2.95 3.30 3.14 3.19 3.18 2.96 3.28 3.13 3.17 3.21 3.02 3.25 3.10 3.20 3.18 3.07 3.22 3.05 3.23 3.14 3.05 3.25 3.01 3.23 3.11 3.06 3.25 3.04 3.24 3.13 3.08 3.21 3.05 3.21 3.21 3.08 3.17 3.03 3.19 3.30 3.13 3.14 3.04 3.24 3.31 3.08 3.21 3.05 3.21 3.22 3.17 3.15 3.04 3.18	3.07 3.07 3.11 3.03 3.17 3.12 3.07 3.03 3.18 3.00 3.17 3.15 3.08 3.01 3.22 2.99 3.17 3.19 3.10 3.01 3.24 3.02 3.16 3.20 3.09 2.98 3.24 3.08 3.18 3.21 3.09 2.98 3.28 3.13 3.19 3.21 3.13 2.95 3.30 3.14 3.19 3.19 3.18 2.96 3.28 3.13 3.17 3.16 3.21 3.02 3.25 3.10 3.20 3.16 3.18 3.07 3.22 3.05 3.23 3.17 3.14 3.05 3.20 3.04 3.20 3.16 3.11 3.05 3.25 3.01 3.23 3.16 3.11 3.06 3.25 3.04 3.24 3.15 3.13 3.08 3.21 3.05 3.21 3.15 3.21 3.08 3.17 3.03	3.07 3.07 3.11 3.03 3.17 3.12 3.21 3.07 3.03 3.18 3.00 3.17 3.15 3.20 3.08 3.01 3.22 2.99 3.17 3.19 3.19 3.10 3.24 3.02 3.16 3.20 3.21 3.09 2.98 3.24 3.08 3.18 3.21 3.23 3.09 2.98 3.28 3.13 3.19 3.21 3.23 3.13 2.95 3.30 3.14 3.19 3.21 3.23 3.18 2.96 3.28 3.13 3.17 3.16 3.20 3.21 3.02 3.25 3.10 3.20 3.16 3.19 3.18 3.07 3.22 3.05 3.23 3.17 3.17 3.14 3.05 3.23 3.17 3.17 3.11 3.05 3.25 3.01 3.23 3.16 3.19 3.11 3.06 3.25 3.04 3.24 3.15 3.21 3.13 3.08 3.21 3.05 3.21 3.15 3.23 3.21 3.08 3.17 3.03 3.19 3.18 3	3.07 3.07 3.11 3.03 3.17 3.12 3.21 3.30 3.07 3.03 3.18 3.00 3.17 3.15 3.20 3.23 3.08 3.01 3.22 2.99 3.17 3.19 3.19 3.17 3.10 3.01 3.24 3.02 3.16 3.20 3.21 3.14 3.09 2.98 3.24 3.08 3.18 3.21 3.23 3.11 3.09 2.98 3.28 3.13 3.19 3.21 3.23 3.08 3.13 2.95 3.30 3.14 3.19 3.21 3.06 3.18 2.96 3.28 3.13 3.17 3.16 3.20 3.02 3.21 3.02 3.25 3.10 3.20 3.16 3.19 3.00 3.18 3.07 3.22 3.05 3.23 3.17 3.17 3.00 3.11 3.05 3.25 3.01 3.20 3.17 3.17 3.01 3.11 3.06 3.25 3.04 3.24 3.15 3.21 3.02 3.13 3.08 3.21 3.05 3.21 3.15 3.23 3.02 <	3.07 3.07 3.11 3.03 3.17 3.12 3.21 3.30 2.88 3.07 3.03 3.18 3.00 3.17 3.15 3.20 3.23 2.88 3.08 3.01 3.22 2.99 3.17 3.19 3.19 3.17 2.67 3.10 3.01 3.24 3.02 3.16 3.20 3.21 3.14 2.86 3.09 2.98 3.24 3.08 3.18 3.21 3.23 3.11 2.84 3.09 2.98 3.24 3.08 3.18 3.21 3.23 3.11 2.84 3.09 2.98 3.24 3.08 3.18 3.21 3.23 3.11 2.84 3.09 2.98 3.24 3.08 3.18 3.21 3.23 3.11 2.84 3.13 2.95 3.30 3.14 3.19 3.19 3.21 3.06 2.82 3.18 2.96 3.23 3.10 3.20 3.16 3.19 3.00 2.87 3.14 3.05 3.25 3.01 3.23 3.17 3.17 3.01 2.86 3.11 3.06 3.25 3.01 3.23	3.07 3.07 3.11 3.03 3.17 3.12 3.21 3.30 2.88 2.99 3.07 3.03 3.18 3.00 3.17 3.15 3.20 3.23 2.88 2.96 3.08 3.01 3.22 2.99 3.17 3.19 3.19 3.17 2.87 2.93 3.10 3.01 3.24 3.02 3.16 3.20 3.21 3.14 2.86 2.91 3.09 2.98 3.24 3.08 3.18 3.21 3.23 3.11 2.84 2.88 3.09 2.98 3.28 3.13 3.19 3.21 3.23 3.11 2.84 2.88 3.13 2.95 3.30 3.14 3.19 3.21 3.06 2.82 2.88 3.18 2.96 3.28 3.13 3.17 3.16 3.20 3.02 2.84 2.89 3.21 3.02 3.25 3.10 3.20 3.17 3	3.07 3.01 3.03 3.17 3.12 3.21 3.30 2.88 2.99 3.07 3.07 3.03 3.18 3.00 3.17 3.15 3.20 3.23 2.88 2.96 3.07 3.08 3.01 3.22 2.99 3.17 3.19 3.17 2.87 2.93 3.08 3.10 3.01 3.24 3.02 3.16 3.20 3.21 3.14 2.86 2.91 3.10 3.09 2.98 3.24 3.08 3.18 3.21 3.23 3.11 2.84 2.88 3.09 3.09 2.98 3.28 3.13 3.19 3.21 3.23 3.11 2.84 2.88 3.09 3.13 2.95 3.30 3.14 3.19 3.19 3.21 3.06 2.82 2.88 3.06 3.13 2.95 3.30 3.14 3.19 3.19 3.21 3.06 2.82 2.88 3.06 3.13 3.02 3.6 3.18 3.0 2.87 2.89 3.07<

WTR YR 1985 MEAN 3.10 MAX 3.53 MIN 2.82

101

133119144491771 - 18-3149-05 WETTENGEL EXP WELL EX-7, GUAM--Continued

MARIANA ISLANDS, ISLAND OF GUAM

			SPE-		CHLO-				SPE-		CHLO-
			CIFIC		RIDE,				CIFIC		RIDE,
		SAM-	CON-		DIS-			SAM-	CON-		DIS-
		PLING	DUC-	TEMPER-	SOLVED			PLING	DUC-	TEMPER-	SOLVED
	TIME	DEPTH	TANCE	ATURE	(MG/L		TIME	DEPTH	TANCE	ATURE	(MG/L
DATE		(FEET)	(US/CM)	(DEG C)	AS CL)	DATE		(FEET)	(US/CM)	(DEG C)	AS CL)
NOV						MAR					
05	1245	290	3810	28.0	1000	26	1145	415	6130	26.5	1800
05	1330	390	3570	27.0	950	26	1225	420	40600	26.5	15000
05	1415	410	3680	27.0	980	26	1305	430	46300	26.5	17000
05	1455	420	37100	27.0	13000	26,,,	1340	450	51700	26.5	20000
05	1540	430	45200	27.0	16000	26	1420	475	52000	26.5	20000
06	0810	415	30200	27.0	10000	JUN					
06	0850	450	51400	27.0	19000	03	1235	290	3570		950
06	0940	475	52400	27.5	19000	03	1305	390	3410		900
06	1025	500	52400	27.5	19000	03	1345	410	23400		7900
06	1110	550	52500	27.0	19000	03	1420	420	41000		15000
MAR						03	1455	430	45600		17000
26	1000	290	3670	27.0	1000	03	1530	450	50900		19000
26	1030	390	3450	26.5	950						
26	1105	410	4950	26.5	1400						

MARIANA ISLANDS, ISLAND OF GUAM

133224144495271. Local number, 18-3249-02 Finegayan Exploratory Well Ex-10.

LOCATION.--Lat 13°32'24" N., long 144°49'52" E., Hydrologic Unit 20100003, near NAVCAMS Housing area. Owner: Government of Guam.

AQUIFER. -- Barrigada Limestone.

WELL CHARACTERISTICS .-- Drilled basal water-table well, sounded depth 704.5 ft, uncased hole diameter 8 in.

DATUM.--Elevation of land-surface datum is 348 ft. Measuring point: Top of surface casing, 348.54 ft above mean sea level.

PERIOD OF RECORD . --

WATER LEVEL: Occasional measurements, September 1981 to May 1984.

Water-level recorder, June 1984 to current year.

WATER QUALITY: 1982 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 3.49 ft above mean sea level, Aug. 27, 1984; lowest measured, 1.97 ft above mean sea level, Feb. 24, 1983.

WAIL	K	LEVL,	TIM	FEEL	ADUVE	MEAN	SEA 1	LEVEL,	WAILK	ILAK	OCTUBER	1984	10	SEPIEMBER	1892
							ME	AN VALI	JES						

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2.82	2.91	2.57	2.69	2.64	2.74	2.68	2.92	2.53	2.72	2.78	2.65
2	2.76	2.79	2.62	2.67	2.70	2.73	2.69	2.94	2.53	2.67	2.78	2.64
3	2.69	2.71	2.67	2.63	2.70	2.71	2.74	2.94	2.55	2.65	2.76	2.63
4	2.68	2.68	2.66	2.62	2.69	2.69	2.77	2.93	2.53	2.63	2.75	2.61
5	2.65	2.65	2.71	2.60	2.71	2.71	2.77	2.88	2.54	2.62	2.74	2.58
6	2.67	2.60	2.77	2.58	2.70	2.73	2.75	2.81	2.54	2.58	2.74	2.58
7	2.68	2.57	2.81	2.60	2.69	2.76	2.75	2.76	2.52	2.57	2.75	2.58
8	2.70	2.57	2.80	2.62	2.69	2.77	2.80	2.73	2.51	2.54	2.78	2.56
9	2.69	2.54	2.80	2.68	2.73	2.78	2.80	2.68	2.49	2.52	2.73	2.55
10	2.69	2.53	2.83	2.73	2.74	2.78	2.80	2.65	2.47	2.51	2.69	2.51
11	2.73	2.50	2.85	2.72	2.73	2.74	2.78	2.63	2.49	2.53	2.69	2.51
12	2.78	2.50	2.81	2.71	2.71	2.71	2.78	2.60	2.52	2.53	2.71	2.55
13	2.81	2.54	2.77	2.67	2.75	2.71	2.77	2.58	2.54	2.53	2.69	2.59
14	2.78	2.58	2.73	2.61	2.77	2.72	2.77	2.57	2.52	2.51	2.67	2.62
15	2.74	2.56	2.74	2.60	2.74	2.74	2.77	2.58	2.50	2.53	2.69	2.66
16	2.72	2.55	2.79	2.54	2.79	2.73	2.78	2.60	2.51	2.51	2.72	2.68
17	2.73	2.57	2.79	2.61	2.80	2.71	2.80	2.58	2.53	2.50	2.72	2.70
18	2.76	2.59	2.75	2.59	2.76	2.73	2.82	2.58	2.55	2.50	2.71	2.68
19	2.81	2.63	2.69	2.58	2.74	2.76	2.82	2.59	2.56	2.52	2.71	2.67
20	2.90	2.67	2.67	2.57	2.76	2.76	2.77	2.61	2.61	2.54	2.75	2.67
21	2.92	2.70	2.67	2.58	2.75	2.78	2.75	2.58	2.69	2.55	2.75	2.65
22	2.95	2.72	2.69	2.62	2.76	2.77	2.76	2.58	2.72	2.58	2.72	2.59
23	2.98	2.73	2.71	2.63	2.77	2.77	2.77	2.57	2.77	2.62	2.68	2.56
24	3.00	2.70	2.68	2.63	2.75	2.77	2.77	2.55	2.75	2.67	2.68	2.54
25	3.01	2.66	2.68	2.63	2.73	2.77	2.78	2.53	2.72	2.76	2.70	2.53
26	3.04	2.63	2.69	2.61	2.71	2.76	2.79	2.53	2.68	2.81	2.68	2.53
27	3.01	2.59	2.75	2.58	2.73	2.80	2.80	2.53	2.66	2.84	2.63	2.56
28	3.05	2.58	2.73	2.59	2.74	2.74	2.83	2.56	2.68	2.80	2.64	2.59
29	3.15	2.58	2.70	2.60		2.70	2.85	2.57	2.70	2.74	2.65	2.63
30	3.13	2.56	2.67	2.62		2.69	2.88	2.55	2.73	2.74	2.72	2.66
31	3.09	122	2.64	2.60		2.68		2.54		2.76	2.69	
MEAN	2.84	2.62	2.72	2,62	2.73	2.74	2.78	2.65	2.59	2.62	2.71	2.60
MAX	3.15	2.91	2.85	2.73	2.80	2.80	2.88	2.94	2.77	2.84	2.78	2.70
MIN	2.65	2.50	2.57	2.54	2.64	2.68	2.68	2.53	2.47	2.50	2.63	2.51

WTR YR 1985 MEAN 2.69 MAX 3.15 MIN 2.47

MARIANA ISLANDS, ISLAND OF GUAM

133224144495271 - 18-3249-02 FINEGAYAN EXP WELL EX-10, GUAM--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

			SPE-		CHLO-				SPE-		CHLO-
			CIFIC		RIDE,				CIFIC		RIDE,
		SAM-	CON-		DIS-			SAM-	CON-		DIS-
		PLING	DUC-	TEMPER-	SOLVED			PLING	DUC-	TEMPER-	SOLVED
	TIME	DEPTH	TANCE	ATURE	(MG/L		TIME	DEPTH	TANCE	ATURE	(MG/L
DATE		(FEET)	(US/CM)	(DEG C)	AS CL)	DATE		(FEET)	(US/CM)	(DEG C)	AS CL)
NOV						JUN					
27	1045	365	1220	28.0	180	04	1015	365	1020	26.5	140
27	1120	400	1500	28.0	300	04	1050	430	1360	26.5	290
27	1200	430	1550	27.5	330	04	1130	450	4330	26.5	1200
27	1240	450	3810	27.5	1100	04	1210	460	18800	26.5	6100
27	1325	460	17200	27.0	5500	04	1250	470	32900	26.5	12000
27	1400	470	36600	27.0	13000	04	1330	480	48400	26.5	18000
27	1440	480	52200	27.0	19000	AUG					
27	1530	500	52700	27.0	20000	13	1210	365	886	27.0	120
MAR						13	1250	430	1310	27.0	250
28	1005	365	1040	27.0	150	13	1330	450	3940	26.5	1100
28	1040	400	1330	27.0	250	14	1025	460	18000	26.5	6000
28	1120	430	1400	27.0	280	14	1105	470	32900	26.5	12000
28	1200	450	4080	27.0	1100	14	1145	480	51200	26.5	19000
28	1240	460	20200	27.0	6600						
28	1325	470	36600	27.0	13000						
28	1455	485	52600	26.5	20000						

132615144470571. Local number, 18-2647-01 Father Duenas Well.

LOCATION.--Lat 13°26'15" N., long 144°47'05" E., Hydrologic Unit 20100003, at Father Duenas Memorial School, Chalan Pago-Ordot. Owner: Government of Guam.

AQUIFER .-- Mariana Limestone.

WELL CHARACTERISTICS. -- Drilled parabasal water-table well, casing diameter 8 in.

DATUM.--Elevation of land-surface datum is 179 ft. Measuring point: Top of casing, 179.86 ft above mean sea level.

