

Water Resources Data Minnesota Water Year 1985

Volume 1. Great Lakes and Souris-Red-Rainy River Basins

U.S. GEOLOGICAL SURVEY WATER-DATA REPORT MN-85-1
Prepared in cooperation with the Minnesota Department of
Natural Resources, Division of Waters; the Minnesota
Department of Transportation; and with other State,
municipal and Federal agencies

CALENDAR FOR WATER YEAR 1985

										1984	1									
	0	C	г о	B 1	E R			N () V	E M	и в	E F	2		D	E C	E	И В	E F	2
S	М	T	W	T	F	S	S	М	T	W	Т	F	S	S	М	T	W	T	F	5
21	8 15	9 16 23	17 24	11 18	5 12 19 26	20	11 18	19	13 20		15 22	9 16 23	17	9 16 23	17	11 18 25	5 12 19 26	20	14 21	22
_							 			198	5									
	J	A 1	U V	A I	R Y			FI	ЕВ	RI	JA	RY	1			M A	R (СН		
S	М	Т	W	T	F	S	S	М	T	W	Т	F	S	S	М	Т	W	T	F	5
20	14	15 22	9 16 23	17 24	11 18 25	19	10 17	18	12 19		21	1 8 15 22		17	11 18 25	12 19	6 13 20 27	21	22	16 23
		A	P R	I	L				M	Α '	Y					J	U	N E		
S	M	Т	W	T	F	S	S	M	T	W	T	F	S	S	М	Т	W	T	F	,
7 14 21 28	15	9 16	17	11 18	12 19	20	5 12 19 26	13	7 14 21 28	15	9 16	3 10 17 24 31	11 18		17 24	11	12	13	7 14 21 28	15
		J	U L	Υ					A U	G	JS	Т			S E	Р	T E	M	ВЕ	R
S	M	Т	W	T	F	S	S	М	T	W	Т	F	S	S	М	Т	W	Т	F	5
21	15	9 16 23	10 17 24	11 18		13 20	4 11 18 25	12 19	13 20	14 21	15 22	9 16	24	8 15 22	9 16	10 17 24		12 19	13 20	14 21

Water Resources Data Minnesota Water Year 1985

Volume 1. Great Lakes and Souris-Red-Rainy River Basins

by Kurt T. Gunard, Joseph H. Hess, James L. Zirbel, and Charles E. Cornelius

U.S. GEOLOGICAL SURVEY WATER-DATA REPORT MN-85-1 Prepared in cooperation with the Minnesota Department of Natural Resources, Division of Waters; the Minnesota Department of Transportation; and with other State, municipal, and Federal agencies

UNITED STATES DEPARTMENT OF THE INTERIOR

DONALD PAUL HODEL, Secretary

GEOLOGICAL SURVEY

Dallas L. Peck, Director

For additional information write to:

District Chief, Water Resources Division U.S. Geological Survey 702 Post Office Building St. Paul, Minnesota 55101

PREFACE

This volume of the annual hydrologic data report of Minnesota is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data collection networks in each State, Puerto Rico. and the Trust Territories. These records of streamflow, ground-water levels, and water quality provide the hydrologic information needed by State, local, and Federal agencies, and the private sector for developing and managing our Nation's land and water resources. Hydrologic data for Minnesota are contained in two volumes:

Volume 1. Great Lakes and Souris-Red-Rainy River Basins Volume 2. Upper Mississippi and Missouri River Basins

This report is the culmination of a concerted effort by dedicated personnel of the U.S. Geological Survey who collected, compiled, analyzed, verified, and organized the data, and who typed, edited, and assembled the report. In addition to the authors, who had primary responsibility for assuring that the information contained herein is accurate, complete, and adheres to Geological Survey policy and established guidelines, the following individuals contributed significantly to the preparation of this report:

Mark R. Have, Water-Quality Specialist, Minnesota District Henry W. Anderson, Jr., Ground-Water Project Chief, Minnesota District

Most of the data were collected, processed, and tabulated by the following individuals:

Allan D. Arntson
Ruth E. Bergstrom
Howard D. Braden
Alex Brietkrietz
John L. Callahan
Rosa L.V. Chamblee
Paul E. Felsheim
William A. Gothard
Roderick L. Johnson

Wallace W. Larson Gregory R. Melhus Gregory B. Mitton Charles J. Smith Gregory W. Stratton Sandra J. Surratt Lan H. Tornes Duane A. Wicklund

This report was prepared in cooperation with the State of Minnesota and with other agencies under the general supervision of Donald R. Albin, District Chief, Minnesota.

<u> </u>
5. Report Date November 1987
6.
8. Performing Organization Rept. No USGS-WDR-MN-85-1
10. Project/Task/Work Unit No.
11. Contract(C) or Grant(G) No. (C) (G)
Annual Oct. 1, 1984 to Sept. 30, 1985
14.

epared in cooperation with the State of Minnesota and with other agencies.

16. Abstrect (Limit: 200 words)

Water-resources data for the 1985 water year for Minnesota consist of records of stage, discharge and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality in wells and springs. This volume contains discharge records for 46 gaging stations; stage-only records for 1 gaging station; stage and contents for 5 lakes and reservoirs; water quality for 8 gaging stations, 7 partial-record stations, 10 lake stations, and 12 wells; and water levels for 26 observation wells. Also included are 38 high-flow partial-record stations. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements. These data together with the data in Volume 2, represent that part of the National Water Data System operated by the U. S. Geological Survey and cooperating State and Federal agencies in Minnesota.

17. Document Anelysis e. Descriptors

*Minnesota, *Hydrologic data, *Surface water, *Ground water, *Water quality, Flow rate, Gaging stations, Lakes, Reservoirs, Chemical analyses, Sediments, Water temperatures, Sampling sites, Water levels, Water analyses, Data collection

b. Identifiers/Open-Ended Terms

c. COSATI Field/Group

18. Availability Statemen: No restriction on distribution.	19. Security Class (This Report)	21. No. of Pages
This report may be purchased from:	UNCLASSIFIED	199
National Technical Information Service	20. Security Class (This Page)	22. Price
Springfield, VA 22161	UNCLASSIFIED	ļ

CONTENTS

	Page
Preface	iii
List of gaging stations, in downstream order, for which records are published	vi
List of ground-water wells, by county, for which records are published	vii 1
Cooperation	î
Summary of hydrologic conditions	2
Precipitation Streamflow	2
Water quality	2
Ground-water levels	5
Special networks and programs	5 12
Station identification numbers	12
Downstream order system and station number	12
Latitude-longitude system for wells and miscellaneous sites	12
Records of stage and water-discharge Data collection and computation	13 13
Data presentation	14
Identifying estimated daily record	16
Accuracy of the recordsOther records available	16 16
Records of surface water-quality	16
Classification of records	16
Arrangement of records	17 17
Water temperature	17
Sediment	17
Laboratory measurements	18 18
Data presentation	18
Records of ground-water levels	19
Data collection and computation	19
Data presentation	20 20
Data collection and computation	20
Data presentation	21
Access to WATSTORE data	21 21
Publications on techniques of water-resources investigations	29
Discontinued gaging stations	31
Station records, surface water Discharge at partial-record stations and miscellaneous sites	40 124
Low-flow partial-record stations	124
High-flow partial-record stations	1 25
Miscellaneous sites	133 134
Analyses of samples collected at water-quality partial-record stations	162
Station records, ground water	169
Ground-water levels	172
Quality of ground-water	188 189
Index	1.00
ILLUSTRATIONS	
garden a constant of the state	
Figure 1. Map showing precipitation, in inches, during 1985 water year compared with normal	_
annual precipitation for Minnesota	3
with average annual runoff for a 30-year base period	4
 Graph showing comparison of discharge at three long-term representative gaging 	-
stations for the 1985 water year with median discharge for water years 1951-80	6
 Graph showing comparison of chloride concentrations for the 1985 water year with median monthly values for the period of record	8
5. Graph showing comparison of nitrate concentrations for the 1985 water year with	
median monthly values for the period of record	9
6. Map showing relationship of seasonal water-table levels to long-term mean levels	10

	Page
7. Map showing relationship of seasonal water levels in confined aquifers to long-term mean levels	1: 3: 3: 1:20 17:
SURFACE-WATER STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED	
NoteDate for partial-record stations and miscellaneous sites for both surface-water quantity and quality are published in separate sections of the data report. See references at the end of this list for page numbers for these sections.	y
[Letters after station name designates type of data: (d) discharge; (e) gage height, elevation, or contents; (c) chemical, radio-chemical, or pesticides; (b) biological or micro-biological; (p) physical (water temperature sediment, or specific conductance)]	e,
	,162 ,162
Knife River near Two Harbors	,162
Partridge River above Colby Lake at Hoyt Lakes(d p) 45	,162
St. Louis River at Forbes	,163 ,163
Nemadji River: Deer Creek near Holyoke55	,163
* * * * * * *	
The same are the same and the same are	56 57 ,163 ,163 61 63 65
Red River of the North below Fargo, ND	67 ,163 ,163 ,164
Red River of the North at Halstad	,164 72 ,164 ,164
Red Lake River at Highlanding, near Goodridge	77 ,164 ,164 ,165 ,165 ,165
Red River of the North at Grand Forks, ND	,165 87 ,166
Two Rivers: South Branch Two Rivers at Lake Bronson	,166 93 ,166 97
· · · · · · · · · · · · · · · · · · ·	,166 ,166

						Page
LAKE OF THE WOODS BASI Namakan River (h						
Basswood River	·:					
Kawishiwi Ri	ver near Ely.	• • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	(d - (102,166
		on			p)	105,167
					p) p)	106,167 107,167
Namakan River at					p)	108,167
Vermilion Rive	r:				•	•
Vermilion Lake	near Soudan.	• • • • • • • • • • • • • • • • • • •		(- e ·	1 1 1 1	109
		Lakebetogama Lake ne			p) p)	110,167 111,167
Rainy Lake near					-)	111,107
Rainy River:						
Little Fork Ri		•				
		olm fork			p) c b p)	113,167
					- p)	114,168 117,168
Rainy River at M					c b p)	118,168
		• • • • • • • • • • • • • • •			p)	121,168
Lake of the Wood	s at Warroad.			(- e		122
Lake of the Wood	s at Springst	eel island near	Warroad	(- e)	1 23
* *	*	*	*	*	*	
Discharge at partial-r	ecord station	s and miscellane	eous sites	• • • • • • • • • • • •	• • • • • • • • • •	124
Low-flow partial-re High-flow partial-r						124 125
Miscellaneous sites						133
Analyses of samples co	llected at wa	ter quality part	tial-record sta	ations		
and miscellaneous s	ites	•••••••		• • • • • • • • • • •	• • • • • • • • • •	134
Miscellaneous analyses	of streams i	n Minnesota	• • • • • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • •	162
					,	
	G ROUN	D-WATER WELLS, F RECORDS ARE		WHICH		
	G ROUN		PUBLISHED	WHICH		
	G ROUN	RECORDS ARE	PUBLISHED	WHICH		
B BY K B D	G ROUN	RECORDS ARE	PUBLISHED	WHICH		
BECKER Well 46 46 13 0 9 5 5 2 4 8 0 1		RECORDS ARE GROUND-WATE	PUBLISHED ER LEVELS			172
Well 464613095524801	Local number	RECORDS ARE GROUND-WATE	PUBLISHED ER LEVELS			172
Well 464613095524801 BELTRAMI Well 474111094331401	Local number	GROUND-WATE 138N41W17ADA01. 149N31W25DCD01.	PUBLISHED ER LEVELS		• • • • • • • • • •	172
Well 46 4613095524801 BELTRAMI Well 47 4111094331401 Well 47 4111094331402	Local number	GROUND-WATE 138N41W17ADA01. 149N31W25DCD01.	PUBLISHED ER LEVELS		• • • • • • • • • •	
Well 46 46 13 09 55 2 48 0 1 BELTRAMI Well 47 41 11 09 43 31 40 1 Well 47 41 11 09 43 31 40 2 CLAY	Local number	GROUND-WATE 138N41W17ADA01. 149N31W25DCD01. 149N31W25DCD02.	PUBLISHED ER LEVELS		• • • • • • • • • •	17 2 17 3
Well 46 4613095524801 BELTRAMI Well 47 411109 4331 401 Well 47 411109 4331 402 CLAY Well 46385 40 96 2507 01	Local number Local number Local number	RECORDS ARE GROUND-WATE 138N41W17ADA01. 149N31W25DCD01. 149N31W25DCD02.	PUBLISHED ER LEVELS			17 2 17 3 17 3
Well 46 46 13 09 55 2 48 0 1 BELTRAMI Well 47 41 11 09 43 31 40 1 Well 47 41 11 09 43 31 40 2 CLAY	Local number Local number Local number Local number	RECORDS ARE GROUND-WATE 138N41W17ADA01. 149N31W25DCD01. 149N31W25DCD02. 137N45W30CDB01. 139N47W05CDC01.	PUBLISHED ER LEVELS		• • • • • • • • • • • • • • • • • • • •	17 2 17 3
Well 46 4613095524801 BELTRAMI Well 47 4111094331401 Well 47 4111094331402 CLAY Well 463854096250701 Well 465237096383901 Well 465328096391001 Well 465231096415801	Local number Local number Local number Local number Local number	RECORDS ARE GROUND-WATE 138N41W17ADA01. 149N31W25DCD01. 149N31W25DCD02. 137N45W30CDB01. 139N47W05CDC01. 139N47W06AAA01.	PUBLISHED ER LEVELS			17 2 17 3 17 3 17 4
Well 46 46 13 09 55 2 48 01 BELTRAMI Well 47 41 11 09 43 31 40 12 CLAY Well 46 38 5 40 96 25 07 01 Well 46 52 37 09 63 83 90 1 Well 46 52 32 80 96 39 10 01 Well 46 52 31 09 64 15 80 1 GRANT	Local number Local number Local number Local number Local number Local number	RECORDS ARE GROUND-WATE 138N41W17ADA01. 149N31W25DCD01. 149N31W25DCD02. 137N45W30CDB01. 139N47W05CDC01. 139N47W06AAA01. 139N48W11ABA01.	PUBLISHED ER LEVELS		•••••••	17 2 17 3 17 3 17 4 17 4 17 5
Well 46 46 13 09 55 2 48 01 BELTRAMI Well 47 41 11 09 43 31 40 12 CLAY Well 46 38 5 40 96 2 50 7 01 Well 46 52 3 7 0 96 3 8 3 9 01 Well 46 52 3 2 8 0 96 3 91 0 0 1 Well 46 52 3 1 0 96 41 5 8 0 1 GRANT Well 45 59 3 2 0 9 5 5 8 2 6 0 1	Local number Local number Local number Local number Local number Local number	RECORDS ARE GROUND-WATE 138N41W17ADA01. 149N31W25DCD01. 149N31W25DCD02. 137N45W30CDB01. 139N47W05CDC01. 139N47W06AAA01. 139N48W11ABA01.	PUBLISHED ER LEVELS		•••••••	17 2 17 3 17 3 17 4 17 4
Well 46 46 13 09 55 2 48 01 BELTRAMI Well 47 41 11 09 43 31 40 1 Well 47 41 11 09 43 31 40 2 CLAY Well 46 38 5 40 96 2 50 7 01 Well 46 52 3 7 0 96 3 8 3 9 01 Well 46 52 3 10 96 41 5 8 01 GRANT Well 45 5 9 3 2 0 9 5 5 8 2 6 0 1 ITASCA	Local number	RECORDS ARE GROUND-WATE 138N41W17ADA01. 149N31W25DCD01. 149N31W25DCD02. 137N45W30CDB01. 139N47W05CDC01. 139N47W06AAA01. 139N48W11ABA01.	PUBLISHED ER LEVELS			17 2 17 3 17 3 17 4 17 4 17 5
Well 46 4613095524801 BELTRAMI Well 47 4111094331401 Well 47 4111094331402 CLAY Well 463854096250701 Well 465237096383901 Well 465328096391001 Well 465231096415801 GRANT Well 455932095582601 ITASCA Well 473840093515101 KOCCHICHING	Local number Local number Local number Local number Local number Local number	RECORDS ARE GROUND-WATE 138N41W17ADA01. 149N31W25DCD01. 149N31W25DCD02. 137N45W30CDB01. 139N47W06AAA01. 139N47W06AAA01. 139N48W11ABA01. 129N42W09CCC01.	PUBLISHED ER LEVELS			172 173 173 174 174 175
Well 46 4613095524801 BELTRAMI Well 47 4111094331401 Well 47 4111094331402 CLAY Well 463854096250701 Well 465237096383901 Well 465328096391001 Well 465231096415801 GRANT Well 455932095582601 ITASCA Well 473840093515101 KOCCHICHING Well 481148093445601	Local number	RECORDS ARE GROUND-WATE 138N41W17ADA01. 149N31W25DCD01. 149N31W25DCD02. 137N45W30CDB01. 139N47W05CDC01. 139N47W06AAA01. 139N48W11ABA01. 129N42W09CCC01. 148N25W08DDD01. 066N27W24DAA01.	PUBLISHED ER LEVELS			172 173 173 174 174 175 175
Well 46 46 13 09 55 2 48 01 BELTRAMI Well 47 41 11 09 43 31 40 1 Well 47 41 11 09 43 31 40 2 CLAY Well 46 52 37 09 63 83 90 1 Well 46 52 32 80 96 39 10 01 Well 46 52 31 09 6 41 58 01 GRANT Well 45 59 3 20 95 58 26 01 ITASCA Well 47 38 40 09 3 51 51 01 KOCCHICHING Well 48 11 48 09 3 44 56 01 Well 48 11 48 09 3 58 28 01	Local number	RECORDS ARE GROUND-WATE 138N41W17ADA01. 149N31W25DCD01. 149N31W25DCD02. 137N45W30CDB01. 139N47W05CDC01. 139N47W06AAA01. 139N48W11ABA01. 129N42W09CCC01. 148N25W08DDD01. 066N27W24DAA01. 155N26W21DAA01.	PUBLISHED ER LEVELS			172 173 173 174 174 175 175 176
Well 46 46 13 09 55 2 48 01 BELTRAMI Well 47 41 11 09 43 31 40 12 CLAY Well 46 38 5 40 96 2 50 7 01 Well 46 52 3 7 0 96 3 8 3 9 01 Well 46 52 3 2 8 0 96 3 9 1 0 0 1 Well 46 52 3 2 8 0 96 4 1 5 8 0 1 GRANT Well 45 5 93 2 0 9 5 5 8 2 6 0 1 ITASCA Well 47 38 40 0 93 5 1 5 1 0 1 KOOCHICHING Well 48 11 48 0 93 4 4 5 6 0 1 Well 48 13 4 5 0 93 5 8 2 8 0 2 Well 48 13 4 5 0 93 5 8 2 8 0 2	Local number	RECORDS ARE GROUND-WATE 138N41W17ADA01. 149N31W25DCD01. 149N31W25DCD02. 137N45W30CDB01. 139N47W05CDC01. 139N47W06AAA01. 139N48W11ABA01. 129N42W09CCC01. 148N25W08DDD01. 066N27W24DAA01. 155N26W21DAA01.	PUBLISHED ER LEVELS			172 173 173 174 174 175 175
Well 46 46 13 09 55 2 48 01 BELTRAMI Well 47 41 11 09 43 31 40 1 Well 47 41 11 09 43 31 40 2 CLAY Well 46 38 5 40 96 2 50 7 01 Well 46 52 3 7 0 96 3 8 3 9 01 Well 46 52 3 2 8 0 96 3 91 0 01 Well 46 52 3 1 0 96 41 5 8 0 1 GRANT Well 45 5 9 3 2 0 9 5 5 8 2 6 0 1 ITASCA Well 47 38 40 0 9 3 5 1 5 1 0 1 KOOCHICHING Well 48 11 48 0 9 3 4 4 5 6 0 1 Well 48 13 4 5 0 9 3 5 8 2 8 0 2 LAKE OF THE WOODS	Local number	RECORDS ARE GROUND-WATE 138N41W17ADA01. 149N31W25DCD01. 149N31W25DCD02. 137N45W30CDB01. 139N47W05CDC01. 139N47W06AAA01. 139N42W09CCC01. 148N25W08DDD01. 066N27W24DAA01. 155N26W21DAA01. 155N26W21DAA02.	PUBLISHED ER LEVELS			172 173 174 174 175 175 176 176 177
Well 46 46 13 09 55 2 48 01 BELTRAMI Well 47 41 11 09 43 31 40 1 Well 47 41 11 09 43 31 40 2 CLAY Well 46 38 5 40 96 2 50 7 01 Well 46 52 3 7 0 96 3 8 3 9 01 Well 46 53 2 8 0 96 3 91 0 01 Well 46 52 3 1 0 96 41 5 8 0 1 GRANT Well 45 5 93 2 0 9 5 5 8 2 6 0 1 ITASCA Well 47 38 40 0 93 5 1 5 1 0 1 KOOCHICHING Well 48 11 48 0 93 4 4 5 6 0 1 Well 48 13 4 5 0 9 3 5 8 2 8 0 2 LAKE OF THE WOODS Well 48 45 5 2 0 9 5 0 5 2 4 0 1	Local number	RECORDS ARE GROUND-WATE 138N41W17ADA01. 149N31W25DCD01. 149N31W25DCD02. 137N45W30CDB01. 139N47W05CDC01. 139N47W06AAA01. 139N42W09CCC01. 148N25W08DDD01. 066N27W24DAA01. 155N26W21DAA01. 155N26W21DAA02.	PUBLISHED ER LEVELS			172 173 173 174 174 175 175 176
Well 46 46 13 09 55 2 48 01 BELTRAMI Well 47 41 11 09 43 31 40 1 Well 47 41 11 09 43 31 40 2 CLAY Well 46 38 5 40 96 2 50 7 01 Well 46 52 3 7 0 96 3 8 3 9 01 Well 46 52 3 1 0 96 41 5 8 0 1 GRANT Well 45 59 3 20 95 5 8 2 6 0 1 ITASCA Well 47 38 40 0 93 5 1 5 1 0 1 KOCCHICHING Well 48 13 4 5 0 9 3 5 8 2 8 0 1 Well 48 13 4 5 0 9 3 5 8 2 8 0 2 LAKE OF THE WOODS Well 48 45 5 2 0 9 5 0 5 2 4 0 1 MAHNOMEN	Local number	RECORDS ARE GROUND-WATE 138N41W17ADA01. 149N31W25DCD01. 149N31W25DCD02. 137N45W30CDB01. 139N47W05CDC01. 139N47W06AAA01. 139N48W11ABA01. 129N42W09CCC01. 148N25W08DDD01. 066N27W24DAA01. 155N26W21DAA01. 155N26W21DAA01.	PUBLISHED ER LEVELS			172 173 174 174 175 175 176 176 177
Well 46 46 13 09 55 2 48 01 BELTRAMI Well 47 41 11 09 43 31 40 1 Well 47 41 11 09 43 31 40 2 CLAY Well 46 38 5 40 96 2 50 7 01 Well 46 52 37 0 96 3 8 3 9 01 Well 46 53 2 80 96 3 91 00 1 Well 46 52 31 0 96 41 5 8 0 1 GRANT Well 45 59 3 20 95 5 8 2 6 0 1 ITASCA Well 47 38 40 0 93 5 1 5 1 0 1 KOCCHICHING Well 48 11 48 0 93 4 4 5 6 0 1 Well 48 13 4 5 0 93 5 8 2 8 0 2 LAKE OF THE WOODS Well 48 45 5 20 9 5 0 5 2 4 0 1 MAHNOMEN Well 47 16 5 3 0 9 6 0 2 0 3 0 1 MARSHALL	Local number	RECORDS ARE GROUND-WATE 138N41W17ADA01. 149N31W25DCD01. 149N31W25DCD02. 137N45W30CDB01. 139N47W05CDC01. 139N47W06AAA01. 139N48W11ABA01. 129N42W09CCC01. 148N25W08DDD01. 066N27W24DAA01. 155N26W21DAA01. 155N26W21DAA02. 161N34W18BCC01.	PUBLISHED ER LEVELS			172 173 174 174 174 175 175 176 176 177 178 178
Well 46 46 13 09 55 2 48 01 BELTRAMI Well 47 41 11 09 43 31 40 1 Well 47 41 11 09 43 31 40 2 CLAY Well 46 38 5 40 96 2 50 7 01 Well 46 52 37 0 96 3 8 3 9 01 Well 46 52 3 2 8 0 96 3 9 1 0 0 1 Well 46 52 3 2 8 0 96 3 9 1 0 0 1 Well 46 52 3 1 0 96 41 5 8 0 1 GRANT Well 45 5 93 2 0 9 5 5 8 2 6 0 1 ITASCA Well 47 38 40 0 93 5 1 5 1 0 1 KOCCHICHING Well 48 13 45 0 93 5 8 2 8 0 1 Well 48 13 45 0 93 5 8 2 8 0 2 LAKE OF THE WOODS Well 48 48 55 2 0 9 5 0 5 2 4 0 1 MAHNOMEN Well 47 16 53 0 9 6 0 2 0 3 0 1 MARSHALL Well 48 16 0 40 9 6 3 9 1 5 0 1	Local number	RECORDS ARE GROUND-WATE 138N41W17ADA01. 149N31W25DCD01. 149N31W25DCD02. 137N45W30CDB01. 139N47W05CDC01. 139N47W06AAA01. 139N48W11ABA01. 129N42W09CCC01. 148N25W08DDD01. 066N27W24DAA01. 155N26W21DAA01. 155N26W21DAA02. 161N34W18BCC01. 144N42W20BBA01. 155N47W11AAA03.	PUBLISHED ER LEVELS			172 173 174 174 174 175 175 176 176 177 178 178 179
Well 46 46 13 09 55 2 48 01 BELTRAMI Well 47 41 11 09 43 31 40 1 Well 47 41 11 09 43 31 40 2 CLAY Well 46 38 5 40 96 2 50 7 01 Well 46 52 37 0 96 3 8 3 9 01 Well 46 53 2 80 96 3 91 00 1 Well 46 52 31 0 96 41 5 8 0 1 GRANT Well 45 59 3 20 95 5 8 2 6 0 1 ITASCA Well 47 38 40 0 93 5 1 5 1 0 1 KOCCHICHING Well 48 11 48 0 93 4 4 5 6 0 1 Well 48 13 4 5 0 93 5 8 2 8 0 2 LAKE OF THE WOODS Well 48 45 5 20 9 5 0 5 2 4 0 1 MAHNOMEN Well 47 16 5 3 0 9 6 0 2 0 3 0 1 MARSHALL	Local number	RECORDS ARE GROUND-WATE 138N41W17ADA01. 149N31W25DCD01. 149N31W25DCD02. 137N45W30CDB01. 139N47W05CDC01. 139N47W06AAA01. 139N48W11ABA01. 129N42W09CCC01. 148N25W08DDD01. 066N27W24DAA01. 155N26W21DAA01. 155N26W21DAA02. 161N34W18BCC01. 144N42W20BBA01. 155N47W11AAA03. 156N48W10DAA02.	PUBLISH ED ER LEVELS			172 173 174 174 174 175 175 176 176 177 178 178

GROUND-WATER WELLS, BY COUNTY, FOR WHICH RECORDS ARE PUBLISHED--Continued

viii

GROUND WATER LEVELS

					Paqe
OTTER	TAIL				
Well	463430096050201	Local	number	136N43W22CDA02	181
Well	463956095352601	Local	number	137 N39 W2 2ACD 01	182
ST. LO					
Well	47 26 38 0 9 2 5 3 3 6 0 1	Local	number	057 N20W0 5DAD01	
Well	47 2 2 3 0 0 9 2 5 6 1 0 0 1	Local	number	0 57 N20W3 1DBC 01	183
Well	473102092345001	Local	number	058N18W12CCC01	184
Well	473011092524301	Local	number	058 N20W16DBC01	184
Well	47 42 53 091 57 41 01	Local	number	060N13W01BBA01	185
Well	47 5 5 0 2 0 9 1 4 9 4 6 0 1	Local	number	063 Nl 2W26 ABB01	186
TRAVER	SE				
Well	455700096314001	Local	number	129N47W25CDC01	187
	-			QUALITY OF GROUND WATER	
	•				
BECKER					
Wel:	1 47040509542580	8 Local	number	r 142N40W35C	188
OTTER					
				r 133N40Wl1BCC01	
Wel	1 46271509532300	l Local	l numbe:	r 134N39W01ACD02	188
Wel:	1 46324509533150	l Local	l numbe:	r 136N39W35DAD02	188
Wel	1 46350009533150	Local	numbe	r 136 N39W14DDD01	188

INTRODUCTION

The Water Resources Division of the U.S Geological Survey, in cooperation with State agencies, obtains a large amount of data pertaining to the water resources of Minnesota each water year. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the Geological Survey, the data are published annually in this report series entitled "Water Resources Data - Minnesota."

Water resources data for the 1985 water year for Minnesota consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground water. This volume contains discharge records for 46 gaging stations; stage only records for 1 gaging station; stage and contents for 5 lakes and reservoirs; water quality for 8 gaging stations, 7 partial-record stations, 10 lake stations, and 12 wells; and water levels for 26 observation wells. Also included are 38 high-flow partial-record stations. Additional water data were collected at various sites, not involved in the systematic data collection program, and are published as miscellaneous measurements. These data, together with the data in Volume 2, represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Minnesota.

This series of annual reports for Minnesota began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the 1975 water year, the report was changed to present, in one volume, data on quantities of surface water, quality of surface and ground water, and ground-water levels.

Prior to introduction of this series and for several water years concurrent with it, water-resources data for Minnesota were published in U.S. Geological Survey Water-Supply Papers. Data on stream discharge and stage and on lake or reservoir contents and stage, through September 1960, were published annually under the title "Surface-Water Supply of the United States, Parts 4, 5 and 6A." For the 1961 through 1970 water years, the data were published in two 5-year reports. Data on chemical quality, temperature, and suspended sediment for the 1941 through 1970 water years were published annually under the title "Quality of Surface Waters of the United States," and water levels for the 1935 through 1974 water years were published under the title "Ground-Water Levels in the United States." The above mentioned Water-Supply papers can be consulted in the libraries of the principal cities of the United States and may be purchased from Distribution Branch, Text Products Section, U.S. Geological Survey, 604 Pickett Street, Alexandria, VA 22304.

Publications similar to this report are published annually by the Geological Survey for all States. These official Survey reports have an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and volume number. For example, this volume is identified as the "U.S. Geological Survey Water-Data Report MN-85-1. For archiving and general distribution, the reports for 1971-1974 water years also are identified as water-data reports. These water-data reports are for sale in paper copy or in microfiche by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

Additional information, including current prices, for ordering specific reports may be obtained from the district chief at the address given on the back of the title page or by telephone (612) 725-7841.

COOPERATION

The U.S. Geological Survey and organizations of the State of Minnesota have had cooperative agreements for the systematic collection of streamflow records since 1909, for ground-water levels since 1948, and for water-quality records since 1952. Organizations that assisted in collecting data through cooperative agreement with the Survey are:

Minnesota Department of Natural Resources, Division of Waters, Lawrence D. Seymour, director.

Minnesota Department of Transportation, Richard P. Braun, commissioner.

Minnesota Pollution Control Agency, Thomas J. Kalitowski, executive director.

Metropolitan Waste Control Commission of the Twin Cities Area, Peter E. Meintsman, chairperson.

Metropolitan Council of the Twin Cities Area, Sandra Gardebring, chairperson.

Elm Creek Conservation Commission, Gerald E. Butcher, chairperson.

Fond du Lac Reservation Business Commission, W. J. Houle, chairperson.

Red Lake Watershed District, Truman Sandland, president.

Red Lake Reservation Business Committee, Roger Jordain, chairperson.

Middle River-Snake River Watershed District, Donald Rivard, chairperson.

White Earth Reservation Business Committee, Darrell Wadena, Chairperson.

Assistance in the form of funds or services was given by the Corps of Engineers, U.S. Army, in collecting records for 48 gaging stations and 12 water-quality stations published in this report. Thirteen gaging stations in the Hudson Bay and St. Lawrence River basins were maintained by funds appropriated to the United States Department of State. Eight of these, on water adjacent to the international boundary, are maintained by the United States (or Canada) under agreement with Canada (or the United States), and the records are obtained and compiled in a manner equally acceptable in both countries. These stations are designated herein as "International gaging stations."

SUMMARY OF HYDROLOGIC CONDITIONS

PRECIPITATION

Precipitation during the 1985 water year varied from normal in a small area of the southeast to 16 inches above normal in parts of north-central and northwestern Minnesota (fig. 1). Normal annual precipitation in Minnesota ranges from 19 inches in the northwest to 32 inches in the southeast. Precipitation during water year 1985 ranged from 24 inches in parts of the northwest to 40 inches in central Minnesota and small parts of the northeast and southeast. Except for November, precipitation was above normal statewide during the first quarter of the 1985 water year. During the second quarter, precipitation was near normal to slightly below, except during March when it was above normal statewide, with the exception of the "arrowhead" where it was slightly below. Precipitation during the third quarter generally was above normal over most of the State, except in the southeast where it was below normal during the entire quarter. The fourth quarter began with below-normal precipitation statewide during July. Precipitation during the remainder of the quarter was excessive over most of the State, being slightly below normal in parts of the north.

STREAMFLOW

Average annual runoff in Minnesota ranges from 1 inch in the west to 14 inches in the northeast. Annual runoff in 1985 ranged from 1.2 inches on the western border to almost 19 inches in the northeast (fig. 2) and varied from 60 to 80 percent of average in parts of northeast and south-central Minnesota to 300 percent of average in a small part of the northwest. The southwest had the greatest area of above-average runoff, ranging from 200 to 280 percent of the long-term average. Small areas in the south-central, southeast, and "arrowhead" regions of the State had the lowest average runoff, ranging from 63 to 102 percent of the long-term average. Runoff in the large remaining area of the State ranged from 125 to 200 percent of the long-term average, with a few exceptions.

Records for stations in northern Minnesota in 1985 indicate variations in annual runoff from slightly above average in the northeast to twice the average runoff in the northwest. Runoff in the Roseau River at Ross, in northwestern Minnesota, was 5.38 inches — twice the 57-year average annual runoff of 2.65 inches, in contrast to the previous year when the lowest September flow for the period of record occurred. Farther east in northern Minnesota, runoff in the Little Fork River at Littlefork was 12.95 inches — 1.5 times the average annual runoff of 8.36 inches and the 6th highest in 62 years of record. In northeastern Minnesota, runoff in the Baptism River near Beaver Bay was 17.31 inches — only 5 percent higher than the 58-year average annual runoff of 16.49 inches. A comparison of annual and monthly mean discharges for these stations to median discharges for a 30-year base period is shown in figure 3.

Despite record, or near record, monthly flow volumes in some areas during 1985, no peaks of record were exceeded at any station on streams for which records are published in this volume, with the exception of two recently established stations with less than 10 years of record and one longer-term station in north-central Minnesota.

WATER QUALITY

Four U.S. Geological Survey National Stream-Quality Accounting Network (NASQAN) stations are used to monitor variability in concentrations of chloride and in nitrate as nitrogen in, and between, the three major basins covered in this volume (figs. 4 and 5): the Lake Superior, Rainy River, and Red River of the North basins.

Chloride concentrations generally were higher than the monthly median at the four NASQAN stations; except St. Louis River at Scanlon. Chloride con-centrations at Scanlon were below the median in five out of six samples.

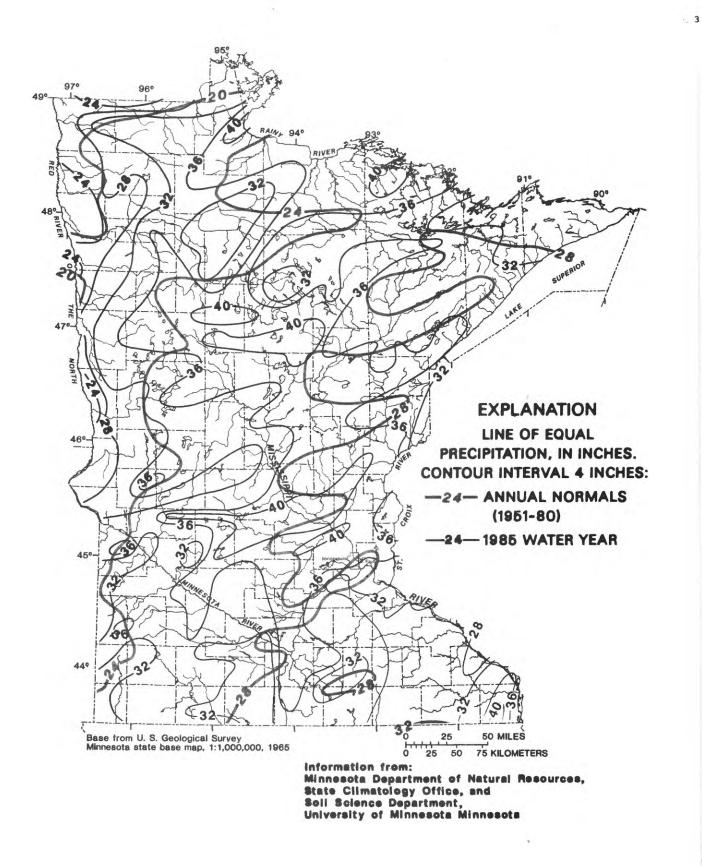


Figure 1.--Precipitation, in inches, during 1985 water year compared with normal annual precipitation for Minnesota

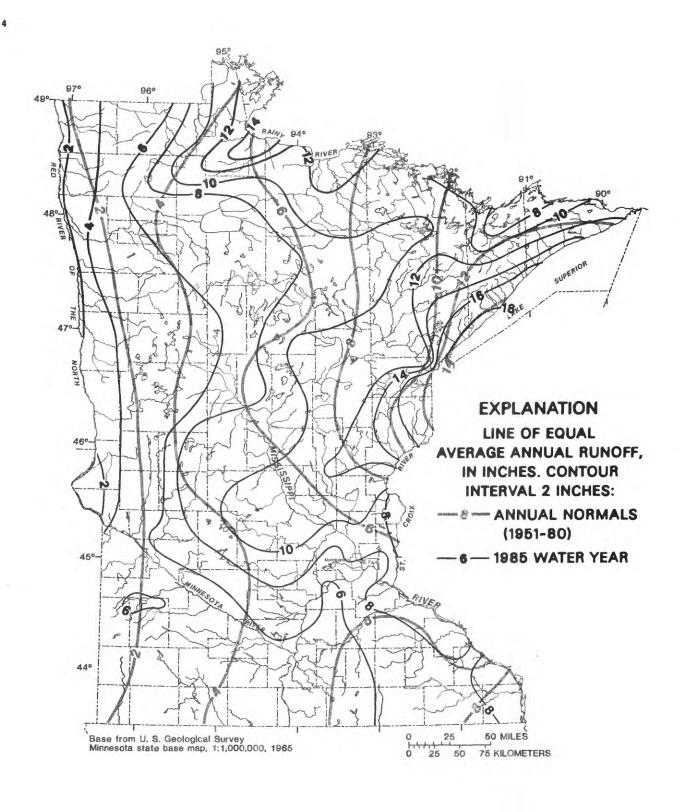


Figure 2.--Average annual runoff, in inches, for the 1985 water year compared with average annual runoff for a 30-year base period

Nitrate concentrations reported as nitrogen (analysis for nitrate plus nitrite as nitrogen, but nitrite concentration assumed to be negligible) were the same or slightly higher than the monthly medians for the four stations shown in figure 5.

Twelve ground-water samples were collected and analyzed for major ions. All nitrate-nitrogen concentrations were below the primary drinking-water standard of 10 mg/L (U.S. Environmental Protection Agency, 1985).

GROUND-WATER LEVELS

water levels in unconfined (water-table) aguifers generally were above normal in 16 of 32 observation wells at the begining of the 1985 water year. Water levels generally rose during early fall and declined in late fall through winter. During winter 1985 (January through March), water levels in 47 percent of the observation wells were in the normal range, 34 percent were above normal, and 19 percent below normal. Water levels generally rose slightly in a limit such that water levels were normal in 56 percent of the observation wells, above normal in 31 percent, and below normal in 13 percent. Water levels continued to rise during summer so that they were above normal in 16 of the 32 observation wells in unconfined aquifers, water levels in 14 of the wells were in the normal range, and water levels in 2 wells were below normal. During summer 1985, new monthly record-high-water levels were recorded in 11 of the 32 observation wells. Figure 6 shows the seasonal fluctuation of water levels relative to normal levels, based on water-level fluctuations in 32 wells in unconfined aquifers. Levels for the 1985 water year are compared to the long-term normal for each month and are grouped by seasons. Water levels in southeastern Minnesota were consistently above normal throughout the 1985 water year — similar to water levels in the adjacent area of Wisconsin. Water levels in parts of central and northwestern Minnesota also were above normal. Water levels in northeastern Minnesota were below normal in fall and winter but were in the normal range in spring and summer. In southwestern Minnesota, water levels declined in most areas and, by the end of the water year (September 1985), were below normal — similar to water levels reported from adjacent areas in South Dakota.

Water levels in confined drift and bedrock aquifers generally were above normal throughout the 1985 water year. Water levels generally rose during winter and spring followed by a seasonal decline in summer 1985 (fig 7). Seasonal water levels in 52 observation wells in confined aquifers were compared to long-term normal levels. In fall 1984 (October through December) and in winter 1985 (January through March), above-normal levels were recorded in 69 percent of the wells in confined aquifers, normal levels were recorded in 18 percent of the wells, and below-normal levels in about 13 percent of the wells. Water levels rose seasonally in spring, so that above-normal water levels were recorded during the months of April, May, and June 1985 in 65 percent of the observation wells in confined aquifers, normal levels were recorded in 21 percent of the wells, and below-normal levels were recorded in only 14 percent of the wells. During summer 1985, water levels in 30 of the 52 observation wells in confined aquifers remained above normal and were in the normal range in 16 wells. Numerous seasonal record-high-water levels were recorded in north-central, southeastern, and southwestern Minnesota. New monthly record-high-water levels were recorded in 18 of the wells during the fall. New monthly record-high-water levels were recorded in 18 of the wells during summer. Levels in the Mount Simon-Hinckley aquifer in the Twin Cities basin were consistently below normal, and new seasonal record-low-water levels were recorded.

SPECIAL NETWORKS AND PROGRAMS

Hydrologic Bench-Mark Network is a network of 57 sites in small drainage basins around the country whose purpose is to provide consistent data on the hydrology, including water quality, and related factors in representative undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by the activities of man.

National Stream Quality Accounting Network (NASOAN) is a national data-collection network designed by the U.S. Geological Survey to meet many of the information needs of government agencies and other groups involved in natural or regional water-quality planning and management. The 500 or so sites in NASOAN are generally located at the downstream ends of the hydrologic accounting units designated by the U.S. Geological Survey Office of Water Data Coordination in consultation with the Water Resources Council. The objectives of NASOAN are (1) to obtain information on the quality and quantity of water moving within and from the United States through a systematic and uniform process of data collection, summarization, analysis, and reporting such that the data may be used for, (2) description of the areal variability of water quality in the Nation's rivers through analysis of data from this and other programs, (3) detection of changes or trends with time in the pattern of occurrence of water-quality characteristics, and (4) providing a nationally consistent data base useful for water quality assessment and hydrologic research.

The National Trends Network (NTN) is a 150-station network for sampling atmospheric deposition in the United States. The purpose of the network is to determine the variability, both in location and in time, of the composition of atmospheric deposition, which includes snow, rain, dust particles, and aerosols, and gases. The core from which the NTN was built was the already-existing deposition-monitoring network of the National Atmospheric Deposition Program (NADP).

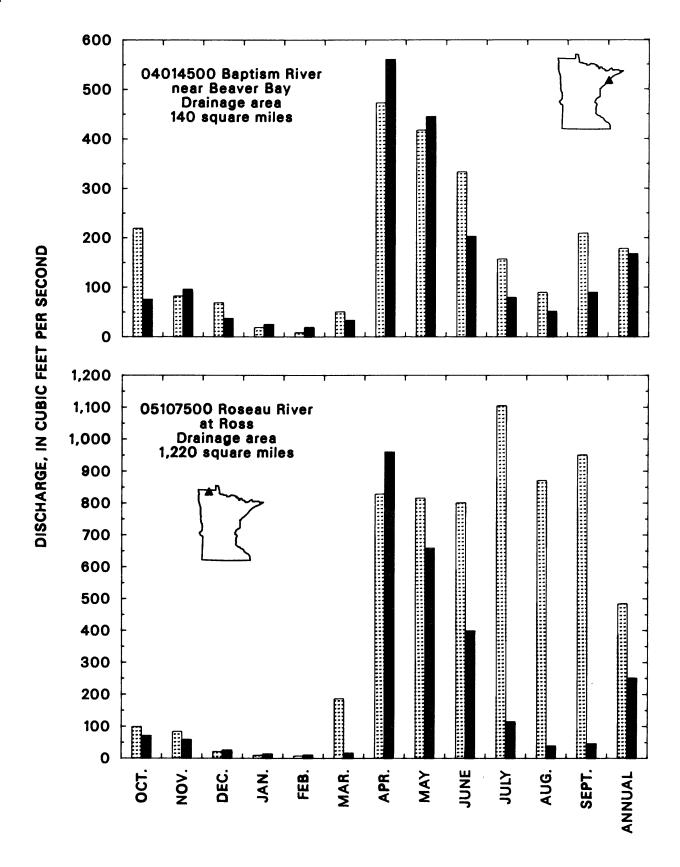
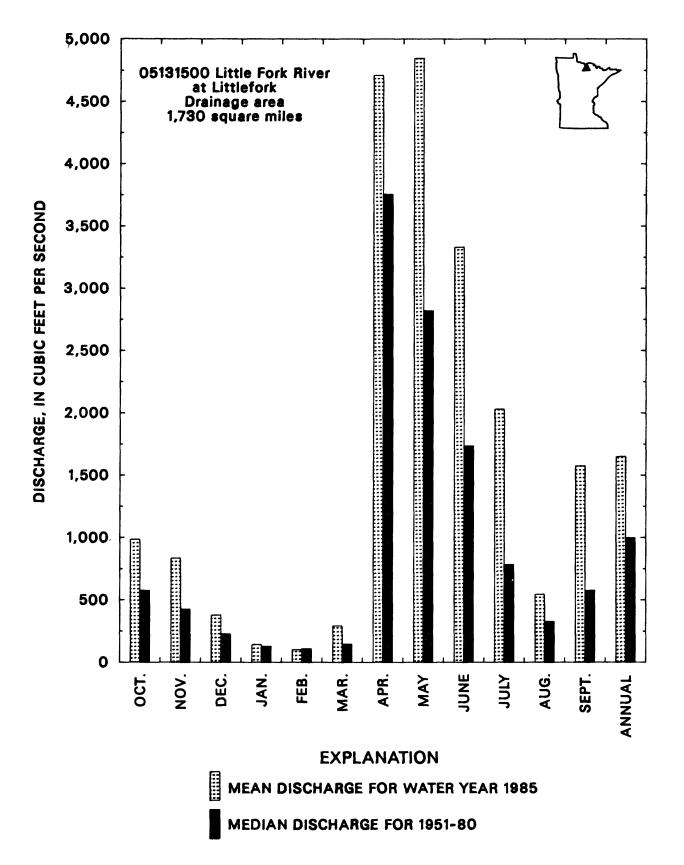



Figure 3.--Comparison of discharges at three long-term representative gaging

stations for the 1985 water year with median discharge for water years 1951-80

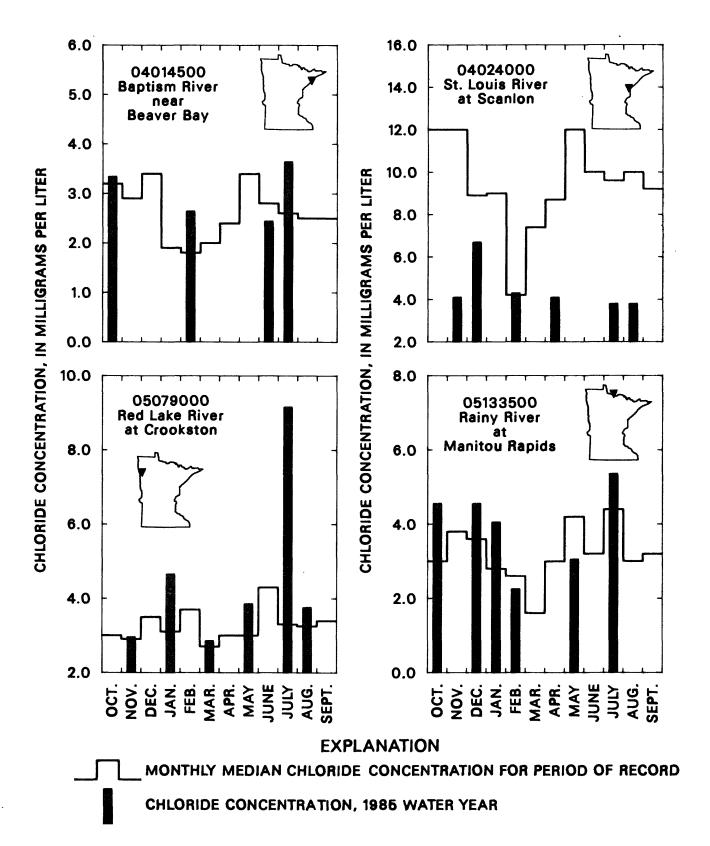


Figure 4.--Comparison of chloride concentrations for the 1985 water year with median monthly values for the period of record

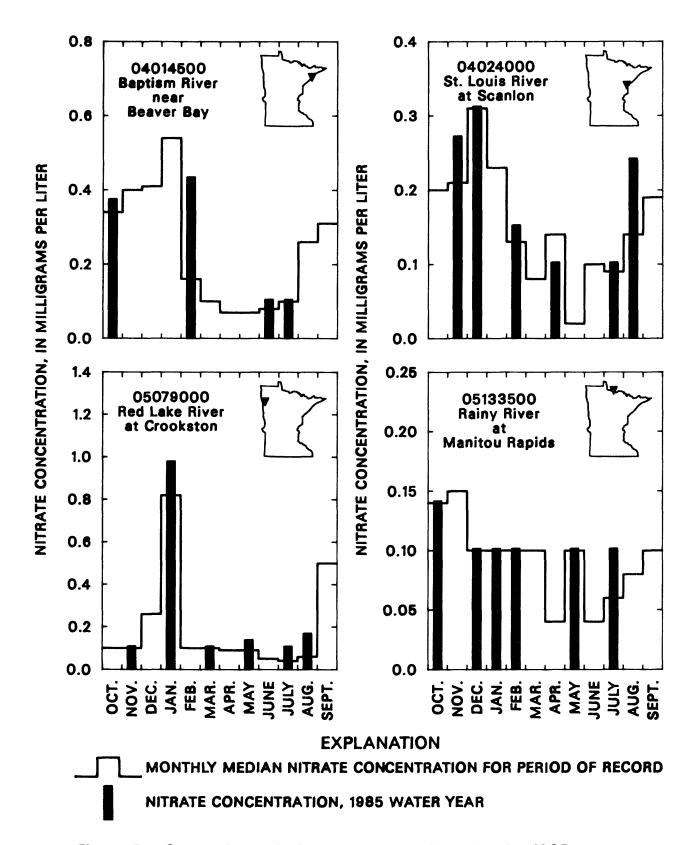
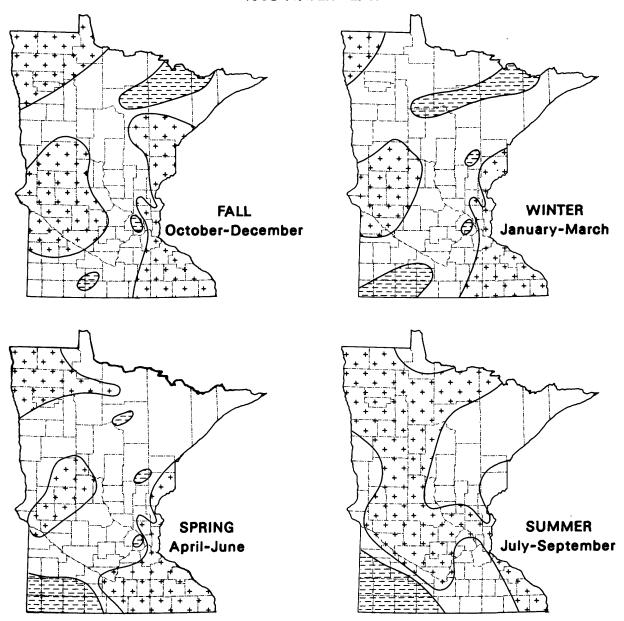
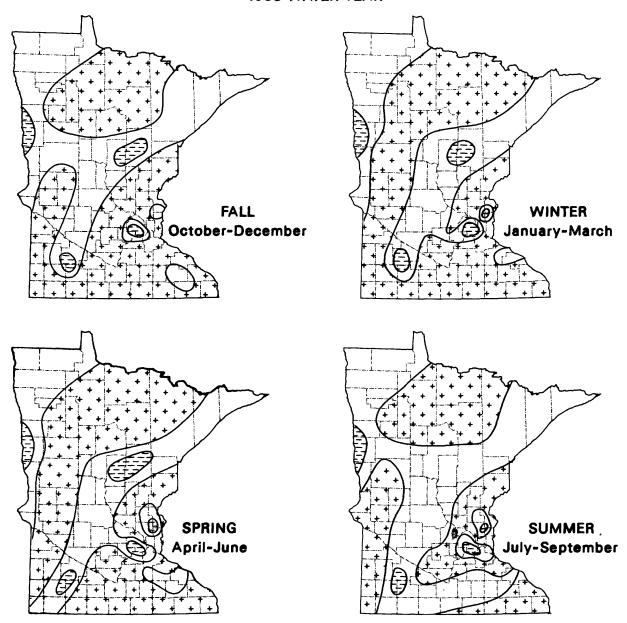



Figure 5.--Comparison of nitrate concentrations for the 1985 water year with median monthly values for the period of record

1985 WATER YEAR


EXPLANATION

WATER-TABLE LEVELS

+ +	ABOVE NORMALWater levels are within the highest 25
	percent of record for the season
	NORMAL
華	BELOW NORMALWater levels are within the lowest 25
	percent of record for the season

Figure 6.--Relationship of seasonal water-table levels to long-term mean levels

1985 WATER YEAR

EXPLANATION

CONFINED-AQUIFER WATER LEVELS

ABOVE NORMAL--Water levels are within the highest 25 percent of record for the season

NORMAL

BELOW NORMAL--Water levels are within the lowest 25 percent of record for the season

Figure 7.--Relationship of seasonal water levels in confined aquifers to long-term mean levels

Radiochemical program is a network of regularly sampled water-quality stations where samples are collected to be analyzed for radioisotopes. The streams that are sampled represent major drainage basins in the conterminous United States.

Tritium network is a network of stations which has been established to provide baseline information on the occurrence of tritium in the Nation's surface waters. In addition to the surface-water stations in the network, tritium data are also obtained at a number of precipitation stations. The purpose of the precipitation stations is to provide an estimate sufficient for hydrologic studies of the tritium input to the United States.

EXPLANATION OF THE RECORDS

The surface-water and ground-water records published in this report are for the 1985 water year that began October 1, 1984, and ended September 30, 1985. A calendar of the water year is provided on the inside of the front cover. The records contain streamflow data, stage and content data for lakes and reservoirs, water-quality data for the surface and ground water, and ground-water-level data. The locations of the stations and wells where the data were collected are shown in figures 9, 10, 11, and 12. The following sections of the introductory text are presented to provide users with a more detailed explanation of how the hydrologic data published in this report were collected, analyzed, computed, and arranged for presentation.

STATION IDENTIFICATION NUMBERS

Each data station, whether streamsite or well, in this report is assigned a unique identification number. This number is unique in that it applies specifically to a given station and to no other. The number usually is assigned when a station is first established and is retained for that station indefinitely. The system used by the U.S. Geological Survey to assign identification numbers for surface-water stations and for ground-water well sites differ, but both are based on geographic location. The "downstream order" system is used for regular surface-water stations and the "latitude-longitude" system is used for wells and, in Minnesota, for surface-water stations where only miscellaneous measurements are made.

Downstream Order System and Station Number

Since October 1, 1950, the order of listing hydrologic-station records in Survey reports is in a downstream direction along the main stream. All stations on a tributary entering upstream from a main-stream station are listed before that station. A station on a tributary that enters between two main-stream sections is listed between them. A similar order is followed by listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary on which a station is situated with respect to the stream to which it is immediately tributary is indicated by an indentation in a list of stations in front of the report. Each indention represents one rank. This downstream order and system of indention show which stations are on tributaries between any two stations and the rank of the tributary on which each station is situated.

As an added means of identification, each hydrologic station and partial-record station has been assigned a station number. These are in the same downstream order in this report. In assigning station numbers, no distinction is made between partial-record stations and other stations; therefore, the station number for a partial-record station indicates downstream-order position in a list made up of both types of stations. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The complete 8-digit number for each station such as 05041000, which appears just to the left of the station name, includes the 2-digit part number "05" plus the 6-digit downstream order number "041000."

Latitude-Longitude System for Wells and Miscellaneous Sites

The 8-digit downstream order station numbers are not assigned to wells and miscellaneous sites where only random water-quality samples or discharge measurements are taken.

The well and miscellaneous site numbering system of the U.S. Geological Survey is based on the grid system of latitude and longitude. The system provides the geographic location of the well or miscellaneous site and a unique number for each site. The number consists of 15 digits. The first 6 digits denote the degrees, minutes, and seconds of latitude, the next 7 digits denote degrees, minutes, and seconds of longitude, and the last 2 digits (assigned sequentially) identify the wells or other sites within a 1-second grid. See figure 8 on following page. Each well site is also identified by a local well number which consists of township, range, and section numbers, three letters designating 1/4, 1/4, 1/4 section location, and a two-digit sequential number.

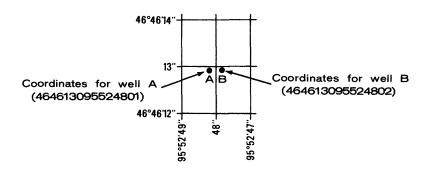


Figure 8.--Example of system for numbering wells and miscellaneous sites

RECORDS OF STAGE AND WATER DISCHARGE

Records of stage and water discharge may be complete or partial. Complete records of discharge are those obtained using a continuous stage-recording device through which either instantaneous or mean daily discharge may be computed for any time, or any period of time, during the period of record. Complete records of lake or reservoir content, similarly, are those for which stage or content may be computed or estimated with reasonable accuracy for any time, or period of time. They may be obtained using a continuous stage-recording device, but need not be. Because daily mean discharges and end-of-day contents commonly are published for such stations, they are referred to as "daily stations".

By contrast, partial records are obtained through discrete measurements without using a continuous stage-recording device and pertain only to a few flow characteristics, or perhaps only one. The nature of the partial record is indicated by table titles such as "High-flow partial records," or "Low-flow partial records." Records of miscellaneous discharge measurements or of measurements from special studies, such as low-flow seepage studies, may be considered as partial records, but they are presented separately in this report. Location of all complete-record and high-flow partial-record stations for which data are given in this report are shown in figures 9 and ll.

Data Collection and Computation

The data obtained at a complete-record gaging station on a stream or canal consist of a continuous record of stage, individual measurements of discharge throughout a range of stages, and notations regarding factors that may affect the relationships between stage and discharge. These data, together with supplemental information, such as weather records, are used to compute daily discharges. The data obtained at a complete-record gaging station on a lake or reservoir consist of a record of stage and of notations regarding factors that may affect the relationship between stage and lake content. These data are used with stage-area and stage-capacity curves or tables to compute water-surface areas and lake storage.

Continuous records of stage are obtained with analog recorders that trace continuous graphs of stage or with digital recorders that punch stage values on paper tapes at selected time intervals. Measurements of discharge are made with current meters using methods adapted by the Geological Survey as a result of experience accumulated since 1880. These methods are described in standard textbooks, in Water-Supply Paper 2175, and in U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter A6.

In computing discharge records, results of individual measurements are plotted against the corresponding stages, and stage-discharge relation curves are then constructed. From these curves, rating tables indicating the approximate discharge for any stage within the range of the measurements are prepared. If it is necessary to define extremes of discharge outside the range of current-meter measurements, the curves are extended using: (1) logarithmic-plotting; (2) velocity-area studies; (3) results of indirect measurements of peak discharge, such as slope-area or contracted-opening measurements, and computations of flow-over-dams or weirs; or (4) step-backwater techniques.

Daily mean discharges are computed by applying the daily mean stages (gage heights) to the stage-discharge curves or tables. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the daily mean discharge is determined by the shifting-control method, in which correction factors based on the individual discharge measurements and notes of the personnel making the measurements are applied to the gage heights before the discharges are determined from the curves or tables. This shifting-control method also is used if the stage-discharge relation is changed temporarily because of aquatic growth or debris on the control. For some stations, formation of ice in the winter may so obscure the stage-discharge relations that daily mean discharges must be estimated from other information such as temperature and precipitation records, notes of observations, and records for other stations in the same or nearby basins for comparable periods.

At some stream-gaging stations the stage-discharge relation is affected by the backwater from reservoirs, tributary streams, or other sources. This necessitates the use of the slope method in which the slope or fall in a reach of the stream is a factor in computing discharge. The slope or fall is obtained by means, of an auxiliary gage set at some distance from the base gage. At some stations the stage-discharge relation is affected by changing stage; at these stations the rate of change in stage is used as a factor in computing discharge.

In computing records of lake or reservoir contents, it is necessary to have available from surveys, curves, or tables defining the relationship of stage and content. The application of stage to the stage-content curves or tables gives the contents from which daily, monthly, or yearly changes then are determined. If the stage-content relationship changes because of deposition of sediment in a lake or reservoir, periodic resurveys may be necessary to redefine the relationship. Even when this is done, the contents computed may become increasingly in error as time since the last survey increases. Discharge over lake or reservoir spillways are computed from stage-discharge relationships much as other stream discharges are computed.

For some gaging stations there are periods when no gage-height record is obtained, or the recorded gage height is so faulty that it cannot be used to compute daily discharge or contents. This happens when the recorder stops or otherwise fails to operate properly, intakes are plugged, the float is frozen in the well, or for various other reasons. For such periods, the daily discharges are estimated from the recorded range in stage, previous or following record, discharge measurements, weather records, and comparison with other station records from the same or nearby basins. Likewise, daily contents may be estimated from operator's logs, previous or following record, inflow-outflow studies, and other information. Information explaining how estimated daily-discharge values are identified in station records is included in the next two sections, "Data Presentation" (REMARKS paragraph) and "Identifying Estimated Daily Discharge."

Data Presentation

The records published for each gaging station consist of two parts, the manuscript or station description and the data table for the current water year. The manuscript provides, under various headings, descriptive information, such as station location; period of record; average discharge; historical extremes; record accuracy; and other remarks pertinent to station operation and regulation. The following information as appropriate is provided with each continuous record of discharge or lake content. Comments to follow clarify information presented under the various headings of the station description

LOCATION.--Information on locations is obtained from the most accurate maps available. The location of the gage with respect to the cultural and physical features in the vicinity and with respect to the reference place mentioned in the station name is given. River mileages, given for only a few stations, were determined by methods given in "River Mileage Measurement," Bulletin 14, Revision of October 1968, prepared by the Water Resources Council or were provided by the U.S. Army Corps of Engineers.

DRAINAGE AREA.--Drainage areas are measured using the most accurate maps available. Because the type of maps available varies from one drainage basin to another, the accuracy of drainage areas likewise varies. Drainage areas are updated as better maps become available.

PERIOD OF RECORD.--This indicates the period for which there are published records for the station or for an equivalent station. An equivalent station is one that was in operation at a time when the present station was not, and whose location was such that records from it can reasonably be considered equivalent with records from the present station.

REVISED RECORDS.—Published records, because of new information, occasionally are found to be incorrect, and revisions are printed in later reports. Listed under this heading are all reports in which revisions have been published for the station and water years to which the revisions apply. If a revision did not include daily, monthly, or annual figures of discharge, that fact is noted after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; "(m)" that only the instantaneous minimum was revised; and "(P)" that only peak discharges were revised. If the drainage area has been revised, the report in which the most recently revised figure was first published is given.

GAGE.--The type of gage in current use, the datum of the current gage referred to National Geodetic Vertical Datum of 1929 (see glossary), and a condensed history of the types, locations, and datums of previous gages are given under this heading.

REMARKS.—All periods of estimated daily-discharge record will either be identified by date in this paragraph of the station description for water-discharge stations or flagged in the daily-discharge table. If a remarks statement is used to identify estimated record, the paragraph will begin with this information presented as the first entry. The paragraph is also used to present information relative to the accuracy of the records, to special methods of computation, to conditions that affect natural flow at the station and, possibly, to other pertinent items. For reservoir stations, information is given on the dam forming the reservoir, the capacity, outlet works and spillway, and purpose and use of the reservoir.

COOPERATION.--Records provided by a cooperating organization or obtained for the Geological Survey by a cooperating organization are identified here.

AVERAGE DISCHARGE.—The discharge value given is the arithmetic mean of the water-year mean discharges. It is computed only for stations having at least 5 water years of complete record, and only water years of complete record are included in the computation. It is not computed for stations where diversions, storage, or other water-use practices cause the value to be meaningless. If water developments significantly altering flow at a station are put into use after the station has been in operation for a period of years, a new average is computed as soon as 5 water years of record have accumulated following the development. The median of yearly mean discharges also is given under this heading for stations having 10 or more water years of record, if the median differs from the average given by more than 10 percent.

EXTREMES FOR PERIOD OF RECORD.—Extremes may include maximum and minimum stages and maximum and minimum discharges or content. Unless otherwise qualified, the maximum discharge or content is the instantaneous maximum corresponding to the highest stage that occurred. The highest stage may have been obtained from a graphic or digital recorder, a crest-stage gage, or by by direct observation of a nonrecording gage. If the maximum stage did not occur on the same day as the maximum discharge or content, it is given separately. Similarly, the minimum is the instantaneous minimum discharge, unless otherwise qualified, and was determined and is reported in the manner as the maximum.

EXTREMES OUTSIDE PERIOD OF RECORD.—Included here is the information concerning major floods or unusually low flows that occurred outside the stated period of record. The information may or may not have been obtained by the U.S. Geological Survey.

EXTREMES FOR THE CURRENT YEAR.—Extremes given here are similar to those for the period of record, except the peak discharge listing which may include secondary peaks. For stations meeting certain criteria, all peak discharges and stages occurring during the water year and greater than a selected base discharge are presented under this heading. The peaks greater than the base discharge, excluding the highest one, are referred to as secondary peaks. Peak discharges are not published for canals, ditches, drains, or streams for which the peaks are subject to substantial control by man. The time of occurrence for peaks is expressed in 24-hour local standard time. For example, 12:30 a.m. is 0030, and 1:30 p.m. is 1330. The minimum for the current water year appears below the table of peak data.

REVISIONS.--If a critical error in published records is discovered, a revision is included in the first report published following discovery of the error.

Although rare, occasionally the records of a discontinued gaging station may need revision. Because, for these stations, there would be no current or, possibly, future station manuscript published to document the revision in a "Revised Records" entry, users of data for these stations who obtained the record from previously published data reports may wish to contact the District office to determine if the published records were ever revised after the station was discontinued. Of course, if the data were obtained by computer retrieval, the data would be current and there would be no need to check because any published revision of data is always accompanied by revision of the corresponding data in computer storage.

For most gaging stations on lakes and reservoirs the data presented comprise a description of the station and a monthly summary table of stage and contents. For some reservoirs a table showing daily contents or stage is given.

The daily table for stream-gaging stations gives mean discharge for each day and is followed by monthly and yearly summaries. In the monthly summary below the daily table, the line headed "TOTAL" gives the sum of the daily figures. The line headed "MEAN" gives the average flow in cubic feet per second during the month. The lines headed "MAX" and "MIN" give the maximum and minimum daily discharges, respectively, for the month. Discharge for the month also is usually expressed in cubic feet per second per square mile (line headed "CFSM"), or in inches (line headed "IN."), or in acrefeet (line headed "AC-FT"). Figures for cubic feet per second per square mile and runoff in inches are omitted if there is extensive regulation or diversion or if the drainage area includes large noncontributing areas. In the yearly summary below the monthly summary, the figures shown are the appropriate discharges for the calendar and water years. At some stations monthly and (or) yearly observed discharges are adjusted for reservoir storage or diversion, or diversions or reservoir contents are given. These figures are identified by a symbol and corresponding footnote.

Data collected at partial-record stations follow the information for continuous-record sites. Data for partial-record discharge stations are presented in two tables. The first is a table of discharge measurements at low-flow partial-record stations, and the second is a table of annual maximum stage and discharge at crest-stage stations. The tables of partial-record stations are followed by a listing of discharge measurements made at sites other than continuous-record or partial-record stations. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Identifying Estimated Daily Discharge

Estimated daily-discharge values published in the water-discharge tables of annual State data reports are identified either by flagging individual daily values with the letter symbol "e" and printing a table footnote, "e Estimated", or by listing the dates of the estimated record in the REMARKS paragraph of the station desciption.

Accuracy of the Records

The accuracy of streamflow records depends primarily on: (1) The stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements; and (2) the accuracy of measurements of stage, measurements of discharge, and interpretation of records.

The accuracy attributed to the records is indicated under "REMARKS." "Excellent" means that about 95 percent of the daily discharges are within 5 percent of the true; "good," within 10 percent; and "fair," within 15 percent. Records that do not meet the criteria mentioned, are rated "poor." Different accuracies may be attributed to different parts of a given record.

Daily mean discharges in this report are given to the nearest hundreth of a cubic foot per second for values less than 1 ft³/s; to the nearest tenth between 1.0 and 10 ft³/s; to whole numbers between 10 and 1000 ft³/s; and to 3 significant figures for more than 1000 ft³/s. The number of significant figures used is based solely on the magnitude of the discharge value. The same rounding rules apply to discharges listed for partial-record stations and miscellaneous sites.

Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. For such stations, figures of cubic feet per second per square mile and of runoff, in inches, are not published unless satisfactory adjustments can be made for diversions, for changes in contents of reservoirs, or for other changes incident to use and control. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents, unless it is so stated. Even at those stations where adjustments are made, large errors in computed runoff may occur if adjustments or losses are large in comparison with the observed discharge.

Other Records Available

Information of a more detailed nature than that published for most of the gaging stations such as observations of water temperatures, discharge measurements, gage-height records, and rating tables is on file in the district office. Also most gaging-station records are available in computer-usable form and many statistical analyses have been made.

Information on the availability of unpublished data or statistical analyses may be obtained from the district office.

The National Water Data Exchange, Water Resources Division, U.S. Geological Survey, National Center, Reston, VA 22092, maintains an index of all discharge measurement sites in the State as well as an index of records of discharge collected by other agencies but not published by the Geological Survey. Information on records available at specific sites can be obtained upon request.

RECORDS OF SURFACE-WATER QUALITY

Records of surface water quality ordinarily are obtained at or near stream-gaging stations because interpretation of records of surface-water quality nearly always requires corresponding discharge data. Records of surface-water quality in this report may involve a variety of types of data and measurement frequencies.

Classification of Records

Water-quality data for surface-water sites are grouped into one of three classifications. A <u>continuing-record station</u> is a site where data are collected on a regularly scheduled basis. Frequency may be once or more times daily, weekly, monthly, or quarterly. A <u>partial-record station</u> is a site where limited water-quality data are collected systematically over a period of years. Frequency of sampling is usually less than quarterly. A <u>miscellaneous</u> sampling site is a location other than a continuing or partial-record station, where random samples are collected to give better areal coverage to define water-quality conditions in the river basin.

A careful distinction needs to be made between "continuing records" as used in this report and "continuous recordings," which refers to a continuous graph or a series of discrete values punched at short intervals on a paper tape. Some records of water quality, such as temperature and specific conductance, may be obtained through continuous recordings; however, because of costs, most data are obtained only monthly or less frequently. Locations of stations for which records on the quality of surface water appear in this report are shown in figure 10.

Arrangement of Records

Water-quality records collected at a surface-water daily record station are published immediately following that record, regardless of the frequency of sample collection. Station number and name are the same for both records. Where a surface-water daily record station is not available or where the water quality differs significantly from that at the nearby surface-water station, the continuing water-quality record is published with its own station number and name in the regular downstream-order sequence. Water-quality data for partial-record stations and for miscellaneous sampling sites appear in separate tables following the table of discharge measurements at miscellaneous sites.

On-Site Measurement and Collection

In obtaining water quality data, a major concern needs to be assuring that the data obtained represents the in situ quality of water. To assure this, certain measurements, such as water temperature, pH, and dissolved oxygen need to be made onsite when the samples are taken. To assure that measurements made in the laboratory also represent the in situ water, carefully prescribed procedures need to be followed in collecting the samples, in treating the samples to prevent changes in quality pending analysis, and in shipping the samples to the laboratory. Procedures for onsite measurements and for collecting, treating, and shipping samples are given in publications on "Techniques of Water-Resources Investigations," Book 1, Chap. D2; Book 3, Chap. C2; Book 5 Chap. A1, A3, and A4. All of these references are listed on p. 17 of this report. Also, detailed information on collecting, treating, and shipping samples may be obtained from the Geological Survey District office.

One sample can define adequately the water quality at a given time if the mixture of solutes throughout the stream cross section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled through several vertical sections to obtain a representative sample needed for an accurate mean concentration and for use in calculating load. All samples obtained for the National Stream Quality Accounting Network (see definitions) are obtained from at least several verticals. Whether samples are obtained from the centroid of flow or from several verticals, depends on flow conditions and other factors which must be evaluated by the collector.

Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. In the rare case where an apparent inconsistency exists between a reported pH value and the relative abundance of carbon dioxide species (carbonate and bicarbonate), the inconsistency is the result of a slight uptake of carbon dioxide from the air by the sample between measurement of pH in the field and determination of carbonate and bicarbonate in the laboratory.

For chemical-quality stations equipped with digital monitors, the records consist of daily maximum, minimum, and mean values for each constituent measured and are based upon hourly punches beginning at 0100 hours and ending at 2400 hours for the day of record. More detailed records (hourly values) may be obtained from the U.S.G.S. district office whose address is given on the back of the title page of this report.

Water Temperature

Water temperatures are measured at most of the water-quality stations. In addition, water temperatures are taken at time of discharge measurements for water-discharge stations. For stations where water temperatures are taken manually once or twice daily, the water temperatures are taken at about the same time each day. Large streams have a small diurnal temperature change; shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams may be affected by waste-heat discharges.

At stations where recording instruments are used, either mean temperatures or maximum and minimum temperatures for each day are published. Water temperatures measured at the time of water-discharge measurements are on file in the District office.

Sediment

Suspended-sediment concentrations are determined from samples collected by using depth-integrating samplers. Samples usually are obtained at several verticals in the cross section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross sections.

During periods of rapidly changing flow or rapidly changing concentration, samples may have been collected more frequently (twice daily or, in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided-day method (time-discharge weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided-day method. For periods when no samples were collected, daily loads of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspended-sediment loads for other periods of similar discharge.

At other stations, suspended-sediment samples were collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observations, such data are useful in establishing seasonal relations between quality and streamflow and in predicting long-term sediment-discharge characteristics of the stream.

In addition to the records of suspended sediment discharge, records of the periodic measurements of the particle-size distribution of the suspended sediment and bed material are included for some stations.

Laboratory Measurements

Samples for indicator bacteria and specific conductance are analyzed locally. All other samples are analyzed in the Geological Survey laboratories in Arvada, Colo., Doraville, Ga., or Iowa City, Ia. Methods used in analyzing sediment samples and computing sediment records are given in TWRI, Book 5, Chap. Cl. Methods used by the Geological Survey laboratories are given in TWRI, Book 1, Chap. D2; Book 3, Chap. C2; Book 5, Chap. Al, A3, and A4.

Data Presentation

For continuing-record stations, information pertinent to the history of station operation is provided in descriptive headings preceding the tabular data. These descriptive headings give details regarding location, drainage area, period of record, type of data available, instrumentation, general remarks, cooperation, and extremes for parameters currently measured daily. Tables of chemical, physical, biological, radiochemical data, and so forth, obtained at a frequency less than daily are presented first. Tables of "daily values" of specific conductance, pH, water temperature, dissolved, and suspended sediment then follow in sequence.

In the descriptive headings, if the location is identical to that of the discharge gaging station, neither the LOCATION nor the DRAINAGE AREA statements are repeated. The following information, when appropriate, is provided with each continuous-record station. Comments that follow clarify information presented under the various headings of the station description.

LOCATION.--See Data Presentation under "Records of stage and Water Discharge"; same comments apply.

DRAINAGE AREA.--See Data Presentation under "Records of stage and Water Discharge"; same comments apply.

PERIOD OF RECORD.--This indicates the periods for which there are published water-quality records for the station. The periods are shown separately for records of parameters measured daily or continuously and those measured less than daily. For those measured daily or continuously, periods of record are given for the parameters individually.

INSTRUMENTATION.--Information on instrumentation is given only if a water-quality monitor, temperature recorder, sediment pumping sampler, or other sampling device is in operation at a station.

REMARKS.--Remarks provide added information pertinent to the collection, analysis, or computation of the records.

COOPERATION. -- Records provided by a cooperating organization or obtained for the Geological Survey by a cooperating organization are identified here.

EXTREMES.--Maximums and minimums are given only for parameters measured daily or more frequently. None are given for parameters measured weekly or less frequently, because the true maximums or minimums may not have been sampled. Extremes, when given, are provided for both the period of record and for the current water year.

REVISIONS.--If errors in published water-quality records are discovered after publication, appropriate updates are made to the Water-Quality File in the U.S. Geological Survey's computerized data system, WATSTORE, and subsequently by monthly transfer of update transactions to the U.S. Environmental Protection Agency's STORET system. Because the usual volume of updates makes it impractical to document individual changes in the State data-report series or elsewhere, potential users of U.S. Geological Survey water-quality data are encouraged to obtain all required data from the appropriate computer file to insure the most recent updates.

The surface-water-quality records for partial-record stations and miscellaneous sampling sites are published in separate tables following the table of discharge measurements at miscellaneous sites. No descriptive statements are given for these records. Each station is published with its own station number and name in the regular downstream-order sequence.

Remark Codes

The following remark codes may appear with the water-quality data in this report:

PRINTED OUTPUT	REMARK
· E	Estimated value
>	Actual value is known to be greater than the value shown
<	Actual value is known to be less than the value shown
K	Results based on colony count outside the acceptance range (non-ideal colony count)
L	Biological organisms count less than 0.5 percent (organisms may be observed rather than counted)
D	Biological organism count equal to or greater than 15 percent (dominant)
&	Biological organism estimated as dominant

RECORDS OF GROUND-WATER LEVELS

Only water-level data from a national network of observation wells are given in this report. These data are intended to provide a sampling and historical record of water-level changes in the Nation's most important aquifers. Locations of the observation wells in this network in Minnesota are shown in figure 12.

Although, in this report, records of water levels are presented for fewer than 200 wells, records are obtained through cooperative efforts of many Federal, State, and local agencies for several hundred observation wells throughout Minnesota and are placed in computer storage. Each spring, the Minnesota Department of Natural Resources, Division of Waters publishes a report for the previous water year entitled "Observation Well Data Summary, Water Year 19__." This report contains hydrographs of recorder wells, detailed maps showing the location of active observation wells, and other useful items. Information about the availability of the data in the water-level file may be obtained from the District Chief, Minnesota District. (See address on back of front page).