PERIOD OF RECORD. -- March 1973 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 10.37 ft above mean sea level, Oct. 24, 1980; lowest measured, 6.08 ft above mean sea level, Aug. 5, 1980.

	WATER										
DATE	LEVEL										
OCT 4	7.41	JAN 14	7.43	MAR 21	7.34	MAY 9	7.10	JUL 26	7.29	SEP 26	7.91
NOV 20	7.97	MAR 1	7.31	APR 12	7.21	JUN 28	7.66	AUG 16	7.45		

MARIANA ISLANDS, ISLAND OF GUAM

132626144471771. Local number, 18-2647-12 Exploratory Well Ex-4.

LOCATION.--Lat 13°26'26" N., long 144°47'17" E., Hydrologic Unit 20100003, in Tai Mangilao near Father Duenas Memorial High School. Owner: Government of Guam.

AQUIFER. -- Argillaceous member of the Marianas Limestone.

WELL CHARACTERISTICS.--Drilled basal water-table well, sounded depth 400 ft, borehole diameter 8 in., casing diameter 6 in., cased to 400 ft.

DATUM.--Elevation of land-surface datum is 152 ft. Measuring point: Top of casing, 153.71 ft above mean sea level.

PERIOD OF RECORD . --

WATER LEVEL: Occasional measurements, March 1981 to April 1982, February 1983 to current year. Water-level recorder, May to November 1982.

WATER QUALITY: 1981, 1983 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 8.08 ft above mean sea level, Aug. 17, 1981; lowest, measured, 4.82 ft above mean sea level, Aug. 23, 1983.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

	WATER		WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
OCT 4	6.23	MAR 1	5.41	MAR 21	5.52	MAY 9	5.36	JUN 25	6.19	AUG 16	6.05
NOV 20	6.62	19	5.54	APR 12	5.39	JUN 5	5.21	JUL 26	5.63	SEP 26	6.79
JAN 14	6.21										

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUC- TANCE (US/CM)	TEMPER- ATURE (DEG C)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUC- TANCE (US/CM)	TEMPER- ATURE (DEG C)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
MAR						JUN					
19	1040	170	746	27.5	38	05	1035	380	33900	27.0	12000
19	1120	345	4950	27.0	1400	05	1110	390	44400	27.0	16000
19	1210	350	5400	27.5	1600	AUG					
19	1255	360	6620	27.5	2000	21	1000	170	764	27.5	55
19	1340	370	9100	27.5	2800	21	1035	300	756	27.0	56
19	1430	380	28800	27.5	10000	21	1105	340	757	27.0	55
19	1520	390	42500	27.5	16000	21	1150	350	821	27.0	80
JUN						21	1240	360	865	27.0	92
05	0805	170	746	27.0	42	21	1310	370	882	27.0	92
05	0830	340	6040	26.5	1800	21	1340	380	32000	27.0	11000
05	0900	350	6780	26.5	2000	21	1415	390	43600	27.0	16000
05	0930	360	8590	27.0	2600						
05	1000	370	11400	27.0	3500						

MARIANA ISLANDS, ISLAND OF GUAM

132758144450571. Local number, 18-2745-03 Agana Well 147.

LOCATION.--Lat 13°27'58" N., long 144°45'05" E., Hydrologic Unit 20100003, on Route 4, 0.6 mi south of junction of Routes 1 and 4 in Agana. Owner: Government of Guam.

AQUIFER .-- Mariana Limestone.

WELL CHARACTERISTICS.--Drilled basal water-table well, depth when drilled, 186 ft, when measured in May 1973, 29 ft, casing diameter 6 in.

DATUM.--Elevation of land-surface datum is 33 ft. Measuring point: Top of casing, 33.22 ft above mean sea level

PERIOD OF RECORD. --Occasional measurements, August 1955 to May 1960, January 1972 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 31.42 ft above mean sea level, Oct. 14, 1955; lowest measured, 6.83 ft above mean sea level, June 20, 1978.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

	WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
OCT 4	9.78	MAR 1	9.66	APR 12	9.19	JUN 28	11.95	AUG 16	11.18
NOV 20	12.12	21	9.42	MAY 9	8.91	JUL 26	11.37	SEP 26	11.80

132742144452971. Local number, 18-2745-07 Agana Springs.

LOCATION.--Lat 13°27'42" N., long 144°45'29" E., Hydrologic Unit 20100003, near Sinajana on the edge of Agana Swamp.

AQUIFER. -- Mariana Limestone.

WELL CHARACTERISTICS.--Basal ground water issues from an opening in the Mariana Limestone. The water level is measured in a pool with a concrete spillway.

DATUM. -- Elevation of land-surface datum is 10 ft. Measuring point: Edge of concrete spillway, 8.80 ft above mean sea level.

PERIOD OF RECORD. -- Occasional measurements, April 1974 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Lowest water level measured, 6.04 ft above mean sea level, June 8, 1984.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 4 NOV 20	f	JAN 14 MAR 1	f 8.57	MAR 21 APR 12	8.42 8.10	MAY 9 JUN 28	7.76	JUL 26 AUG 16	f	SEP 26	f

f Water overflowing spillway.

MARIANA ISLANDS, ISLAND OF GUAM

132736144461671. Local number, 18-2746-06 Chochogo Well Ex-1.

LOCATION.--Lat 13°27'36" N., long 144°46'16" E., Hydrologic Unit 20100003, near San Miguel School, Chochogo.

AQUIFER. -- Mariana Limestone: Agana argillaceous member.

WELL CHARACTERISTICS.--Drilled basal water-table well, sounded depth 597 ft, casing diameter 6 in, cased to 300 ft.

DATUM.--Elevation of land-surface datum is 94 ft. Measuring point: Top of PVC casing, 96.50 ft above mean sea level.

PERIOD OF RECORD . --

WATER LEVEL: Occational measurements, November 1980 to current year.

WATER QUALITY: 1981, 1983 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 9.52 ft above mean sea level, Sept. 28, 1982; lowest measured, 6.14 ft above mean sea level, June 22, 1983.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, OCTOBER 1984 TO SEPTEMBER 1985

	WATER		WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
NOV 20	9.10	MAR 1	8.27	APR 12	6.75	JUN 11	6.60	JUL 2	7.75	AUG 16	8.25
JAN 14	8.12	22	6.91	MAY 9	6.73	12	6.59	26	7.44	SEP 26	9.28

			SPE-		CHLO-				SPE-		CHLO-
			CIFIC		RIDE,			~***	CIFIC		RIDE,
		SAM-	CON-	MUMPED	DIS-			SAM-	CON-	mmunnn	DIS-
		PLING	DUC-	TEMPER-	SOLVED			PLING	DUC-	TEMPER-	SOLVED
5 700	TIME	DEPTH	TANCE	ATURE	(MG/L	2000	TIME	DEPTH	TANCE	ATURE	(MG/L
DATE		(FEET)	(US/CM)	(DEG C)	AS CL)	DATE		(FEET)	(US/CM)	(DEG C)	AS CL)
MAR						JUN					
22	0950	110	700	27.0	30	11	1425	250	3000	26.0	750
22	1015	200	1310	26.5	240	11	1450	270	4280	26.0	1100
22	1045	270	3600	26.5	950	11	1520	300	18500	26.0	5900
22	1115	300	17100	26.5	5500	11	1545	330	25300	26.0	8200
22	1145	330	23800	26.5	7900	11	1620	340	28800	26.0	9600
22	1215	340	26700	26.5	9200	12	1045	350	31400	26.0	11000
22	1245	350	31000	26.5	11000	12	1120	365	34900	26.0	12000
22	1310	365	34800	26.5	12000	12	1155	375	38700	26.0	14000
22	1340	375	38200	26.5	14000	12	1230	400	44300	26.0	16000
22	1415	400	44300	26.0	16000	12	1310	450	50000	26.0	18000
22	1445	450	49800	26.0	18000	12	1345	550	49800	26.0	19000
22	1520	550	50000	26.0	18000						
JUN											
11	1340	110	813	26.5	46						
11	1400	200	1340	26.0	220						

107 GROUND-WATER RECORDS MARIANA ISLANDS, ISLAND OF GUAM

133034144500871. Local number, 18-3050-05 Macheche Rd. Well Ex-6.

LOCATION.--Lat 13°30'34" N., long 144°50'08" E., Hydrologic Unit 20100003, in Macheche area, Dededo.

AQUIFER. -- Barrigada Limestone.

WELL CHARACTERISTICS.--Drilled basal water-table well, sounded depth 407 ft, uncased hole diameter 12 in. Well deepened to 462 ft on Aug. 7, 1981.

DATUM.--Elevation of land-surface datum is 309 ft. Measuring point: Top of surface casing, 309.41 ft above mean sea level.

PERIOD OF RECORD . --

WATER LEVEL: Occasional measurements, February 1978 to current year.

WATER QUALITY: 1982 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 4.09 ft above mean sea level, Aug. 16, 1978; lowest measured, 2.61 ft above mean sea level, Feb. 2, 1983.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

DATE	WATER LEVEL										
OCT 4	3.23	MAR 1	3.19	MAR 27	3.23	MAY 9	3.26	JUN 28	3.15	AUG 16	3.18
NOV 20	3.18	MAR 22	3.21	APR 12	3.28	JUN 10	2.93	JUL 26	3.22	SEP 26	3.04
JAN 14	3.01										

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUC- TANCE (US/CM)	TEMPER- ATURE (DEG C)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUC- TANCE (US/CM)	TEMPER- ATURE (DEG C)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
MAR						JUN					
27	1040	330	391	26.5	15	11	1115	445	41500	26.0	15000
27	1120	430	390	26.5	15	11	1155	450	50000	26.0	18000
27	1155	440	18100	26.5	6000	SEP					
27	1235	445	41500	26.0	15000	04	1055	330	404	26.5	13
27	1315	450	49700	26.0	18000	04	1130	425	397	26.5	14
27	1400	455	50300	26.0	18000	04	1210	430	398	26.0	13
JUN						04	1240	435	399	26.0	14
10	1405	330	428	26.0	40	04	1325	440	22500	26.0	7500
10	1445	425	402	26.0	14	04	1400	445	41300	26.0	15000
10	1525	430	395	26.0	14	04	1435	450	49900	26.0	18000
10	1610	435	401	26.0	15						
10	1655	440	20900	26.0	6800						

MARIANA ISLANDS, ISLAND OF GUAM

133115144484971. Local number, 18-3148-02 Harmon Well 1 (107).

LOCATION.--Lat 13°31'15" N., long 144°48'49" E., Hydrologic Unit 20100003, 500 ft north of junction of Routes 1 and 16, Dededo. Owner: Government of Guam.

AQUIFER. -- Mariana Limestone.

WELL CHARACTERISTICS .-- Drilled basal water-table well, sounded depth 289 ft, diameter 10 in.

DATUM.--Elevation of land-surface datum is 268 ft. Measuring point: Top of casing, 267.96 ft above mean sea level.

PERIOD OF RECORD.--Water-level recorder: March 1973 to May 1983.

Occasional measurements: June 1983 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 4.34 ft above mean sea level, May 22, 1976; lowest, 1.84 ft above mean sea level, Feb. 12, 1983.

	WATER										
DATE	LEVEL										
OCT 4	2.55	JAN 14	2.46	MAR 22	2.75	MAY 9	2.87	JUL 26	2.70	SEP 26	2.53
NOV 20	2,66	MAR 1	2.25	APR 12	2.92	JUN 28	2.69	AUG 16	2.77		

MARIANA ISLANDS, ISLAND OF GUAM

133120144505471. Local number, 18-3150-10 Ghura-Dededo Monitoring Well.

LOCATION.--Lat 13°31'20" N., long 144°50'54" E., Hydrologic Unit 20100003, in the Dededo Well Field, PUAG, Dededo. Owner: Government of Guam.

AQUIFER. -- Barrigada Limestone.

WELL CHARACTERISTICS .-- Drilled basal water-table well, sounded depth 785 ft, uncased hole diameter 12 in.

DATUM.--Elevation of land-surface datum is 393 ft. Measuring point: Top of surface casing, 393.90 ft above mean sea level.

PERIOD OF RECORD . --

WATER LEVEL: Water-level recorder, November 1982 to February 1983.

Occasional measurements, March 1980 to August 1982, March 1983 to current year.

WATER QUALITY: 1979 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 2.58 ft above mean sea level, April 12, 1985; lowest measured, 1.40 ft above mean sea level, Dec. 17, 1982.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 4	2.00	MAR 1	1.80	MAR 25	1.98	MAY 9	2.03	JUN 28	1.96	AUG 16	2.01
NOV 20	1.97	22	1.99	APR 12	2.58	JUN 7	1.65	JUL 26	2.05	SEP 26	1.90
JAN 14	1.80										

SAM- CON- DIS- SAM- CON- DIS- PLING DUC- TEMPER- SOLVED PLING DUC- TEMPER- SOL				SPE-		CHLO-				SPE-		CHLO-
PLING DUC- TEMPER- SOLVED PLING DUC- TEMPER- SOLVED DATE TIME DEPTH TANCE ATURE (MG/L TANCE TAN				CIFIC		RIDE,				CIFIC		RIDE,
TIME DEPTH TANCE ATURE (MG/L DATE (FEET) (US/CM) (DEG C) AS CL) MAR 25 1030 400 553 27.0 40 07 1150 500 641 26.5 25 1130 500 648 27.0 63 07 1245 520 7960 26.0 25 1240 520 7610 27.0 2300 07 1430 530 30900 26.0 125 1400 530 24600 26.5 8200 10 1030 510 622 26.5 25 1510 540 50000 26.5 18000 10 1220 540 49300 26.0 125 1620 550 52500 26.5 20000		S	SAM-	CON-		DIS-			SAM-	CON-		DIS-
DATE (FEET) (US/CM) (DEG C) AS CL) DATE (FEET) (US/CM) (DEG C) AS CL) MAR JUN 25 1030 400 553 27.0 40 07 1150 500 641 26.5 26.5 25 1130 500 648 27.0 63 07 1245 520 7960 26.0 26.0 25 1430 530 30900 26.0 10 10 1030 510 622 26.5 26.5 25 1510 540 50000 26.5 18000 10 1220 540 49300 26.0 10 25 1620 550 52500 26.5 20000 20.00		F	PLING	DUC-	TEMPER-	SOLVED			PLING	DUC-	TEMPER-	SOLVED
MAR JUN 25 1030 400 553 27.0 40 07 1150 500 641 26.5 25 1130 500 648 27.0 63 07 1245 520 7960 26.0 25 1240 520 7610 27.0 2300 07 1430 530 30900 26.0 1 25 1400 530 24600 26.5 8200 10 1030 510 622 26.5 25 1510 540 50000 26.5 18000 10 1220 540 49300 26.0 1 25 1620 550 52500 26.5 20000 10 1220 540 49300 26.0 1		TIME D	DEPTH	TANCE	ATURE	(MG/L		TIME	DEPTH	TANCE	ATURE	(MG/L
25 1030 400 553 27.0 40 07 1150 500 641 26.5 25 1130 500 648 27.0 63 07 1245 520 7960 26.0 25 1240 520 7610 27.0 2300 07 1430 530 30900 26.0 1 25 1400 530 24600 26.5 8200 10 1030 510 622 26.5 25 1510 540 50000 26.5 18000 10 1220 540 49300 26.0 1 25 1620 550 52500 26.5 20000	DATE	((FEET)	(US/CM)	(DEG C)	AS CL)	DATE		(FEET)	(US/CM)	(DEG C)	AS CL)
25 1130 500 648 27.0 63 07 1245 520 7960 26.0 25 1240 520 7610 27.0 2300 07 1430 530 30900 26.0 1 25 1400 530 24600 26.5 8200 10 1030 510 622 26.5 25 1510 540 50000 26.5 18000 10 1220 540 49300 26.0 1 25 1620 550 52500 26.5 20000	MAR						JUN					
25 1240 520 7610 27.0 2300 07 1430 530 30900 26.0 1 25 1400 530 24600 26.5 8200 10 1030 510 622 26.5 25 1510 540 50000 26.5 18000 10 1220 540 49300 26.0 1 25 1620 550 52500 26.5 20000	25	1030 4	400	553	27.0	40	07	1150	500	641	26.5	61
25 1400 530 24600 26.5 8200 10 1030 510 622 26.5 25 1510 540 50000 26.5 18000 10 1220 540 49300 26.0 1 25 1620 550 52500 26.5 20000	25	1130 5	500	648	27.0	63	07	1245	520	7960	26.0	2400
25 1510 540 50000 26.5 18000 10 1220 540 49300 26.0 1 25 1620 550 52500 26.5 20000	25	1240 5	520	7610	27.0	2300	07	1430	530	30900	26.0	11000
25 1620 550 52500 26.5 20000	25	1400 5	530	24600	26.5	8200	10	1030	510	622	26.5	56
	25	1510 5	540	50000	26.5	18000	10	1220	540	49300	26.0	18000
TYTAT	25	1620 5	550	52500	26.5	20000						
JUN	JUN											
07 1015 400 612 27.0 50	07	1015 4	400	612	27.0	50						
07 1100 480 614 27.0 54	07	1100 4	480	614	27.0	54						

110

MARIANA ISLANDS, ISLAND OF GUAM

133628144513271. Local number, 18-3651-05 Northwest Field Exploratory Well Ex-8.

LOCATION.--Lat 13°36'28" N., long 144°51'32" E., Hydrologic Unit 20100003, in old Air Force Housing area in Northwest Field.