Data Collection and Computation

Measurements of water levels are made in many types of wells under varying conditions, but the methods of measurement are standardized to the extent possible. The equipment and measuring techniques used at each observation well assure that measurements at each well are of consistent accuracy and reliability.

Tables of water-level data are presented by counties arranged in alphabetical order. The prime identification number for a given well is the 15-digit number that appears in the upper left corner of the table. The secondary identification number is the local well number, an alphanumeric number, derived from the township-range location of the well.

Water-level records are obtained from direct measurements with a steel tape or from the graph or punched tape of a water-stage recorder. The water-level measurements in this report are given in feet with reference to land-surface datum (1sd). Land-surface datum is a datum plane that is approximately at land surface at each well. If known, the elevation of the land-surface datum is given in the well description. The height of the measuring point (MP) above or below land-surface datum is given in each well description. Water levels in wells equipped with recording gages are reported for every fifth day and the end of each month (eom).

Water levels are reported to as many significant figures as can be justified by the local conditions. For example, in a measurement of a depth to water of several hundred feet, the error in determining the absolute value of the total depth to water may be a few tenths of a foot, whereas the error in determining the net change of water level between successive measurements may be only a hundredth or a few hundredths of a foot. For lesser depths to water, the accuracy is greater. Accordingly, most measurements are reported to a hundredth of a foot, but some are given only to a tenth of a foot or a larger unit.

Hydrographs showing water-level fluctuations are included for 20 representative wells; 1 bedrock, 9 surficial-sand, and 10 buried-sand wells.

Data Presentation

Each well consists of two parts, the station description and the data table of water levels observed during the water year. The description of the well is presented first through use of descriptive headings preceding the tabular data. The comments to follow clarify information presented under the various headings.

LOCATION.--This paragraph follows the well-identification number and reports the latitude and longitude (given in degrees, minutes and seconds); a landline location designation; the hydrologic-unit number; the distance and direction from a geographic point of reference; and the owner's name.

AQUIFER.-- This entry designates by name(if a name exists) and geologic age the aquifer(s) open to the well.

WELL CHARACTERISTICS.--This entry describes the well in terms of depth, diameter, casing depth and/or screened interval, method of construction, use, and includes additional information such as casing breaks, collapsed screen, and other changes since construction.

DATUM.--This entry describes both the measuring point and the land-surface elevation at the well. The measuring point is described physically (such as top of collar, notch in the top of casing, plug in pump base and so on), and in relation to land surface (such as 1.3 ft above land-surface datum). The elevation of the land-surface datum is described in feet above (or below) National Geodetic Vertical Datum of 1929 (NGVD of 1929); it is reported with a precision depending on the method of determination.

REMARKS.--This entry describes factors that may influence the water level in a well or the measurement of the water level. It should identify wells that are also water-quality observation wells, and may be used to acknowledge the assistance of local (non-Survey) observers.

PERIOD OF RECORD.—This entry indicates the period for which there are published records for the well. It reports the month and year of the start of the publication of water-level records by the U.S. Geological Survey and the words "to current year" if the records are to be continued into the following year. Periods for which water-level records are available, but are not published by the Geological Survey, may be noted.

EXTREMES FOR THE PERIOD OF RECORD.--This entry contains the highest and lowest water levels of the period of published record, with respect to land-surface datum, and the dates of their occurrence.

A table of water levels follows the station description for each well. Water levels are reported in feet below land-surface datum and all taped measurements of water level are listed. For wells equipped with recorders, abbreviated tables are published; generally, only water-level lows are listed for every fifth day and at the end of the month (eom). The highest and lowest water levels of the water year and their dates of occurrence are shown on a line below the abbreviated table. Because all values are not published for wells with recorders, the extremes may be values that are not listed in the table. Missing records are indicated by dashes in place of the water level.

RECORDS OF GROUND-WATER QUALITY

Records of ground-water quality in this report differ from other types of records in that for most sampling sites they consist of only one set of measurements for the water year. The quality of ground water ordinarily changes only slowly; therefore, for most general purposes one annual sampling, or only a few samples taken at infrequent intervals during the year, is sufficient. Frequent measurement of the same constituents is not necessary unless one is concerned with a particular problem, such as monitoring for trends in nitrate concentration. In the special cases where the quality of ground water may change more rapidly, more frequent measurements are made to identify the nature of the changes.

Data Collection and Computation

The records of ground-water quality in this report were obtained mostly as a part of special studies in specific areas. Consequently, a number of chemical analyses are presented for some counties but none are presented for others. As a result, the records for this year, by themselves, do not provide a balanced view of ground-water quality statewide. Such a view can be attained only by considering records for this year in context with similar records obtained for these and other counties in earlier years.

Most methods for collecting and analyzing water samples are described in the "U.S. Geological Survey Techniques of Water-Resources Investigation" manuals listed on a following page. The values reported in this report represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. All samples were

obtained by trained personnel. The wells sampled were pumped long enough to assure that the water collected came directly from the aquifer and had not stood for a long time in the well casing where it would have been exposed to the atmosphere and to the material, possibly metal, comprising the casings.

Data Presentation

The records of ground-water quality are published in a section titled QUALITY OF GROUND WATER immediately following the ground-water-level records. Data for quality of ground water are listed alphabetically by County, and are identified by well number. The prime identification number for wells sampled is the 15-digit number derived from the latitude-longitude locations. No descriptive statements are given for ground-water-quality records; however, the well number, depth of well, date of sampling, and other pertinent data are given in the table containing the chemical analyses of the ground water. The REMARK codes listed for surface-water-quality records are also applicable to ground-water-quality records.

ACCESS TO WATSTORE DATA

The National <u>WAT</u>er Data <u>STO</u>rage and <u>RE</u>trieval System (WATSTORE) was established for handling water data collected through the activities of the U.S. Geological Survey and to provide for more effective and efficient means of releasing the data to the public. The system is operated and maintained on the central computer facilities of the Survey at its National Center in Reston, Virginia.

WATSTORE can provide a variety of useful products ranging from simple data tables to complex statistical analyses. A minimal fee, plus the actual computer cost incurred in producing a desired product, is charged to the requester. Information about the availability of specific types of data, the acquisition of data or products, and user charges can be obtained locally from each of the Water Resources Division's district offices (see address given on back of the title page).

General inquiries about WATSTORE may be directed to:

Chief Hydrologist U.S. Geological Survey 437 National Center Reston, Virginia 22092

DEFINITION OF TERMS

Terms related to streamflow, water-quality, and other hydrologic data, as used in this report, are defined below. See also table for converting inch-pound units to International System of units (SI) on the inside of back cover.

Acre-foot (AC-FT, acre-ft) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters.

Adenosine triphosphate (ATP) is the primary energy donor in cellular life process. Its central role in living cells makes it an excellent indicator of the presence of living material in water. A measure of ATP, therefore, provides a sensitive and rapid estimate of biomass. ATP is reported in micrograms per liter of the original water sample.

Algae are mostly aquatic single-celled, colonial, or multi-celled plants, containing chlorophyll and lacking roots, stems, and leaves.

Algal growth potential (AGP) is the maximum algal dry weight biomass that can be produced in a natural water sample under standardized laboratory conditions. The growth potential is the algal biomass present at stationary phase and is expressed as milligrams dry weight of algae produced per liter of sample.

Aquifer is a geologic formation, group of formations, or part of a formation that contains sufficient saturated permeable material to yield significant quantities of water to wells and springs.

Artesian means confined and is used to describe a well in which the water level stands above the top of the aquifer tapped by the well. A flowing artesian well is one in which the water level is above the land surface.

<u>Bacteria</u> are microscopic unicellular organisms, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants.

Total coliform bacteria are a particular group of bacteria that are used as indicators of possible sewage pollution. They are characterized as aerobic or facultative anaerobic, gramnegative, nonspore-forming, rod-shaped bacteria which ferment lactose with gas formation within 48 hours at 35°C. In the laboratory these bacteria are defined as the organisms which produce

colonies with a golden-green metallic sheet within 24 hours when incubated at 35° C \pm 1.0° C on M-Endo medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

<u>Fecal coliform bacteria</u> are bacteria that are present in the intestine or feces of warmblooded animals. They are often used as indicators of the sanitary quality of the water. In the laboratory they are defined as all organisms which produce blue colonies within 24 hours when incubated at $44.5^{\circ}\text{C} \pm 0.2^{\circ}\text{C}$ on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

<u>Fecal streptococcal bacteria</u> are bacteria also found in the intestine of warmblooded animals. Their presence in water is considered to verify fecal pollution. They are characterized as gram-positive, cocci bacteria which are capable of growth in brain-heart infusion broth. In the laboratory they are defined as all the organisms which produce red or pink colonies within 48 hours at $35^{\circ}\text{C} \pm 1.0^{\circ}\text{C}$ on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

<u>Bed material</u> is the unconsolidated material of which a streambed, lake, pond, reservoir, or estuary bottom is composed.

<u>Biochemical oxygen demand</u> (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, necessary for the decomposition of organic matter by microorganisms, such as bacteria.

 ${\tt Biomass}$ is the amount of living matter present at any given time, expressed as the mass per unit area or volume of habitat.

<u>Ash mass</u> is the mass or amount of residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of 500° C for 1 hour. The ash mass values of zooplankton and phytoplankton are expressed in grams per cubic meter (g/m³), and periphyton and benthic organisms in grams per square meter (g/m²).

<u>Dry mass</u> refers to the weight of residue present after drying in an oven at 60° C for zooplankton and 105° C for periphyton, until the mass remains unchanged. This mass represents the total organic matter, ash and sediment, in the sample. Dry mass values are expressed in the same units as ash mass.

Organic mass or volatile mass of the living substance is the difference between the dry mass and the ash mass, and represents the actual mass of the living matter. The organic mass is expressed in the same units as for ash mass and dry mass.

Wet mass is the mass of living matter plus contained water.

Bottom material: See Bed Material.

<u>Cells/volume</u> refers to the number of cells or any organism which is counted by using a microscope and grid or counting cell. Many planktonic organisms are multicelled and are counted according to the number of contained cells per sample, usually milliliters (mL) or liters (L).

<u>Cfs-day</u> is the volume of water represented by a flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, approximately 1.9835 acre-feet, or about 646,000 gallons or 2,447 cubic meters.

Chemical oxygen demand (COD) is a measure of the chemically oxidizable material in the water, and furnishes an approximation of the amount of organic and reducing material present. The determined value may correlate with natural water color or with carbonaceous organic pollution from sewage or industrial wastes.

<u>Chlorophyll</u> refers to the green pigments of plants. Chlorophyll \underline{a} and \underline{b} are the two most common pigments in plants.

<u>Color unit</u> is produced by one milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale.

<u>Contents</u> is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage.

<u>Control</u> designates a feature downstream from the gage that determines the stage-discharge relation at the gage. This feature may be a natural constriction of the channel, an artificial structure, or a uniform cross section over a long reach of the channel.

Cubic feet per second per square mile (CFSM) is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming that the runoff is distributed uniformly in time and area.

<u>Cubic foot per second</u> (FT^3/s , ft^3/s) is the rate of discharge representing a volume of 1 cubic foot passing a given point during 1 second and is equivalent to approximately 7.48 gallons per second or 448.8 gallons per minute or 0.02832 cubic meters per second.

Discharge is the volume of water (or more broadly, volume of fluid plus suspended sediment), that passes a given point within a given period of time.

Mean discharge (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period.

Instantaneous discharge is the discharge at a particular instant of time.

<u>Dissolved</u> refers to the amount of substance present in true chemical solution. In practice, however, the term includes all forms of substance that will pass through a 0.45-micrometer membrane filter, and thus may include some very small (colloidal) suspended particles. Analyses are performed on filtered samples.

Dissolved-solids concentration of water is determined either analytically by the "residue-onevaporation" method, or mathematically by totaling the concentrations of individual constituents reported in a comprehensive chemical analysis. During the analytical determination of dissolved solids, the bicarbonate (generally a major dissolved component of water) is converted to carbonate. Therefore, in the mathematical calculation of dissolved-solids concentration, the bicatbonate value, in milligrams per liter, is multiplied by 0.492 to reflect the change.

Diversity index is a numerical expression of evenness of distribution of aquatic organisms. The formula for diversity index is: $\frac{s}{d} = -\sum_{i=1}^{s} \frac{n_i}{n} \log_2 \frac{n_i}{n}$

Where n, is the number of individuals per taxon, n is the total number of individuals, and δ is the total number of taxa in the sample of the community. Diversity index values range from zero, when all the organisms in the sample are the same, to some positive number, when some or all of the organisms in the sample are different.

Drainage area of a stream at a specified location is that area, measured in a horizontal plane, enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into the river above the specified point. Figures of drainage area given herein include all closed basins, or noncontributing areas, within the area unless otherwise noted.

<u>Drainage basin</u> is a part of the surface of the earth that is occupied by a drainage system, which consists of a surface stream or a body of impounded surface water together with all tributary surface streams and bodies of impounded surface water.

Gage height (G.H.) is the water-surface elevation referred to some arbitrary gage datum. Gage height is often used interchangeably with the more general term "stage," although gage height is more appropriate when used with a reading on a gage.

Gaging station is a particular site on a stream, canal, lake, or reservoir where systematic observations of hydrologic data are obtained.

Hardness of water is a physical-chemical characteristic that is commonly recognized by the increased quantity of soap required to produce lather. It is attributable to the presence of alkaline earths (principally calcium and magnesium) and is expressed as equivalent calcium carbonate (CaCO₃).

Hydrologic unit is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as delineated by the Office of Water Data Coordination on the State Hydrologic Unit Maps; each hydrologic unit is identified by an 8-digit number.

Metamorphic stage refers to the stage of development that an organism exhibits during its transformation from an immature form to an adult form. This developmental process exists for most insects, and the degree of difference from the immature stage to the adult form varies from relatively slight to pronounced, with many intermediates. Examples of metamorphic stages of insects are egg-larva-adult or egg-nymph-adult.

Methylene blue active substance (MBAS) is a measure of apparent detergents. This determination depends on the formation of a blue color when methylene blue dye reacts with synthetic detergent compounds.

Micrograms per gram (UG/G, ug/g) is a unit expressing the concentration of a chemical element as the mass (micrograms) of the element sorbed per unit mass (gram) of sediment.

Micrograms per kilogram (MG/KG, mg/kg) is a unit expressing the concentration of a chemical element as the mass (micrograms) of the element sorbed per unit mass (kilogram) of sediment.

 $\underline{\text{Micrograms per liter}}$ (UG/L, ug/L) is a unit expressing the concentration of chemical constituents in solution as mass (micrograms) of solute per unit volume (liter) of water. One thousand micrograms per liter is equivalent to one milligram per liter.

Milligrams per liter (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in solution. Milligrams per liter represent the mass of solute per unit volume (liter) of water. Concentration of suspended sediment also is expressed in mg/L, and is based on the mass of sediment per liter of water-sediment mixture.

National Geodetic Vertical Datum of 1929 (NGVD) is a geodetic datum derived from a general adjustment of the first order level nets of both the United States and Canada. It was formerly called "Sea Level Datum of 1929" or "mean sea level" in this series of reports. Although the datum was derived from the average sea level over a period of many years at 26 tide stations along the Atlantic, Gulf of Mexico, and Pacific Coasts, it does not necessarily represent local mean sea level at any particular place.

National Stream Quality Accounting Network (NASOAN) is a nationwide data-collection network designed by the U.S. Geological Survey to meet many of the information needs of government agencies and other groups involved in natural or regional water-quality planning and management. The 500 or so sites in NASQAN are generally located at the downstream ends of hydrologic accounting units designated by the U.S. Geological Survey Office of Water Data Coordination in consultation with the Water Resources Council. The objectives of NASQAN are (1) to obtain information on the quality and quantity of water moving within and from the United States through a systematic and uniform process of data collection, summarization, analysis, and reporting such that the data may be used for, (2) description of the areal variability of water quality in the Nation's rivers through analysis of data from this and other programs, (3) detection of changes or trends with time in the pattern of occurrence of water-quality characteristics, and (4) providing a nationally consistent data base useful for water-quality assessment and hydrologic research.

The <u>National Trends Network (NTN)</u> is a 150-station network for sampling atmospheric deposition in the United States. The purpose of the network is to determine the variability, both in location and in time, of the composition of atmospheric deposition, which includes snow, rain, dust particles, aerosols, and gases, The core from which the NTN was built was the already-existing deposition-monitoring network of the National Atmospheric Deposition Program (NADP).

Organism is any living entity, such as an insect, phytoplankter, or zooplankter.

Organism count/area refers to the number of organisms collected and enumerated in a sample and adjusted to the number per area habitat, usually square meters (m²), acres, or hectares. Periphyton, benthic organisms, and macrophytes are expressed in these terms.

Organism count/volume refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliters (mL) or liters (L). Numbers of planktonic organisms can be expressed in these terms.

Total organism count is the total number of organisms collected and enumerated in any particular sample.

<u>Parameter code numbers</u> are unique five-digit code numbers assigned to each parameter placed into storage. These codes are assigned by the Environmental Protection Agency and are also used to identify data exchanged among agencies.

<u>Partial-record station</u> is a particular site where limited streamflow and(or) water-quality data are collected systematically over a period of years for use in hydrologic analyses.

<u>Particle size</u> is the diameter, in millimeters (mm), of suspended sediment or bed material determined by either sieve or sedimentation methods. Sedimentation methods (pipet, bottom-with-drawal tube, visual-accumulation tube) determine fall diameter of particles in distilled water (chemically dispersed).

<u>Particle-size classification</u> used in this report agrees with recommendations made by the American Geophysical Union Subcommittee on Sediment Terminology.

The classification is as follows:

Classification	Size (mm)	Method of analysis
Clay	0.00024 - 0.004	Sedimentation.
Silt	.004062	Sedimentation.
Sand	.062 - 2.0	Sedimentation or sieve.
Gravel	2.0 - 64.0	Sieve.

The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. Most of the organic material is removed and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water.

<u>Percent composition</u> is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, mass or volume.

<u>Periphyton</u> is the assemblage of microorganisms attached to and growing upon solid surfaces. While primarily consisting of algae, they also include bacteria, fungi, protozoa, rotifers, and other small organisms. Periphyton is a useful indicator of water quality.

<u>Pesticides</u> are chemical compounds used to control undesirable plants and animals. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides. Insecticides and herbicides, which control insects and plants respectively, are the two categories reported.

<u>Picocurie</u> (PC, pCi) is one trillionth (1 x 10^{-12}) of the amount of radioactivity represented by a curie (Cl). A curie is the amount of radioactivity that yields 3.7 x 10^{10} radioactive disintegrations per second. A picocurie yields 2.22 dpm (disintegrations per minute).

<u>Plankton</u> is the community of suspended, floating, or weakly swimming organisms that live in the open water of lakes and rivers.

Phytoplankton is the plant part of the plankton. They are usually microscopic and their movement is subject to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substances. Because they are able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment, and are commonly known as algae.

Blue-green algae are a group of phytoplankton organisms having a blue pigment, in addition to the green pigment called chlorophyll. Blue-green algae often cause nuisance conditions in water.

<u>Diatoms</u> are the unicellular or colonial algae having a siliceous shell. Their concentrations are expressed as number of cells/mL of sample.

<u>Green algae</u> have chlorophyll pigments similar in color to those of higher green plants. Some forms produce algal mats or floating "moss" in lakes. Their concentrations are expressed as number of cells/mL of sample.

Zooplankton is the animal part of the plankton. Zooplankton are capable of extensive movements within the water column, and are often large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, the zooplankton are a vital part of the aquatic food web. The zooplankton community is dominated by small crustaceans and rotifers.

<u>Polychlorinated biphenyls</u> (PCBs) are industrial chemicals that are mixtures of chlorinated biphenyl compounds having various percentages of chlorine. They are similar in structure to organochlorine insecticides.

<u>Primary productivity</u> is a measure of the rate at which new organic matter is formed and accumulated through photosynthetic and chemosynthetic activity of producer organisms (chiefly green plants). The rate of primary production is estimated by measuring the amount of oxygen released (oxygen method) or the amount of carbon assimilated by the plants (carbon method).

Milligrams of carbon per area or volume per unit time Img $C/(m^2 \cdot time)$ for periphyton and macrophytes and mg $C/(m^3 \cdot time)$ for phytoplanktonl are units for expressing primary productivity. They define the amount of carbon dioxide consumed as measured by radioactive carbon (carbon 14). The carbon 14 method is of greater sensitivity than the oxygen light and dark bottle method, and is preferred for use in unenriched waters. Unit time may be either the hour or day, depending on the incubation period.

Milligrams of oxygen per area or volume per unit time $[\log 0_2/(m^2 \cdot time)]$ for periphyton and macrophytes and $\log 0_2/(m^3 \cdot time)]$ for phytoplankton are the units for expressing primary productivity. They define production and respiration rates as estimated from changes in the measured dissolved oxygen concentration. The oxygen light and dark bottle method is preferred if the rate of primary production is sufficient for accurate measurements to be made within 24 hours. Unit time may be either the hour or day, depending on the incubation period.

Radiochemical program is a network of regularly sampled water-quality stations where samples are collected to be analyzed for radioisotypes. The streams that are sampled represent major drainage basins in the conterminous United States.

Recoverable from bottom material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of only readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Return period is the average time interval between occurrences of a hydrological event of a given or greater magnitude, usually expressed in years. May also be called recurrence interval.

<u>Runoff in inches</u> (IN, in) shows the depth to which the drainage area would be covered if all the runoff for a given time period were uniformly distributed on it.

<u>Sediment</u> is solid material that originates mostly from disintegrated rocks and is transported by, suspended in, or deposited from water; it includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are influenced by environmental factors. Some major factors are degree of slope, length of slope, soil characteristics, land usage, and quantity and intensity of precipitation.

Bed load is the sediment that is transported in a stream by rolling, sliding, or skipping along the bed and very close to it. In this report, bed load is considered to consist of particles in transit within 0.25 ft of the streambed.

 $\underline{\tt Bed\ load\ discharge}$ (tons per day) is the quantity of bed load measured by dry weight that moves past a section as bed load in a given time.

<u>Suspended sediment</u> is the sediment that at any given time is maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid.

<u>Suspended-sediment concentration</u> is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 ft above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L).

 ${\tt Mean\ concentration}$ is the time-weighted concentration of suspended sediment passing a stream section during a 24-hour day.

<u>Suspended-sediment discharge</u> (tons/day) is the rate at which dry weight of sediment passes a section of a stream or is the quantity of sediment, as measured by dry weight or volume, that passes a section in a given time. It is computed by multiplying discharge times mg/L times 0.0027.

<u>Suspended-sediment load</u> is quantity of suspended sediment passing a section in a specified period.

Total sediment discharge (tons/day) is the sum of the suspended-sediment discharge and the bed-load discharge. It is the total quantity of sediment, as measured by dry weight or volume, that passes a section during a given time.

Total-sediment load or total load is a term which refers to the total sediment (bed load plus suspended-sediment load) that is in transport. It is not synonymous with total-sediment discharge.

 $\frac{7-\text{day }10 \text{ year low flow}}{1000}$ (7 Ω_{10}) is the discharge at the 10-year recurrence interval taken from a frequency curve of annual values of the lowest mean discharge for 7 consecutive days (the 7-day low flow).

<u>Sodium-adsorption-ratio</u> (SAR) is the expression of relative activity of sodium ions in exchange reactions within soil and is an index of sodium or alkali hazard to the soil. Waters range in respect to sodium hazard from those which can be used for irrigation on almost all soils to those which are generally unsatisfactory for irrigation.

<u>Solute</u> is any substance derived from the atmosphere, vegetation, soil, or rocks that is dissolved in water.

<u>Specific conductance</u> is a measure of the ability of a water to conduct an electrical current. It is expressed in micromhos per centimeter at 25°C. Specific conductance is related to the type and concentration of ions in solution and can be used for appoximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is about 65 percent of the specific conductance (in micromhos). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water.

<u>Stage-discharge relation</u> is the relation between gage height (stage) and volume of water per unit of time, flowing in a channel.

Streamflow is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as a streamflow may be applied to discharge whether or not it is affected by diversion of regulation.

Substrate is the physical surface upon which an organism lived.

<u>Natural substrates</u> refers to any naturally occurring emersed or submersed solid surface, such as a rock or tree, upon which an organism lived.

WATER RESOURCES DATA FOR MINNESOTA, 1985

Artificial substrate is a device which is purposely placed in a stream or lake for colonization of organisms. The artificial substrate simplifies the community structure by standardizing the substrate from which each sample is taken. Examples of artificial substrates are basket samplers (made of wire cages filled with clean streamside rocks) and miltiplate samplers (made of hardboard) for benthic organism collection, and plexiglass strips for periphyton collection.

<u>Surface area</u> of a lake is that area outlined on the latest USGS topographic map as the boundary of the lake and measured by a planimeter in acres. In localities not covered by topographic maps, the areas are computed from the best maps available at the time planimetered. All areas shown are those for the stage when the planimetered map was made. All areas shown are those for the stage when the planimetered map was made.

<u>Surficial bed material</u> is that part (0.1 to 0.2 ft) of the bed material that is sampled using U.S. Series Bed-Material Samplers.

<u>Suspended</u> (as used in tables of chemical analyses) refers to the amount (concentration) of the total concentration in a water-sediment mixture. The water-sediment mixture is associated with (or sorbed on) that material retained on a 0.45 micrometer filter.

Suspended, recoverable is the amount of a given constituent that is in solution after the part of a representative water-suspended sediment sample that is retained on a 0.45 um membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Determinations of "suspended, recoverable" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) <u>dissolved</u> and (2) <u>total recoverable</u> concentrations of the constituent.

<u>Suspended, total</u> is the total amount of a given constituent in the part of a representative water-suspended sediment sample that is retained on a 0.45 um membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total."

Determinations of "suspended, total" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total concentrations of the constituent.

Taxonomy is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchical scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common. For example, the taxonomy of a particular mayfly, <u>Hexagenia limbata</u> is the following:

Kingdom......Animal
Phylum......Arthropoda
Class.......Ephemeroptera
Family......Ephermeridae
Genus......Hexageria
Species....Hexagenia limbata

Thermograph is an instrument that continuously records variations of temperature on a chart. The more general term "temperature recorder" is used in the table headings and refers to any instrument that records temperature whether on a chart, a tape, or any other medium.

<u>Time-weighted average</u> is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water that would be contained in a vessel or reservoir that had received equal quantities of water from the stream each day for the year.

Tons per acre-foot indicates the dry mass of dissolved solids in 1 acre-foot of water. It is computed by multiplying the concentration in milligrams per liter by 0.00136.

 $\underline{\text{Tons per day}}$ is the quantity of substance in solution or suspension that passes a stream section during a 24-hour day.

WATER RESOURCES DATA FOR MINNESOTA, 1985

Total is the total amount of a given constituent in a representative water-suspended sediment sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total." (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determines all of the constituent in the sample.)

Total in bottom material is the total amount of a given constituent in a representative sample of bottom material. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total in bottom material."

Total load (tons) is the total quantity of any individual constituent, as measured by dry mass or volume, that is dissolved in a specific amount of water (discharge) during a given time. It is computed by multiplying the total discharge, times the mg/L of the constituent, times the factor 0.0027, times the number of days.

Total recoverable refers to the amount of a given constituent that is in solution after a representative water-suspended sediment sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent percent in the dissolved and suspended phases of the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Tritium Network is a network of stations which has been established to provide baseline information on the occurrence of tritium in the Nation's surface waters. In addition to the surface-water stations in the network, tritium data are also obtained at a number of precipitation stations. The purpose of the precipitation stations is to provide an estimate sufficient for hydrologic studies of the tritium input to the United States.

Water year in Geological Survey reports dealing with surface-water supply is the 12-month period, October 1 through September 30. The water year is designated by the calendar year in which it ends and which includes 9 of the 12 months. Thus, the year ending September 30, 1980, is called the "1980 water year."

WDR is used as an abbreviation for "Water-Data Report" in reference to published reports beginning in 1975.

Weighted average is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir.

 \underline{WRD} is used as an abbreviation for "Water-Resources Data" in the REVISED RECORDS paragraph to refer to State annual basic-data reports published before 1975.

WSP is used as an abbreviation for "Water-Supply Paper" in references to previously published reports.

PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS

The U.S. Geological Survey publishes a series of manuals describing procedures for planning and conducting specialized work in water-resources investigations. The material is grouped

planning and conducting specialized work in water-resources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, Section A of Book 3 (Applications of Hydraulics) pertains to surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises.

The reports listed below are for sale by the U.S. Geological Survey, Branch of Distribution, 604 South Pickett St., Alexandria, VA 22304 (authorized agent of the Superintendent of Documents, Government Printing Office). Prepayment is required. Remittance should be sent by check or money order payable to the U.S. Geological Survey. Prices are not included because they are subject to change. Current prices can be obtained by writing to the above address. When ordering or inquiring about prices for any of these publications, please give the title, book number, chapter number, and "U.S. Geological Survey Techniques of Water-Resources Investigations."

- Water temperature--influential factors, field measurement, and data presentation, by H. H. 1-D1. Stevens, Jr., J. F. Ficke, and G. F. Smoot: USGS--TWRI Book 1, Chapter D1. 1975. 65 pages.
- Guidelines for collection and field analysis of ground-water samples for selected unstable 1-D2. constituents, by W. W. Wood: USGS--TWRI Book 1, Chapter D2. 1976. 24 pages.
- Application of surface geophysics to ground-water investigations. by A. A. R. Zohdy, G. P. 2-D1. Eaton, and D. R. Mabey: USGS--TWRI Book 2, Chapter D1. 1974. 116 pages.
- Application of borehole geophysics to water-resources investigations by W. S. Keys and L. M. MacCary: USGS--TWRI Book 2, Chapter E1. 1971. 126 pages. 2-E1.
- General field and office procedures for indirect discharge measurements, by M. A. Benson and 3-A1. Tate Dalrymple: USGS--TWRI Book 3, Chapter Al. 1967. 30 pages.
- Measurement of peak discharge by the slope-area method, by Tate Dalrymple and M. A. 3-A2. Benson: USGS--TWRI Book 3, Chapter A2. 1967. 12 pages.
- 3-A3. Measurement of peak discharge at culverts by indirect methods by G. L. Bodhaine: USGS--TWRI Book 3, Chapter A3. 1968. 60 pages.
- 3-A4. Measurement of peak discharge at width contractions by indirect methods. by H. F. Matthai: USGS--TWRI Book 3, Chapter A4. 1967. 44 Pages.
- Measurement of peak discharge at dams by indirect methods, by Harry Hulsing: USGS--TWRI 3-A5. Book 3, Chapter A5. 1967. 29 pages.
- General procedure for gaging streams, by R. W. Carter and Jacob Davidian: USGS--TWRI Book 3-A6. 3, Chapter A6. 1968. 13 pages.
- $stage\ \textit{measurements}\ \textit{at}\ \textit{gaging}\ \textit{stations},\ \textit{by}\ \textit{T.}\ \textit{J.}\ \textit{Buchanan}\ \textit{and}\ \textit{W.}\ \textit{P.}\ \textit{Somers:}\ \textit{USGS--TWRI}\ \textit{Book}$ 3-A7. 3, Chapter A7. 1968. 28 pages.
- Discharge measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI 3-A8. Book 3, Chapter A8. 1969. 65 pages.
- 3-A9. Measurement of time of travel and dispersion in streams by dye tracing, by E. F. Hubbard, F. A. Kilpatrick, L. A. Martens, and J. F. Wilson, Jr.: USGS--TWRI Book 3, Chapter A9. 1982. 44 pages.
- 3-A10. Discharge ratings at gaging stations, by E. J. Kennedy: USGS--TWRI Book 3, Chapter A10. 1984. 59 pages.
- Measurement of discharge by moving-boat method, by G. F. Smoot and C. E. Novak: USGS--TWRI Book 3, Chapter All. 1969. 22 pages. 3-A11.
- 3-A13. Computation of continuous records of streamflow, by E. J. Kennedy: USGS--TWRI Book 3, Chapter A13. 1983. 53 pages.
- 3-A14. Use of flumes in measuring discharge, by F. A. Kilpatrick and V. R. Schneider: USGS--TWRI Book 3, Chapter A14. 1983. 46 pages.
- 3-A15. Computation of water-surface profiles in open channels. by Jacob Davidian: USGS--TWRI Book 3, Chapter A15. 1984. 48 pages.
- $\label{eq:continuous} \textit{Aquifer-test design, observation, and data analysis, by R. W. Stallman: USGS--TWRI Book 3, Chapter B1. 1971. 26 pages.$ 3-B1.
- 3-B2. Introduction to ground-water hydraulics, a programed text for self-instruction, by G. D. Bennett: USGS--TWRI Book 3, Chapter B2. 1976. 172 pages.
- 3-B3. Type curves for selected problems of flow to wells in confined aquifers by J. E. Reed: USGS-TWRI Book 3, Chapter B3. 1980. 106 pages.

PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS--Continued

- 3-C1. Fluvial sediment concepts by H. P. Guy: USGS--TWRI Book 3, Chapter C1. 1970. 55 pages.
- 3-C2. Field methods for measurement of fluvial sediment. by H. P. Guy and V. W. Norman: USGS-TWRI Book 3, Chapter C2. 1970. 59 pages.
- 3-C3. Computation of fluvial-sediment discharge: by George Porterfield: USGS--TWRI Book 3, Chapter C3. 1972. 66 pages.
- 4-Al. Some statistical tools in hydrology, by H. C. Riggs: USGS--TWRI Book 4, Chapter Al. 1968. 39 pages.
- 4-A2. Frequency curves, by H. C. Riggs: USGS--TWRI Book 4, Chapter A2. 1968. 15 pages.
- 4-B1. Low-flow investigations, by H. C. Riggs: USGS--TWRI Book 4, Chapter B1. 1972. 18 pages.
- 4-B2. Storage analyses for water supply. by H. C. Riggs and C. H. Hardison: USGS--TWRI Book 4, Chapter B2. 1973. 20 pages.
- 4-B3. Regional analyses of streamflow characteristics. by H. C. Riggs: USGS--TWRI Book 4, Chapter B3. 1973. 15 pages.
- 4-D1. Computation of rate and volume of stream depletion by wells by C. T. Jenkins: USGS--TWRI Book 4, Chapter D1. 1970. 17 pages.
- 5-Al. Methods for determination of inorganic substances in water and fluvial sediments by M. W. Skougstad and others, editors: USGS--TWRI Book 5, Chapter Al. 1979. 626 pages.
- 5-A2. Determination of minor elements in water by emission spectroscopy by P. R. Barnetz and E. C. Mallory, Jr.: USGS--TWRI Book 5, Chapter A2. 1971. 31 pages.
- 5-A3. Methods for analysis of organic substances in water. by D. F. Goerlitz and Eugene Brown: USGS--TWRI Book 5, Chapter A3. 1972. 40 pages.
- 5-A4. Methods for collection and analysis of aquatic biological and microbiological samples edited by P. E. Greeson, T. A. Ehlke, G. A. Irwin, B. W. Lium, and K. V. Slack: USGS--TWRI Book 5, Chapter A4. 1977. 332 pages.
- 5-A5. Methods for determination of radioactive substances in water and fluvial sediments. by L. L. Thatcher, V. J. Janzer, and K. W. Edwards: USGS--TWRI Book 5, Chapter A5. 1977. 95 pages.
- 5-A6. Quality assurance practices for the chemical and biological analyses of water and fluvial sedments, by L. C. Friedman and D. E. Erdmann: USGS--TWRI Book 5, Chapter A6. 1982. 181 pages.
- 5-C1. Laboratory theory and methods for sediment analysis. by H. P. Guy: USGS--TWRI Book 5, Chapter C1. 1969. 58 pages.
- 7-Cl. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by P. C. Trescott, G. F. Pinder, and S. P. Larson: USGS--TWRI Book 7, Chapter Cl. 1976. 116 pages.
- 7-C2. Computer model of two-dimensional solute transport and dispersion in ground water, by L. F. Konikow and J. D. Bredehoeft: USGS--TWRI Book 7, Chapter C2. 1978. 90 pages.
- 7-C3. A model for simulation of flow in singular and interconnected channels by R. W. Schaffrannek, R. A. Baltzer, and D. E. Goldberg: USGS--TWRI Book 7, Chapter C3. 1981. 110 pages.
- 8-Al. Methods of measuring water levels in deep wells. by M. S. Garber and F. C. Koopman: USGS--TWRI Book 8, Chapter Al. 1968. 23 pages
- 8-A2. Installation and service manual for U.S. Geological Survey manometers by J. D. Craig: USGS--TWRI Book 8, Chapter A2. 1983. 57 pages.
- 8-B2. Calibration and maintenance of vertical-axis type current meters. by G. F. Smoot and C. E. Novak: USGS--TWRI Book 8, Chapter B2. 1968. 15 pages.

The following continuous-record streamflow or stage stations in Minnesota have been discontinued or converted to partial-record stations. Daily streamflow or stage records were collected and published for the period of record shown for each station.

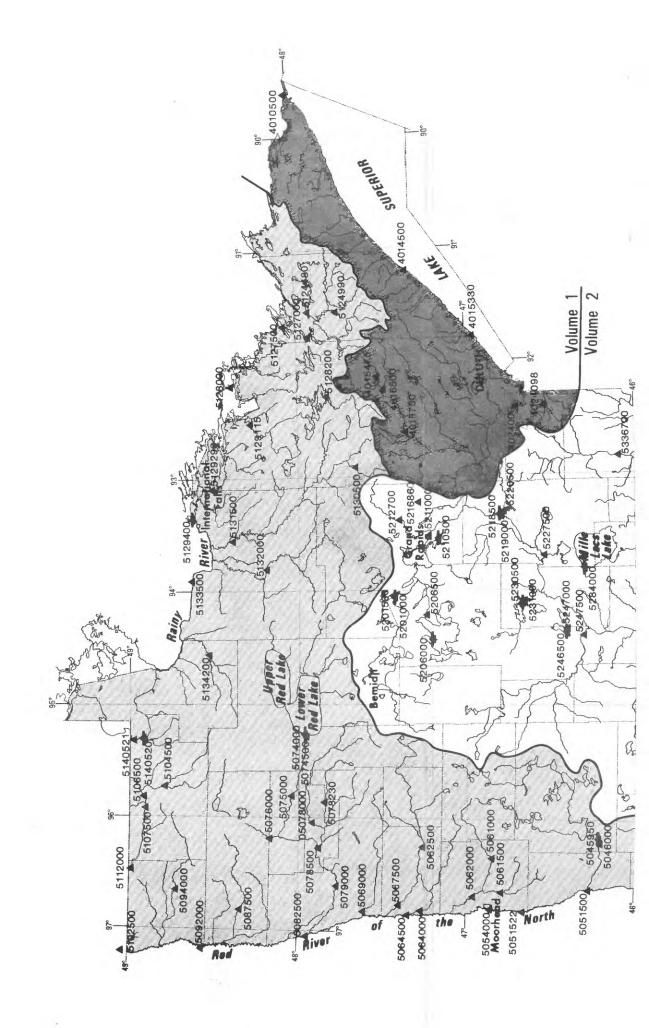
Station number	Station name	Drainage area (mi ²)	Period of record
	Streams tributary to Lake Superior		
04010000	Pigeon River above mouth of Arrow River, MN	256	1924-27
04011000	Brule River at mouth near Hoveland, MN	248	1911†
04011500	Devil Track River at mouth near Grand Marais, MN	a77	1911†
04012000	Cascade River at mouth near Grand Marais, MN	111	1911†
*04012500	Poplar River at Lutsen, MN	114	1911†, 1912-17, 1928-47, 1952-61
04013000	Cross River at Schroeder, MN	a91	1931-32
04015000	Beaver Creek (Beaver Bay Run) at Beaver Bay, MN	126	1911-14, 1928-31
04015455	South Branch Partridge River near Babbitt, MN	18.5	1977-80
04015500	Second Creek near Aurora, MN	29	1955-80
04016000	Partridge River near Aurora, MN	161	1942-82
04017000	Embarrass River at Embarrass, MN	93.8	1942-64
04018000	Embarrass River near McKinley, MN	171	1953-62
04018900	East Two Rivers near Iron Junction, MN	40.0	1966-79
04019000	West Two Rivers near Iron Junction, MN	65.3	1953-62, 1965-79
04019300	West Swan River near Silica, MN	16.3	1963-79
04019500	East Swan River near Toivola, MN	112	1953-62, 1964-71
04020000	Swan River near Toivola, MN	254	1952-61
04021000	Whiteface River below (at) Meadowlands, MN	453	1909-17
04023000	Cloquet River at Independence, MN	a750	1909-17
04023500	St. Louis River near Cloquet, MN	a3,400	1903†
04024090	Elim Creek near Holyoke, MN	1.06	1976-78
04024093	Skunk Creek below Elim Creek near Holyoke, MN	8.83	1976-78
	Red River of the North basin		
05030000	Otter Tail River near Detroit Lakes, MN	270	1937-71
05030500	Otter Tail River at German Church, near Fergus Falls, MN	al,230	1904-17
05033900	Pelican River at Detroit Lakes, MN	-	1968-71, 1974-75
05034100	Pelican River at Detroit Lake outlet near Detroit Lakes, MN	-	1968-71, 1972-75
05035100	Long Lake outlet near Detroit Lakes, MN	-	1968-71
05035200	West Branch County Ditch No. 14 near Detroit Lakes, MN	-	1968-71
05035300	East Branch County Ditch No. 14 near Detroit Lakes, MN	-	1968-71
05035500	St. Clair Lake outlet near Detroit Lakes, MN	-	1968-75
05035600	Pelican River at Muskrat Lake outlet near Detroit Lakes, MN	-	1968-75
05037100	Pelican River at Sallie Lake outlet near Detroit Lakes, MN	-	1968-75
05039100	Pelican River at Lake Melissa outlet near Detroit Lakes, MN	-	1968-75
05040000	Pelican River near Detroit Lakes, MN	1 23	1942-53
05040500	Pelican River near Fergus Falls, MN	482	1909-12, 1942-80

[&]quot;See footnotes at end of table."

	DISCONTINUED GAGING STATIONS		
Station number	Station name	Drainage area (mi ²)	Period of record
	Red River of the North basinContinued		
05045500	Otter Tail River (Red River) near Fergus Falls, MN	al,690	1909-10†
05046500	Otter Tail River near Breckenridge, MN	a2,040	1931-32, 1939-46†
05047000	Mustinka River (head of Bois de Sioux River) near Norcross, MN	-	1940-47
05047500	Mustinka ditch above West Branch Mustinka River (Twelve Mile Creek) near Charlesville, MN	-	1943-55
05048000	Mustinka ditch below West Branch Mustinka River (Twelve Mile Creek) near Charlesville, MN	~	1943-55
05048500	West Branch Mustinka River (Twelve Mile Creek) below Mustinka ditch near Charlesville, MN	-	1943-55
05049000	Mustinka River above (near) Wheaton, MN	834	1915-24, 1930-58
05050500	Bois de Sioux River below Fairmont, ND	al,540	1919-44
05051000	Rabbit River at Cambell, MN	266	1942-52
05054020	Red River of the North below Fargo, ND	-	1969~78
*05061200	Whiskey Creek at Barnesville, MN	25.3	1964~66
05062500	Wild Rice River at Twin Valley, MN	888	1909~17 1930~83
05063000	Wild Rice River near Ada, MN	al,100	1948~54
*05063500	South Branch Wild Rice River near Borup, MN	254	1944-49
05067000	Marsh River below Ada, MN	-	1948-52
05068000	Sand Hill River at Beltrami, MN	a324	1943-58
05068500	Sand Hill ditch at Beltrami, MN	-	1943-58
05075500	Thief River near Gatske, MN	-	1953-56
05076500	Red Lake River at Thief River Falls, MN	a3,450	1909-18, 1920-30
05077000	Clearwater River near Pinewood, MN	132	1940-45
05077500	Clearwater River near Leonard, MN	153	1934-47
*05077700	Ruffy Brook near Gonvick, MN	45.2	1960-78
05083500	Red River of the North at Oslo, MN	331,200	1936-37, 1941-43, 1945-60, 1973-78
05085500	Snake River at Warren, MN	a 175	1945, 1953-56
05086000	Snake River at Alvarado, MN	309	1945, 1953-56
05086500	Snake River near Argyle, MN	481	1945
05087000	Middle River near Strandquist, MN	-	1953-56
05090500	Tamarac River near Strandquist, MN	-	1953-56
05091000	Tamarac River at Stephen, MN	-	1945
05091500	Tamarac River near Stephen, MN	a320	1945, 1953-55
05092500	Two Rivers (Middle Fork Two Rivers) near Hallock, MN	131	1931-38
05093000	South Branch (South Fork) Two Rivers near Pelan, MN	281	1928-38, 1953-56
05094500	South Branch Two Rivers (Two Rivers) at Hallock, MN	-	1940-47
05095000	Two Rivers (South Branch Two Rivers) at Hallock, MN		1911-14 1929-30 1938-39 1941-43

[&]quot;See footnotes at end of table."

Station .umber	Station name	Drainage area (mi ²)	Period of record
05095500	Two Rivers below Hallock, MN	644	1945-55
35 096000	North Branch (North Fork) Two Rivers near Lancaster, MN	a3 2	1929-38, 1941-55
05096500	State Ditch 85 near Lancaster, MN	a95	1929-38, 1942-55
05097000	North Branch Two Rivers at Lancaster, MN	209	1941-42, 1953-56
05097500	North Branch Two Rivers near Northcote, MN	386	1941-42, 19 4 5-51
05098000	Two Rivers below North Branch near Hallock, MN	al,060	1941-43
05103000	Roseau River (at) near Malung, MN	252	1928-46
05104000	South Fork (West Branch) Roseau River near Malung, MN	312	1911-14, 1928-46
05105000	Roseau River at Roseau, MN	-	1940-47
05105500	Roseau River near Roseau, MN	-	1930-60
05106000	Sprague Creek near Sprague, Manitoba	176	1928-81
05107000	Pine Creek near Pine Creek, MN	74.6	1928-53
05108000	Roseau River near Badger, MN	-	1928-69
05108500	Roseau River near Duxby, MN	-	1929-51, 1952-56
05109000	Badger Creek near Badger, MN	a 2. 2	1929-30, 1931-38
05109500	Roseau River near Haug, MN	-	1932-66
05110000	Roseau River at outlet of State Ditch 69 near Cak Point, MN	-	1939-42
05110500	Roseau River at head of State Ditch 51 near Oak Point, MN	-	1933-42
05111000	Roseau River at Oak Point, MN	-	1933-39, 1941-60
05112500	Roseau River at International boundary, near Caribou, MN	al,590	19 33-69
	Lake of the Woods basin		
05124500	Isabella River near Isabella, MN	3 4 1	1953-61, 1976-77
05125000	South Kawishiwi River near Ely, MN	-	1953-61, 1976-78
05125500	Stony River near Isabella, MN	180	1953-64
05125550	Stony River near Babbitt, MN	219	1975-80
05126000	Dunka River near Babbitt, MN	53.4	1951-62, 1975-80
05126210	South Kawishiwi River above White Iron Lake near Ely, MN		1975-78
051 26 50 0	Bear Island River near Ely, MN	68.5	1953-62, 1975-77
05127205	Burntside River near Ely, MN	-	1967-78
05127207	Bjorkman's Creek near Ely, MN	1.36	1972-78
0 51 27 21 0	Armstrong Creek near Ely, MN	5.29	1967-78
05127215	Longstorff Creek near Ely, MN	8.84	1967-78
05127219	Shagawa Lake tributary at Ely, MN	1.84	1971-78
05127220	Burgo Creek near Ely, MN	3.04	1967-78
05127230	Shagawa River near Ely, MN	99	1967-78
05128340	Pike River near Biwabik, MN	-	1977-79
05128500	Pike River near Embarrass, MN	115	1953-64, 1976-79


[&]quot;See footnotes at end of table."

Station number	Station name	Drainage area (mi ²)	Period of record
	Lake of the Woods basinContinued		
05129000	Vermilion River below Vermilion Lake near Tower, MN	483	1911-17, 1928-81
05129500	Rainy River at International Falls, MN	14,900	1905-60
05130000	Sturgeon River (Lake) at Side Lake, MN	~	1938-47
05131000	Dark River near Chisholm, MN	50.6	1942-61, 1965-79
05131800	Deer Lake outlet (Deer Lake) near Effie, MN	-	1937-39, 1940-46
05132500	Big Fork River at Laurel, MN	-	1909
05133000	Black River near Loman, MN	-	1909
05139500	Warroad River near Warroad, MN	162	1946-80
*05140000	Bulldog Run near Warroad, MN	14.2	1946-51, 1966-77
*05140500	East Branch Warroad River near Warroad, MN	102	1946-54, 1966-77

^{*} Presently operated as high-flow partial-record station.
† Stage records only.
a Approximately.

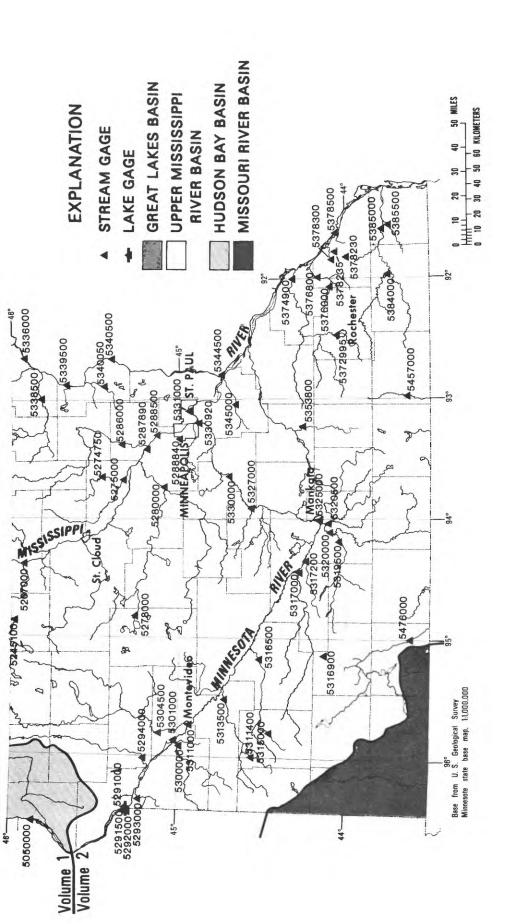
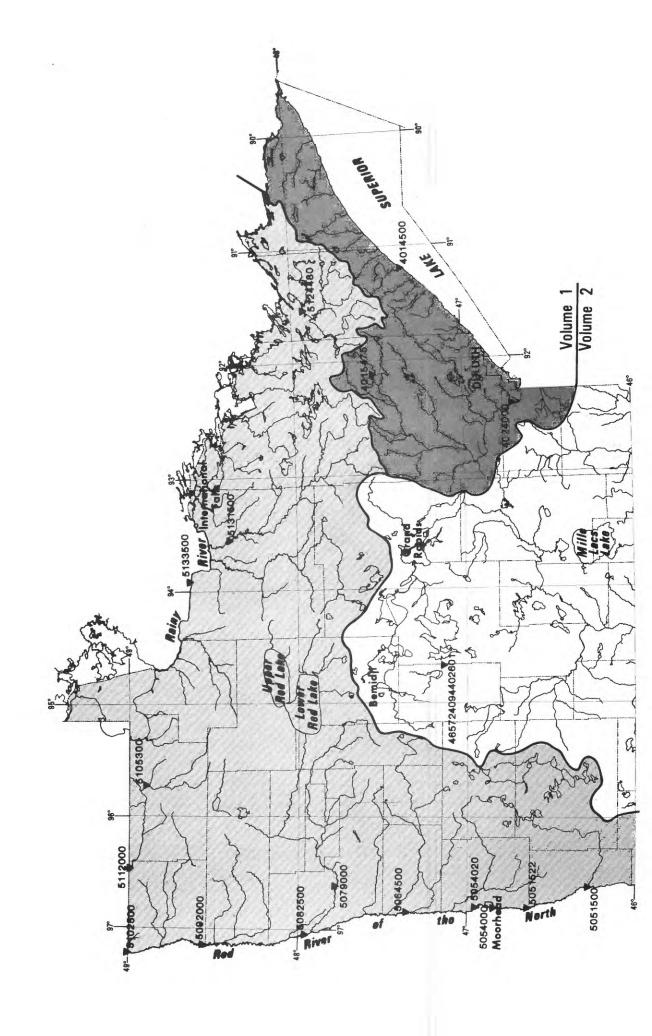



Figure 9.--Location of lake and stream-gaging stations

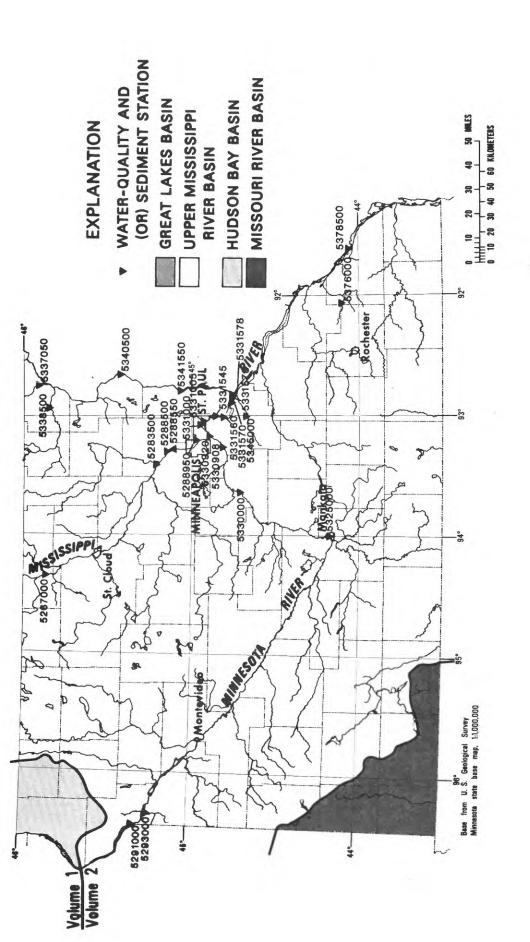


Figure 10. -- Location of surface-water-quality stations

TOTAL.

MEAN

MAX

MTN

IN.

CFSM

AC-FT

-43

.49

.40

.34

.39

STREAMS TRIBUTARY TO LAKE SUPERIOR

04010500 PIGEON RIVER AT MIDDLE FALLS, NEAR GRAND PORTAGE, MN (International gaging station)

LOCATION.--Lat 48°00'44", long 89°36'58", in SW\NE\ sec.24, T.64 N., R.6 E., Cook County, Hydrologic Unit 04010101, on the Grand Portage Indian Reservation, on right bank 400 ft upstream from Middle Falls, 2.5 mi upstream from Grand Portage Port of Entry, 3.5 mi upstream from mouth, and 4.7 mi northeast of village of Grand Portage.

DRAINAGE AREA. -- 600 mi2.

PERIOD OF RECORD. -- June to October 1921, April to November 1922, March 1923 to current year. Published as "at International Bridge" April 1924 to September 1940; as "below International Bridge" October 1940 to September 1965. Monthly discharge only for some periods, published in WSP 1307.

REVISED RECORDS. -- WSP 744: ISED RECORDS.--WSP 744: 1927-28. WSP 804: 1934(M). WSP 974: Drainage area. WSP 1337: 1924(M), 1925, 1926-28(M), 1931(M), 1938(M), 1941(M), 1945-46(M), 1947, 1948(M), 1950(M).

GAGE.--Water-stage recorder. Datum of gage is 787.58 ft above National Geodetic Vertical Datum of 1929. Prior to Sept. 30, 1940, nonrecording gage at International Bridge, 5.8 mi upstream at datum 102.24 ft higher. Oct. 1, 1940, to Dec. 31, 1975, at present site at datum 2.00 ft higher.

REMARKS. -- Estimated daily discharges: MARKS.--Estimated daily discharges: Nov. 19-23 and Dec. 2 to Apr. 21. Records good except those for periods with ice effect, Nov. 19-23 and Dec. 2 to Apr. 21, which are fair. Satellite telemeter at station.

COOPERATION. -- This station is one of the international gaging stations maintained by the United States under agreement with Canada.

AVERAGE DISCHARGE. -- 62 years (water years 1924-85), 507 ft3/s, 11.48 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 11,000 ft³/s, May 5, 1934, gage height, 7.6 ft, site and datum then in use, from rating curve extended above 7,000 ft³/s; minimum daily, 1.0 ft³/s, Jan. 15-21, 1977; minimum recorded gage height, 1.24 ft, Jan. 7, 8, 15, 1977, but may have been less during period of no gage-height record, Jan. 16 to Apr. 17, 1977.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 MEAN VALUES

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 3,000 ft3/s and maximum (*): Discharge Gage height (ft3/s) (ft) Discharge Gage height (ft³/s) (ft) Date Time Date Time Apr. 24 *4,010 *9.06 No other peak greater than base discharge.

Minimum discharge, 55 ft³/s, Oct. 14, 15; minimum gage height, 2.33 ft, Oct. 13, 14, 15.

DAY OCT NOV DEC JAN FEB MAR APR MAY JIIN JIII. AUG SEP 5 89 5 43 5 45 545 3 800 5 87 ---

.21

.24

1.92

2.14

2.05

2.36

1.36

1.51

1.10

1.27

.87

.78

. 87

CAL YR 1984 TOTAL MEAN 496 MAX MIN 56 CFSM .83 IN 11.25 AC-FT WTR YR 1985 TOTAL 179252 MEAN 491 MAX MIN 56 CFSM .82 IN 11.11 AC-FT

94.6

.16

-16

.19

.22

04014500 BAPTISM RIVER NEAR BEAVER BAY, MN

LOCATION.--Lat 47°20'07", long 91°12'06", in SE\NE\ sec.15, T.56 N., R.7 W., Lake County, Hydrologic Unit 04010101, on right bank 400 ft upstream from bridge on U.S. Highway 61, 0.3 mi upstream from mouth, 4 mi northeast of Silver Bay, and 7 mi northeast of village of Beaver Bay.

DRAINAGE AREA. -- 140 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1927 to current year. Monthly discharge only for some periods, published in WSP 1307. REVISED RECORDS.--WSP 894: 1939. WSP 1337: 1933-34(M), 1935.

GAGE.--Water-stage recorder. Datum of gage is 613.65 ft above National Geodetic Vertical Datum of 1929 (Corps of Engineers bench mark). Prior to Oct. 5, 1934, nonrecording gage, and Oct. 5, 1934 to Nov. 22, 1978, water-stage recorder at site 370 ft downstream and at datum 3.68 ft lower.

REMARKS.--Estimated daily discharge: Nov. 14 to Apr. 8. Records good except those for period with ice effect, Nov. 14 to Apr. 8, which are fair.

AVERAGE DISCHARGE. -- 58 years, 170 ft3/s, 16.49 in/yr.

EXTREMES FOR PERIOD OF RECORD.—-Maximum discharge, 10,000 ft³/s, Sept. 24, 1977, gage height, 8.33 ft site and datum then in use, from highwater mark in well, from rating curve extended above 4,200 ft³/s on basis of slope-area measurement of peak flow; maximum gage height, 11.06 ft, Apr. 12, 1965, site and datum then in use, from floodmark (backwater from ice); no flow Jan. 14 to Mar. 2, 1977.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,300 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Oct. 19	1700	*1,560	* 9.45	May 31	2000	1,410	9.23

Minimum daily discharge, 9.7 ft 3/s, Feb. 27, 28; minimum gage height, 5.49 ft, Feb. 5, 6.

		DISCHARGE,	IN CUBIC	FEET	PER S		WATER EAN VALU		OCTOBER	1984	TO S	EPTEM	BER	1985		
DAY	OCT	NOV	DEC	JAN		FEB	MAR		APR	MAY		JUN		JUL	AU	g sep
1	42	112	105	33	1	1	9.8		80	316		1200		387	2	4 94
2 3	37	82	95	31	1	1	9.8		70	279		816		309	2	
3	32	94	85	29	ī	.0	9.8		110	249		560		235	ī	
4	29	98	80	28		0	9.8		140	266		397		358	ĩ	
5	26	97	75	28		.0	9.8		110	309		322		588	3	
6	26	88	72	27	1	LO	9.8		90	324		262		475	9	9 316
7	24	80	70	27		9.8	9.8		86	413		247		370	7	232
8	24	96	67	26		9.8	9.8		100	375		211		286	5.	162
9	22	113	65	26		9.8	10		119	339		174		203	4	
10	26	107	63	25		9.8	11		162	343		144		149	4	
11			.,													
	21	84	61	24		9.8	11		272	678		123		116	4	7 99
12	21	75	58	23		9.8	12		290	696		107		90	13	75
13	22	70	56	22		9.8	13		339	868		94		75	50	
14	23	70	54	21		9.8	13		347	714		82		65	30	L 57
15	26	70	51	20		9.8	14		610	654		74		59	180	53
16	127	69	90	19		9.8	14		917	678		70		50	13	
17	548	68	145	18		9.8	16		720	583		301		44	10:	
18	497	66	130	18		9.8	20		594	465		283		125	9.	67
19	1240	64	110	17		9.8	40		744	396		218		132	76	
20	1170	62	97	16		9.8	100		938	339		175		98	63	3 74
21	747	60	82	15		9.8	80		090	283		134		102	56	
22	488	60	70	15		9.8	70		020	235		175		90	50	
23	328	58	60	14		9.8	100		966	200		183		74	60	241
24	238	56	52	14		9.8	160	1	040	175		149		69	100	550
25	185	55	4 7	13		9.8	100		910	194		172		85	109	550 458
26	163	54	42	13		9.8	92		696	335		441		70	86	
27	148	57	39	13		9.7	130		525	324		616		56	70	
28	156	170	38	12		9.7	190		404	266		903		45	57	
29	139	140	37	12			140		354	228		810		37	52	
30	1 26	120	36	12			100		351	304		578		32	48	296
31	110		34	12			90			1130				28	47	
TOTAL	6811	2495	2166	623			1604.4			2958		021		4902	2804	
MEAN	220	83.2	69.9	20.1	9	.91	51.8		473	418		334		158	90.5	210
MAX	1240	170	145	33		11	190	1	090	1130	1	200		588	500	
MIN	21	54	34	12		9.7	9.8		70	175		70		28	18	50
CFSM	1.57	.59	•50	.14		.07	.37	3	.38	2.99	2	.39	- 1	1.13	.65	1.50
IN.	1.81	.66	•58	.17		.07	.43		.77	3.44	2	.66		1.30	.75	1.67
AC-FT	13510	4950	4300	1240		550	3180	28	150 2	5700	19	0880	9	9720	5560	12490
CAT VD	1004 mom	AT 60420 0	WD 2 37 1 0		1	700	WTN 10	_	naw 1 20		10				7700	

CAL YR 1984 TOTAL 69428.0 MEAN 190 MAX 1700 MIN 12 CFSM 1.36 IN 18.45 AC-FT 137700 WTR YR 1985 TOTAL 65153.8 MEAN 179 MAX 1240 MIN 9.7 CFSM 1.28 IN 17.31 AC-FT 129200

04014500 BAPTISM RIVER NEAR BEAVER BAY, MN--Continued (National stream-quality accounting network station)

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1968 to current year.

REMARKS. -- Letter K indicates non-ideal colony count.

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS) (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	PH (STAND- ARD UNITS) (00400)	PH LAB (STAND- ARD UNITS) (00403)	TEMPER- ATURE, AIR (DEG C) (00020)	TEMPER- ATURE (DEG C) (00010)	TUR- BID- ITY (NTU) (00076)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)
OCT 10	1315	21	107	105	7.6	7.7	12.0	11.0	0.8	749	11.0
JAN 08	1530	27	110	104	7.1	7.4	-12.0	0.0	2.5	750	16.0
MAY 07	1100	418	60	61	7.4	7.4	12.0	9.0	1.5	739	11.2
SEP 10	1330	116	75	69	7.5	7.7	15.5	15.0	0.8	752	9.8
DATE	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	ALKA- LINITY FIELD (MG/L AS CACO3) (00410)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)
OCT 10	K1300	56	12	4.0	3.7	0.4		41	6.3	3.6	0.3
JAN	K2	кз	12	4.0	3.5	0.4	38	39	9.7	3.3	0.2
MAY 07	K22	к6	6.9	2.2	2.1	0.5	15	18	7.2	2.6	0.2
SEP 10	K1	220	8.0	2.7	2.0	0.3	26	27	<0.2	2.4	<0.1

DATE	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS, TOTAL (MG/L AS P) (00665)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS, ORTHO, DIS- SOLVED (MG/L AS P) (00671)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
OCT 10 JAN	8.3	80	<0.10	0.03	0.3	<0.01	<0.01	<0.01	1	92
08	15	74	0.37	0.07	8.0	0.01	0.01	<0.01	6	85
MAY 07 SEP	6.7	45	0.43	0.03	0.5	<0.01	<0.01	<0.01	4	97
10	9.1	79	<0.10	0.13	0.9	0.45	0.02	<0.01	3	82

STREAMS TRIBUTARY TO LAKE SUPERIOR 04014500 BAPTISM RIVER NEAR BEAVER BAY, MN--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)
OCT 10	1315	10	1	11	<0.5	<1	<1	<3	2	120	<1
JAN 08 MAY	1530	50	1	14	<0.5	<1	9	<3	1	200	2
07 SEP	1100	110	1	9	<0.5	<1	10	<3	3	190	1
10	1330	90	2	13	<0.5	<1	8	<3	4	380	4

DATE	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)
OCT 10 JAN	< 4	3	<0.1	<10	2	<1	<1	38	< 6	9
08	<4	2	0.2	<10	<1	. <1	<1	35	<6	25
MAY 07	< 4	3	<0.1	<10	2	<1	<1	21	<6	11
SEP 10	< 4	5	<0.1	<10	1	<1	<1	27	<6	4

04015330 KNIFE RIVER NEAR TWO HARBORS, MN

LOCATION.--Lat 46°56'49", long 91°47'32", in SW\NW\x sec.31, T.52 N., R.11 W., Lake County, Hydrologic Unit 04010102, on right bank 600 ft downstream from bridge on U.S. Highway 61, 0.5 mi upstream from bridge on County Highway 102, in town of Knife River, 0.8 mi upstream from Lake Superior, and 7.8 mi southwest of Two Harbors.

DRAINAGE AREA. -- 85.6 mi².

PERIOD OF RECORD. -- Occasional low-flow measurements, water years 1970-71, July 1974 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 640 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Nov. 1 to Apr. 8. Records fair except those for period with ice effect, Nov. 1 to Apr. 8, which are poor.

AVERAGE DISCHARGE.--11 years, 93.1 ft3/s, 14.77 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 7,440 ft³/s, May 10, 1979, gage height, 11.16 ft; minimum, no flow Dec. 2, 1976 to Mar. 4, 1977.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 800 ft³/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Oct. 19	1015	*2,400	*7.15	May 31	0815	1,650	6.39
Apr. 13	0400	1,560	6.16	June 26	1930	1,130	5.68
Apr. 23	0300	1,100	5.53	July 18	1415	965	5.41
May 10	2330	1.580	6.30	Sept. 3	0615	1.740	6.35

Minimum daily discharge, 4.0 ft 3 /s, Jan. 20, 21; minimum gage height, 2.71 ft Aug. 4, 5.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 MEAN VALUES

DAY	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	36 29 24 21 19	150 140 130 120 110	27 22 20 18 17	5.0 4.8 4.7 4.6 4.5	4.1 4.1 4.1 4.1	4.2 4.2 4.3 4.3	100 100 250 4 00 300	180 144 121 105 97	528 243 138 95 80	87 101 83 128 246	12 11 9.8 11 9.8	26 30 1000 391 192
6 7 8 9 10	19 19 18 17 16	100 95 90 85 80	16 15 14 13 12	4.4 4.3 4.2 4.1	4.1 4.1 4.1 4.1	4.4 4.5 4.7 4.9 5.3	250 200 180 154 278	97 101 93 83 298	64 65 64 48 37	144 87 67 47 35	24 25 19 15 13	116 79 49 39 37
11 12 13 14 15	16 16 17 17 17	75 70 65 60 55	11 11 10 10	4.1 4.1 4.1 4.1	4.1 4.1 4.1 4.1	6.0 7.0 8.0 12 17	492 558 1140 474 456	980 528 426 290 405	30 26 22 19 17	30 24 21 20 17	13 53 272 133 67	33 27 24 21 20
16 17 18 19 20	41 412 287 1780 1160	50 47 44 42 40	50 40 30 20 16	4.1 4.1 4.1 4.1	4.1 4.1 4.1 4.1	25 40 60 80 100	558 380 350 385 390	654 474 298 197 138	16 18 17 15	16 15 420 298 116	43 36 27 23 20	18 21 19 19 24
21 22 23 24 25	580 368 274 223 193	37 34 32 30 29	13 11 9.5 8.5 7.5	4.0 4.1 4.1 4.1	4.1 4.1 4.1 4.1	90 120 250 200 170	588 642 1040 825 528	103 80 67 55 55	12 19 19 14 154	68 44 30 27 60	18 17 71 115 105	23 34 218 599 305
26 27 28 29 30 31	189 177 185 161 163 163	28 32 50 40 32	7.0 6.5 6.0 5.7 5.4 5.2	4.1 4.1 4.1 4.1 4.1	4.1 4.1 4.2	200 300 250 200 150 120	354 254 193 160 177	68 62 50 44 93 1000	895 762 415 236 138	43 29 23 17 15	59 38 27 24 24 21	178 118 88 70 357
TOTAL MEAN MAX MIN CFSM IN.	6657 215 1780 16 2.51 2.89	1992 66.4 150 28 .78	467.3 15.1 50 5.2 .18 .20	130.6 4.21 5.0 4.0 .05	114.9 4.10 4.2 4.1 .05	2450.2 79.0 300 4.2 .92 1.06	12156 405 1140 100 4.73 5.28	7386 238 1000 44 2.78 3.21	4219 141 895 12 1.65 1.83	2372 76.5 420 14 .89 1.03	1355.6 43.7 272 9.8 .51 .59	4177 139 1000 18 1.62 1.82

CAL YR 1984 TOTAL 37878.2 MEAN 103 MAX 1780 MIN 5.2 CFSM 1.20 IN 16.46 WTR YR 1985 TOTAL 43477.6 MEAN 119 MAX 1780 MIN 4.0 CFSM 1.39 IN 18.89

04015475 PARTRIDGE RIVER ABOVE COLBY LAKE, AT HOYT LAKES, MN

LOCATION.--Lat 47°31'38", long 92°7'21", in SW\ne\ sec.9, T.58 N., R.14 W., St. Louis County, Hydrologic Unit 04010201, in Superior National Forest, 10 ft upstream from bridge on County Highway 110, 1 mi east of Hoyt Lakes.

DRAINAGE AREA. -- 106 mi² of which 6.0 mi² is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1978 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 1,455 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS,--Estimated daily discharges: Nov. 12-14, Dec. 1 to Mar. 18, Mar. 22, 23, 28 Mar. 30 to Apr. 13, and Apr. 18-20, 27-30. Records fair except for periods of no gage-height record, Nov.12-14, Mar. 22, 23, 28, Mar. 30 to Apr. 13 and Apr. 18-20, 27-30, and for period with ice effect, Dec. 1 to Mar. 18, which are poor.

AVERAGE DISCHARGE.--7 years, 91.4 ft3/s, 11.71 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,020 ft³/s, Apr. 22, 1979, gage height, 10.89 ft minimum, 0.88 ft³/s, Feb. 15, 1981, gage height, 4.81 ft.

EXTREMES CUTSIDE PERIOD OF RECORD.--A discharge of 0.50 ft3/s was measured Aug. 23, 1976.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 644 ft³/s, July 6, gage height, 8.29 ft; maximum gage height, 8.42 ft, Apr. 26; minimum daily discharge, 1.5 ft ³/s, Feb. 3-20.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 MEAN VALUES DAY OCT DEC JAN MAR APR MAY JUN JUL AUG SEP 1.9 5.0 1.6 4.5 1.6 4.0 1.5 2.0 3.7 1.5 F, 3.5 1.5 2.2 3.5 3.3 2.3 3.1 2.4 3.0 1.5 2.5 2.9 1.5 2.7 2.8 1.5 2.7 1.5 2.8 4 C 2.6 1.5 2.9 3.0 **6** 77 74 2.5 1.5 2.3 1.5 3.2 2.3 1.5 3.4 2.2 3.6 2.2 1.5 4.0 8.3 2.1 1.5 7.8 2.1 1.5 2.0 1.6 8.8 2.0 1.6 1.9 1.6 1.9 1.7 1.9 1.7 1.8 1.7 1.8 1.8 1.7 1.8 8.0 1.7 ___ 67 7.0 1.7 6.0 1.6 TOTAL. 330.3 51 23 501.0 79.2 2.55 43.7 1.56 MEAN 63.9 36.4 45.8 16.2 5.0 MAX 1.8 MIN 6.0 1.6 1.5 1.9 .34 2.09 2.07 1.61 CESM .60 .15 .02 .02 .10 1.53 1.73 .43 .70 .03 .02 1.99 2.34 IN. .18 .12 1.70 2.38 .50 1.80

CAL YR 1984 TOTAL WTR YR 1985 TOTAL 29297.6 MEAN 80.0 MAX 613 MIN 6.0 CFSM .76 IN 10.28 AC-FT IN 12.12 34522.2 AC-FT MEAN 94.6 MAX 635 MIN 1.5 CFSM .89

04015475 PARTRIDGE RIVER ABOVE COLBY LAKE AT HOYT LAKES, MN--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- February 1976 to current year.

PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE: February 1976 to current year. WATER TEMPERATURES: February 1976 to current year.

INSTRUMENTATION. -- Specific conductance and water temperature recorder since February 1976.

REMARKS.--Extremes are published for years with 80 percent or more daily record.

EXTREMES FOR PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE (water years 1980, 1985): Maximum, 268 microsiemens Aug. 28 and 29, 1980; minimum, 42 microsiemens April 24-25, 1985.

WATER TEMPERATURES (water years 1979-1980, 1985): Maximum, 27.5°C June 25, 1980; minimum, 0.0°C on many days during winter periods.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum, 215 microsiemens Oct. 6; minimum, 42 microsiemens Apr. 24-25.
WATER TEMPERATURES: Maximum, 24.0°C Aug. 8; minimum, 0.0°C on many days during winter period.

SPECIFIC CONDUCTANCE, MICROSIEMENS PER CENTIMETER AT 25, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		остове	ER		NOVEMBE	R		DECEMBE	iR .		JANUAR	łY
1	2 0 5	197	199	107	104	106	159	155	157	166	162	164
2	197	194	196	106	105	106	15 6	151	153	172	166	169
3	195	190	192	107	105	106	152	151	152	178	171	175
4	193	190	191	105	103	104	155	153	154	183	178	180
5	199	192	195	103	102	103	156	153	155	187	183	185
6	215	199	205	104	102	103	156	155	156	190	187	189
7	212	204	208	103	101	102	157	156	157	193	190	192
8	212	202	207	103	101	102	158	157	157	195	192	193
9	213	201	208	102	101	102	159	157	158	198	194	197
10	213	200	205	104	101	102	161	159	160	199	198	199
11	210	200	205	105	103	104	165	162	164	200	199	199
12	210	199	202	106	104	105	173	166	169	200	199	200
13	207	198	202	107	105	106	182	175	178	201	199	200
14	210	198	204	106	105	106	188	183	185	200	199	200
15	208	199	206	106	104	105	194	189	191	203	200	201
16	204	199	201	111	106	109	196	180	188	203	201	202
17	194	183	185	115	112	113	198	186	195	204	203	204
18	198	184	189	123	117	120	195	181	185	205	204	204
19	190	17 7	185	134	124	129	182	167	176	212	208	210
20	176	148	164	144	136	140	167	163	165	212	210	211
21	147	134	141	150	144	148	166	163	164	212	211	212
22	133	118	124	154	151	153	163	156	160	212	211	211
23	117	107	112	157	154	156	156	151	153	212	209	211
24	107	102	104	161	158	160	152	149	150	209	206	207
25	101	100	101	163	162	163	154	151	153	207	205	206
26	102	100	101	165	163	164	157	155	156	205	202	204
27	104	101	103	166	164	165	156	155	155	203	201	202
28	106	103	104	166	164	165	155	154	154	201	198	200
29	109	105	107	165	160	162	155	153	154			
30	109	107	108	161	158	160	158	155	156			
31	108	107	108				162	157	159			
MONTH	215	100	167	166	101	126	198	149	164			

04015475 PARTRIDGE RIVER ABOVE COLBY LAKE AT HOYT LAKES, MN--Continued

SPECIFIC CONDUCTANCE, MICROSIEMENS PER CENTIMETER AT 25, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUAR	Y		MARCH	!	'	APR II	,		MAY	
1 2 3 4 5	 201	 200	200	194 194 194 193 194	193 192 193 192 192	193 193 194 192 193	104 95 92 104 104	94 88 87 93 97	99 92 89 100 102	63 66 67 68 . 68	60 63 65 66	62 64 66 67 67
6 7 8 9 10	202 202 202 202 202 203	200 200 200 201 201	201 201 201 202 201	195 194 195 194 195	191 192 193 192	193 193 194 193 194	98 103 107 107 103	96 98 103 103 96	97 101 105 105 100	68 69 70 71 76	66 67 68 69 71	67 68 69 70 74
11 12 13 14 15	203 200 199 199 198	199 198 197 196 197	201 199 199 198 197	195 196 196 199 199	193 193 194 195 196	194 194 195 197 197	96 91 92 103 95	89 89 90 93 75	92 90 91 99 83	78 76 73 69 68	75 72 69 67 67	77 75 71 68 67
16 17 18 19 20	199 199 198 199 200	197 197 197 197 198	198 198 197 198 199	200 201 202 203 204	198 198 200 199 199	199 199 201 201 202	75 67 63 60 56	67 63 58 55 54	71 65 60 57 55	67 69 71 71 71	65 66 69 70 69	66 67 70 70 70
21 22 23 24 25	199 200 199 199 197	197 19/ 196 19/ 196	198 199 198 198 197	203 195 171 165 159	192 171 162 154 150	200 184 166 161 156	59 59 57 49 45	56 57 49 42 42	58 58 54 46 43	72 7 4 76 78 82	70 72 74 75 78	71 73 74 76 80
26 27 28 29 30 31	196 195 196 	193 193 194 	194 194 195 	151 132 117 99 99 107	133 119 99 90 89 100	143 126 108 94 93 105	44 46 50 55 59	43 44 47 51 56	43 45 48 53 57	86 85 85 85 85	82 84 83 84 83 68	84 85 84 85 84 75
MONTH				204	89	176	107	42	75	86	60	72
DAY	MAX	MIN JUNE	MEAN	MAX	MIN JULY	MEAN	MAX	MIN AUGUST	MEAN	MAX	MIN SEPTEMB	MEAN ER
1 2 3 4 5	67 57 53 55 58	58 52 52 53 55	62 55 52 54 56	56 60 62 62 53	53 55 59 53 51	54 57 61 58 52	106 108 109 107 108	101 106 106 106 106	104 107 107 107 107	117 106 106 92 77	107 103 93 78 72	113 105 101 84 74
6 7 8 9 10	62 65 67 67 69	58 61 65 65	60 63 66 66	53 55 61 66 72	51 52 55 61 6 7	52 53 58 64 69	111 116 123 123 120	108 111 117 120 115	109 113 120 122 118	73 73 78 83 87	70 70 72 78 83	71 71 75 81 85
11 12 13 14 15	71 73 74 76 79	68 71 72 73 74	70 72 73 74 76	75 78 83 89 92	71 75 78 83 87	73 76 81 86 90	115 112 106 111 117	110 103 102 105 111	112 107 104 108 114	91 96 99 100 100	87 91 95 99	89 93 97 99
16 17 18 19 20	82 87 86 81 79	79 82 80 79 77	81 85 83 80 78	95 96 96 97 98	92 94 94 96 97	93 95 96 97 98	119 119 120 119 120	117 117 118 117 118	118 118 119 118 119	99 98 95 92 87	97 95 91 88 83	98 96 92 89 85
21 22 23 24 25	78 78 80 81 80	76 77 77 79 . 75	77 77 78 80 78	98 93 89 89 87	94 88 86 86 83	97 90 87 87 85	123 127 129 129 126	119 123 126 126 120	121 125 128 128 123	86 87 86 81 71	83 86 81 71 62	84 87 83 75 66
26 27 28 29 30	75 67 60 55 53	68 61 54 52 52	71 64 57 53 52	84 87 92 95 97 101	82 82 87 92 94 97	83 85 90 93 96 99	120 118 120 122 124 125	117 116 117 119 122 116	118 117 118 120 123 122	61 56 58 60 62	56 55 56 58 60	58 56 57 59 61
MONTH	87	52	69	101	51	79	125	101	116	 	55	83

STREAMS TRIBUTARY TO LAKE SUPERIOR 04015475 PARTRIDGE RIVER ABOVE COLBY LAKE AT HOYT LAKES, MN--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBE	R		NOVEMBE	R		DECEMBI	ER		JANUAR	RY
1 2 3 4 5	9.5 10.0 10.5 11.0 11.0	7.0 8.5 8.5 9.5 9.0	8.5 9.0 9.5 10.0 10.0	2.0 .5 1.0 1.0	.0 .0 .0 .5	1.0 .5 .5 1.0	.5 .5 .5 .5	.0 .0 .0	.5 .5 .5	.5 .5 .5	.5 .0 .0	.5 .5 .5 .0
6 7 8 9 10	12.5 12.5 14.0 13.5 13.5	10.5 11.5 12.0 12.5 13.0	11.5 12.0 13.0 13.0	1.0 1.5 2.0 1.5 1.5	.5 .5 1.0 1.0	.5 1.0 1.5 1.5	.5 .5 .5 .5	.0 .0 .0	.5 .5 .5	.5 .5 .5	.0 .5 .5 .5	.5 .5 .5 .5
11 12 13 14 15	13.5 13.5 15.0 16.0 15.0	13.0 13.5 13.5 14.5 14.0	13.5 13.5 14.0 15.0 14.5	1.0 1.5 1.5 1.5 1.5	.5 1.0 1.5	1.0 1.0 1.5 1.5	.5 .5 .5 .5	.5 .5 .0 .0	.5 .5 .5 .5	.5 .5 .5 .5	.5 .0 .0 .5	.5 .5 .5
16 17 18 19 20	14.0 11.5 10.0 8.5 8.0	12.0 10.0 9.0 8.0 7.0	12.5 11.0 9.5 8.5 7.5	.5 .5 .5	.0 .0 .0	.5 .5 .5 .5	.5 .5 .5 .5	.0 .0 .0 .0	.5 .0 .5 .5	.5 .5 .5 .5	.0 .5 .0	.5 .5 .5
21 22 23 24 25	7.0 6.5 6.0 5.5 5.5	6.5 6.0 5.5 4.5 5.0	7.0 6.5 5.5 5.0 5.0	.5 .5 .5 1.0	.0 .5 .5 .5	.5 .5 .5 .5	.5 .5 .5 .5	.0 .0 .0	.0 .5 .0 .5	.5 .5 .5 .5	.0 .5 .5	.5 .5 .5 .5
26 27 28 29 30 31	6.0 7.5 7.0 4.5 4.5 2.5	5.0 5.5 4.5 3.5 2.5 2.0	5.5 6.5 5.5 4.5 3.5 2.0	1.5 1.5 1.0 .5	1.0 1.0 .5 .5	1.5 1.5 1.0 .5	.5 .5 .5 .5	.0 .0 .0 .5	.5 .5 .5 .5	.5 .5 .5	.5 .5 .5 	.5 .5 .5
MONTH	16.0	2.0	9.0	2.0	.0	1.0	.5	.0	.5			
DAY	MAX	MIN FEBRUAR	ME AN	MAX	MIN MARCH	ME AN	MAX	MIN APRII	ME AN	MAX	MIN Y AM	MEAN
1 2 3 4 5	 -5	 -5	 -5	.5 .5 .5	.0 .5 .5 .5	.5 .5 .5	.5 .5 1.0 1.0	.0 .0 .0 .5	.5 .5 .5 .5	12.5 12.5 13.0 13.5 14.0	10.0 10.5 10.5 11.0 12.0	11.5 11.5 12.0 12.0 13.0
6 7 8 9 10	.5 .5 .5	.0 .0 .0	.5 .5 .5 .5	.5 .5 .5 .5	.5 .0 .5 .5	.5 .5 .5	1.5 1.5 1.0 2.0 3.0	.5 .5 .0 1.0	1.0 1.0 .5 1.0 2.0	14.5 15.0 15.5 17.0 16.5	12.5 12.0 12.5 14.0 15.0	13.5 13.5 14.0 15.5 15.5
11 12 13 14 15	.5 .5 .5	.0 .0 .0	.5 .5 .5 .5	.5 .5 .5	.0 .5 .5 .5	.5 .5 .5	3.0 2.5 1.5 1.5 2.5	1.0 1.5 .5 .5	2.0 2.0 1.0 1.0	15.5 15.0 15.0 14.0 13.0	14.5 13.5 12.0 12.5 12.0	15.0 14.5 13.5 13.0 12.5
16 17 18 19 20	.5 .5 .5	.0 .0 .0	.5 .5 .5	.5 .5 .5	.5 .5 .0	.5 .5 .5	3.0 4.0 6.5 9.0 10.5	.5 2.0 3.5 5.5 8.0	1.5 3.0 5.0 7.0 9.5	13.0 13.0 14.0 15.0 14.0	12.0 11.0 11.0 13.0 12.5	12.5 12.0 12.5 14.0 13.5
21 22 23 24 25	.5 .5 .5 .5	.0 .0 .0	.5 .5 .5 .5	.5 .5 .5 .5	.5 .5 .5 .5	.5 .5 .5 .5	12.5 12.0 11.0 7.0 4.5	9.5 11.0 7.5 4.5 3.5	11.0 11.5 9.5 5.5 4.0	15.0 16.5 18.0 19.5 18.5	12.0 13.5 15.0 17.0 15.5	13.5 15.0 16.5 18.5 17.5
26 27 28 29 30 31	.5 .5 	.5 .5 .0 	.5 .5 .5	.5 .5 .5 .5	.5 .0 .0 .0	.5 .5 .5 .5	5.5 6.0 8.5 11.0 12.5	3.5 4.5 5.0 8.0 10.5	4.5 5.5 6.5 9.5 11.5	15.5 15.5 16.0 15.0 15.5	14.5 13.5 13.5 13.5 13.0	15.0 14.5 15.0 14.0 14.0
MONTH				.5	.0	.5	12.5	.0	4.0	19.5	10.0	14.0

04015475 PARTRIDGE RIVER ABOVE COLBY LAKE AT HOYT LAKES, MN--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

TELL MATERIAL COLOR CONTROL TO THE TELL COLORS TO SELLENDER TOO												
DAY	MAX	MIN	MEAN	MAX	MIN	ME AN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST	P		SEPTEM	BER
1 2 3 4 5	13.0 12.0 13.0 13.0 14.5	11.5 10.5 10.5 11.5 11.5	12.5 11.0 11.5 12.5 13.0	17.5 19.0 20.0 19.0 19.0	15.5 16.0 17.5 17.0 16.5	16.5 17.5 18.5 18.0 17.5	22.0 22.0 23.5 22.5 22.0	19.5 19.5 20.0 21.0 20.5	21.0 21.0 22.0 21.5 21.0	18.0 17.0 15.5 16.0 17.0	15.5 15.5 15.0 14.5 15.0	17.0 16.0 15.0 15.0
6 7 8 9 10	13.5 16.0 16.5 16.5 17.0	12.5 12.5 15.0 14.5 15.0	13.0 14.5 15.5 15.5 16.0	19.5 21.0 22.0 22.0 21.0	17.5 18.0 19.5 20.5 19.5	18.5 19.5 21.0 21.0 20.5	23.0 23.5 24.0 23.0 21.5	20.5 21.0 21.0 21.5 20.0	21.5 22.0 22.5 22.0 21.0	18.0 18.5 18.0 17.5 17.5	16.5 16.5 17.5 16.5 16.0	17.0 18.0 18.0 17.0
11 12 13 14 15	16.5 17.0 17.5 18.5 19.0	15.5 14.5 15.0 16.0 16.0	16.0 16.0 16.5 17.5	20.5 21.5 22.5 22.0 21.0	18.5 19.0 20.5 21.0 20.0	19.5 20.5 21.5 21.5 20.5	20.5 19.5 18.5 18.5 19.0	18.5 17.5 17.0 17.0	19.5 18.0 17.5 17.5	16.5 16.0 15.5 15.5 16.0	15.0 14.5 13.5 13.0 13.5	16.0 15.0 14.5 14.5
16 17 18 19 20	19.0 18.0 16.5 17.5 19.0	17.0 16.5 15.5 15.0 16.0	18.0 17.0 16.0 16.0	22.0 22.0 22.0 22.5 22.5	18.5 19.5 20.5 21.0 20.5	20.0 20.5 21.0 21.5 21.5	20.5 19.5 18.5 16.5 16.0	17.0 17.5 16.5 15.5	18.5 18.5 17.5 15.5	15.0 16.0 17.5 18.5 18.5	14.5 15.0 16.0 17.5 15.5	14.5 15.5 16.5 18.0 17.0
21 22 23 24 25	19.5 19.0 16.5 18.0 17.5	17.5 16.5 15.0 15.0 16.0	18.5 17.5 15.5 16.5 16.5	22.5 22.0 22.0 21.0 21.0	20.5 19.5 20.0 20.0 19.0	21.5 20.5 21.0 20.5 20.0	17.5 17.0 16.0 16.5 19.0	15.0 16.0 16.0 15.5	16.0 16.5 16.0 16.0 17.0	15.0 14.0 13.5 11.0 9.5	14.0 13.5 11.5 9.0 8.0	14.5 13.5 13.0 10.0 9.0
26 27 28 29 30 31	16.0 16.5 15.5 14.5 16.5	15.5 15.5 14.5 14.0 13.5	16.0 15.5 15.0 14.0 15.0	21.5 22.0 22.5 22.0 21.0 22.0	19.5 19.5 20.0 20.0 19.5 19.0	20.5 21.0 21.0 21.0 20.5 20.5	18.5 19.0 19.0 18.0 19.0	16.0 16.5 16.5 17.0 15.5 16.0	17.5 17.5 17.5 17.5 17.0 16.5	9.0 8.5 8.0 8.0 7.5	7.5 7.5 7.5 7.5 5.5	8.5 8.0 8.0 7.5 7.0
MONTH	19.5	10.5	15.5	22.5	15.5	20.0	24.0	15.0	18.5	18.5	5.5	14.0

04016500 ST. LOUIS RIVER NEAR AURORA, MN

LOCATION.--Lat 47°29'30", long 92°14'20", in NW\SW\s sec.22, T.58 N., R.15 W., St. Louis County, Hydrologic Unit 04010201, on left bank at upstream side of highway bridge, 0.8 mi downstream from Partridge River and 1.5 mi south of Aurora.

DRAINAGE AREA.--290 mi² of which 13.3 mi² is noncontributing.

PERIOD OF RECORD. -- August 1942 to current year.

REVISED RECORDS. -- WSP 1337: 1950. WDR MN-77-1: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,371.24 ft above National Geodetic Vertical Datum of 1929. Prior to Aug. 26, 1944, nonrecording gage at same site and datum.

REMARKS.--Estimated daily discharges: Dec. 16 to Apr. 1. Records good except for periods with ice effect, Dec. 16 to Apr. 1, which are fair. Flow regulated at times by storage in off-channel Partridge Reservoir, formerly known as Whitewater Lake. Reservoir formed from lake by levees around marsh areas and natural outlet. Available capacity 20,000 acre-ft between elevations 1,410 ft, natural lake level, and 1,440 ft. Storage in reservoir obtained from Colby Lake during periods of high flow; release from storage returned to Colby Lake to maintain lake elevation during diversion for iron-ore processing. Diversion began Feb.7, 1956. Some seepage losses from reservoir enter above station. Flow also affected by mining activities in Second Creek basin.

AVERAGE DISCHARGE (adjusted for storage and diversion) .--43 years, 250 ft³/s, 11.71 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,380 $\rm ft^3/s$, May 14, 1950, gage height, 8.37 ft; minimum daily, 4.0 $\rm ft^3/s$, Jan. 29 to Feb. 10, 1977.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

FXTREMES FOR CURRENT YEAR. -- Maximum discharge, 1,400 ft³/s, July 6, gage height, 4.15 ft; minimum daily, 22 ft³/s, Feb. 4 to Mar. 8; minimum gage height, 0.93 ft. Oct. 15.

MEAN VALUES												
DAY	OCT	VOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	43	172	78	56	24	22	9 5	976	8 26	1030	167	193
2	43	192	79	54	23	22	91	88 6	9 82	942	152	201
3	43	167	81	52	23	22	96	802	1010	838	139	310
1 2 3 4 5	45	143	80	51	22	22	100	746	958	1010	130	343
5	47	163	80	49	22	22	105	691	880	1270	138	373
6 7	48	15 9	74	47	22	22	111	680	774	1380	134	413
7	46	142	71	45	22	22	111	6 58	680	1320	146	388
8	44	137	73	44	22	22	104	630	5 9 5	1200	157	355
9	43	134	74	43	22	23	94	595	508	1050	148	329
10	45	130	75	42	22	23	88	560	444	881	137	310
11	47	139	78	40	22	24	89	615	389	723	128	288
12	45	124	75	39	22	25	96	680	351	597	140	266
13	43	112	68	38	22	27	150	718	316	501	154	240
14	43	110	73	37	22	31	197	713	283	429	156	221
15 .	42	106	71	36	22	35	233	696	251	376	159	207
16	46	110	76	35	22	39	248	664	237	331	155	208
17	96	100	88	34	22	43	270	642	276	295	154	240
18	85	92	93	33	22	49	270	615	282	332	145	251
19	114	81	95	32	22	56	252	585	279	333	137	288
20	134	79	95	32	22	62	25 6	545	273	334	132	299
21	156	83	92	31	22	75	301	502	256	339	125	295
22	167	86	87	30	22	82	408	462	269	317	116	293
23	157	86	83	29	22	94	844	422	255	294	118	338
24	151	8 6	80	29	22	106	1140	386	246	294	1 26	511
25	150	88	76	28	22	120	1190	36 6	258	2 9 8	124	63 6
26	150	90	72	27	22	145	1220	354	3 9 3	286	122	692
27	157	93	68	27	22	170	1350	3 4 3	568	273	117	710
28	178	93	66	26	22	190	1330	329	960	245	110	683
29	181	85	64	26		180	1210	315	1090	221	114	625
30	189	80	61	26		140	1080	315	1090	201	107	604
31	195	~	58	25		115		545		185	1 26	
TOTAL	2973	3462	2384	1143	620	2030	13129	18036	15979	18125	4213	11110
MEAN	95.9	115	76.9	36.9	22.1	65.5	438	582	533	585	136	370
XAM	195	192	9 5	5 6	24	190	1350	976	1090	1380	167	710
MIN	42	79	58	25	22	22	88	315	237	185	107	1 9 3
† <u> </u>	+50.2	+25.8	10.4	0	0	+10	+88.9	+19.2	+29.1	+20.2	+18.2	+29.5
MEAN ‡ CFSM ‡	146	141	87.3	3 6.9	22.1	75.5	527	601	562	605	154	400
	.50	.49	.30	.13	.08	.26	1.82	2.07	1.94	2.09	.53	1.38
IN. ‡	.58	.54	.35	.15	.08	.30	2.03	2.39	2.16	2.41	.61	1.54

CAL YR 1984 TOTAL 81758 MEAN 223 MAX 1070 MIN 30 MEAN ‡ 245 CFSM ‡ .85 IN. ‡ 11.52 WTR YR 1985 TOTAL 93204 MEAN 255 MAX 1380 MIN 22 MEAN ‡ 280 CFSM ‡ .97 IN. ‡ 13.13

[†] Change in contents in Partridge Reservoir and diversion to iron-ore processing plant, equivalent in cubic feet per second; furnished by Erie Mining Co.

[‡] Adjusted for change in contents and diversion.

04018750 ST. LOUIS RIVER AT FORBES. MN

LOCATION.--Lat 47°21'48", long 92°35'56", in NE\SE\ sec.3, T.56 N., R.18 W., St. Louis County, Hydrologic Unit 04010201, on right bank at downstream side of highway bridge, 1.8 mi downstream from Eveleth Taconite Company dam, 0.6 mi south of Forbes, 1.8 mi upstream from Elbow Creek.

DRAINAGE AREA. -- 713 mi².

PERIOD OF RECORD .-- August 1964 to current year.

GAGE.--Water-stage recorder. Datum of gage is 1,293.ll ft above National Geodetic Vertical Datum of 1929. Prior to Oct. 28, 1964, nonrecording gage at same site and datum.

REMARKS.--Estimated daily discharges: Nov. 18-24, and Dec. 2 to Apr.10: Records good except for periods with ice effect, Nov. 18-24 and Dec. 2 to Apr. 10, which are poor. Natural flow of stream affected by continually changing iron-mining activities that include diversions for iron-ore processing, regulation of storage reservoirs and tailing ponds, and mine pit dewatering. There is some regulation at medium and low flows by Eveleth Taconite Company dam 1.8 mi upstream.

AVERAGE DISCHARGE.--21 years, 560 ft3/s, 10.67 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $6,200 \text{ ft}^3/\text{s}$, Apr. 25, 1979, gage height, 17.71 ft; minimum daily, 8.0 ft $^3/\text{s}$, Sept. 11, 1984, gage height 5.05 ft.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2,980 ft³/s, Apr. 25, gage height, 12.40 ft; minimum daily, 9.4 ft³/s, Oct. 12; minimum gage height, 5.07 ft, Oct. 12, 15.

		DISCHARGE	, IN COB	IC FEBI		MEAN VALU		IOPEK 190	4 IO SEPI	EMDEK 1903	•	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUI	JUL	AUG	SEP
1	83	496	251	190	105	25	550	2510	1790	1920	428	310
2	15	393	250	185	105	130	500	2280	1890		400	387
3	63	406	245	180	100	80	470	2060	1900		374	499
3 4	310	455	245	175	100	40	440	1870	1890		355	652
5	12	412	240	170	100	140	420	1720	1840		358	679
6	14	387	240	165	100	90	400	1540	1720	2110	374	764
7	297	390	235	160	98	80	380	1560	1590		361	832
8	102	387	235	160	97	100	370	1470	1450	2140	355	795
و	10	374	235	155	96	180	350	1280	1300		358	741
10	36	361	230	155	94	100	330	1290	1150		348	696
11	352	316	230	150	92	90	272	1520	1020	1620	336	645
12	9.4	310	230	150	110	90	342	1570	909		332	594
13	70	332	130	145	110	150	245	1630	815		368	547
14	3 93	352	270	145	110	140	503	1650	741		371	503
15	10	339	100	140	110	130	622	1630	666		355	462
16	14	263	300	140	110	130	625	1620	605	792	352	448
17	462	275	280	135	110	40	642	1550	594		352	482
18	18	280	280	135	110	150	717	1450	581		352	503
19	513	270	280	130	100	100	693	1360	611		336	499
20	425	260	280	130	90	200	764	1270	584		320	537
21	448	255	270	125	110	100	792	1160	560	696	310	543
22	458	250	260	125	120	100	912	1070	567		300	540
23	462	250	250	120	30	400	1600	984	571		294	625
24	455	245	240	120	110	350	2480	901	543		313	952
25	526	245	230	115	90	300	2730	846	540		316	1160
26	543	251	225	115	20	500	2830	815	890		304	1280
27	506	257	220	110	120	650	2850	771	1340		294	1310
28	526	254	210	110	80	750	2830	737	1550		281	1300
29	523 .		205	110		750	2770	703	1760		278	1250
30	516	254	200	105		700	2710	727	1890		278	1210
31	486		190	105		600		1230		455	272	~-~
TOTAL	8657.4	9573	7286	4355	2727	7385	32139	42774	33857		10425	21745
MEAN	279	319	235	140	97.4	238	1071	1380	1129	1163	336	725
MAX	543	496	300	190	120	750	2850	2510	1900		428	1310
MIN	9.4	245	100	105	20	25	245	703	540		272	310
CFSM	.39	.45	.33	.20	.14	.33	1.50	1.94	1.58		.47	1.02
IN.	.45	.50	.38	. 23	.14	.39	1.68	2.23	1.77		.54	1.13
AC-FT	17170	18990 1	.4450	8640	5410	14650	63750	84840	67160	71510	20680	43130
CAL YR WTR YR		PAL 189108.4			MAX 2280 MAX 2850	MIN 8.0 MIN 9.4	CFSM CFSM			AC-FT 375 AC-FT 430		
71 LL LA					2000	> 4 7	01 514	111				

04024000 ST. LOUIS RIVER AT SCANLON, MN

LOCATION.--Lat 46°42'12", long 92°25'07", in NW's sec.30, T.49 N., R.16 W., Carlton County, Hydrologic Unit 04010201, on right bank 25 ft (8 m) downstream from lower bridge on U.S. Highway 61 at Scanlon, 0.6 mi downstream from Minnesota Power Co. powerplant, 3 mi upstream from Thomson Reservoir, and 3.2 mi upstream from Midway River.

DRAINAGE AREA. -- 3,430 mi², approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--January 1908 to current year. Monthly discharge only for some periods published in WSP 1307. Published as "near Thomson" 1908-50.

REVISED RECORDS .-- WSP 1337: 1911-12.

GAGE.--Water-stage recorder. Datum of gage is 1,101.23 ft above National Geodetic Vertical Datum of 1929. Oct. 5, 1909, to Sept. 5, 1914, nonrecording gage 3 mi downstream and 50 ft (15 m) below powerplant at datum about 420 ft lower. Sept. 6, 1914, to Aug. 4, 1953, powerplant record at Thomson hydroelectric plant.

REMARKS.--Estimated daily discharge Dec. 18 to Feb. 26. Records good except for period with ice effect, Dec. 18 to Feb. 26, which are fair. Diurnal fluctuation caused by powerplant upstream. Flow regulated by Whiteface Reservoir and Boulder, Island, Rice and Fish Lakes, combined capacity, 332,160 acre-ft; the waterdischarge table shows the monthly change in contents (†).

AVERAGE DISCHARGE (UNADJUSTED) .-- 77 years, 2,330 ft3/s, 9.22 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 37,900 ft³/s, May 9, 1950; maximum gage height, 15.8 ft, May 9, 1950, from Minnesota Department of Transportation (discharge uncertain); minimum discharge, 54 ft³/s, July 30, 1980; minimum daily, 88 ft³/s, Aug. 24, 1977.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 16,300 ft³/s, Apr. 25, gage height, 9.35 ft; minimum daily, 665 ft³/s Oct. 5; minimum gage height, 1.92 ft, Nov. 16.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 1370 1520 2100 1150 1440 23.50 23 90 31 40 TOTAL 14100 MAY MIN +660 -378 -888 -863 -773 -198 +2054 +1650 +362 -182 -211 +262 MEAN ‡ CFSM ‡ IN. ‡ 1.97 .14 .66 .49 .11 2.16 1.76 1.22 .31 .80 .76 1.40 -90

CAL YR 1984 TOTAL 976742 MEAN 2669 MAX 15500 MIN 639 MEAN ‡ 2557 CFSM ‡ .75 IN ‡ 10.15 WTR YR 1985 TOTAL 1018902 MEAN 2792 MAX 15800 MIN 665 MEAN ‡ 2919 CFSM ‡ .85 IN ‡ 11.55

[†] Change in contents, equivalent in cubic feet per second, in Whiteface Reservoir, and Boulder, Island, Rice and Fish Lakes; records furnished by Minnesota Power and Light Co.

[‡] Adjusted for change in reservoir contents.

$04024000\,$ ST. LOUIS RIVER AT SCANLON, MN--Continued (National stream-quality accounting network station)

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1955, 1958-66, 1968 to current year.

REMARKS.--Letter K indicates non-ideal colony count. Samples are collected at cableway 0.75 mi (1.21 km) downstream from gage.

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985											
DATE	TIME	DIS- CHARGE, IN CUBIC FEET PER SECOND (00060)	STREAM- FLOW, INSTAN- TANEOUS (CFS) (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	PH (STAND- ARD UNITS) (00400)	PH LAB (STAND- ARD UNITS) (00403)	TEMPER- ATURE, AIR (DEG C) (00020)	TEMPER- ATURE (DEG C) (00010)	TUR- BID- ITY (NTU) (00076)	BARO- METRIC PRES- SURE (MM OF HG) (00025)
OCT 09	1500		703	158	149	7.6	7.7	13.0	11.5	2.0	734
NOV 20	1500		2010	171	136	7.1	7.3	-3.0	0.0	2.4	739
FEB 11	1430		1360	150	149	7.0	7.0	-8.0	0.5	2.0	732
MAR 25	1230	26 20	***	142	156	7.3	7.1	6.0	0.5	2.0	735
MAY 06	1300		5390	140	118	7.4	7.0	13.0	14.0	3.5	723
JUL 30	1330		1840	120	128	7.6	7.4	12.0	22.0	4.1	738
	OXYGEN,	COLI- FORM, FECAL, 0.7	STREP- TOCOCCI FECAL, KF AGAR	CALCIUM DIS-	MAGNE- SIUM, DIS-	SODIUM, DIS-	POTAS- SIUM, DIS-	ALKA- LINITY PIELD	ALKA- LINITY LAB	SULFATE DIS-	CHLO- RIDE, DIS-
DATE	DIS- SOLVED	UM-MF (COLS./	(COLS. PER	SOLVED (MG/L	SOLVED (MG/L	SOLVED (MG/L	SOLVED (MG/L	(MG/L AS	(MG/L AS	SOLVED (MG/L	SOLVED (MG/L
	(MG/L) (00300)	100 ML) (31625)	100 ML) (31673)	AS CA) (00915)	AS MG) (00925)	AS NA) (00930)	AS K) (00935)	CACO3) (00410)	CACO3) (90410)	AS SO4) (00945)	AS CL) (00940)
OCT 09	10.6	7	2.00	3.6	7.0	4.6	1.0	E 7	61	1.5	2 7
NOV	10.6		180 28	16	7.9	4.6	1.0	57	61	15	3.7
20 FEB 11	13.6	4 56	28 Kll	14 15	7.1	3.9	0.9	52	53 5 9	14 11	3.7
MAR 25	12.3	K8	28	13	7.7 7.0	4.6 5.6	1.1 2.5	62 51	50	16	4.0 6.6
MAY 06	9.4	K20	20	12	6.0	3.6	1.7	33	40	14	4.2
JUL 30	7.4	23	20	14	6.6	3.2	0.9	39	49	9.8	4.2
DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS, TOTAL (MG/L AS P) (00665)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS, ORTHO, DIS- SOLVED (MG/L AS P) (00671)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
OCT 09 NOV	0.2	6.7	112	<0.10	0.01	0.4	0.02	0.01	<0.01	5	94
20 FEB	0.1	8.2	106	0.24	0.07	0.7	0.02	<0.01	<0.01	4	88
11 MAR	0.1	10	115	0.27	0.02	0.7	0.03	0.01	0.01	5	90
25 MAY	0.1	6.6	106	0.31	0.07	0.7	0.04	0.02	0.02	7	90
06 JUL	<0.1	4.4	90	0.15	0.07	0.9	0.03	<0.01	0.01	24	98
30	<0.1	6.9	128	<0.10	0.13	0.9	<0.01	<0.01	<0.01	13	97

STREAMS TRIBUTARY TO LAKE SUPERIOR 04024000 ST. LOUIS RIVER AT SCANLON, MN--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)
OCT 09 MAR	1500	<10	1	15	<0.5	<1	<1	<3	3	260	<1
25 MAY	1230	80	<1	18	<0.5	<1	4	<3	10	400	17
06 JUL	1300	80	1	19	<0.5	<1	10	<3	3	380	2
30	1330	90	2	19	0.7	2	20	<3	5	930	4

DATE	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)
OCT 09 MAR 25	< 4 4	20 61	<0.1 <0.1	<10 <10	3 1	<1 <1	<1 <1	48 41	<6 <6	4 8
MAY 06 JUL	<4	2 5	0.3	<10	<1	<1	<1	36	<6	55
30	<4	51	0.2	<10	<1	<1	<1	45	<6	30

04024098 DEER CREEK NEAR HOLYOKE, MN

LOCATION.--Lat 46°31'30", long 92°23'20", in NE\SE\ sec.29, T.47 N., R.16 W., Carlton County, Hydrologic Unit 04010301, on left bank 179 ft west of State Highway No. 23, 0.9 mi upstream from mouth and 4.0 mi north of Holvoke.

DRAINAGE AREA. -- 7.77 mi².

PERIOD OF RECORD .-- October 1976 to current year.

GAGE. -- Water-stage recorder. Datum of gage is 786.14 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Estimated daily discharges: Dec. 3 to Mar. 27. Records good except those for periods of no gage-height record, Dec. 31 to Jan. 5, 8-27, and periods with ice effect, Dec. 3-30, Jan. 6, 7, Jan. 28 to Mar. 27, 30, which are fair.

AVERAGE DISCHARGE.--9 years, 7.18 ft3/s, 12.55 in/yr.

EXTREMES FOR PERIOD OF RECORD.—-Maximum discharge, 2,000 ft³/s, Sept. 3, 1985, gage height, 32.76 ft, from floodmarks, from rating curve extended above 1000 ft³/s, on basis of flow through culvert computations; minimum discharge, 0.20 ft³/s, Aug. 13, 16, 1982.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2000 ft³/s, Sept. 3, gage height, 32.76 ft, from floodmarks, from rating curve extended above 1000 ft³/s, on basis of flow through culvert computations; minimum daily discharge, 1.4 ft³/s, Jan. 1 to Feb. 20; minimum gage height, 11.23 ft, Dec. 3.

	DISCHARGE,	IN CUBIC	FEET PE	R SECO	ND, WATER MEAN VALU		ER 1984 T	O SEPTEMB	ER 1985		
DAY OCT	NOV	DEC	J AN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2.6 2 2.4 3 2.3 4 2.4 5 2.3	8.3 6.1 4.9 10 8.6	2.1 2.1 2.1	1.4 1.4 1.4 1.4	1.4 1.4 1.4 1.4	5.0 7.0 10 8.0 8.7	3.3 5.7 50 33 23	7.2 5.4 4.7 4.5 4.8	31 14 10 6.5 5.4	3.3 3.3 2.9 4.2 5.4	3.0 3.1 3.1 3.0 3.1	3.5 7.1 541 31 13
6 2.3 7 2.4 8 2.8 9 2.8 10 2.8	5.9 5.2 6.0 5.7 4.8	2.1 2.2 2.3	1.4 1.4 1.4 1.4	1.4 1.4 1.4 1.4	7.1 7.4 7.4 30 40	17 10 5.8 4.7	4.6 4.8 4.0 3.5 4.4	4.6 4.2 4.0 3.5 3.1	3.3 3.3 3.1 2.9 2.7	3.2 3.1 3.1 3.1 3.1	8.5 6.8 6.6 5.7 5.1
11 2.6 12 2.6 13 2.7 14 2.9 15 3.2	3.9 3.5 3.2 3.1	2.8 2.8 3.3	1.4 1.4 1.4 1.4	1.4 1.4 1.4 1.4	45 28 25 54 36	9.2 9.4 17 12 15	36 21 15 8.7 28	2.9 2.9 2.9 2.9 2.7	2.7 2.4 2.4 2.4 2.4	3.0 5.8 5.2 3.6 3.4	4.0 3.7 3.6 3.4 3.4
16 12 17 76 18 28 19 125 20 38		16 5.6 3.3	1.4 1.4 1.4 1.4	1.4 1.4 1.4 1.4	33 45 40 32 46	13 11 12 43 22	59 33 15 8.4 5.6	2.7 2.7 2.7 2.7 2.7	2.4 2.2 9.8 4.1 3.1	3.3 3.3 3.1 3.2 3.3	3.2 4.7 3.2 3.2 3.1
21 17 22 10 23 7.4 24 5.8 25 4.9	3.7 2.9 2.6 2.6 2.6	2.1 2.0 1.9	1.4 1.4 1.4 1.4	2.6 2.4 2.5 2.6 2.7	20 11 4.0 3.0 4.2	46 79 80 51 29	5.5 19 13 3.5 3.3	2.6 3.5 2.9 2.6 2.9	2.6 2.4 2.8 4.0 3.9	3.4 3.5 4.2 3.6 3.5	3.0 3.5 16 26 10
26 4.7 27 4.5 28 4.2 29 4.0 30 4.0 31 4.2	2.9 3.2 3.3 2.8 2.5	1.6 1.6 1.5 1.5	1.4 1.4 1.4 1.4	2.5 2.2 4.0 	11 9.7 8.5 3.8 3.2 2.5	18 12 9.6 8.7 9.4	31 14 10 8.7 30 117	10 9.7 7.1 4.9 4.0	3.3 3.0 2.9 3.0 3.1 3.2	3.0 3.2 3.2 3.4 3.5 3.4	6.9 5.4 4.8 4.7 46
TOTAL 388.8 MEAN 12.5 MAX 125 MIN 2.3 CFSM 1.61 IN. 1.86 AC-FT 771 CAL YR 1984 TOT WTR YR 1985 TOT	4.23 10 2.5 .54 .61 252	3.75 1 33			595.5 19.2 54 2.5 2.47 2.85 1180 MIN 1.2 MIN 1.4	669.8 22.3 80 3.3 2.87 3.21 1330 CFSM 1.07 CFSM 1.30	532.6 17.2 117 3.3 2.21 2.55 1060 IN 14.5		102.5 3.31 9.8 2.2 .43 .49 203	106.0 3.42 5.8 3.0 .44 .51 210	790.1 26.3 541 3.0 3.39 3.78 1570

05045500 OTTER TAIL RIVER NEAR FERGUS FALLS, MN

WATER-QUALITY RECORDS

LOCATION.--Lat 46°13'45", long 96°07'00", in SW1/4 sec.20, T.132 N., R.43 W., Otter Tail County, Hydrologic Unit 09020103, on left bank 500 ft downstream from Dayton Hollow Dam, 5 miles downstream from Pelican River, and 5 miles southwest of city of Fergus Falls.

DRAINAGE AREA.--1,810 mi² (4690 km²), approximately.

PERIOD OF RECORD. -- April-September 1985.

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS) (00061)	SPE- CIPIC CON- DUCT- ANCE (US/CM) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)
APR							
18	1600	*	388		8.4	11.0	747
MAY					-		
01	1300						
16	0925		390		8.0	15.0	750
20	1300						
21	1300						
22	1430						~-
JUN							
05	1430			~~			~-
18	1600	1190	373	373	8.2	19.0	755
JUL							
05	1300						
19	1300			~-			
24	1510	1130	355	~~	8.2	23.5	747
AUG							
08	0930						
29	1430	9 46	3 56		7.9	19.5	757
SEP							
11	1000						
24	1545	874	354		8.2	13.5	754

DATE	OXYGEN, DIS- SOLVED (MG/L) (00300)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS- PHORUS, TOTAL (MG/L AS P) (00665)	PHOS- PHORUS, ORTHO, DIS- SOLVED (MG/L AS P) (00671)
APR						
18	10.0	<0.10	0.05	0.6	0.03	0.02
MAY						
01		~			0.02	
16	8.7	0.14	0.14	3.6	0.03	0.03
20		~-			0.04	
21					0.04	
22		~-			0.05	
JUN						
05		~~			0.04	
18	10.1	<0.10	0.03	0.6	0.06	0.03
JUL						
05					0.05	
19					0.05	
24	8.4	<0.10	0.05	0.3	0.04	0.04
AUG						
08				~~	0.08	
29	8.8	0.11	<0.01	0.4	0.07	<0.01
SEP					0.05	
11			0.15	~-	0.05	
24	10.3	<0.10	0.15	0.5	0.06	0.03

05045950 ORWELL LAKE NEAR FERGUS FALLS, MN

LOCATION.--Lat 46°12'55", long 96°10'40", in SW\ sec.26, T.132 N., R.44 W., Otter Tail County, Hydrologic Unit 09020103, at dam on Otter Tail River at outlet of Orwell Lake, 7 mi southwest of Fergus Falls.

DRAINAGE AREA.--1,830 mi², approximately.

PERIOD OF RECORD.--March 1953 to current year. Prior to October 1971, published as Orwell Reservoir.

GAGE. -- Water-stage recorder. Datum of gage is adjustment of 1912.

REMARKS.--Reservoir is formed by earth dam with concrete spillway with one taintor gate; storage began in March 1953. Capacity to elevation 1,070 ft (maximum operating stage) is 14,100 acre-ft of which 13,100 acre-ft is controlled storage above elevation 1,048 ft (minimum operating stage). Dead storage is 210 acre-ft. Figures given herein represent total contents. Reservoir is used for flood control and to increase low flow for water supply and pollution abatement.

COOPERATION .-- Records furnished by Corps of Engineers.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 16,920 acre-ft, June 17, 1962, May 23, 1966, elevation, 1,072.38 ft; minimum (after initial filling), 844 acre-ft, Aug. 26, 27, 1953, elevation, 1,046.96 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 15,950 acre-ft, July 8, elevation, 1,071.58 ft; minimum, 1,720 acre-ft, Apr. 8, elevation, 1,050.90 ft.

MONTHEND ELEVATION AND CONTENTS, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

	Date	Elevation (feet)	Contents (acre-feet)	Change in contents (acre-feet)
Sept. Oct. Nov. Dec.	30	1,057.54 1,060.90 1,063.28 1,061.08	4,370 6,340 8,020 6,460	+1,970 +1,680 -1,560
CAL	YR 1984			+500
Jan. Feb. Mar. Apr. May June July Aug. Sept.	31. 28. 31. 30. 31. 30. 31. 31. 31. 31.	1,058.75 1,057.25 1,053.00 1,056.03 1,060.00 1,071.18 1,069.68 1,066.52 1,065.79	5,010 4,220 2,400 3,660 5,750 15,720 13,750 10,670 10,030	-1,450 -790 -1,820 +1,260 +2,090 +9,970 -1,970 -3,080 -640
WTR	YR 1985			+5,660

05046000 OTTER TAIL RIVER BELOW ORWELL DAM, NEAR FERGUS FALLS, MN

LOCATION.--Lat 46°12'35", long 96°11'05", in NE\ sec.34, T.132 N., R.44 W., Otter Tail County, Hydrologic Unit 09020103, on left bank 0.7 mi downstream from Orwell Dam, 6.1 mi downstream from Dayton Hollow Dam, 8 mi southwest of Fergus Falls, and 11.1 mi downstream from Pelican River.

DRAINAGE AREA. -- 1,830 mi², approximately.

PERIOD OF RECORD.--October 1930 to current year. Prior to October 1952, published as Otter Tail River below Pelican River, near Fergus Falls. Monthly discharge only for some periods, published in WSP 1308.

REVISED RECORDS.--WSP 785: 1934(M). WSP 1208: 1947(M). WSP 1308: 1931(M).

GAGE.--Water-stage recorder. Datum of gage is 1,029.65 ft, adjustment of 1912 (levels by Corps of Engineers). Oct. 11, 1930, to Nov. 17, 1933, at same site at datum 2.00 ft higher; Nov. 18, 1933, to Mar. 21, 1953, at site 6.1 mi upstream at datum 40.30 ft higher.

REMARKS.--Estimated daily discharges: Jan. 19-21. Records good except those for period with ice effect, Jan. 19-21, which are fair. Flow regulated by Orwell Lake (station 05045950) beginning Mar. 21, 1953 and power-plants upstream.

AVERAGE DISCHARGE.--55 years, 311 ft³/s, 225,300 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 1,710 ft³/s, June 17, 1953, gage height, 5.60 ft, backwater from aquatic vegetation; minimum, 0.70 ft³/s, Aug. 5, 1970, gage height, 1.28 ft, result of regulation.

EXTREMES FOR CURRENT YEAR. -- Maximum discharge, 1,270 ft³/s, June 27, gage height, 4.29 ft, result of regulation; minimum, 30 ft³/s, Oct. 1, gage height, 1.99 ft, result of regulation.

		D	ISCHARG	E, IN C	UBIC	FEET	PER	SECO	ND, WATER MEAN VAL		осто	BER 1984	TO SEPTE	MBER 1985		
DAY	ост	•	NOV	DEC		J AN		F EB	MAR	1	A PR	MAY	JUN	JUL	AUG	SEP
1	48	3	238	278		260		288	315		27	806	784	1250	1140	893
2	7.8		209	278		259		282	335		19	794	709	1250	1140	896
3	7.8		177	27 8		259		280	335		10	781	779	1240	1130	898
4	78		178	27 8		256		277	339		502	772	891	1250	1140	899
4 5	76		178	278		256		277	344		196	760	944	1190	1130	899
6	76		175	278		254		276	340		86	7 26	96 2	1080	1130	904
7	76		173	271		254		274	340	4	82	708	1020	1090	1130	90 5
8	76		173	271		255		271	338	4	41	711	1080	1130	1120	910
9	76		174	270		254		271	384	4	118	712	1100	1160	1120	911
10	7 8	3	178	267		25 4		270	421	•	132	712	1060	1150	1120	913
11	81		178	266		254		269	422	4	146	7 20	1040	1150	1110	915
12	81		178	265		254		266	446		74	751	1100	1140	1120	917
13	81		178	265		255		264	469		03	877	1120	1140	1110	917
14	82		179	262		249		263	461		20	9 85	1130	1130	1110	917
15	113		182	260		254		261	477		32	1000	1130	1110	1110	917
16	131		182	263		255		262	493		35	1020	1120	1090	1110	920
17	198		182	265		254		260	494		94	1040	1120	1090	1110	921
18	239		181	263		256		260	495		40	1040	1120	1080	1100	920
19	285		184	261		256		260	501		33	1050	1120	1080	1100	921
20	311		184	260		256		260	545		30	998	1120	1070	1090	923
21	314		184	260		256		260	579		24	968	1170	1070	1080	920
22	314		186	260		274		269	591		22	9 81	1190	1060	1080	916
23	314		196	260		300		267	608		32	992	1190	1060	1080	916
24	314		204	260		302		271	610		75	993	1190	1100	1070	912
25	312		206	260		303		274	604	7	17	1000	1190	1170	1060	911
26	267		223	260		299		277	595	7	91	1010	1220	1180	1060	909
27	238		233	255		294		282	585	8	353	1020	1250	1180	1050	088
28	239		233	256		293		288	572	8	43	1020	1260	1180	952	855
29	239		234	260		291			561		29	1020	1260	1160	892	855
30	239		254	260		292			547		317	1020	1250	1140	892	833
31	23 8			260		288			534			961		1140	892	
TOTAL	5370		5814	8228	£	3296	7	579	1 46 80	177	23	27948	3 261 9	35310	33478	27123
MEAN	173		194	265		268	•	271	474		91	902	1087	1139	1080	904
MAX	314		254	278		3 0 3		288	610		353	1050	1260	1250	1140	923
MIN	48		173	255		249		260	315		18	708	709	1060	892	833
CFSM	.10		.11	.15		.15		.15	. 26		32	.49	.59	.62	.59	.49
IN.	.11		.12	.17		.17		.15	.30		36	.57	.66	.72	.68	.55
AC-FT	10650		1530	16320	16	460	15	030	29120	351		55430	64700	70040	66400	53 80 0
												22.20			,	55 55 6
CAL YR		OTAL	133467	MEAN		MAX		99	MIN 36	CFSM		IN 2.71		264700		
WTR YR	1985 T	OTAL	224168	MEAN	614	MAX	1 12	260	MIN 48	CFSM	.34	IN 4.56	AC-FT	444600		

$050\,46000$ Otter tail river below orwell dam NR fergus falls, mn

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1961-63, 1965-66, April-September 1985.

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

	WATE	K QUALITI	DATA, WA	TER YEAR	OCTOBER 1	1984 10 51	SPTEMBER 1	.985	
DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	PH (STAND- ARD UNITS) (00400)	PH LAB (STAND- ARD UNITS) (00403)	TEMPER- ATURE (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)
APR 18	0915	400	412	0.3	۰ ۵	10.0	749	12.2	37
MAY 16				8.2	8.0				3 <i>7</i> 39
JUN 19	0800 0750	395 383	404 387	8.1	8.0 7.9	15.0	750	9.5	
JUL 25	0745	368	379	8.2	7.9	18.5 23.5	753 755	11.0	35
AUG 30	0730	370	383	8.1					34
SEP					8.0	19.5	758	9.3	
25	0935	367	394	8.2	8.1	13.5	752	10.7	
DATE	MAG NE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	ALKA- LINITY, CARBON- ATE IT-FLD (MG/L - CAC03) (99430)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)
APR 18	27	9.0	4.1		194	19	8.4	0.1	10
MAY 16	27		4.1					0.1	
JUN 19		8.1	<0.1	186	186	27 14	7.4	0.1	11
JUL 25	25	7.8		218 200	194 192	9.4	6.8	0.2	15
AUG	_		3.4			11	6.9		
30 SEP	26	7.8	3.3	190			6.8	0.2	15
25					195	9.3	7.5	0.1	
DATE	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS-PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689)
APR	(70300)	(00631)	(00023)	(00623)	(00665)	(00666)	(00680)	(00681)	(00003)
18 MAY	225	<0.10	1.0	0.8	0.06	0.07	7.2		
16 JUN	281	0.15	1.7	1.6	0.07	<0.01		8.4	1.2
19 JUL		<0.10	0.9	0.8	0.06	0.03		8.8	0.6
25 AUG	243	<0.10	1.0	0.3	0.06	0.03		9.7	1.0
30 SEP	229	<0.10	0.6	0.5	0.06	0.05		7.9	0.3
25	241	<0.10	0.6	0.5	0.06	0.04		7.8	0.5

05050000 BOIS DE SIOUX RIVER NEAR WHITE ROCK, SD

LOCATION.--Lat 45°51'45", long 96°34'25", in SW\sW\s sec.27, T.128 N., R.47 W., Roberts County, Hydrologic Unit 09020101, on Sisseton Indian Reservation, on left bank just downstream from Big Slough Outlet, 300 ft downstream from White Rock Dam, 4 mi south of White Rock, and 5 mi northwest of Wheaton, MN.

DRAINAGE AREA. -- 1,160 mi2, approximately.

PERIOD OF RECORD. -- October 1941 to current year.

GAGE.--Water-stage recorder. Datum of gage is 960.00 ft, adjustment of 1912 (levels by Corps of Engineers).
Prior to Jan. 14, 1943, nonrecording gage at same site at datum 0.11 ft lower. Jan. 15, 1943, to Sept. 30, 1963, water-stage recorder at same site at datum 0.11 ft lower.

REMARKS.--Estimated daily discharges: Oct. 31 to Mar. 20. Records fair. Flow regulated by Lake Traverse-Boise de Sioux Flood Control and Water Conservation project (available capacity for flood control, 137,000

AVERAGE DISCHARGE.--44 years, 78.4 $\rm ft^3/s$, 56,800 acre-ft/yr; median of yearly mean discharges, 52 $\rm ft^3/s$, 37,700 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,770 ft³/s, occurred during period Apr. 19-21, 1969, gage height, 15.07 ft, from floodmark; no flow at times in most years.

EXTREMES FOR CURRENT YEAR .-- Maximum discharge, 860 ft3/s, Mar. 31, gage height, 9.19 ft; no flow on many days.

		DISCHA	RGE, IN CUBI	C FEET	PER SEC	OND, WATER MEAN VAL		OBER 1984	то ѕертемве	R 1985		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	A UG	SEP
1	.23	467	107	.40	.00	5.0	829	138	165	130	68	.39
2	.10	538	169	. 40	.00	8.0	817	136	114	203	67	. 46
3	.04	4 87	133	.38	.00	11	796	171	91	204	67	.48
4	.10	461	118	.36	.00	20	779	213	88	206	68	.53
5	.10	469	114	.34	.00	25	637	213	160	169	68	.55
6	. 23	467	104	.34	.00	31	4 85	213	323	84	68	.59
7	.40	442	88	.32	.00	35	479	213	459	82	66	.66
8	.48	425	76	.30	.00	38	415	1 80	464	82	65	.90
9	.48	309	71	.28	.00	41	3 43	154	468	83	36	2.0
10	.45	2 46	73	. 26	.00	45	344	1 47	516	83	. 23	10
11	.40	2 85	79	.24	.00	48	338	1 49	576	84	.18	26
12	.50	256	77	.22	.00	52	334	154	574	84	.21	70
13	.68	2 4 2	76	.20	.00	55	334	147	600	86	.13	66
14	. 82	235	76	.20	.00	62	321	149	649	86	.10	62
15	. 82	244	76	.18	.00	71	322	179	6 50	62	.09	52
16	.90	322	76	.16	.00	83	312	237	652	28	.10	69
17	. 85	238	76	.14	.01	93	295	231	655	26	.10	94
18	. 80	226	76	.14	.03	102	2 89	232	684	28	.10	60
19	77	164	73	.13	.06	107	2 83	234	634	32	.07	1.3
20	163	117	38	.13	.10	111	27 8	231	57 2	34	.07	4.2
21	160	117	1.6	.12	.15	111	27 2	228	572	36	.07	10
22	15 9	116	. 96	.12	.21	113	1 81	232	566	34	.15	8.7
23	159	112	.77	.12	.30	1 26	85	251	471	33	.19	4.4
24	213	112	.65	.12	. 40	174	84	2 57	37 2	35	.17	6.6
25	273	112	.63	.11	.60	47 4	81	25 2	369	5 2	.18	5.8
26	27 4	112	.60	.11	.70	756	77	249	371	67	.21	7.9
27	2 87	112	.55	.10	1.0	852	74	2 40	368	67	.25	2.8
28	294	91	.52	.10	2.0	85 2	70	235	270	66	. 26	6.0
29	334	110	.50	.10		845	101	235	88	66	.32	5.2
30	368	107	.45	.06		847	144	239	85	69	.34	4.6
31	370		.40	.01		849		218		70	.39	
TOTAL	3139.38	7741	17 83 .63	6.19	5.56	7042.0	10199	63 57	1 26 26	2471	576.91	5 83 . 06
MEAN	101	258	57.5	.20	.20	227	3 40	205	421	79.7	18.6	19.4
MAX	370	538	169	.40	2.0	852	829	257	684	206	68	94
MIN	.04	91	.40	.01	.00	5.0	70	136	85	26	.07	.39
CFSM	.09	.22	.05	.000	.000	.20	.29	.18	.36	.07	.02	.02
IN.	.10	.25	.06	.00	.00	.23	.33	.20	.40	.08	.02	.02
AC-FT	6230	15350	35 40	12	11	13970	20230	12610	25040	4900	1140	1160
CAL YR	1984 TOTA	L 6882	8.43 MEAN	188	MAX	972 M	IN .00	CFSM .16	IN 2.21	AC-FT	136500	
WTR YR							IN .00	CFSM .12	IN 1.68	AC-FT	104200	

05051500 RED RIVER OF THE NORTH AT WAHPETON, ND

LOCATION.--Lat 46°15'55", long 96°35'40", in NE\ sec.8, T.132 N., R.47 W., Richland County, Hydrologic Unit 09020104, on left bank in Wahpeton, 800 ft downstream from confluence of Bois de Sioux and Otter Tail Rivers and at mile 548.6.

DRAINAGE AREA .-- 4,010 mi², approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--April 1942 to current year. Gage-height records collected in this vicinity since 1917 are contained in reports of the U.S. Weather Bureau.

GAGE.--Water-stage recorder and concrete and wooden dam. Datum of gage is 942.97 ft above National Geodetic Vertical Datum of 1929. Prior to Aug. 6, 1943, U.S. Weather Bureau nonrecording gage 800 ft upstream, converted to present datum. Aug. 6, 1943, to Oct. 27, 1950, nonrecording gage at present site and datum.

REMARKS.--Estimated daily discharges: Dec. 3 to Mar. 20. Records good except those for period with ice effect, Dec. 3 to Mar. 20, which are fair. Flow regulated by Orwell Reservoir, capacity, 14,100 acre-ft at elevation 1,070 ft above National Geodetic Vertical Datum of 1929, adjustment of 1912; Lake Traverse, capacity, 137,000 acre-ft, available for flood control; numerous other controlled lakes and ponds, and several powerplants.

AVERAGE DISCHARGE.--42 years (1943-85), 532 $\rm ft^3/s$, 385,400 acre-ft/yr; median of yearly mean discharges, 470 $\rm ft^3/s$, 341,000 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 9,200 $\rm ft^3/s$, Apr. 10, 1969, gage height, 16.34 ft; minimum daily, 1.7 $\rm ft^3/s$, Aug. 28 to Sept. 5, 9, 10, 1976.

EXTREMES OUTSIDE PERIOD OF RECORD. -- A stage of 17.0 ft, discharge, 10,500 ft³/s, occurred in the spring of 1897 and has not been exceeded since.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 3,690 ft3/s, June 1, gage height, 10.71 ft; minimum daily, 31 ft³/s, Oct. 2.

		DISCH	ARGE, IN	CUBIC FEE		SECOND, WAT MEAN VALUES		OCTOBER 198	34 TO SE	PTEMBER 198	85	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	35 31	576 539	354 348	253 273	280 316		1460 1430	957 952	3450 3410	1320 1280	1170 1160	900 925
3	36	793	419	263	316		1400	931	2530	1310	1160	930
4	55	938	4 82	276	320		1370	934	1790	1310	1150	922
5	60	867	508	279	320		1340	974	1400	1310	1150	921
6	68	81 2	488	261	318		1190	9 81	1290	1290	1150	916
7	74	775	430	258	300		1010	943	1360	1180	1140	912
8	71	711	463	231	304		973	917	1460	1100	1140	939
9	71	678	461	231	315		872	879	1480	1100	1130	963
10	75	557	420	261	311	526	751	842	1480	1130	1140	944
11	77	3 46	402	244	295		7 46	873	1540	1130	1130	941
12	71	469	388	2 43	297		755	915	1570	1130	1200	938
13	66	553	309	260	304		7 80	1310	1670	1130	1170	954
14	81	598	388	269	330		820	1780	1770	1120	1130	9 80
15	125	433	413	241	296	1390	820	1 80 0	17 80	1120	1120	9 81
16	151	230	420	258	3 0 0		824	1860	1740	1110	1100	975
17	207	419	352	267	309		82 8	21 80	1720	1090	1100	970
18	296	490	299	254	3 07		846	1970	1740	1100	1090	988
19	549	459	3 7 7	2 27	299		8 9 3	1620	1770	1090	1090	1010
20	1 2 80	440	396	216	3 2 5	2430	889	1450	1740	1070	1090	992
21	16 80	334	400	2 82	344		87.8	1360	1660	1060	1070	964
22	1490	356	3 4 2	271	328		897	1280	1660	1060	1110	940
23	1180	338	297	276	317		866	1300	1650	1050	1100	928
24	924	3 43	295	314	309		775	1290	1560	1080	1080	931
25	7 97	3 82	2 81	309	324	1540	812	1270	1460	1110	1070	928
26	7 80 7 07	3 82	308	2 85	315		83 1 85 3	1250 1230	1450 1680	1160 1190	1060 1070	922 912
27 28	629	344	310	2 85	300		905	1230	1820	1190	1070	912
29	626	288 244	323 253	3 23 31 4	317		911	1220	1750	1190	1050	903 874
30	6 46	345	211	299			911	1260	1490	1180	945	861
31	720	242	243	297				2530	1430	1190	903	
TOTAL	13658	15039	11380	83 20	8716	36971	28636	40 27 8	52870	35880	3 423 8	28166
MEAN	441	501	367	268	311		955	1299	1762	1157	1104	939
MAX	1680	938	508	3 2 3	344		1460	2530	3 45 0	1320	1200	1010
MIN	31	230	211	216	2 80		7 46	842	1290	1050	903	861
CFSM	.11	.13	.09	.07	.08		.24	.32	.44	.29	.28	.23
IN.	.13	.14	.11	.08	.08		. 27	•37	.49	.33	.32	.26
AC-FT	27 0 9 0	29830	22570	16500	17290		56 80 0		104900	71170	67910	55 87 0
CAL YR	1984 TOT	AL 279041	MEAN '	762 MAX	4500	MIN 31	CFSM .19	IN 2.59	AC-FT	553500		
WTR YR					3450		CFSM .22		AC-FT	623100		
111					3 10 0							

05051500 RED RIVER OF THE NORTH AT WAHPETON, ND--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1972 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS) (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE, AIR (DEG C) (00020)	TEMPER- ATURE (DEG C) (00010)
ост					
25	1100	812	775	5.5	6.0
J AN					
03	1310	270	425	-3.0	0.0
FEB					
28	1430	320	650	8.5	0.0
MAR					
26	1025	1450	595	9.0	3.5
APR 16	1155	879	580		9.5
JUN	1133	0/9	360		9.3
04	1135	1830	542	13.0	15.5
JUL		2000			
24	1120	1130	425	16.5	23.0
SEP					
11	1240	978	420	15.0	17.5

	DATE MAR	TIME	STREAM- (FLOW, INSTAN- ITANEOUS (CFS) (ANCE US/CM) U	STAND- ARD (NITS) (AIR DEG C)	TEMPER- ATURE (DEG C)		DIS- SOLVED S (MG/L AS MG)	ODIUM, DIS- OLVED (MG/L AS NA) 00930)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)
	26 SEP	1025	1450	595	8.8	9.0	3.5	60	32	18	8.2
	11	1240	978	420	8.2	15.0	17.5	37	28	9.0	4.1
	DATE	BICAL BONATE FET-LA (MG/I AS HCO3 (9544	E, BONATE, AB FET-LAB L (MG/L AS B) CO3)	ALKA- LINITY LAB (MG/L AS CACO3		DIS- SOLVE (MG/) AS C	RIDE, DIS- D SOLVED L (MG/L L) AS F)	AS S102)	AT 180 DEG. C DIS- SOLVE (MG/1	GEN, NITRATE DIS- SOLVEI D (MG/I	5 5 5 3)
	MAR 26 SEP 11	19 19							26 8 221		
DATE	TIME	ARSENI DIS- SOLVE (UG/1 AS AS (01000	DIS- DIS- DOLVED (UG/L AS B)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITHIU DIS- SOLVE (UG/L AS LI (01130	DIS- D SOLVED (UG/L) AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	DIS-	NIUM, DIS-	(UG/L AS SR)
MAR 26 SEP			2 50	50	<1	29		0.1	2	<1	200
11	. 1240		2 50	10	<1	13	<10	<0.1	1	1	130

05051522 RED RIVER OF THE NORTH AT HICKSON, ND

LOCATION.--Lat 46°39'35", long 96°47'44", in SW\ sec.19, T.137 N., R.48 W., Clay County, MN, Hydrologic Unit 09020104, on right bank 60 ft downstream from bridge on township road, and 1 mi southeast of Hickson, ND.

DRAINAGE AREA.--4,300 mi², approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1975 to current year.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 877.06 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Estimated daily discharges: Oct. 29 and Dec. 10 to Mar. 28. Records good except those for period of no gage-height record, Oct. 29, and period with ice effect, Dec. 10 to Mar. 28, which are fair. Flow regulated by Orwell Reservoir, capacity, 14,100 acre-ft at elevation 1,070 ft above National Geodetic Vertical Datum of 1929, adjustment of 1912; Lake Traverse, capacity, 137,000 acre-ft, available for flood control; numerous other controlled lakes and ponds, and several powerplants.

AVERAGE DISCHARGE.--10 years, 548 ft³/s, 397,000 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 9,600 ft³/s, Apr. 18, 1979, gage height, 33.03 ft; no flow Oct. 26, 1976, to Jan. 9, 1977.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 3,680 ${\rm ft}^3/{\rm s}$, June 3, gage height, 18.71 ft; minimum daily, 52 ${\rm ft}^3/{\rm s}$, Oct. 5.

		DISCHARGE,	IN CUBIC	FEET	PER S		WATER AN VAL		ОСТОВЕ	R 1984	то	SEPTEMBE	R 1985		
DAY	OCT	NOA	DEC	J AN	F	ЕВ	MAR	i	APR	MAY		JUN	JUL	AUG	SEP
1	60	734	247	235	2	89	338	3 '	510	963		2400	1590	1130	940
2	61	519	304	247		06	347		60	974		3180	1370	1120	928
3	58	399	266	266		94	352		20	979		3600	1260	1110	931
4	53	637	262	27 4		05	359		370	968		3570	1250	1100	943
5	52	940	3 86	268		25	375		3 40	959		2990	1260	1100	950
6	66	961	4 87	266	3	49	3 82	13	310	972		2110	1260	1090	9 97
7	90	953	528	265		47	391		230	984		1510	1260	1090	949
8	101	924	494	244		16	417		80	975		1360	1200	1090	958
9	106	825	475	252		37	437		10	959		1410	1130	1080	1020
10	107	771	4 81	237		25	442		76	946		1440	1090	1080	1030
11	112	697	475	236	3	15	469		376	934		1470	1090	1080	1000
12	112	453	441	270		11	529		33 5	942		1500	1100	1090	9 81
13	119	359	417	2 81		13	633		83 4	953		1530	1100	1120	966
14	149	5 47	376	266		95	806		348	1090		1590	1100	1130	966
15	165	684	354	267		88	945		86 8	1510		1670	1090	1100	97 7
16	162	599	394	294	3	12	1180		37.3	1720		1720	1090	1070	9 81
17	176	344	412	295	3	18	1580		374	1750		1710	1080	1070	9 81
18	222	26 8	403	2 83	2	98	1990	8	380	1940		1740	1270	1070	977
19	350	332	350	2 89	2	82	2330	8	385	2000		1720	1380	1050	9 86
20	500	453	332	2 87		93	2560		15	1760		1720	1430	1050	996
21	973	481	365	2 89		77	2620	9	925	1510		1720	1360	1050	1000
22	1460	495	375	264	2	78	2520	9	20	1400		1670	1240	1050	999
23	1510	46 4	367	245	2	85	21 40	9	26	1320		1620	1170	1060	979
24	1270	448	321	258	2	91	1700	9	31	1290		1600	1140	1060	962
25	1050	451	313	240	3	02	1520	9	910	1280		15 80	1120	1050	956
26	909	471	296	255		10	1750	9	04	1260			1110	1040	957
27	855	4 80	288	2 81		16	17 80		23	1250			1140	1040	957
28	7 89	425	2 84	2 83	3	27	1580		30	1230			1150	1030	947
29	7 43	412	274	296	-		1590		57	1230			1150	1040	939
30	691	312	295	2 81	_		1570	9	70	1240			1140	1040	922
31	6 84		258	2 86	-		1530	-		1450			1140	988	
TOTAL	13755			83 00			37162	306	90	38738			7 26 0	33268	29075
MEAN	444	561	365	268	3	07	1199	10	23	1250			1202	1073	969
MAX	1510	961	528	296		49	2620	15	10	2000			1590	1130	1030
MIN	52	268	2 47	235		77	338		33 4	934			1080	988	922
AC-FT	27 2 80	33400 2	2450 1	6 46 0	170	70	73710	608	37 0	76840	11	0900 7	3910	65990	57670

CAL YR 1984 TOTAL 296319 MEAN 810 MAX 5050 MIN 52 AC-FT 587700 WTR YR 1985 TOTAL 320900 MEAN 879 MAX 3600 MIN 52 AC-FT 636500

05051522 RED RIVER OF THE NORTH AT HICKSON, ND--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

SPE- STREAM- CIFIC FLOW, CON- PH TEMPER- INSTAN- DUCT- (STAND- ATURE, TEMPI DATE TIME TANEOUS ANCE ARD AIR ATUI (CFS) (US/CM) UNITS) (DEG C) (DEG (00061) (00095) (00400) (00020) (0001	RE C)
OCT 30 1045 668 935 8.9 -4.0 1	1.0
	0.0
	0.0
26 1330 1740 488 8.2 12.5	0.0 2.0
	8.0
	5.5
AUG 02 1010 1210 465 7.9 22.0 22	2.0
CALCIUM SIUM, SODIUM, TUR- OXYGEN, DIS- DIS- DIS- BID- DIS- SOLVED SOLVED SOLVED DATE TIME ITY SOLVED (MG/L (MG/L (MG/L (NTU) (MG/L) AS CA) AS MG) AS NA) (00076) (00300) (00915) (00925) (00930) (POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)
30 1045 16 13.0 75 48 32 JAN	14
22 1245 18 12.2 49 35 16 APR	5.8
17 1100 18 11.8 57 36 18 AUG	6.7
02 1010 65 8.5 30 10	3.8
ALKA- CARBON CHLO- FLUO- SILICA, R LINITY DIOXIDE SULFATE RIDE, RIDE, DIS- A LAB DIS- DIS- DIS- DIS- SOLVED (MG/L SOLVED SOLVED SOLVED SOLVED (MG/L DATE AS (MG/L (MG/L (MG/L (MG/L AS CACO3) AS CO2) AS SO4) AS CL) AS F) SIO2)	GOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)
OCT	
30 205 0.5 240 23 0.2 16 JAN 22 246 4.7 28 11 0.1 9.9	594
22 246 4.7 28 11 0.1 9.9 APR 17 146 0.6 120 11 0.2 7.3	303 390
AUG 02 191 4.6 33 6.6 0.2 17	281
NITRO-	ON, NIC
OCT 30 0.56 0.02 1.9 0.20 0.15 130 1	13 <1
JAN	10
APR	
AUG	<1

05054000 RED RIVER OF THE NORTH AT FARGO, ND

LOCATION.--Lat 46°51'40", long 96°47'00", in NW\nE\sec.18, T.139 N., R.48 W., Cass County, Hydrologic Unit 09020104, at city waterplant on 4th St. S. in Fargo, 25 mi upstream from mouth of Sheyenne River, and at mile 453.0.

DRAINAGE AREA. -- 6,800 mi², approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- May 1901 to current year. Published as "at Moorhead, Minn." 1901. Monthly discharge only for some periods, published in WSP 1308.

REVISED RECORDS.--WSP 1308: 1902-4, 1906-7, 1910-14, 1916, 1918, 1924. WSP 1388: 1905-6, 1917-20(M), 1935(M), 1938-39(M), 1943.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 861.8 ft above National Geodetic Vertical Datum of 1929. Oct. 1, 1960 to Sept. 30, 1962, water-stage recorder at present site at datum 5.6 ft higher. See WSP 1728 or 1913 for history of changes prior to Oct. 1, 1960.

REMARKS.--Estimated daily discharges: Dec. 7-11, Dec. 15 to Feb. 28, Apr. 4-10, and May 7-20. Records good except those for period of ice effect, Dec. 15 to Feb. 28, and periods of no gage-height record, Dec. 7-10, Apr. 4-10, and May 7-20, which are fair. Flow regulated by Orwell Reservoir, capacity 14,100 acre-ft at elevation 1,070 ft above National Geodetic Vertical Datum of 1929, adjustment of 1912; Lake Traverse, capacity 137,000 acre-ft, available for flood control, other controlled lakes and ponds, and several powerplants. Some small diversions for municipal supply. Figures of daily discharge do not include diversions to cities of Fargo and Moorhead and from Sheyenne River.

AVERAGE DISCHARGE (UNADJUSTED).--84 years, 562 ft 3 /s, 407,200 acre-ft/yr; median of yearly mean discharges, 450 ft 3 /s, 326,000 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 25,300 $\rm ft^3/s$, Apr. 15, 1969, gage height, 37.34 ft; no flow for many days in each year for period 1932-41, Sept. 30, Oct. 1, 2, 1970, Oct. 10-19, 1976.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Apr. 7, 1897 reached a stage of 39.1 ft present datum, discharge, 25,000 ft³/s at site 1.5 mi downstream.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 4,690 ft³/s, June 5, gage height, 20.08 ft; minimum daily, 34 ft³/s, Oct. 5.

DICCURROR IN CURIC DEEM DOD CECOND, WAMED VERD OCHORED 1004 DO CEDMONDED 1005

	DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 MEAN VALUES											
DAY	OCT	NOV	DEC	J AN	FEE	B MA	R A	PR M	IAY JU	N JUL	AUG	SEP
1	68	634	267	290	267	43	8 17	10 10	10 228	0 1760	1250	988
2	51	5 29	230	282	273				00 323		1230	967
3	42	406	233	278	26 4				50 4070		1230	953
3 4	39	398	225	270	252				60 457		1220	966
5	34	631	23 4	26 0	29 8				40 460		1210	990
6 7	44	85 9	341	250	316	5 43	0 14	70 10	10 396	0 1320	1190	1060
7	71	915	450	228	325				10 2640		11 80	1070
8	63	918	560	225	3 43				20 1900		1170	1130
9	78	867	5 40	224	296		7 11		10 1680		1160	1360
10	81	764	520	232	354	1 49	4 10	40 9	80 1620	0 1130	1160	1300
11	65	698	500	217	315				80 1640		1150	1240
12	63	633	409	216	354				89 1630		1220	1180
13	86	390	395	250	335				89 1640		1210	1120
14	250	362	377	261	324				60 167		1220	1090
15	388	490	337	2 46	318	121	0 8	33 15	20 1760	0 1130	1200	1060
16	491	437	331	2 47	331				60 1850		1160	1060
17	355	388	3 23	274	329				50 1870		1150	1050
18	288	296	308	275	333				80 1850		1130	1030
19	601	267	300	263	3 40				60 1850		1110	1030
20	952	305	2 85	250	359	3 2 9	0 9	14 20	00 1860	0 1860	1090	1020
21	1010	3 83	290	237	331	329			90 1890		1090	1040
22	1410	3 99	300	224	3 27		0 9		90 1860		1090	1040
23	1720	407	313	211	339				70 1770		1100	1010
24	1610	3 89	316	220	3 4 9				80 1720		1130	9 81
25	1320	377	292	222	405	203	0 9	51 14	70 1700	0 1310	1110	965
26	1070	3 81	2 81	253	3 82				70 1610		1070	966
27	924	397	275	292	3 81	. 228			50 1520	1330	1070	963
28	855	409	260	293	437				10 1510		1070	952
29	775	379	298	302					90 1680		1090	948
30	6 97	358	294	269					90 1820		1080	937
31	659		292	276		- 175	0	15	90	- 1270	1050	
TOTAL	16160	15066	10376	7 83 7	9277	4551	6 330	51 415	78 65250	41790	35590	31 46 6
MEAN	521	502	335	253	331	1 46	8 11	2 13	41 2175	5 1348	1148	1049
MAX	17 20	918	560	302	437	329	0 17	LO 20	00 4600	1940	1250	1360
MIN	3 4	267	225	211	252	40	4 8	17 9	80 1510	1110	1050	937
AC-FT	3 20 50	29880	20580	15540	18400				70 129400	82 89 0	705 90	62410
(+)	1115	1008	1064	1137	1119	105	7 10	94 13	56 1289	9 1788	1 27 5	1118
MEAN*	539	519	352	272	3 5 1				63 2197		1169	1068
AC-FT*	33160	30890	21640	16680	19520	9134	0 666	50 83 8	30 13690	846 80	71860	63500
CAL YR		TOTAL	358648		80 MAX			4 AC-FT		MEAN* 1006		728440
WTR YR	1985	TOTAL	352957	MEAN 9	67 MAX	4600	MIN	34 AC-FT	700100	ME AN* 984	AC-FT *	714470

^{+ -} Diversions in acre-feet to cities of Fargo and Moorhead.

^{* -} Adjusted for diversions to cities of Fargo and Moorhead.

05054000 RED RIVER OF THE NORTH AT FARGO, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1956 to current year.

REMARKS. -- Letter E indicates estimated value.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS) (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE, AIR (DEG C) (00020)	TEMPER- ATURE (DEG C) (00010)
OCT						
26	1150	1020	635		11.0	6.5
DEC						
18	1505	302	820		-4.0	E0.0
JAN	1120	211	520			0.0
23 MAR	1130	211	520			0.0
21	1150	3390	395	8.1		2.0
APR	2250	3330	333	0.1		2.0
03	1450	1940			7.5	3.5
10	1430	1030	630	8.5	11.0	6.0
MAY						
21	1100	1890	860		15.0	14.0
JUN 05	1420	4600	41.0		20.5	16.5
JUL	1420	4000	410		20.5	10.3
31	1645	1300	456		23.0	23.0
SEP		2000			3000	22.0
18	1710	1040			20.0	16.5

DATE	TIME	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)
MAR 21	1150	38	18	10	7.1	120	66	11	0.1	8.2	239
		ARSENIC DIS-	BORON, DIS-	IRON, DIS-	LEAD, DIS-	LITHIUM DIS-	MANGA- NESE, DIS-	MERCURY DIS-	MOLYB- DENUM, DIS-	SELE- NIUM, DIS-	STRON- TIUM, DIS-
DATE	TIME	SOLVED (UG/L AS AS) (01000)	SOLVED (UG/L AS B) (01020)	SOLVED (UG/L AS FE) (01046)	SOLVED (UG/L AS PB) (01049)	SOLVED (UG/L AS LI) (01130)	SOLVED (UG/L AS MN) (01056)	SOLVED (UG/L AS HG) (71890)	SOLVED (UG/L AS MO) (01060)	SOLVED (UG/L AS SE) (01145)	SOLVED (UG/L AS SR) (01080)
MAR 21	1150	2	30	80	<10	17	60	0.1	1	<1	120

RED RIVER OF THE NORTH BASIN

05054020 RED RIVER OF THE NORTH BELOW FARGO, ND

LOCATION.--Lat 46^o55'50", long 96^o47'05', in SW\NE\ sec.19, T.140 N., R.48 W., Cass County, Hydrologic Unit 09020104, at bridge on county highway 2 mi (3.2 km) north of North Dakota State University campus in Fargo, and 12 mi (19.3 km) above mouth of Sheyenne River.

DRAINAGE AREA.--6,820 mi² (17,660 km²), approximately.

PERIOD OF RECORD. -- Water years 1969 to current year.

		WATE	R QUALITY I	ATA, WAT	ER YEAR (OCTOBER 1	984 TO SE	PTEMBER 1	985		
DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS) (00061)	ANCE (US/CM) U	STAND- ARD UNITS)	TEMPER- ATURE, AIR (DEG C) (00020)	TEMPER- ATURE (DEG C) (00010)	OXYGEN, DIS- SOLVED (MG/L) (00300)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)
ОСТ 26	1150	1020	620	8.2	12.0	6.5	11.3	50	31	24	7.4
DEC 18	1505	302	845	7.3	-20.0	0.0	13.8	65	53	30	13
JAN 23	1130	211	530	8.2	-3.5	0.0	16.1	38	27	13	4.6
MAR 21	1150	3390	400	8.4	14.5	2.0	11.4	44	18	12	7.1
APR 10	1430	1030	630	8.5	11.0	6.0	11.7	62	35	22	8.1
AUG 01	1300	1290	468	7.9	27.0	23.5	8.3	45	31	11	4.2
						2010	0.0				
DATE	LIN L (M A CA	KA- ITY SULF. AB DIS G/L SOL S (MG CO3) AS S	- DIS- VED SOLVE /L (MG/I O4) AS CI	RIDE DIS D SOLV (MG/	, DIS- - SOL' ED (MG, L AS	- AT 1 VED DEG /L DI SOL (2) (MG	DUE GE 80 NO2+ . C DI S- SOL VED (MG /L) AS	N, PHO NO3 PHOR S- DI VED SOL /L (MG N) AS	US, BOR S- DI VED SOL J/L (UG P) AS	B) AS	AL /L CN)
ост 26		129 1 9	0 11	0.	2 1:	5	430 1.	60 0.	41	70	_
DEC 18		248 18		0.						120	
JAN 23		246 4		0.			306 <0.		11	60 -	
MAR 21		114 6					252 l.		22	40	
APR 10		178 15		0.			419 0.			120 <0.0	
AUG 01		193 4							10	60 -	
	•					-					
			ALUM- INUM, A	ARSENIC DIS-	BARIUM, DIS-	CADMIUM DIS-	CHRO- MIUM, DIS-	COBALT,	COPPER,	IRON, DIS-	
	DATE	TIME	SOLVED (UG/L AS AL)	SOLVED (UG/L AS AS)	SOLVED (UG/L AS BA) (01005)	SOLVED (UG/L AS CD) (01025)	SOLVED (UG/L AS CR) (01030)	SOLVED (UG/L AS CO) (01035)	SCLVED (UG/L AS CU) (01040)	SOLVED (UG/L AS FE) (01046)	
	APR 10	1430	10	3	76	<1	10	<1	3	16	
	DATE	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITHIUM B DIS- SOLVED S (UG/L AS LI)	DIS- SOLVED (UG/L AS MN)	ERCURY DIS- SOLVED (UG/L AS HG) 71890)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)	
	APR 10	4	34	5	0.3	<1	5	<1	240	15	

RED RIVER OF THE NORTH BASIN

05061000 BUFFALO RIVER NEAR HAWLEY, MN

LOCATION.--Lat 46°51'00", long 96°19'45", in NW\SE\ sec.14, T.139 N., R.45 W., Clay County, Hydrologic Unit 09020106, near left downstream end of bridge on farm lane, 2 mi southwest of Hawley.

DRAINAGE AREA. -- 322 mi2.

PERIOD OF RECORD. -- March 1945 to current year, WY 1981 (annual maximum only), March 1982 to current year (no winter records).

REVISED RECORDS. -- WSP 1308: 1945-46(M), 1948(M).

GAGE.--Water-stage recorder, Datum of gage is 1,111.91 ft above National Geodetic Vertical Datum of 1929. Prior to Jan. 29, 1953, nonrecording gage at bridge 1,800 ft upstream at datum 3.17 ft lower.

REMARKS.--Bstimated daily discharges: Nov. 12-14 and Feb. 28 to Mar. 17. Records good.

AVERAGE DISCHARGE.--35 years (water years 1945-80), 72.7 ft3/s, 52,670 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,050 ft³/s, July 1, 1975, gage height, 9.76 ft; minimum, 2.8 ft³/s, Aug. 26, 1977; minimum gage height, 2.55 ft, Sept. 5, 1961.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum stage known, about 11.3 ft, present datum, spring of 1921, from information by local resident.

EXTREMES FOR CURRENT PERIOD: --October to November 1984 and February to September 1985: Maximum discharge during period, 1,060 ft³/s, May 13, gage height, 8.58 ft; minimum discharge, 11 ft³/s, Oct.2, 3, 6; minimum gage height, 3.19 ft; Oct.6.