AQUIFER. -- Barrigada Limestone.

WELL CHARACTERISTICS.--Drilled basal water-table well, sounded depth 658 ft, diameter 8 in.

DATUM.--Elevation of land-surface datum is 461 ft. Measuring point: Top of surface casing 462.49 ft above mean sea level.

PERIOD OF RECORD . --

WATER LEVEL: Occasional measurements, September 1981 to current year.

WATER QUALITY: 1982 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 2.86 ft above mean sea level, June 8, 1984; lowest, 1.88 ft above mean sea level, Feb. 28, 1983.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

		WATER			WATER		WATER
DATE		LEVEL	DAT	E	LEVEL	DATE	LEVEL
OCT 4	4	2.42	NOV	9	2.34	NOV 20	2.39

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUC- TANCE (US/CM)	TEMPER- ATURE (DEG C)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUC- TANCE (US/CM)	TEMPER- ATURE (DEG C)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
NOA						NOV					
09	1000	480	488	27.0	27	09	1400	605	30000	26.5	10000
09	1045	550	474	27.0	22	09	1445	610	38700	26.0	14000
09	1140	570	473	27.0	21	09	1530	630	51800	26.0	19000
09	1230	590	6410	27.0	1900						
09	1315	600	19600	26.5	6200						

MARIANA ISLANDS, ISLAND OF GUAM

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

133414144551871 - 18-3455-31 TEST HOLE D, GUAM

HARD- NESS, CALCIUM SIUM, SODIUM, AND SAM- PH NESS NONCAR- DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) 160 160 160 160	TEMPER- ATURE (DEG C) 25.0 24.5 24.5 24.5 24.5	SPE- CIFIC CON- DUC- TANCE (US/CM) 911 905 909 919 864	0900 1000 1100 1155 1200	DATE MAR 06 06 06 06		CHLO- RIDE, DIS- SOLVED (MG/L AS CL) 140 140 140 140	TEMPER- ATURE (DEG C) 26.5 26.5 26.5 25.0 25.0	SPE- CIFIC CON- DUC- TANCE (US/CM) 721 842 880 883 818	TIME 0030 0100 0130 0200 0300	DATE MAR 06 06 06
06 0600 854 24.5 150 29 1120 484 26.5 20 06 0700 906 25.0 150 06 0800 907 25.0 150 HARD- MAGNE- SODIUM, AI SAM- PH NESS NONCAR- DIS- DIS- DIS- SORI PLING (STAND- (MG/L BONATE SOLVED SOLVED SOLVED TIC TIME DEPTH ARD AS (MG/L (MG/L (MG/L (MG/L PERCENT RATE DATE (FEET) UNITS) CACO3) CACO3) AS CA) AS MG) AS NA) SODIUM MAY 29 1030 520 7.2 230 76 85 3.3 13 11 29 1120 550 7.3 240 82 90 3.8 12 10					MAY		150	25.0	891	0400	06
06 0700 906 25.0 150 06 0800 907 25.0 150 HARD- MAGNE- SODIUM, ALL SAM- PH NESS NONCAR- DIS- DIS- SORIUM SIUM, SODIUM, ALL SAM- PLING (STAND- (MG/L BONATE SOLVED SOLVED SOLVED TICE TIME DEPTH ARD AS (MG/L (MG/L (MG/L (MG/L PERCENT RATE (FEET) UNITS) CACO3) CACO3) AS CA) AS MG) AS NA) SODIUM MAY 29 1030 520 7.2 230 76 85 3.3 13 11 29 1120 550 7.3 240 82 90 3.8 12 10	19	26.5	475	1030	29		150	25.0	900	0500	06
06 0800 907 25.0 150 HARD- MAGNE- SODIUM, AI SAM- PH NESS NONCAR- DIS- DIS- DIS- PLING (STAND- (MG/L BONATE SOLVED SOLVED SOLVED TIC TIME DEPTH ARD AS (MG/L (MG/L (MG/L (MG/L PERCENT RATE DATE (FEET) UNITS) CACO3) CACO3) AS CA) AS MG) AS NA) SODIUM MAY 29 1030 520 7.2 230 76 85 3.3 13 11 29 1120 550 7.3 240 82 90 3.8 12 10	20	26.5	484	1120	29		150	24.5	854	0600	06
HARD- NESS, CALCIUM SIUM, SODIUM, SAM- PH NESS NONCAR- DIS- DIS- DIS- SORI PLING (STAND- (MG/L BONATE SOLVED SOLVED SOLVED TIC TIME DEPTH ARD AS (MG/L (MG/L (MG/L PERCENT RATE (FEET) UNITS) CACO3) CACO3) AS CA) AS MG) AS NA) SODIUM MAY 29 1030 520 7.2 230 76 85 3.3 13 11 29 1120 550 7.3 240 82 90 3.8 12 10							150	25.0	906	0700	06
29 1030 520 7.2 230 76 85 3.3 13 11 29 1120 550 7.3 240 82 90 3.8 12 10	SODIUM AD- SORP- TION RATIO		DIS- SOLVED (MG/L	SIUM, DIS- SOLVED (MG/L	DIS- SOLVED (MG/L	NESS, NONCAR- BONATE (MG/L	NESS (MG/L AS	(STAND- ARD	PLING DEPTH	TIME	
29 1120 550 7.3 240 82 90 3.8 12 10		4.4						4.2	500	1000	
	. 4										
SIUM, LINITY SULFATE RIDE, DIS- CONSTI- DIS- NO2+NO3 IRON, NESS DIS- LAB DIS- DIS- SOLVED TUENTS, SOLVED DIS- DIS- SOLVED (MG/L SOLVED SOLVED (MG/L DIS- (TONS SOLVED SOLVED SOLVED)	MANGA- NESE, DIS- SOLVED (UG/L	IRON, DIS- SOLVED	NITRO- GEN, NO2+NO3 DIS- SOLVED	SOLIDS, DIS- SOLVED (TONS	SOLIDS, SUM OF CONSTI- TUENTS, DIS-	SILICA, DIS- SOLVED (MG/L	FLUO- RIDE, DIS- SOLVED	SULFATE DIS- SOLVED	ALKA- LINITY LAB (MG/L	POTAS- SIUM, DIS- SOLVED	
그 그 그렇지는 그 계속 위 중에 모든 그리면서 계속 그렇다 되었다. 그 생각에서 하는 그 이번 사람들은 그 전에 가장하는 그 경영을 보고 그 때문에서 하는 그 일반에서 이렇게 되었다.	AS MN)										DATE
MAY 29 4.2 150 4.6 <.10 .6 220 .30 3.4 11	10	11	3.4	.30	220	.6	<.10	4.6	150	4.2	MAY 29
29 1.6 159 4.0 <.10 .6 230 .31 2.3 <3	11	<3	2.3	.31	230	.6	<.10	4.0	159	1.6	29

< Actual value is known to be less than the value shown.

MARIANA ISLANDS, ISLAND OF GUAM

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

133534144521271 - 18-3552-03 TEST HOLE A, GUAM

		SPE-		CHLO-				SPE-		CHLO-
		CIFIC		RIDE,				CIFIC		RIDE,
		CON-		DIS-				CON-		DIS-
		DUC-	TEMPER-	SOLVED				DUC-	TEMPER-	SOLVED
	TIME	TANCE	ATURE	(MG/L			TIME	TANCE	ATURE	(MG/L
DATE		(US/CM)	(DEG C)	AS CL)		DATE		(US/CM)	(DEG C)	AS CL)
DEC						DEC				
27	1315	196		18		27	1940	350		20
27	1345	290		19		MAY				
27	1600	255		18		29	1310	435	26.5	24
27	1700	247		18		29	1355	419	26.0	25
27	1800	215		18						
27	1900	215		18						
					HARD-		MAGNE-			SODIUM
				HARD-	NESS,	CALCIUM	SIUM,	SODIUM,		AD-
		SAM-	PH	NESS	NONCAR-	DIS-	DIS-	DIS-		SORP-
		PLING	(STAND-	(MG/L	BONATE	SOLVED	SOLVED	SOLVED		TION
	TIME	DEPTH	ARD	AS	(MG/L	(MG/L	(MG/L	(MG/L	PERCENT	RATIO
DATE		(FEET)	UNITS)	CACO3)	CACO3)	AS CA)	AS MG)	AS NA)	SODIUM	
MAY										
29	1310	480	7.3	200	53	78	2.0	14	13	. 4
29	1355	525	7.3	210	81	79	2.0	13	12	. 4
						SOLIDS,		NITRO-		
	POTAS-	ALKA-		FLUO-	SILICA,	SUM OF	SOLIDS,	GEN,		MANGA-
	SIUM,	LINITY	SULFATE	RIDE,	DIS-	CONSTI-	DIS-	NO2+NO3	IRON,	NESE,
	DIS-	LAB	DIS-	DIS-	SOLVED	TUENTS,	SOLVED	DIS-	DIS-	DIS-
	SOLVED	(MG/L	SOLVED	SOLVED	(MG/L	DIS-	(TONS	SOLVED	SOLVED	SOLVED
	(MG/L	AS	(MG/L	(MG/L	AS	SOLVED	PER	(MG/L	(UG/L	(UG/L
DATE	100 miles	CACO3)	AS SO4)	AS F)	SIO2)	(MG/L)	AC-FT)	AS N)	AS FE)	AS MN)
DATE	AS K)	CACO3)	AS SU4)	no r)	5102)	(FIG/L)	AC-FI)	MS N)	no re)	NO LIN)
MAY										
29	.60	150	5.3	<.10	.2	210	.29	.45	5	6
29	.70	125	4.2	<.10	.5	200	.27	.75	41	7

< Actual value is known to be less than the value shown.

MARIANA ISLANDS, ISLAND OF GUAM

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

133522144523971 - 18-3552-04 TEST HOLE B, GUAM

		SPE-		CHLO-				SPE-		CHLO-
		CIFIC		RIDE,				CIFIC		RIDE,
		CON-		DIS-				CON-		DIS-
		DUC-	TEMPER-	SOLVED				DUC-	TEMPER-	SOLVED
	TIME	TANCE	ATURE	(MG/L			TIME	TANCE	ATURE	(MG/L
DATE		(US/CM)	(DEG C)	AS CL)		DATE		(US/CM)	(DEG C)	AS CL)
JAN						MAY				
19	1400	462		36		29	1515	427	26.0	28
19	1500	465		36		29	1555	480	25.5	35
19	1600	467		38						
19	1700	467		38						
19	1800	397		39						
					HARD-		MAGNE-			SODIUM
				HARD-	NESS,	CALCIUM	SIUM,	SODIUM,		AD-
		SAM-	PH	NESS	NONCAR-	DIS-	DIS-	DIS-		SORP-
		PLING	(STAND-	(MG/L	BONATE	SOLVED	SOLVED	SOLVED		TION
	TIME	DEPTH	ARD	AS	(MG/L	(MG/L	(MG/L	(MG/L	PERCENT	RATIO
DATE		(FEET)	UNITS)	CACO3)	CACO3)	AS CA)	AS MG)	AS NA)	SODIUM	
MAY										
29	1515	480	7.4	170	55	66	2.4	16	17	.6
29	1555	510	7.3	200	73	71	5.6	21	18	.7
						SOLIDS,		NITRO-		
	POTAS-	ALKA-		FLUO-	SILICA,	SUM OF	SOLIDS,	GEN,		MANGA-
	SIUM,	LINITY	SULFATE	RIDE,	DIS-	CONSTI-	DIS-	NO2+NO3	IRON,	NESE,
	DIS-	LAB	DIS-	DIS-	SOLVED	TUENTS,	SOLVED	DIS-	DIS-	DIS-
	SOLVED	(MG/L	SOLVED	SOLVED	(MG/L	DIS-	(TONS	SOLVED	SOLVED	SOLVED
	(MG/L	AS	(MG/L	(MG/L	AS	SOLVED	PER	(MG/L	(UG/L	(UG/L
DATE	AS K)	CACO3)	AS SO4)	AS F)	SIO2)	(MG/L)	AC-FT)	AS N)	AS FE)	AS MN)
MAY										
29	.60	120	4.5	<.10	.3	190	. 26	.26	6	2
29	.90	128	6.2	<.10	.3	220	.29	.32	7	3

< Actual value is known to be less than the value shown.