1		DISCHARGE,	IN CUBIC	FEET	PER SEC	OND, WATER MEAN VAL		CTOBER 1	984 7	O SEPTEMBER	1985		
DAY	OCT	NOV	DEC	J AN	FEB	MAR	APF	9 1	YAI	JUN	JUL	AUG	SEP
1	13	41				47	107	, ,	64	426	1 85	80	58
2	13	35				40	115		26	549	152	71	63
3	13	33				34	103		63	675	130	63	6 4
4	13	33				33	93		47	670	114	61	65
5	13	33				40	87		90	566	102	60	63
6	13	33				46	76		76	454	91	59	105
7	14	34				57	68		69	37 4	83	55	152
8	14	34				63	62		68	318	77	52	134
9	14	33				82	56		60	263	74	50	118
10	19	34				134	55	5	55	217	6 8	49	105
11	18	35				226	53		67	220	65	47	93
12	16	35				231	51		26	259	63	59	82
13	20	36				217	53		57	239	62	74	71
14	48	36				253	65		50	217	59	69	63
15	57	36				334	66	5 9	97	211	5 6	63	57
16	71					234	63		26	207	55	61	56
17	60					173	59		44	193	59	58	55
18	49					221	62		52	1 80	74	55	52
19	82					248	65		42	166	97	50	52
20	1 23					321	5 8	8 5	36	1 47	94	47	51
21	115					318	57	, 4	26	135	83	45	78
22	94					238	75	5 3	36	146	75	53	77
23	85					250	82		70	155	69	60	68
24	78					257	107	, 2	24	140	81	52	63
25	67					265	113	1	88	1 47	103	47	60
26	60	un un e _n				222	109) 1	64	203	92	43	57
27	56					175	100		43	243	132	40	53
28	51				33	154	90		27	226	152	39	51
29	47					135	84		18	232	110	38	47
30	43					1 25	109		15	211	9 8	51	47
31	40					116		· 2	92	u- u- +-	89	59	
TOTAL	1419	un un te				5 2 8 9	2343				2 84 4	1710	2160
MEAN	45.8					171	78.1		72		91.7	55.2	72.0
MAX	123					334	115		50	675	1 85	80	152
MIN	13					33	51		55	135	55	38	47
CFSM	.14	u- m u-				.53	.24		16	. 87	.29	.17	.22
IN.	.16					.61	. 27		33	.97	.33	.20	.25
AC-FT	2 81 0					10490	4650	228	150	16640	5640	3390	4280

05061500 SOUTH BRANCH BUFFALO RIVER AT SABIN, MN

LOCATION.--Lat 46°46'20", long 96°37'40", in SW\SW\sec.9, T.138 N., R.47 W., Clay County, Hydrologic Unit 09020106, near center of span on downstream side of highway bridge, 0.3 mi downstream from Stony Creek and 1 mi east of Sabin.

DRAINAGE AREA .-- 522 mi².

PERIOD OF RECORD. -- March 1945 to current year, WY 1981 (annual maximum only), March 1982 to current year (no winter records).

REVISED RECORDS. -- WSP 1308: 1949(M),

GAGE.--Nonrecording gage and crest-stage gage. Datum of gage is 902.39 ft above National Geodetic Vertical Datum of 1929 (levels by Soil Conservation Service). Prior to Aug. 17, 1948, nonrecording gage at site 1 mi downstream at different datum.

REMARKS.--Estimated daily discharges: Oct. 7, 8, 18, 28, Nov. 1-17, Mar. 1-21, 24, 31, Apr. 7, 14, 21, 28, May 5, 12, 19, 26, 27, June 9, 16, 23, 30, July 7, 14, 21, 28, Aug. 4, 11, 18, 25, and Sept. 1, 2, 8, 15, 22, 29. Records fair.

AVERAGE DISCHARGE.--35 years (water years 1945-80), 56.0 $\rm ft^3/s$, 40,570 acre-ft/yr; median of yearly mean discharges, 41.4 $\rm ft^3/s$, 29,990 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 8,500 ft³/s, July 2, 1975, gage height, 19.90 ft; no flow on many days in most years.

EXTREMES FOR CURRENT PERIOD.--October to November 1984 and February to September 1985: Maximum discharge during period, 1,660 ft³/s, June 2, gage height, 13.69 ft, from highwater mark; minimum discharge, 0.02 ft³/s, Oct. 5, gage height, 3.46 ft, backwater from debris; minimum gage height, 3.44 ft, July 17.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 MEAN VALUES

	MEAN VALUES											
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	YAM	JUN	JUL	AUG	SEP
1	1.2	3 6				3.9	104	88	896	42	68	11
2	.30	35				4.3	101	80	1580	37	66	12
3	.06	34				7.1	105	70	1230	34	61	19
4	.06	34				8. 6	110	66	810	31	50	19
5										24	40	18
5	.02	33		e		13	96	61	6 21	24	40	10
6	.04	33				20	85	54	476	21	34	4 8
7	.10	3 3				25	75	49	332	20	28	73
8	.15	33				29	68	48	224	18	22	103
9	.22	33				3 2	62	44	158	14	20	150
10	1.8	32				40	56	44	120	11	16	151
11	6.5	32				48	49	53	102	7.0	16	151
12	6.7	3 2				55	47	8 7	95	4.9	16	156
13	10	31				100	52	182	92	3.4	20	153
												138
14	35	30				150	52	316	88	3.1	20	
15	30	24				215	53	360	86	2.6	32	116
16	41	23				295	5 5	395	115	1.7	42	97
17	42	23				350	5 2	419	113	1.2	46	81
18	43					344	51	439	94	1.6	43	6 8
19	76					336	49	364	88	2.5	33	5 6
20	88					320	49	257	85	2.0	28	51
21	92					302	5 0	188	76	22	22	46
22	94					271	53	145	70	87	19	50
23	86					247	64	112	68	84	15	64
						239	77	92	67	83	12	64
24 25	73 62						96	81	61	7 8	10	57
25	62					235	90	91	91	7.6	10	37
26	52					214	114	74	60	63	8.6	52
27	43					17 4	1 20	63	60	55	8.4	48
28	42				1.9	149	113	51	58	57	5.7	45
29	41					134	102	48	52	63	7.3	, 44
30	38					121	93	54	46	73	8.2	42
31	3 8					115		148		70	9.4	
TOTAL	1043.15					4596 .9	2253	4532	80 23	1017.0	826.6	21 83
MEAN	33.7					148	75.1	146	267	32.8	26.7	72.8
MAX	94					350	120	439	1580	87	68	156
NIN	.02					3.9	47	44	46	1.2	5.7	11
											.05	.14
CFSM	.07					.28	.14	.28	.51	.06	.06	.14
IN.	.07					.33	.16	.32	.57	.07		
AC-FT	2070					9120	4470	8990	15910	2020	1640	4330

05062000 BUFFALO RIVER NEAR DILWORTH, MN

LOCATION.--Lat 46°57'40", long 96°39'40", in SW\SE\ sec.6, T.140 N., R.47 W., Clay County, Hydrologic Unit 09020106, on left bank 4.5 mi southeast of Kragnes, 6.5 mi northeast of Dilworth, and 9 mi downstream from South Branch.

DRAINAGE AREA.--1,040 mi², approximately.

PERIOD OF RECORD.--March 1931 to current year. Monthly discharge only for some periods, published in WSP 1308. REVISED RECORDS.--WSP 1308: 1931(M).

GAGE.--Water-stage recorder. Datum of gage is 878.31 ft above National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers). Prior to Apr. 5, 1937, nonrecording gage at same site and datum.

REMARKS.--Estimated daily discharges: Nov. 1-5, and Nov. 10 to Mar. 25. Records good except those for periods with ice effect, Nov. 1-5 and Nov. 10 to Mar. 25, which are fair.

AVERAGE DISCHARGE. -- 54 years, 131 ft3/s, 94,910 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 13,600 ft³/s, July 2, 1975, gage height, 27.10 ft; no flow at times in 1936.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,940 $\rm ft^3/s$, June 5, gage height, 15.53 ft; minimum, 13 $\rm ft^3/s$, Oct. 1, gage height, 3.18 ft.

		DISCHARGE,	IN CUBIC	FEET PE		, WATER YEAR Ean values	CTOBER	1984 T	SEPTEMBER	1985		
DAY	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JOL	AUG	SEP
1	14	95	60	29	23	37	241	224	603	247	183	69
	14	98	59	29	22	39	226	284	964	228	163	76
รั	14	90	58	29	21	40	221	354	1420	205	147	
2 3 4	15	92	57	29	20	41	219	361	1800	182	136	80 85
5	17	84	56	28	19	40	212	303	1930	163	1 26	87
6	17	80	54	28	19	39	202	222	1840	148	115	93
7	20	82	52	27	19		188	176	1630	136	104	1 26
8	23	82	51	27	19		171	153	1270	123	95	176
9	25	7 7	51	26	19		156	141	874	111	87	225
10	27	68	51	26	18	55	143	133	572	101	80	248
11	27	65	51	26	18	80	133	179	429	94	75	238
12	31	65	50	26	18	130	125	455	377	87	76	228
13	33	67	46	26	18	180	121	752	359	82	87	223
14	47	64	43	26	18	300	124	889	346	80	109	215
15	23 6	62	41	26	18	405	131	1170	3 47	76	125	2 0 3
16	335	63	40	26	18	515		1570	337	72	109	185
17	312	64	38	26	18	610		1760	3 26	71	103	163
18	217	64	34	26	18	715		1790	3 20	82	104	144
19	238	62	33	26	18	810		1710	301	87	103	132
20	413	62	32	26	18	910	137	1540	276	95	95	121
21	419	60	32	26	19	95 5		1 27 0	253	106	86	110
22	372	61	31	25	19		132	996	245	105	80	106
23	328	62	31	25	20		145	766	235	132	76	121
24	285	62	31	25	22	495	165	570	222	152	82	127
25	248	62	30	24	25	480	193	448	212	1 57	85	125
26	215	64	30	24	28	460	221	361	214	165	78	119
27	1 87	63	30	24	32	416	240	307	234	273	67	110
28	164	64	29	24	35	356	247	26 8	259	312	61	103
29	143	65	29	24		310	241	241	267	265	58	96
30	127	62	29	24		279	227	250	259	218	57	88
31	115		29	24		256		320		198	56	
TOTAL	4678		1288	807	579			9963		4553	3008	4222
MEAN	151			26.0	20.7		175	644	624	147	97.0	141
MAX	419	98	60	29	35			1790	1930	312	183	248
MIN	14	60	29	24	18		121	133	212	71	56	69
CFSM	.15	.07	.04	.03	.02	.33	.17	.62	.60	.14	.09	.14
IN.	.17	.08	.05	.03	.02	.38	.19	.71	.67	.16	.11	.15
AC-FT	9280	4190	2550]	1600	1150	21100 10	400 3	9600	37130	9030	5970	8370

CAL YR 1984 TOTAL 69218.8 MEAN 189 MAX 2890 MIN 4.7 CFSM .18 IN 2.48 AC-FT 137300 WTR YR 1985 TOTAL 75814.0 MEAN 208 MAX 1930 MIN 14 CFSM .20 IN 2.71 AC-FT 150400

05064000 WILD RICE RIVER AT HENDRUM, MN

LOCATION.--Lat 47°16'05", long 96°47'50", in SE\SE\ sec.19, T.144 N., R.48 W., Norman County, Hydrologic Unit 09020108, near center of span on downstream side of highway bridge, 0.5 mi east of Hendrum and 4 mi upstream from mouth.

DRAINAGE AREA.--1,600 mi², approximately.

PERIOD OF RECORD.--March 1944 to September 1984 and May to September 1985. Operated as a high-flow partial-record station October 1984 to April 1985.

REVISED RECORDS .-- WSP 1728: 1958.

GAGE.--Nonrecording gage and crest-stage gage. Datum of gage is 836.75 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Army Corps of Engineers).

REMARKS.--Estimated daily discharges: May 10, 29, June 24, July 1, 20, and Aug. 30. Records fair. Large part of high flow diverted into Marsh River basin at overflow section 3.5 mi east of Ada. Another diversion into the Marsh River basin formed in 1947, 1.5 mi southeast of Ada and diverted water at all stages 1947-51, after which it was closed except for a small regulated flow diverted for abatement of pollution from Ada sewage plant effluent. Amount of diversion not known.

AVERAGE DISCHARGE.--40 years, (Water Years 1945-84), 260 ft³/s, 188,400 acre-ft/yr; median of yearly mean discharges, 219 ft³/s, 159,000 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 9,350 ft³/s. Apr. 10, 1978, gage height, 31.42 ft; maximum gage height, 32.30 ft, Apr. 21, 1979, backwater from Red River of the North; no flow some days in 1948-49.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 5,230 ft³/s, May 16, gage height, 25.14 ft; minimum daily (May to September), 183 ft³/s, Sept.28.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 MEAN VALUES

					MEA	IN VALUES						
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEF
1								653	1330	1700	921	754
								670	1970	1250	836	596
2 3 4 5												
3								614	2150	1010	761	518
4								548	2090	906	730	476
5								504	1910	769	732	521
6 7 8 9								486	1700	6 58	742	503
7								484	1430	572	689	462
8								446	1280	524	618	406
9								410	1060	468	558	386
10								400	907	433	521	348
11								2420	801	404	469	310
12								3 4 2 0	797	379	467	289
13								4370	849	354	454	267
14								4920	836	337	510	248
15								5120	813	314	533	229
								3120	013	214	333	223
16								5210	760	295	458	225
17								5180	708	284	436	217
18								4990	674	299	382	208
19								4480	630	433	3 68	204
20								3780	575	540	351	215
20								3760	3/3	340	2.71	213
21								3020	55 4	641	3 2 7	200
22								2270	568	622	305	194
23								1610	676	562	295	197
24								1240	620	530	285	197
25								1240	570	828	304	195
26	*							1170	777	1270	286	187
27								1120	1930	1550	271	187
28								921	2450	1620	235	183
29								880	2340	1560	246	185
30								849	2090	1280	350	189
31								866		1080	895	
TOTAL								64291	35845	23 47 2	15335	9296
MEAN								2074	1195	757	495	310
MAX								5210	2450	1700	921	754
MIN								400	554	284	235	183
CFSM								1.30	.75	. 47	.31	.19
IN.								1.49	. 83	.55	.36	.22
AC-FT								127500	71100	46560	30420	18440

05064500 RED RIVER OF THE NORTH AT HALSTAD, MN

LOCATION.--Lat 47°21'10", long 96°50'50", on a line between secs.24 and 25, T.145 N., R.49 W., Traill County, Hydrologic Unit 09020107, on left bank on upstream side of highway bridge, 0.5 mi west of Halstad, 2.5 mi downstream from Wild Rice River, and at mile 375.2.

DRAINAGE AREA.--21,800 mi², approximately, including 3,800 mi² in closed basins.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--April 1936 to June 1937 (no winter records), April 1942 to September 1960 (spring and summer months only), May 1961 to current year.

REVISED RECORDS.--WSP 1388: 1936, 1950. WSP 1728: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 826.65 ft above National Geodetic Vertical Datum of 1929. Prior to July 17, 1961, nonrecording gage at same site and datum.

REMARKS.--Estimated daily discharges: Nov. 7 and Nov. 16 to Mar. 27. Records good except those for estimated daily discharges, which are fair.

AVERAGE DISCHARGE.--24 years (1961-85), 1,773 ft³/s, 1,285,000 acre-ft/yr; median of yearly mean discharges, 1,650 ft³/s, 1,195,000 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 42,000 ft³/s, Apr. 22, 1979, gage height, 39.00 ft; minimum observed, 5.4 ft³/s, Oct. 8, 9, 12-14, 1936.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood in 1897 reached a stage of about 38.5 ft.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, $10,400 \text{ ft}^3/\text{s}$, May 13, gage height, 19.07 ft; minimum daily 124 ft³/s, Oct. 8.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 171 1350 740 83.0 R 1510 3 27 0 1520 1570 3 2 0 0 1720 83.0 3 2 3 0 4210 1470 1340 3 26 0 ___ 43 20 TOTAL. MEAN 720 625 9000 7730 MAX MIN AC-FT CAL YR 1984 TOTAL MEAN AC-FT 1676000 AC-FT 1522000 MAX 124 MIN WTR YR 1985 TOTAL MAX MIN

05064500 RED RIVER OF THE NORTH AT HALSTAD, MN--Continued (National stream-quality accounting network station)

WATER-QUALITY DATA

PERIOD OF RECORD. -- Water years 1961-67, 1972 to current year.

				WATE	R QUAI	ITY D	ATA, V	VATER	YEAR	OCTO	B ER	1984	TO SI	EPTEMB	ER 1	985			
			DATE	E	TIME	L A C SE (F'	MPLE OC- FION, ROSS CTION F FM BANK)	TO SAI INT V/		TEME ATU (DEC	IRE G C)	DU AN (US	FIC N- CT-	PH (STAN ARD UNITS (0040	D- ; ;)	OXYGI DIS SOLV (MG/	S- VED VL)		
			NOV 08. 08. 08. 08. 08. 08. 08. 08. 08. 08.		1240 1241 1242 1243 1244 1245 1246 1247 1250 1250 1252 1253 1254 1255	1 1 1 1 1 1 1 1 1 1	20.0 20.0 40.0 40.0 60.0 80.0 10 10 30 30 70 70 90	4 3 3 3 4 4 3 3 4 4 4 4 4 4 4 4 4 4 4 4	1.6 1.0 1.6 1.0 1.6 1.0 1.6 1.0 1.6 1.0		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		818 819 822 823 824 825 827 827 827 826 828 828 828 828	 8	.5	14 14 14 14 14 14 14 14 14	125555445566656655		
DATE		TI	ИE	STREA FLOW INSTANCE (CFS	W, An- Ous S)	SPE- CIFIC CON- DUCT- ANCE (US/CM	(S) 1 1 (NU	PH PAND- ARD (TS) (400)	TEMP ATU A I (DEG (000	RE, (R (C)	AT (DE	PER- URE G C) 010)	B) I) (N)	JR- ID- IY IU) D76)	SOL	S- VED /L)	COL: FORI FECA 0.7 UM-1 (COL: 100 i	M, AL, MF S./ ML)	ETREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673)
NOV 08. 29.		1415 1400		17: 8:	2 0 90	82 93		8.5 8.4		3.0		0.0	43	3 L•5		4.5 2.1		130 3 00	 260
JAN 07.		1330) .	61	88	58	0	8.1	-1	3.0		0.0		-					
MAR 14.		1450		11:		55		5.9		3.0		0.5	13	3	1	1.4			
APR 02.		1350		310		54		8.2	1	1.0		5.0							
MAY 10.		124		180		60		8.2		5.0		23.5	67			9.3		81	19
JUN				76		46										,,,		0.1	
07. 27.		1235 1155		353		57:		8.1		.7.5 .4.0		19.5 19.0	240			6.2			
AUG 01.	••	1120)	25	70	47	2		2	3.5		22.0		-					
SEP 20.	••	1330)	150	00	5.5	0	8.0		9.0		13.0	43	L	1	0.4			
	DATI	E	DIS SOI (MC AS	CIUM S LVED G/L CA) 915)	MAGI SIC SOLV (MG/ AS I	JM, S S- /ED S /L MG)	ODIUM, DIS- OLVED (MG/L AS NA) 00930)		OTAS- SIUM, OIS- OLVED MG/L S K) O935)	LIN I (N P CP	KA- NITY AB MG/L AS ACO3)	Be IT: ()	ICAR- ONATE -FLD MG/L AS (03) 9440)	BON IT- (MG AS	3)	LIN: CARI AT IT-I	BON- PE PLD /L - 03)	(MC A: CA:	ITY ELD G/L
	NOV 08		79	9	46		38		9.4		227			_	_				
		• • •	8		49		45		9.5		259			-	-	•			231
		• • •	50	0	26		23		8.2		175			-	-	•			151
	10		64	4	35		23		7.0		217		288		0	:	230		240
			58	В	32		15		5.2		187			-	-				
				-									242		0	:	198		198
	SEP 20	• • •	53	1	30		20		4.9		211		268		0	:	220		220

RED RIVER OF THE NORTH BASIN 05064500 RED RIVER OF THE NORTH AT HALSTAD, MN--Continued

DATE	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)
NOV							
08	220	19	0.3	17	600		
29 MAR	220	25	0.3	17	633	0.55	0.76
14	65	19	0.2	14	329		
MAY 10	110	11	0.2	9.8	397		
JUN							
27 SEP	98	10	0.2	12	376	0.67	0.14
20	59	13	0.2	17	355	0.43	0.14
	NITRO-			PHOS-		SEDI-	SED.
	GEN,AM- MONIA +	PHOS-	PHOS- PHORUS.	PHORUS, ORTHO,	SEDI-	MENT, DIS-	SUSP. SIEVE
	ORGANIC	PHORUS,	DIS-	DIS-	MENT,	CHARGE,	DIAM.
	TOTAL	TOTAL	SOLVED	SOLVED	SUS-	SUS-	% FINER
DATE	(MG/L AS N)	(MG/L AS P)	(MG/L AS P)	(MG/L ·AS P)	PENDED (MG/L)	PENDED (T/DAY)	THAN .062 MM
	(00625)	(00665)	(00666)	(00671)	(80154)	(80155)	(70331)
NOV							
29	1.6	0.47	0.42	0.37	25	60	100
JUN 27	1.1	0.37	0.10	0.07	694	6610	100
SEP 20	1.1	0.31	0.23	0.19	110	446	96
	3			- /			

DATE	TIME	SOL (UC	M, ARS	IS-	BARIU DIS- SOLVE (UG/ AS B	M, LIU DIS D SOI L (UC A) AS	S- VED S/L BE)	CADMI DIS SOLV (UG/ AS C	ED SOL L (UC	M, COE VED SOL CR) AS	IS- LVED IG/L ICO)	OPPER, DIS- SOLVED (UG/L AS CU) 01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)
NOV 08 MAR	1415	;	10	4	6	8 <0	.5	<	1	1	<3	2	14
14	1450	ı	20	2	5	4 <0	.5		1	<1	<3	4	35
MAY 10	1245	i	10	3	7	7 <0	.5	<	1	<1	<3	7	6
SEP 20	1330	1	20	4	11	0 <0	.5	<	1	<1	<3	3	12
DAT	'E	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	DI	E, S- VED /L MN)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	MOL DEN DI SOL (UG AS	UM, S- VED /L MO)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVEI (UG/L AS SE)	(UG/ AS S	M, ZI - D ED SO L (U R) AS	NC, IS- LVED G/L ZN) 090)
		<1	52		16	0.1		<10	2	<1	. 3	10	8
		<1	23		62	0.1		<10	3	<1	. 1	70	33
MAY 10 SEF		8	32		4	<0.1		<10	7	<1	. 2	30	13
		2	24		4	<0.1		<10	25	<1	. 1	80	12

05067500 MARSH RIVER NEAR SHELLY, MN

LOCATION.--Lat 47°24'45", long 96°45'50", in NE\NW\ sec.3, T.145 N., R.48 W., Norman County, Hydrologic Unit 09020107, near center of span on downstream truss of bridge, 3.8 mi southeast of Shelly and 10 mi upstream from mouth.

DRAINAGE AREA .-- 151 mi2.

- PERIOD OF RECORD.--March 1944 to September 1983 and April to September 1985. Monthly discharge only for March 1944, published in WSP 1308. Operated as a high-flow partial-record station October 1983 to March 1985.
- GAGE.--Nonrecording gage and crest-stage gage. Datum of gage is 841.14 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Army Corps of Engineers). Prior to Oct.1, 1965, nonrecording gage at datum 3.0 ft higher.
- REMARKS.--Estimated daily discharges: Apr. 3, 7, 9, 11, 14, 16, 18, 21, 25, May 5, 28, July 14, Aug. 16, 18, 31, Sept 1, and 20. Records fair. Large part of high flow of Wild Rice River diverted into Marsh River basin at overflow section 4.6 mi east of Ada. Another diversion from Wild Rice River basin formed in 1947, 1.5 mi southeast of Ada and diverted water at all stages 1947-51, after which it was closed except for a small regulated flow diverted for abatement of pollution from Ada sewage plant effluent.
- AVERAGE DISCHARGE.-39 years (water years 1945-83), 65.5 $\rm ft^3/s$, 47,450 acre-ft/yr; median of yearly mean discharges, 38 $\rm ft^3/s$, 27,500 acre-ft/yr.
- EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,880 ft³/s, Apr. 19, 1979, gage height, 23.36 ft, from floodmark; no flow for many days most years.
- EXTREMES FOR CURRENT YEAR, -- Maximum discharge, 1,380 ${\rm ft}^3/{\rm s}$, May 13, gage height, 13.23; minimum daily (April to September), 0.36 ${\rm ft}^3/{\rm s}$ July 20.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 MEAN VALUES

						Pi	SAN VALIO	50				
DVĀ	OCT	NOV	DEC	J AN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEF
1 2 3 4 5							21 26 28 29 26	123 94 49 27 20	27 21 14 13 18	26 21 13 12 9.0	12 8.4 6.4 4.6 5.6	6.0 3.7 4.3 13
6 7 8 9							20 19 19 16 14	14 12 9.8 8.0 7.2	17 17 13 11 8.7	9.3 7.0 4.3 3.2 2.5	3.6 2.4 1.4 1.4	7.0 6.0 4.6 3.7 3.1
11 12 13 14							10 8.7 9.5 9.8	92 903 1120 1320 1110	9.3 7.4 7.2 6.2 5.0	1.9 1.3 1.1 .90 .82	.96 1.0 1.4 1.1	2.5 2.2 1.9 1.9
16 17 18 19 20							8.0 5.8 6.4 7.2 7.0	1150 1090 709 306 210	3.9 4.4 6.4 6.0	.68 .62 .62 .62	10 69 33 16 9.3	1.6 2.5 5.4 5.4 4.0
21 22 23 24 25							7.5 8.0 19 18 16	160 130 145 129 37	8.7 7.2 4.8 5.4 4.1	.68 .62 .50 .56 4.3	4.8 2.8 1.8 3.8 1.3	3.2 3.6 3.1 2.2 2.5
26 27 28 29 30 31							14 13 12 11 9.8	52 39 30 26 22 33	3.9 3.4 17 30 27	6.0 44 45 28 21 16	.96 .82 .68 20 18	1.8 1.6 1.6 2.5 2.5
TOTAL MEAN MAX MIN CFSM IN. AC-FT							428.7 14.3 29 5.8 .10 .11 850	9227.0 298 1320 7.2 1.97 2.27 18300	337.0 11.2 30 3.4 .07 .08 668	282.88 9.13 45 .36 .06 .07 561	252.44 8.14 69 .68 .05 .06 501	114.8 3.83 13 1.4 .03 .03

05069000 SAND HILL RIVER AT CLIMAX, MN

LOCATION.--Lat 47°36'43", long 96°48'52", in NE\NE\ sec.30, T.148 N., R.48 W., Polk County, Hydrologic Unit 09020301, near center of span on downstream side of bridge on U.S. Highway 75 in Climax and 3.7 mi upstream from mouth.

DRAINAGE AREA. -- 426 mi².

PERIOD OF RECORD.--March 1943 to September 1984 (winter records incomplete prior to 1947). Monthly discharge only for some periods, published in WSP 1308 and 1728. October 1984 to May 1985, operated as a high-flow partial-record station. June to September 1985.

REVISED RECORDS. -- WSP 1388: 1943(M), 1944, 1947(M). WSP 1728: 1951(M), 1960 (Average discharge).

GAGE.--Nonrecording gage and crest-stage gage. Datum of gage is 820.10 ft above National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers). Prior to Oct. 1, 1966, nonrecording gage at site 3.2 mi upstream at datum 12.78 ft higher.

REMARKS .-- Estimated daily discharges: June 1-13, 20, 21, 24, 25 and Aug. 14. Records fair.

AVERAGE DISCHARGE.--38 years (water years 1947-84), 71.8 ft³/s, 52,020 acre-ft/yr; median of yearly mean discharges, 52 ft³/s, 37,700 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 4,560 ft³/s, Apr. 14, 1965, gage height, 17.81 ft, site and datum then in use; maximum gage height, 32.79 ft, Apr. 23, 1979, from floodmark (backwater from Red River of the North); minimum daily discharge, 1.0 ft³/s, Jan. 17, 18, 1962.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 974 ft³/s, Aug₃ 17, gage height, 10.50 ft, from graph based on gage readings; minimum daily (June to September) 58 ft³/s.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5									300 400 360 320 290	336 333 306 267 232	425 382 369 347 325	182 171 156 135 119
6 7 8 9 10									260 230 210 190 170	196 167 139 118 106	298 270 253 234 215	111 104 92 85 76
11 12 13 14 15									150 130 115 103 96	94 86 79 73 69	204 195 189 175 164	74 71 69 65 61
16 17 18 19 20									89 86 81 73 74	65 64 77 96 95	147 591 580 360 246	58 97 89 79 78
21 22 23 24 25									74 75 73 73 74	99 104 116 175 176	202 172 157 162 151	79 88 82 84 92
26 27 28 29 30 31									82 95 165 285 326	189 253 291 354 415 449	144 139 148 282 226 189	94 89 84 77 75
TOTAL MEAN MAX MIN CFSM IN. AC-FT									5049 168 400 73 .39 .44 10010	5619 181 449 64 .43 .49	7941 256 591 139 .60 .69	2816 93.9 182 58 .22 .25 5590

05074000 LOWER RED LAKE NEAR RED LAKE, MN

- LOCATION.--Lat 47°57'27", long 95°16'34", in SW\NW\ sec.28, T.152 N., R.36 W., Clearwater County, Hydrologic Unit 09020302, on Red Lake Indian Reservation, on left bank just upstream from dam at outlet, 13 mi northwest of village of Red Lake.
- DRAINAGE AREA. -- 1,950 mi², approximately.
- PERIOD OF RECORD. -- June 1930 to November 1932 (published as Red Lake at Redby), May 1933 to current year (published as Red Lake near Red Lake 1933-40); records on Upper Red Lake published as Red Lake at Waskish, April 1930 to September 1933, all in reports of Geological Survey. October 1921 to September 1929 gage heights at Redby and on Upper Red Lake at Waskish in files of Minnesota Department of Conservation (fragmentary).
- GAGE.--Water-stage recorder. Datum of gage is 1,169.00 ft, adjustment of 1912 (levels by U.S. Army Corps of Engineers); gage readings have been reduced to elevations based on adjustment of 1912. May 1933 to Sept. 6, 1934, nonrecording gage at same site and datum. Nonrecording gages at Waskish and Redby at datum 69.00 ft lower.
- REMARKS. -- Water level subject to fluctuation caused by change in direction and velocity of wind and by seiches.
- EXTREMES FOR PERIOD OF RECORD.--Maximum gage height, 1178.53 ft, June 25, 1950; minimum recorded, 1169.80 ft, Nov. 20, 1936.
- EXTREMES FOR CURRENT YEAR.--Maximum gage height, 1175.64 ft, June 25; maximum daily, 1175.32 ft, July 2, 6; minimum, 1173.07 ft, Nov. 1; minimum daily, 1173.51 ft, Nov. 1.

MONTHEND ELEVATION, IN FEET, OCTOBER 1984 TO SEPTEMBER 1985

Oct. 31 1174.25	Feb. 28 1173.84	June 30 1175.31
Nov. 30 1174.20	Mar. 31 1174.00	July 31 1174.97
Dec. 31 1174.07	Apr. 30 1174.51	Aug. 31 1175.00
Jan. 31 1173.92	May 31 1175.04	Sept.30 1174.86

NOTE .-- Mean daily gage heights are available.

05074500 RED LAKE RIVER NEAR RED LAKE, MN

LOCATION.--Lat 47°57'27", long 95°16'35", in SW\NW\ sec.28, T.152 N., R.36 W., Clearwater County, Hydrologic Unit 09020302, on Red Lake Indian Reservation, on left bank 50 ft downstream from dam at outlet of Lower Red Lake and 13 mi northwest of village of Red Lake.

DRAINAGE AREA. -- 1,950 mi2, approximately.

PERIOD OF RECORD. -- May 1933 to current year. Monthly discharge only for May 1933, published in WSP 1308.

GAGE.--Water-stage recorder. Datum of gage is 1,167.00 ft, adjustment of 1912 (levels by U.S. Army Corps of Engineers). Prior to Sept. 7, 1934, nonrecording gage at site 50 ft upstream at datum 2.00 ft higher. Sept. 7, 1934, to Nov. 26, 1951, water-stage recorder at present site at datum 2.00 ft higher.

REMARKS.--Estimated daily discharges: Nov. 1 to Mar. 8. Records fair. Flow completely regulated by outlet dam on Lower Red Lake.

AVERAGE DISCHARGE, -- 52 years, 498 ft3/s, 360,800 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 3,600 ft³/s, June 25, 1950, gage height, 11.19 ft, affected by seiches and backwater from aquatic vegetation, present datum, from rating curve extended above 1,400 ft³/s; no flow at times.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,200 ft³/s, May 31, gage height, 5.41 ft; maximum gage height, 6.37 ft, June 25; minimum daily discharge, 54 ft³/s, Oct.4.

		D	ISCHARGE	E, IN	CUBIC	FEET	PER	SEC				OCTOBE	R 1984	OT	SEPTEMBER	1985		
				•					ME	AN VALU	JES							
DAY	oc	T	NOV	DE	2	Jan		FEB		MAR	i	APR	MAY		JUN	JUL	AUG	SEP
1	5	9	450	450)	800		800		800	3	331	328		865	360	930	872
2		3	450	450)	800		800		800	3	351	328		796	342	915	766
3	6	0	450	460)	800		800		800		345	3 23		767	468	919	752
3 4	5	4	450	47)	800		800		790		320	331		765	676	946	740
5		4	450	720		800		800		780		320	337		825	687	938	7 27
6	12	1	450	886	1	800		800		770		331	432		929	673	946	723
7	12		450	860		800		800		790		339	560		953	691	965	717
8	12		450	840		800		800		820		331	574		977	702	97.2	717
ğ	12		400	820		800		800		833		320	581		969	716	953	
10	12		450	80														711
10	12	.5	430	001	,	800		800		822	-	3 2 5	584		956	720	953	705
11	12	1	450	790)	810		800		822	3	317	606		957	778	957	700
12	12	1	440	796)	810		800		822		301	634		949	870	972	697
13	12		400	790		810		800		833		307	626		980	896	896	787
14	15		300	790		810		800		822		312	634		1050	911	87 C	922
15	14		450	790		810		800		815		323	662		1080	919	940	952
								000		013	-	, 23	002		1000	313	340	932
16	14		480	790		810		800	}	826		312	676		1080	930	962	988
17	15	2	460	796)	810		800		811	3	304	680		1070	942	917	1020
18	13	6	440	800)	810		800	1	826	3	312	684		1070	953	715	1040
19	16	5	440	800)	810		800		648		312	694		1090	957	666	1020
20	16		440	80		810		800		317		323	684		1130	961	637	676
21	16	6	440	806	١	810		800		314		3 2 3	655		1140	968	531	320
22	16		440	80		810		800		317		328	658		1150	968	316	176
23	16		440	800		810		800		320		339	669		1130	957	238	211
24	16		440	80		810		800		320		331	844		1110	996	194	504
25	16					810		800		320								620
23	10	0	440	800	,	910		800		317	-	331	1110		1110	996	153	620
26	28		440	80		800		800		325		323	1140		885	1020	194	759
27	47		450	800		800		800		345		3 2 3	1140		841	1010	457	839
28	47		450	800		800		800	;	314		325	1140		723	988	63 5	950
29	46		450	800)	800				3 2 3		325	1150		485	965	837	979
30	46	1	450	800)	800			•	3 2 3		325	1150		394	949	871	996
31	4 4	1		800)	800				3 23	•		1120			930	897	
TOTAL	581	.0 1	3190	23486) 2	4950	22	400	. 1	9088	97	709	21734	2	8226 2	5899	23292	22586
MEAN	18		440	75		805		800		616		324	701	•	941	835	751	753
MAX	47		480	88		810		800		833		351	1150		1150	1020	972	1040
MIN		4	300	450		800		800		314		301	323		394	342	153	176
CFSM	.1		.23	.3		.41		.41		.32		.17	.36		.48	.43	.39	.39
IN.	:1		.25	.4		.48		.43		.36		.19	.41		.54			.39
AC-FT	1152															.49	.44	.43
AC-FT	1125	: U Z	6160	46 57	4	9490	44	430	. 3	378 6 0	192	260	43110	:	5990 5	1370	46 200	44800
CAL YR	1984	TOTAL	224572	ME	AN 61	4	M.A	X	1060	MIN	54	CFS	4 .32	1	N 4.28	AC-FT	445400	
WTR YR			240364	ME					1150	MIN		CFS	4 .34		N 4.59		476800	
						-					- •	J. D.						

05075000 RED LAKE RIVER AT HIGH LANDING, NEAR GOODRIDGE, MN

LOCATION.--Lat 48°02'34", long 95°48'28", in NW\x sec.28, T.153 N., R.40 W., Pennington County, Hydrologic Unit 09020303, on left bank 50 ft upstream from highway bridge at High Landing, 7 mi south of Goodridge and 33 mi upstream from Thief River.

DRAINAGE AREA. -- 2,300 mi2, approximately.

PERIOD OF RECORD. -- September 1929 to current year. Prior to October 1930, published as "at Kratka".

GAGE.--Water-stage recorder. Datum of gage is 1,141.57 ft, adjustment of 1912 (levels by U.S. Army Corps of Engineers). See WSP 1308 or 1738 for history of changes prior to Oct. 1, 1949.

REMARKS.--Estimated daily discharges: Nov. 3 to Mar. 20. Records good except those for periods with ice effect, Nov. 3 to Mar. 20, which are fair. Flow regulated by outlet dam on Lower Red Lake.

AVERAGE DISCHARGE. -- 56 years, 559 ft3/s, 405,000 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,060 ft³/s, July 7, 1975, gage height, 13.39 ft; maximum gage height, 13.44 ft, July 3, 1975; no flow during infrequent periods in 1931-34, 1936-37.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2,490 ft³/s, Aug. 18, gage height, 11.61 ft; minimum daily, 69 ft³/s, Oct. 4; minimum gage height, 1.68 ft, Oct. 4, 6.

		D	ISCH ARGE	, IN CU	BIC FI	ee t f	PER S		ID, WATER MEAN VAL		осто	BER 19	84 TO	SEPTEMBE	R 1985		
DAY	oc	r	NOV	DEC	J	NA	F	EB	MAR		APR	MA	Y	JUN	JUL	DUA	SEP
1	107	7	489	520	90	00	8	90	890		564	43	9	1740	931	107 0	1420
2	84	4	412	540	91	00	8	90	890		596	41	8	1350	806	1060	1490
3	73		495	57 0	9(00	8	90	890		640	40	3	1080	719	1060	1490
4	69	9	600	620	90	00	8	90	850		623	39	2	964	708	1120	1440
5	7:	2	590	670	9(00	8	90	800		577	38	5	911	804	1190	1360
6	7.		580	720	9(00	8	90	900		550	38	3	942	860	1180	1270
7	103		560	9 0 0	90	00	8	90	950		545	52	6	992	879	1160	1180
8	128	3	540	940	9	00	8	90	930		514	66	3	1010	868	1150	1100
9	131		530	940	90	00	8	90	930		498	66	2	9 75	851	1150	1040
10	130	0	520	920	91	00	8	90	930		486	66	9	984	833	1150	998
11	131		490	910		90	8	90	9 30		499	73	4	999	818	1150	957
12	129		520	910		90		90	930		492	83		993	816	1190	918
13	129		520	910		90		90	9 30		492	87		980	845	1220	890
14	167	7	520	910		90		90	940		476	86		996	872	1210	881
15	267	7	450	910	8	90	8	90	96 0		4 80	90	6	1060	889	1180	939
16	282		300	910		90	8	90	1050		47 2	115		1100	902	1180	1036
17	259		460	910		90		90	1220		452	109		1110	932	2110	1310
18	250		580	910		90		90	1320		439	98		1120	936	2460	1380
19	3 43		570	910		90		90	1380		436	91		1130	939	246C	1430
20	539	9	560	910	8	90	8	90	1340		426	88	2	1140	936	2370	1630
21	506		560	900		90		90	1200		444	86		1180	932	2230	1530
22	44:		560	900		90		90	1040		5 7 7	84		1240	926	2050	1120
23	406		560	900		90		90	862		551	82		1240	932	1880	746
24	382		560	900		90		90	802		558	80		1250	962	1720	632
25	363	3	560	900	8	90	8	90	797		525	9 4	5	1390	996	1400	743
26	353		560	900		90		90	711		515	116		1610	998	1100	812
27	427		560	900		90		90	689		502	122		1530	1020	904	890
28	56		540	900		90		90	657		480	124		1640	1040	891	942
29	609		4 80	900		90			568		464	125		1500	1050	970	1010
30	589		510	900		90			547		448	1 26		1180	1060	1090	1 07 0
31	583	1		900	8	90	_		554	•		167	U		1070	1210	
TOTAL	8683			26340	276		249		28387		3 21	26 25			28130	43 26 5	33648
MEAN	280		525	850		93		90	916		511	84		1178	907	1396	1122
MAX	60		600	940		00		90	1380		640	167		1740	1070	2460	1630
MIN	69		300	520		90		90	547		426	38		911	708	891	632
CFSM	.1:	4	.23	.37		39		39	.40		.22	.3		.51	.39	.61	.49
IN.	.14		.25	.43		45		40	.46		.25	.4		.57	.45	.70	.54
AC-FT	1722			52250	549	20	494		56310		390	5208			55800	85820	66740
CAL YR WTR YR		LATOI LATOI	266654 313712	ME AN ME AN	729 859		MAX MAX	21 24		69 69		FSM .3 FSM .3		IN 4.31 IN 5.07	AC-FT AC-FT	528900 62 2200	

05076000 THIEF RIVER NEAR THIEF RIVER FALLS, MN

LOCATION.--Lat 48°ll'08", long 96°l0'll", in NW\SW\sec.3, T.154 N., R.43 W., Marshall County, Hydrologic Unit 09020304, on right bank, 0.2 mi upstream from highway bridge, 5 mi north of city of Thief River Falls, 7 mi upstream from mouth, and 9 mi downstream from Mud Lake National Wildlife Refuge.

DRAINAGE AREA.--959 mi².

CAL YR 1984 TOTAL 54040.57 WTR YR 1985 TOTAL 179317.30 MEAN 148

MEAN 491

MAX 1500 MAX 2100

PERIOD OF RECORD. -- July 1909 to September 1917, April 1920 to September 1921, October 1922 to September 1924, October 1928 to September 1981, March 1982 to current year. Monthly discharge only for some periods, annual maximums for water years 1919, 1922, 1925, 1926, published in WSP 1308. October 1981 to February 1982, operated as a high-flow partial-record station.

REVISED RECORDS.--WSP 925: Drainage area. WSP 1308: 1917(M), 1924(M), 1929(M), 1931-33(M), 1935(M), 1937(M).

GAGE.--Water-stage recorder and control of grouted boulders. Datum of gage is 1,112.33 ft above National Geodetic Vertical Datum of 1929 (levels by Minnesota Department of Transportation). Prior to May 4, 1939, nonrecording gages at same site and datum.

REMARKS.--Estimated daily discharges: Oct. 30 to Nov. 3, Dec. 7-11, and Jan. 4 to Mar. 31. Records good except those for periods with ice effect, Oct. 30 to Nov. 3, Dec. 7-11, Jan. 4 to Mar. 31, which are poor. Some regulation by Thief and Mud Lakes.

AVERAGE DISCHARGE.--67 years (water years 1910-17, 1921, 1923-24, 1929-81, 1983-85), 166 ft^3/s , 120,300 acre-ft/yr; median of yearly mean discharges, 112 ft^3/s , 81,100 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,610 ft³/s, May 13, 1950, gage height, 17.38 ft; no flow at times in some years.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2,130 ft³/s, June 28, gage height, 11.27 ft; no flow Dec. 27 to

		DISCHAR	GE, IN CUB	IC FEET I	PER SECO	ND, WATER MEAN VAL	YEAR OCTO	BER 1984	TO SEPTEM	BER 1985		
DAY	OCT	NOV	DEC	J AN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	14 12 11 10 5.7	135 130 130 130 120	10 9.1 6.2 5.0 3.9	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00	1040 1040 1040 1010 954	519 460 390 422 386	1980 1860 1660 1510 1390	1900 1860 1800 1710 1600	201 192 175 182 213	1370 1350 1500 1510 1410
6 7 8 9 10	6.8 5.4 4.2 3.5 2.5	117 113 110 106 103	3.1 3.0 3.0 3.0 3.0	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00 .00	892 845 825 812 756	361 348 349 337 338	1320 1220 1120 1030 1000	1520 1460 1410 1330 1290	302 332 353 380 358	1310 1240 1170 1110 1070
11 12 13 14 15	2.2 1.9 1.8 1.9	101 103 100 67 25	3.0 2.8 2.2 1.7	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00 .00	759 745 736 785 743	356 577 910 915 916	838 671 552 428 305	1270 1250 1210 1190 1180	343 339 338 351 354	980 734 684 510 475
16 17 18 19 20	18 14 15 65 276	10 8.6 7.8 6.2 5.3	1.6 1.7 1.5 1.2	.00 .00 .00 .00	.00 .00 .00 .00	1.0 4.0 10 10	726 684 652 615 567	1230 1330 1290 1210 1120	296 296 296 293 290	1250 1280 1260 1230 1170	360 870 1460 1470 1460	463 459 508 558 1010
21 22 23 24 25	312 268 209 161 119	4.8 4.8 5.0 5.3 6.5	1.1 1.1 .66 .36	.00 .00 .00 .00	.00 .00 .00	300 500 700 900 1000	553 609 710 724 705	1030 937 862 795 765	290 323 281 311 607	1130 1060 877 673 613	1400 1370 1450 1740 1660	1140 1020 947 946 896
26 27 28 29 30 31	99 141 147 140 140 135	11 15 12 13 12	.01 .00 .00 .00	.00 .00 .00 .00	.00	1020 1040 1050 1050 1050	663 638 595 554 535	765 722 671 629 626 1650	1850 1910 2100 2090 1960	558 541 522 475 343 269	1540 1440 1360 1330 1390 1380	853 812 778 760 716
TOTAL ME AN MAX MIN CFSM IN. AC-FT	2346.1 75.7 312 1.8 .08 .09 4650	1717.3 57.2 135 4.8 .06 .07 3410	70.79 2.28 10 .00 .002 .002	.00 .000 .00 .00 .000	.00 .000 .00 .00 .000	9765.11 315 1050 .00 .33 .38 19370	22512 750 1040 535 .78 .87 44650	23216 749 1650 337 .78 .90 46050	30077 1003 2100 281 1.05 1.17 59660	35231 1136 1900 269 1.19 1.37 69880	26 093 842 1740 175 .88 1.01 51760	28289 943 1510 459 .98 1.10 56110

CFSM .15

CFSM .51

MIN .00

MIN .00

IN 2.10

IN 6.96

AC-FT 107200 AC-FT 355700

05078000 CLEARWATER RIVER AT PLUMMER, MN

LOCATION.--Lat 47°55'24", long 96°02'46", in SE\SW\k sec. 4, T.151 N., R.42 W., Red Lake County, Hydrologic Unit 09020305, on right bank 200 ft downstream from Soo Line Railroad bridge, 300 ft downstream from bridge on U.S. Highway 59, 0.9 mi northwest of railroad depot in Plummer, and 8 mi upstream from Hill River.

DRAINAGE AREA. -- 512 mi2.

PERIOD OF RECORD. -- April 1939 to September 1979. October 1979 to February 1982, annual maximums only. March 1982 to current year.

GAGE.--Water-stage recorder. Datum of gage is 1,099.12 ft, adjustment of 1912 (levels by U.S. Army Corps of Engineers). Prior to Nov. 10, 1939, nonrecording gage at site 100 ft upstream at same datum.

REMARKS.--Estimated daily discharges: Nov. 1-6 and Nov. 7 to Apr. 3. Records good except those for periods with ice effect, Nov. 1-6 and Nov. 7 to Apr. 3, which are fair. Since 1968, undetermined amounts of water diverted for the flooding of wild rice paddies upstream.

AVERAGE DISCHARGE.--43 years (water years 1940-79, 1983-85), 180 ft³/s, 130,400 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,940 ft³/s, Apr. 25, 1979, gage height, 12.31 ft; maximum gage height, 12.37 ft, Apr. 18, 1979 (backwater from ice); minimum discharge, 2.5 ft³/s, May 16, 17, 1977, gage height, 1.71 ft.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 500 ft³/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Oct. 21	0515	557	5.28	June 30	0700	713	5.94
Mar. 21		650	ice jam	July 27	1115	665	5.73
Apr. 26	0600	50 9	5.11	Aug. 19	0445	*1,650	*8.59
May 17	1245	1,150	7.37	Aug. 24	1345	764	6.09
June 1	1415	560	5.31	-			

Minimum daily discharge, 15 ft3/s, Mar. 13; minimum gage height, 2.41 ft, Oct. 1, 2.

			DISC	HARGE, I	N CUBIC	FEET PER	SECOND, W MEAN VALU		OCTOBER 1984	TO SE	EPTEMBER 198	5	
DAY	0	CT	NOV	DEC	J AN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1		28	190	107	67	51	. 39	250	292	547	609	489	227
2		29	200	105	66	51	39	244	260	532	518	454	224
3		29	210	103	65	50			237	481	449	440	213
4	:	29	230	101	64	50	38	195	222	419	382	414	213
5		29	220	100	63				220	389	336	434	199
6		30	210	98	62			140	202	354	305	423	178
7		30	196	97	61				1 9 5	326	293	435	164
8 -		34	191	96	61				178	289	268	362	151
9		36	188	94	60	47			156	254	247	293	143
10	:	35	178	92	60	47	35	77	142	223	260	268	142
11		3 4	155	90	59				124	181	282	225	139
12		34	151	89	59				437	145	221	209	134
13		3.5	169	88	58	45				126	194	267	1 26
14		42	148	87	58	45			878	109	181	300	121
15	1.	7 4	15 5	85	57	44	33	98	961	121	162	269	116
16		50	98	84	57	44		102	1100	133	159	264	136
17		31	130	82	56	44			1150	125	207	975	235
18		12	160	81	56	43	200	100	1120	105	203	1420	220
19		58	150	80	56	43		109	1020	106	201	1590	258
20	5.	15	140	79	55	42	500	104	924	104	204	1240	368
21		51	135	78	55	42		139	807	92	202	846	315
22		01	130	77	55	42		27 2	669	177	198	546	256
23		80	130	76	55	41		268	586	158	201	492	206
24		19	125	75	54	41			504	154	316	742	175
25	3	47	125	74	54	40	430	496	436	159	515	622	154
26		21	120	73	54	40		505	371	245	625	425	138
27		13	117	72	54	40		499	340	368	659	325	128
28		09	114	71	53	40		473	282	550	608	263	117
29		82	111	70	53		290	434	276	670	558	236	113
30		18	109	69	52		260	350	246	699	515	229	108
31	,2.	16		68	52		250		374		500	213	
TOTAL	594		4685	2641	1791	1258		6411	15452	8341	10578	15710	5417
MEAN		92	156	85.2	57.8	44.9	199		498	278	341	507	181
MAX		51	230	107	67	51		505	1150	699	659	1590	368
MIN		28	98	68	52	40		77	124	92	159	209	. 108
CFSM		38	.31	.17	.11	.09	.39	.42	.97	.54	.67	.99	.35
IN.		13	.34	.19	.13	.09		.47	1.12	.61	.77	1.14	.39
AC-FT	1180)0	9290	5240	3550	2500	12240	12720	30650	16540	20980	31160	10740
CAL YR	1984	TOTAL	50530	ME AN	138 MA:	X 1820	MIN 16	CFSM .27	IN 3.67	AC-FT	100200		
WTR YR		TOTAL		MEAN			MIN 15	CFSM .45		AC-FT	167400		

05078230 LOST RIVER AT OKLEE, MN

LOCATION.--Lat 47°50'35", long 95°51'30", in SE\NE\ sec.2, T.150 N., R.41 W., Red Lake County, Hydrologic Unit 09020305, on downstream side of bridge on State Highway 222 at northwest edge of Oklee, 12 mi upstream from mouth.

DRAINAGE AREA. -- 266 mi².

PERIOD OF RECORD.--April 1960 to September 1981, February 1982 to current year. Monthly and daily figures for April 1960, to June 1960, published in WSP 2113.

GAGE.--Nonrecording gage and crest-stage gage. Datum of gage is 1,126.94 ft, adjustment of 1912 (levels by U.S. Army Corps of Engineers). Prior to Sept. 9, 1960, reference points at same site at datum 8.00 ft higher. Sept. 9, 1960, to Sept. 30, 1964, nonrecording gage at same site at datum 8.00 ft higher.

REMARKS.--Estimated daily discharges: Nov. 16 to Mar. 27. Records fair except those for period with ice effect, Nov. 16 to Mar. 27, which are poor.

AVERAGE DISCHARGE.--24 years, 75.6 ft3/s, 54,770 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 3,210 ft³/s, Apr. 11, 1969, gage height, 14.91 ft, from floodmark; maximum gage height, 16.72 ft, present datum, May 24, 1962; no flow Feb. 16 to Mar. 21, 1963, Feb. 15 to Mar. 2, 1964, Jan. 6 to Mar. 11, 1977.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage known since at least 1897, 18.39 ft, present datum, Apr. 21, 1950, from floodmarks, discharge, 2,790 ft³/s.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2,320 ft³/s, Aug. 18, gage height, 15.03 ft; minimum daily, 4.1 ft³/s, Oct. 1.

		DISCHARGE	, IN CUBI	C FEET PE		, WATER YEA Ean values	R OCTOBER	1984 TO	SEPTEMBER	R 1985		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	4.1 4.5	76 54	27 25	5.6 5.6	5.4 5.4	6.2 6.4	222 198	113 91	587 367	177 158	213 206	74 71
3	5.3	87	23	5.6	5.4	6.8	177	78	229	129	183	70
4	6.6	87	21	5.6	5.4	7.2	158	72	177	109	207	67
5	8.3	65	19	5.6	5.4	7.8	151	66	141	97	195	59
6	9.4	71	18	5.6	5.4	8.8	133	61	123	87	181	52
7 8	12 12	71 77	17 16	5.4	5.4	10	132 123	60 47	134 90	80 66	151 132	45 42
9	14	78	15	5.4 5.4	5.4 5.4	12 14	119	44	169	58	118	40
10	14	71	14	5.4	5.5	16	113	43	98	53	86	39
11	14	53	13	5.4	5.5	20	104	101	38	40	74	36
12	14	71	12	5.4	5.5	27	96	437	34	34	89	30
13	15	71	11	5.4	5.5	39	104	764	28	32	110	31
14	33	57	10	5.4	5.5	50	103	630	29	31	106	32
15	52	27	9.6	5.4	5.5	70	107	517	30	27	100	30
16	122	50	9.2	5.4	5.5	120	106	622	27	25	78	39
17	127	5 6	8.8	5.4	5.5	170	103	593	25	92	1400	42
18	98	57	8.4	5.4	5.5	200	101	482	21	94	2240	67
19	188	56	8.0	5.4	5.5	270	93	367	27	78	1690	74
20	279	55	7.8	5.4	5.6	380	88	297	22	69	941	116
21	289	52	7.6	5.4	5 .6	430	205	229	26	61	521	148
22	244	46	7.4	5.4	5.6	450	202	188	32	55	3 2 6	116
23	165	40	7.2	5.4	5.6	440	189	170	49	62	374	99
24	160	35	7.0	5.4	5.7	410	242	154	54	500	326	86
25	148	38	6.8	5.4	5.8	370	244	146	62	941	222	72
26	130	42	6.6	5.4	5.9	320	224	132	220	1020	156	62
27	121	38	6.4	5.4	6.0	275	183	122	201	710	101	61
28	108	35	6.2	5.4	6.1	247	159	113	275	535	87	56
29	98	32	6.0	5.4		257	141	122	347	381	86 88	52 49
30 31	93 90	29 	5.8 5.8	5.4 5.4		246 222	121	150 399	255	293 254	80	
											_	
TOTAL	2678.2	1677	365.6	168.6	155.5	5108.2	4441	7410	3917	6348	10867	1857
MEAN	86.4	55.9	11.8	5.44	5.55	165	148	239	131	205	351	61.9
MAX	289	87	27	5.6	6.1	450	244	764	587	1020	2240	148 30
MIN CFSM	4.1 .33	.27 .21	5.8	5.4	5.4	6.2 .62	.56	43 •90	21 .49	25 •77	74 1.32	.23
IN.	.33	.21	.04 .05	.02 .02	.02 .02	.62 .71	.62	1.04	.55	.89	1.52	.25
AC-FT	5310	3330	725	334	308	10130		14700	7770	12590	21550	3680
	23.10	3330	123	334	300	10130	0010	,00	,,,,		22774	0000

CAL YR 1984 TOTAL 16077.21 MEAN 43.9 MAX 582 MIN .09 CFSM .17 IN 2.25 AC-FT 31890 WTR YR 1985 TOTAL 44993.10 MEAN 123 MAX 2240 MIN 4.1 CFSM .46 IN 6.29 AC-FT 89240

05078500 CLEARWATER RIVER AT RED LAKE FALLS, MN

LOCATION.--Lat 47°53'15", long 96°16'25", in NW\NE\ sec.22, T.151 N., R.44 W., Red Lake County, Hydrologic Unit 09020305, on left bank 40 ft downstream from Great Northern Railroad bridge in Red Lake Falls, 1.4 mi upstream from mouth, and 3 mi downstream from Badger Creek.

DRAINAGE AREA.--1,370 mi², approximately.

PERIOD OF RECORD.--June 1909 to September 1917, October 1934 to September 1981, March 1982 to current year.

Monthly discharge only for October, November, 1934, published in WSP 1308. October 1981 to February 1982, operated as a high-flow partial-record station.

REVISED RECORDS.--WSP 355: 1911-12. WSP 1438: 1910-11, 1917(M). WDR MN-84-1:1983.

GAGE.--Water-stage recorder. Datum of gage is 949.49 ft, adjustment of 1912 (levels by U.S. Army Corps of Engineers). Prior to Sept. 12, 1911, nonrecording gage at site 0.5 mi upstream, and Sept. 12, 1911, to Sept. 30, 1917, nonrecording gage at site 40 ft upstream at different datum.

REMARKS.--Estimated daily discharges: Oct. 1-16, Nov. 19-22, and Dec. 3 to Mar.22. Records good except those for periods of no gage-height record, Oct. 1-16, and periods with ice effect, Nov. 19-22 and Dec. 3 to Mar. 22, which are poor.

AVERAGE DISCHARGE.--58 years (1910-17, 1935-81, 1983-85), 320 $\rm ft^3/s$, 231,800 acre-ft/yr; median of yearly mean discharges, 284 $\rm ft^3/s$, 206,000 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.—-Maximum discharge, 10,300 ft³/s, Apr. 25, 1979, gage height, 12.38 ft; maximum gage height, 15.85 ft, Mar. 6, 1983, from high-water mark (backwater from ice); no flow Sept. 15, 1936, Sept. 14, 1939, Aug. 19-22, 1940.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 7,120 ft³/s, Aug. 19, gage height, 9.86 ft; minimum daily, 36 ft³/s, Oct. 1.

		DISCHARGE,	IN CUBI	C FEET	PER SECO	ND, WATER MEAN VAL		TOBER 1984	TO SEPTEM	BER 1985		
DAY	OCT	NOV	DEC	J AN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEF
1 2	36	379	196	100	73	60	729		1180	1210	1540	611
2	41	169	188	98	72	60	778		1290	1060	1410	597
3	45	295	185	96	72	60	843	588	1160	963	1310	593
3 4	45	365	180	94	71	60	751	552	1000	849	1240	583
5	45	385	178	93	70	60	644		906	749	1230	574
6	49	370	174	92	70	60	583	511	850	677	1160	547
7	52	354	170	91	70	60	547		769	625	1090	542
8	56	314	168	90	69	60	511		682	584	983	529
ğ	60	300	164	89	69	60	463		593	537	866	520
10	60	264	160	88	68	72	417		516	504	763	498
11	60	206	154	87	67	100	388	388	455	522	738	459
12	60	247	150	86	66	155	376		400	486	658	438
13	62	260	148	85	66	205	355	1860	359	409	658	400
	70	266			65	287	347		335	377	732	363
14			144	84								
15	200	189	140	83	64	330	355	2160	316	348	722	343
16	500	118	138	82	64	400	359		308	3 20	673	339
17	415	123	135	82	63	500	351	2560	304	518	3440	443
18	404	209	132	82	62	700	335		283	594	6000	471
19	443	250	128	82	62	1000	355		249	564	6720	500
20	898	255	125	81	62	1300	351	1860	251	526	5060	705
21	1080	245	122	80	61	1500	347	1660	246	525	3030	749
22	1030	235	120	79	61	1600	611	1450	266	498	1890	635
23	910	220	118	78	60	1570	822	1260	340	493	1440	524
24	763	207	115	78	60	1360	795	1130	332	1110	1870	435
25	701	211	113	77	60	1260	9 70	1010	3 5 3	2070	1840	371
26	696	233	112	77	60	1140	994	894	414	2250	1310	324
27	656	245	110	76	60	1070	964	828	664	2210	1000	292
28	628	230	108	76	60	937	906		888	1930	795	273
29	591	216	106	75		766	850		1170	1760	717	249
30	539	181	104	74		725	784		1270	1630	712	234
31	487		102	74		739				1560	682	
TOTAL	11682	7541	4387	2609	1827	18256	17881	35144	18149	28458	52279	14141
MEAN	377	251	142	84.2	65.3	589	596		605	918	1686	471
	1080		196	100	73	1600	994		1290	2250	6720	749
MAX MIN		385		74	60	60	335		246	320	658	234
	36	118	10.2							.67	1.23	.34
CFSM	.28	.18	.10	.06	.05	.43	.44		.44		1.42	
IN.	.32	.20	.12	.07	.05	.50	.49	.95	.49	.77		.38
AC-FT	23170	14960	8700	5170	3620	36210	35470	69710	36000	56450	103700	28050
CAL YR WTR YR		AL 106891 AL 212354	MEAN 29 MEAN 58		5170 6720	MIN 18 MIN 36	CFSM .2 CFSM .4			212000 421200		

05079000 RED LAKE RIVER AT CROOKSTON, MN

LOCATION.--Lat 47°46'32", long 96°36'33", in SW\SW\sec.30, T.150 N., R.46 W., Polk County, Hydrologic Unit 09020303, on right bank 100 ft upstream from Sargent Street bridge in Crookston, 0.3 mi downstream from Interstate Power Co.'s dam, 0.6 mi downstream from bridge on U.S. Highway 75, and 53 mi upstream from mouth.

DRAINAGE AREA. -- 5,280 mi², approximately.

CAL YR 1984 TOTAL 498941 WTR YR 1985 TOTAL 731228 MEAN 1363

2003

MEAN

MAX

MAX

14200

9240

MTN 119

MIN 119

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- May 1901 to current year. Monthly discharge only for some periods, published in WSP 1308. Figures of daily discharge for Apr. 3-30, 1904, published in WSP 130, have been found unreliable and should not be used.

REVISED RECORDS.--WSP 1115: 1906, 1915-16, 1919-20, 1922, 1925, 1927, 1929. WSP 1308: 1916(M), 1919(M), 1928(M), 1930(M). See also PERIOD OF RECORD.

GAGE.--Water-stage recorder. Datum of gage is 832.72 ft above National Geodetic Vertical Datum of 1929.

May 18, 1901, to June 30, 1909, nonrecording gage at bridge 300 ft upstream at same datum. July 1, 1909, to Sept. 25, 1911, nonrecording gage, Sept. 26, 1911, to Sept. 30, 1919, water-stage recorder, Oct. 1, 1919, to Sept. 30, 1930, nonrecording gage, at present site and datum.

REMARKS.--Estimated daily discharges: Nov. 20-23, and Dec. 2 to Apr. 8. Records good except those for periods with ice effect, Nov. 20-23 and Dec. 2 to Apr. 8, which are fair. Diurnal fluctuation prior to 1975 caused by powerplant 1,000 ft upstream. Runoff from 1,950 mi² in the headwaters of Red Lake River is completely controlled by dam at outlet of Lower Red Lake. Flow partially affected by occasional regulation at Thief and Mud Lakes in Thief River basin (see station 05076000).

AVERAGE DISCHARGE. -- 84 years, 1,144 ft3/s, 828,800 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 28,400 ft³/s, Apr. 12, 1969, gage height, 27.33 ft; no flow for part of July 13, 1960 (caused by regulation of powerplant upstream).

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 9,580 ft³/s, Aug. 19, gage height, 16.38 ft; minimum, 108 ft³/s, Oct. 8, gage height, 2.76 ft.

		DISCHARGE	E, IN C	UBIC FEET	PER SECO	ND, WATER MEAN VAL		OBER 1984	TO SEPTE	MBER 1985		
DAY	OCT	NOV	DEC	J AN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	325	1020	775	1040	970	900	2600	1800	4810	4760	2740	3280
2	290	664	800	1040	970	900	2400	1680	5590	4200	2560	3410
3	227	496	820	1030	970	900	2300	1590	5170	3820	2460	3520
4	199	997	840	1030	960	900	2200	1440	4280	3550	2410	3640
5	179	1060	880	1030	960	900	2100	1380	3690	3260	2360	3660
3	1/9	1000	000	1030	960	900	2100	1360	30 90	3200	2300	3000
6	120	1260	950	1020	960	900	2000	1400	3360	304 0	2390	3450
7	145	1290	1050	1020	960	900	1900	1300	3170	2980	2580	3190
8	119	1230	1100	1010	960	900	1800	1250	3010	2930	2450	2970
9	157	1110	1100	1010	960	950	1740	1410	2830	2820	2340	2800
10	143	1050	1100	1010	950	1000	1760	1450	2620	2660	2250	2630
		1000		1010	330	1000	2.00	2450	2020	2000	2200	2030
11	175	986	1100	1010	950	1080	1700	1490	2530	2590	2160	252 0
12	204	875	1100	1010	950	1180	1680	1560	2350	2550	2110	2380
13	188	953	1090	1010	940	1300	1690	2630	2110	2490	2080	2100
14	195	1010	1090	1000	940	1420	1630	3930	2010	2380	2130	1990
15	248	945	1090	1000	940	1600	1710	4060	1830	2330	2160	1770
		7.5	2000	2000	340	2000	2,20		1050	2330	2200	2
16	290	696	1090	1000	940	1850	1660	4540	1700	2310	2190	1750
17	693	522	1080	1000	940	2020	1580	5230	1760	2550	3830	1750
18	839	547	1080	1000	930	2300	1580	5110	1740	2910	7350	2040
19	870	634	1080	1000	930	2600	1530	4610	1700	2740	9240	2390
20	1080	900	1080	1000	930	3000	1490	4170	1670	2670	9210	2960
21	2220	900	1070	990	930	3200	1430	3800	1730	2550	7640	3980
22	2460	900	1070	990	920	3500	1460	3480	1800	2450	6100	3900
23	2170	900	1070	980	920	3800	1910	3180	1880	2400	5240	3400
24	1800	906	1070	980	920	3900	2180	2970	1850	2920	5140	2760
25	1550	924	1060	980	920	3900	2260	2760	1900	3610	5970	2320
26	1420	912	1060	980	920	3880	23 20	2600	2460	3720	5330	2080
27	1330	911	1060	9 8 0	910	3750	2230	2710	4070	3660	4390	2070
28	1280	921	1050	980	910	3400	2140	2730	4550	3470	3650	20 90
29	1300	874	1050	980		3150	2050	2710	4970	3180	3270	2070
30	1320	864	1050	980		2900	1970	2600	5120	3070	3070	2040
31	1370		1040	980		2750		3010		2820	3120	
TOTAL	24906	27 257	31945	31070	26360	65630	57000	84580	88260	93390	119920	80910
MEAN	803	909	1030	1002	941	2117	1900	2728	2942	3013	3868	26 97
MAX	2460	1290	1100	1040	970	3900	2600	5230	5590	4760	9240	3980
MIN	119	496	775	980	910	900	1430	1250	1670	2310	2080	1750
CFSM	.15	.17	.20	.19	.18	.40	.36	.52	.5 6	.57	.73	.51
IN.	.18	.19	.23	.22	.19	.46	.40	.60	.62	.66	.84	.57
AC-FT	49400	54060	63360	61630	52290	130200	113100	167800	175100	185200	237900	160500

CFSM .26 CFSM .38 IN 3.52

IN 5.15

AC-FT

AC-FT

989600

1450000

05079000 RED LAKE RIVER AT CROOKSTON, MN--Continued (National stream-quality accounting network station)

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1962-66, 1968-69, 1973-76, 1979 to current year. REMARKS.--Letter K indicates non-ideal colony count.

	WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985											
DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS) (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	PH (STAND- ARD UNITS) (00400)	PH LAB (STAND- ARD UNITS) (00403)	TEMPER- ATURE, AIR (DEG C) (00020)	TEMPER- ATURE (DEG C) (00010)	TUR- BID- ITY (NTU) (00076)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	
OCT 17	1600	775	460	419	8.5	8.2	10.0	10.0	6.2	729	10.3	
NOV 27	1030	858	400	38 9	8.1	8.1	-2.0	0.0	8.0	724	14.0	
FEB 20	1515	933	320	359	8.2	7.9	5.0	0.5	3.5	722	13.2	
APR 02	1445	2490	310	321	7.6	7.6	8.0	1.0	70	722	10.2	
JUN 19 AUG	1030	1660	360	359	8.2	8.0	16.0	18.0	4.5	741	8.5	
08	1100	2440	415	3 9 7	8.3	7.8	23.0	22.0	17	735	7.9	
DATE	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	ALKA- LINITY FIELD (MG/L AS CACO3) (00410)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	
OCT 17 NOV	180	120	52	22	10	4.4	162	186	50	9.1	0.3	
27 FEB	>600	240	49	18	5.3	2.6	171	176	23	3.7	<0.1	
20 APR	К6	K20	48	17	4.5	2.6	164	177	9.2	2.9	0.1	
02 JUN	K32	K2000	40	14	3.5	3.7	106	126	34	4.6	<0.1	
19 AUG	40	530	47	17	3.7	2.4	159	165	30	2.8	0,1	
08	99	180	53	19	4.2	3.0	177	182	34	3.8	0.2	

DATE	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS, TOTAL (MG/L AS P) (00665)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS, ORTHO, DIS- SOLVED (MG/L AS P) (00671)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
OCT										
17	2.0	272	<0.10	0.01	0.9	0.08	0.08	0.04	16	94
NOV 27	4.2	217	0.16	<0.01	2.1	0.06	<0.01	<0.01	18	95
FEB	4.2	217	0.10	(0.01	2.1	0.00	(0.01	(0.01	10	93
20	2.1	208	<0.10	0.08	0.8	<0.01	<0.01	<0.01	16	97
APR										
02	6.7	209	0.97	<0.01	1.8	0.18	0.04	<0.01	397	97
JUN										
19	3.2	238	<0.10	<0.01	1.3	0.09	0.02	<0.01	54	100
AUG		201	0.10	40.03		0.04		0 00	00	100
08	11	281	0.13	<0.01	1.3	0.04	0.02	0.02	82	10 0

RED RIVER OF THE NORTH BASIN 05079000 RED LAKE RIVER AT CROOKSTON, MN--Continued

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)
OCT 17	1600	20	2	62	<0.5	2	<1	<3	1	16	3
FEB 20 APR	1515	<10	<1	59	0.9	<1	<1	<3	<1	6	<1
02 AUG	1445	60	1	42	<0.5	<1	10	<3	5	160	<1
08	1100	10	4	59	2	<1	8	<3	5	20	<1

DATE	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)
OCT										
17 FEB	13	13	<0.1	<10	2	<1	<1	130	<6	7
20 APR	23	6	<0.1	<10	1	<1	<1	93	<6	42
02 AUG	21	46	<0.1	<10	1	<1	<1	84	<6	18
08	12	4	<0.1	<10	4	<1	<1	120	<6	9

05082500 RED RIVER OF THE NORTH AT GRAND FORKS, ND

LOCATION.--Lat 47°56'34", long 97°03'10", in sec.2, T.151 N., R.50 W., Grand Forks County, Hydrologic Unit 09020301, on the right bank, 200 ft upstream from the DeMers Avenue bridge, 0.4 mi downstream from Red Lake River, and at mile 293.8.

DRAINAGE AREA. -- 30,100 mi², approximately, including 3,800 mi² in closed basins.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- April 1882 to current year. Prior to May 1901 monthly discharge only, published in WSP 1308.

REVISED RECORDS.--WSP 855: 1936(M). WSP 1115: 1942. WSP 1175: 1897(M). WSP 1388: 1904, 1914-15, 1917-19, 1921-22, 1927, 1950. WSP 1728: Drainage area. WRD-ND-81-1: 1882, 1897 (M).

GAGE.--Water-stage recorder. Datum of gage is 780.00 ft above National Geodetic Vertical Datum of 1929. Apr. 14, 1965, to Sept. 30, 1983, water-stage recorder 1.9 mi downstream at a datum of 778.35 ft. Nov. 3, 1933, to Apr. 13, 1965, water-stage recorder 0.3 mi upstream at 778.35 ft datum. See WSP 1728 or 1913 for history of changes prior to Nov. 3, 1933.

REMARKS.--Estimated daily discharges: Mar. 16-31 and May 4-5. Records good except those for estimated discharges, which are fair.

AVERAGE DISCHARGE.--103 years, 2,593 ft^3/s , 1,879,000 acre-ft/yr; median of yearly mean discharge, 2,360 ft^3/s , 1,710,000 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, about 85,000 ft³/s, Apr. 10, 1897, gage height, 50.2 ft, site and datum then in use, from rating curve extended above 54,000 ft³/s; minimum, 1.8 ft³/s, Sept. 2, 1977, caused by unusual regulation during repair of dam at Grand Forks.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 17,800 $\rm ft^3/s$, May 19, gage height, 25.90 ft; minimum daily, 306 $\rm ft^3/s$, Oct. 10.

		DISC	CHARGE, IN	CUBIC FE		SECOND, WATE	ER YEAR	OCTOBER 1	984 TO SE	PTEMBER 1	985	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	634	3 0 7 0	1710	1440	1400		6790	42 80	7140	9790	66 80	5520
2	565	1980	1520	1380	1410	1330	6750	4200	8810	9520	6 2 5 0	5 80 0
3	530	1620	1150	1400	1400	1380	6 850	4300	10300	87 50	5 86 0	5 820
4	507	1960	9 83	1410	1380	1420	6750	4130	11400	7940	5610	57 40
5	477	2210	850	1400	1370	1 43 0	6790	3960	12300	7210	5330	5740
6	439	2340	694	1370	1360		6640	3 81 0	12400	6530	5150	5740
7	3 91	2550	75 9	1380	1330	1360	6140	3 820	11700	6020	51 2 0	553C
8	336	2930	990	1390	1310	1230	5750	3700	12000	5730	5250	5300
9	318	3030	1240	1410	1330	1340	5500	3540	10900	5520	5120	5110
10	306	2 87 0	1580	1410	1370		5200	3510	9200	5270	4 8 80	4 890
11	358	2520	1 830	1390	1400	1720	4970	3550	77 80	5000	4690	4770
12	375	2260	1900	1360	1440	1810	4760	5 8 8 0	6900	47 80	4600	4750
13	403	2090	1850	1390	1400		46 40	10300	6300	4590	4450	4630
14	420	2310	1760	1400	1420		4510	14800	5900	4440	4370	4300
15	563	2540	1680	1370	1410		4270	16700	5650	4290	4400	4040
16	602	1910	1590	1360	1 400	4620	4200	17200	5350	4200	4530	3770
17	1120	1160	1560	1410	1370	5560	4110	17400	5150	41 90	5 2 3 0	3650
18	2500	1000	1590	1420	1360		3940		5110	43 20	7140	3640
19	3220	1090	1590	1410	1330		3 83 0	17700	5130	4630	9030	3 83 0
20	3 2 5 0	1250	1510	1400	1330		3650	16900	5010	4670	10200	4160
21	3630	1350	1380	1410	1310	10100	3600	15600	4940	4920	11200	4690
22	5370	1600	1 450	1410	1310		3390	14000	4930	5160	11200	5560
23	6150	1720	1540	1380	1290		3340	12300	4920	5410	9600	5 67 0
24	5930	17 80	1560	1370	1310		3 81 0	10500	4970	5520	81 0 0	5250
25	5 60 0	1930	1560	1360	1320		4230	9130	4970	5 8 80	7520	45 80
2 6	5230	2040	1510	1370	1310	13200	4440	8060	4950	6400	7 83 0	406 0
27	4760	2030	1500	1360	1310		4620	7370	5480	6 86 0	7670	3690
28	4310	1900	1490	1360	1320		46 20	6980	7360	7190	6 80 0	3620
29	3 83 0	1770	1490	1370			4530	6680	8760	7350	6030	3610
30	3560	1740	1480	1370			4320	6430	9520	7300	5550	3590
31	3340		1460	13 80				6320		7130	5 27 0	
TOTAL	69024	60550	44756	43040	3 80 0 0	179550	146940	280750	225230	186510	200660	141050
MEAN	2227	2018	1444	1388	13 57		4898		7508	6016	6 47 3	4702
MAX	6150	3070	1900	1440	1440		6 85 0		12400	9790	11200	5 82 0
MIN	306	1000	694	1360	1290		3340		4920	4190	4370	3590
CFSM	.07	.07	.05	.05	.05	.19	.16		.25	.20	.22	.16
IN.	.09	.07	.06	.05	.05	.22	.18		.28	.23	.25	.17
AC-FT	136900	120100	88770	85370	75370		291500		446700	369900	398000	279800
C-11	130300	120100	00,70	05570	, , , , , ,	. 550200		333330	4.40700		20000	

CAL YR 1984 TOTAL 1551310 MEAN 4239 MAX 32200 MIN 306 CFSM .14 IN 1.92 AC-FT 3077000 WTR YR 1985 TOTAL 1616060 MEAN 4428 MAX 17700 MIN 306 CFSM .15 IN 2.00 AC-FT 3205000

05082500 RED RIVER OF THE NORTH AT GRAND FORKS, ND--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1949, 1956 to current year.

DATE

OCT 30... APR 01... SEP 24...

DATE

OCT 30. APR

01... SEP

24...

TIME

1320

1145

1635

	WATER QUA	ALITY DATA	A, WATER Y	EAR OCTOB	ER 1984 TO	SEPTEMB	ER 1985		
	DATI	B Time	STREA FLOW INSTA TANEO (CFS (0006	CON- N- DUCT US ANCE (US/C	TEMPEI ATURI AIR M) (DEG (E, TEMPE ATUR (DEG	E C)		
	OCT	100					_		
	DEC.	1320	344	0 60	0 -6	.0 2	.5		
	20. JAN	1605	152	0 64	0 -18	.0 0	.0		
		1535	132	0 54	0 -10	.0 0	.0		
	27	1620	132	0 40	0 2	.0 0	.0		
	MAR 24			0 33	0 14	.0 0	.5		
	26 28						.0 .5		
	APR 01						.0		
	29								
	MAY 15.					.5 14			
	17 20								
	24. Jun	1055	1060	0 54	5 17	.0 18	.5		
	04. 17.								
	JUL 22	1435	512	0 48	0 26	.0 24	.0		
		1305	1070	0 46	5 22	.0 23	.0		
	SEP 24	1635	496	0 47	5 9.	.5 10	.5		
)ATE	TIME	PH (STAND- ARD UNITS) (00400)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	CAR- BONATE, FET-LAB (MG/L AS CO3) (95445)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	
30	1320	8.3	65	30	17	6.4	0	160	
01	1145	8.3	45	19	11	5.6	2	160	
24	1635	7.0	55	23	9.0	5.4	16	130	
	DATE	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F)	SILICA, I DIS- I SOLVED (MG/L AS SIO2)	DEG. C DIS- SOLVED (MG/L)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS NO3) (71851)		
	30 APR	140	9.0	0.2	14	440	3.1		
	01 SEP	61	11	0.1	8.0	199	1.0		
	24	67	13	0.1	12	296	1.0		
ARSEI DI: SOLV (UG, AS (S- DIS VED SOLV /L (UG/ AS) AS I	S- DIS /ED SOLV 'L (UG/ B) AS F	ED SOLVE L (UG/: E) AS P	DISED SOLVE L (UG/ B) AS L	- DIS- ED SOLVE L (UG/I I) AS M	MERCUI DIS- D SOLVI (UG/I N) AS H	- DIS- ED SOLVE L (UG/I G) AS MO	M, NIUM, DIS- SD SOLVED (UG/L)) AS SE)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)
	4 4	10 3	0 <	1 2:	3 10	<0.	1 3	3 <1	240
			i0 <					2 <1	120
	2 6	50 6	io <						200

05087500 MIDDLE RIVER AT ARGYLE, MN

LOCATION.--Lat 48°20'25", long 96°48'58", in NE\NW\ sec.15, T.156 N., R.48 W., Marshall County, Hydrologic Unit 09020309, on left bank 30 ft upstream of bridge on County Highway 4 in Argyle and 14 mi upstream from mouth.

PERIOD OF RECORD.--March to September 1945, October 1950 to September 1981. February 1982 to current year.

Monthly discharge only for some periods, published in WSP 1728. October 1981 to January 1982, operated as a high-flow partial-record station.

Datum of gage is 828.53 ft above National Geodetic Vertical Datum of 1929. Prior GAGE. -- Water-stage recorder. to Nov. 8, 1951, nonrecording gage and Nov. 8, 1951, to Sept. 18, 1952, water-stage recorder at site 800 ft downstream at datum 1.0 ft higher. Sept. 19, 1952, to June 28, 1982, recording gage at site 800 feet downstream at present datum. June 29, 1982, to Sept. 20, 1983, nonrecording gage at present site and datum.

REMARKS.--Estimated daily discharges: Oct. 20-23, Dec. 5 to Mar. 29, June 20 to July 9, and Aug. 1-13. Records fair except those for periods of no gage-height record, Oct. 20-23, June 20 to July 9, and Aug. 1-13, and period with ice effect, Dec. 5 to Mar. 29, which are poor.

AVERAGE DISCHARGE.--34 years (water years 1951-81, 1983-85), 41.4 $\rm ft^3/s$, 29,990 acre-ft/yr; median of yearly mean discharges, 38 $\rm ft^3/s$, 27,500 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,260 ft³/s, July 3, 1975, gage height, 16.59 ft present datum, site then in use; no flow at times in most years.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of April 1950 reached a stage of 15.25 ft present datum, site then in use, from floodmarks, discharge, 2,790 ft³/s.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 939 ft3/s, June 29, gage height, 12.58 ft, from highwater mark; no flow Oct. 1-10.

		DISCHARGE,	IN CUBIC	FEET	PER SECO	ND, WATER MEAN VAL		TOBER 198	4 TO SEPTE	MBER 1985		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	.43	.52	.17	.13	.20	92	28	79	500	3.7	21
2 .	.00	.39	.52	.17	.13	.21	100	23	377	370	3.4	20
3	.00	.39	.39	.17	.13	.22	74	21	670	280	3.2	19
4	.00	.43	.35	.16	.13	.24	86	20	683	220	10	54
5	.00	. 43	.70	.16	.13	.26	113	16	535	180	20	146
6	.00	.43	.90	.16	.13	.28	92	16	397	135	16	156
7	.00	.44	.60	.15	.13	.30	76	17	270	110	14	139
8	.00	.50	.50	.15	.13	.35	70	17	191	90	12	103
9	.00	.48	.45	.15	.13	.40	62	14	150	75	10	81
10	.00	.46	.40	.14	.13	.50	50	13	124	54	9.0	56
11	.09	.44	.37	.14	.13	.65	43	9.6	100	44	9.4	43
12	.08	.41	.34	.14	.13	.90	42	10	82	35	9.8	33 -
13	.08	.41	.32	.13	.13	1.2	57	9.2	72	26	10	25
14	.08	44	.31	.13	.13	1.7	122	12	62	20	10	19
15	.57	.52	.30	.13	.13	2.5	236	63	53	17	10	16
16	.48	.50	.29	.13	.14	4.0	224		45	13	9.2	14
17	.25	.46	.28	.13	.14	6.0	183	88	38	13	12	11
18	.25	.37	.27	.13	.14	10	147	125	34	11	39	7.3
19	.73	.39	. 26	.13	.14	25	112		27	11	92	6.3
20	.70	.32	.25	.13	.15	45	85	114	24	9.6	94	7.0
21	.60	.30	.24	.13	.15	80	64	87	22	13	78	6.6
22	.55	.43	.23	.13	.15	130	54		30	16	63	7.5
23	.50	.50	.22	.13	.16	200	47		50	12	58	7.3
24	.44	.52	.21	.13	.16	240	43	48	70	9.6	50	7.8
25	.41	.66	.21	.13	.17	255	42	39	120	8.8	57	7.5
26	.32	.79	.20	.13	.17	260	39		300	8.0	49	7.5
27	.30	.76	.20	.13	.18	265	38		600	7.3	41	11
28	.37	.66	.19	.13	.19	1 9 5	36		800	6.3	34	16
29	.41	•57	.19	.13		170	34		900	5.4	31	14
30	.37	•55	.18	.13		132	33	20	700	5.4	30	14
31	.37		.18	.13		102		36		4.2	26	
TOTAL	7.95			4.33	3.99	2128.91	2496	1298.8	7605	2309.6	913.7	1075.8
MEAN	. 26	.48	.34	.14	.14	68.7	83.2	41.9	254	74.5	29.5	35.9
MAX	.73	.79	.90	.17	.19	265	236		900	500	94	156
MIN	-00	.30	.18	.13	.13	.20	33	9.2	22	4.2	3.2	6.3
CFSM	.001	.002	.001	.001	.001	.26	.31	.16	.96	.28	.11	.14
IN.	.00	.00	.00	.00	.00	.30	.35	.18	1.07	.32	.13	.15
AC-FT	16	29	21	8.6	7.9	4220	4950	2580	15080	4580	1810	2130
CAL YR I			MEAN 2 MEAN 4		MAX 492 MAX 900	MIN .0	0 CFSM 0 CFSM	.09 IN		-FT 17460 -FT 35440		

05092000 RED RIVER OF THE NORTH AT DRAYTON, ND

LOCATION.--Lat 48°34'20", long 97°08'50", in SE\SE\SE\SE\ sec.24, T.159 N., R.51 W., Pembina County, Hydrologic Unit 09020311, on downstream end of east pier of interstate highway bridge, 1.5 mi northeast of Drayton, and at mile 206.7.

DRAINAGE AREA. -- 34,800 mi², approximately, includes 3,800 mi² in closed basins.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- April 1936 to June 1937, April 1941 to current year (fragmentary prior to April 1949).

REVISED RECORDS.--WSP 1388: 1949-50. WSP 1728: Drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 755.00 ft above National Geodetic Vertical Datum of 1929 (Minnesota highway benchmark). Prior to Nov. 30, 1954, nonrecording gage at site 1.5 mi upstream at datum 1.59 ft higher.

REMARKS.--Estimated daily discharges: Oct. 27 to Nov. 13 and Dec. 19 to Apr. 10. Records good except those for estimated daily discharges, which are fair. Some regulation by reservoirs on tributaries.

AVERAGE DISCHARGE.--36 years (1950-85), 3,846 $\rm ft^3/s$, 2,786,000 acre-ft/yr; median of yearly mean discharges, 3,340 $\rm ft^3/s$, 2,420,000 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 92,900 ft³/s Apr. 28, 1979, gage height, 43.66 ft; minimum observed, 7.7 ft³/s, Oct. 16, 1936, gage height, 1.75 ft, former site and datum.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of April 1897 reached a stage of about 41 ft, at site and datum in use prior to Nov. 30, 1954.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 17,700 ft³/s, May 21, gage height, 28.12 ft, Mar. 26; minimum daily, 298 ft³/s, Oct. 13.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 MEAN VALUES

					••		•					
DAY	OCT	NOV	DEC	J AN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	7 81	3510	2000	1530	1300	1300	11000	46 0 0	7500	10800	7500	6120
2	695	3140	1870	1500	1300	1300	9700	4470	8200	12200	7400	5750
3	697	2930	1770	1490	1300	1300	8600	4350	9600	12800	7300	6340
4	647	26 40	1640	1450	1300	1300	7 80 0	4270	10600	11 800	6980	6830
5	600	2000	1410	1400								
э	600	2000	1410	1 400	1300	1330	7600	4190	12200	11000	6710	7010
6 7	5 25	1760	1220	1380	1300	1370	730 0	3990	12900	10100	6350	7090
7	488	1880	1100	1360	1290	1400	7200	3 86 0	13300	9300	5960	7160
8	461	2090	1020	1340	1280	1440	7000	3760	13300	8500	5630	6980
9	415	2270	994	1320	1270	1490	6700	3650	12800	7600	5 43 0	6450
10	36 9	2470	1070	1320	1260	1550	6790	3510	12000	7000	5340	5 890
	261	2622	3.02.0	1010								
11	361	2630	1230	1310	1250	1520	6030	3 47 0	11000	6330	50 80	5330
12	319	2610	1450	1310	1300	1730	5450	3480	9900	57 40	4880	4920
13	298	2 46 0	1700	1310	1350	1990	5 5 80	4590	9000	5310	4670	4670
14	· 299	2560	1 850	1300	1400	2260	5 81 0	83 00	81 00	4970	4530	4520
15	361	2480	1890	1300	1 400	2 80 0	5490	10800	7700	4720	4350	4260
16	441	2240	1 87 0	1290	1400	3 4 0 0	5250	13300	6 86 0	4510	4280	3920
17	439	1800	1770	1290	1400	4300	4990	15100	6170	4390	4370	3570
18	543	1750	1700	1280	1400	5500	4650	16400	5730	4290	4900	3270
10	1060	1600	1650	1280	1400	7200	4350	16700	55 2 0	4270	6200	3120
19 20											8600	
20	2350	1470	1650	1280	1400	8600	4130	17200	5420	4340	8600	3130
21	3290	1420	1620	1270	1350	9 800	3940	17 400	5360	4490	10000	3340
22	3610	1 4 80	1590	1270	1300	10100	3 80 0	17200	5290	4710	10800	3740
23	4670	1560	1490	1260	1300	11800	36 40	16000	5220	4980	11900	4540
24	6080	1700	1470	1260	1300	12800	3540	1 47 00	5150	5210	12100	5180
25	6660	1840	1 47 0	1260	1300	13900	3620	13700	5200	5390	10800	5240
26	6 4 80	1980	1540	1270	1300	16200	4000	12300	5 25 0	5650	9900	47 80
27 27	6090		1570								9500	
		2070		1280	1300	16100	4350	10800	5220	6200		4130
28	57 20	2070	1550	1290	1300	15700	4 890	10300	5660	6930	9200	3600
29	50 9 0	20 80	1550	1300		1 47 0 0	4670	8700	7600	7100	8700	3 27 0
30	4510	2070	1510	1300		13400	4650	8000	9 80 0	7500	80 0 0	3130
31	4110		1530	1300		12100		7600		7700	7300	
TOTAL	6 845 9	64560	477 44	41100	37050	1996 80	172520	286690	247550	215830	224660	147280
MEAN	2208	2152	1540	1326	13 23	6441	5751	9248	8252	6962	7247	4909
MAX	6660	3510	2000	1530	1400	16200	11000	17400	13300	12800	12100	7160
MIN	298	1420	994	1260	1250	1300	3540	3470	5150	4270	42 80	3120
CFSM	.06	.06	.04	.04	.04	.19	.17	.27	.24	.20	.21	.14
IN.	.07	.07	.05	.04	.04	.21	.18	.31	. 26	.23	.24	.16
AC-FT	135800	1281 0 0	94700	81520	73490	396100	342200	56 86 00	491000	428100	445600	292100
VC-t t	T 3 3 90 Å	T % OT 00	74/00	01 340	13490	230100	342200	30 00 00	431000	47 01 00	**3000	232100

CAL YR 1984 TOTAL MIN 298 CFSM .13 IN 1.77 3287000 1656961 MEAN 4527 MAX MAX 32400 AC-FT WTR YR 1985 TOTAL 1753123 MEAN 4 80 3 17400 MIN 298 CFSM .14 IN 1.87 AC-FT 3477000

05092000 RED RIVER OF THE NORTH AT DRAYTON, ND--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1972 to current year.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS) (00061)	DUCT- ANCE (US/CM)	TEMPER- ATURE, AIR (DEG C) (00020)	TEMPER- ATURE (DEG C) (00010)
OCT					
16	1235	422	650	6.5	12.0
DEC					
19 JAN	1435	1640	770		0.0
22	1740	1280	615	-7.0	0.0
MAR	1710	1200	015	7.0	•••
27	1520	16200	418	6.0	1.0
APR					
02	1515	9600	490	12.0	2.5
MAY	7.410				
02	1410	4460	665		14.5
17	1135	15100	332	16.0	15.0
20	1340	17200	460	13.0	15.0
24	1225	14700	5 6 0	22.5	17.5
JUN	1245	10000		00.0	16.5
05	1345	12200	570	20.0	16.5
JUL	1050	F100	600	20 5	21.5
24 SEP	1050	5180	680	20.5	21.5
11	1320	5020	525	22.0	17.0
		5525	523		

DATE	TIME	PH (STAND- ARD UNITS) (00400)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)		POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	CAR- BONATE, FET-LAB (MG/L AS CO3) (95445)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)
OCT 16 APR 02	1235 1515	8.5 8.2	53 46	27 19	43 24	7.6 6.5	0 15	200 100
SEP 11	1320	7.3	57	25	19	5.0	15	160
	DATE	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS NO3) (71851)	
	OCT 16 APR	69	54	0.2	5.3	408	1.0	
	02 SEP 11	64 64	31 27	0.2	2.3 12	197 335	1.0	

DATE	TIME	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BORON, DIS- SOLVED (UG/L AS B) (01020)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)
OCT 16 APR	1235	3	80	<10	<1	27	10	<0.1	1	<1	230
02	1515	3	40	30	<1	20	10	0.1	1	<1	210
SEP 11	1320	2	60	50	<1	19	30	0.5	1	<1	230

05094000 SOUTH BRANCH TWO RIVERS AT LAKE BRONSON, MN

LOCATION.--Lat 48°43'50", long 96°39'50", in SW\SW\sec.30, T.161 N., R.46 W., Kittson County, Hydrologic Unit 09020312, on left bank 70 ft upstream from culvert on U.S. Highway 59 at town of Lake Bronson and 3.4 mi downstream from dam at outlet of Bronson Lake.

DRAINAGE AREA .-- 444 mi2.

PERIOD OF RECORD. -- September 1928 to November 1936, April to September 1937, April 1941 to October 1943, April to December 1944, April 1945 to September 1947, October 1953 to September 1981, April to September 1985. Monthly discharge only for some periods, published in WSP 1308. October 1981 to March 1985, annual maximums only. Published as South Fork Two Rivers at Bronson prior to 1941.

REVISED RECORDS.--WSP 1308: 1929(M), 1931(M), 1936(M), 1944(M), 1947(M).

GAGE.--Water-stage recorder. Datum of gage is 928.53 ft above National Geodetic Vertical Datum of 1929 (Minnesota Department of Transportation bench mark). Prior to Nov. 23, 1953, nonrecording gage at bridge 100 ft downstream at datum 2.00 ft higher. Nov 23, 1953, to Oct. 5, 1963, water-stage recorder at same site at datum 2.00 ft higher.

REMARKS.--No estimated daily discharges. Records good. Flow partly regulated since 1937 by Bronson Lake, usable capacity, 3,700 acre-ft.

AVERAGE DISCHARGE.--40 years (water years 1929-36, 1942, 1943, 1946, 1947, 1954-81), 87.3 ft^3/s , 63,250 acreft/yr; median of yearly mean discharges, 56 ft^3/s , 40,600 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,410 ft³/s, Apr. 5, 1966, gage height, 18.23 ft; no flow at times in 1937, 1941, 1960, 1973.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2,790 $\rm ft^3/s$, June 26, gage height, 12.16 ft; minimum (April to September), 6.0 $\rm ft^3/s$, May 5, gage height, 3.47 ft.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

338 331 700 1010 956
331 700 1010
700 1010
1010
741
635
5 53
419
357
349
281
251 241
216
30
107
125 104
93
77
76
74 58
46
48
47 45
44
33
8385
280
1010
30 .63
.70
16630

05102500 RED RIVER OF THE NORTH AT EMERSON, MANITOBA (International gaging station)

LOCATION.--Lat 49°00'30", long 97°12'40", in sec.2, T.1, R.2 E., on right bank 1,500 ft downstream from Canadian Pembina River, and at mile 154.3.

DRAINAGE AREA. -- 40,200 mi², approximately, includes 3,800 mi² in closed basins.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- March to November 1902 (gage heights only), May 1912 to September 1929 (monthly discharge only, published in WSP 1308), October 1929 to current year.

E.--Water-stage recorder. Datum of gage is 700.00 ft above National Geodetic Vertical Datum of 1929, by Geodetic Survey of Canada. See WSP 1728 or 1913 for history of changes prior to Apr. 10, 1953. GAGE .-- Water-stage recorder.

REMARKS. -- Records good. Discharge partially regulated by reservoirs on tributaries-

MEAN

MAX

MIN

AC-FT 3575000

COOPERATION. -- This station is one of the international gaging stations maintained by Canada under agreement with the United States. Records provided by Water Survey of Canada.

AVERAGE DISCHARGE.--73 years (water years 1913-85), 3,350 ft³/s, 2,427,000 acre-ft/yr; median of yearly mean discharges, 2,850 ft³/s, 2,065,000 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 95,500 ft³/s, May 13, 1950, gage height, 90.89 ft; maximum gage height, 91.19 ft, May 1, 1979; minimum observed discharge, 0.9 ft³/s, Feb. 6-8, 1937.

EXTREMES FOR CURRENT YEAR. -- Maximum daily discharge, 16,700 ft3/s, Mar. 29; minimum daily, 286 ft3/s, Oct. 14.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 MEAN VALUES DAY OCT NOV DEC FEB MAR APR MAY AUG JAN 1210 6180 43 80 3 2 0 93 90 AR7 n 5050 4730 ---3 2 3 1 0 TOTAL. MEAN MAX MIN AC-FT CAL YR 1984 TOTAL WTR YR 1985 TOTAL MEAN MAX MIN AC-FT 3099000

05102500 RED RIVER AT EMERSON, MANITOBA--Continued (National stream-quality accounting network station)

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1978 to current year.

REMARKS.--Letter K indicates non-ideal colony count.

WAMED CHAILTHY NAMA, WAMED VEAD COMORED 1004 TO SEPTEMBER 1005

			WA	TER QUALI	TY DATA,	WATER YEA	R OCTOBER	1984 TO	SEPTEMBER	1985		
DATE		TIME	DIS- CHARGE, IN CUBIC FEET PER SECOND (00060)	STREAM- FLOW, INSTAN- TANEOUS (CFS) (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE, AIR (DEG C) (00020)	TEMPER- ATURE (DEG C) (00010)	TUR- BID- ITY (NTU) (00076)	OXYGEN, DIS- SOLVED (MG/L) (00300)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673)
OCT 23 DEC	•	1420	3330		890	8.4	8.0	7.0	76	10.6	250	130
18 MAR	•	1330	1720		820	8.3	-20.0	0.0	5.3	12.0	K 20	K30
13		1325		1480	535	7.8	6.0	0.0	4.8	11.7		
MAY 02		1645	4940		655		21.0	15.0	54	9.0		~-
JUN 27		1200	5930		570	7.5	12.0	16.0	170	9.2	16	K140
AUG 13	•	1645		5240	482	7.2	19.5	15.0	150	9.3	K40	370
0	OCT 23 EC		- DI VED SOL /L (MG CA) AS 15) (009	VED SOLVI /L (MG, MG) AS 1 25) (009)	- DI ED SOI /L (MC NA) AS 30) (009	35) (004	LD DIS LL SOL (MG (O3) AS S	VED SOL VL (MG O4) AS 45) (009	VED SOLV VL (MG/ CL) AS I 40) (0099	5- SOL /ED (MG /L AS ?) SIO 50) (009	VED DEG LVED DEG LVED DEG SOL SOL SOL MG	G. C IS- LVED G/L)
	IAR 13 IAY	. 58	27	21	4	1.3	220 3	6 19	0.	.2	9.5	322
	02	. 70	30	30	6	5.0	11	0 27	0.	.2	8.1	415
	27 UG	. 60	30	19	4	1.7	212 9	2 14	0.	.2 1	.1	371
	13.	. 58	25	17	4	1.2	4	4 16	0.	.2 1	.5	307
DATE		NITRO- GEN, IO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) (71846)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS, TOTAL (MG/L AS P) (00665)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS, ORTHO, DIS- SOLVED (MG/L AS P) (00671)	CYANIDE TOTAL (MG/L AS CN) (00720)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
OCT 23	•	0.25	0.26	0.33	1.5	0.37	0.24	0.19		240	2000	100
DEC 18		0.43	0.21	0.27	1.5	0.20	0.14	0.12				
MAR 13		0.46	0.10	0.13	1.1	0.08	0.06	0.06	<0.01			100
MAY 02		<0.10	0.05	0.06	1.2	0.16	0.03	0.02	<0.01	229	3080	100
JUN 27		0.67	0.07	0.09	1.9	0.38	0.15	0.12				
AUG 13		<0.10	0.01	0.01				0.01		266	3760	100
				-								_

RED RIVER OF THE NORTH BASIN 05102500 RED RIVER AT EMERSON, MANITOBA--Continued

		ALUM-			BERYL-		CHRO-			
		INUM,	ARSENIC	BARIUM,	LIUM,	CADMIUM	MIUM,	COBALT,	COPPER,	IRON,
		DIS-	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-
		SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED
DATE	TIME	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L
		AS AL)	AS AS)	AS BA)	AS BE)	AS CD)	AS CR)	AS CO)	AS CU)	AS FE)
		(01106)	(01000)	(01005)	(01010)	(01025)	(01030)	(01035)	(01040)	(01046)
OCT										
23	1420	30	2	80	<0.5	<1	4	<3	4	11
23 MAR	1420	30	2	80	<0.5	<1	4	<3	4	11
	1420 1325	30 20	2 <1	80 69	<0.5 <0.5	<1 <1	4 <1	<3 <3	4 <1	11
MAR 13 MAY	1325	20	<1	69	<0.5	<1	<1	<3	<1	3
MAR 13 MAY 02			_			_		_		
MAR 13 MAY	1325	20	<1	69	<0.5	<1	<1	<3	<1	3

DATE	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)
OCT 23	4	53	5	<0.1	<10	<1	<1	300	14
MAR 13	<1	22	10	<0.1	<10	1	<1	160	22
MAY 02 AUG	<1	31	5	<0.1	<10	4	<1	230	14
13	1	16	11	<0.1	<10	5	<1	170	57

05104500 ROSEAU RIVER BELOW SOUTH FORK NEAR MALUNG, MN

LOCATION.--Lat 48°47'30", long 95°44'40", in NW\SW\k sec.6, T.161 N., R.39 W., Roseau County, Hydrologic Unit 09020314, on left bank 0.3 mi downstream from South Fork and 1.5 mi northwest of Malung.

DRAINAGE AREA. -- 573 mi².

PERIOD OF RECORD .-- October 1946 to current year.

REVISED RECORDS.--WSP 2113: 1948, 1950, 1951, 1956(M), 1957(M), 1962(M).

GAGE. -- Water-stage recorder and concrete control. Datum of gage is 1,029.67 ft, adjustment of 1912.

REMARKS.--Estimated daily discharges: March 21-31 and August 20. Records good except those for period of no gage-height record, Aug. 20, and period with ice effect, Mar. 21-31, which are fair. Some flow bypasses the gaging station through a natural overflow channel 0.8 mi upstream and returns to river 0.5 mi downstream. Overflow begins at stage of about 13.0 ft, discharge, 1,800 ft³/s. These records include any flow in the overflow channel.

AVERAGE DISCHARGE. -- 39 years, 145 ft3/s, 105,100 acre-ft/yr; median of yearly mean discharges, 114 ft3/s, 82,600 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 5,750 ft³/s, July 18, 1968, gage height, 22.32 ft; maximum gage height, 23.37 ft, Apr. 3, 1966 (backwater from ice); no flow for part of Jan. 15, 1952 (caused by construction of concrete control), July 23 to Sept. 8, 1961, Dec. 22 to Mar. 10, 1977, and Sept. 9-11, 1980.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 5,170 $\rm ft^3/s$, June 29, gage height, 21.14 ft; minimum, 0.11 $\rm ft^3/s$, Oct. 1, gage height, 3.91 ft.

		DISCHARGE,	IN CUBIC	C FEET P	ER SECO	ND, WATER MEAN VAI		CTOBER 1	984 7	O SEPTEMBER	1985		
DAY	ОСТ	NOV	DEC	JAN	FEB			PR I	MAY	JUN	JUL	AUG	SEP
2017	001	NOV	DEC	O MM	FED	лыл	A	- A 1	LTLY T	DUN	0 00	AUG	put
1	.12	87	33	4.9	4.1	4.9	7:	36 :	314	594	3430	20	263
2	.15	89	27	4.9	4.0	4.9	7.	L4 :	298	743	2560	19	254
2 3	.17	94	23	4.8	3.8	4.9	62	24 :	286	763	1820	17	565
4	.19	90	19	4.8	4.0		5.1	.5	276	710	1360	112	761
5	.21	73	16	4.8	3.7	5.1	39	9 :	264	613	1050	159	807
6 7	.24	67	13	4.9	3.7		33		251	505	804	139	765
7	.26	62	11	4.9	3.6		28		233	400	596	137	677
8 9	.27	61	11	4.8	3.4		23		211	318	442	127	5 76
9	.30	5 6	12	4.9	3.4	5.1	16		193	260	339	114	457
10	.31	55	12	4.8	3.6	5.3	17	70 :	179	212	251	97	339
11	.34	53	12	4.6	3.6		16	34 :	201	175	198	88	275
12	.36	58	9.2	4.4	3.7		16		564	144	156	92	226
13	.38	56	7.9	4.6	3.8	5.7	44		889	122	127	106	187
14	.43	49	7.2	4.6	3.8		76		140	104	106	116	162
15	1.8	38	6.9	4.3	3.8	5.9	76	55 13	240	90	90	113	145
16	2.2	27	7.4	4.4	4.0	5.9	63	30 13	300	82	78	109	131
17	4.6	33	7.4	4.6	4.0		5.		470	80	70	332	120
18	5.5	37	8.2	4.5	4.0		42		60	76	64	582	112
19	9.5	28	8.5	4.4	4.0		3		520	68	59	651	105
20	42	24	8.5	4.2	4.2		30		250	60	55	640	112
21	129	22	8.7	3.9	4.2		28		978	57	51	620	170
22	175	22	7.9	4.0	4.3		32		751	68	46	610	272
23	197	21	7.7	4.0	4.3		46		99	95	38	590	304
24	192	22	6.7	4.0	4.4		53		199	121	34	713	301
25	173	23	5.9	4.0	4.6	220	54	15	120	688	32	708	277
26	156	29	5.3	4.1	4.6	350	54	10	372	1610	31	664	242
27	145	35	4.7	4.1	4.6	500	49	5 3	329	3120	32	590	212
28	139	38	4.9	4.0	4.9		43	15 2	291	4910	31	530	186
29	130	39	4.9	4.1		700	37		260	5010	27	473	166
30	123	39	4.9	4.0		750	34	10 2	243	4290	24	374	153
31	111		4.9	4.1		760		- :	325		22	302	
TOTAL	1739.33			137.4	112.1	4255.5	1305				14023	9944	9322
MEAN	56.1	47.6	10.5	4.43	4.00		43		507	870	452	321	311
MAX	197	94	3 3	4.9	4.9		76		660	5010	3430	713	807
CFSM	.10	.08	.02	.008	.007		.7		. 06	1.52	.79	.56	.54
IN.	.11	.09	.02	.01	.01		. 8	15 1.	.22	1.69	.91	.65	.61
AC-FT	3450	2830	648	273	222		2588	30 373	300	51750	27810	19720	18490
CAL YR	1984 TOT	AL 31916.7	9 MEAN	87.2	MAX	1200 MI	N .06	CFSM .	.15	IN 2.07	AC-FT	63310	
WTR YR		AL 99231.0		272	MAX	5010 MI		CFSM				196800	
						2010 M		0.00					

05106500 ROSEAU RIVER AT ROSEAU LAKE, MN

LOCATION.--Lat 48°54'22", long 95°49'55", in SW\SW\ sec.28, T.163 N., R.40 W., Roseau County, Hydrologic Unit 09020314, at downstream side of bridge on County Road 123 at Roseau Lake, 3.5 mi upstream from Pine Creek, 3.8 mi downstream from Sprague Creek, and 7 mi northwest of Roseau.

PERIOD OF RECORD. -- November 1939 to current year (incomplete).

GAGE.--Water-stage recorder. Datum of gage is 1,018.59 ft, adjustment of 1928 (levels by Geodetic Survey of Canada); gage readings have been reduced to elevations, adjustment of 1928. Prior to Aug. 26, 1970, and Oct. 18, 1979 to Sept. 30, 1980, nonrecording gage at same site and datum.

EXTREMES FOR PERIOD OF RECORD.--Maximum elevation observed, 1,036.86 ft, May 13, 1950; minimum observed, 1,019.75 ft, Aug. 16, 1941.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood in July 1919 reached an elevation of about 1,034 ft.

EXTREMES FOR CURRENT YEAR.--Maximum elevation, 1,032.77 ft, July 2; minimum recorded, 1,021.69 ft, Oct. 19, but may have been less during period of no gage-height record, Oct. 24 to Mar. 20.

GAGE HEIGHT (FEET ABOVE DATUM), WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	22.11						29.92	26.26	28.90	32.64	23.14	28.64
	22.14						29.81	26.04	29.18	32.75	23.02	28.49
2 3 4	22.16						29.75	25.84	29.26	32.75	23.02	29.29
4	22.19						29.64	25.66	29.26	32.74	27.71	30.08
5	22.19						29.34	25.77	29.21	32.67	29.18	30.52
6	22.20						29.03	25.74	29.09	32.54	28.86	30.70
7	22.22						28.66	25.56	28.91	32.35	28.57	30.79
8	22.24						28.21	25.31	28.79	32.10	28.38	30.74
9	22.26						27.73	25.02	28.58	31.83	28.08	30.63
10	22.29						27.24	24.69	28.36	31.56	27.66	30.46
11	22.34						26.84	24.59	28.01	31.23	27.16	30.22
12	22.36						26.48	25.51	27.58	30.92	27.10	29.99
13	22.39						26.84	27.59	27.09	30.57	27.64	29.72
14	22.44						28.10	2 8.5 5	26.58	30 .19	27.71	29.47
15	22.40						28.26	28.86	26.12	29.83	27.51	29.18
16	22.10						28.04	29.32	25.71	29.44	27.13	28.92
17	21 .9 1						27.84	29. 73	25.48	29.09	27.96	28.62
18	21.71						27.54	29.93	25.33	28.65	29.16	28.28
19	21.75						27.16	30.03	25.06	28.14	29.26	27.96
20	22.74						26.79	30.05	24.68	27.59	29.23	27.63
21	23.68					22.97	26.49	29.98	24.35	26.93	29.14	27.36
22	24.18					24.14	26.45	29.83	24.46	26.16	29.09	27.26
23	24.41					27.83	26.85	29.66	24.81	25.45	29.10	27.24
24						29.68	27.07	29.42	24.78	24.91	29.45	27.11
25						30.12	27.11	29.21	25.51	24.49	29.62	26.89
26						30.37	27.14	28.96	29.24	24.14	29.59	26.56
27						30.44	27.10	28.71	30.49	23.87	29.49	26.22
28						30.43	26.94	28.37	31.25	23.66	29.37	25.94
29						30.29	26.71	28.06	31.85	23.49	29.24	25.66
30						30.14	26.51	27.78	32.34	23.37	29.06	25.41
31						30.04		28.11		23.24	28.84	
MEAN							27.72	27.68	27.68	28.69	28.05	28.53
MAX							29.92	30.05	32.34	32.75	29.62	30.79
MIN							26.45	24.59	24.35	23.24	23.02	25.41

05107500 ROSEAU RIVER AT ROSS, MN

LOCATION.--Lat 48°54'37", long 95°55'18", in NE₃SE₄ sec.27, T.163 N., R.41 W., Roseau County, Hydrologic Unit 09020314, on left bank 300 ft downstream from highway bridge, 0.2 mi north of Ross, and 2.3 mi downstream from Pine Creek.

DRAINAGE AREA.--1,220 mi², approximately.

PERIOD OF RECORD. -- July 1928 to current year.

REVISED RECORDS.--WSP 1055: 1945. WSP 1175: Drainage area. WSP 1308: 1936(M). WSP 1508: 1948-49(P).

GAGE.--Water-stage recorder. Datum of gage is 1,018.44 ft, adjustment of 1928 (levels by Geodetic Survey of Canada). Prior to Mar. 13, 1929, nonrecording gage at same site and datum.

REMARKS.--Estimated daily discharges: Nov. 1 to Apr. 3. Records good except those for period with ice effect, Nov. 1 to Apr. 3, which are poor. High flow affected by natural storage in Roseau Lake.

AVERAGE DISCHARGE.--57 years, 265 $\rm ft^3/s$, 192,000 acre-ft/yr; median of yearly mean discharges, 239 $\rm ft^3/s$, 173,200 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 6,560 ft³/s, May 12, 1950, gage height, 18.25 ft; no flow Aug. 29, 30, 1961, Jan. 3 to Mar. 3, 1977, Aug. 23-25, 1977 and Aug. 3, 1980.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum stage known, about 19 ft in 1896. Other outstanding floods reached the following stages, from information by local residents: flood of July 1919, 17.5 ft; flood of 1927, about 16 ft.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2,010 ft³/s, July 5, gage height, 13.27 ft; minimum, 1.8 ft³/s, Oct. 2, 3, gage height, 0.97 ft.

		DISCHARGE,	IN CU	BIC FEET	PER SECON			BER 1984	TO SEPTEM	MBER 1985		
MEAN VALUES												
DAY	OCT	NOV	DEC	J AN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2.0	180	67	11	8.2	7.0	1300	562	987	1760	111	969
2	1.9	170	62	11	8.1	7.0	1320	528	1050	1860	105	945
3	2.0	160	46	11	8.0	7.0	1290	499	1080	1940	112	1070
4	2.2	150	37	11	8.0	7.0	1190	471	1090	1990	792	1200
5	4.9	140	31	10	8.0	7.0	1150	489	1 09 0	2010	1050	1300
6	8.1	130	27	10	8.0	7.1	1100	482	1080	1990	1020	1370
7	9.3	120	24	10	8.0	7.2	1030	459	1050	1950	972	1410
8	9.6	115	22	10	8.0	7.2	950	422	1020	1880	934	1420
9	9.9	1 0 5	21	10	7.9	7.3	846	3 7 7	974	1800	870	1410
10	11	98	19	10	7.8	7.4	748	335	938	1720	792	1380
11	12	93	18	10	7.7	7.6	675	319	874	1620	702	1330
12	14	85	18	10	7.6	7.6	611	424	795	1530	677	1 28 0
13 .	15	80	17	10	7.5	7.9	650	738	709	1440	75 9	1210
14	17	74	16	10	7.4	8.0	846	911	62 5	1340	778	1150
15	31	69	16	10	7.4	8.3	881	972	5 4 7	1250	747	1090
16	34	64	15	9.8	7.4	8.5	856	1040	485	1160	684	1020
17	33	60	15	9.8	7.3	8.9	821	1090	448	1080	786	951
18	33	55	14	9.6	7.3	9.5	774	1140	425	983	993	883
19	33	51	14	9.5	7.2	10	711	1180	387	880	1040	815
20	67	46	13	9.4	7.2	12	647	1230	336	7 7 5	1050	751
21	180	43	13	9.3	7.2	14	5 97	1250	292	660	1040	698
22	274	39	13	9.2	7.2	40	585	1250	300	539	1040	669
23	300	37	13	9.1	7.2	74	644	1220	344	431	1060	659
24	304	37	12	9.0	7.1	150	679	1170	344	353	1120	636
2 5	292	39	12	8.9	7.1	230	691	1120	417	291	1150	5 96
26	267	46	12	8.8	7.1	410	696	1070	965	240	1160	549
27	245	52	12	8.7	7.0	580	692	1010	1150	197	1150	500
28	235	60	12	8.6	7.0	7 50	668	949	1260	171	1130	456
29	226	68	12	8.5		1000	632	886	1390	149	1100	416
30	205	70	11	8.4		1150	600	829	1580	134	1060	382
31	189		11	8.3		1250		875		122	1010	
TOTAL	3066.9	2536	645	298.9	210.9	5807.5	24880	25297	24032	34245	26994	28515
MEAN	98.9		20.8	9.64	7.53	187	829	816	801	1105	871	951
MAX	304	180	67	11	8.2	1250	1320	1250	1580	2010	1160	1420
MIN	1.9	37	11	8.3	7.0	7.0	585	319	292	122	105	382
CFSM	.08	.07	.02	.008	.006	.15	.68	.67	.66	.91	.71	.78
IN.	.09	.08	.02	.01	.01	.18	.76	.77	.73	1.04	.82	.87
AC-FT	6080	5030	1280	593	418	11520	49350	50180	47670	67920	53540	5656 0

CAL YR 1984 TOTAL 60516.95 MEAN 165 MAX 1240 MIN .32 CFSM .14 IN 1.85 AC-FT 120000 WTR YR 1985 TOTAL 176528.20 MEAN 484 MAX 2010 MIN 1.9 CFSM .40 IN 5.38 AC-FT 350100

RED RIVER OF THE NORTH BASIN

05112000 ROSEAU RIVER BELOW STATE DITCH 51, NEAR CARIBOU, MN (International gaging station)

LOCATION.--Lat 48°58'54", long 96°27'46", in SE\SW\ sec.34, T.164 N., R.45 W., Kittson County, Hydrologic Unit 09020314, on left bank 400 ft downstream from State ditch 51 (known locally as Caribou cutoff ditch) and 0.6 mi west of Caribou.

DRAINAGE AREA.--1,570 mi², approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--April to October 1917, April 1920 to current year (no winter records in water years 1931, 1932, 1934-36, 1938-40, 1944-72). Published as "at Caribou," prior to April 1929; as "below Cutoff ditch, near Caribou" April 1929 to September 1936. Records published for both sites April 1929 to September 1930. Monthly discharge only for some periods, published in WSP 1308.

REVISED RECORDS.--WSP 1308: 1938(M). WSP 1508: 1917(M), 1920, 1932(M), 1934-35(M). WSP 1913: 1954(M).

GAGE.--Water-stage recorder. Datum of gage is 1,002.14 ft, 1928 datum, (levels by Geodetic Survey of Canada). Prior to Apr. 1, 1929, nonrecording gage at site at Caribou 0.6 mi upstream at datum 0.95 ft lower.

REMARKS.--Estimated daily discharges: Oct. 31 to Dec. 17, Dec. 20-30, Jan. 19-21, and Feb.3 to Apr. 2. Records good except those for those periods with ice effect, Oct. 31 to Dec. 17, Dec. 20-30, Jan. 19-21, and Feb. 3 to Apr. 2, which are poor. Satellite telemeter at station. Occasionally, at high stages, there is some natural diversion of flow above station to headwaters of Two Rivers.

COOPERATION.--This station is one of the international gaging stations maintained by the United States under agreement with Canada.

AVERAGE DISCHARGE.--28 years (water years 1921-30, 1933, 1937, 1941-43, 1973-85), 289 ft³/s, 209,400 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,080 ft³/s, May 19, 1950, gage height, 11.81 ft; no flow Aug. 13, 1936.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of 1916 is reported to have reached a stage of about 15.5 ft at former site.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,490 ft³/s, July 16-18, gage height, 7.37 ft; maximum gage height, 8.93 ft, Apr. 2 (backwater from ice); minimum discharge, 0.23 ft³/s, Oct. 4, 5, 11,12; minimum gage height, 1.18 ft, Oct. 11, 12.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985
MEAN VALUES

DAY	OCT	NOV	DEC	J AN	FEB	MAR	APR	YAM	JUN	JUL	AUG	SEP
1 2 3 4 5	.35 .35 .31 .27 .27	200 190 180 170 160	75 75 65 55 40	12 11 11 11	7.1 7.1 7.0 6.9 6.8	5.2 5.2 5.2 5.2 5.2	1000 1130 1170 1170 1170	622 589 555 532 526	989 985 990 995 999	1080 1100 1130 1150 1180	218 181 160 441 845	1090 1100 1150 1230 1260
6 7 8 9 10	.31 .35 .35 .31	150 140 130 120 115	35 30 25 22 20	11 11 11 11 10	6.7 6.6 6.5 6.5	5.2 5.2 5.3 5.4 5.5	1180 1170 1130 1110 1100	531 521 490 458 417	1010 1010 1010 1000 1010	1210 1250 1290 1320 1350	966 989 991 986 970	1250 1240 1250 1260 1280
11 12 13 14 15	.27 .27 .31 .39	110 105 100 95 85	19 18 18 17 16	10 10 10 11 10	6.3 6.2 6.1 6.0	5.6 5.8 6.2 6.4 6.7	1050 986 922 869 902	385 365 444 640 795	997 989 970 939 897	1380 1420 1440 1460 1480	948 946 928 8 96 881	1300 1310 1330 1360 1380
16 17 18 19 20	3.0 19 20 25 24	65 80 70 60 55	16 15 15 14 14	9.2 8.8 8.8 8.7 8.3	5.9 5.8 5.7 5.6 5.5	7.0 7.5 8.0 9.0	916 914 892 854 799	895 928 953 977 997	835 759 683 622 566	1480 1490 1490 1470 1450	854 873 875 902 919	1390 1400 1390 1390 1390
21 22 23 24 25	45 164 248 290 308	50 45 42 40 40	14 14 14 13	8.0 7.7 7.4 7.4 7.4	5.4 5.3 5.3 5.2	15 20 30 50 100	732 668 631 644 673	1020 1040 1050 1050 1060	511 466 451 468 481	1410 1370 1310 1230 1110	935 948 985 1030 1030	1360 1340 1310 1270 1230
26 27 28 29 30 31	299 286 258 246 233 220	45 50 60 70 75	13 13 13 12 12 12	7.4 7.4 7.3 7.1 7.1	5.2 5.2 5.2 	200 300 500 700 800 900	690 696 691 678 655	1060 1050 1030 1020 1010	561 776 995 1030 1050	947 744 556 421 326 264	1040 1050 1050 1060 1070 1080	1180 1120 1050 973 876
TOTAL ME AN MAX MIN CFSM IN. AC-FT	26 93 . 36 36 . 9 308 . 27 . 06 . 06 53 40	2897 96.6 200 40 .06 .07 5750	747 24.1 75 12 .02 .02 1480	286.1 9.23 12 7.1 .006 .01 567	168.9 6.03 7.1 5.2 .004 .00 335	3739.8 121 900 5.2 .08 .09 7420	27192 906 1180 631 .58 .64 53940	240 20 775 1060 365 .49 .57 476 40	25044 835 1050 451 .53 .59 49670	36308 1171 1490 264 .75 .86 72020	27047 872 1080 160 .56 .64 53650	37459 1249 1400 876 .80 .89 74300

CAL YR 1984 TOTAL 70711.45 MEAN 193 MAX 1200 MIN .27 CFSM .12 IN 1.68 AC-FT 140300 WTR YR 1985 TOTAL 187602.16 MEAN 514 MAX 1490 MIN .27 CFSM .33 IN 4.45 AC-FT 372100

RED RIVER OF THE NORTH BASIN

05112000 ROSEAU RIVER BELOW STATE DITCH 51 NEAR CARIBOU, MN--Continued (National stream-quality accounting network station)

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1973 to current year.

REMARKS.--Letter K indicates non-ideal colony count.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS) (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	PH (STAND~ ARD UNITS) (00400)	PH LAB (STAND- ARD UNITS) (00403)	TEMPER- ATURE, AIR (DEG C) (00020)	TEMPER- ATURE (DEG C) (00010)	TUR- BID- ITY (NTU) (00076)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)
ост 23	1145	246	540	496	8.2	7.7	3.0	4.0	7.8	734	10.4
JAN	1142	240	340	490	0.2	/ • /	3.0	4.0	7.0	/34	10.4
15 MAY	1030	10		599	7.3	7.3	-15.0	0.0	6.0	728	3.8
21 AUG	1015	992	320	318	7.9	7.7	9.0	13.0	10	732	5.9
20	1045	919	360	338	7.8	7.4	18.0	15.5	5.5	741	6.4

	COLI-	STREP-									
	FORM,	TOCOCCI		Magne-		POTAS-	ALKA-	ALKA-		CHLO-	FLUO-
	FECAL,	FECAL,	CALCIUM	SIUM,	SODIUM,	SIUM,	LINITY	LINITY	SULFATE	RIDE,	RIDE,
	0.7	KF AGAR	DIS-	DIS-	DIS-	DIS-	FIELD	LAB	DIS-	DIS-	DIS-
	UM-MF	(COLS.	SOLVED	SOLVED	SOLVED	SOLVED	(MG/L	(MG/L	SOLVED	SOLVED	SOLVED
Date	(COLS./	PER	(MG/L	(MG/L	(MG/L	(MG/L	AS	AS	(MG/L	(MG/L	(MG/L
	100 ML)	100 ML)	AS CA)	AS MG)	AS NA)	AS K)	CACQ3)	CACO3)	AS SO4)	AS CL)	AS F)
	(31625)	(31673)	(00915)	(00925)	(00930)	(00935)	(00410)	(90410)	(00945)	(00940)	(00950)
OCT											
. 23	K420	K960	53	26	17	4.0	185	206	50	16	0.2
JAN											
15	K 4	K16	85	34	12	2.6	283	317	25	6.4	0.2
MAY											
21		68	45	14	3.6	2.1	. 114	152	17	3.5	0.1
AUG											
20	82	220	43	17	4.0	3.5	151	151	24	5.5	0.2

DATE	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS, TOTAL (MG/L AS P) (00665)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS, ORTHO, DIS- SOLVED (MG/L AS P) (00671)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
OCT 23 JAN	8.5	328	0.57	0.03	1.0	0.24	0.11	0.11	59	98
15	21	410	<0.10	0.28	1.4	0.05	0.05	0.02	24	88
MAY 21 AUG	12	237	<0.10	0.02	1.1	0.05	<0.01	<0.01	48	96
20	10	232	0.23	0.04	1.0	0.14	0.11	0.06	46	100

RED RIVER OF THE NORTH BASIN

05112000 ROSEAU RIVER BELOW STATE DITCH 51 NEAR CARIBOU, MN--Continued

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)
OCT 23	1145	10	,	48	<0.5	. <1	< 1	<3	2	30	<1
JAN	1143	10	,	49	10.5	1,1	\1	\3	4	30	``
15	1030	10	2	70	<0.5	1	10	<3	2	170	2
MAY											
21.,.	1015	40	1	42	<0.5	<1	20	<3	2	93	3
AUG											
20	1045	10	5	40	<0.5	<1	10	<3	2	94	<1

DATE	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)
OCT 23	12	9	<0.1	<10	2	<1	<1	140	<6	5
JAN 15	13	420	0.1	<10	1	<1	<1	180	<6	20
MAY 21 AUG	11	17	0.1	<10	7	<1	<1	81	<6	11
20	11	15	<0.1	<10	<1	<1	<1	95	<6	6

05124480 KAWISHIWI RIVER NEAR ELY, MN

(Hydrologic bench-mark station)

LOCATION.--Lat 47°55'22", long 91°32'06", in SE\SE\ sec.24, T.63 N., R.10 W., Lake County, Hydrologic Unit 09030001, in Superior National Forest, on left bank upstream from rapids, 2 mi upstream from South Kawishiwi River, 2.2 mi southwest of Fernberg Lookout Tower and 14 mi east of Ely.

DRAINAGE AREA.--253 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- June 1966 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 1,450 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS. -- No estimated daily discharges. Records good.

AVERAGE DISCHARGE.--19 years, 216 ft3/s, 11.59 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,720 ft³/s, Apr. 24, 1976, gage height, 5.92 ft; minimum, 4.5 ft³/s, Jan. 30 to Feb. 2, 1977, gage height, 2.14 ft.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 669 ft³/s, May 12-16, gage height, 4.78 ft; minimum, 16 ft³/s, Nov. 21, gage height, 2.50 ft.

		DISC	HARGE, IN	CUBIC FEE		SECOND, WATER MEAN VALUES	YEAR	OCTOBER 1984	TO S	EPTEMBER 1985		•
DAY	OCT	NOV	DEC	J AN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	22	19	19	34	61	51	46	453	463	334	114	64
2	21	18	18	35	61	50	46	487	463	339	110	62
3	19	18	18	36	60	48	50	512	459	341	107	64
4	19	18	18	38	60	55	51	546	454	354	106	65
5	19	18	18	39	60	55	49	573	453	340	110	65 65
6	19	18	18	39	60	55	48	597	448	326	115	64
7	19	18	18	42	60	55	48	616	438	305	113	64
8	19	18	18	44	60	54	47	627	425	287	104	62
9	19	18	18	46	61	53	47	637	405	266	98	59
10	18	18	18	46	60	51	47	635	3 85	247	96	62 59 57
11	18	18	18	. 47	61	51	48	651	367	232	92	56
12	18	18	18	50	60	48	51	662 .	. 348	217	91	53
13	18	18	18	51	59	50	63	6 6 9	334	207	94	53 52
14	18	18	18	54	58	49	68	669	319	194	88	50
15	18	19	18	54	57	48	· 77	668	303	189	85	50
16	18	18	24	54	57	48	84	665	292	182	82	50
17	20	18	26	55	55	46	86	663	293	172	84	58
18	20	17	26	5 6	55	46	87	649	290	169	85	58 58
19	21	17	26	57	57	46	91	633	277	167	84	60
20	21	17	26	57	57	45	99	610	266	163	79	60 65
21	21	17	26	60	57	44	115	585	256	156	77	59
22	21	17	27	60	56	44	131	5 6 8	255	148	74	58
23	21	17	26	60	54	44	168	547	239	143	76	66
24	20	17	26	60	53	45	212	522	225	139	7 7	85
25	20	17	26	60	53	45	253	502	220	141	77	86
26	20	17	26	60	53	45	292	489	245	135	73	87
27	20	18	27	60	52	46	3 26	468	266	132	72	86
28	22	20	29	60	52	46	361	446	296	126	69	88
29	21	19	32	61		47	392	429	318	121	68	88
30	20	19	32	61		46	428	418	331	118	66	97
31	20		33	61		45		449		116	65	
TOTAL	610	537	709	1597	1609	1501	3911		0133		2731	1978
MEAN	19.7	17.9	22.9	51.5	57.5	48.4	130	569	338		38.1	65.9
MAX	22	20	33	61	61	55	428	669	463	354	115	97
MIN	18	17	18	34	52	44	46	418	220	116	65	50
CFSM	.08	.07	.09	.20	.23	.19	.51		1.34	.83	.35	.26
IN.	.09	.08	.10	. 23	.24	.22	.58		1.49	.96	.40	.29
AC-FT	1210	1070	1410	3170	3190	2980	7760		0100		5420	3920

CAL YR 1984 TOTAL 63360 MEAN 173 MAX 946 MIN 17 CFSM .68 IN 9.32 AC-FT 125700 WTR YR 1985 TOTAL 49467 MEAN 136 MAX 669 MIN 17 CFSM .54 IN 7.27 AC-FT 98120

05124480 KAWISHIWI RIVER NEAR ELY, MN--Continued (Hydrologic bench-mark station)

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years, 1966 to current year.

REMARKS. -- Letter K indicates non-ideal colony count.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS) (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	PH (STAND- ARD UNITS) (00400)	PH LAB (STAND- ARD UNITS) (00403)	TEMPER- ATURE, AIR (DEG C) (00020)	TEMPER- ATURE (DEG C) (00010)	TUR- BID- ITY (NTU) (00076)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (003C0)
OCT											
03 FEB	1145	19	28	29	6.2	6.5	11.0	11.0	1.0	718	9.4
06	1215	60	28	33	6.8	6.7	-12.0	0.0	0.5	723	12.8
30	1415	447	31	31	6.8	7.2	13.0	11.0	1.0	732	10,9
SEP 04	1000	66	29	32	6.8	6.6	15.0	16.5	0.7	720	7.2
	COLI-	STREP-									

	FORM,	TOCOCCI		MAGNE-		POTAS-	ALKA-	ALKA-		CHLO-	FLUC-
	FECAL,	FECAL,	CALCIUM	SIUM,	SODIUM,	SIUM,	LINITY	LINITY	SULFATE	FIDE,	RIDE,
	0.7	KF AGAR	DIS-	DIS-	DIS-	DIS-	FIELD	LAB	DIS-	DIS-	DIS-
	UM-MF	(COLS.	SOLVED	SOLVED	SOLVED	SOLVED	(MG/L	(MG/L	SOLVED	SOLVED	SOLVED
DATE	(COLS./	PER	(MG/L	(MG/L	(MG/L	(MG/L	AS	AS	(MG/L	(MG/L	(MG/L
	100 ML)	100 ML)	AS CA)	AS MG)	AS NA)	AS K)	CACO3)	CACO3)	AS SO4)	AS CL)	AS F)
	(31625)	(31673)	(00915)	(00925)	(00930)	(00935)	(00410)	(90410)	(00945)	(00940)	(00950)
OCT											
03	K1	K1	3.2	1.4	2.2	0.3	9	10	3.2	0.7	<0.1
FEB											
06,	K1	K 4	3.3	1.5	1.1	0.3	25	13	3.0	0.8	<0.1
APR											
30	K4	26	2.9	1.3	0.9	0.3	10	10	3.8	0.8	<0.1
SEP							_	• •		• •	
04	K 6	140	3.0	1.4	1.0	0.3	9	10	3.7	8.0	0.1

DATE	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS, TOTAL (MG/L AS P) (00665)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS, ORTHO, DIS- SOLVED (MG/L AS P) (00671)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
OCT 03 FEB	3.8	27	<0.10	0.02	0.3	<0.01	<0.01	<0.01	4	53
06	3.8	43	0.14	0.02	0.6	0.02	<0.01	<0.01	2	88
APR 30	3.3	22	6.00	0.03	0.4	<0.01	<0.01	<0.01	4	94
SEP 04	2.9	39	<0.10	0.13	0.5	0.04	0.02	<0.01	3	100

05124480 KAWISHIWI RIVER NEAR ELY, MN--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)
FEB 06	1215	80	1	12	<0.5	. <1	<1	<3	1	250	1
APR 30	1415	40	1	12	<0.5	;- <1	10	<3	2	160	2

DATE	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)
FEB 06 APR	12	8	<0.1	<10	2	<1	<1	13	<6	7
30	<4	10	<0.1	<10	1	<1	<1	11	<6	<3

RADIOCHEMICAL ANALYSES, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

DATE	TIME	URANIUM DIS- SOLVED, EXTRAC- TION (UG/L) (80020)	GROSS ALPHA, DIS- SOLVED (UG/L AS U-NAT) (80030)	GROSS ALPHA, SUSP. TOTAL (UG/L AS U-NAT) (80040)	GROSS BETA, DIS- SOLVED (PCI/L AS CS-137) (03515)	GROSS BETA, SUSP. TOTAL (PCI/L AS CS-137) (03516)	GROSS BETA, DIS- SOLVED (PCI/L AS SR/ YT-90) (80050)	GROSS BETA, SUSP. TOTAL (PCI/L AS SR/ YT-90) (80060)	RADIUM 226, DIS- SOLVED, RADON METHOD (PCI/L) (09511)
APR 30	1415	0.04	<0.6	<0.4	1.5	<0.4	1.3	<0.4	<0.02

05124990 FILSON CREEK NEAR ELY, MN

LOCATION,--Lat 47°50'05", long 91°40'27", in SE\SW\x sec.24, T.61 N., R.10 W., Lake County, Hydrologic Unit 09030001, in Superior National Porest, on right bank 25 ft upstream from culverts on Porest Route 181, also known as Spruce Road, 0.8 mi upstream from mouth, and 10 mi southeast of Ely.

DRAINAGE AREA. -- 9.66 mi².

PERIOD OF RECORD. -- October 1974 to September 30, 1985 (discontinued).

REVISED RECORDS.--WDR MN-79-1: 1975-76, 1978.

GAGE, -- Water-stage recorder. Elevation of gage is 1,440 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Estimated daily discharges: Nov. 18 to Apr. 17. Records fair except those for period with ice effect, Nov. 18 to Apr. 17, which are poor.

AVERAGE DISCHARGE.--11 years, 7.56 ft3/s, 10.63 in/yr.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 426 ft³/s, Sept. 13, 1980, gage height, 8.87 ft; no flow at times most years.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 99 ft³/s, Apr. 24, gage height, 6.84 ft; maximum gage height, 7.17 ft, Feb. 4 (backwater from ice); minimum discharge, 0.17 ft³/s, Aug. 31, gage height, 4.62 ft.

		DISC	HARGE, IN	CUBIC I		SECOND, WA		OCTOBER 19	84 TO SE	PTEMBER 1	985	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.35	1.7	1.2	.65	. 40	.34	1.2	25	52	23	1.0	.35
2	.74	1.3	1.1	.64	.40		1.1	41	48	27	.74	,35
3	.46	1.8	1.0	.63	. 40	.34	1.1	25	38	24	.59	.82
3	.35	2.4	.94	.61	.39		1.1	17	30	25	.52	1.2
5	.40	2.4	.88	.60	.39		î.î	15	27	26	.82	1.3
6	.35	1.8	.84	.58	.39		í.1	15	22	22	.90	1.3
7	.40	1.3	.79	.57	.39	.33	1.1	17	18	17	.82	1.2
8	.40	1.7	.74	.56	.38	.33	1.1	17	15	14	.66	1.0
9	.46	1.8	.70	.54	.38	.33	1.2	15	13	11	.59	.82
10	.35	1.5	.66	.53	.38		1.4	14	10	8.3	.82	.66
11	.35	1.2	.64	.52	.38		1.9	21	9.0	5.7	.90	•59
12	.35	1.2	,62	.51	.38		2.4	24	7.4	4.3	1.0	.46
13	.35	1.1	.62	.50	.37	.32	3.1	29	6.6	3.2	1.3	.35
14	.40	1.1	.62	.49	.37	.32	4.5	27	5 .2	2.7	1.3	.35
15	-40	1.1	.72	.48	.37	.32	6.0	24	4.3	2.7	1.0	.35
16	1.3	1.1	.90	.47	.37		8.5	24	4.1	1.9	.82	.59
17	2.2	1.1	1.3	. 46	.37		13	24	6.0	1.5	1.0	2.5
18	2.4	1.1	1.8	.46	.36		18	22	7.4	2.5	1.2	2.9
19	2.5	1.1	1.3	. 45	.36	.32	19	20	7.1	3.2	1.3	2.9
20	4.5	1.0	1.1	.45	.36	.36	20	19	5 .7	3.1	1.0	3.6
21	3.4	1.0	1.0	.44	. 36	. 40	20	16	5.0	3.2	1.0	3.2
22	2.5	.98	.96	.44	.36	.50	28	14	6.0	3.6	.90	3.2
23	1.9	.98	.90	.43	.35	.66	61	12	6 .6	3.2	.66	7.4
24	1.3	.98	.86	.43	.35	.86	89	11	6.0	2.9	1.0	15
25	1.5	1.0	.82	.42	.35	1.1	91	10	4.5	3.1	1.0	16
26	1.2	1.1	.78	.42	.35		76	13	8.6	2.9	.82	14
27	1.7	1.2	.76	.41	•35		59	14	18	2.1	.66	12
28	1.9	1.3	.74	.41	.34		46	12	28	1.8	.30	11
29	2.9	1.4	.72	.41		1.3	36	10	28	1.2	.30	9.0
30	3.1	1.3	.70	.40		1.3	34	10	25	.90	.30	10
31	1.9		.67	. 40		1.2		29		1.0	.25	
TOTAL	42.31	40.04	27.38	15.31	10.40	17.68	647.9	586	471.5	254.00	25.47	124.39
MEAN	1.36	1.33	.88	.49	.37	•57	21.6	18.9	15 .7	8.19	.82	4.15
MAX	4.5	2.4	1.8	.65	.40		91	41	52	27	1.3	16
MIN	.35	.98	.62	. 40	.34	.31	1.1	10	4.1	.90	.25	.35
CFSM	.14	.14	.09	.05	.04	.06	2.24	1.96	1.63	.85	.09	,43
IN.	.16	.15	.11	.06	.04	.07	2.49	2.26	1.82	.9 8	.10	.48
AC-FT	84	79	54	30	21	35	1290	1160	93 5	504	51	247
CAL YR WTR YR				5.70 6.20	MAX 66 MAX 91	MIN .14 MIN .25	CFSM .5 CFSM .6			Г 4130 Г 4490		

05127000 KAWISHIWI RIVER NEAR WINTON, MN

LOCATION.--Lat 47°56'05", long 91°45'50", in NE\NW\ sec.20, T.63 N., R.11 W., Lake County, Hydrologic Unit 09030001, Superior National Forest, at powerplant of Minnesota Power Co., just upstream from Fall Lake, and 1.8 mi east of Winton.

DRAINAGE AREA. -- 1,229 mi2.

PERIOD OF RECORD.--June 1905 to June 1907, October 1912 to September 1919 (fragmentary), September 1923 to current year. Monthly discharge only for some periods, published in WSP 1308.

REVISED RECORDS. -- WDR MN-77-1: Drainage area.

REMARKS.--No estimated daily discharges. Records fair. Daily discharge computed from powerplant records. Flow regulated by powerplant and by Camp Six, Bald Eagle, Gabbro, Little Gabbro, Birch, White Iron, South Farm, and Garden Lakes.

COOPERATION.--Records collected by Minnesota Power Co., under general supervision of Geological Survey, in connection with a Federal Power Commission project.

AVERAGE DISCHARGE (unadjusted).--66 years (water years 1906, 1916-17, 1919, 1924-85), 1,035 ft³/s, 11.44 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 16,000 ft³/s, May 18, 1950; no flow at times.

EXTREMES FOR CURRENT YEAR.--Maximum daily discharge, 3,760 ft³/s, Apr. 28; minimum daily, 32 ft³/s, Oct. 13.

		DISCHARGI	E, IN C	UBIC FEET	PER SECO	ND, WATER MEAN VAL		TOBER 1984	TO SEPTEM	BER 198	5 ·	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	142	811	464	367.	367	333	681	3670	2630	2600	770	443
	118	953	367	367	367	495	718	3720	2890	2630	962	443
2 3 4	150							3440	2750	2610	865	443
3		792	399	399	334	463	660	3170	2/50	2010	863	528
4	118	760	46 4	367	334	459	549		2610	3170	962	
5	128	7 27	302	399	334	631	572	3040	2740	2970	1030	484
6	97	727	399	367	302	484	521	2900	2820	2950	930	549
7	6.5	7 27	367	399	367	549	425	2980	2890	2930	833	484
8	85	663	399	399	3 5 3	516	445	2830	2820	2780	791	484
ğ	150	646	367	334	321	484	410	2530	2600	2250	695	484
10	150	428	399	367	321	484	370	2410	2490	2100	398	516
	130		399		321	404	370	2410	2490			·
11	118	462	334	399	303	452	402	2710	1940	2000	463	699
12	150	46 2	399	353	367	452	2 9 5	2600	1700	1690	458	701
13	32	462	367	199	334	484	423	2760	1730	1500	551	715
14	65	463	320	333	366	452	383	2810	1540	1600	666	463
15	150	527	167	367	352	483	286	2620	1540	1360	612	484
13	130	321	107	307	332	403	200	2020	1340	130,0	012	404
16	150	430	515	399	287	451	380	2760	1520	1250	516	516
17	329	430	399	334	287	418	338	2840	1820	962	516	790
18	168	398	399	367	302	418	226	3030	1660	994	452	765
19	364							3030	1390	962	484	946
		463	367	353	398	418	129					940
20 .	331	431	399	190	430	451	97	2 92 0	1130	962	425	819
21	266	46 4	399	400	172	418	129	2530	1230	1030	443	792
22	266	367	399	367	352	417	346	2420	1410	997	485	698
23	266	431	367	367	289	417	836	2310	1730	903	484	794
24	348	399	399	367	354	417	1180	2200	1650	1150	452	963
25	334	399	367	332	399	385	1760	2250	1470	1040	484	865
		399	307	332		363	1/60					
26	56 5	431	334	372	398	553	2490	2160	1470	1020	484	930
27	637	399	399	199	366	598	3180	2300	2120	963	452	930
28	900	46 4	334	335	398	666	3760	2160	2300	899	464	962
29	793	431	385	334		795	3740	2030	2550	866	443	1090
30	1020	399	199	367		697	3690	1750	2530	962	443	1250
31	1060		368	367		696		2170		962	378	
TOTAL	9515	15946	11543	10866	9554	15436	29421	83050	61670	51062	18391	21050
MEAN	307	532	372	351	341	498	981	2679	2056	16 47	593	702
						498					1030	1250
	1060	953	515	400	430	795	3760	37 20	2890	3170		
MIN	32	367	167	190	172	333	97	1750	1130	866	378	443
† _	+96	-84	-13	-112	-149	-247	+578	+45	+5	-27	-72	+98
MEAN ‡	403	448	35 9	239	192	251	1559	27 24	2061	1620	521	800
CFSM Ŧ	.33	.36	.29	.19	.16	.20	1.27	2.22	1.68	1.32	.42	.65
IN. ‡	.38	.41	.34	.22	.16	.24	1.42	2.56	1.87	1.52	.49	.73
CAL YR I	1984 TOT	PAL 353304	MEAN	965 MAX	4530	MIN 21	MEAN İ	954 CF	sm ‡ .78	IN ‡	10.57	
WTR YR I			MEAN			MIN 32	MEAN ‡ MEAN ‡	934 CF	SM ‡ .76	in ‡	10.32	
MIN IN 1	101	ML 33/304	ME AN	JAJ MAX	3/00	MIN 32	MEAN T	934 CF	un + ./0	TM 4	10.32	

[†] Change in contents, equivalent in cubic feet per second, Camp Six, Bald Eagle, Gabbro, Little Gabbro, Birch, White Iron, Farm, South Farm, and Garden Lakes.

[‡] Adjusted for change in reservoir contents.

05127500 BASSWOOD RIVER NEAR WINTON, MN

(International gaging station)

LOCATION.--Lat 48°04'57", long 91°39'09", in SE\SE\sec.30, T.65 N., R.10 W., Lake County, Hydrologic Unit 09030001, in Superior National Forest, on island in Jackfish Bay of Basswood Lake, used to determine discharge at outlet [lat 48°06'21", long 91°38'51", in sec.19, T.65 N., R.10 W., on international boundary 14 mi northeast of Winton].

DRAINAGE AREA.--1,740 mi², approximately (above outlet of Basswood Lake).

PERIOD OF RECORD.--March to June 1924, September 1925 to March 1928, January 1930 to current year. Monthly discharge only for some periods, published in WSP 1308.

REVISED RECORDS.--WSP 955: Drainage area. WSP 1145: 1935, 1937.

GAGE.--Water-stage recorder. Datum of gage is 1,296.80 ft, 1928 datum, (levels by Geodetic Survey of Canada). Prior to Oct. 27, 1938, nonrecording gages at several sites in vicinity of gage, at datum 3.0 ft higher. Oct. 28, 1938, to Sept. 30, 1966, water-stage recorder at datum 3.0 ft higher.

REMARKS.--No estimated daily discharges. Records good. Satellite telemeter at station. Some regulation by powerplant on Kawishiwi River at Winton, and by many lakes located upstream from station.

COOFLRATION.--This station is one of the international gaging stations maintained by the United States under agreement with Canada.

AVERAGE DISCHARGE.--57 years (water years 1926, 1927, 1931-85), 1,399 ft³/s, 10.92 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 15,600 ft³/s, May 24, 1950, gage height 9.94 ft, present datum; minimum, 55 ft³/s, Nov. 18, 1976, gage height, 1.67 ft.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 3,550 $\rm ft^3/s$, May 19, gage height, 5.19 ft; minimum, 185 $\rm tt^3/s$, Oct. 15, 16, gage height, 2.18 ft.

		DISCHARGE	, IN CU	BIC FEET	r per secon	D, WATER MEAN VALU		OBER 1984	TO SEPTI	EMBER 1985		
DAY	OCT	NOV	DEC	J AN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	219	298	470	5 2 3	469	469	618	2140	3080	2860	157¢	768
2	214	313	470	516	469	469	645	2390	3080	2910	1530	763
3	206	330	466	510	469	469	674	2600	3130	3020	1500	757
3 4	207	342	469	506	469	469	693	2810	3190	3260	1480	748
5	2 02	357	469	503	469	469	712	2940	3250	3350	1500	740
,	202	337	409	203	409	409	/12	2940	3230	3330	1300	740
6	19 9	372	471	503	469	469	724	3080	3290	3430	1500	739
7	198	3 90	469	509	469	469	720	3170	3320	3460	1470	725
8	196	410	469	510	469	469	717	3220	3360	3470	1440	713
9	192	427	467	510	469	469	710	3 2 3 0	3340	3440	1420	692
10	191	440	467	510	469	469	701	3250	3360	3390	1400	670
				-10								
11	191	4 47	464	510	469	469	693	3340	3340	3310	1360	656
12	189	451	463	510	469	486	688	3340	3250	3210	1340	645
13	189	452	463	510	469	494	731	3380	3140	3080	1280	636
14	18 9	455	460	503	469	495	726	3410	3010	2940	1200	632
1.5	191	453	460	503	469	495	719	3430	2870	2800	1170	630
16	190	451	516	498	469	495	708	3460	2760	2700	1130	666
17	211	4.46	546	495	469	495	705	3480	2680	2570	1140	7€4
18	205	444	546	488	469	503	692	3510	2630	2460	1090	767
19	228	440	546	488	469	500	682	3520	2560	23 40	1060	782
20	230	439	546	488	469	502	681	3530	2500	2240	1030	783
												0.00
21	227	440	5 4 6	488	469	503	688	3530	2450	2140	1000	803
22	226	436	538	488	469	503	727	3500	2370	2040	983	813
23	223	438	538	482	469	503	850	3450	2280	1960	980	855
24	222	438	530	482	469	503	964	3380	2250	2000	956	950
25	224	438	530	478	469	505	1040	3350	2280	1970	929	970
26	226	439	530	475	469	505	1090	3300	2340	1910	90 8	985
27	235	458	530	475	469	510	1200	3240	2430	1860	880	994
28	248	473	530	475	469	520	1390	3170	2560	1780	846	991
29	259	475	530	475		553	1630	3100	2670	1720	830	1000
30	269	473	530	474		575	1880	3040	2770	1670	809	1040
31	289		530	469		597		3090		1620	792	
TOTAL	6685	12665	35550	15354	13132	15401	25398	99380	85540	80910	36523	23677
MEAN	216	422	15559 502	495	13132 469	15401 497	25398 847	3206	2851	2610	1178	789
MAX	289	475	546	523	469	597	1880	3530	3360	3470	1570	1040
MIN	189	298		469	469	469	618	2140	2250	1620	792	630
	.12	.24	460	.28	.27	.29	.49	1.84	1.64	1.50	.68	.45
CFSM			.29					2.12	1.83	1.73	.78	.43
IN.	.14	.27	.33	.33	.28	.33	.54				72440	46960
AC-FT	13260	25120	30860	30450	26050	30550	50380	197100	169700	160500	/2440	40 70 U
CAL YR	1984 ТОТ	AL 481290	MEAN	1315	MAX 5010	MIN 189	CFSM	.76 IN	10.29	AC-FT 9546	00	
WTR YR			MEAN	1179	MAX 3530	MIN 189	CFSM			AC-FT 8533		
							J. 5					

05128000 NAMAKAN RIVER AT OUTLET OF LAC LA CROIX, ONTARIO

(International gaging station)

LOCATION.--Lat 48°21'14", long 92°13'01", at Campbell's Camp, on Lac La Croix Lake, used to determine discharge at outlet [Lat 48°23'00", long 92°10'40", 2.5 mi east of Campbell's Camp].

DRAINAGE AREA. -- 5,170 mi2.

PERIOD OF RECORD. -- September 1921 to January 1922, April 1922 to current year, in reports of Geological Survey.

Monthly discharge only for some periods, published in WSP 1308. August 1921 to current year, in reports of Water Survey of Canada.

GAGE.--Water-stage recorder. Gage readings have been reduced to elevations, United States and Canada Boundary Survey datum. Prior to October 1933, nonrecording gages at various sites on Lac la Croix. October 1933 to Mar. 13, 1963, nonrecording gage at present site and datum.

REMARKS.--Estimated daily discharges: Oct. 18 to Nov. 2, Feb. 28 to Mar. 6, and Aug. 3-13. Records good except those for periods of no gage-height record, Oct. 28 to Nov. 2, Feb. 28 to Mar. 6, and Aug. 3-13, which are fair. Satellite telemeter at station.

COOPERATION.--This station is one of the international stations maintained by Canada under agreement with the United States.

AVERAGE DISCHARGE.--63 years (water years 1923-85), 3,830 ft3/s, 10.06 in/yr.

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 28,200 ft³/s, May 31 to June 2, 1950, elevation, 1,193.30 ft; minimum, 535 ft³/s at times in February, March and April 1924, elevation, 1,181.50 ft.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 10,700 ft³/s, July 7, elevation, 1,187.54 ft; minimum, 1,080 ft³/s, Nov. 16, elevation, 1,182.24 ft.

		DI	SCHARG	E, IN C	UBIC FEET	PER S		WATER AN VALU		TOBER 1984	TO SEPTE	MBER 1985		
DAY	OC:	r	NOV	DEC	JAN	F	ЕВ	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	145	0 1	160	1220	1580	15	90	1470	1370	4790	85 0 0	10100	6740	3850
2	139	0 1	160	1230	1580	15		1470	1370		8450	10200	6570	3840
3	138		160	1230	1600	15		1460	1370		8450	10300	6430	3760
4	137		130	1230	1600	15		1450	1370		8370	10500	6290	3730
5	136		140	1240	1610	150		1450	1370		8320	10600	6140	3680
_	100		3.50	1050	1600				1000	F. 0.0	8290	10000	6040	2600
6	133		150	1250	1620	150		1450	1380			10600	6040	3620
7	1310		150	1260	1630	15	50	1450	1390		8170	10600	5900	3550
8	1 29		140	1260	1630	15		1450	1380		8140	10500	5760	3470
9	127		130	1260	1620	15		1430	1390		7890	10400	5620	3390
10	1 26	0 1	130	1260	1620	15	70	1430	1370	6260	8000	10300	5470	3290
11	125		120	1270	1650	150	50	1410	1390	6550	7970	10200	5330	3220
12	124	0 1	120	1260	1660	15	50	1420	1400	6910	7880	10100	523 0	3160
13	1 23	0 1	130	1270	1670	15	50	1410	1430	7 3 3 0	78 40	9950	50 90	3050
14	122		120	1270	1660	15		1400	1440		7790	9780	5000	2960
15	122	0 1	120	1280	1660	15		1400	1460	7830	7740	9620	4960	2910
16	121	0 1	110	1350	1670	15:	20	1390	1480	8070	7700	9500	4910	2910
17	127		120	1410	1670	15:		1380	1510		7640	9350	4870	2990
18	129		120	1410	1660	15	20	1380	1510		7580	9200	4740	2980
19	131								1570			8980		
			120	1440	16 40	15:	20	1370			7510		4700	3000
20	129	U I	120	1470	1640	15	20	1370	1610	8600	7420	87 9 0	46 50	3000
21	128		120	1480	1650	15		1360	1670		7500	855 0	4610	3060
22	126		120	1460	1650	150		1370	1840		7790	8410	4550	3040
23	124	0 1	130	1470	1650	14		1360	2300		8070	8 23 0	4530	3070
24	1250	0 1	130	1490	1650	149	90	1350	2830	8710	8260	8220	4440	3200
25	125	0 1	130	1510	1630	148	30	1360	3240	8780	8480	8070	4360	3320
26	1240	1 1	140	1520	1640	148	20	1350	3630	8750	8800	78 90	4290	3410
27	121		150	1540	1640	14		1350	3970		9100	7730	4200	3480
28	1180		200	1540	1630	147		1360	4270		9480	7450	4130	3530
29	1170		210	1560	1630			1370	4510		9740	7280	4060	3630
30	117		210	1560	1610			1370	4660		9950	7100	4000	3690
31	116			1560	1600			1370			3330	6920	3950	
TOTAL	39350		190	42580	50650	429		43410	61510		246820	285420	157560	99790
MEAN	1 26		140	1374	1634	153		1400	2050		8227	9207	5083	3326
MAX	1450		210	1560	1670	159		1470	4660		9950	10600	6740	3850
MIN	116		110	1220	1580	14		1350	1370		7420	6920	3950	2910
CFSM	. 2		.22	.27	.32		30	.27	.40		1.59	1.78	.98	.64
IN.	. 28		.25	.31	.36		31	.31	.44		1.78	2.05	1.13	.72
AC-FT	7805	0 67	820	84460	100500	851	10	86100	122000	453000	489600	566100	312500	197900
CAL YR	1984	TOTAL	138130	nn MF	AN 3774	MAX	10400	MIN	1110	CFSM .73	IN 9.94	AC-FT	2740000	
WTR YR		TOTAL	13325		AN 3651		10600		1110	CFSM .71	IN 9.59	AC-FT	26 43 000	
"1 TV TV	1303	TOTUD	13323.	JU PIE	.m 2031	nov	10000	1.7 7.4	2120	CEDM ./I	114 3.33	nc ii	20 43 000	

05128200 VERMILION LAKE NEAR SOUDAN, MN

- LOCATION.--Lat 47°49'52", long 92°16'20", in SW\SE\ sec.20, T.62 N., R.15 W., St. Louis County, Hydrologic Unit 09030002, on south shore of Vermilion Lake, 2 mi northwest of Soudan.
- PERIOD OF RECORD.--October 1913 to July 1915, July 1941 to November 1942, June 1946 to current year (fragmentary during 1947).
- GAGE.--Water-stage recorder. Datum of gage is 1,355.10 ft above National Geodetic Vertical Datum of 1929.
 October 1913 to July 1915, nonrecording gage at Tower, 2 mi southwest of present gage, at datum about 1,354.60 ft. July 1941 to November 1942, and June 1946 to June 1951, nonrecording gage approximately 13 mi northwest at Vermilion Dam near Tower, at same datum. All gage readings have been reduced to elevations above National Geodetic Vertical Datum of 1929.
- EXTREMES FOR PERIOD OF RECORD.--Maximum elevation observed, 1,359.52 ft, May 16, 1950; minimum observed, 1,356.02 ft, Jan. 29, 1942; minimum, 1,355.96 ft, Dec. 14, 1976, result of wind action.
- EXTREMES OUTSIDE PERIOD OF RECORD.--Elevation on June 6, 1913 was 1,359.94 ft, determined from reference point set by local observers.
- EXTREMES FOR CURRENT YEAR.--Maximum elevation, 1,358.63 ft, July 5, result of wind action; maximum daily, 1,358.55 ft, May 19; minimum, 1,356.59 ft, Oct. 15, result of wind action; minimum daily, 1,356.66 ft, Oct. 15.

MONTHEND ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

Oct. 31 1,357.07	Feb. 28 1,356.99	June 30 1,358.37
Nov. 30 1,357.11	Mar. 31 1,357.02	July 31 1,357.82
Dec. 31 1,357.12	Apr. 30 1,358.25	Aug. 31 1,357.31
Jan. 31 1,357.04	May 31 1,358.39	Sept.30 1,357.47

NOTE .-- Elevations other than those shown above are available.