MARIANA ISLANDS, ISLAND OF GUAM

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

133513144523771 - 18-3552-05 TEST HOLE C, GUAM

		SPE-		CHLO-				SPE-		CHLO-
		CIFIC		RIDE,				CIFIC		RIDE,
		CON-		DIS-				CON-		DIS-
		DUC-	TEMPER-	SOLVED				DUC-	TEMPER-	SOLVED
	TIME	TANCE	ATURE	(MG/L			TIME	TANCE	ATURE	(MG/L
DATE		(US/CM)	(DEG C)	AS CL)		DATE		(US/CM)	(DEG C)	AS CL)
MAR						MAR				
15	1525	720	26.0	92		15	2100	2140	26.0	540
15	1600	872	26.0	150		15	2200	2280	26.0	570
15	1630	954	26.0	170		15	2230	2310	26.0	580
15	1700	1150	26.0	230		MAY				
15	1800	1440	26.0	310		30	1140	463	27.0	30
15	1900	1680	26.0	390		30	1230	568	26.0	60
15	2000	1960	26.0	470						
									4	
					HARD-		MAGNE-			SODIUM
				HARD-	NESS,	CALCIUM	SIUM,	SODIUM,		AD-
		SAM-	PH	NESS	NONCAR-	DIS-	DIS-	DIS-		SORP-
		PLING	(STAND-	(MG/L	BONATE	SOLVED	SOLVED	SOLVED		TION
	TIME	DEPTH	ARD	AS	(MG/L	(MG/L	(MG/L	(MG/L	PERCENT	RATIO
DATE		(FEET)	UNITS)	CACO3)	CACO3)	AS CA)	AS MG)	AS NA)	SODIUM	
MAY										
30	1140	475	7.2	200	70	75	2.7	17	16	.6
30	1230	540	7.2	210	55	75	5.3	35	27	1
						SOLIDS,		NITRO-		
	POTAS-	ALKA-		FLUO-	SILICA,	SUM OF	SOLIDS,	GEN		MANGA-
	SIUM,	LINITY	SULFATE	RIDE,	DIS-	CONSTI-	DIS-	NO2+NO3	IRON,	NESE.
	DIS-	LAB	DIS-	DIS-	SOLVED	TUENTS,	SOLVED	DIS-	DIS-	DIS-
	SOLVED	(MG/L	SOLVED	SOLVED	(MG/L	DIS-	(TONS	SOLVED	SOLVED	SOLVED
	(MG/L	AS	(MG/L	(MG/L	AS	SOLVED	PER	(MG/L	(UG/L	(UG/L
DATE	AS K)	CACO3)	AS SO4)	AS F)	SI02)	(MG/L)	AC-FT)	AS N)	AS FE)	AS MN)
MAY										
30	.60	129	5.3	<.10	.3	210	.28	,33	5	9
30	1.3	154	8.8	<.10	. 4	280	.38	. 56	16	5

< Actual value is known to be less than the value shown.</p>

MARIANA ISLANDS, ISLAND OF GUAM

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

133513144532171 - 18-3553-01 TEST HOLE E, GUAM

DATE FEB 14 14 14 14 14 14 14	1100 1130 1200 1230 1300 1330 1400 1430	SPE- CIFIC CON- DUC- TANCE (US/CM) 437 440 438 440 440 441 442 443	TEMPER- ATURE (DEG C)	CHLO-RIDE, DIS-SOLVED (MG/L AS CL) 30 31 31 31 31 31		DATE FEB 14 14 14 MAY 30 30	1530 1600 1630 1700 0910 0955	SPE- CIFIC CON- DUC- TANCE (US/CM) 446 445 450 452	TEMPER- ATURE (DEG C)	CHLO-RIDE, DIS-SOLVED (MG/L AS CL) 32 33 33 34
14	1500	446 SAM-	PH	31 HARD-	HARD- NESS, NONCAR-	CALCIUM DIS-	MAGNE- SIUM, DIS-	SODIUM, DIS-		SODIUM AD- SORP-
DATE	TIME	PLING DEPTH (FEET)	(STAND- ARD UNITS)	(MG/L AS CACO3)	BONATE (MG/L CACO3)	SOLVED (MG/L AS CA)	SOLVED (MG/L AS MG)	SOLVED (MG/L AS NA)	PERCENT SODIUM	TION RATIO
MAY										
30 30	0910 0955	465 520	7.3 7.3	180 180	55 34	70 67	2.1	13 15	13 15	. 4
	POTAS- SIUM, DIS- SOLVED (MG/L	ALKA- LINITY LAB (MG/L AS	SULFATE DIS- SOLVED (MG/L	FLUO- RIDE, DIS- SOLVED (MG/L	SILICA, DIS- SOLVED (MG/L AS	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED	SOLIDS, DIS- SOLVED (TONS PER	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L	IRON, DIS- SOLVED (UG/L	MANGA- NESE, DIS- SOLVED (UG/L
DATE	AS K)	CACO3)	AS SO4)	AS F)	SI02)	(MG/L)	AC-FT)	AS N)	AS FE)	AS MN)
	Visit He	10000000	A CONTRACTOR AND A	7				7.7.43		
MAY										
30	1.1	129	3.9	<.10	.3	190	.26	. 57	5	3
30	.80	144	3.9	<.10	. 4	200	.27	.63	5	5

< Actual value is known to be less than the value shown.

MARIANA ISLANDS, ISLAND OF GUAM

	LOCAL IDENT-	LAT-	LONG-	DATE		SPE- CIFIC CON-		CHLO- RIDE, DIS-
	I-	I-	I-	OF		DUC-	TEMPER-	SOLVED
STATION NUMBER	FIER	TUDE	TUDE	SAMPLE	TIME	TANCE	ATURE	(MG/L
						(US/CM)	(DEG C)	AS CL)
133031144482371	18-3048-06	13 30 31	144 48 23	02-21-85	1110	720		78
133047144504671	18-3050-01	13 30 47	144 50 46	02-21-85	7=	594	-1	49
133047144510171	18-3051-01	13 30 47	144 51 01	02-21-85	1045	561		42
133041144515271	18-3051-02	13 30 41	144 51 52	02-21-85	1015	539		45
133044144523771	18-3052-03	13 30 44	144 52 37	02-21-85	0924	534	.22,	50
133043144522671	18-3052-04	13 30 43	144 52 26	02-21-85	0933	593	+-	65
133043144521471	18-3052-05	13 30 43	144 52 14	02-21-85	0950	491		31
133042144520471	18-3052-06	13 30 42	144 52 04	02-21-85	1005	528		42
133103144511571	18-3151-01	13 31 03	144 51 15	02-21-85	1034	540		30
133338144553971	18-3355-01	13 33 38	144 55 39	02-21-85	1115	514	75	24
133601144541571	18-3654-01	13 36 01	144 54 15	03-08-85	0830	1070	25.5	230
				04-11-85	1125	1110	26.0	220
				05-09-85	1145	1090	24.0	210
				05-30-85	1000	1050	24.0	200
				09-27-85	1100	1080		210

117 CAROLINE ISLANDS, YAP ISLANDS

092919138045670. Local number, 25-2904-01 Yugamanman Well 1 (Fraq-Lamaer), Yap.

LOCATION. -- Lat 09°29'19" N., long 138°04'57" E., Hydrologic Unit 20100006, 800 ft southwest of the Communication Station, and 800 ft northwest of the U.S. Weather Bureau station.

AQUIFER. -- Tamil Volcanics.

WELL CHARACTERISTICS .-- Drilled water-table well, depth reported 92 ft, diameter 6 in.

DATUM. -- Elevation of land-surface datum is 42 ft. Measuring point: Top of casing, 42.68 ft above mean sea level.

PERIOD OF RECORD . --

WATER LEVEL: Occasional measurements, July 1982 to current year.

WATER QUALITY: 1984 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 32.09 ft above mean sea level, Sept. 23, 1983; lowest measured, 12.24 ft above mean sea level, May 13, 1983.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

	WATER										
DATE	LEVEL										
OCT 16	30.34	NOV 28	29.04	FEB 7	27.69	APR 17	24.91	MAY 29	25.07	AUG 19	32.16
OCT 18	30.06	DEC 18	27.15	FEB 27	25.82	MAY 8	25.91	JUL 23	27.48	SEP 11	28.95
NOV 13	28.52	JAN 14	30.50	MAR 12	25.96						

		SPE-				HARD-		MAGNE-			SODIUM
		CIFIC			HARD-	NESS,	CALCIUM	SIUM,	SODIUM,		AD-
		CON-	PH		NESS	NONCAR-	DIS-	DIS-	DIS-		SORP-
		DUC-	(STAND-	TEMPER-	(MG/L	BONATE	SOLVED	SOLVED	SOLVED		TION
	TIME	TANCE	ARD	ATURE	AS	(MG/L	(MG/L	(MG/L	(MG/L	PERCENT	RATIO
DATE		(US/CM)	UNITS)	(DEG C)	CACO3)	CACO3)	AS CA)	AS MG)	AS NA)	SODIUM	
MAR											
27	1320	39	6.6	29.0	6	0	1.6	.43	4.9	63	.9
	POTAS-	ALKA-		CHLO-	FLUO-	SILICA,	SOLIDS, SUM OF	SOLIDS.	NITRO- GEN,		MANGA-
	SIUM.	LINITY	SULFATE	RIDE.	RIDE.	DIS-	CONSTI-	DIS-	NO2+NO3	IRON.	NESE.
	DIS-	LAB	DIS-	DIS-	DIS-	SOLVED	TUENTS.	SOLVED	DIS-	DIS-	DIS-
	SOLVED	(MG/L	SOLVED	SOLVED	SOLVED	(MG/L	DIS-	(TONS	SOLVED	SOLVED	SOLVED
	(MG/L	AS	(MG/L	(MG/L	(MG/L	AS	SOLVED	PER	(MG/L	(UG/L	(UG/L
DATE	AS K)	CACO3)	AS SO4)	AS CL)	AS F)	SIO2)	(MG/L)	AC-FT)	AS N)	AS FE)	AS MN)
MAR											
27	.40	7.0	. 8	5.6	<.10	.5	18	.03	<.10	14	24

< Actual value is known to be less than the value shown.

118

GROUND-WATER RECORDS

CAROLINE ISLANDS, YAP ISLANDS

092918138045470. Local number, 25-2904-02 Yugamanman Well 2 (Faraq-Lamaer), Yap.

LOCATION.--Lat 09°29'18" N., long 138°04'54" E., Hydrologic Unit 20100006, 1,000 ft southwest of the Communication Station, and 1,000 ft northwest of the U.S. Weather Bureau Station.

AQUIFER . -- Tamil Volcanics.

WELL CHARACTERISTICS. -- Drilled water-table well, depth reported 84 ft, diameter 6 in.

DATUM. -- Elevation of land-surface datum is 37 ft. Measuring point: Top of casing, 38.83 ft above mean sea level.

PERIOD OF RECORD . --

WATER LEVEL: Occasional measurements, July 1982 to current year. WATER QUALITY: 1984 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 28.75 ft above mean sea level, Aug. 8, 1983; lowest measured, 12.04 ft above mean sea level, May 13, 1983.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

DATE	WATER LEVEL										
OCT 16	28.44	NOV 28	27.15	FEB 7	26.18	APR 17	24.08	MAY 29	22.05	AUG 19	28.09
OCT 18	28.05	DEC 18	25.81	FEB 27	24.88	MAY 8	24.95	JUL 23	26.09	SEP 11	27.39
NOV 13	26 77	TAN 14	28 36	MAR 12	25 01						

	TIME	SPE- CIFIC CON- DUC- TANCE	PH (STAND- ARD	TEMPER-	HARD- NESS (MG/L AS	HARD- NESS, NONCAR- BONATE (MG/L	CALCIUM DIS- SOLVED (MG/L	MAGNE- SIUM, DIS- SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L	PERCENT	SODIUM AD- SORP- TION RATIO
DATE	TITIL	(US/CM)	UNITS)	(DEG C)	CACO3)	CACO3)	AS CA)	AS MG)	AS NA)	SODIUM	MIIO
MAR 27	1340	51	6.8	29.0	10	0	2.6	.97	4.9	48	.7
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
MAR 27	.70	14	. 4	4.5	<.10	1.3	24	.03	<.10	100	170

< Actual value is known to be less than the value shown.

CAROLINE ISLANDS, YAP ISLANDS

092915138050270. Local number, 25-2905-01 Timlang Well 1, Yap.

LOCATION.--Lat 09°29'15" N., long 138°05'02" E., Hydrologlic Unit 20100006, 900 ft south of the Communication Station, and 300 ft southwest of the U.S. Weather Bureau Station.

AQUIFER . -- Tamil Volcanics.

WELL CHARACTERISTICS. -- Drilled water-table well, depth reported 70 ft, diameter 6 in.

DATUM.--Elevation of land-surface datum is 41 ft. Measuring point: Top of casing, 42.65 ft above mean sea level.

PERIOD OF RECORD. -- Occasional measurements, July 1982 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 39.14 ft above mean sea level, Oct. 16, 1984; lowest measured, 11.19 ft above mean sea level, May 13, 1983.

	WATER										
DATE	LEVEL										
OCT 16	39.14	NOV 28	36.26	FEB 7	34.05	APR 17	29.06	MAY 29	30.22	AUG 19	38.17
OCT 18	38.64	DEC 18	33.37	FEB 27	31.33	MAY 7	31.69	JUL 23	33.60	SEP 11	35.40
NOV 13	35.53	JAN 14	38.87	MAR 12	30.68						

120

GROUND-WATER RECORDS

CAROLINE ISLANDS, YAP ISLANDS

092920138050270. Local number, 25-2905-02 Timlang Well 2, Yap.

LOCATION.--Lat 09°29'18" N., long 138°05'01" E., Hydrologic Unit 20100006, 600 ft south of the Communication Station, and 300 ft west of the U.S. Weather Bureau Station.

AQUIFER . -- Tamil Volcanics.

WELL CHARACTERISTICS. -- Drilled water-table well, depth reported 80 ft, diameter 6 in.

DATUM.--Elevation of land-surface datum is 39 ft. Measuring point: Top of casing, 40.43 ft above mean sea level.

PERIOD OF RECORD . --

WATER LEVEL: Occasional measurements, July 1982 to current year.

WATER QUALITY: 1984 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 36.83 ft above mean sea level, Oct. 16, 1984; lowest measured, 11.38 ft above mean sea level, May 13, 1983.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

	WATER										
DATE	LEVEL										
OCT 16	36.83	NOV 28	33.47	FEB 7	31.25	APR 17	26.90	MAY 29	26.96	AUG 19	34.72
OCT 18	35.53	DEC 18	30.46	FEB 27	27.86	MAY 8	28.47	JUL 23	31.21	SEP 11	33.16
NOV 13	32.52	JAN 14	35.89	MAR 12	28.18						

		SPE- CIFIC	-		HARD-	HARD- NESS,	CALCIUM	MAGNE- SIUM,	SODIUM,		SODIUM AD-
		CON-	PH	444	NESS	NONCAR-	DIS-	DIS-	DIS-		SORP-
		DUC-	(STAND-	TEMPER-	(MG/L	BONATE	SOLVED	SOLVED	SOLVED	Cal Carte	TION
2.00	TIME	TANCE	ARD	ATURE	AS	(MG/L	(MG/L	(MG/L	(MG/L	PERCENT	RATIO
DATE		(US/CM)	UNITS)	(DEG C)	CACO3)	CACO3)	AS CA)	AS MG)	AS NA)	SODIUM	
MAR											
27	1250	40	6.4	29.5	5	1	1.2	.50	4.6	64	.9
							SOLIDS,		NITRO-		
	POTAS-	ALKA-		CHLO-	FLUO-	SILICA,	SUM OF	SOLIDS,	GEN,		MANGA-
	SIUM,	LINITY	SULFATE	RIDE,	RIDE,	DIS-	CONSTI-	DIS-	NO2+NO3	IRON,	NESE,
	DIS-	LAB	DIS-	DIS-	DIS-	SOLVED	TUENTS,	SOLVED	DIS-	DIS-	DIS-
	SOLVED	(MG/L	SOLVED	SOLVED	SOLVED	(MG/L	DIS-	(TONS	SOLVED	SOLVED	SOLVED
	(MG/L	AS	(MG/L	(MG/L	(MG/L	AS	SOLVED	PER	(MG/L	(UG/L	(UG/L
DATE	AS K)	CACO3)	AS SO4)	AS CL)	AS F)	SIO2)	(MG/L)	AC-FT)	AS N)	AS FE)	AS MN)
MAR											
27	.40	4.0	1.3	7.1	<.10	.0	18	.02	<.10	23	160

< Actual value is known to be less than the value shown.

CAROLINE ISLANDS, YAP ISLANDS

092616138050670. Local number 25-2905-03 Timlang Well 3, Yap

LOCATION.--Lat 09°29'16" N., long 138°05'05" E., Hydrologic Unit 20100006, 800 ft south-southeast of the Communication Station, and 100 ft southeast of the U.S. Weather Bureau Station.

AQUIFER . -- Tamil Volcanics.

WELL CHARACTERISTICS. -- Drilled water-table well, depth reported 88 ft, diameter 6 in.

DATUM. -- Elevation of land-surface datum is 43 ft. Measuring point: Top of casing, 44.22 ft above mean sea level.

REMARKS. -- Water level affected by pumping of nearby well.

PERIOD OF RECORD . --

WATER LEVEL: Occasional measurements, September 1982 to current year.