05129115 VERMILION RIVER NEAR CRANE LAKE, MN

LOCATION.--Lat 48°15'53", long 92°33'57", in NE\ne\tag{Ne} sec. 30, T.67 N., R.17 W., St. Louis County, Hydrologic Unit 09030002, in Superior National Forest, on left bank 350 ft downstream from bridge on Forest Route 491, 3.5 mi upstream from mouth, and 3.5 mi west of village of Crane Lake.

PERIOD OF RECORD. -- August 1979 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 1,180 ft above National Geodectic Vertical Datum of 1929, from topographic map.

REMARKS. -- Estimated daily discharges: Oct. 1-8. Records fair.

AVERAGE DISCHARGE. -- 6 years, 634 ft3/s.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,360 ft³/s, Apr. 25, 1985, gage height, 15.20 ft; minimum, 38 ft³/s, Aug. 13, 14, 1980, gage height, 3.68 ft.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of April 1979 reached a stage of 15.15 ft, from high-water mark, discharge, about 4,600 ft³/s.

EXTREMES FOR CURRENT YEAR.--Maximum 4,360 ft³/s, Apr. 25, gage height, 15.20 ft; minimum, 45 ft ³/s, Oct. 15, gage height, 3.79 ft.

		DISC	CHARGE, IN	CUBIC FEE	T PER	SECOND, WATER MEAN VALUES	YEAR	OCTOBER 1984	TO SE	PTEMBER 1985		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4	60	408	285	248	152	160	351	26 40	2110	2980	821	401
2	58	362	282	245	150	157	. 346	2440	2190	2810	785	390
3	57	354	278	242	146		377	2280	2190	2620	755	396
4	52	366	267	245	148		389	2170	2130	2460	723	395
5	49	368	264	244	152		392	2090	2060	2330	710	386
,	4,5	300	204	244	152	. 103	352	2090	2000	2330	710	360
6 7 8	47	356	253	241	159		392	2020	1980	2220	700	393
7	48	345	249	238	168		399	1970	1910	2140	698	383
8	49	354	247	233	158	176	399	1940	1830	2070	665	372
9	49	356	244	227	150	178	385	1900	1760	1970	656	364
10	48	354	242	221	156		388	1830	1660	1870	629	357
11	48	341	241	218	163	179	425	1840	1580	1780	601	349
12	46	330	238	217	165		458	2060	1500	1710	590	342
13												
	47	323	227	217	164		578	2400	1430	1640	615	336
14	47	323	222	217	160		722	2560	1360	1570	595	335
15	46	330	221	208	156	181	839	2630	1300	1500	55 9	327
16	51	304	264	205	157	182	919	2800	1250	1430	538	334
17	94	298	307	202	158	183	879	2880	1220	1360	557	381
18	123	287	321	201	158		823	2820	1200	1310	549	446
19	230	276	319	190	157		766	2700	1190	1270	520	502
20	404	268	316	180	158		775	2560	1170	1220	502	625
	404	200	310	100	150	210	.,,	2500	1170	1220	302	023
21	491	261	312	183	159	215	763	2470	1170	1170	488	670
22	529	257	300	185	157	240	1020	2350	1360	1110	473	680
23	536	252	284	187	157		2260	2200	1520	1070	467	692
24	517	249	273	187	154		3750	2070	1570	1110	460	907
25	484	249	263	183	156		4300	1980	1640	1130	448	1040
	404	243	203	103	130	300	4300	1960	1040	1130	440	1040
26	468	256	258	176	158	340	4260	1980	2400	1130	440	1060
27	455	264	256	172	153		3930	1980	2980	1090	431	1060
28	440	288	261	170	158		3560	1960	3200	1040	409	955
29	427	289	264	169			3220	1910	3210	973	400	841
30	419	289	260	168			2890	1870	3120	915	394	754
31	402	209	252				2090		3120			734
21	402		252	160		377		1920		866	391	
TOTAL	6821	9357	8270	6379	4387		40955		55190		17569	16473
MEAN	220	312	267	206	157	235	1365	2233	1840	1609	567	5 49
MAX	536	408	321	248	168	455	4300	2880	3210	2 9 80	821	1060
MIN	46	249	221	160	146		346	1830	1170	866	391	3 27
AC-FT	13530	18560	16400	12650	8700		81 23 0		09500		34850	32670
					5.50							

CAL YR 1984 TOTAL 207338 MEAN 566 MAX 2080 MIN 46 AC-FT 411300 WTR YR 1985 TOTAL 291778 MEAN 799 MAX 4300 MIN 46 AC-FT 578700

05129290 GOLD PORTAGE OUTLET FROM KABETOGAMA LAKE NEAR RAY, MN

LOCATION.--Lat 48°31'28", long 93°04'29", in SW\nE\ sec.30, T.70 N., R.21 W., St. Louis County, Hydrologic Unit 09030003, on right bank in bay at head of Gold Portage Outlet from Kabetogama Lake, 9.8 mi northeast of Ray.

PERIOD OF RECORD. -- October 1982 to current year.

GAGE.--Water-stage recorder. Datum of gage is 1,100 ft, adjustment of 1912 (U.S. Army Corps of Engineers bench mark), water surface transfer.

REMARKS.--Estimated daily discharges: Dec. 2-11. Records good. Flow completely regulated by outlet dam on Namakan Lake.

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 863 ft³/s, June 25, 1985, gage height, 19.22 ft; no flow from approximately the middle of January to the first of May each year; minimum gage height, 10.54 ft, Apr. 2, 8, 1984.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 863 ft³/s, June 25, gage height, 19.22 ft; no flow Jan. 25 to Apr. 25; minimum gage height, 10.78 ft, Apr. 2.

	DISCH	ARGE, IN	CUBIC FEI		COND, WATER AN VALUES	YEAR OC	TOBER 198	4 TO SEPI	EMBER 198	5		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	337	220	134	59	.00	.00	.00	24	422	804	603	571
2	323	243	130	56	.00	.00	.00	27	433	785	608	582
3	312	257	125	57	.00	.00	.00	33	449	776	615	572
4	319	238	120	55	.00	.00	.00	41	456	755	628	569
5	316	234	120	52	.00	.00	.00	43	460	740	632	580
6 7	305	243	118	45	.00	.00	.00	48	475	734	635	575
7	300	249	115	40	.00	.00	.00	5 2	468	732	630	576
8	295	238	108	36	.00	.00	.00	57	473	706	650	576
9	290	234	102	31	.00	.00	.00	60	424	678	645	576
10	288	231	95	27	.00	.00	.00	71	454	678	630	572
11	286	232	90	24	.00	.00	.00	96	473	682	642	573
12	282	232	83	21	.00	.00	.00	117	477	690	665	578
13	276	232	85	18	.00	.00	.00	148	488	688	632	574
14	272	232	85	13	.00	.00	.00	171	501	672	601	567
15	283	206	83	12	.00	.00	.00	193	523	660	618	570
16	26 2	200	83	9.7	.00	.00	.00	213	551	675	620	57.2
17	268	208	82	6.7	.00	.00	.00	231	565	670	648	586
18	282	203	82	4.6	.00	.00	.00	254	584	662	606	586
19	288	198	81	3.8	.00	.00	.00	260	608	652	615	615
20	280	193	80	2.7	.00	.00	.00	278	635	662	622	652
21	276	190	80	1.3	.00	.00	.00	299	662	645	618	690
22	272	180	74	.80	.00	.00	.00	311	645	658	615	685
23	273	175	73	.40	.00	.00	.00	319	685	668	610	650
24	276	169	69	.02	.00	.00	.00	330	742	665	605	650
25	282	164	69	.00	.00	.00	.00	358	809	662	606	670
26	282	157	68	.00	.00	.00	.47	375	801	650	608	670
27	27 2	148	67	.00	.00	.00	4.4	386	790	655	590	665
28	255	146	64	.00	.00	.00	10	398	806	628	591	638
29	265	144	62	.00		.00	16	416	817	620	590	632
30	251	138	62	.00		.00	19	422	817	615	5 86	615
31	268		60	.00		.00		424		608	5 91	
TOTAL	8836	6134	2749	576.02	.00	.00	49.87	6455	17493	21175	19155	18187
MEAN	285	204	88.7	18.6	.000	.000	1.66	208	583	683	618	606
MAX	337	257	134	59	.00	.00	19	424	81,7	804	665	690
MIN	251	138	60	.00	.00	.00	.00	24	422	608	586	567
AC-FT	17530	12170	5450	1140	.00	.00	99	12800	34700	42000	37990	36070
CAT VD	1004 1001	AT 7025	4 00 ME	AN 217	MAY 607	MTN OO	አር የጥ	157400				

CAL YR 1984 TOTAL 79354.09 MEAN 217 MAX 607 MIN .00 AC-FT 157400 WTR YR 1985 TOTAL 100809.89 MEAN 276 MAX 817 MIN .00 AC-FT 200000

05129400 RAINY LAKE NEAR FORT FRANCES, ONTARIO (International gaging station)

- LOCATION.--Lat 48°38'30", long 93°20'00", at Five Mile dock, approximately 5 mi northeast of town of Fort Frances.
- PERIOD OF RECORD.--January 1910 to September 1917 and October 1934 to current year, in reports of Geological Survey. August 1911 to current year, in reports of Water Survey of Canada. Prior to October 1949, published as "at Ranier, Minn.", and as "at Fort Frances, Ontario" October 1949 to September 1964.
- GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (United States and Canadian Boundary Survey). January 1910 to December 1949, nonrecording gage 3 mi northeast at Ranier, Minn., at same datum. January 1950 to October 1964, water-stage recorder on Government dock at Pither's Point at Fort Frances, and supplementary gage in town pumping station, 0.5 mi south, used during winter months, at same datum.
- COOPERATION. -- This station is one of the international gaging stations maintained by Canada under agreement with the United States.
- EXTREMES FOR PERIOD OF RECORD.--Maximum elevation observed, 1,112.97 ft, July 5, 1950; minimum observed, 1,101.26 ft, Apr. 17, 1923, Apr. 2, 1930.
- EXTREMES FOR CURRENT YEAR.--Maximum elevation, 1,109.04 ft, July 3; maximum daily elevation, 1,109.00 ft, July 6, 7; minimum, 1,104.81 ft, Apr. 12; minimum daily, 1,104.82 ft, Apr. 11.

MONTHEND ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

Oct. 31 1107.21	Feb. 28 1105.69	June 30 1108.85
Nov. 30 1107.27	Mar. 31 1105.03	July 31 1108.20
Dec. 31 1106.78	Apr. 30 1106.84	Aug. 31 1107.85
Jan. 31 1106.32	May 31 1108.55	Sept.30 1108.13

NOTE .-- Elevations other than those shown are available.

05130500 STURGEON RIVER NEAR CHISHOLM, MN

LOCATION.--Lat 47°40'25", long 92°54'00", in NE\NW\ sec.20, T.60 N., R.20 W., St. Louis County, Hydrologic Unit 09030005, on left bank 1,000 ft upstream from highway bridge, 0.6 mi downstream from East Branch Sturgeon River, and 11.5 mi north of Chisholm.

DRAINAGE AREA. -- 187 mi2.

PERIOD OF RECORD .-- August 1942 to current year.

REVISED RECORDS. -- WSP 1438: 1946.

GAGE.--Water-stage recorder. Datum of gage is 1,305.7 ft above National Geodetic Vertical Datum of 1929. Prior to Aug. 24, 1944, nonrecording gage at site 1,000 ft downstream at different datum. Aug. 25, 1944, to Sept. 30, 1975, at present site at datum 1.00 ft higher.

REMARKS.--Estimated daily discharges: Nov. 15 to Mar. 23. Records good except those for period with ice effect, Nov. 15 to Mar. 23, which are fair.

AVERAGE DISCHARGE.--43 years, 125 ft3/s, 9.08 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,630 ft³/s, May 7, 1950, gage height, 7.41 ft, present datum, from rating curve extended above 1,600 ft³/s, on basis of slope-area measurement of peak flow; minimum daily, 3.8 ft³/s, Jan. 31 to Feb. 3, 1977.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 500 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Apr. 25	1030	*1,480	*5.84
May 13	0300	7 23	4.28
June 2	2230	548	3.92

Minimum daily discharge, 16 ft³/s, Feb. 9 to Mar. 7; minimum gage height, 1.76 ft, Aug. 20.

		DISCHARGE,	IN CUBIC	FEET PE			YEAR OCTOBER	1984	O SEPTEMBER	1985		
					ME	AN VAL	UES					
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	18	95	50	33	18	16	117	449	441	213	49	113
2	18	89	49	32	18	16	112	3 97	523	184	47	103
3	19	84	49	32	18	16	116	359	533	162	44	112
4	20	86	48	31	17	16	113	331	463	233	43	115
5	20	84	48	31	17	16	115	325	363	308	45	106
6 7 8	20	81	47	30	17	16	109	335	303	339	45	108
7	22	79	47	30	17	16	113	3 4 3	255	330	43	3 6
8	23	80	46	29	17	17	101	336	221	271	40	88
9	26	79	46	28	16	17	89	311	200	212	42	83
10	27	78	45	28	16	18	85	293	179	169	41	76
11	29	78	45	27	16	19	88	352	161	143	39	68
12	29	75	44	27	16	20	90	67 0	145	123	41	62
13	31	74	44	26	16	21	117	712	136	108	45	56
14	32	72	43	26	16	22	149	663	126	95	45	53
15	35	70	43	25	16	23	175	601	116	85	43	50
16	43	65	58	25	16	25	184	550	109	77	40	50
17	142	63	62	24	16	28	179	509	105	71	38	57
18	150	62	60	24	16	32	178	474	102	71	38	57
19	205	61	57	23	16	40	169	444	9 8	67	36	59
20	215	60	54	23	16	50	183	3 9 0	92	63	34	71
21	233	59	51	22	16	60	208	349	88	62	36	70
22	233	58	48	22	16	80	277	308	98	57	37	70
23	210	57	46	21	16	110	678	275	96	53	42	94
24	1 83	56	44	21	16	146	1230	256	8 9	61	63	167
25	156	55	42	21	16	171	1460	246	97	65	64	190
26	138	54	40	20	16	190	1330	237	158	61	60	196
27	128	53	38	20	16	213	1030	264	201	59	55	175
28	124	52	37	20	16	208	790	238	245	56	49	153
29	119	51	36	19		190	632	210	258	53	46	136
30	112	50	35	19		159	515	218	243	52	43	134
31	104		34	19		137		3 26		51	66	
TOTAL	2864		1436	7 7 8	459	2108		1771		3954	1399	2970
MEAN	92.4		46.3	25.1	16.4	68.0	358	3 80	208	128	45.1	99.0
MAX	233	95	62	33	18	213	1460	712	533	339	66	196
MIN	18	50	34	19	16	16	85	210	88	51	34	50
CFSM	.49	.37	.25	.13	.09	.36		2.03	1.11	.68	. 24	.53
IN.	.57	. 41	.29	.15	.09	.42	2.13	2.34	1.24	.79	.28	.59
AC-FT	5680	4090	2850	1540	910	41 80	21290 2	3350	12380	7840	2770	5890

CAL YR 1984 TOTAL 39399 MEAN 108 MAX 777 MIN 14 CFSM .58 IN 7.84 AC-FT 78150 WTR YR 1985 TOTAL 46775 MEAN 128 MAX 1460 MIN 16 CFSM .68 IN 9.30 AC-FT 92780

05131500 LITTLE FORK RIVER AT LITTLEFORK. MN

LOCATION.--Lat 48^o23'45", long 93^o32'57", in NE\SE\s sec.9, T.68 N., R.25 W., Koochiching County, Hydrologic Unit 09030005, on right bank at town of Littlefork, 0.9 mi upstream from bridge on State Highway 217, 2.8 mi upstream from Beaver Creek, and 19 mi upstream from mouth.

DRAINAGE AREA.--1,730 mi², approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--June to November 1909, April to November 1910, April 1911 to June 1917, September 1917, October 1917 to March 1919 (gage heights only), June 1928 to current year.

REVISED RECORDS.--WSP 955: Drainage area. WSP 1508: 1913, 1916, 1928-32, 1934. WRD MN-74: 1963.

GAGE.--Water-stage recorder. Datum of gage is 1,083.59 ft above National Geodetic Vertical Datum of 1929. June 23, 1909, to Mar. 4, 1917, nonrecording gage and July 21, 1937, to Oct. 23, 1979, water-stage recorder at site 1.2 mi downstream at datum 10.53 ft lower; Mar. 5 to Sept. 30, 1917, and June 22, 1928, to July 20, 1937, nonrecording gage at site 1.18 mi downstream at datum 10.53 ft lower.

PEMARKS.--Estimated daily discharges: Oct. 21-29 and Dec. 6 to Apr. 13. Records good except those for period of no gage height record, Oct. 21-29, and period with ice effect, Dec. 6 to Apr. 13, which are fair.

AVERAGE DISCHARGE.--62 years (water years 1912-16, 1929-85), 1,065 ft3/s, 8.36 in/yr.

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 25,000 $\rm ft^3/s$, Apr. 18, 1916, May 11, 1950, gage height, 37.00 ft, site and datum then in use; minimum observed, 21 $\rm ft^3/s$, Aug. 26, 27, 1936.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 19,900 ft³/s, Apr. 26, gage height 22.25 ft; minimum, 99 ft³/s, Oct. 13, 14, gage height, 1.96 ft.

DISCHARGE. IN CURIC FEET PER SECOND. WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

		DISCHARC	SE, IN CUI	SIC FEET F	ER SECOND	, WATER EAN VALU		DEK 1304	TO SEPIE	MDEK 1903	1	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	125	1350	539	200	110	101	1050	5900	4080	6340	682	552
2	123	925	502	195	105	102	1000	5250	5090	4920	602	640
3	120	952	457	190	105	103	1000	4480	4800	3750	546	955
4	117	1250	452	185	105	104	1000	3860	4150	3550	505	1140
5	118	1470	452	180	105	105	1000	3500	3480	4530	515	1110
_												
6	120	1320	450	175	105	105	1000	3260	3030	4540	536	1050
7	118	1260	440	170	104	105	1000	3180	2630	4210	552	970
8	109	1170	430	165	103	105	970	3140	2260	3560	530	895
9	104	1090	420	160	102	105	910	2980	2000	2890	500	825
10	101	1120	410	155	101	105	840	2750	1740	2360	495	736
11	107	870	400	150	100	105	810	5030	1560	1930	465	652
12	107	878	390	148	100	105	880	8120	1420	1630	430	590
13	100	984	370	144	100	105	1000	10400	1300	1400	430	536
14	101	892	360	140	100	105	1530	11200	1190	1220	445	480
15	104	849	340	138	100	110	1980	10200	1090	1080	455	445
16	106	676	355	135	100	110	2010	9820	1010	962	455	421
17	159	491	395	132	100	110	2140	8740	964	860	506	500
18	217	436	445	130	100	110	2010	7330	1050	812	636	618
19	826	580	470	128	100	115	1860	6130	1150	780	634	780
20	1970	656	470	125	100	120	1850	5180	1140	766	589	4070
21	2500	636	425	122	100	130	1880	4370	1100	742	550	3710
22	2710	671	380	120	100	140	3550	3740	1290	712	507	2850
23	2910	624	350	118	100	160	7560	3180	1800	700	473	2360
24	2980	580	315	116	100	190	13700	2750	1950	799	495	2480
25	2800	566	290	115	100	240	17900	2520	3110	1190	646	3580
26	2622		07.5				10000	0.440	7010	1200	7.40	
	2600	555	275	114	100	350	19600	2440	7210	1380	748	3740
27	2200	551	260	112	100	800	19100	2300	10300	1400	718	3320
28	1950	542	240	110	100	1350	15300	2130	10300	1240	646	2790
29	1780	544	230	110		1300	9750	2000	9700	1040	574	2350
30	1630	555	220	110		1200	7120	1980	8040	867	520	2060
31	1490		210	110		1100		2400		760	50 0	
TOT	AL 30502	2 25043	11742	4402	2845	9095	141300	150260	99934	62920	16885	47205
MEA			379	142	102	293	4710	4847	3331			1574
MAX			539	200	110	1350	19600	11200	10300			4070
MIN			210	110	100	101	810	1980	964			421
CFS			.22	.08	.06	.17	2.72	2.80	1.93			.91
IN.			.25	.09	.06	.20	3.04	3.23	2.15			1.02
AC-			23 290	8730	5640	18040	280300	298000	198200			93630
												25.50
		OTAL 37329			AX 9300	MIN			8.03	AC-FT	740400	
WTR	YR 1985	TOTAL 60213	3 MEAN	1650 M	AX 19600	MIN 1	00 CFSM	.95 IN	12.95	AC-FT	1194000	

05131500 LITTLE FORK RIVER AT LITTLEFORK, MN--Continued (National stream-quality accounting network station)

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1962-63, 1967, 1969, 1971 to current year.
REMARKS.--Letter K indicates non-ideal colony count.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS) (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	PH (STAND- ARD UNITS) (00400)	PH LAB (STAND- ARD UNITS) (00403)	TEMPER- ATURE, AIR (DEG C) (00020)	TEMPER- ATURE (DEG C) (00010)	TUR- BID- ITY (NTU) (00076)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)
OCT											
30 JAN	1530	1550	120	104	7. 7	7.1	-4.0	3.0	5.6	733	11.9
23	1600	118	220	253	7.2	7.1	~5.0	0.0	6.0	725	9.2
APR 17	0830	2180	115	117	7.6	7.0	4.0	3.0	17	723	11.4
AUG 21	1315	554	165	147	7.9	7.5	18.0	16.5	4.0	736	8.9
DATE	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	ALKA- LINITY FIELD (MG/L AS CACO3) (00410)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDF, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)
OCT 30 JAN	36	33	13	4.8	2.3	1.6	34	·36	12	3.6	0.1
23 APR	кз	K12	31	11	5.2	2.4	109	110	12	3.7	0.2
17 AUG	K16	27	15	4.9	2.0	1.8	41	49	12	2.6	<0.1
21	K10	220	20	6.6	2.1	0.9	67	71	<0.2	2.2	<0.1

DATE	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS, TOTAL (MG/L AS P) (00665)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS, ORTHO, DIS- SOLVED (MG/L AS P) (00671)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
OCT 30	8.4	92	0.17	0.12	0.9	0.07	0.01	0.01	33	97
JAN 23	12	201	0.25	0.06	0.3	0.04	0.03	<0.01	12	87
APR 17	5.7	91	1.40	0.13	0.8	0.33	0.27	0.24	107	96
AUG 21	6.2	133	<0.10	0.03	1.3	0.04	0.04	<0.01	22	99

05131500 LITTLE FORK RIVER AT LITTLEFORK, MN--Continued

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)
OCT 30	1530	180	1	23	<0.5	<1	1	<3	2	540	<1
JAN 23	1600	50	3	38	<0.5	<1	9	<3	1	640	<1
APR 17	0830	70	2	21	<0.5	<1	10	<3	7	310	2
AUG 21	1315	60	2	25	<0.5	<1	7	<3	2	410	3

		MANGA-		MOLYB-		SELE-		STRON-	VANA-	
	LITHIUM	NESE,	MERCURY	DENUM,	NICKEL,	NIUM,	SILVER,	TIUM,	DIUM,	ZINC,
	DIS-									
	SOLVED									
DATE	(UG/L									
	AS LI)	AS MN)	AS HG)	AS MO)	AS NI)	AS SE)	AS AG)	AS SR)	AS V)	AS ZN)
	(01130)	(01056)	(71890)	(01060)	(01065)	(01145)	(01075)	(01080)	(01085)	(01090)
OCT										
30	<4	15	<0.1	<10	1	<1	<1	35	<6	16
JAN					_	-				
23	5	31	1.8	<10	1	<1	<1	85	<6	7
APR										
17	<4	33	<0.1	<10	5	<1	<1	33	< 6	21
AUG										
21	8	25	<0.1	<10	1	<1	<1	47	<6	. 6

05132000 BIG FORK RIVER AT BIG FALLS, MN

LOCATION.--Lat 48°11'45", long 93°48'25", in SW\SE\ sec.35, T.155 N., R.25 W., Koochiching County, Hydrologic Unit 09030006, on left bank at village of Big Falls, 700 ft downstream from falls, 0.3 mi downstream from bridge on U.S. Highway 71, and 4.8 mi upstream from Sturgeon River.

DRAINAGE AREA.--1,460 mi², approximately.

PERIOD OF RECORD. -- August to November 1909, April to November 1910, April 1911 to September 1912 (gage heights and discharge measurements only), June 1928 to September 1979. October 1979 to September 1982, annual maximums only. October 1982 to current year.

REVISED RECORDS .-- WSP 1308: 1935 (M) .

GAGE.--Water-stage recorder. Datum of gage is 1,144.71 ft above National Geodetic Vertical Datum of 1929. Prior to June 10, 1911, nonrecording gage at railroad bridge about 0.4 mi upstream at different datum. June 10. 1911, to Sept. 30, 1912, and June 22, 1928, to Dec. 17, 1937, nonrecording gage at site 200 ft upstream at same datum. October 1979 to September 1982, crest-stage gage at same site and datum.

REMARKS.--Estimated daily discharges: Nov. 13 to Mar. 31. Records good except those for period with ice effect, Nov. 13 to Mar. 31, which are fair. Prior to 1971, a powerplant, located 0.3 mi upstream, caused some diurnal fluctuation at low flows.

AVERAGE DISCHARGE.--54 years (water years 1929-79, 1983-85), 729 ft3/s, 6.78 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 14.800 ft³/s, May 8, 9, 1950; maximum gage height, 17.08 ft, May 8, 1950; minimum discharge recorded, 7 ft³/s, Aug. 7, 1939.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 10,100 $\rm ft^3/s$, Apr. 25, gage height, 13.12 ft; minimum daily discharge, 160 $\rm ft^3/s$ Mar. 4-20.

		DISCHARGE,	IN CUBIC	FEET P		WATER AN VALU		OBER 1984	TO SEPTE	MBER 1985		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	YAM	JUN	JUL	AUG	SEP
1	216	1240	640	346	199	162	1190	3590	2380	3520	1200	1050
2	213	1010	630	340	196	162	1020	3 2 6 0	2480	2770	1050	1110
3	212	846	620	334	194	162	990	2980	2340	2240	951	1160
3 4	211	954	610	328	192	160	1040	2770	2120	2480	885	1160
5	207	1060	600	322	1 9 0	160	1090	2630	1920	2470	921	1110
6	207	1010	580	316	188	160	1190	2530	1850	2230	9 51	1050
7	208	1040	570	310	186	160	1200	2480	1720	1920	9 54	1020
8	208	1210	560	305	184	160	1180	2370	1570	1740	891	1040
9	207	1210	550	300	182	160	1120	2260	1470	1480	891	988
10	214	1080	540	295	180	160	1 07 0	2120	1350	1270	912	938
11	221	860	526	290	178	160	1080	3470	1250	1120	861	906
12	225	793	518	285	176	160	1170	5810	1160	998	833	871
13	233	800	508	280	174	160	1100	7170	1070	9 00	884	821
14	243	900	498	275	172	160	1130	7570	997	837	909	7 77
15	265	940	488	270	172	160	1150	6680	95 9	784	954	757
16	287	850	480	265	172	160	1240	5910	934	746	9 23	768
17	406	840	472	260	170	160	1270	5150	940	687	1040	927
18	561	820	464	255	170	160	1280	4570	993	657	1160	971
19	1010	800	456	250	170	160	1220	4090	1010	638	1190	1340
20	1790	780	448	245	170	160	1260	3610	959	616	1230	3 2 0 0
21	2240	770	440	240	168	170	1310	3200	898	6 0 6	1230	2940
22	2370	760	432	235	168	200	2320	28 9 0	1130	5 89	1130	3640
23	2290	740	4 23	231	168	250	4740	2630	1510	566	1020	3010
24	2070	730	414	227	168	350	7760	2410	1640	825	1070	2550
25	1860	710	405	223	166	700	9850	2250	1780	1890	1120	2280
26	1700	700	396	219	166	1000	93'10	2190	3380	3070	1120	2020
27	1570	680	387	215	164	1500	7480	2090	5540	3290	1070	1800
28	1500	670	378	211	164	1850	5810	1970	5 9 60	2810	983	1640
29	1430	660	370	208		1700	4720	1880	5320	2160	9 31	1540
30	1380	650	362	205		1500	4050	1850	4420	1700	89 0	1450
31	1310		354	202		1300		2030		1400	873	
TOTAL	27064			8287		13726	80340	106410	61050	49009	31027	44834
MEAN	873	870	488	267	177	443	2678	3433	2035	1581	1001	1494
XAM	2370	1240	640	346	199	1850	9850	7570	5960	3520	1230	3640
MIN	207	650	354	202	164	160	990	1850	898	566	833	7 57
CFSM	.60	.60	.33	.18	.12	.30	1.83	2.35	1.39	1.08	.69	1.02
IN.	.69	.67	.39	.21	-13	.35	2 05	2.71	1.56	1.25	.79	1.14
AC-FT	53680	51800 2	9990 1	6440	9810	27 23 0	159400	211100	121100	9 7 21 0	61540	88 9 30
										_		

CAL YR 1984 TOTAL 330525 MEAN 903 MAX 6460 MIN 184 CFSM .62 IN 8 42 AC-FT 655600 WTR YR 1985 TOTAL 467926 MEAN 1282 MAX 9850 MIN 160 CFSM .88 IN 11.92 AC-FT 928100

05133500 RAINY RIVER AT MANITOU RAPIDS, MN

(International gaging station)

LOCATION.--Lat 48°38'04", long 93°54'47", in NW\SE\ sec.36, T.160 N., R.26 W., Koochiching County, Hydrologic Unit 09030004, on left bank at Manitou Rapids, 4 mi west of Indus.

DRAINAGE AREA.--19,400 mi², approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--July 1928 to current year. Monthly discharge only for some periods, published in WSP 1308. October 1911 to October 1924 (gage heights only) at site near Birchdale in files of U.S. Army Corps of Engineers. Published as "near Birchdale" 1932-34.

GAGE.--Water-stage recorder. Datum of gage is 1,062.48 ft above National Geodetic Vertical Datum of 1929. Prior to Nov. 10, 1934, nonrecording gage at site near Birchdale, 7 mi. downstream at different datum.

REMARKS.--Estimated daily discharges: Nov. 16 to Mar. 18. Records good. Satellite telemeter at station. Diurnal fluctuation caused by powerplant at International Falls. Some regulation at low and medium flows by Rainy and Namakan Lakes.

COOPERATION.--This station is one of the international gaging stations maintained by the United States under agreement with Canada.

AVERAGE DISCHARGE.--57 years, 12,920 ft³/s, 9.04 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 71,600 ft 3 /s, May 12, 1950, gage height, 21.04 ft; minimum daily, 928 ft 3 /s, Dec. 26, 1929.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 61,300 ft³/s, June 28,29, gage height, 18.98 ft; minimum, 3,810 ft³/s, Oct. 9-13, gage height, 1.75 ft.

		DISCHARG	GE, IN C	UBIC FEET	PER SECO	ND, WATER MEAN VAL		OBER 1984	TO SEPTE	MBER 1985		
DAY	OCT	NOA	DEC	J A N	FEB	MAR	APR	MAY	JUN	JU L	AUG	SEP
1	4490	8210	9650	7600	9000	8600	11200	32600	38300	53900	20800	12300
2	4460	7770	9800	6200	9000	8400	11200	30700	39600	49700	20700	12600
3	4500	7300	9400	6200	9000	8000	11400	29400	40100	46000	20400	12200
4	4360	7280	9400	6200	8900	7900	11100	28400	39300	43700	20200	13000
5	4060	6970	9000	6200	8900	8400	10900	27900	38100	43200	19800	13200
J	4000	0370	3000	0200	0,500	0400	10,000	2,500	30100	43200	13000	13200
6	3930	6900	9150	6200	8950	8000	11000	27600	36900	42900	17100	12700
7	3870	6830	8400	7000	8950	8100	10900	27700	35800	42100	13600	12800
8	3830	6990	8650	8900	9000	8100	10800	2770 0	34900	40700	11900	12800
9	3820	7300	9100	8900	8950	8200	10700	28400	33900	39100	11500	12700
10	3820	7100	9250	8900	8950	8300	10600	30100	33300	37500	12000	12400
11	3840	6630	90 50	9100	8900	8400	10700	34500	32600	36100	12600	12200
12	3820	6110	9050	9150	8900	8500	10800	42900	31800	34900	12600	11900
13	3830	5940	9000	9150	8500	8500	11000	48900	31100	33900	14700	11700
14	3880	6230	8400	9150	9100	8500	11300	52400	29500	33100	16400	11500
15	3920	7190	8400	9150	8200	8400	12200	53200	27100	32400	16400	11400
	3720	, 250	0.100	7250	0200	0400	12200	35200	2,200	02.00	20.00	
16	3930	7450	8350	9150	8500	8450	12700	53400	26000	31900	16200	11400
17	4460	7050	8100	9150	8900	8450	12700	52400	25600	31400	17100	11900
18	46 40	6700	8200	9150	8500	8500	12600	50200	23200	30900	17600	12200
19	5810	6600	8150	9100	9100	8780	12500	47200	22000	30400	18100	12500
20	10200	6750	8550	9100	8700	8760	12400	44800	17700	29100	18300	14300
						•.••						
21	13600	7050	8000	9100	8400	8720	12400	42700	15200	28300	20900	19600
22	15300	6800	7750	9100	7700	8850	13900	40900	16800	27500	22000	20700
23	14700	6900	8 40 0	9100	8300	9100	19500	39500	17500	21500	22100	21000
24	14000	6750	8500	9050	8600	9420	28600	38300	17900	1570 0	22400	24500
25	13200	6700	7900	9050	8400	10000	36900	37700	23700	14200	22500	26300
26	12300	6700	6650	9050	7600	11000	42300	37800	43600	15100	22500	30000
27 27	11600	7600	7600				42300	37400	54000	18800	22300	33100
28	11200	8100	7550	9050	8400	11700	46 200	36800	60400	19900	21800	33100
28 29	10700			9050	8700	12100					16500	32500
	10700	8000	8350	9000		12100	41400	36 400	60700 58000	19600 18900	13000	31800
30		8600	8500	9000		11900	35400	36400				31900
31	91 40		9100	9000		11500		36 900		20400	12100	
TOTAL	225510	212500	26 53 50	263200	243000	283630	551200	1191200	1004600	982800	546100	520 300
MEAN	7275	7083	8560	8490	8679	9149	18370	38430	33490	31700	17620	17340
MAX	15300	8600	9800	9150	9100	12100	46 200	53 40 0	60700	53900	22500	33100
MIN	3820	5940	6650	6200	7600	7900	10600	27600	15200	14200	11500	11400
CFSM	.38	.37	.44	.44	.45	.47	.95	1.98	1.73	1.63	.91	.89
IN.	.43	.41	.51	.50	.47	.54	1.06	2.28	1.93	1.88	1.05	1.00
AC-FT	447300	421500	526300	522100	482000	56 26 0 0	1093000	2363000	1993000	1949000	1083000	1032000
					-							

MEAN 12100 MEAN 17230 CAL YR 1984 TOTAL WTR YR 1985 TOTAL 42900 4427380 MIN 3820 CFSM .62 IN 8.49 AC-FT 8782000 60700 IN 12.06 12480000 6289390 MAX MIN 3820 CFSM .89 AC-FT

05133500 RAINY RIVER AT MANITOU RAPIDS, MN--Continued (National stream-quality accounting network station)

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1969-70, 1977 to current year.

REMARKS.--Letter K indicates non-ideal colony count.

DATE	TIME	DIS- CHARGE, IN CUBIC FEET PER SECOND (00060)	STREAM- FLOW, INSTAN- TANEOUS (CFS) (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	PH (STAND- ARD UNITS) (00400)	PH LAB (STAND-ARD UNITS) (00403)	TEMPER- ATURE, AIR (DEG C) (00020)	TEMPER- ATURE (DEG C) (00010)	TUR- BID- ITY (NTU) (00076)	BARO- METRIC PRES- SURE (MM OF HG) (00025)
OCT 30	0915	10300		109	96	7 .7	7.2	-5.0	2.0	3.0	732
JAN 23	1000	9100		80	94	7.0	7.1	-10.0	0.0	2.0	725
MAR 07	0900	8100		68	74	7.1	7.1	-2.0	0.5	1.5	722
APR 17	1130		12700	125	101	7.5	7.0	8.0	3.5	7.1	719
MAY 30	1100		36900	70	68	7.3	6.9	18.0	13.0	2.5	723
AUG 21	0900		20800	76	67	7.5	7.2	15.0	15.5	2.5	738
DATE	OXYGEN, DIS- SOLVED	COLI- FORM, FECAL, 0.7 UM-MF (COLS./	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER	CALCIUM DIS- SOLVED (MG/L	MAGNE- SIUM, DIS- SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L	POTAS- SIUM, DIS- SOLVED (MG/L	ALKA- LINITY FIELD (MG/L AS	ALKA- LINITY LAB (MG/L AS	SULFATE DIS- SOLVED (MG/L	CHLO- RIDE, DIS- SOLVED (MG/L
DAID	(MG/L) (00300)	100 ML) (31625)	100 ML) (31673)	AS CA) (00915)	AS MG) (00925)	AS NA) (00930)	AS K) (00935)	CACO3) (00410)	CACO3) (90410)	AS SO4) (00945)	AS CL) (00940)
OCT 30 JAN	12.5	K1200	84	11	3.5	3.8	1.0	43	32	9.7	5.3
23 MAR	11.0	100	K7400	9.7	2.8	3.7	0.8	30	31	4.8	4.5
07 APR	12.7		74	8.2	2.4	3.7	0.7	23	27	5.6	4.5
17	11.1	K1500	K52	12	4.1	2.9	1.0	39	33	5.8	4.0
30 AUG	9.3	K7600	K 20	8.5	2.7	2.0	0.7	33	28	7.8	2.2
21	8.6	K410	520	7.6	2.3	2.2	0.7	34	25	3.4	3.0
	FLUO- RIDE, DIS- SOLVED	SILICA, DIS- SOLVED (MG/L	SOLIDS, RESIDUE AT 180 DEG. C	NITRO- GEN, NO2+NO3 DIS- SOLVED	NITRO- GEN, AMMONIA DIS- SOLVED	NITRO- GEN,AM- MONIA + ORGANIC TOTAL	PHOS- PHORUS, TOTAL	PHOS- PHORUS, DIS- SOLVED	PHOS- PHORUS, ORTHO, DIS- SOLVED	SEDI- MENT, SUS-	SED. SUSP. SIEVE DIAM. % FINER
DATE	(MG/L AS F)	AS SIO2)	SOLVED (MG/L)	(MG/L AS N)	(MG/L AS N)	(MG/L AS N)	(MG/L AS P)	(MG/L AS P)	(MG/L AS P)	PENDED (MG/L)	THAN .062 MM
	(00950)	(00955)	(70300)	(00631)	(00608)	(00625)		(00666)	(00671)	(80154)	(70331)
OCT 30 JAN	<0.1	4.3	74	<0.10	<0.01	1.1	0.05	0.01	<0.01	18	90
23 MAR	<0.1	3.5	62	0.14	0.09	0.2	0.03	0.02	0.01	7	86
07 APR	<0.1	3.1	63	<0.10	<0.01	0.6	<0.01	<0.01	<0.01	2	100
17 May	<0.1	4.0	56	0.14	0.07	0.4	<0.01	<0.01	0.01	37	88
30 AUG	0.1	2.9	51	<0.10	0.13	0.6	<0.01	<0.01	<0.01	13	79
21	<0.1	3.0	54	0.10	0.06	1.1	0.03	0.03	0.01	9	97

05133500 RAINY RIVER AT MANITOU RAPIDS, MN--Continued

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)
OCT 30	0915	80	1	18	<0.5	<1	í	<3	1	210	1
MAR 07 APR	0900	20	1	15	<0.5	1	8	<3	32	62	1
17 AUG	1130	20	2	19	<0.5	<1	10	<3	1	130	1
21	0900	50	1	17	<0.5	<1	6	<3	2	100	7

DATE	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)
OCT 30 MAR	<4	11	<0.1	<10	1	<1	<1	27	<6	5
07	<4	6	0.4	<10	<1	<1	<1	23	<6	12
APR 17	<4	16	<0.1	<10	<1	<1	<1	29	<6	11
AUG 21	<4	3	<0.1	<10	1	<1	<1	21	<6	4

05134200 RAPID RIVER NEAR BAUDETTE, MN

LOCATION.--Lat 48°32'10", long 94°33'45", in SE\NE\ sec.1, T.158 N., R.31 W., Lake of the Woods County, Hydrologic Unit 09030007, on left bank 20 ft upstream from bridge on State Highway 72, 1.2 mi downstream from North Branch Rapid River, and 12 mi south of Baudette.

DRAINAGE AREA .-- 543 mi².

PERIOD OF RECORD. -- October 1956 to September 1985 (discontinued).

GAGE.--Water-stage recorder. Datum of gage is 1,093.92 ft above National Geodetic Vertical Datum of 1929 (Minnesota Department of Transportation bench mark).

REMARKS.--Estimated daily discharges: Nov. 3 to Apr. 8, June 28 to July 7, and Aug. 17, 18. Records good except those for periods of no gage-height record, June 28 to July 7, Aug. 17, 18, and period with ice effect, Nov. 3 to Apr. 8, which are fair.

AVERAGE DISCHARGE.--29 years, 326 ft3/s, 8.15 in/yr.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 7,580 ft³/s, June 26, 1985, gage height, 22.78 ft; no flow Dec. 20, 1976 to Mar. 9, 1977.

EXTR: MES OUTSIDE PERIOD OF RECORD.--Flood of May 11, 1950, reached a stage of 21.1 ft, from information by local residents and Minnesota Department of Transportation, discharge, about 7,500 ft³/s.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 7,580 ft³/s, June 26, gage height, 22.78 ft; minimium, 5.3 ft ³/s, Oct. 1, gage height, 1.89 ft.

			DISCH	ARGE, IN	CUBIC E		ECOND, WATI EAN VALUES	ER YEAR	OCTOBER 1	984 TO S	EPTEMBER 1	. 98 5	
DAY	00	CT	NOV	DEC	J AN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	5.	.6	707	140	18	9.3	8.8	475	947	1170	3200	373	686
2	5.		589	115	17	9.3	8.8	455	938	1250	2700	363	697
3	7.		560	95	17	9.3	8.8	445	892	1180	2400	356	779
4	8.		510	85	16	9.0	8.8	435	849	1060	2000	434	842
5	7.		470	78	16	9.0	8.8	425	804	938	1700	984	812
6	7.	. 6	420	72	15	9.0	8.8	415	755	817	1500	1190	767
7	7.	.3	390	67	14	9.0	8.8	400	741	736	1250	1340	706
8	6.		360	62	14	8.8	9.0	390	723	672	1020	1330	628
9	6.		330	57	13	8.8	9.0	379	690	602	863	1160	561
10	6.		310	53	13	8.8	9.2	349	656	560	698	1020	513
11	5.	. 8	290	49	13	8.8	9.5	316	617	516	572	900	472
12	5.		270	46	13	8.8	9.6	321	592	488	466	811	436
13	8.	9	250	43	12	8.8	9.7	515	564	478	386	817	398
14	113		230	40	12	8.8	9.8	698	730	478	3 27	830	367
15	241		210	38	12	8.8	10	724	2350	480	307	793	340
16	330		200	36	11	8.8	11	683	3110	485	290	745	350
17	605		185	34	11	8.8	12	621	2980	486	285	900	573
18	718		170	32	11	8.8	13	573	2660	486	287	1100	714
19	1480		160	31	īī	8.8	14	547	2320	483	289	1180	802
20	2090		150	29	10	8.8	15	542	2500	478	285	1240	1120
21	2090		140	28	10	8.8	20	543	2560	512	287	1230	1140
22	1930		135	27	10	8.8	35	646	2460	859	289	1100	1030
23	1770		135	26	9.7	8.8	60	965	2280	1040	309	977	915
24	1630		150	25	9.7	8.8	100	1640	2000	922	573	1200	802
25	1480		180	24	9.7	8.8	250	1660	1730	4730	650	1250	698
26	1360		210	23	9.7	8.8	500	1470	1480	7460	634	1200	609
27	1260		235	22	9.7	8.8	560	1320	1200	6000	633	1080	543
28	1150		240	21	9.5	8.8	560	1180	1000	5600	622	951	493
29	1040		205	20	9.5		550	1060	818	4600	5 6 3	827	458
30	936		175	19	9.5		520	971	735	3800	468	733	431
31	833			18	9.5		490		914		404	664	
TOTAL	21144.	.8	8566	1455	3 7 5.5	248.7	3847.4	21163	43 59 5	49366	26 2 5 7	29078	19682
MEAN	68	32	286	46.9	12.1	8.88	124	705	1406	1646	847	9 38	65 6
MAX	209		707	140	18	9.3	560	1660	3110	7460	3200	1340	1140
MIN	5.		135	18	9.5	8.8	8.8	316	564	478	285	356	3 4 0
CFSM	1.2		.53	.09	.02	.02	.23	1.30	2.59	3.03	1.56	1.73	1.21
IN.	1.4		.59	.10	.03	.02	. 26	1.45	2.99	3.38	1.80	1.99	1.35
AC-FT	4194		16990	2890	745	493	7630	41980	86470	97920	52080	57680	3 9 040
CAL YR WTR YR		IATOT LATOT				MAX 2090 MAX 7460	MIN 4.4 MIN 5.6	CFSM CFSM		7.16 15.40	AC-FT 20 AC-FT 44	7300 5800	

05140520 LAKE OF THE WOODS AT WARROAD, MN

(International gaging station)

LOCATION.--Lat 48°54'15", long 95°18'57", in SW\SE\ sec.29, T.163 N., R.36 W., Roseau County, Hydrologic Unit 09030009, on left bank of Warroad River in Warroad, 300 ft downstream from Canadian National railroad bridge, 1,000 ft downstream from bridge on State Highway 11, and 4,000 ft upstream from mouth of Warroad River.

DRAINAGE AREA. -- 27,200 mi².

PERIOD OF RECORD.--April to September 1978 (monthend elevations only), October 1978 to current year. Records collected prior to April 1978 are in reports of the Water Survey of Canada.

GAGE.--Water-stage recorder. Datum of gage is 1,000.00 ft, Lake of the Woods datum; gage readings have been reduced to elevations based on Lake of the Woods datum.

REMARKS.--Runoff conditions of the Warroad River can affect water levels obtained at this station. Water level subject to fluctuation caused by change in direction and velocity of wind and seiches.

COOPERATION. -- This station is one of the international gaging stations maintained by the United States under agreement with Canada.

EXTREMES FOR PERIOD OF RECORD.--Maximum elevation, 1,062.36 ft, Sept. 12, 1978; maximum daily, 1,061.84 ft, Sept. 12, 1978; minimum elevation recorded, 1,055.94 ft, Sept. 4, 1980; minimum daily recorded, 1,056.52 ft, Apr. 15, 1981.

EXTREMES FOR CURRENT YEAR.--Maximum elevation, 1,062.20 ft, July 3; maximum daily, 1,061.79 ft, July 6, 9, 10; minimum, 1,057.76 ft, Oct. 16; minimum daily, 1,058.34 ft, Apr. 10.

ELEVATION, IN FEET (LAKE OF THE WOODS DATUM) WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 MEAN VALUES

DAY	OCT	VON	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1058.92 1058.82 1058.93 1059.30 1059.00	1058.52 1059.25 1059.33 1059.24 1059.28	1059.16 1059.14 1059.12 1059.12 1059.12	1059.06 1059.06 1059.04 1059.01 1059.03	1058.89 1058.89 1058.86 1058.88 1058.89	1058.61 1058.63 1058.65 1058.64 1058.58	1058.40 1058.39 1058.39 1058.41 1058.41	1059.34 1059.40 1059.50 1059.66 1059.53	1060.84 1061.04 1061.08 1060.88 1061.06	1061.63 1061.63 1061.72 1061.72	1060.96 1060.85 1060.91 1061.13 1061.12	1061.00 1061.16 1061.12 1061.07 1061.14
6 7 8 9 10	1058.92 1058.92 1058.91 1058.88 1058.88	1059.32 1059.40 1059.22 1059.36 1059.39	1059.13 1059.10 1059.11 1059.10 1059.12	1059.04 1059.00 1059.02 1059.02 1059.00	1058.87 1058.86 1058.88 1058.89 1058.84	1058.60 1058.55 1058.53 1058.51 1058.51	1058.39 1058.37 1058.36 1058.37 1058.34	1059.63 1059.71 1059.64 1059.79 1059.95	1060.97 1060.99 1060.88 1060.85 1061.16	1061.79 1061.78 1061.75 1061.79 1061.79	1061.05 1061.04 1061.11 1060.85 1061.03	1061.05 1061.28 1061.27 1061.23 1061.00
11 12 13 14 15	1058.80 1058.80 1058.75 1058.92 1059.24	1059.23 1059.26 1059.28 1059.33 1059.00	1059.09 1059.09 1059.11 1059.11	1058.97 1058.99 1058.98 1058.97 1059.00	1058.84 1058.85 1058.82 1058.79 1058.82	1058.50 1058.51 1058.46 1058.47 1058.48	1058.36 1058.39 1058.38 1058.39 1058.38	1060.09 1059.97 1060.06 1060.30 1060.67	1061.20 1061.08 1061.06 1061.03 1061.06	1061.66 1061.66 1061.68 1061.61	1061.07 1061.16 1060.21 1060.61 1060.99	1060.94 1060.93 1060.74 1060.70 1060.71
16 17 18 19 20	1058.57 1058.60 1059.11 1060.03 1059.27	1059.13 1059.23 1059.23 1059.23 1059.24	1059.13 1059.16 1059.14 1059.14 1059.16	1058.98 1058.97 1058.96 1058.94 1058.93	1058.78 1058.77 1058.76 1058.78 1058.76	1058.42 1058.44 1058.41 1058.39 1058.41	1058.40 1058.42 1058.42 1058.43 1058.44	1060.70 1060.64 1060.66 1060.78 1060.88	1060.89 1060.94 1061.14 1060.93 1060.91	1061.57 1061.60 1061.59 1061.47 1061.59	1061.11 1061.02 1061.03 1061.18 1061.12	1060.67 1060.67 1060.77 1060.96 1060.52
21 22 23 24 25	1059.16 1059.14 1059.06 1059.29 1059.43	1059.23 1059.19 1059.19 1059.20 1059.21	1059.12 1059.10 1059.09 1059.07 1059.06	1058.92 1058.93 1058.94 1058.92	1058.72 1058.73 1058.70 1058.70 1058.69	1058.39 1058.39 1058.40 1058.42 1058.42	1058.49 1058.57 1058.64 1058.71 1058.80	1060.82 1060.88 1060.90 1060.95 1061.09	1060.97 1060.67 1060.88 1061.04 1061.06	1061.48 1061.46 1061.32 1061.43 1061.29	1061.12 1061.17 1061.20 1061.22 1061.17	1060.59 1060.58 1060.62 1060.30 1060.39
26 27 28 29 30 31	1059.19 1059.27 1059.18 1059.23 1059.24 1059.33	1059.20 1059.19 1059.14 1059.16 1059.17	1059.06 1059.06 1059.07 1059.07 1059.06 1059.06	1058.94 1058.91 1058.93 1058.92 1058.90 1058.91	1058.67 1058.67 1058.62	1058.43 1058.41 1058.44 1058.41 1058.42 1058.40	1058.89 1058.98 1058.98 1059.09 1059.35	1061.02 1061.01 1060.99 1061.03 1061.10 1061.14	1061.09 1061.52 1061.41 1061.53 1061.57	1061.25 1061.14 1061.07 1061.07 1061.02 1061.00	1061.07 1061.16 1061.21 1061.20 1061.10 1060.96	1060.51 1060.31 1060.55 1060.77 1060.80
MEAN MAX MIN	1059.07 1060.03 1058.57	1059.21 1059.40 1058.52	1059.11 1059.16 1059.06	1058.97 1059.06 1058.90	1058.79 1058.89 1058.62	1058.48 1058.65 1058.39	1058.54 1059.35 1058.34	1060.38 1061.14 1059.34	1061.06 1061.57 1060.67	1061.51 1061.79 1061.00	1061.04 1061.22 1060.21	1060.81 1061.28 1060.30

CAL YR 1984 MEAN 1059.38 MAX 1060.75 MIN 1058.34 WTR YR 1985 MEAN 1059.75 MAX 1061.79 MIN 1058.34

05140521 LAKE OF THE WOODS AT SPRINGSTEEL ISLAND NEAR WARROAD, MN

LOCATION.--Lat 48°56'45", long 95°18'24", in SW\sw\sec.9, T.163 N., R.36 W., Roseau County, Hydrologic Unit 09030009, at Springsteel Resort on Springsteel Island, 2.8 mi north of Warroad.

DRAINAGE ARRA. -- 27, 200 mi².

PERIOD OF RECORD .-- Record June to September 1985.

GAGE.--Water-stage recorder. Datum at gage is 1000.00 ft, Lake of the Woods datum; gage readings have been reduced to elevations based on Lake of the Woods datum.

REMARKS.--Satellite telemeter at station. Water level subject to fluctuation caused by changes in direction and velocity of wind and seiches.

EXTREMES FOR CURRENT PERIOD .--June to September 1985: Maximum elevation during period, 1,062.12 ft, July 3; maximum daily, 1,061.81 ft, July 6, 7; minimum, 1,059.48 ft, June 8; minimum daily, 1,060.26 ft, Aug. 13.

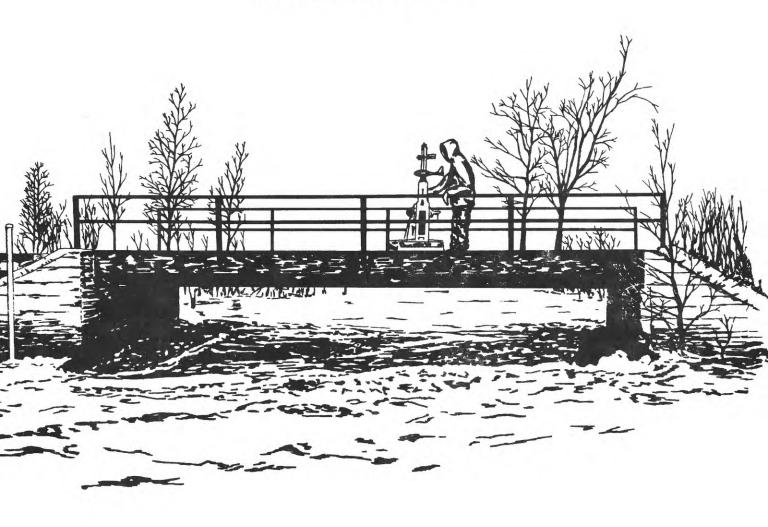
ELEVATION, IN FEET (LAKE OF THE WOODS DATUM), WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 MEAN VALUES

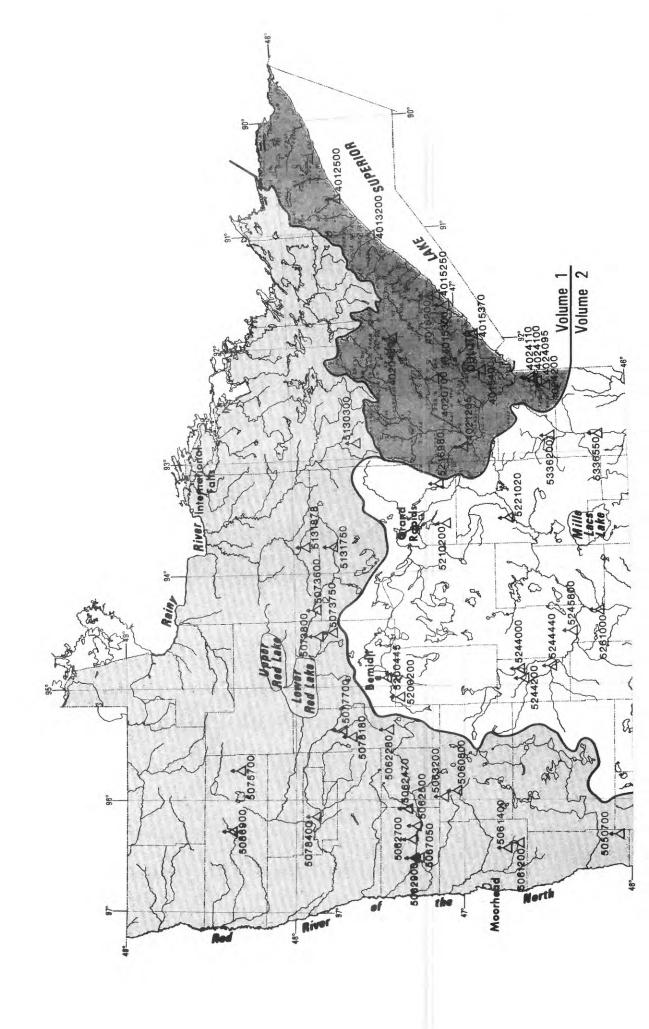
DAY	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5									1061.08	1061.62 1061.64 1061.73 1061.72	1060.95 1060.86 1060.91 1061.13	1061.02 1061.17 1061.13 1061.08 1061.16
6 7 8 9									1061.01 1061.01 1060.90 1060.84 1061.15	1061.81 1061.81 1061.77 1061.79 1061.77	1061.04 1061.01 1061.09 1060.84 1061.01	1061.06 1061.23 1061.22 1061.19 1061.00
11 12 13 14									1061.19 1061.08 1061.07 1061.05 1061.07	1061.64 1061.65 1061.67 1061.59 1061.59	1061.06 1061.15 1060.26 1060.59 1060.96	1060.95 1060.94 1060.78 1060.73 1060.75
16 17 18 19 20									1060.91 1060.93 1061.11 1060.95 1060.94	1061.57 1061.58 1061.58 1061.46 1061.55	1061.08 1061.02 1060.97 1061.13 1061.10	1060.72 1060.71 1060.76 1060.91 1060.52
21 22 23 24 25									1060.97 1060.67 1060.87 1061.04 1061.10	1061.44 1061.44 1061.33 1061.39 1061.27	1061.11 1061.16 1061.19 1061.20 1061.17	1060.61 1060.59 1060.58 1060.29 1060.40
26 27 28 29 30 31									1061.07 1061.40 1061.37 1061.49 1061.56	1061.24 1061.14 1061.04 1061.06 1061.01 1060.99	1061.08 1061.15 1061.19 1061.19 1061.12 1061.00	1060.51 1060.33 1060.54 1060.73 1060.75
MEAN MAX MIN										1061.51 1061.81 1060.99	1061.03 1061.20 1060.26	1060.81 1061.23 1060.29

As the number of streams on which streamflow information is likely to be desired far exceeds the number of stream-gaging stations feasible to operate at one time, the Geological Survey collects limited streamflow data at sites other than stream-gaging stations. When limited streamflow data are collected on a systematic basis over a period of years for use in hydrologic analyses, the site at which the data are collected is called a partial-record station. Data collected at these partial-record stations are usable in low-flow or flood-flow analyses, depending on the type of data collected. In addition, discharge measurements are made at other sites not included in the partial-record program. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Records collected at partial-record stations are presented in two tables. The first is a table of discharge measurements at low-flow partial-record stations and the second is a table of annual maximum stage and discharge at high-flow stations. Discharge measurements made at miscellaneous sites for both low flow and high flow are given in a third table.

Low-flow partial-record stations


Measurements of streamflow in the area covered by this report made at low-flow partial-record stations are given in the following table. These measurements were made during periods of base flow when streamflow is primarily from ground-water storage. These measurements, when correlated with the simultaneous discharge of a nearby stream when continuous records are available, will give a picture of the low-flow potentiality of a stream. The column headed "Period of record" shows the water years in which measurements were made at the same, or practically the same site.


Discharge measurements made at low-flow partial-record stations during water year 1985

				ea of	Measur ements		
Station No.	Station name Location	Location	Drainage area (mi ²)		Date	Discharge (ft ³ /s)	
		Streams tributary to Lake Superior					
04015260	Silver Creek near Two Harbors, MN	Lat 47°03'52", long 91°36'18", in SE\NE\ sec.21, T.53 N., R.10 W., Lake County, Hydrologic Unit 04010102, at culvert on U.S. Highway 61, 4.3 miles northeast of Two Harbors.	a2 5	1911, 1984-85	8-08-8	5 1.27	
04015310	Stewart River near Two Harbors, MN	Lat 47°02'53", long 91°37'49", in SW\NE\ sec.29, T.53 N., R.10 W., Lake County, Hydrologic Unit 04010102, at bridge on U.S. Highway 61, 0.2 miles upstream fromouth, and 1.5 miles northeast of Two Harbors.	 Om	197 4, 1985	8-08-8	5 11.1	

a Approximate

HIGH-FLOW PARTIAL RECORDS

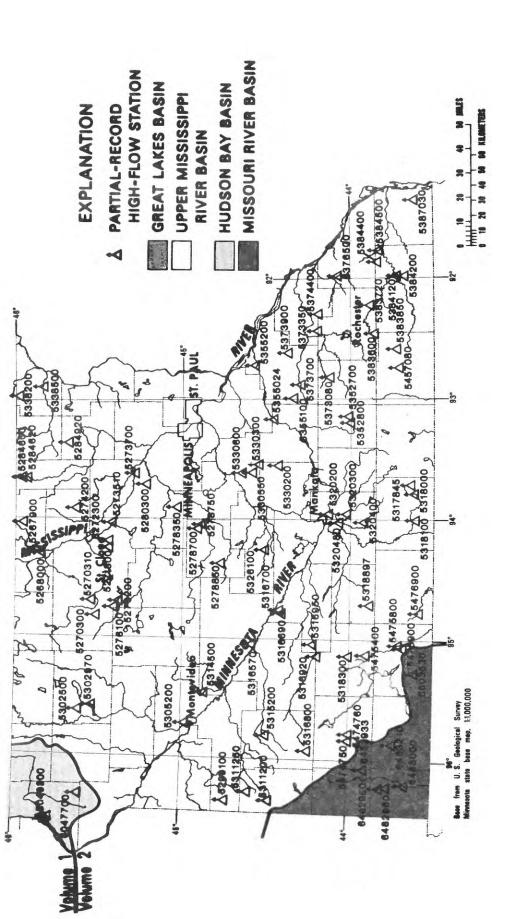


Figure 11. -- Location of high-flow partial-record stations

High-flow partial-record stations

The following table contains annual maximum discharge for high-flow stations. A high-flow partial-record station is equipped with a crest-stage gage, a device which will register the peak stage occurring between inspections of the gage. A stage-discharge relation for each gage is developed from discharge measurements made by indirect measurements of peak flow or by current meter. The date of the maximum discharge is not always certain but is usually determined by comparison with nearby continuous-record stations, weather records, or local inquiry. Only the maximum discharge for each water year is given. Information on some lower floods may have been obtained, and discharge measurements may have been made for purposes of establishing the stage-discharge relation, but these are not published herein. The years given in the period of record represent water years for which the annual maximum has been determined.

Annual maximum discharge at high-flow partial-record stations during water year 1985

	*				Ann	ual maxi	mum	
Station No.	Station name	Location	Drainage area (mi²)	Period of Record	Date		Dis- charge (ft ³ /s)	
		Streams tributary to Lake	Superior					
04012500	Poplar River at lutsen, MN	Lat 47°38'23", long 90°42'31", in SW\NE\ sec.33, T.60 N., R.3 W., Cook County, Hydrologic Unit 04010101, 350 ft. upstream from bridge on U.S. Highway 61 at Lutsen, 0.3 mile upstream from mouth.	112	1912-17#, 1928-47#, 1952-61#, 1972-85	5-31-85	4.48	500	
C4C132OC	Caribou River near Little Marais, MN	Lat 47°27'51", long 91°01'50", in NN\\SE\\ sec.36, T.58 N., R.6 W., Lake County, Hydrologic Unit 04010101, at culvert on U.S. Highway 61, 0.2 mile upstream from mouth, and 5.2 miles northeast of Little Marais.	22.7	1961-85	5-31-85	11.66	205	
04015200	Encampment River tributary at Silver Creek, MN	Lat 47°07'01", long 91°36'04", in NE\SE\ sec.33, T.54 N., R.10 W., Lake County, Hydrologic Unit 04010102, at culvert on County Highway 3, 0.3 mile north of Silver Creek, 1.4 miles upstream from mouth.	.96	1960-85	6-25-85	8.65	†	
04015250	Silver Creek tributary near Two Harbors, MN	Lat 47°04'40", long 91°36'49", in SW\nE\sec.16, T.53 N., R.10 W., Lake County, Hydrologic Unit 04010102, at culvert on County Highway 3, 1.0 mile upstream from mouth, 4.5 miles northeast of Two Harbors.	3.72	1965-85	5-31-85	5.86	335	
04015300	Little Stewart River near Two Harbors, MN	Lat 47°03'52", long 91°40'03", in SE\NE\ sec.24, T.53 N., R.11 W., Lake County, Hydrologic Unit 04010102, at culvert on county highway, 2.0 miles upstream from mouth, 2.7 miles north of Two Harbors.	5.54	1960-85	6-25-85	9.65	t	
04015370	Talmadge River at Duluth, MN	Lat 46°53'20", long 91°55'21", in SE\NE\ sec.24, T.51 N., R.13 W., St. Louis County, Hydrologic Unit 04010102, at culvert on U.S. Highway 61, 0.6 mile upstream from mouth, 0.5 mile northeast of Duluth city limits.	5.79	1964-85	5-31-85	13.83	158	
04015400	Miller Creek at Duluth, MN	Lat 46°49'01", long 92°10'42", in SE\NE\ sec.13, T.50 N., R.15 W., St. Louis County, Hydrologic Unit 04010201, at culvert on U.S. Highway 53, O.2 mile northwest of Duluth city limits.	4.92	1960-85	9- 3-85	-	420	

"See footnotes at end of the table."

		Annual m					
Station No.	Station name	Location	Drainage area (mi²)	Period of Record	Date	Gage height (feet)	Dis- charge (ft ³ /s)
		Streams tributary to Lake Superio	orContin	ued			
04020480	North Branch Whiteface River near Fairbanks, MN	Lat 47°22'20", long 91°56'28", at common corner of secs.35, 36, 1, and 2, along line between T.57 N., and T.56 N., R.13 W., St. Louis County, Hydrologic Unit 04010201, on right downstream wingwall of double box culvert on County Highway 16, 2 miles upstream from the mouth of Jenkins Creek, 0.7 mile west of Fairbanks.	17.1	1979-85	4-24-85	al2.95	157
04020700	Bug Creek at Shaw, MN	Lat 47°06'40", long 92°21'03", in SW\SE\ sec.34, T.54 N., R.16 W., St. Louis County, Hydrologic Unit 04010201, at left bank on downstream side of culverts on County Road 15 at Shaw, and 7.5 miles upstream from mouth.	24.0	1979-85	4-24-85	b14.30	352
04021205	Floodwood River above Floodwood, MN	Lat 46°17'15", long 92°53'40", in NE\NW\x sec.32, T.52 N., R.20 W., St. Louis County, Hyrologic Unit 04010201, at bridge on County Highway 835, 500 ft west of State Highway 73, and 2 miles north of Floodwood.	198	1972-85	4-25-85	b15.92	701
04024095	Nemadji River near Holyoke, MN	Lat 46°31'04", long 92°23'22", in NE\NE\ sec.32, T.47 N., R.16 W., Carlton County, Hydrologic Unit 04010301, at bridge on State Highway 23, 3.5 miles north of Holyoke.	118	1972-85	9- 3-85	17.38	4,420
04024100	Rock Creek near Blackhoof, MN	Lat 45°32'10", long 92°22'12", in SW\SE\ sec.21, T.47 N., R.16 W., Carlton County, Hydrologic Unit 04010301, at culvert on State Highway 23, 4.0 miles upstream from mouth, 4.4 mile east of Blackhoof.	4.94	1961-65, 1967-85	9- 3-85	38.95	2,350
04024110	Rock Creek tributary near Blackhoof, MN	Lat 46°32'14", long 92°22'05", in NE\SE\ sec.21, T.47 N., R.16 W., Carlton County, Hydrologic Unit 04010301, at culvert on State Highway 23, 0.1 mile upstream from mouth, 4.5 miles east of Blackhoof.	.20	1961-85	9- 2-85	24.32	115
04024200	South Fork Nemadji River near Holyoke, MN	Lat 46°29'38", long 92°24'36", in SE½SE½ sec.6, T.46 N., R.16 W., Carlton County, Hydrologic Unit 04010301, at culvert on State Highway 23, 1.7 miles downstream from Clear Creek, 2.0 miles northwest of Holyoke.	19.4	1961-85	9- 3-85	11.26	424
		Red River of the North b	asin				
05047700	West Branch Mustinka River tributary near Graceville, MN	Lat 45°36'53",long 96°19'47", in NE\NW\ sec.28, T.125 N., R.45 W., Traverse County, Hydrologic Unit 09020102, at culvert on county highway, 6.0 miles northeast of Graceville.	3.37	1964-85	10-19-84	7.69	41

[&]quot;See footnotes at end of the table."

						Annual maximu			
Station No.	Station name	Location	Drainage area (mi ²)	Period of Record	Date	Gage height (feet)	Dis- charge (ft ³ /s)		
		Red River of the North basin-	-Continued						
05049200	Eighteenmile Creek near Wheaton, MN	Lat 45°47'18", long 96°31'52", on west quarter of line between secs.24 and 25, T.127 N., R.47 W., Traverse County, Hydologic Unit 09020102, at culvert on County Highway 67, 1.4 miles upstream from mouth, 2.0 miles southwest of Wheaton.	68.5	1965-68, 1970-85	4- 3-85	c9.56	510		
05050700	Rabbit River near Nashua, MN	Lat 46°04'30", long 96°18'24", in SE\NE\ sec.15, T.130 N., R.45 W., Wilkin County, Hydrologic Unit 09020101, at right downstream piling of bridge on County Road 19, 2.6 miles north of Nashua, 4.8 miles upstream from mouth of South Fork Rabbit River.	56.1	1979-85	5- 9-85	13.34	960		
050 60 800	Buffalo River near Callaway, MN	Lat 47°01'17", long 95°54'43", in SW\SE T.141 N., R.41 W., Becker County, Hydrologic Unit 09020106, at culvert on U.S. Highway 59, 2.7 miles north of Callaway.	94.5	1960-85	5-12-85	17.13	1		
05061200	Whiskey Creek at Barnesville, MN	Lat 46°39'35", long 96°23'54", in SE\SW\ sec.20, T.137 N., R.45 W., Clay County, Hydrologic Unit 09020106, at culvert on State Highway 34, 0.7 mile upstream from Blue Eagle Lake, 1.0 mile northeast of Barnesville.	25,3	1961-64, 1965-66#, 1967-85	5-31-85	7.12	660		
05061400	Spring Creek above Downer, MN	Lat 46°44'37", long 96°25'12", in NW\NW\\ sec.30, T.138 N., R.45 W., Clay County, Hydrologic Unit 09020106, at culvert on county road, 3.1 miles east of Downer.	5.81	1961-85	5-31-85	d7 .4 5	53		
05062280	Mosquito Creek near Bagley, MN	Lat 47°27'02", long 95°22'55", in SW\NW\ sec.21, T.146 N., R.37 W., Clearwater County, Hydrologic Unit 09020108, at culvert on State Highway 92, 5.0 miles south of Bagley.	3.98	1961-85	3-24-85	b8.92	32		
0506247 0	Marsh Creek tributary near Mahnomen, MN	Lat 47°19'31", long 96°04'41", in SE\SW\ sec.36, T.145 N., R.43 W., Norman County, Hydrologic Unit 09020108, at culvert on State Highway 31, 0.1 mile upstream from mouth, 5.2 miles west of Mahnomen.	11.9	1961-85	5-12-85	b12.74	250		
05062500	Wild Rice River at Twin Valley, MN	Lat 47°16'00", long 96°14'40", in NW4NE4 sec.27, T.144 N., R.44 W., Norman County, Hydrologic Unit 09020108 on left bank, 100 ft upstream from highway bridge 0.8 mile northeast of village of Twin Valley.	888	1909-17#, 1930-83#, 1985	5-13-85	11.42	4,100		
05062700	Wild Rice River tributary near Twin Valley, MN	Lat 47°17'47", long 96°19'42", in SW\SE\ sec.12, T.144 N., R.45 W., Norman County, Hydrologic Unit 09020107, at culvert on State Highway 31, 1.2 miles upstream from mouth, 4.1 miles northwest of Twin Valley.	4.72	1961-85	5-12-85	12.70	140		

[&]quot;See footnotes at end of the table."

					Annual maximu		
Station No.	Station name	Location	Drainage area (mi ²)	Period of Record	Date	Gage height (feet)	Dis- charge (ft ³ /s)
		Red River of the North basin-	-Continued				
05062900	Wild Rice River near Ada, MN	Lat 47°17'29", long 96°26'09", in SE\NE\ sec.13, T.144 N., R.46 W., Norman County, Hydrologic Unit 09020108, at bridge on County Highway 24, 3.2 miles southeast of Ada.	-	1985	5-14-85	b22.12	4,580
05067050	Marsh River Ditch near Ada, MN	Lat 47°17'46", long 96°26'09", in NE\NE\ sec.13, T.144 N., R.46 W., Norman County, Bydrologic Unit 09020108, at bridge on County Highway 24, 3.5 miles southeast of Ada.	-	1985	5-13-85	b15.42	630
05063200	Spring Creek tributary near Ogema, MN	Lat 47°07'22", long 95°57'35", in SE\SE\ sec.11, T.142 N., R.42 W., Becker County, Hydrologic Unit 09020108, at culvert on county highway, 2.0 miles northwest of Ogema.	4.99	1963-85	5-11-85	d6.98	47
05073600	South Branch Battle River at Northome, MN	Lat 47°52'17", long 94°17'45", in NW\nE\sec.25, T.151 N., R.29 W., Koochiching County, Bydrologic Unit 09020302, at culvert on U.S. Highway 71, 0.7 mile west of Northome, 3.1 miles upstream from Battle Lake.	2.80	1960-85	8-17-85 ;	b15.77	105
05073750	Spring Creek near Blackduck, MN	Lat 47°46'23", long 94°31'22", in NWkNWk sec.32, T.150 N., R.30 W., Beltrami County, Hydrologic Unit 09020302, at culvert on County Highway 304, 3.1 miles north of Blackduck, 3.2 miles upstream from mouth.	7 .96	1960-85	4~23-85	18.70	260
05073800	Perry Creek tributary near Shooks, MN	Lat 47°52'00", long 94°32'52", in NW\SW\ sec.30, T.151 N., R.30 W., Beltrami County, Hydrologic Unit 09020302, at culvert on State Highway 72, 5.2 miles west of Shooks.	1.14	1960-85	6-26-85	b7.86	67
05075700	Mud River near Grygla, MN	Lat 48°19'31", long 95°44'35", at common corner of secs.13, 14, 23, and 24, T.156 N., R.40 W., Bydrologic Unit 09020304, Marshall County, at bridge on State Highway 89, 6 miles west of Grygla.	170	1979-85	6-28-85	17.19	1,330
05077700	Ruffy Brook near Gonvick, MN	Lat 47°44'50", long 95°24'45", in SE\SE\s sec.5, T.149 N., R.37 W., Clearwater County, Bydrologic Unit 09020305, on downstream side of bridge on County Highway 17, 4.0 miles upstream from mouth, 4.8 miles east of Gonvick.	45.2	1960-78#, 1979-85	5-13-85	4.91	281
05078180	Silver Creek near Clearbrook, MN	Lat 47°38'43", long 95°26'33", in NW\ sec.13, T.148 N., R.38 W., Clearwater County, Hydrologic Unit 09020305, at culvert on county highway, 3.4 miles south of Clearbrook.	4.96	1960-85	5-11-85	12.69	194

[&]quot;See footnotes at end of the table."

Station No.	Station name	Location	Drainage area (mi²)	Period of Record	Ann Date	ual maxi Gage height (feet)	mum pis- charge (ft ³ /s)
		Red River of the North basin-	-Continued				
05078400	Clearwater River tributary near Plummer, MN	Lat 47°52'34", long 96°08'35", in SE\SE\ sec.22, T.151 N., R.43 W., Red Lake County, Hydrologic Unit 09020305, at culvert on county highway, 1.2 miles upstream from mouth, 5.3 miles southwest of Plummer.	6.51	1961-85	5-12-85	11.84	t
05086900	Middle River near Newfolden, MN	Lat 48°22'04", long 96°16'47", in NE\nE\ sec.3, T.156 N., R.44 W., Marshall County, Hydrologic Unit 09020309, at bridge on township road, 2.0 miles northeast of Newfolden.	91.1	1979-85	6-27-85	b16.16	610
		Lake of the Woods bas	in	•			
05130300	Boriin Creek near Chisholm, MN	Lat 47°36'14", long 92°51'58", in SE\SE\s sec.9, T.59 N., R.20 W., St. Louis County, Hydrologic Unit 09030005, at culvert on State Highway 73, 1.3 miles upstream from mouth, 7.8 miles north of Chisholm.	13.7	1959-85	4-23-85	a12,84	250
05131750	Big Fork River near Bigfork, MN	Lat 47°44'56", long 93°46'31", in SWkNEk sec.27, T.61 N., R.27 W., Itasca County, Hydrologic Unit 09030006, at bridge on State Highway 6, 5.5 miles west of Bigfork.	602	1973-85	4-24-85	13.93	2,010
05131878	Bowerman Brook near Craigville, MN	Lat 47°55'29", long 93°45'34", in NE\nw\x sec.26, T.63 N., R.27 W., Koochiching County, Hydrologic Unit 09030006, on left downstream wingwall of bridge on State Highway 6, 2.4 miles upstream from mouth, 7.0 miles west of Craigville.	25.0	1979-85	6-27-85	14.40	540

[†] Operated as a continuous-record gaging station.

† Discharge not determined.

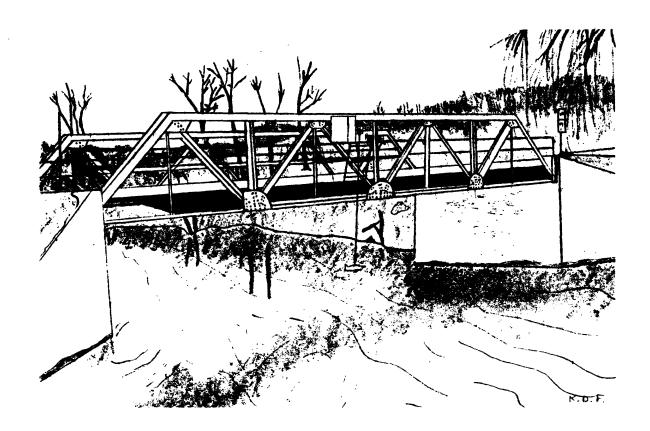
a Affected by beaver dam.

b Affected by shifting control.

c Backwater from ice.

d Backwater from aquatic growth and debris.

Discharge measurements at miscellaneous sites


Measurements of streamflow points other than gaging stations are given in the following table. The measurements of base flow are designated by an asterisk (*); measurements of peak flow by a dagger (†).

Discharge measurements made at miscellaneous sites during water year 1985

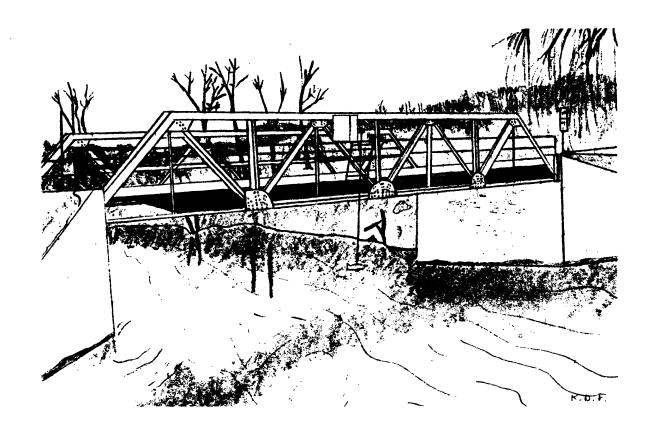
	מ				Measurements			
Stream	Tributary to	Location	area (mi2)	(water years)		Discharge (ft ³ /s)		
		Red River of the North Basin						
Otter Tail River	Red River of the North	Lat 46°59'55", long 95°36'46", in SE\NW\ sec.27, T.141 N., R.39 W., Becker County, Hydrologic Unit 09020103, upstream of bridge on township road, near Flat Lake Mounds Historic Site, in Tamarac National Wildlife Refuge, 10 miles east of Richwood, 1.8 south of County Road 143.	-	1984	10-25-84 4-8-85 5-16-85 6-4-85 7-1-85 7-17-85 8-15-85	65.5 275 157 145 87.3		
Ctter Tail River	Red River of the North	Lat 46°50'12", long 95°41'57", in NE\SW\ sec.23, T.139 N., R.40 W., Becker County, Hydrologic Unit 09020103, upstream from Highway bridge, 5 miles downstream from Height of Land Lake, 7.5 miles east of City of Detroit Lakes (05030000).	270	1937-71#, 1984	10-25-84 4- 9-85 5-15-85 7- 1-85 7-17-85 8-16-85 9-16-85 11- 7-85	50.3 177 224 180 177 175		
Buffalo River	Red River of the North	Lat 46°58'25", long 95°49'02", in NE\NE\ sec.2, T.140 N., R.41 W., Becker County, Hydrologic Unit, 09020106, downstream from culvert on County Highway 34, .25 mile east of Richwood at outlet to Buffalo Lake.	-	1984	10-19-84 4-8-85 5-16-85 6-5-85 7-1-8-85 8-15-85 9-17-85	21.6 41.3 38.2 38.9 47.6 22.4		
Fuffalo River	Red River of the North	Lat 46°57'50", long 96°02'56", in SE\SE\ sec.l, T.140 N., R.43 W., Becker County, Hydrologic Unit 09020106, 300 ft upstream of bridge on gravel township road, 0.9 mile east of County Highway 9, 5 miles northeast of Lake Park.	<u>-</u>	1984	10-19-64 4- 9-85 5-16-85 7- 1-85 7-18-85 8-15-85 9-17-85	7.8 278 84.3 64.8 40.5		
Wild Rice River	Red River of the North	Lat 47°17'10", long 96°05'52", in NW\SE\ sec.14, T.144 N., R.43 W., Norman County, Hydrologic Unit 09020108, at bridge in Faith, MN, 1.45 miles west of Norman-Mahnomen County line, 2.75 miles south of U.S. Highway 59, 5.5 miles west of Mahnomen.	- ,	1984.	10-16-84 4- 8-85 5-16-85 7- 2-85 7-18-85 8-15-85 9-17-85	234 2,100 547 358 249		
Marsh Creek	Wild Rice River	Lat 47°19'03", long 93°05'15", in NW\sW\s sec.1, T.144 N., R.43 W., Norman County, Hydrologic Unit 09020108, 50 ft upstream of culvert on County Highway 40, .5 mile south of State Highway 200, 8.5 miles northeast of Twin Valley, 5 miles above mouth.	-	1984	10-15-84 4-8-85 5-15-85 7-2-85 8-15-85 9-17-85	146 534 100 69.6		
Wild Rice River	Red River of the North	Lat 47°16'00", long 96°14'40", in NW\nE\sec.27, T.144 N., R.44 W., Norman County, Hydrologic Unit 09020108, on left bank 100 ft from highway bridge, 0.8 mile northeast of village of Twin Valley, and 2 miles upstream from tributary (05062500).	888	1909-17#, 1930-83#, 1984		3,790 402 449		
South Branch Wild Rice River	Wild Rice River	Lat 47°02'07", long 96°04'03", in NE\nE\ sec.13, T.141 N., R.43 W., Becker County, Hydrologic Unit 09020108, near culvert on County Road 105, 2 miles east of State Highway 7, 10 miles north of Lake Park.	-	-	10-19-84 5-16-85 7- 1-85 8-15-85 9-16-85	167 21.2 4.45		

[#] Operated as a continuous-record gaging station.

Water-quality partial-record stations are particular sites where chemical-quality, biological and (or) sediment data are collected systematically over a period of years for use in hydrological analyses.

DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

Discharge measurements at miscellaneous sites


Measurements of streamflow points other than gaging stations are given in the following table. The measurements of base flow are designated by an asterisk (*); measurements of peak flow by a dagger (\dagger) .

Discharge measurements made at miscellaneous sites during water year 1985

			D	Measured	Measurements	
Stream	Tributary to	Location	area (mi2)	previously (water years)		Discharge (ft ³ /s)
		Red River of the North Basin				
Otter Tail River	Red River of the North	Lat 46°59'55", long 95°36'46", in SEŁNWŁ sec.27, T.141 N., R.39 W., Becker County, Hydrologic Unit 09020103, upstream of bridge on township road, near Flat Lake Mounds Historic Site, in Tamarac National Wildlife Refuge, 10 miles east of Richwood, 1.8 south of County Road 143.	-	1984	10-25-84 4- 8-85 5-16-85 6- 4-85 7- 1-85 7-17-85 8-15-85	65.5 275 157 145 87.3
Ctter Tail River	Red River of the North	Lat 46°50'12", long 95°41'57", in NE\SW\ sec.23, T.139 N., R.40 W., Becker County, Hydrologic Unit 09020103, upstream from Highway bridge, 5 miles downstream from Height of Land Lake, 7.5 miles east of City of Detroit Lakes (05030000).	270	1937-71#, 1984		50.3 177 224 180 177 175
Buffalo River	the North	Lat 46°58'25", long 95°49'02", in NE\NE\ sec.2, T.140 N., R.41 W., Becker County, Hydrologic Unit, 09020106, downstream from culvert on County Highway 34, .25 mile east of Richwood at outlet to Buffalo Lake.	-	1984	10-19-84 4- 8-85 5-16-85 6- 5-85 7- 1-85 7-18-85 8-15-85 9-17-85	21.6 41.3 38.2 38.9 47.6 22.4
Puffalo River	Red River of the North	Lat 46°57'50", long 96°02'56", in SELSEL sec.1, T.140 N., R.43 W., Becker County, Hydrologic Unit 09020106, 300 ft upstream of bridge on gravel township road, 0.9 mile east of County Highway 9, 5 miles northeast of Lake Park.			10-19-64 4- 9-85 5-16-85 7- 1-85 7-18-85 8-15-85 9-17-85	7.8 278 84.3 64.8 46.5
Wild Rice River	Red River of the North	Lat 47°17'10", long 96°05'52", in NW\SE\ sec.14, T.144 N., R.43 W., Norman County, Hydrologic Unit 09020108, at bridge in Faith, MN, 1.45 miles west of Norman-Mahnomen County line, 2.75 miles south of U.S. Highway 59, 5.5 miles west of Mahnomen.	-	1984	10-16-84 4- 8-85 5-16-85 7- 2-85 7-18-85 8-15-85 9-17-85	234 2,100 547 358 249
Marsh Creek	Wild Rice River	Lat 47°19'03", long 93°05'15", in NW\s\% sec.1, T.144 N., R.43 W., Norman County, Hydrologic Unit 09020108, 50 ft upstream of culvert on County Highway 40, .5 mile south of State Highway 200, 8.5 miles northeast of Twin Valley, 5 miles above mouth.	-	1984	10-15-84 4-8-85 5-15-85 7-2-85 8-15-85 9-17-85	146 534 100 69.6
Wild Rice River	Red River of the North	Lat 47°16'00", long 96°14'40", in NW\nE\ sec.27, T.144 N., R.44 W., Norman County, Hydrologic Unit 09020108, on left bank 100 ft from highway bridge, 0.8 mile northeast of village of Twin Valley, and 2 miles upstream from tributary (05062500).	888	1909-17#, 1930-83#, 1984		3,790 402 4 49
South Branch Wild Rice River	Wild Rice River	Lat 47°02'07", long 96°04'03", in NE\NE\ sec.13, T.141 N., R.43 W., Becker County, Hydrologic Unit 09020108, near culvert on County Road 105, 2 miles east of State Highway 7, 10 miles north of Lake Park.	-	-	10-19-84 5-16-85 7- 1-85 8-15-85 9-16-85	167 21.2 4.45

[#] Operated as a continuous-record gaging station.

Water-quality partial-record stations are particular sites where chemical-quality, biological and (or) sediment data are collected systematically over a period of years for use in hydrological analyses.

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS 461254096090001 ORWELL LAKE SITE 1 NEAR FERGUS FALLS, MN

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	PH (STAND- ARD UNITS) (00400)	PH LAB (STAND- ARD UNITS) (00403)	TEMPER~ ATURE (DEG C) (00010)	TUR- BID- ITY (NTU) (00076)	TRANS- PAR- ENCY (SECCHI DISK) (M) (00078)	BARO- METRIC PRES- SURE (MM OF HG) (00025)
APR 18	1515	386	401	8.3	7.9	12.5	3.5	0.8	747
MAY 15	1540	3 90	403	8.1	7.9	16.0	5.1	0.7	747
JUN 18	1700	378	3 91	8.2	8.1	19.5	2.5	0.9	755
JUL 24	1620	356	368	8.2	8.0	23.0	2.9	1.2	747
AUG 29	1530	359	376	7.9	8.0	20.0	2.5	1.2	757
SEP 24	1630	360	392	8.0	8.1	13.0	1.7	1.2	756
DATE	OXYGEN, DIS- SOLVED (MG/L) (00300)	ALKA- LINITY, CARBON- ATE IT-FLD (MG/L ~ CAC03) (99430)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS- PHORUS, TOTAL (MG/L AS P) (00665)	PHOS- PHORUS, ORTHO, DIS- SOLVED (MG/L AS P) (00671)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)
APR 18	9.6	188	<0.10	0.05	0.6	0.08	0.03	3.20	<0.10
MAY 15	8.0	187	0.24	0.25	1.0	0.06	0.05	3.10	<0.10
JUN 18	9.0	188	<0.10	0.04	0.9	0.07	0.03	1.70	<0.10
JUL 24 AUG	7.9	190	<0.10	0.03	0.2	0.04	0.02	9.80	<0.10
29 SEP	8.2	190	0.13	<0.01	0.4	0.06	<0.01	2.30	<0.10
24	9.8	181	<0.10	0.17	0.6	0.05	0.05	84.0	<0.10
	DATE	TIME	SAM- PLING DEPTH (FEET) (00003)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	
	APR 18 18	1520 1521 1523	2.0 4.0 5.0	386 386 386	8.3 8.2 8.2	12.5 12.0 12.0	747 747 747	9.6 9.0 9.0	
	MAY 15 15 15 JUN	1541 1542 1543	1.0 3.0 6.5	390 390 390	8.1 8.1 8.1	16.0 16.0 16.0	747 747 747	8.0 8.1 8.0	
	18 18 18 18 JUL	1701 1702 1703 1704 1705	1.0 5.0 10.0 15.0 20.0	378 378 378 379 379	8.2 8.2 8.2 8.2 8.2	19.5 19.5 19.5 19.5 19.0	755 755 755 755 755	9.1 9.0 8.8 8.8	
	24 24 24 24 AUG	1611 1612 1613 1614 1615	1.0 3.0 9.0 15.0 17.0	356 356 356 356 356	8.2 8.2 8.2 8.2 8.2	23.0 23.0 23.0 23.0 23.0	747 747 747 747 747	8.2 7.9 7.8 7.7 7.7	
	29 29 29 29 29 29	1520 1521 1522 1523 1524 1525	1.0 3.0 6.0 9.0 12.0 15.0	360 359 359 358 358 358	7.9 7.9 7.9 7.9 7.9 7.8	20.0 19.5 19.5 19.5 19.5	757 757 757 757 757 757	8.8 8.2 8.0 7.9 7.8 7.7	
	24 24 24	1635 1636 1637	1.0 5.0 10.0	360 358 358	8.0 8.0 8.0	13.0 13.0 13.0	756 756 756	9.8 9.8 9.7	

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS 461254096090001 ORWELL LAKE SITE 1 NEAR FERGUS FALLS, MN--Continued PHYTOPLANKTON ANALYSES, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

DATE TIME	APR 18, 85 1515	MAY 15, 85 1540	JUN 18, 85 1700	JUL 24, 85 1620	AUG 29, 85 1530	SEP 24, 85 1635
TOTAL CELLS/ML	2700	2600	1300	1400	1400	2700
	CELLS PER- /ML CENT	CELLS PER- /ML CENT	CELLS PER-	CELLS PER- /ML CENT	CELLS PER- /ML CENT	CELLS PER- /ML CENT
BACILLARIOPHYTA (DIATOMS) .BACILLARIOPHYCEAEACHNANTHALES	·					
ACH NANTH ACE AEACHNANTH ES						
A.CLEVEI			12 <1			·
A. EXIGUA A. LANCEOLATA		26 1	23 2	11 <1 45 3	==	25 <1
A.MINUTISSIMA					28 2	
COCCONEIS C.PEDICULUS	27 1	26 l			14 1	
C.PLACENTULABACILLARIALES	53 2	150 6	12 <1	11 <1	56 4	51 2
NITZ SCH IACEAE						
NITZSCHIA N. ACICULARIS		51 2	12 <1			51 2
N.AMPHIBIA		26 1			14 1	
N. DISSIPATA	27 1 	150 6 26 1		_11 <1	56 4 	
N. FRUSTULUM	27 1	26 1			14 1	
N.PALEA EPITHEMIALES		77 3	12 <1	23 2		
EPITHEMIACEAE						
E. SOREX		51 2				
EUPODISCALESCOSCINODISCACEAE						
CYCLOTELLA						
C. KUTZ ING IANA C. MENEGHINIANA	 80 3	51 2 26 1	70 5 35 3	120 9 	42 3 56 4	100 4
, C. OCELLATA	27 1					
C. PS EUDOSTELL IGERAMELOS IRA	-+	-7		120 9	84 6	510 19
M.AMBIGUA	27 1	51 2	12 <1			
M.GRANULATA	27 1 	51 2 51 2	23 2 	34 2 	56 4 28 2	25 <1 51 2
STEPHANODISCUS		26 1			84 6	150 6
S.ASTREA V.MINUTULA S.HANTZSCHII	110 4	26 1 & 210 8	82 6		14 1	51 2
FRAGILARIALES FRAGILARIACEAE						
ASTERIONELLA						
A.FORMOSA DIATOMA	27 1					
D. TENUE V. ELONGATUM		26 1				
D.VULGARE FRAGILARIA	27 1		23 2		14 1	
F.CAPUCINAF.CAPUCINA V.MESOLEPTA.					28 2 14 1	
F. CONSTRUENS		51 2				25 <1
F. CONSTRUENS V.VENTERF. CROTONENSIS		150 6	23 2		_42 3	25 <1
F.PINNATA		26 1				 05 (1
F. VAUCHER LAE	27 1					25 <1
S. PARASITICA		51 2	12 <1		14 1	76 3
,S.RADIANS S.RUMPENS	& 770 29 	51 2 	35 3	==	14 1	
S.ULNA NAV ICULALES	53 2	26 1		11 <1		
CYMBELLACE AE						
AMPHORA A.OVALIS	27 1					
A. PERPUSILLA	27 1	51 2	23 2	23 2	42 3	25 <1
CYMBELLA C.AFFINIS						25 <1
C.MINUTA			23 2	-+	14 1	
C.TUMIDA GOMPHONEMACEAE		26 1		23 2		
GOMPHONEMA		26 3	10 /1	23 2		
G. ANGUSTATUM	130 5	26 1 130 5	12 <1 23 2	23 2 11 <1	56 4	
G. SUBCLAVATUM		26 1			14 1	
NAVICULACEAE NAVICULA			_			
N. ANG IL ICA	27 1		12 <1 23 2	11 <1	14 1	
N. CRYPTOCEPHALA		& 210 8	23 2	34 2	42 3	25 <1

[&]amp; Biological organism estimated as dominant.

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS 461254096090001 ORWELL LAKE SITE 1 NEAR FERGUS FALLS, MN--Continued

PHYTOPLANKTON ANALYSES, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

DATE Time	APR 18, 85 1515	MAY 15, 85 1540	JUN 18, 85 1700	JUL 24, 85 1620	AUG 29, 85 1530	SEP 24, 85 1635
TOTAL CELLS/ML	2700	2600	1300	1400	1400	2700
	CELLS PER- /ML CENT					
BACILLARIOPHYTAContinuedN.CRYPTOCEPHALA V.VENETA	27 1	150 6	47 4		42 3	25 <1
N. DECUSSIS		26 1		23 2	42 3 28 2	25 (1
N. GRACILOIDES						25 <1
N. GREGARIA			12 <1			
N. LANCEOLATAN. MENISCULUS V. UPSALIEN.	27 l 	26 1 51 2				
N. MINIMA		2	23 2		70 5	25 <1
N. MINUSCULA			12 <1			
N. TRIPUNCTATA		51 2				25 <1
CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAE						
CHLOROCOCCALES						
HYDRODICTYACEAE						
PEDIASTRUMOOCYSTACEAE					14 1	
ANKISTRODESMUS			12 <1	79 6	28 2	25 <1
OOCYSTIS				11 <1		
SELENASTRUM			10 (1		14 1	
TETRAEDRONSCENEDESMACEAE		26 1	12 <1	11 <1		
CRUCIGENIA			23 2	11 <1		
SCENEDESMUS			35 3	45 3		
TETRAS PORALES PALMELLACE AE						
SPHAEROCYSTIS			12 <1	11 <1		
CHRYSOPHYTA (YELLOW-GREEN ALGAE)						
. BACILLAR IOPHYCEAE						
CENTRALESCOSCINODISCACEAE						
CYCLOTELLA		51 2				
PENNALES						
ACHNANTHACE AE RHOICOS PHENIA						
R.CURVATA		100 4	35 3	11 <1	28 2	
FRAGILARIACEAE						
SYNEDRA				11 <1		
GOMPHONEMATACEAEGOMPHONEMA			12 <1		14 1	
NAVICULACEAE					• • •	
CALONEIS				11 <1		25 41
NAVICULA NITZ SCHIACE AE	27 1		47 4	11 <1	14 1	25 <1
NITZSCHIA		52 2	35 3		28 2	25 <1
. CHRYSOPHYCEAE						
CHROMULINALES CHROMULINACEAE						
CHRYSOCOCCUS	160 6				28 2	
KEPHYRION	720 27		2 3 2			100 4
OCHROMONADACEAE OCHROMONAS			12 <1			
CYANOPHYTA (BLUE-GREEN ALGAE)			12 \1			
. CYANOPHYCEAE						
OSCILLATORIALESNOSTOCACEAE						
ANABAENA				79 6		
EUGLENOPHYTA (EUGLENOIDS)						
. CRYPTOPHYCEAE						
CRYPTOMONIDALESCRYPTOCHRYSIDACEAE						
CHROOMONAS	53 2			79 6	98 7	25 <1
RHODOMONAS	130 5	77 3	& 390 30	190 14	& 110 8	& 1100 41
CRYPTOMONODACEAECRYPTOMONAS		150 6	23 2	& 240 17	56 4	76 3
. EUGLENOPHYCEAE		730 0	٤٥ ٤	u 670 11	JU 4	,0 3
EUGLENALES						
EUGLENACE AE	£3 3					
TRACHELOMONAS PYRRHOPHYTA (FIRE ALGAE)	53 2					
.DINOPHYCEAE						
DINOKONTAE						
CERATIACEAECERATIUM						25 <1
PERIDINIACEAE						
PERIDINIUM				23 2		

[&]amp; Biological organism estimated as dominant.

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS 461302096080802 ORWELL LAKE SITE 2 NEAR FERGUS FALLS, MN

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1	WATER
--	-------

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	PH (STAND- ARD UNITS) (00400)	PH LAB (STAND- ARD UNITS) (00403)	TEMPER- ATURE (DEG C) (00010)	TUR- BID- ITY (NTU) (00076)	TRANS- PAR- ENCY (SECCHI DISK) (M) (00078)	BARO- METRIC PRES- SURE (MM OF HG) (00025)
JUN 18	1625	376	-	8.1	8.0	19.5	1.5	1.1	755
JUL 24	1545	357	369	8.2	7.9	23.0	4.5	1.2	747
AUG 29	1500	360	372	7.9	7.7	20.0	2.0	1.0	757
SEP 24	1600	348	393	8.0	8.0	13.0	1.5	1.5	75 6
DATE	OXYGEN, DIS- SCLVED (MG/L) (00300)	ALKA- LINITY, CARBON- ATE IT-FLD (MG/L CAC03) (99430)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS- PHORUS, TOTAL (MG/L AS P) (00665)	PHOS- PHORUS, ORTHO, DIS- SOLVED (MG/L AS P) (00671)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)
JUN 18 JUL	9.5	191	<0.10	0.02	1.1	0.07	0.03	1.80	<0.10
24 AUG	7.6	190	<0.10	0.05	0.3	0.04	0.03	4.30	<0.10
29 SEP	8.0	190	0.11	<0.01	0.5	0.06	<0.01	0.90	<0.10
24	10.2	185	<0.10	0.20	0.5	0.08	0.04	2.90	<0.10
	DATE	TIME	SAM- PLING DEPTH (FEET) (00003)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE (DEG C) (00010)	BARO-METRIC PRES-SURE (MM OF HG) (00025)	CXYGEN, DIS- SOLVED (MG/L) (00300)	
	JUN 18 18 18 18 24 24 24 24 29 29 29 29 29 29	1630 1631 1632 1633 1634 1536 1537 1538 1539 1540 1450 1451 1452 1454 1455	1.0 3.0 6.0 9.0 13.5 1.0 3.0 6.0 9.0 12.0 1.0 3.0 6.0 9.0	376 376 377 377 377 356 357 358 362 360 360 361 362 363	8.1 8.2 8.2 8.2 8.2 8.2 8.2 8.1 7.9 7.9 7.9 8.0 7.9	19.5 19.5 19.5 19.5 19.5 23.0 23.0 23.0 23.0 20.0 19.5 19.5	755 755 755 755 755 747 747 747 747 747	9.5 9.1 9.0 9.0 9.0 7.6 7.8 7.5 7.3 8.4 8.0 7.7 7.7 7.3	
	24 24	1611 1612	4.0 7.0	352 355	8.0 8.0	13.0 13.0	756 756	10.1	

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS 461302096080802 ORWELL LAKE SITE 2 NEAR FERGUS FALLS, MN--Continued PHYTOPLANKTON ANALYSES, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

DATE TIME	JUN 18, 85 1630	JUL 24, 85 1545	AUG 29, 85 1500	SEP 24, 85 1610
TOTAL CELLS/ML	1400	1400	2000	1500
	CELLS PER- /ML CENT	CELLS PER- /ML CENT	CELLS PER- /ML CENT	CELLS PER- /ML CENT
BACILLARIOPHYTA (DIATOMS)				
.BACILLARIOPHYCEAE				
ACHNANTHALES ACHNANTHACEAE				
ACHNANTH ES				
A.CLEVEI A.EXIGUA	24 2 12 <1	12 <1		
A. HUNGAR ICA	12 <1			
A.LANCEOLATA		12 <1	19 <1 19 <1	_57 4
A.MINUTISSIMA	12 <1		``	
COCCONEIS			19 <1	
C.PLACENTULA	86 6	37 3	130 7	57 4
BACILLARIALES NITZSCHIACEAE	12 <1			
NITZSCHIA				
N. ACICULARIS	12 <1	12 <1 12 <1		14 <1
N.COMMUNIS	12 <1	12 <1		
N.DISSIPATA	24 2	12 <1	56 3	14 41
N.LINEARIS	24 2 12 <1			14 <1
N. PAL EA			56 3	
N.TRYBLIONELLA EPITHEMIALES		12 <1		
EPITHEMIACEAE				
EPITHEMIA			19 <1	
EUPODISCALES				
COSCINODISCACE AE CYCLOTELLA				
C. KUTZ ING IANA	49 3	160 11	19 <1	
C. MENEGHINIANA C. PS EUDOSTELL IG ERA		150 11	130 7 150 8	260 17
MELOSIRA		220 22		
M.AMBIGUA M.GRANULATA	37 3 49 3	62 4	37 2 37 2	43 3 14 <1
STEPHANODISCUS				
S.ASTREA V.MINUTULA	12 <1 37 3	37 3	19 <1 	
FRAGILARIALES				
FRAG IL ARI ACE AEAS TER IONELLA				
A. FORMOSA			19 <1	
FRAGILARIA F.CAPUCINA		37 3		
F.CONSTRUENS	37 3	49 3	56 3	14 <1
F.CONSTRUENS V.VENTERF.CROTONENSIS	12 <1			29 2
F.PINNATA	37 3		19 <1	14 <1
F.VAUCHERIAE	12 <1		37 2	
S.PARASITICA		12 <1		
S.RADIANS S.RUMPENS	24 2		19 <1 	
S.ULNA			37 2	14 <1
NAVICULALESCYMBELLACEAE				
AMPHORA				
A.COEFFEIFORMIS A.OVALIS	12 <1			14 <1
A. PERPUSILLA	73 5	37 3	& 170 9	14 <1
CYMB ELLA C. AFFINIS	49 3			
C.MINUTA		25 2		
C.TUMIDA GOMPHONEMACEAE	Van des			14 <1
GOMPHONEMA				
G. ANGUSTATUM	12 <1 61 4		 19 <1	14 <1
G. PARVULUM		12 <1		

[&]amp; Biological organism estimated as dominant.

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS 461302096080802 ORWELL LAKE SITE 2 NEAR FERGUS FALLS, MN--Continued PHYTOPLANKTON ANALYSES, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

DATE Time	JUN 18, 8 1630	5 JUL 24, 85 1545	AUG 29, 85 1500	SEP 24, 85 1610
TOTAL CELLS/ML	1400	1400	2000	1500
	CELLS PER		CELLS PER- /ML CENT	CELLS PER- /ML CENT
BACILLARIOPHYTAContinuedNAVICULACEAE				
NAVICULA N. ANGILICA	12 <1			
N. CAPITATA	24 2 73 5		 56 3	29 2
N. CRYPTOCEPHALAN. CRYPTOCEPHALA V.VENETA	73 3 37 3		 	14 <1
N. DECUSSIS	12 <1	12 <1 12 <1		29 2 14 <1
N.GREGARIA N.MINIMA	37 3		37 2	14 /1
N. MOURNEIN. PUPULA			19 <1 19 <1	
N. TRI PUNCTATA	37 3		1	14 <1
NEIDIUM N.AFFINE	12 <1			
CHLOROPHYTA (GREEN ALGAE)	12 \1			
. CHLOROPHYCE AE CHLOROCOCCAL ES				
OOCYSTACEAE				
ANKISTRODESMUS OOCYSTIS	12 <1	74 5 25 2	37 2	71 5 14 <1
SEL ENASTRUM	12			29 2
SCENEDESMACEAE CRUCIGENIA		12 <1	74 4	43 3
SCENEDESMUS	24 2		37 2	14 <1
TETRAS PORAL ES PAL MELLA CE A E				
SPHAEROCYSTIS		12 <1		
VOLVOCALESCHLAMYDOMONADACEAE				•
CHLAMYDOMONAS	12 <1		19 <1	
ZYGNEMATALESDESMIDIACEAE				
COSMARIUM				14 <1
STAURASTRUM CHRYSOPHYTA (YELLOW-GREEN ALGAE)		12 <1		
.BACILLARIOPHYCEAE				
CENTRALESCOSCINODISCACEAE				
CYCLOTELLA		12 <1		
PENNALESACHNANTHACEAE				
RHOICOSPHENIA	24 2	12 <1	37 2	2 9 2
CYMB ELLACE AE			3, 2	2,5 2
CYMBELLAFRAGILARIACEAE	12 <1			
SYNEDRA			38 2	
GOMPHONEMATACE AEGOMPHONEMA	12 <1		37 2	
NAVICULACEAE				00 0
NAVICULA NITZSCHIACEAE	12 <1		37 2	28 2
NITZ SCHIA	12 <1	12 <1	37 2	43 3
. CHRYSOPHYCEAE CHROMULINALES				
CHROMUL INACEAE			19 <1	
CHRYSOCOCCUS KEPHYRION		37 3		42 3
OCHROMONADACEAE	12 <1			
OCHROMONAS CYANOPHYTA (BLUE-GREEN ALGAE)	14 \1			
. CYANOPHYCE AE CHROOCOCCAL ES				
CHROOCO CCA CE AE				14 <1
OSCILLATORIALESNOSTOCACEAE				
ANABAENA			19 <1	
EUGLENOPHYTA (EUGLENOIDS) .CRYPTOPHYCEAE				
CRYPTOMONIDALES				
CRYPTOCHRYSIDACEAECHROOMONAS		86 6	130 7	
RHODOMONAS	& 230 16		130 7	& 330 22
CRYPTOMONODACE AE CRYPTOMONAS		& 200 14	110 6	100 7

& Biological organism estimated as dominant.

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS 461307096092803 ORWELL LAKE SITE 3 NEAR FERGUS FALLS, MN

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	PH (STAND- ARD UNITS) (00400)	PH LAB (STAND- ARD UNITS) (00403)	TEMPER- ATURE (DEG C) (00010)	TUR- BID- ITY (NTU) (00076)	TRANS- PAR- ENCY (SECCHI DISK) (M) (00078)	BARO- METRIC PRES- SURE (MM OF HG) (00025)
APR									
18	1440	397	411	8.2	7.8	11.0	1.6	0.5	7 47
MAY									
15	1610	390	406	8.1	8.0	16.0	1.1	0.6	747
JUN	1720	200	201				4.3	0.9	755
18 JUL	1730	380	391	8.3	8.1	19.0	4.3	0.9	/55
24	1740	362	376	8.3	7.9	23.5	2.5	1.0	7 47
AUG	1740	302	370	0.5	,.,	23.3	2.5	1.0	, 4,
29	1640	364	380	7.9	7.9	20.0	1.5	1.2	7 57
SEP							_ • •		
24	1725	360	393	8.1	8.1	13.5	1.5	1.0	7 56

DATE	OXYGEN, DIS- SOLVED (MG/L) (00300)	ALKA- LINITY, CARBON- ATE IT-FLD (MG/L - CAC03) (99430)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS- PHORUS, TOTAL (MG/L AS P) (00665)	PHOS- PHORUS, ORTHO, DIS- SOLVED (MG/L AS P) (00671)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)
APR									
18	10.3	192	<0.10	0.07	0.6	0.07	0.02	5.20	<0.10
MAY 15 JUN	7 .8	184	0.17	0.13	3.0	0.07	0.04	4.80	<0.10
18	9.1	194	<0.10	0.02	0.6	0.06	0.02	1.10	<0.10
JUL	0.0	190	<0.10	0.05	0.4	0.05	0.04	8.50	<0.10
24 AUG	8.0	190	(0.10	0.05	0.4	0.05	0.04	6.50	(0.10
29	8.5	190	<0.10	<0.01	0.4	0.07	0.04	8.00	<0.10
SEP									
24	10.1	190	<0.10	0.20	0.6	0.07	0.04	7.90	<0.10

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS 461307096092803 ORWELL LAKE SITE 3 NEAR FERGUS FALLS, MN--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

DATE	TIME	SAM- PLING DEPTH (FEET) (00003)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)
APR							
18	1445	2.0	397	8.2	11.0	747	10.3
18	1446	4.0	397	8.2	11.0	747	10.3
18	1447	6.0	397	8.2	11.0	747	10,3
18	1448	8.0	397	8.2	11.0	747	9.3
18	1449	10.0	398	8.2	10.5	747	7.9
MAY	1611		200		16.0	7.42	
15	1611	1.0	390	8.1	16.0	747	8.6
15	1612	3.0	390	8.1	16.0	747	7.7
15 15	1613 1614	6.0 9.0	390 3 9 0	8.1 8.1	16.0 16.0	747 747	7.6 7.3
15	1615	10.5	390	8.1	16.0	747	7.6
JUN	1013	10.3	330	0.1	10.0	/ =/	7.0
18	1731	1.0	378	8.3	19.0	755	9.2
18	1732	5.0	381	8.3	19.0	755	9.0
18	1733	10.0	380	8.3	19.0	755	9.1
18	1734	15.0	381	8.3	19.0	755	9.0
18	1735	20.0	381	8.3	19.0	755	9.1
18	1736	25.0	380	8.3	19.0	755	9.0
JUL							
24	1729	1,0	360	8.3	23.5	747	8.2
24	1730	3.0	362	8.3	23.5	747	8.0
24	1731	6,0	362	8.3	23.5	747	7.8
24	1732	12.0	363	8.3	23.5	747	7.7
24	1733	18.0	363	8.2	23.5	747	7.5
24	1734	23.0	364	8.0	23.5	747	5.7
AUG 29	1626	1.0	362	8.0	20.0	757	8.9
29	1627	3.0	363	7.9	20.0	757 757	8.6
29	1628	6,0	364	7.9	20.0	757 757	8.1
29	1629	9.0	366	7.9	19.5	757	8.1
29	1630	12.0	366	7.9	19.5	757	8.1
29	1631	15.0	366	7.9	19.5	757	8.1
29	1632	18.0	369	7.9	19.5	757	7.7
SEP							
24	1730	1.0	360	8.1	13.5	756	10.1
24	1731	4.0	360	8.1	13.5	756	10,1
24	1732	10.0	360	8.1	13.5	756	9.9
24	1733	15.0	362	8.1	13.5	756	9.7
24	1734	16.0	362	8.1	13.5	756	9.7

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS 461307096092803 ORWELL LAKE SITE 3 NEAR FERGUS FALLS, MN--Continued

PHYTOPLANKTON ANALYSES, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

DATE TIME	APR 18, 85 1445	MAY 15, 85 1610	JUN 18, 85 1730	JUL 24, 85 1740	AUG 29, 85 1640	SEP 24, 85 1730
TOTAL CELLS/ML	3700	3000	2700	2000	2500	4100
	CELLS PER- /ML CENT					
BACILLARIOPHYTA (DIATOMS)						
. BACILLAR IOPHYCEAE ACHNANTHALES						
ACH NANTH ACE AE ACHNANTH ES						
A.CLEVEI				16 <1		
A.EXIGUA A.HUNGARICA	29 <1 					38 <1
A.LANCEOLATA A.MINUTISSIMA		29 <1 29 <1			21 <1	
COCCONEIS						
C. PEDICULUS C. PLACENTULA	29 <1 29 <1	29 <1 87 3	23 <1		21 <1	
BACILLARIALES NITZSCHIACEAE						
NITZ SCH IA						
N. ACICULARIS		_29 <1 	140 5 23 <1	16 <1 	21 <1	
N. DISSIPATA	29 <1 29 <1	120 4 29 <1	23 <1			_38 <1
N.LINEARIS						38 <1
N. PALEA EUPODISCALES		58 2			21 <1	77 2
COSCINODISCACEAE CYCLOTELLA						
C. KUTZ ING IANA		29 <1	370 14	130 7		
C. MENEGH IN I ANA C. PS EUDOS TELL I GERA	_29 <1 	180 6 29 <1	69 3 92 3	33 2 280 14	86 3 130 5	77 2 1200 29
MELCSIRA M.AMBIGUA	290 8	200 7	140 5	49 2		120 3
M.GRANULATA	230 6	180 6	120 4	99 5		38 <1
STEPHANODISCUSS.ASTREA V.MINUTULA	86 2	29 <1	23 <1			310 8
S.HANTZSCHII S.SUBSALSUS	430 12 	& 350 12	& 410 15	33 2 16 <1	43 2	270 7
FRAGILARIALES				10 \1		
FRAG ILAR IACEAEDIATOMA						
D. VULGARE FRAG IL AR I A	57 2	29 <1				
F.BREUISTRIATA					21 <1	
F.CAPUCINA F.CONSTRUENS	29 <1	29 <1		16 <1 33 2		
F.CONSTRUENS V.VENTERF.PINNATA		58 2 5 8 2				
F.VAUCHERIAE	29 <1			16 <1		
S. DELICATISSIMA			23 <1			
S. PARAS ITICA S. RADIANS	& 770 21	58 2	 69 3		21 <1 	38 <1
S.ULNA NAVICULALES	29 <1	29 <1	23 <1			
CYMB ELLACE AE						
AMPHORA A.OVALIS	29 <1					
A. PERPUS ILLA CYMB ELLA	140 4	58 2	23 <1		21 <1	
C.AFFINIS			23 <1			
C.SINUATA GOMPHONEMACEAE		29 <1				
GOMPHONEMA		29 <1	23 <1			
G. OL IVACEUM	110 3	87 3	46 2	16 <1	43 2	
NAVICULACEAENAVICULA						
N.CAPITATA		120 4	 23 <1	16 <1 16 <1	43 2	 77 2
N. CRYPTOCEPHALA V. VENETA	29 <1	120 4	23 <1			
N. DECUSSIS N. GREGARIA	_29 <1 		23 <1	16 <1 	43 2 21 <1	
N.LANCEOLATA	_29 <1 		 23 <1			
N. MINIMA		29 <1		 16 <1	***	
N. PU PULA N. RHYNCHOCE PHALA		58 2				
N. SEMINULUM		29 <1 29 <1	 46 2			

[&]amp; Biological organism estimated as dominant.

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS 461307096092803 ORWELL LAKE SITE 3 NEAR FERGUS FALLS, MN--Continued PHYTOPLANKTON ANALYSES, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

IIIIOFDANKI	ON ANADIDES, 1	INTER TEAR OC.	LOBER 1904 TO	SELLENDER 13	94	
DATE TIME	APR 18, 85 1445	MAY 15, 85 1610	JUN 18, 85 1730	JUL 24, 85 1740	AUG 29, 85 1640	SEP 24, 85 1730
TOTAL CELLS/ML	3700	3000	2700	2000	2500	4100
	CELLS PER- /ML CENT					
CHLOROPHYTA (GREEN ALGAE)						
. CHLOROPHYCE AE						
CHLOROCOCCAL ES HYDRODICTYACE AE						
PEDIASTRUM			23 <1			
OOCYSTACEAEANKISTRODESMUS		29 <1	120 4	130 7	43 2	150 4
CHODATELLA			23 <1	'	-+	-•
SEL ENASTRUM				16 <1		
SCENEDESMACEAEACTINASTRUM			23 <1			
CRUCIGENIA					21 <1	
SCENEDESMUSTETRASPORALES		29 <1	92 3	· 81 4	63 3	38 <1
PALMELLACEAE						
GLOEOCYSTIS		29 <1				
CHLAMYDOMONADACE AE						
CHLANYDOMONAS		29 <1		16 <1		
CHRYSOPHYTA (YELLOW-GREEN ALGAE)						
. GACILLAR IOPHYCEAECENTRALES						•
COSCINCDISCACE AE						
CYCLOTELLAPENNALES	57 2 29 <1	120 4				
ACH NANTH ACE AE	23 \1					
RHOICOSPHENIA	00.43	50.0	46 0	16.43	42 2	
R.CURVATA NAVICULACEAE	29 <1	58 2	46 2	16 <1	43 2	**
NAVICULA	29 <1	29 <1	23 <1	16 <1		76 2
NITZSCHIACEAENITZSCHIA		58 2	69 3		21 <1	
. CHRYSOPHYCE AE		50 2	09 3		21 11	
CHROMULINALES						
CHROMULINACEAE CHRYSOCOCCUS	170 5	29 <1				
KEPHYRION	710 19	29 <1	23 <1	33 2	21 <1	•-·
OCHROMONADACEAEOCHROMONAS				16 <1		+-
CYANOPHYTA (BLUE-GREEN ALGAE)				20 12		
. CYANOPHYCEAE						
OSCILLATORIALESNOSTOCACEAE						
ANABAENA				& 380 19		
OSCILLATORIACEAEOSCILLATORIA					21 <1	
EUGLENOPHYTA (EUGLENOIDS)						,
. CRYPTOPHYCE AE CRYPTOMONI DAL ES						
CRYPTOCHRYS IDACEAE						
CHROOMONAS		87 3		130 7	220 9	
RHODOMONAS CRYPTOMONODACEAE	110 3	150 5	370 14	130 7	& 1100 44	& 1300 32
CRYPTOMONAS		29 <1	69 3	66 3	260 10	190 5
. EUGLENOPHYCEAE EUGLENALES						
EUGLENACE AE						
EUGLENA				16 <1	21 <1	
TRACHELOMONAS PYRRHOPHYTA (FIRE ALGAE)	29 <1			49 2	43 2	F-
.DINOPHYCE AE						
DINOKONTAE CERATIACEAE						
CERATIACEAE				33 2	110 4	
PERIDINIACEAE				16 <1		38 <1
PERIDINIUM				10 /1		20 /1

[&]amp; Biological organism estimated as dominant.

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS 461308096102804 ORWELL LAKE SITE 4 NEAR FERGUS FALLS, MN

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	PH (STAND- ARD UNITS) (00400)	PH LAB (STAND- ARD UNITS) (00403)	TEMPER- ATURE (DEG C) (00010)	TUR- BID- ITY (NTU) (00076)	TRANS- PAR- ENCY (SECCHI DISK) (M) (00078)	BARO- METRIC PRES- SURE (MM OF HG) (00025)
APR									
18	1355	394	411	8.3	7.9	11.5	7.3	0.5	747
MAY	1.505								
15 JUN	1635	388	402	8.1	8.0	16.0	7.1	0.6	747
18	1755	380	394	8.3	8.1	19.0	2.7	1.0	755
JUL	1,33	300	334	0.5	0.1	13.0	•••	1.0	, 33
24	1815	362	381	8.4	8.1	23.5	2.0	1.0	747
AUG									
29	1710	369	391	8.0	7.9	20.0	2.0	1.2	757
SEP									
24	1745	354	393	8.1	8.1	14.0	2.0	1.1	7 56

DATE	OXYGEN, DIS- SOLVED (MG/L) (00300)	ALKA- LINITY, CARBON- ATE IT-FLD (MG/L - CAC03) (99430)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS- PHORUS, TOTAL (MG/L AS P) (00665)	PHOS- PHORUS, ORTHO, DIS- SOLVED (MG/L AS P) (00671)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	CHLOR-B PHYTO- PLANK- TON CHROMO PLUOROM (UG/L) (70954)
APR									
18	10.9	190	<0.10	0.04	1.1	0.05	0.02	6.50	<0.10
MAY 15	7.5	185	0.13	0.15	0.7	0.07	0.05	6.00	<0.10
JUN	,				30,	2407		2000	
18	9.1	192	<0.10	<0.01	0.6	0.06	0.01	6.20	<0.10
JUL	. 7	200	0.17	0.05	0.2	0.04	0.04	21.0	<0.10
24 AUG	8.7	200	0.17	0.05	0.3	0.04	0.04	21.0	(0.10
29	9.0	180	0.11	<0.01	0.7	0.07	<0.01	8.90	<0.10
SEP									
24	9.4	188				0.07		11.0	<0.10

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

DATE	TIME	SAM- PLING DEPTH (FEET) (00003)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)
APR							
18	1400	2.0	394	8.3	11.5	747	10.9
18	1402	4.0	39 5	8.4	11.5	747	10.9
18	1403	6.0	395	8.4	11.5	747	10.9
18	1404	7.0	397	8.4	11.5	747	10.9
MAY							
15	1636	1.0	387	8.1	16.0	747	7.6
15	1637	6.0	387	8.1	16.0	747	7.5
15	1638	15.0	388	8.1	16.0	747	7.6
15	1639	18.5	388	8.1	16.0	747	7.4
JUN						•	
18	1800	1.0	380	8.3	19.0	755	9.1
18	1801	5.0	380	8.3	19.0	755	9.1
18	1802	10.0	380	8.3	19.0	755	9.1
18	1803	15.0	381	8.3	19.0	755	9.0
18	1804	26.0	381	8.3	19.0	755	9.0
JUL		20.00	301	0.5	23.0		,,,,
24	1800	1.0	361	8.4	23.5	747	8.9
24	1801	3.0	362	8.4	23.5	747	8.7
24	1802	6.0	365	8.4	23.5	747	8.5
24	1803	12.0	364	8.4	23.5	747	8.5
24	1804	18.0	365	8.4	23.5	747	8.4
24	1805	24.0	365	8.4	23.5	747	8.3
24	1806	32.0	378	8.0	23.0	747	2.3
24	1807	28.0	369	8.2	23.5	747	6.4
AUG	1007	20.0	309	0.2	. 23.3	/4/	0.4
29	1657	1.0	368	8.0	20.0	757	9.6
29	1658	3.0	369	8.0	20.0	757	9.3
29	1659	6.0	369	8.0	19.5	757	8.3
29	1700	9.0	369	7.9	19.5	757	8.1
29	1701	15.0	369	7.9	19.5	757	8.1
29	1702	21.0	369	7.9	19.5	757	8.0
29	1703	27.0	368	7.9	19.5	757	7.4
SEP	1/03	27.0	300	1.9	19.3	131	/ • 4
24	1750	1.0	354	8.1	14.0	756	9.4
24	1751	5.0	356	8.1	14.0	756	9.8
24	1752	10.0	360	8.1	14.0	756	9.6
24	1753	15.0	360	8.1	14.0	756	9.7
24	1754	20.0	360	8.1	14.0	756	9.6
24	1755	25.0	361	8.1	14.0	756	9.6
24	1756	27.0	361	8.1	14.0	756	9.5
	-,			~			

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS 461308096102804 ORWELL LAKE SITE 4 NEAR FERGUS FALLS, MN--Continued PHYTOPLANKTON ANALYSES, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

DATE TIME	APR 18, 85 1400	MAY 15, 85 1635	JUN 18, 85 1800	JUL 24, 85 1815	AUG 29, 85 1710	SEP 24, 85 1750
TOTAL CELLS/ML	3400	3400	3000	2200	2100	5000
	CELLS PER- /ML CENT					
BACILLARIOPHYTA (DIATOMS)	•					
.BACILLARIOPHYCEAEACHNANTHALES						
ACHNANTH ACE AE						
ACHNANTH ESA. LANCEOL ATA		32 <1				87 2
A.LINEARIS				19 <1		44 <1
A.MINUTISSIMA		32 <1				
C. PEDICULUS			26 <1			
C.PLACENTULABACILLARIALES	29 <1	96 3	26 <1		19 <1	
NITZ SCH I ACE AE						
NITZSCHIA N.ACICULARIS					39 2	130 3
N. AMPHIBIA			26 <1	38 2		
N.COMMUNIS	 29 <1	32 <1 64 2				
N. FRUSTULUM	29 (1	64 2 32 <1				44 <1
N.LINEARIS	29 <1	120 4			19 <1	44 <1
N. PALEA EUPODISCALES		130 4	-		39 2	
COSCINODISCACEAE						
CYCLOTELLA C.GLOMERATA		96 3				
C.KUTZ ING IANA		130 4	280 9	77 3		
C.MENEGHINIANA C.OCELLATA	29 <1	£ 390 11		19 <1	77 4	310 6
C. PS EUDOSTELL IG ERA			51 2	150 7	230 11	& 1500 30
MELCS IRA M. AMB IGUA	200 6	190 6	180 6	19 <1	39 2	
M.GRANULATA	200 6	130 4	210 7	``	39 2	44 <1
M. VARIANSSTEPHANODISCUS	29 <1					
S. ASTREA V.MINUTULA		96 3		-	58 3	440 9
S.HANTZSCHII FRAGILARIALES	290 9	350 10	€ 670 22	19 <1	120 6	220 4
FRAGILARIACEAE						
ASTERIONELLA	20 (1	30 (1				
A.FORMOSA DIATOMA	29 <1	32 <1				
D. VULGARE	29 <1	64 2				
FRAGILARIA F.CONSTRUENS V.VENTER		32 <1				
F.PINNATA						44 <1
F. VAUCHERIAE		32 <1				87 2
S. DELICATISSIMA		32 <1				
S.RADIANS S.RUMPENS	& 800 24 	64 2	26 <1 			44 <1
S.ULNA	57 2					
CYMBELLACEAE						
, AMPHORA						
A.OVALIS A.PERPUSILLA	29 <1	96 3	26 <1		 19 <1	44 <1
CYMB ELLA					., .,	44 (2
C. MINUTA GOMPHONEMACEAE		32 <1				
GOMPHONEMA						
G. ANGUSTATUM	57 2	64 2		 19 <1		
NAVICULACEAE	3, 2			19 (1		
DIPLONEIS		32 <1				
NAVICULA		32 (1				
N. CAPITATA		32 <1 96 3			10 <3	
N.CRYPTOCEPHALAN.CRYPTOCEPHALA V.VENETA	29 <1	96 3 64 2			19 <1 	
N. DECUSSIS		22 (1			19 <1	
N. GREGARIA N. MINIMA		32 <1 32 <1			 19 <1	
N. MUTICA	29 <1					
N. PUPULAN. RHYNCHOCEPHALA	29 <1	32 <1 	26 <1 			
N. TRI PUNCTATA	29 <1	32 <1	26 <1			
NEIDIUM N.AFFINE		***			19 <1	

[&]amp; Biological organism estimated as dominant.

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS 461308096102804 ORWELL LAKE SITE 4 NEAR FERGUS FALLS, MN--Continued PHYTOPLANKTON ANALYSES, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

DATE TIME	APR 18, 85 1400	MAY 15, 85 1635	JUN 18, 85 1800	JUL 24, 85 1815	AUG 29, 85 1710	SEP 24, 85 1750
TOTAL CELLS/ML	3400	3400	3000	2200	2100	50 0 0
•	CELLS PER- /ML CENT					
CHLOROPHYTA (GREEN ALGAE)						
. CHLOROPHYCE AE CHLOROCOCCAL ES						
OOCYSTACEAE						
ANKISTRODESMUS			100 3	120 5	58 3	130 3
CHODATELLA OOCYSTIS		32 <1				44 <1
SEL ENASTRUM			26 <1			
TETRAEDRON			26 <1			
SCENEDESMACEAE CRUCIGENIA				19 <1	19 <1	44 <1
SCENEDESMUS		130 4	150 5	38 2	13 11	87 2
TETRASPORALES						
COCCOMYXACEAE	20 71					
ELAKATOTHRIXPALMELLACEAE	29 <1					
GLOEOCYSTIS		32 <1				
VOLVOCALES						
CHLAMYDOMONADACEAE CHLAMYDOMONAS						44 <1
CHPYSOPHYTA (YELLOW-GREEN ALGAE)						
. BACILLAR IOPHYCEAE						
CENTRALESCOSCINODISCACEAE						
CYCLOTELLA		96 3				
PENNALES		•				
ACH NANTHACE AE RHOICOS PHENIA						
R.CURVATA		32 <1			19 <1	
FRAGILARIACEAE					10 (1	
SYNEDRA NAVICULACEAE					19 <1	
NAVICULA	29 <1	32 <1	26 <1		38 2	44 <1
NITZSCHIACEAE		20 (1		10 (1		00 0
NITZSCHIA .CHRYSOPHYCEAE		32 <1		19 <1		88 2
CHROMULINALES						
CHROMULINACEAE	202 0					
CHRYSOCOCCUS	290 9 710 21	64 2	26 <1	19 <1	38 2	44 <1
OCHROMONADACEAE		٠				
DINOBRYCH			26 (1		19 <1	
OCHROMONAS CYANOPHYTA (BLUE-GREEN ALGAE)			26 <1			
.CYANGPHYCEAE						
OSCILLATORIALES						
NOS TO CA CE AE AN AB AEN A				& 1200 55		
EUGLENOPHYTA (EUGLENOIDS)						
. CRYPTOPHYCEAE						
CRYPTOMCNIDALESCRYPTOCHRYSIDACEAE						
CHROOMONAS		64 2	130 4	38 2	130 6	
RHODOMONAS	290 9	160 5	620 21	210 10	& 680 32	960 19
CRYPTOMONODACE AE CRYPTOMONAS	86 3	96 3	330 11	19 <1	250 12	440 9
. EUGLENOPHYCEAE	•••					
EUGLENALES						
EUGLENACE AE TRACH ELOMONAS	57 2			38 2		
PYRRHOPHYTA (FIRE ALGAE)	-, -					
. DINOPHYCEAE					19 <1	
DINOKONTAE CERATIACEAE						
CERATIUM				77 3	77 4	

[&]amp; Biological organism estimated as dominant.

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS 461215096100205 ORWELL LAKE SITE 5 NEAR FERGUS FALLS, MN WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	PH (STAND- ARD UNITS) (00400)	PH LAB (STAND- ARD UNITS) (00403)	TEMPER- ATURE (DEG C) (00010)	TUR- BID- ITY (NTU) (00076)	TRANS- PAR- ENCY (SECCHI DISK) (M) (00078)	BARO- METRIC PRES- SURE (MM OF HG) (00025)
APR 18	1245	1100	1110	8.4	7.7	15.0	6.0		7 4 7
JUN	1243	1100	1110	0.4	/ • /	15.0	6.0		/4/
19 JUL	0827	520	388	8.1	8.0	18.0	3.5	0.9	750
24 AUG	1650	496	514	8.0	7.4	23.0	3.0	0.8	747
29 SEP	1600	730	774	8.1	7.5	19.5	3.7	0.5	757
24	1700	567	633	8.2	7.8	11.5	2.0	1.5	756
DATE	OXYGEN, DIS- SOLVED (MG/L) (00300)	ALKA- LINITY, CARBON- ATE IT-FLD (MG/L - CAC03) (99430)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS:N) (00623)	PHOS- PHORUS, TOTAL (MG/L AS P) (00665)	PHOS- PHORUS, ORTHO, DIS- SOLVED (MG/L AS P) (00671)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)
APR 18	11.2	200	<0.10	<0.01	0.9	0.09	0.01		
JUN 19	7.8	210	<0.10	<0.01	1.1	0.18	0.11	8.20	<0.10
JUL 24	4.2	220	<0.10	0.07	0.7	0.13	0.03	35.0	<0.10
AUG 29	9.0	270	<0.10	<0.01	0.9	0.27	0.15	83.0	<0.10
SEP 24	12.5	240	<0.10	0.15	1.9	0.21	0.10	5.70	<0.10

						BARO-	
			SPE-			METRIC	
			CIFIC			PRES-	
		SAM-	CON-	PH		SURE	OXYGEN,
		PL ING	DUCT-	(STAND-	TEMPER-	(MM)	DIS-
DATE	TIME	DEPTH	ANCE	ARD	ATURE	OF	SOLVED
		(FEET)	(US/CM)	UNITS)	(DEG C)	HG)	(MG/L)
		(00003)	(00 0 95)	(00400)	(00010)	(00 0 25)	(00300)
JUN							
19	0828	1.0	520	8.1	18.0	750	7.8
19	0829	3.0	521	8.0	17.5	750	7.8
JUL							
24	1645	1.0	496	8.0	23.0	7 4 7	4.5
24	1646	3.0	496	8.0	23.0	747	4.2
24	1647	6.0	496	8.0	23.0	747	4.0
24	1648	8.0	497	8.0	23.0	747	3.8
AUG							
29	1554	1.0	725	8.1	19.5	757	10.1
29	1555	3.0	732	8.1	19.0	757	7.9
29	1556	4.5	734	8.0	19.0	757	5.3
SEP							
24	1705	1.5	567	8.2	11.5	756	12.5

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS 461215096100205 ORWELL LAKE SITE 5 NEAR FERGUS FALLS, MN--Continued PHYTOPLANKTON ANALYSES, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

TOTAL CELLS/ML	DATE TIME	JUN 19, 85 0827	JUL 24, 85 1650	AUG 29, 85 1600	SEP 24, 85 1705
MAIL LANE TORMYTH (DIATOMS) MAIL LANE TORMY (DIATOMS) MAIL LANG TORMY (DIATOMS)	TOTAL CELLS/ML	1500	5000	7000	7300
BACILLARIALES					
BATCLIARILACESNITESCHIA CARENITESCHIA CARECYLLOTELLANA CARECYLLOTELCANA CAREC	BACILLAR IOPHYTA (DIATOMS)				
N. N. AMPIEITA 14 (1	BACILLARIALES				
N.LINEARIS	NITZSCHIA				
N. PALEADIPOIDSCALESCUSCINGOISCACERECYCLOTEGLIAINANC. HENGEIHIANAC. HENGEI HENGEIC.				180 3	67 <1
COSCINODISCACERECYCLOTELIANC. RUTE INCIDANC. RUTE INCID	N. PALEA			60 <1	330 5
C. KUTZ INGIANAC. MENGENIA IANAC. MENGENIA IANAC. PSEULOSTELLICERAC. PSEULOSTELLICERAL.C. PSEULOSTELLICERAL.C. PSEULOSTELLICERAL.C. PSEULOSTELLICERAL.C.C. PSEULOSTELLICERAL.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.					
C. MENBEGHINTAMA C. PESUDOSTELL JGERA C. PESUDOSTELL JGERA C. PESUDOSTELL JGERA G. RANNILATA STEPHANDOLISCUS M. G. RANNILATA STEPHANDOLISCUS S. ARTREA V. HILUTULA STEPHANDOLISCUS S. ARTREA V. HILUTULA S. S. ARTRE			£ 950 19	120 2	
MELCSIRA	C.MENEGHINIANA		370 7	840 12	
M. GRANULATA			120 2	180 3	670 9
S. ASTREA V. MINUTULAS. HANTSCHIIS. HANTSCHIID. TERNE V. ELONGATUMD. TERNE V. ELONGATUMP. CAPUCINAP. CAPUCINAP. CAPUCINAP. CAPUCINAP. CAPUCINAP. CAPUCINAP. CAPUCINAD. TERNE V. ELONGATUMD. TERNE V. ELONGATUMP. CAPUCINAN. CAPUCINAS. ANGUSTA	M.GRANULATA	190 13			
PRAGILARIALESPRAGILARIACEAEDIATOMAD. TENUE V. ELONGATUMD. TENUE V. ELONGATUM			120 2	1300 19	
PIRAGILARIACEAEDI TENUE V. ELONGATUMD. TENUE V. ELONGATUM		130 9	250 5	360 5	270 4
D. TENUE V. ELONGATUMF. CAPUCINAF. CAPUCINANAVICULACEENAVICULACEENAVICULACEESURIRELLAESURIRELLAESURIRELLAESURIRELLAESURIRELLAESURIRELLAESURIRELLAESURIRELLAESURIRELLAESURIRELLAESURIRESURIRELAESURIRELAESURIRESURIRESURIRESURIRE .	FRAGILARIACE AE				
FRACILARIA		14 <1			
	FRAGILARIA	20 2			
NAVICULACEAENACRYPTOCEPHALANACRYPTOCEPHALANACRYPTOCEPHALASURIRELIALESSURIRELIALESSURIRELIALESSURIRELIALESSURIRELIALESSURIRELIALESSURIRELIALESSURIRELIASARGUSTASARGUSTASARGUSTACHLOROPHYCEAECHLOROPHYCEAECHLOROCOCCALESOCYSTACEAEANTISTRODESNUSDATE TOOLOGOCCALSELENSTRUMSELENSTRUMSELENSTRUMSELENSTRUMCRUCIGENIAACTINASTRUMCRUCIGENIASELENSEBSMUSSELENSESMUSSE		_28			
NAYICULAN. CRYPTOCEPHALAN. CRYPTOCEPHALAN. CRYPTOCEPHALAN. CRYPTOCEPHALAN. CRYPTOCEPHALAS. SURIR ELLALESSURIR ELLACESURIR ELLACS. ANGUSTAS. ANGUSTAS. ANGUSTA CHLOROPHYTA (GREEN ALGAE)CHLOROPHYTA (GREEN ALGAE)CHLOROPHYTA (GREEN ALGAE)CHLOROPHYTA (GREEN ALGAE)CHLOROPHYCEAECHLOROPHYCEAECHLOROPHYCEAECHLOROPHYCEAECHLOROPHYCEAECHLOROPHYCEAESPIRESHORSELENASTRUMCHLOROPHYCEAESPIRESHORSELENASTRUMCHLOROPHYCEAESPIRESHORSPIRESHORSPIRESHORSPIRESHORSPIRESHOROPHYCEAESPIRESHORSPIR					
SURIFIELLALESSURIFIELLASURIFIELLASURIFIELLASURIFIELLASURIFIELLASURIFIELLASURIFIELLASURIFIELLASURIFIELLASURIFIELLASURIFIELLASURIFIELLASURIFIELLASURIFIELLASURIFIELLAAURIFICOMECOCCALESOOCYSTACEAEAURIFICROPHYCEAEAURIFICATIONSURIFIELLA	NAV ICULA			60.43	67.41
SURTRELLA S. ANGUSTA 60 <1 CHLOROPHYTA (GREN ALGAE)CHLOROPHYCE ARCHLOROPCOCCAL ESCHLOROPCOCCAL ESCOCCOCOCCAL ESCOCCOCCAL ESCOCCOCOCCAL ESCOCCOCCAL E				90 (1	6/ <1
60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1	SURIRELLACE AE				
CHLOROPHYCEAE . CHLOROPCOCCAL ES . OOCYSTACEAE ANKISTRODESMUS CHODATELLA CHODATELLA SEL ENASTRUM SEL ENASTRUM SEL ENASTRUM CHOLORITELA SEL ENASTRUM CHOLORITELA SEL ENASTRUM CHOLORITELA ACTINASTRUM CHOLORITA SCENEDESMUS ACTINASTRUM CHOLORITA SCENEDESMUS SEL ENASTRUM CHOLORITA SCENEDESMUS SEL ENASTRUM CHOLORITA CHOLORITA CHOLORITA CHOLORITA CHOLORITA SEL ENASTRUM CHOLORITA SEL ENASTRUM		~-		60 <1	
CHLOROCOCCAL ES COCYTACEAE COCYTACEAE					
NAKISTRODESMUS	CHLOROCOCCAL ES				
CIODATELLASELENASTRUMSCENEDESMACEAEACT INASTRUMCRUCIGENIASCENEDESMUSS		150 10	460 9	120 2	1000 14
SCENEDESMACEAEACT INASTRUMCRUCIGENTASCENEDESMUSSCENEDESMUSSCENEDESMUSTETRASTRUMTETRASTRUMTETRASTRUMTETRASTRUMSPALMELLACEAESPALMELLACEAESPALMELLACEAESPALMELLACEAECOLLAMYDOMONADACEAECHLAMYDOMONADACEAECHLAMYDOMONASTETRASTRUMSTAURASTRU	CHODATELLA				 67 <1
CRUCIGENIA 69 5 130 2SCENEDESMIS 6 290 19 540 11 360 5 540 7TETRASTRUM 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1 60 <1		130 10	_	00 (1	
SCENEDESMUS					
TETRASPORALESPALMELLACEAESPHAEROCYSTISSPHAEROCYSTISSPHAEROCYSTISCHLAMYDOMONADACEAECHLAMYDOMONADACEAECHLAMYDOMONASZYGNEMATALESDESMIDIACEAESTAURASTRUMSTAURASTRUMSTAURASTRUMCONSCINODISCACEAECOSCINODISCACEAECOSCINODISCUSPENNALESNAVICULACEAENAVICULACEAENAVICULACEAENITZSCHIACEAENITZ	SCENEDESMUS				
SPHAEROCYSTISVOLVOCALESCHLAMYDOMONADACEAECHLAMYDOMONASZYGNEMATALESDESMIDIACEAESTAURASTRUMSTAURASTRUMSTAURASTRUMCHLYSOPHYTA (YELLOW-GREEN ALGAE)BACILLAR IOPHYCEAECOSCINODISCACEAECOSCINODISCACEAENAVICULACEAENAVICULANITZSCHIACEAENIT				90 /1	
VOLVOCALESCHLAMYDOMONADACEAECHLAMYDOMONADACEAECHLAMYDOMONAS 250 5 67 <1ZYGNEMATALESDESMIDIACEAEDESMIDIACEAESTAURASTRUM 28 2		69 5			
CHLAMYDOMONASZYGNEMATALESDESMIDIACEAESTAURASTRUM 28 2 CHRYSOPHYTA (YELLOW-GREEN ALGAE) BACILLARIOPHYCEAECOSCINODISCACEAECOSCINODISCACEAENAVICULACEAENAVICULACEAENAVICULACEAENAVICULARIA 14 <1 60 <1NITZSCHIACEAENITZSCHIACEAENITZSCHIACEAENITZSCHIACEAENITZSCHIACEAEKEPHYRION CHANOPHYTA (BLUE-GREEN ALGAE)KEPHYRION CYANOPHYTA (BLUE-GREEN ALGAE)KOSCILLATORIALESOSCILLATORIALESOSCILLATORIALESNOSTOCACERENOSTOCACERENOSTOCACERENOSTOCACERENOSTOCACERENOSTOCACERENOSTOCACERENOSTOCACERENOSTOCACERENOSTOCACERENOSTOCACEREANABAENA 55 4 83 2 120 2		09 3			
ZYGNEMATALESDESMIDIACEAESTAURASTRUM 28 2 CHRYSOPHYTA (YELLOW-GREEN ALGAE) .BACILLAR IOPHYCEAECENTRALESCOSCINODISCACEAECOSCINODISCUS 130 2PENNALESNAVICULACEAENAVICULACEAENAVICULACEAENAVICULACEAENITZSCHIACEAENITZSCHIACEAENITZSCHIACEAENITZSCHIACEAENITZSCHIACEAENITZSCHIACEAECHROMULINALESCHROMULINALESCHROMULINACEAEKEPHYRION CYANOPHYCEAEKEPHYRION CYANOPHYCEAECHROMULINACEAEKEPHYRION CYANOPHYCEAECYANOPHYCEAECYANOPHYCEAENOSTOCACERENOSTOCACERENOSTOCACERENOSTOCACERENOSTOCACERENOSTOCACERENAMABAENA 55 4 83 2 120 2			250 5		67 <1
STAURASTRUM CHRYSOPHYTA (YELLOW-GREEN ALGAE) .BACILLARIOPHYCEAECENTRALESCOSCINODISCACEAECOSCINODISCUSPENNALESNAVICULACEAENAVICULACEAENAVICULACEAENITZSCHIACEAENITZSCHIACEAENITZSCHIACEAENITZSCHIACEAECHRYSOPHYCEAECHRYSOPHYCEAEKEPHYRION 42 3 67 <1 CYANOPHYTA (BLUE-GREEN ALGAE)KEPHYRION CYANOPHYCEAEOSCILLATORIALESNOSTOCACERENOSTOCACERENOSTOCACERENOSTOCACERENOSTOCACERENOSTOCACERENOSTOCACERENOSTOCACEREANABAENA 55 4 83 2 120 2	ZYGNEMATALES				
BACILLAR IOPHYCE AE CENTRAL ES COSCINODISCACE AE COSCINODISCUS PENNAL ES NAVICULACE AE NAVICULA PINNULARIA PINNULARIA NITZ SCHIACE AE NITZ SCHIACE AE NITZ SCHIACE AE CHRYSOPHYCE AE CHROMULINALES CHROMULINALES CHROMULINACE AE KEPHYRION KE		28 2			
CENTRALESCOSCINODISCACEAECOSCINODISCUS 130 2PENNALESNAVICULACEAENAVICULACEAENITZSCHIACEAENITZSCHIACEAENITZSCHIACEAECHRYSOPHYCEAECHROMULINALESCHROMULINACEAEKEPHYRION 42 3 67 <1 CYANOPHYTA (BLUE-GREEN ALGAE)CYANOPHYCEAENOSTOCACEAENOSTOCACEAENOSTOCACEAENOSTOCACEAENOSTOCACEAENOSTOCACEAENOSTOCACEAENOSTOCACEAENOSTOCACEAENOSTOCACEAENOSTOCACEAENOSTOCACEAE					
COSCINODISCUS 130 2PENNALESNAVICULACEAENAVICULA 14 <1 60 <1	CENTRAL ES				
PENNALESNAVICULACEAENAVICULAPINNULARIAPINNULARIANITZ SCHIACEAENITZ SCHIACEAENITZ SCHIACEAECHRYSOPHYCEAECHROMULINALESCHROMULINACEAEKEPHYRION 42 3 67 <1 CYANOPHYTA (BLUE-GREEN ALGAE)CYANOPHYTA (BLUE-GREEN ALGAE)NOSTOCACEAENOSTOCACEAENOSTOCACEAEANABAENA 55 4 83 2 120 2			~-		130 2
NAVICULAPINNULARIA 14 <1 60 <1					
NITZSCHTACEAENITZSCHTANITZSCHTANITZSCHTANITZSCHTANITZSCHTANEYSOPHYCEAEKEPHYRIONKEPHYRIONCYANOPHYTA (BLUE-GREEN ALGAE)YANOPHYCEAENOSTOLACEAENOSTOCACEAENOSTOCACEAEANABAENANOSTOCACEAEANABAENANOSTOCACEAE	NAVICULA			60 <1	
NITZSCHIA 41 <1 240 3 CHRYSOPHYCEAECHROMULINALESCHROMULINACEAEKEPHYRION 42 3 67 <1 CYANOPHYTA (BLUE-GREEN ALGAE)CYANOPHYCEAEOSCILLATORIALESNOSTOCACEAEANABAENA 55 4 83 2 120 2		14 <1			
CHROMULINALESCHROMULINACEAEKEPHYRION 42 3 67 <1 CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAE .OSCILLATORIALESNOSTOCACEAEANABAENA 55 4 83 2 120 2	NITZSCHIA		41 <1	240 3	
KEPHYRION 42 3 67 <1 CYANOPHYTA (BLUE-GREEN ALGAE)YANOPHYCEAEOSCILLATORIALESNOSTOCACEAEANABAENA 55 4 83 2 120 2					
CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAE .OSCILLATORIALESNOSTOCACEAEANABAENA 55 4 83 2 120 2		42 3			67 <1
OSCILLATORIALESNOSTOCACEAEANABAENA 55 4 83 2 120 2	CYANOPHYTA (BLUE-GREEN ALGAE)				
NOSTOCACEAE ANABAENA 55 4 83 2 120 2					
	NOSTOCACEAE	55 A	83 2	120 2	
		*			

[&]amp; Biological organism estimated as dominant.

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS 461215096100205 ORWELL LAKE SITE 5 NEAR FERGUS FALLS, MN--Continued PHYTOPLANKTON ANALYSES, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

DATE TIME	JUN 19, 85 0827	JUL 24, 85 1650	AUG 29, 85 1600	SEP 24, 85 1705
TOTAL CELLS/ML	1500	5000	7000	7300
	CELLS PER- /ML CENT	CELLS PER- /ML CENT	CELLS PER- /ML CENT	CELLS PER- /ML CENT
EUGLENOPHYTA (EUGLENOIDS) .CRYPTOPHYCEAE .CRYPTOMONIDALESCRYPTOCHRYSIDACEAECHROOMONASRHODOMONASRHODOMONASCRYPTOMONODACEAECRYPTOMONODACEAEEUGLENOPHYCEAE .EUGLENAES .EUGLENA	14 <1 97 6 42 3	370 7 170 3	120 2 120 2 	 130 2 270 4
PHACUS		100 0	360 5	67 (1
TRACHELOMONAS PYRRHOPHYTA (FIRE ALGAE) .DINOPHYCE AE .DINOKONTAECERATIACEAE	28 2	120 2	120 2	67 <1
CERATIUM PERIDINIACEAE	600 MP	620 12	& 2000 29	1100 15
PERIDINIUM	***	41 <1		

[&]amp; Biological organism estimated as dominant.