WATER QUALITY: 1982, 1984.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 37.52 ft above mean sea level, Oct. 16, 1984; lowest measured, 12.76 ft above mean sea level, May 13, 1983.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

DATE	WATER LEVEL										
OCT 16	37.52	NOV 28	32.47	FEB 7	31.61	APR 17	28.80	MAY 29	28.89	AUG 19	35.67
OCT 18	35.58	DEC 18	30.89	FEB 27	28.62	MAY 7	29.68	JUL 23	32.12	SEP 11	31.70
NOV 13	32.19	JAN 4	32.92	MAR 12	29,91						

092926138050470. Local number, 25-2905-06 Communication Well 2, Yap.

LOCATION.--Lat 09°29'25" N., long 138°05'03" E., Hydrologic Unit 20100006, 75 ft north of the Communication Station.

AQUIFER. -- Tamil Volcanics.

WELL CHARACTERISTICS. -- Drilled water-table well, depth reported 81 ft, diameter 2 in.

DATUM. -- Elevation of land-surface datum is 39 ft. Measuring point: Top of casing, 39.40 ft above mean sea level.

PERIOD OF RECORD. -- Occasional measurements, December 1981 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 33.40 ft above mean sea level, June 8, 1982; lowest measured, 9.90 ft above mean sea level, May 27, 1983.

	WATER										
DATE	LEVEL										
OCT 16	29.11	NOV 28	28.18	FEB 7	26.93	APR 17	23.85	MAY 29	23.44	AUG 19	29.53
OCT 18	29.33	DEC 18	26.18	FEB 27	24.59	MAY 7	24.87	JUL 23	26.87	SEP 11	28.59
NOV 13	27.62	JAN 14	29.52	MAR 12	24.58						

CAROLINE ISLANDS, YAP ISLANDS

093159138095870. Local number 25-3109-01 Monguch Well 1, Gagil-Tamil.

LOCATION.--Lat 09°31'59" N., long 138°09'58" E., Hydrologic Unit 20100006, 0.6 mi northeast of the Tamilang Elementary School, and 1.0 mi south of the Coast Guard LORAN Station.

AQUIFER. -- Tamil Volcanics.

WELL CHARACTERISTICS. -- Drilled observation well, depth reported 85 ft, diameter 5 in.

DATUM.--Elevation of land-surface datum is 19.5 ft. Measuring point: Top of casing, 21.38 ft above mean sea level.

PERIOD OF RECORD. -- Occasional measurements, July 1982 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, overflowing casing for many days each year; lowest measured, 18.19 ft above mean sea level, May 12, 1983.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

	WATER		WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
OCT 15	f	NOV 29	£	FEB 6	f	MAR 14	21.18	MAY 8	21.28	AUG 20	f
OCT 19	21.13	DEC 13	20.50	FEB 26	21.38	APR 17	a20.28	JUN 4	f	SEP 16	f
NOV 8	f	JAN 15	f								

093159138095870. Local number, 25-3109-02 Monguch Well 2, Gagil-Tamil.

LOCATION.--Lat 09°31'59" N., long 138°09'58" E., Hydrologic Unit 20100006, 0.6 mi north of the Tamilang Elementary School, and 1.0 mi south of the Coast Guard LORAN Station.

AQUIFER. -- Tamil Volcanics.

WELL CHARACTERISTICS.--Drilled water-table well, depth reported 95 ft, diameter 6 in.

DATUM. -- Elevation of land-surface datum is 24 ft. Measuring point: Top of casing, 26.47 ft above mean sea level.

PERIOD OF RECORD. -- Occasional measurements, July 1982 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 24.79 ft above mean sea level, Aug. 10, 1984; lowest measured, 20.19 ft above mean sea level, May 12, 1983.

DATE	WATER LEVEL										
OCT 15	24.38	NOV 29	24.55	FEB 6	24.49	APR 17	22.91	JUN 4	24.19	AUG 20	23.94
OCT 19	24.00	DEC 13	22.18	FEB 26	23.98	MAY 8	23.90	JUL 22	24.32	SEP 16	23.87
NOV 8	24.68	JAN 15	23.40	MAR 14	23.78						

f Water overflowing casing.

a Well being pumped

CAROLINE ISLANDS, YAP ISLANDS

093157138095670. Local number, 25-3109-03 Thilung Well 1 (Monguch 3), Gagil-Tamil.

LOCATION.--Lat 09°31'57" N., long 138°09'56" E., Hydrologic Unit 20100006, 0.6 mi north of the Tamilang Elementary School, and 1.1 mi south of the Coast Guard LORAN Station.

AQUIFER. -- Tamil Volcanics.

WELL CHARACTERISTICS. -- Drilled water-table well, depth reported 115 ft, diameter 6 in.

DATUM. -- Elevation of land-surface datum is 26 ft. Measuring point: Top of casing, 28.16 ft above mean sea level.

PERIOD OF RECORD. -- Occasional measurements, July 1982 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 27.03 ft above mean sea level, Aug. 20, 1985; lowest measured, 22.58 ft above mean sea level, Dec. 13, 1984.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

DATE	WATER LEVEL										
OCT 15	25.67	NOV 29	26.57	FEB 6	23.99	APR 17	24.89	JUN 4	26.09	AUG 20	27.03
OCT 19	25.98	DEC 13	22.58	FEB 26	25.87	MAY 8	25.78	JUL 22	26.30	SEP 16	25.86
NOV 8	26.76	JAN 15	22.93	MAR 14	25.62						

093154138095370. Local number, 25-3109-04 Thilung Well 2 (Monguch 4), Gagil-Tamil.

LOCATION.--Lat 09°31'54" N., long 138°09'53" E., Hydrologic Unit 20100006, 0.5 mi north of the Tamilang Elementary School, and 1.1 mi south of the Coast Guard LORAN Station.

AQUIFER. -- Tamil Volcanics.

WELL CHARACTERISTICS. -- Drilled water-table well, depth reported 105 ft, diameter 6 in.

DATUM. -- Elevation of land-surface datum is 33 ft. Measuring point: Top of casing, 34.82 ft above mean sea level.

PERIOD OF RECORD. -- Occasional measurements, July 1982 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 30.58 ft above mean sea level, Aug. 20, 1985; lowest measured, 22.95 ft above mean sea level, May 12, 1983.

DATE	WATER	DATE	WATER	DATE	WATER	DATE	WATER	DAME	WATER	DATE	WATER
DATE	LEVEL										
OCT 15	28.82	NOV 29	29.12	FEB 6	28.45	APR 17	27.05	JUN 4	28.43	AUG 20	30.58
OCT 19	29.33	DEC 13	28.08	FEB 26	28.19	MAY 8	28.10	JUL 22	28.73	SEP 16	28.47
NOV 8	29.40	JAN 15	29.12	MAR 14	27.89						

CAROLINE ISLANDS, YAP ISLANDS

093217138101270. Local number, 25-3210-01 Mukong Well, Gagil-Tamil.

LOCATION.--Lat 09°32'17" N., long 138°10'12" E., Hydrologic Unit 20100006, 0.6 mi south of the Coast Guard LORAN Station, and 1.1 mi north-northeast of the Tamilang Elementary School.

AQUIFER. -- Coral formation in the Tamil-Volcanics.

WELL CHARACTERISTICS.--Drilled water-table well, depth reported 120 ft, diameter 6 in.

DATUM.--Elevation of land-surface datum is 24 ft. Measuring point: Top of casing, 25.83 ft above mean sea level.

PERIOD OF RECORD . --

WATER LEVEL: Occasional measurements, July 1982 to current year.

WATER QUALITY: 1984.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 16.19 ft above mean sea level, Sept. 1, 1982; lowest measured, 12.68 ft above mean sea level, May 12, 1983.

	WATER										
DATE	LEVEL										
OCT 15	15.51	NOV 29	15.60	FEB 6	15.77	APR 17	14.80	JUN 4	15.31	AUG 20	15.30
OCT 19	15.71	DEC 13	15.44	FEB 26	15.11	MAY 8	15.10	JUL 22	14.44	SEP 16	15.99
NOV 8	15.83	JAN 15	15.80	MAR 14	14.99						

CAROLINE ISLANDS, TRUK ISLANDS

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

065013152422170 - 30-5042-03 PIS-LOSAP W9, TRUK IS.

DA MAR 04		(US/	IC N- PH C- (STA CE AR CM) UNIT	ND- TEMP D ATU S) (DEG	RE AS	S NONC. /L BONA (MG	S, CALC AR- DIS TE SOL /L (MG	- DI VED SOL /L (MG CA) AS	UM, SODI S- DIS VED SOLV /L (MG	- ED /L NA)
									SOLIDS,	
		SODIUM	POTAS-	ALKA-		CHLO-	FLUO-	SILICA,	SUM OF	SOLIDS,
		AD-	SIUM,	LINITY	SULFATE	RIDE,	RIDE,	DIS-	CONSTI-	DIS-
		SORP-	DIS-	LAB	DIS-	DIS-	DIS-	SOLVED	TUENTS,	SOLVED
	DEDGENT	TION	SOLVED	(MG/L	SOLVED	SOLVED	SOLVED	(MG/L	DIS-	(TONS
DATE	PERCENT	RATIO	(MG/L	AS	(MG/L	(MG/L	(MG/L	AS	SOLVED	PER
DATE	SODIUM		AS K)	CACO3)	AS SO4)	AS CL)	AS F)	SIO2)	(MG/L)	AC-FT)
MAR										
04	11	. 4	15	257	12	19	.20	3.2	320	. 44
	NITRO-	ALUM-		DADTINA	BERYL-	CARMITINA	CHRO-	CODATE	CORRER	TRON
	GEN, NO2+NO3	INUM, TOTAL		BARIUM, TOTAL	LIUM,	CADMIUM	MIUM,	COBALT,	COPPER,	IRON,
	DIS-	RECOV-	ARSENIC	RECOV-	TOTAL RECOV-	TOTAL RECOV-	TOTAL RECOV-	TOTAL RECOV-	TOTAL RECOV-	TOTAL RECOV-
	SOLVED	ERABLE	TOTAL	ERABLE	ERABLE	ERABLE	ERABLE	ERABLE	ERABLE	ERABLE
	(MG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L
DATE	AS N)	AS AL)	AS AS)	AS BA)	AS BE)	AS CD)	AS CR)	AS CO)	AS CU)	AS FE)
MAR										
04	6.1	90	<1	200	<10	<1	10	1	6	190
				MANGA-		MOLYB-				
		LEAD,	LITHIUM	NESE,	MANGA-	DENUM,	NICKEL,		SILVER,	ZINC,
	IRON,	TOTAL	TOTAL	TOTAL	NESE,	TOTAL	TOTAL	SELE-	TOTAL	TOTAL
	DIS-	RECOV-	RECOV-	RECOV-	DIS-	RECOV-	RECOV-	NIUM,	RECOV-	RECOV-
	SOLVED	ERABLE	ERABLE	ERABLE	SOLVED	ERABLE	ERABLE	TOTAL	ERABLE	ERABLE
	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L
DATE	AS FE)	AS PB)	AS LI)	AS MN)	AS MN)	AS MO)	AS NI)	AS SE)	AS AG)	AS ZN)
MAR										
04	35	<1	80	60	<1	<1	4	<1	<1	20

< Actual value is known to be less than the value shown.

CAROLINE ISLANDS, TRUK ISLANDS

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

065336152440270 - 30-5344-01 LOSAP W6, TRUK IS.

DATE	TIME	SPE- CIFIC CON- DUC- TANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (NTU)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
MAR										
06	1030	1090	7.1	27.0	7.1	410	12	130	20	67
									SOLIDS,	
		SODIUM	POTAS-	ALKA-	222.0750	CHLO-	FLUO-	SILICA,	SUM OF	SOLIDS,
		AD-	SIUM,	LINITY	SULFATE	RIDE,	RIDE,	DIS-	CONSTI-	DIS-
		SORP-	DIS- SOLVED	LAB (MG/L	DIS- SOLVED	DIS-	DIS-	SOLVED	TUENTS,	SOLVED
	PERCENT	TION RATIO	(MG/L	AS	(MG/L	SOLVED (MG/L	SOLVED (MG/L	(MG/L AS	DIS- SOLVED	(TONS PER
DATE	SODIUM	MIIO	AS K)	CACO3)	AS SO4)	AS CL)	AS F)	SIO2)	(MG/L)	AC-FT)
MAR										
06	25	2	18	396	36	83	.30	6.3	600	.81
	NITRO-	ALUM-			BERYL-		CHRO-			
	GEN,	INUM,		BARIUM,	LIUM,	CADMIUM	MIUM,	COBALT,	COPPER,	IRON,
	NO2+NO3	TOTAL		TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL
	DIS-	RECOV-	ARSENIC	RECOV-	RECOV-	RECOV-	RECOV-	RECOV-	RECOV-	RECOV-
	SOLVED	ERABLE	TOTAL	ERABLE	ERABLE	ERABLE	ERABLE	ERABLE	ERABLE	ERABLE
	(MG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L
DATE	AS N)	AS AL)	AS AS)	AS BA)	AS BE)	AS CD)	AS CR)	AS CO)	AS CU)	AS FE)
MAR										
06	6.5	50	2	200	<10	<1	20	<1	7	110
				MANGA-		MOLYB-				
		LEAD,	LITHIUM	NESE,	MANGA-	DENUM,	NICKEL,		SILVER,	ZINC,
	IRON,	TOTAL	TOTAL	TOTAL	NESE,	TOTAL	TOTAL	SELE-	TOTAL	TOTAL
	DIS-	RECOV-	RECOV-	RECOV-	DIS-	RECOV-	RECOV-	NIUM,	RECOV-	RECOV-
	SOLVED	ERABLE	ERABLE	ERABLE	SOLVED	ERABLE	ERABLE	TOTAL	ERABLE	ERABLE
	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L
DATE	AS FE)	AS PB)	AS LI)	AS MN)	AS MN)	AS MO)	AS NI)	AS SE)	AS AG)	AS ZN)
MAR										
06	70	<1	110	20	- 1	1	6	<1	<1	30

< Actual value is known to be less than the value shown.

CAROLINE ISLANDS, TRUK ISLANDS

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

065932152344570 - 30-5934-01 NAMA W3, TRUK IS.

		SPE-				HARD-		MAGNE-		
		CIFIC			HARD-	NESS,	CALCIUM	SIUM,	SODIUM,	
		CON-	PH		NESS	NONCAR-	DIS-	DIS-	DIS-	
		DUC-	(STAND-	TEMPER-	(MG/L	BONATE	SOLVED	SOLVED	SOLVED	
	TIME	TANCE	ARD	ATURE	AS	(MG/L	(MG/L	(MG/L	(MG/L	
DATE	111111	(US/CM)	UNITS)	(DEG C)	CACO3)	CACO3)	AS CA)	AS MG)	AS NA)	
Dilli		(00/01)	UNITE,	(DEO C)	011000)	011000)	no on,	no no,	110 1111)	
MAR										
03	1005	8000	7.3	27.0	1100	810	180	160	1300	
		37.5				7.27				
									SOLIDS,	
		SODIUM	POTAS-	ALKA-		CHLO-	FLUO-	SILICA,	SUM OF	SOLIDS,
		AD-	SIUM,	LINITY	SULFATE	RIDE,	RIDE,	DIS-	CONSTI-	DIS-
		SORP-	DIS-	LAB	DIS-	DIS-	DIS-	SOLVED	TUENTS,	SOLVED
		TION	SOLVED	(MG/L	SOLVED	SOLVED	SOLVED	(MG/L	DIS-	(TONS
	PERCENT	RATIO	(MG/L	AS	(MG/L	(MG/L	(MG/L	AS	SOLVED	PER
DATE	SODIUM		AS K)	CACO3)	AS SO4)	AS CL)	AS F)	SIO2)	(MG/L)	AC-FT)
MAR										
03	71	17	48	304	330	2300	.40	1.8	4500	6.1
	NTMDO	47.174					arma			
	NITRO-	ALUM-		Dinting	BERYL-		CHRO-	GOD LE M	CORRER	TROW
	GEN,	INUM,		BARIUM,	LIUM,	CADMIUM	MIUM,	COBALT,	COPPER,	IRON,
	NO2+NO3 DIS-	TOTAL RECOV-	ARSENIC	TOTAL RECOV-	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL
	SOLVED	ERABLE	TOTAL	ERABLE	RECOV- ERABLE	RECOV- ERABLE	RECOV- ERABLE	RECOV- ERABLE	RECOV- ERABLE	RECOV- ERABLE
	(MG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L
DATE	AS N)	AS AL)	AS AS)	AS BA)	AS BE)	AS CD)	AS CR)	AS CO)	AS CU)	AS FE)
DAIL	no ny	AD ALL)	AD AD	AD DA)	AD DL)	AS CD)	AS CK)	AS CO)	Ab Cu)	AS FE)
MAR										
03	1.6	200	<1	200	<10	2	20	<1	2	690
				MANGA-		MOLYB-				
		LEAD,	LITHIUM	NESE,	MANGA-	DENUM,	NICKEL,		SILVER,	ZINC,
	IRON,	TOTAL	TOTAL	TOTAL	NESE,	TOTAL	TOTAL	SELE-	TOTAL	TOTAL
	DIS-	RECOV-	RECOV-	RECOV-	DIS-	RECOV-	RECOV-	NIUM,	RECOV-	RECOV-
	SOLVED	ERABLE	ERABLE	ERABLE	SOLVED	ERABLE	ERABLE	TOTAL	ERABLE	ERABLE
	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L
DATE	AS FE)	AS PB)	AS LI)	AS MN)	AS MN)	AS MO)	AS NI)	AS SE)	AS AG)	AS ZN)
And the										
MAR			223			1.5	- 4			212
03	70	<1	290	30	20	1	7	<1	<1	20

< Actual value is known to be less than the value shown.

CAROLINE ISLANDS, TRUK ISLANDS

						SPE-		CHLO-
	LOCAL					CIFIC		RIDE,
	IDENT-	LAT-	LONG-	DATE		CON-		DIS-
	I-	I-	I-	OF		DUC-	TEMPER-	SOLVED
STATION NUMBER	FIER	TUDE	TUDE	SAMPLE	TIME	TANCE	ATURE	(MG/L
						(US/CM)	(DEG C)	AS CL)
070000152342970	30-0034-01 NAMA W9	07 00 00	152 34 29	03-03-85	0930	750	26,5	21
072658151511970	30-2650-01 W1 MOEN	07 26 46	151 50 56	10-24-84	1320	152	28.5	12
072654151511870	30-2650-02 W2 MOEN	07 26 50	151 50 55	10-24-84	1340	151	28.0	12
				02-11-85	1445	178	24.5	14
072702151512570	30-2651-01 W7 MOEN	07 26 54	151 51 01	02-11-85	1650	354	24.5	31
072706151512470	30-2651-03 W12 MOEN	07 26 58	151 51 00	10-24-84	1500	570	29.0	110
				02-11-85	1705	391	24.5	41
072708151512170	30-2750-03 W13 MOEN	07 27 01	151 50 56	10-24-84	1420	205	28.5	20
				02-11-85	1545	239	24.5	18
072710151512570	30-2751-01 W15 MOEN	07 27 03	151 51 01	10-24-84	1515	225	29.0	19
				02-11-85	1630	230		16
065018152422170	30-5042-01 PIS-LOSAP W4	06 50 18	152 42 21	03-01-85	1450	1150	27.0	130
065016152420970	30-5042-02 PIS-LOSAP W7	06 50 16	152 42 09	03-04-85	1515	855	28.0	92
065015152420970	30-5042-04 PIS-LOSAP W14	06 50 15	152 42 09	03-04-85	1600	1700	27.0	270
065017152422370	30-5042-05 PIS-LOSAP W19	06 50 17	152 42 23	03-05-85	1005	660	27.0	39
065341152435870	30-5343-01 LOSAP W23	06 53 41	152 43 58	03-06-85	1015	3000	26.5	700
065334152440370	30-5344-02 LOSAP W4	06 53 34	152 44 03	03-06-85	0805	3700	27.0	880
065335152440370	30-5344-03 LOSAP W5	06 53 35	152 44 03	03-06-85	0815	1650	27.0	230
065337152440470	30-5344-04 LOSAP W9	06 53 37	152 44 04	03-06-85	0840	2200	27.5	430
065934152344170	30-5934-02 NAMA W2	06 59 34	152 34 41	03-03-85	0830	5900	27.0	1700

MARSHALL ISLANDS, MAJURO ATOLL

070849171011001. Local number, 50-0802-03 Laura DW3, Majuro.

LOCATION.--Lat 07°08'49"N., long 171°01'10"E., Hydrologic Unit 20100006, near Laura village on the Lagoon side 700 ft southwest of elementary school.

AQUIFER. -- Coral sand.

WELL CHARACTERISTICS .-- Dug well, oil drum casing.

DATUM. -- Elevation of land-surface datum is 6 ft. Measuring point: Hole in recorder platform base, 7.59 ft above mean sea level.

PERIOD OF RECORD . --

WATER LEVEL: Water level recorder, May 1984 to current year. WATER QUALITY: 1984 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 3.27 ft above mean sea level, Jan. 4, 1985; lowest, 0.82 ft above mean se level, Sept. 10, 1984.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, MAY TO SEPTEMBER 1984 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1								1.00	1.13	1.26	1.14	1.02
2								1.02	1.12	1.23	1.20	.99
3								1.03	1.11	1.22	1.26	.95
3 4								1.04	1.10	1.21	1.30	.92
5								1.04	1.08	1.21	1.28	.90
6								1.02	1.07	1.20	1.24	.88
7								.98	1.06	1.18	1.20	. 87
8								.94	1.06	1.16	1.19	.86
9								.95	1.07	1.19	1.17	.85
10								.96	1.09	1.22	1.15	.86
11								.99	1.09	1.21	1.14	.87
12								1.02	1.09	1.22	1.13	.89
13								1.04	1.09	1.22	1.11	.91
14								1.07	1.09	1.25	1.10	.94
15								1.12	1.07	1,25	1.08	.96
16								1.15	1.05	1.21	1.07	.98
17								1.17	1.03	1.17	1.05	1.00
18								1.17	1.02	1.14	1.05	1.00
19								1.15	1.03	1.12	1.04	1.01
20								1.15	1.03	1.11	1.02	1.02
21								1.14	1.05	1.15	.99	1.12
22								1.12	1.05	1.17	.98	1.20
23								1.11	1.05	1.17	.99	1.22
24								1.13	1.06	1.13	.99	1.23
25								1.16	1.07	1.12	.99	1.24
26								1.17	1.09	1.10	1.01	1.24
27								1.17	1.12	1.08	1.02	1.27
28								1.17	1.25	1.07	1.03	1.37
29								1.15	1.28	1.07	1.04	1.79
30								1.13	1.27	1.07	1.05	2.13
31								1.13		1.10	1.05	
MEAN								1.08	1.09	1.17	1.10	1.08
MAX								1.17	1.28	1.26	1.30	2.13
MIN								.94	1.02	1.07	.98	. 85

MARSHALL ISLANDS, MAJURO ATOLL

070849171011001. Local number, 50-0802-03 Laura DW3, Majuro--Continued.

WATER LEVEL,	IN F	EET AI	BOVE	MEAN	SEA	LEVEL,	WATER	YEAR	OCTOBER	1984	TO	SEPTEMBER	1985
					MI	TANT TATE	TEC						

					THISTI	A ANTOES						
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1.95	1.52	1.83	1.98	1.45	2.84	1.54	1.30	1.34	1.25	1.25	1.66
2	1.81	1.56	1.83	1.84	1.45	2.59	1.51	1.28	1.32	1.18	1.28	1.62
3	1.71	1.80	1.89	2.05	1.45	2.39	1.48	1.27	1.28	1.19	1.30	1.56
4	1.61	1.76	2,55	3.15	1.44	2.24	1.48	1.28	1.23	1.19	1.29	1.49
5	1.52	1.72	2.70	2.88	1.44	2.11	1.66	1.28	1.24	1.17	1.28	1.43
6	1.70	1.68	2.45	2.60	1.45	2.01	1.78	1,26	1.31	1.17	1.27	1.37
7	1.81	1.98	2.32	2.38	1.57	1.93	2.23	1.32	1.27	1.20	1.26	1.32
8	1.79	1.94	2.10	2.19	1.77	1.87	2.53	1.35	1.20	1.18	1.26	1.28
9	1.86	1.90	2.00	2.43	1.77	1.80	2.36	1.32	1.15	1,13	1.25	1.32
10	1.93	1.86	1.92	2.29	1.74	1.77	2.20	1.28	1.18	1.12	1.38	1,53
11	1.92	1.98	1.84	2.08	1.68	1.72	2.07	1.37	1.29	1.18	1.73	1.53
12	1.86	1.94	1.77	1.92	1.74	1.69	1.93	1.48	1.34	1.36	2.02	1.51
13	1.78	1.90	1.72	1.79	1.88	1.66	1.81	1.46	1.38	1.38	2.02	1.48
14	1.72	1.86	1.85	1.67	1.87	1.62	1.71	1.38	1.82	1.32	1.93	1.50
15	1.68	2.10	1.87	1.57	1.80	1.57	1.64	1.35	1.93	1.42	2.55	1.52
16	1.66	2.32	1.86	1.48	1.76	1.54	1.65	1.33	1.72	1.62	2.81	1.56
17	1.90	2.54	1.85	1.42	1.82	1.52	1.83	1.32	1.58	1.54	2.58	1.57
18	2.12	2.56	1.84	1.36	2.07	1.49	2.37	1.31	1.48	1.43	2.38	1.56
19	2.06	2.38	1.82	1.33	2.35	1.47	2.25	1.31	1.42	1.73	2.21	1.56
20	2.00	2.33	1.79	1.30	2.40	1.45	2.06	1.30	1.35	2.16	2.06	1.54
21	1.94	2.24	1.77	1.27	2.31	1.45	1.93	1.30	1.31	2.04	1.93	1.51
22	1.88	2.15	1.72	1.28	2.32	1.46	1.82	1.30	1.25	1.87	1.82	1.50
23	1.85	2.05	1.69	1.30	2.67	1.55	1.72	1.28	1.23	1.74	1.68	1.49
24	1.88	1.95	1.67	1.31	2.96	1.85	1.62	1.24	1.18	1.64	1.56	1.51
25	1.90	2.22	1.56	1.32	2.85	1.85	1.53	1.23	1.23	1.55	1.46	1.58
26	1.83	2.30	1.81	1.35	2.59	1.80	1.43	1.27	1.53	1.46	1.40	1.67
27	1.75	2.10	2.52	1.37	2.47	1.75	1.37	1.29	1.54	1.40	1.38	1.91
28	1.68	1.95	2.70	1.37	3.00	1.70	1.32	1.32	1.43	1.35	1.42	2.07
29	1.64	1.87	2.49	1.35		1.65	1.28	1.32	1.34	1.28	1.77	2.30
30	1.60	1.87	2.30	1.37		1.60	1.29	1.33	1.30	1.24	1.73	2.45
31	1.56		2.14	1.43		1.56		1.35		1.22	1.68	
MEAN	1.80	2.01	2.01	1.76	2.00	1.79	1.78	1.32	1.37	1.41	1.71	1.60
MAX	2.12	2.56	2.70	3.15	3.00	2.84	2.53	1.48	1.93	2.16	2.81	2.45
MIN	1.52	1.52	1.56	1.27	1.44	1.45	1.28	1.23	1.15	1.12	1.25	1.28

		SPE- CIFIC CON-		DI-		MALA-	METHYL PARA-	METHYL TRI-	PARA-	TOTAL
		DUC-	TEMPER-	AZINON,	ETHION,	THION,	THION,	THION,	THION,	TRI-
DATE	TIME	TANCE (US/CM)	(DEG C)	TOTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L)	THION (UG/L)
		(US/CM)	(DEG C)	(06/1)	(UG/L)	(00/1)	(UG/L)	(00/11)	(UG/L)	(UG/L)
AUG 06	1120	551	27.5	<.01	<.01	<.01	<.01	<.01	<.01	<.01

< Actual value is known to be less than the value shown.

131

MARSHALL ISLANDS, MAJURO ATOLL

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

070841171011801 - 50-0802-01 LAURA DW1, MAJURO

		SPE-								
		CIFIC					METHYL	METHYL		
		CON-		DI-		MALA-	PARA-	TRI-	PARA-	TOTAL
		DUC-	TEMPER-	AZINON,	ETHION,	THION,	THION,	THION,	THION,	TRI-
	TIME	TANCE	ATURE	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	THION
DATE		(US/CM)	(DEG C)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)
AUG										
06	1055	656	28.5	<.01	< .01	<.01	<.01	<.01	<.01	<.01

070850171021901 - 50-0802-02 LAURA DW2, MAJURO

		SPE-							
		CIFIC				METHYL	METHYL		
		CON-	DI-		MALA-	PARA-	TRI-	PARA-	TOTAL
		DUC-	AZINON,	ETHION,	THION,	THION,	THION,	THION,	TRI-
	TIME	TANCE	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	THION
DATE		(US/CM)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)
AUG									
06	1010	741	<.01	<.01	<.01	<.01	<.01	<.01	<.01

< Actual value is known to be less than the value shown.

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

070854171011201 - 50-0802-04 LAURA DW4, MAJURO

		SPE-								
		CIFIC					METHYL	METHYL		
		CON-		DI-		MALA-	PARA-	TRI-	PARA-	TOTAL
		DUC-	TEMPER-	AZINON,	ETHION,	THION,	THION,	THION,	THION,	TRI-
	TIME	TANCE	ATURE	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	THION
DATE		(US/CM)	(DEG C)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)
AUG										
06	1030	765	27.5	<.01	<.01	<.01	<.01	<.01	<.01	<.01

< Actual value is known to be less than the value shown.

	LOCAL IDENT- I-	LAT- I-	LONG- I-	DATE OF		SAM- PLING	SPE- CIFIC CON- DUC-	TEMPER-	CHLO- RIDE, DIS- SOLVED
STATION NUMBER	FIER	TUDE	TUDE	SAMPLE	TIME	DEPTH (FEET)	TANCE (US/CM)	ATURE (DEG C)	(MG/L AS CL)
070835171021501	50-0802-05 LAURA A-37	07 08 35	171 02 15	01-31-85	1245		2290	29.0	480
				04-13-85	1225	5 -	2000	25.0	400
				06-12-85	1225		2140	28.5	420
				08-10-85	1020		1990	28.0	390
				09-23-85	1500		1690	28.5	300
070856171021401	50-0802-06 LAURA D-14	07 08 56	171 02 14	12-31-84	1035		699	29.0	10
				01-31-85	1030		743	28.0	8.0
				04-13-85	1335		837	25.5	14
				06-12-85	1010		890	28.0	14
				08-10-85	1145	:	926	27.0	17
				09-23-85	1135	, 22	846	28.0	18
070856171021402	50-0802-07 LAURA D-31	07 08 56	171 02 14	04-13-85	1345		1050	25.0	160
				08-10-85	1200		980	27.0	110
				09-23-85	1145		860	28.0	88
070856171021403	50-0802-08 LAURA D-67	07 08 56	171 02 14	12-31-84	1045	122	29600	29.5	10000
				01-31-85	1040		23200	28.0	8400
				04-13-85	1400		21700	25.0	7400
				06-12-85	1020		18400	28.5	6000
				08-10-85	1215		16300	27.0	5200
				08-27-85	1035		15900	27.5	5400
				09-23-85	1150	-4	13100	28.5	4800
070854171020801	50-0802-09 LAURA E-14	07 08 54	171 02 08	12-31-84	1100		420	29.0	22
				12-31-84	1135		407	31.5	13
				01-31-85	1050		431	28.5	12
				04-13-85	1415		444	25.5	20
				06-12-85	1040		404	28.0	12
				08-10-85	1240	-12	398	27.0	12
				09-23-85	1210		384	28.5	11
070854171020802	50-0802-10 LAURA E-42	07 08 54	171 02 08	12-31-84	1105		414	31.0	23
				01-31-85	1100		439	28.5	27
				04-13-85	1425		410	25.5	40
				06-12-85	1045		384	28.0	28
				08-10-85	1250	10	468	27.0	20
				09-23-85	1215		409	29.5	20
070854171020803	50-0802-11 LAURA E-55	07 08 54	171 02 08	12-31-84	1115		7200	30.0	2200
				01-31-85	1105		4980	28.0	1500
				04-13-85	1445		4280	25.0	1200
				06-12-85	1050	77	3800	27.5	1100
				08-10-85	1330		3500	27.5	1000
				09-23-85	1230		2900	30.0	880
070854171020001	50-0802-12 LAURA F-14	07 08 54	171 02 00	01-31-85	1120		409		13
				04-13-85	1505		392	25.5	8.5
				06-12-85	1110	- 53	413		7.0
				08-10-85 09-23-85	1400 1300		408 457		8.0 9.0
				09 23-03	1300				
070854171020002	50-0802-13 LAURA F-30	07 08 54	171 02 00	01-31-85	1125		403		56
				04-13-85	1520		893		140
				06-12-85	1115	7.7	343		24
				08-10-85	1410		560		20
				09-23-85	1305		512	28.5	20

MARSHALL ISLANDS, MAJURO ATOLL--Continued

STATION NUMBER	LOCAL IDENT- I- FIER	LAT- I- TUDE	LONG- I- TUDE	DATE OF SAMPLE	TIME	SAM- PLING DEPTH	SPE- CIFIC CON- DUC- TANCE	TEMPER-	CHLO- RIDE, DIS- SOLVED (MG/L
						(FEET)	(US/CM)	(DEG C)	AS CL)
070854171020003	50-0802-14 LAURA F-45	07 08 54	171 02 00	01-31-85	1130	22	6510	28.5	2000
				04-13-85	1530		8180	25.0	2400
				06-12-85 08-10-85	1125 1425	77	6700 7360	28.5 27.5	2000 2100
				09-23-85	1320		9300	28.5	3200
								1100.45	
070843171021001	50-0802-15 LAURA P-9	07 08 43	171 02 10	01-31-85	1220		561	29.0	22
				04-13-85	1255		506	25.0	12
				06-12-85 08-10-85	1155 1050		526 509	28.0 26.5	10 8.0
				09-23-85	1425		459	28.0	10
								200	
070843171021003	50-0802-17 LAURA P-25	07 08 43	171 02 10	01-31-85	1225		346	29.5	16
				04-13-85	1300		420	25.0	10
				06-12-85 08-10-85	1200		418 436	28.5 26.5	18 18
				09-23-85	1100 1430		414	28.0	18
				00 20 05	1400		7.2	20.0	10
070843171021004	50-0802-18 LAURA P-53	07 08 43	171 02 10	01-31-85	1230		2600	28.0	690
				04-13-85	1315		2300	25.0	580
				06-12-85	1210		2360	27.5	600
				08-10-85 09-23-85	1115 1440		2110 1930	27.0 28.0	530 510
				09-23-63	1440		1930	20.0	510
070854171020004	50-0802-19 LAURA F	07 08 54	171 02 00	06-18-85	1325	33.0	1490	30.5	310
				06-18-85	1620	38.0	1860	28.5	390
				06-19-85	1410	43.0	5920	29.5	1800
				06-20-85	1350	47.0	17100	29.5	5800
				06-20-85	1600	49.0	23500	28.0	8000
				06-21-85	1355	51.0	45600	28.5	18000
				07-17-85	0900		1450	28.5	240
				08-14-85	0900		814	29.5	88
				08-15-85	1345	44	1120	29.0	160
				08-16-85	1400	77	1180	28.0	170
				08-17-85	0900		1450	28.5	240
				08-20-85	1415	223	47000	28.0	18000
				08-20-85	1430		1660	28.5	320
************	50 0000 00 TURN B		.7	00.01.05	1015		000	20.0	00
070856171021404	50-0802-20 LAURA D	07 08 56	171 02 08	08-24-85 08-25-85	1245 0945	47.0 62.0	930 1630	29.0 28.0	92 310
				09-04-85	1745	68.0	5860	28.5	1800
				09-05-85	1000	73.0	14500	28.5	5000
				09-05-85	1030	77.0	42800	28.0	18000
070854171020804	50-0802-21 LAURA E	07 08 54	1/1 02 08	09-25-85 09-26-85	0905 0940	37.0 48.0	379 1030	28.5 28.0	24 220
				09-26-85	1455	56.0	3240	28.0	1000
				09-27-85	0935	58.0	3990	27.5	1200
				09-30-85	1050	59.0	3850	28.0	1200
070917171021101	50-0902-01 LAURA I-10	07 09 17	171 02 11	12-31-84	1305		462	28.0	21
				104 104 124	2000		100	2512	14.3
070917171021102	50-0902-02 LAURA I-25	07 09 17	171 02 11	01-31-85 04-13-85	1015 1555		459 437		14 19
				08-10-85	1500				18
				09-23-85	1340				16
070917171021103	50-0902-03 LAURA I-55	07 09 17	171 02 11		1020	**			2800
				04-13-85	1605				560 1300
				06-12-85 08-10-85	0950 1510				600
				09-23-85	1350				550
					-78.5		7-5-	44.4	950

135

SAMOA ISLANDS, ISLAND OF TUTUILA

141945170435401. Local number, 90-1943-24 Tafunafou Observation Well 1.

LOCATION.--Lat 14°19'45" S., long 170°43'54" W., Hydrologic Unit 20100001, 120 ft northwest of Tafunafou village cross road intersection, and 0.7 mi southeast of High School in Mapusaga. Owner: Government of American Samoa.

ACUIFER. -- Basalt lava flows of the Leone Volcanics.

WELL CHARACTERISTICS. -- Drilled basal water-table well, sounded depth 78 ft, casing diameter 4 inch.

DATUM.--Elevation of land-surface datum is 73 ft. Measuring point: Top of 4-inch casing, 75.18 ft above mean sea level.

REMARKS. -- Water level affected by pumping of nearby well.

PERIOD OF RECORD. -- Occasional measurements, October 1976 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level 20.38 ft above mean sea level, may be caused by cascading water in the well following heavy rain, May 13, 1977; lowest 7.37 ft below mean sea level, July 13, 1978.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

DA	TE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT	1	0.28	NOV 26	0.77	JAN 28	1.88	MAR 25	1.53	JUN 10	2.55	AUG 5	1.15
	9	2.33	DEC 10	3.22	FEB 5	2.18	APR 1	1.41	17	2.53	19	1.13
	29	2.87	17	1.69	25	2.13	MAY 6	6.14	JUL 1	2.52	SEP 3	1.10
NOV	13	1.44	JAN 7	4.00	MAR 18	1.66	15	2.64	22	1.22	23	.79

141948170435701. Local number, 90-1943-28 Tafunafou Observation Well 5.

LOCATION.--Lat 14°19'48" S., long 170°43'57" W., Hydrologic Unit 20100001, 1,000 ft southeast of Tafunafou village, and 1.5 mi northwest of Pago Pago International Airport. Owner: Government of American Samoa.

AQUIFER. -- Basalt lava flows of the Leone Volcanics.

WELL CHARACTERISTICS. -- Drilled basal water-table well, sounded depth 106 ft, casing diameter 4 in.

DATUM.--Elevation of land-surface datum is 83 ft. Measuring point: Top of 4-inch casing, 85.32 ft above mean sea level.

REMARKS. -- Water level affected by pumping of nearby well.

PERIOD OF RECORD. -- Occasional measurements, October 1976 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 11.32 ft above mean sea level, may be caused by cascading water in the well following heavy rain, July 28, 1981; lowest 4.23 ft below mean sea level, Aug. 15, 1977.

DA	TE	WATER LEVEL	DATE	3 2 3	ATER EVEL	DA.	ΓE	WATER LEVEL	DAT	E	WATER LEVEL	DAT	ΓE	WATER LEVEL	DAT	E	WATER LEVEL
OCT	01	1.56	NOV 2	26	1.66	JAN	28	2.77	MAR	25	2.40	JUN	10	-0.09	AUG	05	-0.77
	09	2.34	DEC 1	10 2	2.50	FEB	05	2.53	APR	01	2,26		17	10		19	71
	29	2.37	1	7 2	2.20		25	2.57	MAY	06	1.37	JUL	01	12	SEP	03	90
NOV	13	2.07	JAN C	7 3	3.02	MAR	18	2.40		15	.02		22	1.71		23	-1.07

SAMOA ISLANDS, ISLAND OF TUTUILA

142055170455901. Local number, 90-2045-03 Malaeloa Well 92.

LOCATION.--Lat 14°20'55" S., long 170°45'59" W., Hydrologic Unit 20100001, 0.4 mi southeast of Malaeloa School, adn 0.6 west of Olovalu Crater. Owner: Government of American Samoa.

AQUIFER. -- Lava flows and cinders of the Leone Volcanics underlain by beach sand.

WELL CHARACTERISTICS.--Drilled basal water-table well, depth 191 ft, casing diameter 8 in.

DATUM.--Elevation of land surface datum is 163 ft. Measuring point: Top of 8-inch casing, 163.74 ft above mean sea level.

REMARKS. -- Water level affected by pumping of nearby well.

PERIOD OF RECORD .-- Occasional measurements, September 1984 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 6.77 ft above mean sea level, January 28, 1985; lowest 1.19 ft above mean sea level, September 4, 1984.

WATER LEVEL, IN FEET ABOVE MEAN SEA LEVEL, SEPTEMBER 1984

		WATER		WATER		WATER		WATER
DAT	E	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
SEP	4	1.19	SEP 10	1.30	SEP 17	1.69	SEP 24	1.31

DA	ΓE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT	1	1.43	NOV 26	2.71	JAN 28	6.77	MAR 25	2.41	JUN 10	4.60	AUG 5	2.91
	9	2.37	DEC 10	4.42	FEB 5	3.52	APR 1	2.24	17	4.28	19	2.92
	29	3.59	17	3.60	25	3.14	MAY 6	5.73	JUL 1	3.96	SEP 3	3.03
NOV	13	4.00	JAN 7	6.30	MAR 18	2.52	15	4.96	22	3.13	23	2.67

SAMOA ISLANDS, ISLAND OF TUTUILA

142102170445601. Local number, 90-2144-12 Iliili test well 115.

LOCATION.--Lat 14°21'02" S., long 170°44'56" W., Hydrologic Unit 20100001, 800 ft northwest of Iliili village church, and 0.5 mi northeast of Futiga village school.

AQUIFER. -- Basalt lava flows of the Leone Volcanics underlain by calcareous coastal deposits.

WELL CHARACTERISTICS. -- Drilled basal water-table well, well depth 243 ft, casing diameter 4 inch.

DATUM. -- Elevation of land-surface datum is 216 ft. Measuring point: Top of 4-inch casing, 216.94 ft above mean sea level.

REMARKS .-- Water level affected by pumping of nearby well.

PERIOD OF RECORD. -- Occasional measurements, February 1981 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 6.89 ft above mean sea level, June 15, 1982; lowest 2.56 ft above mean sea level, May 31, 1983.

DA'	re	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT	1	4.03	NOV 26	4.69	JAN 28	5.48	MAR 25	4.99	JUN 10	5.37	AUG 5	4.77
	9	4.60	DEC 10	5.14	FEB 5	5.19	APR 1	4.75	17	5.50	19	4.80
	29	4.73	17	5.16	25	5.12	MAY 6	6.38	JUL 1	5.34	SEP 3	4.64
NOV	13	4.89	JAN 7	5.99	MAR 18	4.82	15	5.39	22	4.71	23	4.40

SAMOA ISLANDS, ISLAND OF TUTUILA

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

141623170393801 - 90-1639-08 AUA W97 TUTUILA SAMOA

		SPE-			CH	LO-							SI	PE-			CHLO-
		CIFIC	:		RI	DE.							CII	FIC			RIDE,
		CON-			DI	1								-NC			DIS-
		DUC-		IPER-		LVED								JC-	TEMP	ER-	SOLVED
	TIME	TANCE		TURE		G/L					Т	IME		NCE	ATU		(MG/L
DATE	27177	(US/C		EG C)		CL)			D	ATE	Ī			(CM)	(DEG		AS CL)
OCT									MA	Y							
29	0834	17	9	27.5	1	3				5	0	925		190	2	7.0	16
NOV		-		2					JU								
02	1130	-	_	24	1	2				7	0	755		195	2	7.0	18
26	0725	18	30	27.0		4			JU								1.2.5
DEC	1000									2	1	255		210	2	7.0	20
10	1310	18	35	27.5	1	4			AU			7.2.2					-
JAN				THE D					1	9	0	815		215	2	6.0	24
28	0730	18	30	27.0	1	4			SE								
FEB									2	3	C	815		219	2	6.0	28
25	0900	18	30	28.0	1	4											
MAR																	
25	1305	20	00	26.0	1	4											
						RD-											
				ARD-	NE					GNE-						IUM	POTAS-
		HARD-		ESS,		CAR-		CIUM		IUM,		IUM,				D-	SIUM,
		NESS		NCAR-	BON			S-		IS-		S-			SOR		DIS-
		(MG/1		NATE		G/L		DLVED		LVED		VED				ON	SOLVED
	TIME	AS		MG/L	A			MG/L		G/L		IG/L		CENT	RAT	IO	(MG/L
DATE		CACO	() C	ACO3)	CAC	03)	AS	CA)	AS	MG)	AS	NA)	SOI	MUIC			AS K)
NOV																	
02	1130		54	0		0	1	12		8.3	1	4		31		.8	1.7
								SOLI	S,			NIT	RO-				
	ALK			FLU	0-	SILI		SUM (F	SOLI	DS,	GE	N,			MAN	GA-
	LINI		ILFATE	RID		DIS	-	CONS	-II	DI	S-	NO2+	NO3	IRO	N,	NES	Ε,
	LA		IS-		S-		VED	TUEN			VED	DI	S-	DI	S-	DI	S-
	(MC		OLVED		VED	(MG	/L	DIS	3-	(TO	NS		VED	SOL		SOL	VED
	AS		MG/L	(MG		AS		SOL		PE		(MC		(UG	/L	(UG	/L
DATE	CAC	O3) AS	S SO4)	AS	F)	SIC	2)	(MG	L)	AC-	FT)	AS	N)	AS	FE)	AS I	(MM)
NOV																	
02	. 72		2.2		.10	4	1	1	130		.18		.15		<3		<1

< Actual value is known to be less than the value shown.

GROUND-WATER RECORDS 139 SAMOA ISLANDS, ISLAND OF TUTUILA

STATION NUMBER	LOCAL IDENT- I- FIER	LAT- I- TUDE	LONG- I- TUDE	DATE OF SAMPLE	TIME	SPE- CIFIC CON- DUC- TANCE (US/CM)	TEMPER- ATURE (DEG C)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
141703170405301	90-1740-01 UTULEI DW3	14 17 03	170 40 53	10-29-84 01-28-85 02-25-85 05-15-85 06-17-85	0950 0810 0920 0950 0830	410 340 390 345 390	27.5 27.0 27.0 27.0 27.0	68 50 60 53 63
				07-22-85 08-19-85 09-23-85	1155 0845 0840	585 600 610	27.0 26.0 26.0	120 120 130
141945170435301	90-1943-06 TAFUNAFOU W33	14 19 45	170 43 53	10-29-84 11-26-84 12-10-84 01-28-85 02-25-85	1050 0845 0910 0840 0950	310 1130 422 380 560	27.5 26.0 27.0 26.0 26.0	59 290 85 81 130
				03-25-85 05-15-85 06-17-85 07-22-85 08-19-85	0830 1030 0900 0805 0815	1110 380 540 1150 950	26.0 26.0 27.0 26.0 26.0	280 80 120 300 240
				09-23-85	0915	1100	25.5	290
141928170435201	90-1943-20 TAFUNAFOU W81	14 19 28	170 43 52	10-29-84 11-26-84 03-25-85 05-15-85 06-17-85	1016 0820 0910 1125 0955	125 139 221 130 130	27.5 26.5 27.0 26.5 26.0	10 12 33 9.5 9.5
				07-22-85 09-23-85	1105 0905	220 200	26.0 25.5	30 28
141952170440201	90-1944-11 TAFUNAFOU W61	14 19 52	170 44 02	10-29-84 11-26-84 12-10-84 01-28-85 02-25-85	1110 0855 0845 0900 1010	860 973 725 600 790	26.5 26.5 26.5 26.0 27.0	220 240 180 140 190
				03-25-85 05-15-85 06-17-85 07-22-85 08-19-85	0845 1055 0935 0840 0950	920 519 610 640 800	27.0 26.0 26.5 25.5 25.0	240 120 140 140 200
				09-23-85	0945	844	25.5	190
141951170440101	90-1944-12 TAFUNAFOU W60	14 19 51	170 44 01	01-28-85 07-22-85 08-19-85 09-23-85	0855 0940 0935	660 950 1230 1300	26.0 26.0 26.0 25.5	160 240 310 350
141929170441401	90-1944-13 MALAEIMI W67	14 19 29	170 44 14	10-29-84 11-26-84 12-10-84 01-28-85 02-25-85	1430 1205 0945 0945	160 170 179 179 179	26.5 27.0 26.0 26.0 27.0	9.5 10 11 10 9.5
				03-25-85 05-15-85 06-17-85 07-22-85 08-19-85	1140 1000 1110 1200	180 180 175 180 179	26.0 26.0 26.0 25.5 26.0	10 10 10 9.5
				09-23-85	1220	180	25.5	10

SAMOA ISLANDS, ISLAND OF TUTUILA

STATION NUMBER	LOCAL IDENT- I- FIER	LAT- I- TUDE	LONG- I- TUDE	DATE OF SAMPLE	TIME	SPE- CIFIC CON- DUC- TANCE (US/CM)	TEMPER- ATURE (DEG C)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
141952170444201	90-1944-15 MASEPA W85	14 19 52	170 44 42	10-29-84	1420	180	27.0	14
142002170444201	90-2044-02 ILIILI W84	14 20 02	170 44 42	10-29-84 11-26-84 12-10-84 02-25-85 03-25-85	1225 1010 1140 1235 1125	1760 1700 1980 1720 1770	27.5 27.5 26.5 27.0 27.0	440 430 500 440 440
				05-15-85 06-17-85 07-22-85 08-19-85 09-23-85	1335 1150 1030 1015 1040	1300 1300 1600 1600 1600	26.5 26.0 26.0 26.0 26.0	320 310 410 420 410
142042170463001	90-2046-03 MALAELOA W70	14 20 42	170 46 30	10-29-84 11-26-84 12-10-84 01-28-85 02-25-85	1340 1120 1055 1045 1155	300 290 270 240 265	29.0 27.0 27.0 27.0 27.0	26 20 14 12 13
				03-25-85 05-15-85 06-19-85 07-22-85 08-19-85	1055 1255 1100 1005 1115	270 260 280 290 300	27.0 27.0 27.0 26.0 26.0	19 14 14 16 15
				09-23-85	1140	300	26.0	17
142110170444601	90-2144-05 ILIILI W62	14 21 10	170 44 46	10-29-84 12-10-84 12-10-84 01-28-85 02-25-85	1250 1040 1110 1100 1205	550 490 540 425 510	27.5 27.0 27.0 27.0 27.5	79 57 77 41 60
				03-25-85 05-15-85 06-17-85 07-22-85 08-19-85	1100 1310 1115 1015 1035	548 450 465 520 590	28.0 27.0 26.0 26.0 26.0	71 50 51 69 86
				09-23-85	1105	650	26.0	100
142102170455801	90-2145-03 PUAPUA W119	14 21 02	170 45 58	10-29-84 11-26-84 12-10-84 01-28-85 03-25-85	1305 1025 1020 1010	840 790 510 400 1200	27.5 27.0 27.0 26.5 27.0	180 160 60 26 300
				05-15-85 06-17-85 07-22-85 08-19-85 09-23-85	1225 1040 0940 1045 1115	450 560 725 850 1090	27.0 26.0 26.0 26.0 26.0	49 80 140 180 240

	Desir		Deer
Aasu Stream, at Aasu, Tutuila	Page 6.65.81	Guam, island of, gaging-station records in	Page 33-39
near Aasu, Tutuila		ground-water records in	92-110
Access to WATSTORE data	26	map of	13
Accuracy of field data and computed		water-quality records at ground-water	
results		sites in	
Acre-foot, definition of		water-temperature records in	78
Afuelo Stream at Matuu, Tutuila			
Airport Pond, Yap, Yap Islands		Hardness, definition of	8
Alega Stream at Alega, Tutuila		Hydrologic unit, definition of	8
Algae, definition of		Illustrations3-	6 12-21
Aquifer, definition of		Imong River near Agat, Guam	34,78
Artesian, definition of		Instantaneous discharge, definition of	8
Ash mass, definition of		Introduction	1
Asili Stream, at altitude 330 ft near Asili,			
Tutuila	67,81	Keprohi River, Ponape	72
at Asili, Tutuila	72	Kosrae, island of, gaging-station records in	61-63
near Asili, Tutuila	72	map of	19
Atauloma Stream at Afao, Tutuila	66,81	measurements at miscellaneous sites in	74
		water-temperature records in	80
Bacteria, definition of		Kmekumel River, Babelthuap, Palau Islands	44-45
Biochemical oxygen demand, definition of		at mouth, Babelthuap, Palau Islands	76
Biomass, definition of		1 - 6 - 01 1 - 11 - 1 - 070 - 01	
Bottom material, definition of		Leafu Stream, at altitude 370 ft, near Leone,	60 01
Burong Stream, Yap, Yap Islands	51,79	Tutuila at Auasi, Tutuila	68,81
Colle/volume definition of	7	near Auasi, Tutuila	73 70,82
Cells/volume, definition of		near Leone, Tutuila	70,02
Chlorophyll, definition of		Leele Stream at mouth at Fagasa, Tutuila	72
Coliform organisms, definition of		Lehdau River, Ponape	72
Collection and computation of data		Lehn Mesi River, Ponape	60,80
Collection and examination of data		at hanging bridge, Ponape	71
Collection of the data	26	Lewi River, Ponape	58,79
Color unit, definition of	7	Luhpwor River, Ponape	59,80
Contents, definition of	7		
Continuing record station, definition of	. 8	Majuro, Marshall Islands, ground-water	
Control, definition of		records in	129-130
Control structure, definition of		water-quality records at ground-water	
Cooperation		sites in	
Cubic foot per second, definition of	. 8	Malem River, Kosrae	62,80
Deven New Disser Persons	71	Maulap River near Agat, Guam	36,78
Dauen Neu River, Ponape		Mean concentration, definition of Mean discharge, definition of	9
Dinaey Stream, Yap, Yap Islands		Melo River, Kosrae	
Diongradid River, Babelthuap, Palau	. /-	Microgram per gram, definition of	8
Islands	4 40-41	Microgram per liter, definition of	8
Discharge, definition of		Milligram per liter, definition of	8
Dissolved, definition of		Monguch Stream, Gagil-Tamil, Yap Islands	71
Dorfay Stream, Gagil-Tamil, Yap Islands		Mukong Stream, Gagil-Tamil, Yap Islands	52-53
Downstream order and station number		Mutunte River, Kosrae	74
Drainage area, definition of	. 8		
Drainage basin, definition of		Nanpil River, Ponape	
Dry mass, definition of	. 7	Ngechutrong River, Babelthuap, Palau Islands	74
	40	Ngerchetang River, Babelthuap, Palau Islands	74
Edeng River, Babelthuap, Palau Islands		Ngerdorch River, South Fork, Babelthuap,	10.12
Elodesachel Spring, Koror, Palau Islands		Palau Islands	46-47
Explanation of ground-water level records Explanation of stage and water-discharge	. 26	Ngerimel Reservoir, Babelthuap, Palau	75
records	. 22	Islands	75
Explanation of water-quality records		Islands	74
Eyeb Stream, Gagil-Tamil, Yap Islands		Ngetpang River, Babelthuap, Palau Islands	74
_,, vagar ramer, rap rorando,		Numbering system for wells and miscellaneous	
Fecal coliform bacteria, definition of	. 7	sites	11,21
Fecal streptococcal bacteria, definition of			,
Fena Dam spillway near Agat, Guam		Organic mass, definition of	7
The street of Angel Street Str	5	Other data available	24
Gage height, definition of	. 8		
Gaging station, definition of		Pacific Islands, map of	3
Ground-water records	. 83-140	Pago Stream at Afono, Tutuila	64,81

142 INDEX

	Page		Page
Palau Islands, gaging-station records in	40-47	Tabecheding River, Babelthuap, Palau Islands	42-43
map of	14-15	Tafuyat River, Kosrae	74
measurements at miscellaneous sites in	74	Talofofo Stream, South Fork, Saipan	29-30
water-quality records, at miscellaneous		Temperatures, periodic determination of	78-82
sites in	75-77	Tholomar Stream above reservoir, Yap, Yap	
Papa Stream near Nuuuli, Tutuila	72	Islands	71
Partial-record station, definition of	9	Time-weighted average, definition of	10
Particle size, definition of	9	Tinaga River near Inarajan, Guam	33,78
Particle-size classification, definition of	9	Tofol River, Kosrae	63,80
Peemgoy Stream, Yap, Yap Islands	71	Tons per acre-foot, definition of	10
Percent composition, definition of	9	Tons per day, definition of	11
Pesticides, definition of	9	Total coliform bacteria, definition of	2
Pheleng River, Ponape	71	Total, definition of	10
Picocurie, definition of	9	Total in bottom material, definition of	7
프로그램 하는 시간에 살아가면 가장 있다. 전환자들의 가입에 하면 있는데 이번 사람들이 되었다. 하는데 되어 되었다. 이번 시간에 다른데 하는데 되었다.			
Polychlorinated biphenyls, definition of	9	Total load, definition of	11
Ponape, island of, gaging-station records	£7.00	Total, recoverable, definition of	10
in	57-60	Total-sediment discharge, definition of	9
low-flow partial-record stations in	71-72	Truk Islands, gaging-station records in	56
map of	18	map of	17
water-temperature records in	79-80	water-quality records, at ground-water	502 028
Publications	24,25	sites in	
Publications on techniques of water-resources		water-temperature records in	79
investigations	27-28	Turbidity, definition of	11
		Tutuila, island of, gaging-station records	
Qaringeel Stream, Yap, Yap Islands	5,49,79	in	64-70
Qatliw Stream, Yap, Yap Islands	48,78	ground-water records in	135-137
		low-flow partial-record stations in	72-73
Records of discharge collected by agencies		map of	20
other than the Geological Survey	24	water-quality records, at ground-water	
Recoverable from bottom material, definition		sites in	138-140
of	7	water-temperature records in	81-82
Saipan, island of, gaging-stations records		Ugum River above Talofofo Falls, near	
in	29-32	Talofofo, Guam	38,78
ground-water records in	83-84	Unnamed South Coast Stream, Ngerekebesang,	200
map of		Palau Islands	77
water-quality records at ground-water		Unnamed West Coast Stream, Ngerekebesang,	
sites in	85-91	Palau Islands	76
Sediment	25	2222 22222	
Sediment, definition of	9	Water analysis	25
Senipehn River, Ponape	72	Water temperature	25
Solute, definition of	9	WDR, definition of	11
Specific conductance, definition of	10	Weighted average, definition of	11
Stage-discharge relation, definition of	10	Wet mass, definition of	7
Streamflow, definition of	10	Wichen River at altitude 18 m, Moen, Truk	,
Summary of Hydrologic Conditions	2	Islands	56 70
	10		56,79
Suspended, definition of		WRD, definition of	11
Suspended recoverable, definition of Suspended-sediment concentration, definition	10	WSP, definition of	11
of	9	Yap Islands, gaging-station records in	48-55
Suspended sediment, definition of	9		
Suspended sediment, definition of Suspended-sediment discharge, definition of	9	ground-water records in	71
되고, 하다 하다 하다 가는 사람들이 되는 것이 되었다는 사람들이 되었다. 그 사람들이 되었다면 하다는 이번 살아 먹는 것이다.	9		16
Suspended-sediment load, definition of	3.7	map of	78-79
Suspended, total, definition of	10	water-temperature records in	
Susupe, Lake	31-32	Ylig River near Yona, Guam	4,39,78

FACTORS FOR CONVERTING INCH-POUND UNITS TO INTERNATIONAL SYSTEM UNITS (SI)

The following factors may be used to convert the inch-pound units published herein to the International System of Units (SI). This report contains both the inch-pound and SI unit equivalents in the station manuscript descriptions.

Multiply inch-pound units	By	To obtain SI units
	Length	
inches (in)	2.54x10 ¹ 2.54x10 ⁻²	millimeters (mm)
feet (ft)	3.048×10^{-1}	meters (m) meters (m)
miles (mi)	1.609x10°	kilometers (km)
	Area	
acres	4.047×10^3	square meters (m ²)
	4.047x10 ⁻¹	square hectometers (hm ²)
	4.047×10^{-3}	square kilometers (km ²)
square miles (mi ²)	2.590x10°	square kilometers (km²)
	Volume	
gallons (gal)	3.785x10°	liters (L)
Barrorra (Barr)	3.785x10°	cubic decimeters (dm ³)
	3.785×10^{-3}	cubic meters (m ³)
million gallons	3.785×10^3	cubic meters (m ³)
	3.785×10^{-3}	cubic hectometers (hm ³)
cubic feet (ft ³)	2.832x101	cubic decimeters (dm ³)
	2.832x10 ⁻²	cubic meters (m ³)
acre-feet (acre-ft)	1.233×10^3	cubic meters (m ³)
	1.233×10^{-3}	cubic hectometers (hm ³)
	1.233x10 ⁻⁶	cubic kilometers (km³)
	Flow	
cubic feet per second (ft ³ /s)	2.832x101	liters per second (L/s)
	2.832x101	cubic decimeters per second (dm ³ /s)
	2.832x10 ⁻²	cubic meters per second (m ³ /s)
gallons per minute (gal/min)	6.309x10 ⁻²	liters per second (L/s)
	6.309x10 ⁻²	cubic decimeters per second (dm ³ /s)
	6.309x10 ⁻⁵	cubic meters per second (m ³ /s)
million gallons per day	4.381x10 ¹	cubic decimeters per second (dm ³ /s)
	4.381x10 ⁻²	cubic meters per second (m ³ /s)
	Mass	
tons (short)	9.072x10 ⁻¹	megagrams (Mg) or metric tons

POSTAGE AND FEES PAID U.S. DEPARTMENT OF THE INTERIOR INT 413

U.S. DEPARTMENT OF THE INTERIOR Geological Survey, Room 6110 300 Ala Moana Boulevard, P.O. Box 50166 Honolulu, HI 96850

OFFICIAL BUSINESS PENALTY FOR PRIVATE USE \$300 SPECIAL 4TH CLASS BOOK RATE