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS 470405095420001 STRAWBERRY LAKE NEAR PONSFORD, MN

		DATE	TIME	SAM- PLING DEPTH (FEET) (00003)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE (DEG C) (00010)	OXYGEN, DIS- SOLVED (MG/L) (00300)	
		AUG 27	1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441	0.3 3.30 6.60 9.80 13.1 16.4 19.7 23.0 26.2 29.5 32.8 36.1 39.0	299 298 297 297 297 296 296 297 297 298 301	8.60 8.60 8.60 8.60 8.60 8.60 8.60 8.50 8.50	21.0 19.5 19.0 19.0 19.0 19.0 19.0 19.0 19.0 18.5 18.5	9.4 9.5 9.5 9.3 9.2 9.1 8.5 7.6 7.5	
DATE	TIME	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)		TUR- D BID- S ITY ((NTU) A	LCIUM IS- OLVED S MG/L S CA) A	SIUM, DIS- SOLVED S (MG/L AS MG)	SIUM, LI DIS- SOLVED ((MG/L AS K) (LAB DI MG/L SO AS (I ACO3) AS	CHLO- LFATE RIDE, IS- DIS- OLVED SOLVED MG/L (MG/L SO4) AS CL) 0945) (00940)
AUG 27	1400	300	8.1	0.8	27	22	2.9	159	6.4 1.4
DATE AUG 27.	SOLII RESII AT 1: DEG DI: SOL: (MG.	DUE GE BO NO2+ C DI S- SOL VED (MG /L) AS	N, NITRO- NO3 GEN, S- AMMONIA VED TOTAL /L (MG/L N) AS N) 31) (00610)	MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA	PHOS- PHORUS TOTAL (MG/L AS P)	SOLVED (MG/L AS P)	DIS- SOLVED (MG/L AS C)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689)
	DATI AUG 27	E TIM	AS AS (01000)	DIS- SOLVED (UG/L AS BA)	BORON, DIS- SOLVEI (UG/L AS B) (01020)	DIS- SOLVEI (UG/L AS CD)	DIS- SOLVED (UG/L AS CR)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	
		DATC	DIS- SOLVED S (UG/L AS FE)	LEAD, N DIS- SOLVED S (UG/L (AS PB) A	DIS- OLVED S UG/L (S MN) #	ERCURY I DIS- SOLVED S (UG/L AS HG) I	DIS- SOLVED S (UG/L (AS SE) A	INC, DIS- OLVED UG/L S ZN) 1090)	
		AUG 27	<3	2	<1	0.9	<1	8	

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS 470730095450001 WHITE EARTH LAKE NEAR WHITE EARTH, MN

		DAT	e Ti	ME DE	C1 M C0 ING DU PTH AN EET) (US	PE- IFIC ON- ICT- ICE S/CM)	PH (STAND ARD UNITS) (00400	ATU (DEG	ER- RE S C) (YGEN, DIS- SOLVED MG/L) 0300)	
		AUG 27 27 27 27 27 27 27 27 27 27 27	16 16 16 16 16 16 16	01	0.3 3.30 9.80 6.4 2.8 9.2 2.5 5.8 9.0 2.3	306 306 306 309 309 309 310 316 327 328	8.6 8.6 8.3 8.3 8.7 7.6	50 2 50 1 50 1 80 1 20 1 10 1 70 1	0.5 0.0 9.5 9.5 8.5 8.5 8.0 7.0 3.0 2.5	9.6 9.7 9.6 9.3 7.2 6.2 5.9 5.1 1.9 0.2	
DATE	TIME	SAM- PLING DEPTH (FEET) (00003)	SPE- CIPIC CON- DUCT- ANCE LAB (US/CM) (90095)	PH LAB (STAND- ARD UNITS) (00403)	TUR- BID- ITY (NTU) (00076)	DI SO (Me	CIUM S- LVED G/L CA) 915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	POTAS SIUM DIS- SOLVE (MG/L AS K)	LINITY LAB MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SC4) (00945)
AUG 27 27	1545 1630	 75	311 329	8.0 7.4	1.0		3 2 3 3	21 21	2.3 2.4		3.7 3.3
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	GEN, NO2+NO3 DIS- SOLVED	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	MONIA A ORGANI TOTAL (MG/I AS N)	H- GE + MOI IC OR I D L (i		PHOS- PHORUS, TOTAL (MG/L AS P) (00665)	PHOS PHORU DIS SOLV (MG/ AS F	OS, ORGANIC S- DIS- VED SOLVED 'L (MG/L P) AS C)	
AUG 27 27	1.7	186 191	<0.10 <0.10	0.02 0.26			0.9 0.5	0.06 0.07	0.0		0.2 0.2
	DA:	IR D SO FE (U AS (01	ON, LE SC CVED	DIS- D: DIVED SO: DIVED SO	IS- LVED S UG/L S S BA) A 1005) (0 65 70 ANGA- ESE, MI DIS- OLVED S UG/L S MN) A	BORON, DIS- GOLVED (UG/L AS B) 01020) 30 30 BERCURY DIS- GOLVED (UG/L AS HG) 71890)	SELINIUI DIS SOLL (UG, AS & (0114)	IUM MI 7ED SO 7L (U 1D) AS 25) (01 (1 (1 11 11 11 11 11 11 11 11 11 11 11	S- LVED G/L CR) 030) (<10 <10 VER, IS- LVED G/L AG)	COPPER, DIS- SOLVED (UG/L AS CU) (01040) 2 1 ZINC, DIS- SOLVED (UG/L AS ZN) (01090)	
			33	1	370	0.1		ξi.	<1 <1	4	

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS 474626094541001 MUD RIVER ABOVE REDBY, MN

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	PH (STAND- ARD UNITS) (00400)	ARI UNITS	B TEM ND- AT D A S) (DE	IR A'	APER- TURE EG C) (BÍD- i ITY s(NTU) (1	GEN, DIS- DLVED MG/L)	ALCIUM DIS- SOLVED (MG/L AS CA) 00915)
20	1145	340	332	7.9	7.	.6 2	2.0	13.0	1.0	8.8	45
DATE	MAGI SII SOLV (MG, AS 1)M, S1 S- D1 /ED SOI /L (MC MG) AS	(UM, LIN) (S- FI) LVED (MC G/L AS K) CAC	TTY LINELD L C/L (M C/C) A C/C) CA	IG/L IS ICO3)	SULFIDE TOTAL (MG/L AS S) (00745)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO-RIDE, DIS-SOLVED (MG/LAS CL) (00940)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS RESIDU AT 105 DEG. C SUS- PENDED (MG/L (00530	Ē ,)
20.]	17]	1.6	187	175	<0.5	<0.2	1.8	221	2	
DATE AUG 20.	NITE GEN NO2+N DIS SOLV (MG/ AS N (0063	7, NIT 103 GE 5- AMMO 7ED TOT 7L (MG N) AS 31) (006	PRO- GEN, EN, MONIA ONIA ORGA PAL TOT S/L (MC N) AS (10) (006	AM- GEN (A + MON (ANIC ORG (AL DI (3/L (M N) AS (25) (00	S. G/L N)	PHOS- PHORUS, TOTAL (MG/L AS P) (00665)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P) (00666)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689)	CYANID TOTAL (MG/L AS CN (00720	, ja))
								:	·	, •	
	DATE	S TIM	SOI (UG	S- DI VED SOL VL (U AS) AS	IUM, S- WED G/L BA) 005) (BORON, DIS- SOLVED (UG/L AS B) (01020)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO-MIUM, DIS-SOLVED (UG/L AS CR) (01030)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)		
	AUG 20.	114	5	3	67	<20	<1.	<10	<1		
	DATE	SOL	S- DI VED SOL L (UC FE) AS	AD, NE SS- D VED SO VL (U PB) AS	IS- LVED G/L MN)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)		
	AUG 20.	2	90	2	51	0.3	<1	<1	16	-	

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS 475043095133101 SANDY RIVER NEAR RED LAKE, MN

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

AUG 08	TIME 0930 1630	SPE- CIFI CON- DUCT ANCI (US/(CI IC CI - DU F- AN E L. CM) (US 95) (90)	CE (ST AB A /CM) UNI	PH I PAND- (S' ARD I TTS) UNI	TAND- A ARD ITS) (D 0403) (0	AIR AT EG C) (DE 0020) (00	MPER- I TURE I IG C) (I	3ID- D TY SC NTU) (M 0076) (00	CALCIUM GEN, DIS- DIS- SOLVED LIVED (MG/L) G/L) AS CA) 300) (00915) 8.7 59
DATE AUC 08 15	SI DI SOL (MG AS (009	MG)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	ALKA- LINITY FIELD (MG/L AS CACO3) (00410)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	SULFIDE TOTAL (MG/L AS S) (00745)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L) (00530)
DATE	GE NO2+ DI	S- 1 VED (/L N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS- PHORUS, TOTAL (MG/L AS P) (00665)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P) (00666)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689)	CYANIDE TOTAL (MG/L AS CN) (00720)
08 15		10	0.03	0.7	0.6	0.02	<0.01	15 CHRO-	0.4	<0.01
	TAG DUA	ł	TIME	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BORON, DIS- SOLVED (UG/L AS B) (01020)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	
	BD		IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	ZINC, DIS- SOLVED (UG/L AS ZN)	
	AUG 80		160	(01049)	(01056) 52	(71890) <0.1	(01145)	(01075)	(01090) 9	

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS 475236095010301 PIKE CREEK AT RED LAKE, MN

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM	CII CO DUC ANC LA	CE (ST AB A (CM) UNI	H I AND- (ST RD P TS) UNI	ARD A'	MPER- E TURE 1 EG C) (N	SID- E TY SO ITU) (M	FC FE GEN, 0. DIS- UN DLVED (CC IG/L) 100	DLI- STREP- DRM, TOCOCCI GCAL, FECAL, 1.7 KF AGAR M-MF (COLS. DLS./ PER 100 ML) 100 ML) 1625) (31673)
AUG 15	1500	480	4	159	8.0	7.8	14.5	0.7	9.1	110 90
DATE	CALC DIS SOL (MG AS (009	IUM - VED S /L (CA) A	AGNE- SIUM, DIS- OLVED MG/L S MG) 0925)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	SULFIDE TOTAL (MG/L AS S) (00745)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L) (00530)
AUG 15.		66	22	1.5	253	<0.5	1.5	5.1	294	4
DATE AUG	NIT GE NC2+ DI SOL (MG AS	N, N NO3 (S- AM VED TV /L () N) A	ITRO- GEN, MONIA OTAL MG/L S N) 0610)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (TOTAL AS N) (00625)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS- PHORUS, TOTAL (MG/L AS P) (00665)	PHCS- PHORUS, DIS- SOLVED (MG/L AS P) (00666)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689)	CYANIDE TOTAL (MG/L AS CN) (00720)
15.	<0.	10	0.01	0.6	0.5	<0.01	<0.01	10	0.3	<0.01
	DAT	е т	IME	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BORON, DIS- SOLVED (UG/L AS B) (01020)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	
	AUG 15		500	1	110	20	<1	<10	8	
	DAT	5 S E (A	RON, DIS- OLVED UG/L S FE) 1046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)	
	AUG 15	•••	46	1	. 33	<0.1	<1	<1	6	

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS $\begin{tabular}{ll} & 475254094541601 & {\tt MUD} & {\tt RIVER} & {\tt AT} & {\tt MOUTH} & {\tt AT} & {\tt REDBY}, & {\tt MN} \end{tabular}$

	WAT	ER QUALIT	Y DATA, W	ATER YEAR	OCTOBER	1984 TO S	EPTEMBER	1985	
DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	PH (STAND- ARD UNITS) (00400)	PH LAB (STAND- ARD UNITS) (00403)	TEMPER- ATURE (DEG C) (00010)	TUR- BID- ITY (NTU) (00076)	OXYGEN, DIS- SOLVED (MG/L) (00300)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)
AUG 15	1230	410	408	8.0	7.8	14.5	15	9.4	59
				•••					
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	ALKA- LINITY FIELD (MG/L AS (ACO3) (00410)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	SULFIDE TOTAL (MG/L AS S) (00745)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L) (00530)
AUG									
15	19	2.3	214	2 25	<0.5	1.2	2.4	283	4
	NITRO- GEN, NO2+NO3 DIS-	NITRO- GEN, AMMONIA	NITRO- GEN, AM- MONIA + ORGANIC	NITRO- GEN, AM- MONIA + ORGANIC	PHOS- PHORUS,	PHOS- PHORUS, DIS-	CARBON, ORGANIC DIS-	CARBON, ORGANIC SUS- PENDED	CYANIDE
DATE	SOLVED (MG/L	TOTAL (MG/L	TOTAL (MG/L	DIS. (MG/L	TOTAL (MG/L	SOLVED (MG/L	SOLVED (MG/L	TOTAL (MG/L	TOTAL (MG/L
מונט	AS N)	AS N)	AS N)	AS N)	AS P)	AS P)	AS C)	AS C)	AS CN)
	(00631)	(00610)	(00625)	(00623)	(00665)	(00666)	(00681)	(00689)	(0 0 720)
AUG 15	0.11	0.04	0,9	0.8	0.03	<0.01	15	0.3	<0.01
	DATE	TIME	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	BORON, DIS- SOLVED (UG/L AS B)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRC- MIUM, DIS- SOLVED (UG/L AS CR)	COPPER, DIS- SOLVED (UG/L AS CU)	
			(01000)	(01005)	(01020)	(01025)	(01030)	(01040)	
	AUG 15	1230	4	110	30	1	<10	5	
	DATE	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L' AS HG) (71890)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)	
	AUG 15	240	3	69	<0.1	<1	<1	19	

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS 480000095000001 LOWER RED LAKE NEAR RED LAKE, MN

		D A ʻ	re '	TIME	SAM- PLING DEPTH (FEET) (00003)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND-ARD UNITS) (00400)	TEMPER- ATURE (DEG C) (00010)	OXYGEN, DIS- SOLVED (MG/L) (00300)	
		AUG 07 07 07 07	•	1402 1403 1404 1405 1406	10.0 15.0 20.0 25.0 30.0	256 256 256 256 257	7.50 7.50 7.40 7.40 7.30	22.0 21.5 21.5 21.5 21.5	8.3 8.0 7.7 7.4 6.7	
DATE	TIM	E DI	ESER- (VOIR) EPTH (VEET) (VEET)	SPE- CIFIC CON- DUCT- ANCE US/CN)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	PH (STAND- ARD UNITS) (00400)	ARD UNITS)	ATURE (DEG C)	TUR- BID- ITY (NTU) (00076)	TRANS- PAR- ENCY (SECCHI DISK) (M) (00078)
AUG 07.	133	0 :	31.0	256	276	7.5	7.9	22.0	2.5	1.1
	DATE AUG .	OXYGEN DIS- SOLVEI (MG/L) (00300)	SOLVI D (MG/I D AS CI D (0091	UM S ED SC L (M A) AS 5) (00	IUM, DIS- DLVED SI IG/L () MG) A 1925) (0	SIUM, LI DIS- OLVED (MG/L S K) (0935) (9	LAB D MG/L S AS (ACO3) AS 0410) (0	LFATE R IS- D OLVED SO MG/L (1 SO4) A 0945) (00	HLO- RES IDE, AT IS- DE OLVED D MG/L SO S CL) (M	IDS, IDUE 180 GG. C IIS- DLVED G/L)
	07	8.3	31	8	12	2.0	142 .	6.2	1.9	176
	DATE	SOLIDS RESIDU AT 105 DEG. C SUS- PENDED (MG/L (00530)	E GEN, NO2+NO DIS- SOLVI (MG/1) AS N	, NI O3 G - AMM ED TO L (M	TRO- GE. EN, MO: IONIA ORI TAL TO IG/L (I	N,AM- GE NIA + MC GANIC OF OTAL E MG/L (S N) A	GANIC PH DIS. T MG/L (SN) A	HOS- PHO ORUS, I OTAL SO MG/L (I S P) AS	OLVED TO MG/L (M S P) AS	NIDE TAL IG/L IG/N IG/20)
	AUG 07	5	0.13	ı 0	.03	0.6	0.6 <	0.01 <	0.01 <0	.01
	DAT	E T.	IME	RSENIC DIS- SOLVED (UG/L AS AS))1000)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BORON, DIS- SOLVED (UG/L AS B) (01020)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	DIS-	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	
	AUG 07		330	10	52	30	<1	<10	7	
	DAT	I SC E (I AS	DIS- DLVED S UG/L S FE) &	LEAD, DIS- SOLVED (UG/L AS PB))1049)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	DIS-	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)	
	AUG 07	• • •	19	2	8	0.1	<1	<1	9	

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS 480013094403501 NORTH BRANCH BATTLE RIVER NEAR REDBY, MN

WATER QUALITY DATA. WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

		WATER	QUALIT	Y DATA, W	NATER YEAR	R OCTO	BER 1984	TO SEPTE	MBER 1985		
DATE AUG 21	TIME	STREA FLOW INSTA TANEO (CFS (0006	M- CI , CO: N- DU US AN) (US	E- CI FIC C N- DU CT- AN CE I /CM) (US	ICE (S' LAB S/CM) UN	PH TAND- ARD ITS) 0400)	PH LAB (STAND- ARD UNITS) (00403)	TEMPER- ATURE, AIR (DEG C) (00020)	TEMPER- ATURE (DEG C) (00010)	ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L) (00300)
DATE	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	DIS	M, S - D ED SO L (M G) AS	IUM, LIN IS- FI LVED (M G/L A K) CA	IITY LII IELD I IG/L (I AS A	LKA- NITY LAB MG/L AS ACO3)	SULFIDE TOTAL (MG/L AS S) (00745)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (MG/L AS CL)	SOLVED (MG/L)	AT 105 DEG. C, SUS-
AUG 21	43	1	3	0.4	162	151	<0.5	6.3	1.3	214	2
DAT AUG 21	G NO2: D SO E (M AS	+NO3 IS- A LVED G/L N)	NITROGEN, MMONIA TOTAL (MG/L AS N) 00610)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOOP PHORE TO T. (MG AS : (0066	S- PHO US, D AL SO /L (M P) AS 65) (00	RUS, ORG IS- DI LVED SOL G/L (M P) AS	BON, ORG ANIC SU S- PEN VED TO G/L (M C) AS 681) (00	TAL TO G/L (M C) AS (689) (00	NIDE TAL G/L CN) 720)
	DA	TE '	TIME	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BORG DI: SOLG (UG, AS 1	S- D VED SO /L (UC B) AS	MIUM MI IS- DI LVED SO G/L (U CD) AS	S- DI LVED SC G/L (U CR) AS	PER, SE- SLVED G/L CU) 040)	
	AU 2		1300	1	36	<.	20	1	<10	<1	

MANGA-

MERCURY

DIS-SOLVED (UG/L AS HG) (71890)

0.3

NESE, DIS-

SOLVED (UG/L AS MN) (01056)

32

IRON, DIS-SOLVED (UG/L AS FE) (01046)

100

DATE

AUG 21... LEAD, DIS-SOLVED (UG/L AS PB) (01049)

3

SELE-

NIUM, DIS-SOLVED (UG/L

AS SE) (01145)

<1

SILVER,

DIS-SOLVED (UG/L

AS AG) (01075)

<1

ZINC, DIS-SOLVED (UG/L

AS ZN) (01090)

12

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS 480430094351001 SHOTLEY BROOK NEAR SHOTLEY, MN

DATE	TIME	F IN TA (TREAM- PLOW, ISTAN- INEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	CI DU AN L (US	ICE (S JAB S/CM) UN	PH TAND- ARD ITS) 0400)	PH LAB (STAND ARD UNITS) (00403	- A1 A (DE	MPER- FURE, AIR EG C)	ATI (DEC	PER- URE G C) 010)	TUR- BID- ITY (NTU) (00076	DIS- SOLVED (MG/L)
AUG 22	1330		24	240		225	8.1	7.7	2	25.0	1	4.5	1.0	10.0
	CALCI DIS-	им	AGNE- SIUM, DIS-	POTAS- SIUM, DIS-	LIN	ITY LI	LKA~ NITY LAB	SULFID		JFATE IS-		DE,	SOLIDS RESIDU AT 180 DEG.	E RESIDUE AT 105
DATE	SOLV (MG/ AS C	L (A) A	OLVED (MG/L LS MG)	SOLVED (MG/L AS K)	A Ca	.s .co3) c	MG/L AS ACO3)	TOTAL (MG/L AS S)	() As	OLVED AG/L SO4)	(MC	LVED G/L CL)	DIS- SOLVE (MG/I	D FENDED (MG/L)
AUC	(0091	5) (0	10925)	(00935)	(00)	(410)	0410)	(00745) (00	945)	(009	940)	(70300)) (00530)
22	3	3	9.8	0.3		118	118	<0.5	<	0.2	:	1.4	162	2 2
DAT AUG 22	N PE (NITRO-GEN, C2+NO3 DIS-SOLVED (MG/L AS N) 00631)	NITI GEI AMMON TOTA (MGA AS 1	RO- GEN N, MON NIA ORG AL TO 'L (M N) AS LO) (00	TRO- ,AM- IA + ANIC TAL G/L N) 625)	NITRO-GEN, AM-MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHO	E- PH JS, L S /L (P) A 55) (0	HOS- ORUS, DIS- OLVED MG/L S P) 0666)	CARBO ORGAN DIS- SOLVE (MGC AS (IC ED 'L	CARBO ORGAN SUS- PENDE TOTA (MG/ AS C	IIC ID CY IL (I I) I I) I	VANIDE NOTAL MG/L AS CN) 00720)
		DATE	TIME	D SO U AS	ENIC IS- LVED G/L AS) 000)	BARIUM, DIS- SOLVED (UG/L AS BA) (01605)	BORG DIS SOLA (UG, AS I	5- /ED S /L (3) A	DNIUM DIS- OLVED UG/L S CD) 1025)	CHRC MIUN DIS- SOLV (UG/ AS (ED L	COPPE DIS- SOLV (UG/ AS C	ED L	
		AUG 22	1330)	2	29	<:	20	<1	<1	.0		1	
		DATE AUG	IRON DIS SOLV (UG/ AS H (0104	S- D VED SO VL (U VE) AS	AD, IS- LVED G/L PB) 049)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCI DIS SOLV (UG/ AS I (7189	JRY N S- /ED S /L (HG) A	ELE- IUM, DIS- OLVED UG/L S SE) 1145)	SILVE DIS SOLV (UG/ AS A (0107	ED L (G)	ZINC DIS SOLV (UG/ AS Z (0109	ED L N)	
		22	11	.0	1	28	<0.	.1	<1	<	1	1	9	

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS 480730094523001 UPPER RED LAKE NEAR RED LAKE, MN

		•												
		AUG	DATE	TIME	PI DE (1	AM- LING EPTH FEET)	SPE- CIFI CON- DUCT ANCE (US/C	C - M)	PH (STANE ARD UNITS) (00400	(TEMPER- ATURE (DEG C) (00010)	OXYGE DIS SOLV (MG/ (0030	ED L)	
		07 07 07 07 07	•••	1100 1101 1102 1103 1104 1105	? !]	2.00 5.00 8.00 11.0 14.0	2 2 2 2	12 12 12 13 14 14	8.0 8.0 7.9 7.8 7.8	0 0 0 0 0	22.0 22.0 21.5 21.5 21.5	8 8 8	.9 .7 .7 .2 .0	
DATE	TIM	E	RESER- VOIR DEPTH (FEET) (72025)	SPE- CIFI CON- DUCT ANCE (US/C	CC	SPE- CIFIC CON- OUCT- ANCE LAB JS/CM)	PH (STA AR UNIT (004	ND- D S)	PH LAE (STAN ARI UNITS (0040	3 ND-) S)	TEMPER- ATURE (DEG C) (00010)	BI IT (NT	Y U)	TRANS- PAR- ENCY (SECCHI DISK) (M) (00078)
AUG 07.	120	0	17	21	. 2	233	8	.0	8.	.0	22.0	6	.5	0.8
	DATE	sor	EN, D S- S VED (J/L) A	LCIUM IS- OLVED MG/L S CA) 0915)	MAGNI SIUN DIS- SOLVI (MG/I AS MG	M,	OTAS- SIUM, DIS- OLVED MG/L S K) D 935)	LIN I (N P CP	KA- GITY AB MG/L AS ACO3)	SOL	FATE I S- I LVED S S/L SO4) I	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	RES AT DE D SO (M	IDS, IDUE 180 G. C IS- LVED G/L) 300)
	AUG 07	8	.7	32	10	ס	1.8		119	5	1.	1.6		159
	DATE	SOLI RESI AT 1 DEG. SUS PEND (MG	DUE 05 NO C, S S S S S S S S S S S S S S S S S S	ITRO- GEN, 2+NO3 DIS- OLVED MG/L S N)- 0631)	NITRO GEN, AMMONI TOTAL (MG/I AS N) (00610	O- GEI , MOI IA ORG L TY L (I	ITRO- N, AM- NIA + GANIC OTAL MG/L S N) 06 25)	GEN MON ORG DI (N	ITRO- I, AM- VIA + SANIC IS. IG/L S N) 06 23)	(MG	OS- PI RUS, FAL S G/L P) /	PHOS- HORUS, DIS- SOLVED (MG/L AS P) 00666)	TO' (M: AS	NIDE TAL G/L CN) 720)
	AUG 07		26 <	0.10	0.02	2	1.1		0.6	<0.	.01	<0.01	< 0	.01
	DAT.		TIME	ARSEN DIS SOLV (UC) AS A (0100	6- I VED SC 'L (AS) I (AS) (C	ARIUM, DIS- DLVED (UG/L AS BA) D1005)	SOL (UG AS (010	S- VED /L B) 20)	CADMI DIS SOLV (UG/ AS (5- 7ED 7L (D) 25)	CHRO-MIUM, DIS-SOLVEI (UG/L AS CR	(UG) AS) (010	VED /L CU) 40)	
	07	•••	1200		1	40		30	<	(1	10		10	
	DAT		IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD DIS SOLV (UG/ AS F), ! S- VED \$ 'L (PB) #	MANGA- NESE, DIS- SOLVED (UG/L AS MN) 01056)		S- VED /L HG)	SELE NIUM DIS SOLV (UG/ AS S	4, 6- 7ED 7L 6E)	SILVER DIS- SOLVEI (UG/L AS AG (01075)	DI SOL (UG	S- VED /L ZN)	
	AUG 07	•••	35	<	1	9	2	•6	<	:1	<1		8	

MISCELLANEOUS ANALYSES OF STREAMS IN MINNESOTA

WATER QUALITY DATA AT STREAMFLOW STATIONS

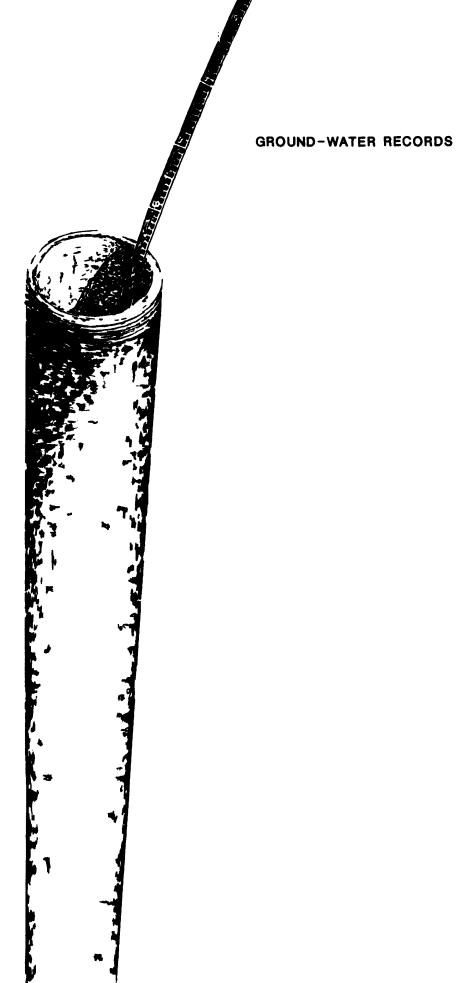
Field determinations of water temperature and specific conductance are made at many streamflow station in addition to those that are also regular water-quality stations. These data are usually collected at regular intervals during routine visits to the station. Additional data for each station are published elsewhere in this report.

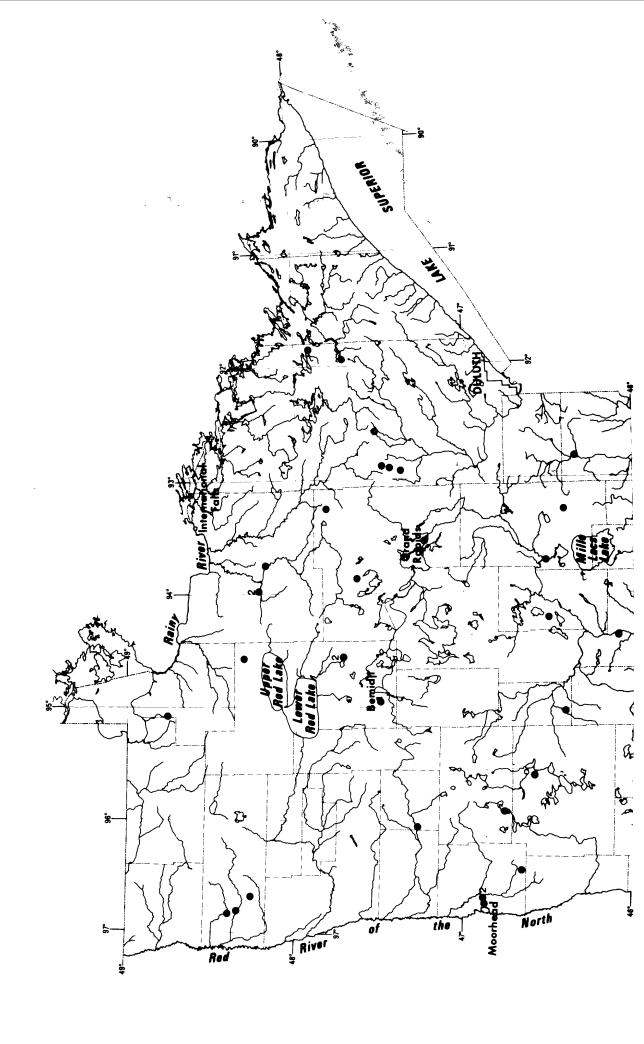
WATER QUALITY DATA AT STREAMFLOW STATIONS, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

DATE	MEASURED DISCHARGE (ft ³ /s)	TEMPERA- TURE (°C)	SPECIFIC CONDUC- TANCE (MICRO- SIEMANS)	DATE	MEASURED DISCHARGE (ft ³ /s)	TEMPERA- TURE (°C)	SPECIFIC CONDUC- TANCE (MICRO- SIEMANS)
	040	010500 PIGEON	RIVER AT MIDD	OLE FALLS NEAR GRAND	PORTAGE, MN		
OCT. 11, 1984	63	10.5	96	MAY 08	1810	8.0	60
NOV. 27, JAN.	147	•5	95	MAY 09	1480	8.0	
10, 1985 JAN.	121	•0		JUNE 26 JULY	724	14	65
21, FEB.	100	.5		17	537	18	
13 MAR.	96	•5	90	06 SEPT.	1190	20	81
08	84	•5	~~~	11	266	13.5	77
27	172	1.0	95				
		0401450	O BAPTISM RIV	ER NEAR BEAVER BAY,	MN		
OCT. 16, 1984	21	11.0	106	MAY 07	418	9.0	60
NOV. 28	171	.5	85	JUNE 25	149	14.0	60
JAN. 08, 1985	27	.0	110	AUG. 07	67	22.0	75
FER. 12	9.8	.5	90	SEPT. 10	116	15.0	75
MAR. 26	82	.5	82				
		0401533	0 KNIFE RIVER	NEAR TWO HARBORS, M	in		
OCT. 12, 1984	17	11.0	178	MAY 09	80	17	100
NOV. 26	28	.0	145	JUNE 27	786		
JAN. 09, 1985	4.1	.0	180	AUG.	_		
FEP. 14				08 SEPT.	18	19	170
APR.	4.1 96	.0		12	27	12.5	140
02	90	•0	92				
	040	15475 PARTRID	GE RIVER ABOVE	COLBY LAKE NEAR HOY	T LAKES, MN		
OCT. 02, 1984	31	9.5	195	APR. 25	517	3.5	43
NOV. 15	37	1.0	103	MAY 01	341	10.5	62
DEC.	30	.0	175	JUNE 11	101	15.5	
FEB. 05, 1985	1.5	.0	200	JULY 24	85	20.5	88
MAR. 21 MAR.	8.8	.5	200	AUG. 29	34	17	120
20	37	.5					
		040165	00 ST. LOUIS	RIVER NEAR AURORA, M	IN		
OCT. 02, 1984	45	8.0	375	APR. 03	94	0.5	119
NOV. 15	102	1.0	53	MAY 01	1010	13.5	65
DEC. 20	95	•0	109	JUNE 11	388	15	54
FEB. 05, 1985	22	.0	250	JULY 24	280	20.5	68
MAR. 21	75	0.5	360	AUG. 29	119	16	120

DATE	MEASURED DISCHARGE (ft ³ /s)	TEMPERA- TURE (^O C)	SPECIFIC CONDUC- TANCE (MICRO- SIEMANS)	DATE	MEASURED DISCHARGE (ft ³ /s)	TEMPERA- TURE (°C)	SPECIFIC CONDUC- TANCE (MICRO- SIEMANS)
•		0401	8750 ST. LOUIS	RIVER AT FORBES, MN			
OCT. 01, 1984	17	9.0	377	MAR. 22	79		
NOV. 14	338	1.0	247	MAY 02	2320	11	160
DEC. 20	268	•0	ter dan dat	JUNE 10	1160	17	141
FEB. 07, 1985	98	.0	360	JULY 26	634	20	195
MAR. 19	213	.5	370	SEPT. 03	511	15	320
		0 40 2 40	000 ST. LOUIS	RIVER AT SCANLON, MN			
OCT. 09, 1984	703	11.5	158	MAY 06	5390	14	140
NOV. 20	2010	.0	171	JUNE 24 JULY	2000	19	125
JAN. 07, 1984 FEB.	1900	•0	157	30 SEPT.	1840	22	120
11 MAR.	1360	0.5	150	09	2910	17.5	210
26	2990	1.0	148				
		040	24098 DEER CR	EEK NEAR HOLYOKE, MN			
DEC.				JULY			
18, 19 84 MAR.	5.64	0.5	310	17 SEPT.	1.87	17.0	300
21, 1985 MAY	19.5	1.0	95	04	24.7		1 20
14	8.31	10.5	220				
	0504	6000 OTTER R	AIL RIVER BELO	ORWELL DAM NEAR FERO	GUS FALLS, MN		
OCT.	22.0	• •	450	MAY	004	16.0	420
26, 1984 DEC.	238	8.0	450 540	15	994 1060	16.0 24.0	420 390
11 FEB. 13, 1985	265 269	.0	520	SEPT. 30	831	10.0	400
MAR. 25	607	4.0	440	30	031	10.0	400
	007	4.0	440				
	0	5050000 BOIS	DE SIOUX RIVE	R NEAR WHITE ROCK, SO	UTH DAKOTA		
OCT. 26, 1984	273	9.0	1030	MAR. 29	837	3.5	640
DEC.	80		1480	MAY 15	157	12.5	1380
FEB. 13, 1985	.0			JULY 17	27	23.0	1180
MAR. 25	429	6.0	690	SEPT. 25	5.0		
		05	061000 BUFFAL	O RIVER NEAR HAWLEY			
NOV. 15, 1984	36		920	MAY 13	959	14.5	460
FEB. 28, 1985	33	•0		JUNE 25	144	19.5	620
MAR. 22	224	3.0	540	AUG. 28	38	16.5	620
		05061500	соптр вруиса	BUFFALO RIVER AT SABI	N. MN		
OCT.		0.1007.000	DOUTH BRANCH	· MAY	or the		
15, 1984 NOV.	29	12.0	900	13	214	15.0	750
15 FEB.	24	.0	1130	03	1230	15.0	530
28, 1985 MAR.	1.9	•0		18 AUG.	1.3	23.0	890
22	271	4.0	530	28	5.0	17.5	930

DATE	MEASURED DISCHARGE (ft ³ /s)		PECIFIC CONDUC- TANCE (MICRO- SIEMANS)	DATE	MEASURED DISCHARGE (ft ³ /s)	TEMPERA- TURE (^O C)	SPECIFIC CONDUC- TANCE (MICRO- SIEMANS)
		05062000	BUFFALO R	IVER NEAR DILWORTH, M	i		
OCT.				MAY			
15, 1984 NOV.	256	13	520	13 MAY	767	15.0	510
15 DEC.	62	.0	940	16	1550	13.0	580
21	32	•0	950	03	1450	15.0	430
JAN. 29, 1985	24	.0	860	JUNE 25	216	20.0	710
FEB. 28	35	.0		JULY 18	83	23.0	590
MAR. 22	930	2.0	440	AUG. 28	60	18.0	630
APR. 18	137	14.0	750	SEPT. 24	128	10.0	740
		05064000	WILD RICE	RIVER AT HENDRUM, MN			
OCT. 18, 1984	831			MAY 14	4830	14	320
NOV. 28	185	.0	650	JUNE 18	680		
MAR. 26, 1985	1140	2.0		AUG. 13	456	19	507
APR. 03	654			SEPT. 17	217	17	550
		050675	00 MARSH R	IVER NEAR SHELLY, MN			
MAY 15, 1985	1120	12.5	340	AUG. 09	1.5	22.0	456
JUNE 18	6.4	17.0	730	SEPT.	5.6	11.0	550
101111111111111111111111111111111111111	•••	2,77	, • •	200000000000000000000000000000000000000			
		0506900	0 SANDHILL	RIVER AT CLIMAX, MN			
OCT. 18, 1984	39	8.0	590	MAY 14	860	13.5	320
NOV. 27	61	.0	700	JUNE 19	73	19.5	600
MAR. 26, 1985	350	1.0		AUG. 08	260		
APR.			480	SEPT.	91	17.0	570
03	170	2.0	460	18	7.	17.0	370
OCT.		05074500	RED LAKE R	IVER NEAR RED LAKE, MI	N		
26, 1984	172	4.5	300	MAY 24	663	16	26 0
DEC. 06	884	.0	320	JULY 24	996	21.5	280
JAN. 18, 1985	809			AUG. 13	876	17	270
MAR. 06	769		300	SEPT. 23	118	12	285
APR. 11	312	5.0	335				
		05075000 RED	LAKE AT HIG	H LANDING NEAR GOODRII	DGE, MN		
OCT. 25, 1984	354	4.0		MAY 22	884	15	280
DEC. 06	720	.0	350	JULY 11	823	19	295
JAN. 17, 1985	889	.5	310	AUG. 15	1180	17	270
MAR. 08	927	.0	300	SEPT. 23	710	10	355
APR. 10	494	6.0	260			-	-
	4		-				


DATE	MEASURED DISCHARGE (ft ³ /s)	TEMPERA- TURE (^O C)	SPECIFIC CONDUCTANCE (MICROSIEMANS)	DATE	MEASURED DISCHARGE (ft ³ /s)	TEMPERA- TURE (°C)	SPECIFIC CONDUC- TANCE (MICRO- SIEMANS)
		05076000	THIEF RIVER NE	CAR THIEF RIVER FALLS	, mn		
OCT. 25, 1984	123	2.5		MAY 22	889	17	450
DEC. 05	4.2	.0	960 .	JUNE 01	2000	16	360
JAN. 17, 1985	.0			JULY 10	1300	23	415
MAR. 07				AUG. 15	350	16	480
MAR. 27	1040	1.0	290	SEPT. 24	983	7.0	750
APR. 11	760	2.0	320		703	,	, 34
		05078	000 CLEARWATER	RIVER AT PLUMMER, M	N		
OCT. 17, 1984	245	9.0	740	APR. 08	128	2.5	385
NOV. 26	120	.0	530	MAY 21	850	14	475
JAN. 07, 1985	61	•0	420	JUNE 17	122	20	450
FEB. 19	43	.5	520	AUG. 07	469	21	590
MAR. 14	29	.5	380	SEPT. 18	208	17	720
APR. 02	244	7.0	330				
		0	5078230 LOST R	IVER AT OKLEE, MN			
OCT. 15, 1984	51	14.0	570	APR.	228	1.5	420
OCT.				07 APR.			
NOV.	121	11.0	860	08 MAY	118	2.0	380
26 JAN.	41	.0	780	21 JUNE	245	13.0	550
07, 1985 FEB.	5.4	1.0	781	AUG.	27	19.0	600
19 MAR.	5.5	•0	709	06 SEPT.	174	23.0	473
14	50			19	67	15.5	790
		05078500	CLEAR WATER RI	VER AT RED LAKE FALL	s, mn		
OCT. 17, 1984	424	.9	640	APR. 02	771	2.0	380
NOV.	240	.0	550	MAY 21	1760	15	500
JAN. 08, 1985	92	.0	340	JUNE 18	280	16	490
FEB. 20	62	.0	540	AUG. 07	1090	22	500
MAR. 14	287			SEPT. 18	437	17	520
	201					<u>-</u> ,	220
OCT.		05079	000 RED LAKE R	IVER AT CROOKSTON, M	N		
17, 1984 NOV.	775	10.0	460	02 MAY	2490	1.0	310
27 JAN.	858	.0	400	21 JUNE	3940	16.5	365
08, 1985 FEB.	1010	0.5	185	19 AUG.	1660	18.0	360
20 MAR.	933	0.5	3 2 0	08 SEPT.	2440	22.0	415
27	3770	1.0	270	18	2020	16.5	395


DATE	MEASURED DISCHARGE (ft ³ /s)	TEMPERA- TURE (°C)	SPECIFIC CONDUC- TANCE (MICRO- SIEMANS)	DATE	MEASURED DISCHARGE (ft ³ /s)	TEMPERA- TURE (°C)	SPECIFIC CONDUC- TANCE (MICRO- SIEMANS)			
05087500 MIDDLE RIVER AT ARGYLE, MN										
OCT. 24, 1984	.47	4.0	660	APR.	50	3.0	365			
DEC. 05	.66	•0	780	MAY 23	59	17.0	580			
JAN. 16, 1985	.13			JULY 10	58	22.0	545			
MAR. 07	.30	•0	680	AUG. 14	11	16.5	510			
MAR. 27	280	1.0	255	SEPT. 24	8.6	9.0	680			
05094000 SOUTH BRANCH TWO RIVERS AT LAKE BRONSON, MN										
MAY 23, 1985	113	17.0	425	AUG.	298	15.0	380			
JULY 10	417	25.0	390	SEPT. 24	45	11.0	540			
	051	04500 ROSEA	U RIVER BELOW S	OUTH FORK RIVER NEAR	MALUNG, MN					
OCT. 24, 1984	186	4.0	336	MAY 20	1360	15.0	285			
DEC. 04	20	•0	490	JULY 09	340	23.0	315			
JAN. 14, 1985	4.7			AUG.	609	16.0	280			
MAR. 12	5.6			SEPT.	284	8.0	355			
APR. 09	194		225	25	204	0.0	355			
03	194	1.0	225							
		05	107500 ROSEAU	RIVER AT ROSS, MN						
OCT.				APR.						
23, 1984 DEC.	305	4.0	430	09 May	793	1.0	215			
04	36.0	•0	440	21 JULY	1200	14.0	320			
15, 1985 MAR.	10	.0	630	09 AUG.	1780	23.0	325			
MAR.	7.6	0.5	610	21 SEPT.	1010	15.0	320			
28	742	0.5	215	25	598	8.0	390			
	051	.12000 ROSEA	U RIVER BELOW S	TATE DITCH 51 NEAR C	ARIBOU, MN					
OCT.				MAY	·					
03, 1984 OCT.	32	9.0		21 JUNE	992	13.0	320			
23 DEC.	246	4.0	540	04 JULY	1000	15.0				
04 JAN.	55	•0	485	09	1290	25.0	325			
15, 1985 MAR.	10	.0	320	02	221	21.0				
13 MAR.	6.2	0.5	559	20 SEPT.	919	15.5	360			
28 APR.	498	0.5	190	10 SEPT.	1270	16.0				
09	1160	1.0	225	25	1190	9.0	385			
		A.F. 2	4400	D. V. V. MD						
05124480 KAWISHIWI RIVER NEAR ELY, MN										
OCT. 03, 1984	19	11.0	28	APR. 30	447	11.0	31			
OCT. 24	21	8.5		JUNE 12	354	16.0	30			
DEC. 19	27	.0	35	JULY 25	141	21.0	29			
FEB. 06, 1985	60	.0	28	SEPT. 04	66	16.5	29			
MAR. 20	46	1.0								

DATE	MEASURED DISCHARGE (ft ³ /s)	TEMPERA- TURE (°C)	SPECIFIC CONDUC- TANCE (MICRO- SIEMANS)	DATE	MEASURED DISCHARGE (ft ³ /s)	TEMPERA- TURE (°C)	SPECIFIC CONDUC- TANCE (MICRO- SIEMANS)
		05.	124990 FILSON	CREEK NEAR ELY, MN			
OCT. 04, 1984	.33	9.0	32	APR. 25	92	3.0	50
NOV. 14	1.2	2.0	38	APR. 30	33	8.5	32
DEC. 18	1.8	.0	45	JUNE	6.8	12	28
FEB. 06, 1985	.39	.0	54	13 JULY 24	3.0	19.5	33
MAR. 20	.36	.5		SEPT. 04	1.4	15	30
APR. 03	1.1	.0	30	V4	4.4	73	30
03111111111111	***	••	30				
		05127	000 KAWISHIWI	RIVER NEAR WINTON, M	N		
OCT. 04, 1984	320	11	44	SEPT. 05	393	16	50
JUNE 12, 1985	1390	16	48				
							-
		05127	500 BASSWOOD F	RIVER NEAR WINTON, MN			
OCT. 23, 1984	228			AUG. 27	880		
JUNE 19, 1985	2580	15					
	05	5128000 NAMA	KAN RIVER AT OU	ITLET OF LAC LA CROIX	, ONTARIO		
MAY 07, 1985	5540	9.0		AUG. 14	4930		
JULY 03	10200	17.0					
		05120115	ump Mart a toly in:	THE NEAD COANE TAVE	1451		
OCT.		05129115	VERMILLION R.	IVER NEAR CRANE LAKE,	PIN		
09, 1984 NOV.	47	13.0	83	24 APR.	3700	5.5	39
16 DEC.	311	•5	45	29 JUNE	3190	10.0	40
17 FEB.	305	.0	97	19	1180	18.5	71
04, 1985 MAR.	149	.0	91	23 AUG.	1120	22.0	69
19 APR.	199			26	440	18.0	75
16	940	2.5	50				
	0512	29290 GOLD P	ORTAGE OUTLET	FROM KABETOGAMA LAKE	NEAR RAY. MN		
OCT.				MAY			
31, 1984 JAN.	282	2.0	97	29 JUNE	418	15.0	87
24, 1985 APR.	.05	.0	121	27 AUG.	778	16.0	90
30	20		~~~	26	607	19.0	
		051305	00 STURGEON R	IVER NEAR CHISHOLM, M	N		
OCT.			_	APR.		_	
01. 1984 NOV.	17	7.0	155	23 APR.	772	4.5	50
13 DEC.	73	1.0	90	25 APR.	1480	4.0	65
17 FEB.	62	•0	132	29 JUNE	636	10.0	90
08, 1985 MAR.	17	.0	150	JULY	98	16.0	79
18 MAR.	31	•5	190	23 AUG.	53	20.0	97
28	211	•0		29	48	17.0	105

WATER QUALITY DATA AT STREAMFLOW STATIONS, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

DATE	MEASURED DISCHARGE (ft ³ /s)	TEMPERA- TURE (°C)	SPECIFIC CONDUC- TANCE (MICRO- SIEMANS)	DATE	MEASURED DISCHARGE (ft ³ /s)	TEMPERA- TURE (^O C)	SPECIFIC CONDUC- TANCE (MICRO- SIEMANS)
		0513150	0 LITTLE FORK	RIVER AT LITTLEFORK,	MN		
OCT.			•	APR.			
30, 1984 DEC.	1550	3.0	120	16 APR.	2050		
12 JAN.	387	.0	80	26 MAY	19100	5.0	
23, 1985 MAR.	118	.0	220	29 JUNE	2080	15.0	105
08	105	0.5	280	27	9950	14.0	130
APR. 11	822	0.5	100	AUG. 21	554	16.5	165
		05132	000 BIG FORK R	IVER AT BIG FALLS, N	ın		
OCT. 29, 1984	1400	3.5	166	APR. 24	8020	6.0	115
DEC.	526	.0	250	MAY 28	2060	16.5	175
JAN. 22, 1985	234	.0	96	JULY 17	696		
MAR. 06	160			AUG. 22	1120	15.0	
APR. 10	1100	1.0	160				
		051335	00 RAINY RIVER	AT MANITOU RAPIDS,	MN		
APR. 10, 1985	10300	1.0	120	JUNE 18	22700	15.0	
MAY 30	36900	13.0	70				
		0513	4200 BAPIN RIV	ER NEAR BAUDETTE, MN	1		
		0020			•		
DEC. 03, 1984	95	.0	360	MAY 31	926	-	
DEC. 13	43	.0	260	JUNE 26	7460	16.0	150
JAN. 25	9.7	.0	480	JUNE 27	6010	16.0	145
MAR. 11	9.5	.5	415	JULY	1070	22.0	145
MAR. 29	551			AUG. 19	1180	14.0	255
APR. 17	614	6.0	140				

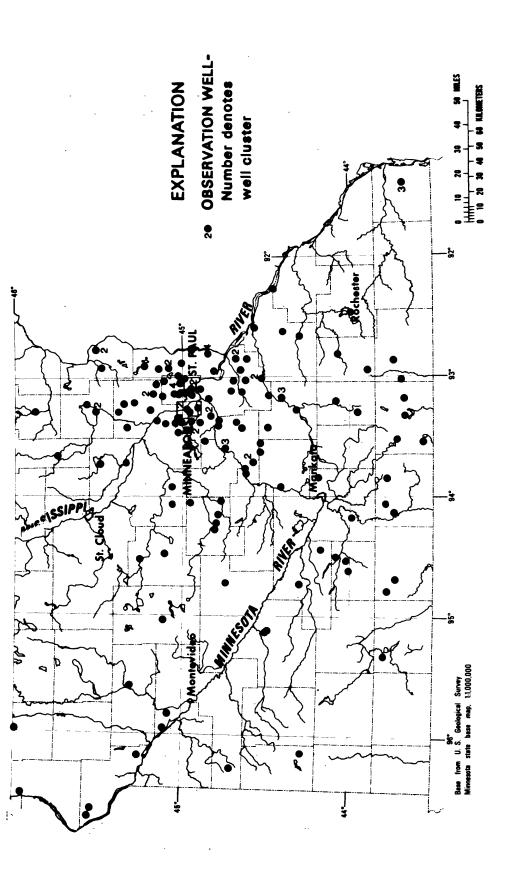


Figure 12.--Location of ground-water wells

BECKER COUNTY

464613095524801. Local number, 138N41W17ADA01. LOCATION.--Lat 46°46'13", long 95°52'48", in NE\SE\NE\ sec.17, T.138 N., R.41 W., Hydrologic Unit 09020103, east shore of Lake Sallie.

Owner: U.S. Geological Survey.

AQUIFER.--Buried sand and gravel of Pleistocene Age.

WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 6 in (0.15 m), depth 234 ft (71.3 m), screened 222 to 234 ft (67.7 to 71.3 m).

DATUM.--Land-surface datum is 1,333.2 ft (406.4 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 4.40 ft (1.34 m) above land-surface datum.

FEMARKS.--Water level affected by pumping of nearby well.

PERIOD OF RECORD. -- March 1973 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 4.44 ft (1.35 m) above land-surface datum, May 23, 27, 1975; lowest, 2.47 ft (0.75 m) below land-surface datum, July 25, 1977.

WATER LEVEL, IN FEET ABOVE LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 LOWEST VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	1.70	2.92	3.18	3.42	3.47	3.46	3.75	3.00	3.89	2.70	••••	
10	2.31	2.97	3.29	3.39	3.49	3.51	3.73	2.48	3.20	2.00	••••	
15	2.60	3.03	3.29	3.48	3.50	3.51	3.74	0.30	3.86	1.87	••••	
20	2.82	3.01	3.39	3.50	3.53	3.53	3.81	3.38	3.63		1.43	2.13
25	2.84	3.23	3.32	3.56	3.51	3.60	3.83	2.64	3.96	••••	••••	••••
EOM	2.86	3.22	3.32	3.49	••••	3.61	3.77	3.70	4.10	••••	••••	••••

WTR YEAR 1985 HIGHEST 4.11 JUN 25, 1985 LOWEST 1.45 JUL 17, 1985 SURFACE Observations Expected normal range of observations Monthly maximum values 6.0 BELOW LAND -4.0 FEET -2.0 Z 0.0 TO MATER 2.0 DEP TH 138N41W17ADA01 4.0 DCT MOV **DEC** JAN HAR APR HAY . H IN JUL. AUG SEF FEB 1984 1985 BELTRAMI COUNTY

474111094331401. Local number, 149N31W25DCD01. LOCATION.--Lat 47°41'11", long 94°33'14", in SE\SW\SE\ sec.25, T.149 N., R.31 W., Hydrologic Unit 07010101, at Blackduck Lookout Tower.

Owner: U.S. Geological Survey.

AQUIFER.--Buried sand and gravel of Pleistocene Age.

WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in (0.05 m), depth 157 ft (47.8 m),

screened 154 to 157 ft (46.9 to 47.8 m).

DATUM.--Land-surface datum is 1,450.0 ft (442.0 m) National Geodetic Vertical Datum of 1929. Measuring point:

Top of casing, 3.10 ft (0.94 m) above land-surface datum.

PERIOD OF RECORD.--July 1980 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 70.63 ft (21.53 m) below land-surface datum, July 28, 1980; lowest, 104.5 ft (31.85 m) below land-surface datum, July 27, 1981.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER L EV EL
NOV 1 DEC 13	101.67 101.76	JAN 27 MAR 15	102.02 102.26	APR 18	102.35	MAY 31	102.57	JUL 11	101.07	AUG 19	102.12

BELTRAMI COUNTY-Continued

474111094331402. Local number, 149N31W25DCD02. LOCATION.--Lat 47⁰41'11", long 94⁰33'14", in SE\SW\SE\ sec.25, T.149 N., R.31 W., Hydrologic Unit 07010101, at Blackduck Lookout Tower.

Owner: U.S. Geological Survey.

AQUIFER.--Sandy till of Pleistocene Age.

WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 2 in (0.05 m), depth 65 ft (19.8 m), screened

WELL CHARACTERISTICS.—Drilled observation artesian well, diameter 2 in 10.05 m/, depth 35 it 13.0 m/, selection 62 to 65 ft (18.9 to 19.8 m).

DATUM.—Land-surface datum is 1,448.8 ft (441.6 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 3.10 ft (0.94 m) above land-surface datum.

PERIOD OF RECORD.—July 1980 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level, 1.51 ft (0.46 m) below land-surface datum, May 21, 1982; lowest, 27.42 ft (8.35 m) below land-surface datum, Apr. 18, 1985.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 1 DEC 13	24.52 25.23	JAN 27 MAR 15	26.07 27.13	APR 18	27.42	MAY 31	24.78	JUL 11	2 2.9 1	AUG 19	22.53

CLAY COUNTY

463854096250701. Local number, 137N45W30CDB01. LOCATION.—Lat 46° 38'54", long 96° 25'07", in NW\SE\SW\ sec.30, T.137 N., R.45 W., Hydrologic Unit 09020106, in Barnesville.

Owner: City of Barnesville, well 3.

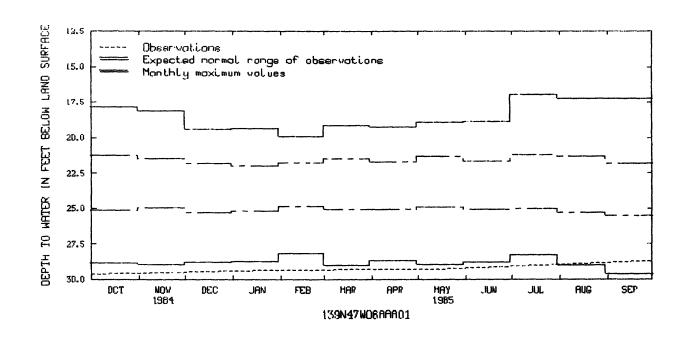
AQUIFER. --Surficial sand of Pleistocene Age.
WELL CHARACTERISTICS. --Drilled unused water-table well, diameter 10 in (0.25 m), depth 73 ft (22.2 m).
DATUM. --Altitude of land-surface datum is 1,022 ft (312 m). Measuring point: Top of casing, 1.50 ft (0.46 m) above land-surface datum.

PERIOD OF RECORD. -- January 1949 to January 1975, May 1980 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 1.86 ft (0.57 m) below land-surface datum, June 9, 1962; lowest, 11.86 ft (3.61 m) below land-surface datum, June 3, 1970.

	WATER		WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
OCT 5	9.20	DEC 7	8.24	FEB 15	8.76	MAY 3	8.18	JUN 28	7.54	AUG 31	8.23
12	9.19	14	8.29	22	8.80	10	8.14	JUL 5	7.57	SEP 14	7.99
19	8.89	21	8.30	MAR 1	8.80	17	8.00	12	7.90	21	8.00
26	8.47	28	8.37	8	8.82	24	7.91	19	8. 0 5	28	7.88
NOV 2	8.33	JAN 11	8.52	15	8.65	31	7.79	26	8.00		
9	8.29	18	8.55	22	8.53	JUN 7	7.70	AUG 9	8.10		
16	8.26	25	8.68	29	8.49	14	7.36	16	8.08		
23	8.26	FEB 1	8.72	APR 26	8.25	21	7.33	23	8.18		
30	8.24	8	8.69								

CLAY COUNTY -- Continued


465237096383901. Local number, 139N47W05CDC01.
LOCATION.--Lat 46°52'37", long 96°38'39", in SW\se\sW\sec.5, T.139 N., R.47 W., Hydrologic Unit 09020104, 2.4 mi
(3.9 km) east of Dilworth.
Owner: City of Moorhead, MS-1.
AQUIFER.--Surficial sand of Pleistocene Age.
WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 8 in (0.20 m), depth 131 ft (39.9 m),
slotted 91 to 107 ft (27.7 to 32.6 m).
DATUM.--Land-surface datum is 916.7 ft (279.4 m) National Geodetic Vertical Datum of 1929. Measuring point: Top
of recorder floor, 3.60 ft (1.10 m) above land-surface datum.
REMARKS.--Water level affected by pumping from nearby wells.
PERIOD OF RECORD.--January 1947 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 12.19 ft (3.72 m) below land-surface datum, July 15, 1947;
lowest, 31.59 ft (9.63 m) below land-surface datum, Aug. 3, 1984.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 15	31.34	JAN 29	30.51	MAY 13	30.20	JUL 18	30 .3 5

465328096391001. Local number, 139N47W06AAA01.
LOCATION.--Lat 46°53'27", long 96°39'08", in NE\NE\NE\Sec.6, T.139 N., R.47 W., Hydrologic Unit 09020104, 2.7 mi
(4.3 km) northeast of Dilworth.
Owner: U.S. Geological Survey, M-80.
CAQUIFER.--Buried sand and gravel of Pleistocene Age.
WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 3 in (0.08 m), depth 103 ft (31.4 m), casing slotted near bottom.
LATUM.--Altitude of land-surface datum is 915 ft (279 m). Measuring point: Top of casing, 2.50 ft (0.76 m) above land-surface datum.
FEMARKS.--Water level affected by pumping.
PERIOD OF RECORD.--July 1949 to April 1966, November 1976 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 16.94 ft (5.16 m) below land-surface datum, July 16, 1949; lowest, 29.62 ft (9.03 m) below land-surface datum, Sept. 24, 1984.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 15	29.52	JAN 29	29.33	MAY 13	29.28	JUL 18	29.01

CLAY COUNTY--Continued

Dilworth.

Owner: City of Dilworth.

AQUIFER.--Buried sand and gravel of Pleistocene Age.
WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 8 in (0.20 m), depth 152 ft (46.3 m).
DATUM.--Altitude of land-surface datum is 908 ft (277 m). Measuring point: Top of recorder platform, 2.40 ft
(0.73 m) above land-surface datum.

(0.73 m) above land-surrace datum.

REMARKS.--Water level affected by pumping.

PERIOD OF RECORD.--May 1965 to current year.

FXTREMES FOR PERIOD OF RECORD.--Highest water level, 101.3 ft (30.88 m) below land-surface datum, Dec. 29, 1965; lowest, 131.2 ft (39.98 m) below land-surface datum, July 18, 1985.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER L E VEL
NOV 15	129.63	JAN 29	127.21	MAY 13	128.20	JUL 18	131.24

GRANT COUNTY

455932095582601. Local number, 129N42W09CCC01. LOCATION.--Lat 45^O59'32", long 95^O58'26", in SW\SW\SW\ sec.9, T.129 N., R.42 W., Hydrologic Unit 09020102, in

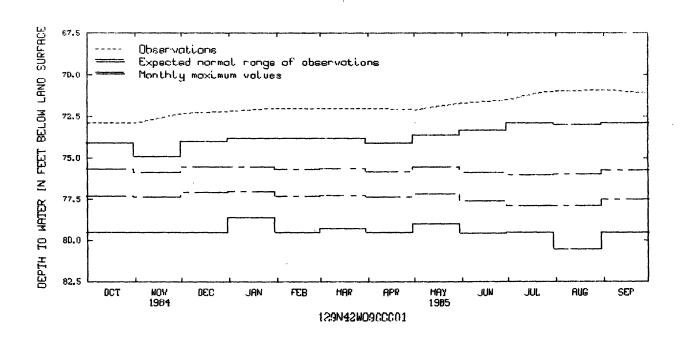
Elbow Lake.

Cwner: City of Elbow Lake, old well 2.

AQUIFER.--Buried sand and gravel of Pleistocene Age.

WFLL CHARACTERISTICS.--Drilled unused artesian well, diameter 12 in (0.30 m), depth 214 ft (65.2 m), screened 200 to 220 ft (61.0 to 67.1 m).

DATUM.--Altitude of land-surface datum is 1,222 ft (372 m). Measuring point: Top of platform, 1.40 ft (0.43 m)


above land-surface datum.

REMARKS.--Water level affected by pumping.

PERIOD OF RECORD.--February 1964 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 70.90 ft (21.61 m) below land-surface datum, Sept. 3, 1985; lowest, 80.54 ft (24.55 m) below land-surface datum, Aug. 31, 1976.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	Wa t er Level	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 1 DEC 3	72.90 72.30	DEC 31 JAN 29	72.20 72.00	FEB 28 APR 1	72.00 72.00	MAY 2 31	72.10 71.70	JUL 1 25	71.50 71.00	SEP 3	70.90

ITASCA COUNTY

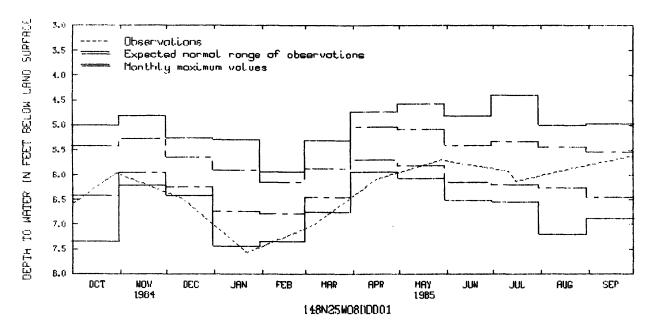
473840093515101. Local number, 148N25W08DDD01. LOCATION.--Lat 47°38'40", long 93°51'51", in SE\SE\SE\ sec.8, T.148 N., R.25 W., Hydrologic Unit 09030006, at Spring Lake.

Owner: U.S. Geological Survey.

AQUIFER.--Surficial sand and gravel of Pleistocene Age.

WELL CHARACTERISTICS.--Bored observation water-table well, diameter 1½ in (0.03 m), depth 10 ft (3.0 m), screened

8 to 10 ft (2.4 to 3.0 m).


DATUM.--Altitude of land-surface datum is 1,350 ft (411 m). Measuring point: Top of casing, 3.40 ft (1.04 m) above land-surface datum.

PERIOD OF RECORD. -- September 1970 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 4.40 ft (1.34 m) below land-surface datum, July 13, 1979; lowest, 7.57 ft (2.30 m) below land-surface datum, Jan. 22, 1985.

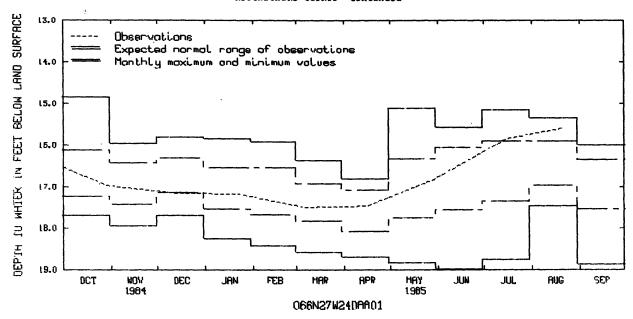
WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 29 DEC 11	5.96 6.48	JAN 22 MAR 6	7.57 7.02	APR 16 MAY 28	6.08 5.70	JUL 11	5.92	JUL 16	6.12	AUG 22	5.86

KOOCHICHING COUNTY

481148093445601. Local number, 066N27W24DAA01. LOCATION.--Lat 48°11'48", long 93°44'56", in NE\NE\SE\ sec.24, T.66 N., R.27 W., Hydrologic Unit 09030006, 2.5 mi (4.0 km) east of Big Falls.

Owner: U.S. Geological Survey.
AQUIFER.--Surficial sand of Pleistocene Age.


WELL CHARACTERISTICS.--Bored observation water-table well, diameter 14 in (0.03 m), depth 22 ft (6.7 m), casing perforated near bottom.

DATUM.--Altitude of land-surface datum is 1,234 ft (376 m). Measuring point: Top of casing, 3.12 ft (0.95 m) above land-surface datum. FERIOD OF RECORD.--December 1969 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 14.85 ft (4.53 m) below land-surface Gatum, Oct. 4, 1979; lowest, 18.98 ft (5.78 m) below land-surface datum, June 13, 1977.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 29	16.97	JAN 23	17.18	APR 16	17.47	MAY 28	16.85	JUL 16	15.85	AUG 22	15.59

KOOCHICHING COUNTY--Continued

48!345093582801. Local number, 155N26W21DAA01. LOCATION.--Lat 48⁰13'45", long 93⁰58'28", in NE\NE\SE\ sec.21, T.155 N., R.26 W., Hydrologic Unit 09030006, in Pine Island State Forest.

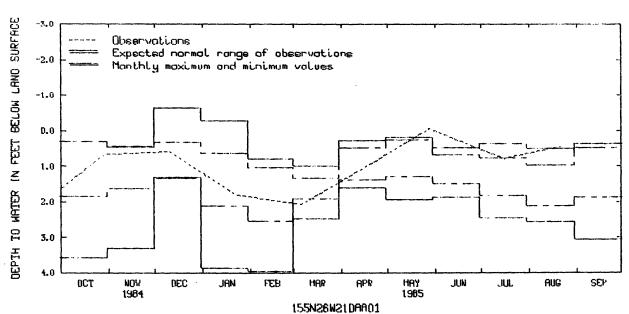
Owner: U.S. Geological Survey.

AQUIFER.--Till of Pleistocene Age.

WELL CHARACTERISTICS.--Driven observation artesian well, diameter 1½ in (0.03 m), depth 11 ft (3.4 m), screened 8 to 11 ft (2.4 to 3.4 m).

LATUM. -- Altitude of land-surface datum is 1,208 ft (368 m). Measuring point: Top of casing, 2.50 ft (0.76 m) above land-surface datum.

REMARKS.--Water level subject to freezing during winter periods.


PERIOD OF RECORD.--October 1973 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 0.65 ft (0.20 m) above land-surface datum, Dec. 8, 1975;

lowest, 3.97 ft (1.21 m) below land-surface datum, Feb. 7, 1977.

WATER LEVEL, IN FEET BELOW OR ABOVE (+) LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 29 DEC 11	0.67 0.59	JAN 22 MAR 6	1.80	APR 16	1.04	MAY 28	+0.05	JUL 16	0.79	AUG 22	0.45

KOOCHICHIG COUNTY--Continued

481345093582802. Local number, 155N26W21DAA02. LOCATION.--Lat 48°13'45", long 93°58'28", in NE\NE\SE\ sec.21, T.155 N., R.26 W., Hydrologic Unit 09030006, in Pine Island State Park.

Owner: U.S. Geological Survey.

AQUIFER .-- Peat of Quaternary Age.

WELL CHARACTERISTICS. --Bored observation water-table well, diameter 2 in (0.05 m), depth 3 ft (0.9 m), screened

0 to 3 ft (0.0 to 0.9 m).

DATUM.--Altitude of land-surface datum is 1,208 ft (368 m). Measuring point: Top of plastic casing, 2.50 ft (0.76 m) above land-surface datum.

REMARKS.-- water level usually freezes during winter periods.
PERIOD OF RECORD.--October 1973 to current year.

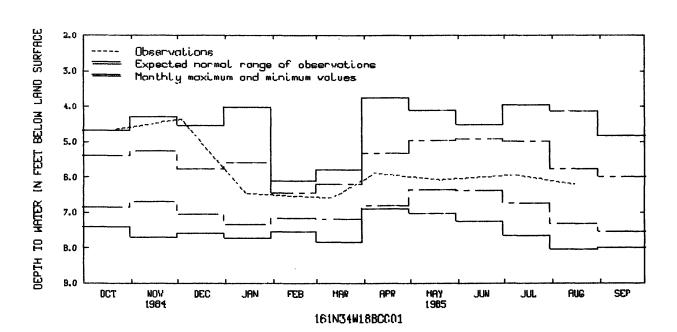
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 1.40 ft (0.43 m) above land-surface datum, June 20, 1983; lowest, dry below land-surface datum, Oct. 4, 1976 to Mar. 21, 1977; Aug. 25, 1980.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

WATER Level	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE
0.28	AUG 22	0.50	JUL 16	0.08	MAY 28	1.00	DEC 11	0.32	OCT 29

LAKE OF THE WOODS COUNTY

484552095052401. Local number, 161N34W18BCC01.
LOCATION.--Lat 48°45'52", long 95°05'24", in SW\sW\nW\sec.18, T.161 N., R.34 W., Hydrologic Unit 09030009, 2.4 mi (3.9 km) south of Roosevelt.


Owner: U.S. Geological Survey.
AQUIFER.--Surficial sand and gravel of Pleistocene Age.
WELL CHARACTERISTICS.--Bored observation water-table well, diameter 1\straction in (0.03 m), depth 11 ft (3.4 m), screened

9 to 11 ft (2.7 to 3.4 m).

DATUM.--Altitude of land-surface datum is 1,210 ft (369 m). Measuring point: Top of casing, 4.60 ft (1.40 m) above land-surface datum.

PERIOD OF RECORD. -- September 1970 to current year. EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 3.76 ft (1.15 m) below land-surface datum, Apr. 27, 1978; lowest, 8.05 ft (2.45 m) below land-surface datum, Aug. 25, 1972.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 22	4.65	JAN 14	6.46	APR 8	5.89	MAY 20	6.08	JUL 8	5.94	AUG 16	6.22

MAHNOMEN COUNTY

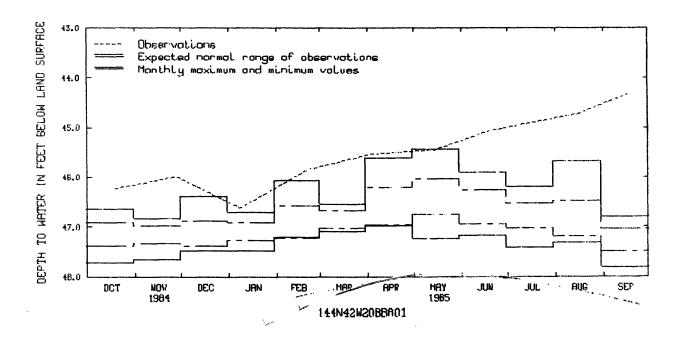
471653096020301. Local number, 144N42W20BBA01. LOCATION.--Lat 47°16'53", long 96°02'03", in NE\NW\NW\ sec.20, T.144 N., R.42 W., Hydrologic Unit 09020108, about 3 mi (4.8 km) southwest of Mahnomen.

Owner: Tom Wendt.

AQUIFER.--Buried sand of Pleistocene Age.

WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 4 in (0.10 m), depth 130 ft (39.6 m).

DATUM.--Altitude of land-surface datum is 1,197 ft (365 m). Measuring point: Top of casing, 1.60 ft (0.49 m)


above land-surface datum.

PERIOD OF RECORD. -- August 1964 to September 1969, August 1979 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 44.33 ft (13.51 m) below land-surface datum, Sept.17,1985; lowest, 47.81 ft (14.57 m) below land-surface datum, Sept. 16, 1981.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER Level	DATE	WATER LEVEL
OCT 19 NOV 28	46.23 45.99	JAN 8 FEB 21	46.62 45.85	APR 3 MAY 15	45.54 45.45	JUN 20	45.06 44.73	SEP 17	44.33

MARSHALL COUNTY

481604096391501. Local number, 155N47WllAAA03.
LOCATION.--Lat 48°16'04", long 96°39'15", in NEkNEkNEk sec.ll, T.155 N., R.47 W., Hydrologic Unit 09020309, 6.5 mi (10.5 km) northeast of Warren.

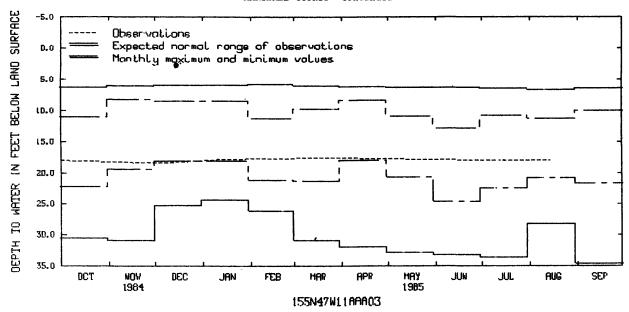
Owner: U.S. Geological Survey.

AQUIFER.--Buried sand and gravel of Pleistocene Age.

WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 6 in (0.15 m), depth 86 ft (26.2 m), screened

WELL CHARACTERISTICS.—Drilled observation artesian well, diameter o in (0.15 m), depth so it (20.2 m), Science 83 to 86 ft (25.3 to 26.2 m).

DATUM.—Altitude of land-surface datum is 905 ft (276 m). Measuring point: Wood floor of instrument shelter, 3.10 ft (0.94 m) above land-surface datum.


REMARKS.—Water level affected by pumping from nearby city well.

PERIOD OF RECORD.—October 1956 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level, 5.83 ft (1.78 m) below land-surface datum, Feb. 26, 1958; lowest, 34.62 ft (10.55 m) below land-surface datum, Sept. 24, 1981.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
DEC 5	18.41 17.83	MAR 7	17.62	APR 10	17.64	MAY 23	17.82	JUL 10	17 .9 9	AUG 14	18.02

MARSHALL COUNTY--Continued

482048096481901. Local number, 156N48W10DAA02.
LOCATION.--Lat 48°20'48", long 96°48'19", in NE\NE\SE\ sec.10, T.156 N., R.48 W., Hydrologic Unit 09020309, northeast of Argyle.

Owner: U.S. Geological Survey.
AQUIFER.--Surficial sand and gravel of Pleistocene Age.
WELL CHARACTERISTICS.--Bored observation water-table well, diameter 1\% in (0.03 m), depth 26 ft (7.9 m), screened

WELL CHARACTERISTICS.--Bored observation water-table well, diameter 12 in 10.00 m/, depth 20 to 7.9 m).

24 to 26 ft (7.3 to 7.9 m).

DATUM.--Altitude of land-surface datum is 851 ft (259 m). Measuring point: Top of casing, 4.00 ft (1.22 m) above land-surface datum.

EMBARKS.--Water level affected by pumping.

PERIOD OF RECORD.--September 1963 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 3.28 ft (1.00 m) below land-surface datum, Oct. 28, 1982; lowest, 11.53 ft (3.51 m) below land-surface datum, Mar. 9, 1977.

WATER

WATED

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

WATED

WATER

WATER

WATED

DATE		WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	LEVEL
DEC S		4.85 5.99	MAR 7	6.48	APR 10	5.44	MAY 23	3.98	JUL 10	4.18	AUG 14	4.55
BELOW LAND SURFACE	0.0 2.5		Observo Expecte Monthly	ed normal	range of and mini	F observations with the contract of the contra	ations ues	,	· · · · · · · · · · · · · · · · · · ·		-	
IN FEET BELOW	5.0				<u></u> -				·}		 - —	
	7.5	ļ- ;	 '				 		- ' 		, 	
H TO WATER	10.0						_					-
н1430	12.5	DCT	NOV 1984	DEC	JAN		AR APR	MAY 1985	JUN	JUL	AUG	SEP
						156N	148W10DAA0	2				

MARSHALL COUNTY--Continued

482354096501001. Local number, 157N48W27BAA01. LOCATION.--Lat 48°23'54", long 96°50'10", in NE\NE\NW\ sec.27, T.157 N., R.48 W., Hydrologic Unit 09020311, 4.3 mi (6.9 km) north of Argyle.

Owner: U.S. Geological Survey. AQUIFER.--Buried sand of Pleistocene Age.

WELL CHARACTERISTICS. -- Bored observation artesian well, diameter 1% in (0.03 m), depth 24 ft (7.3 m), screened

22 to 24 ft (6.7 to 7.3 m).

DATUM.--Altitude of land-surface datum is 844 ft (257 m). Measuring point: Top of casing, 3.00 ft (0.91 m) above land-surface datum.

PERIOD OF RECORD. --October 1971 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 1.46 ft (0.44 m) below land-surface datum, July 10, 1985; lowest, 6.65 ft (2.03 m) below land-surface datum, May 27, 1982.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	Water Level	DATE	WATER LEVEL
DEC 5	1.81	MAR 7	3.32	APR 10	3.60	MAY 23	2.82	JUL 10	1.46	AUG 14	2.30

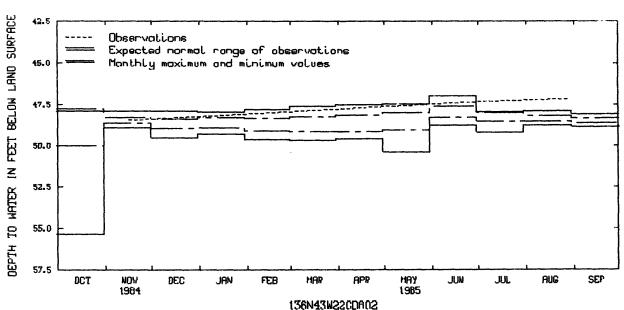
OTTER TAIL COUNTY

463430096050201. Local number, 136N43W22CDA02. LOCATION.--Lat 46⁰34'30", long 96⁰05'02", in NE\SE\SW\ sec.22, T.136 N., R.43 W., Hydrologic Unit 09020103, at Pelican Rapids.

Owner: City of Pelican Rapids, well 2.

AQUIFER.--Buried sand and gravel of Pleistocene Age.

WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 10 in (0.25 m), depth 113 ft (34.4 m), screened


WELL CHARACTERISTICS. --Drilled unused artesian well, diameter 10 in (0.25 m), depth 113 it (34.4 m), screene 87 to 113 ft (26.5 to 34.4 m).

DATUM. --Land-surface datum is 1,354 ft (412.8 m) National Geodetic Vertical Datum of 1929. Measuring point:
Bottom lip of access pipe, 2.30 ft (0.70 m) above land-surface datum.

PERIOD OF RECORD. --March 1965 to current year.

EXTREMES FOR PERIOD OF RECORD, --Highest water level, 46.97 ft (14.32 m) below land-surface datum, June 20, 1979; lowest, 55.33 ft (16.86 m) below land-surface datum, Oct. 13, 1970.

OTTER TAIL COUNTY -- Continued

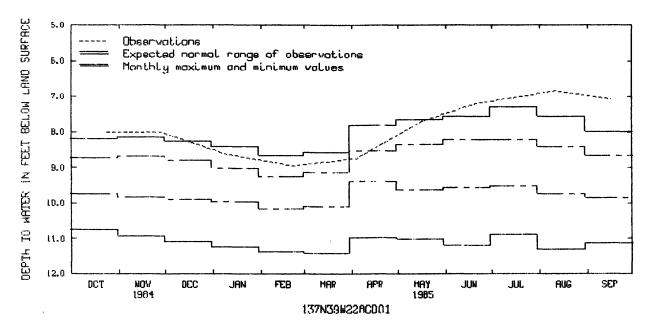
463956095352601. Local number, 137N39W22ACD01. LOCATION.--Lat 46°39'56", long 95°35'26", in SE\SW\NE\ sec.22, T.137 N., R.39 W., Hydrologic Unit 09020103, 4.5 mi (7.2 km) north of Perham.

Owner: U.S. Geological Survey.

AQUIFER. -- Surficial sand of Pleistocene Age.

WELL CHARACTERISTICS.--Bored observation water-table well, diameter 2 in (0.10 m), depth 24 ft (7.3 m), screened 21 to 24 ft (6.4 to 7.3 m).

DATUM.--Altitude of land-surface datum is 1,370 ft (418 m). Measuring point: Top of casing, 0.50 ft (0.15 m)


above land-surface datum.

FERIOD OF RECORD. --December 1967 to current year.

FXTREMES FOR PERIOD OF RECORD.--Highest water level, 6.84 ft (2.08 m) below land-surface datum, Aug. 12, 1985; lowest, 11.41 ft (3.48 m) below land-surface datum, Mar. 10, 15, 1977.

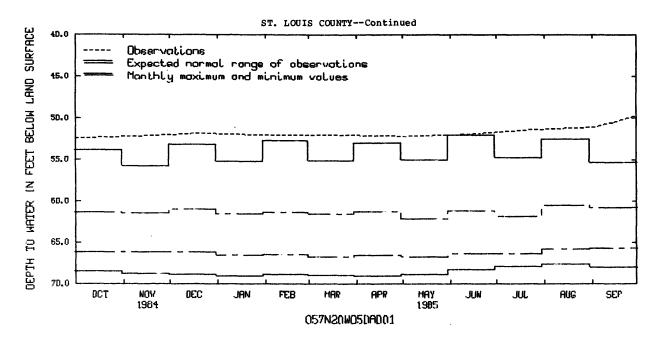
WATER LEVEL, IN FEET ABOVE LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	. DATE	WATER LEVEL
OCT 24 NOV 28	8.00 8.01	JAN 9 FEB 21	8.62 8.95	APR 4 MAY 16	8.74 7.72	JUN 20	7.21	AUG 12	6.84	SEP 16	7.07

ST. LOUIS COUNTY

472638092533601. Local number, 057N20W05DAD01. LOCATION.--Lat 47°26'38", long 92°53'36", in SE\NE\SE\ sec.5, T.57 N., R.20 W., Hydrologic Unit 04010201, 2.5 mi (4.0 km) east of Hibbing.

Owner: Burlington Northern, Inc. AQUIFER.--Biwabik Iron Formation of Middle Precambrian Age.


WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 12 in (0.30 m), depth 430 ft (131 m), cased to 315 ft (96.0 m). DATUM.--Altitude of land-surface datum is 1,470 ft (448 m). Measuring point: Top of platform, 1.20 ft (0.37 m)

above land-surface datum.

PERIOD OF RECORD. -- August 1955 to current year.

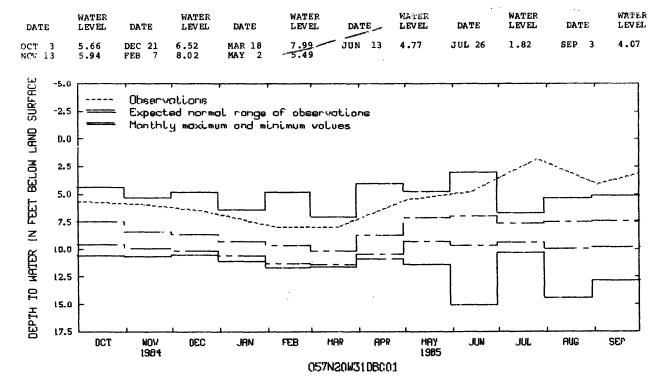
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 51.07 ft (15.56 m) below land-surface datum, Sept. 3, 1985; lowest, 69.07 ft (21.05 m) below land-surface datum, Jan. 15, 1965.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 1 NOV 13	52.46 52.18	DEC 21 FEB 7	51.84 52.07	MAR 18 MAY 2	52.01 52.19	JUN 13	51.94	JUL 23	51.37	SEP 3	51.07

472230092561001. Local number, 057N20W31DBC01.
LOCATION.--Lat 47°22'30", long 92°56'10", in SW\NW\SE\ sec.31, T.57 N., R.20 W., Hydrologic Unit 04010201, 1.4 mi (2.25 km) south of Hibbing.

Owner: Mesaba County Club.

AQUIFER.--Buried sand and gravel of Pleistocene Age.
WELL CHARACTERISTICS.--Drilled unused artesian and water-table well, diameter 18 in (0.46 m), depth 92 ft (28.0 m), screened 82 to 92 ft (25.0 to 28.0 m).


DATUM.--Altitude of land-surface datum is 1,391 ft (424 m). Measuring point: Hole east side of pump base, 3.00 ft (0.91 m) above land-surface datum.

FEMARKS.--Water level affected by pumping.

FERIOD OF RECORD.--February 1958 to March 1965, July 1979 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 1.82 ft (0.55 m) below land-surface datum, July 26, 1985; lowest, 15.05 ft (3.56 m) below land-surface datum, June 30, 1980.

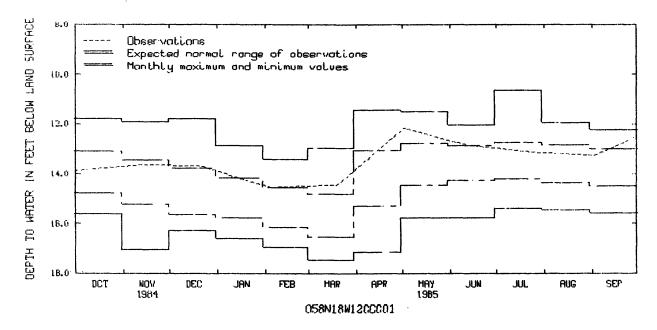
WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

ST. LOUIS COUNTY--Continued

473102092345001. Local number, 058N18W12CCC01. LOCATION.--Lat 47⁰31¹02", long 92⁰34¹50", in SW\SW\SW\ sec.12, T.58 N., R.18 W., Hydrologic Unit 04010201, 1 mi (1.6 km) west of Virginia.

Owner: U.S. Steel Corp.

AQUIFER.—Buried sand and gravel of Pleistocene Age.
WELL CHARACTERISTICS.—Drilled observation artesian well, diameter 6 in (0.15 m), depth 97 ft (29.6 m), slotted casing between 67 to 97 ft (20.4 to 29.6 m).
DATUM.—Land-surface datum is 1,427.5 ft (435.1 m) National Geodetic Vertical Datum of 1929. Measuring point:
Edge of vent pipe, 1.90 ft (0.58 m) above land-surface datum.


DEPLOY OF PROOF —Poember 1954 to July 1964. July 1979 to gurrent year.

PERIOD OF RECORD. -- December 1954 to July 1964, July 1979 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 10.64 ft (3.24 m) below land-surface datum, July 20, 1957; lowest, 17.47 ft (5.32 m) below land-surface datum, Apr. 2, 1964.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 1	13.88	DEC 20	13.68	MAR 20	14.43	JUN 11	12.85	JUL 25	13.14	SEP 3	13.27

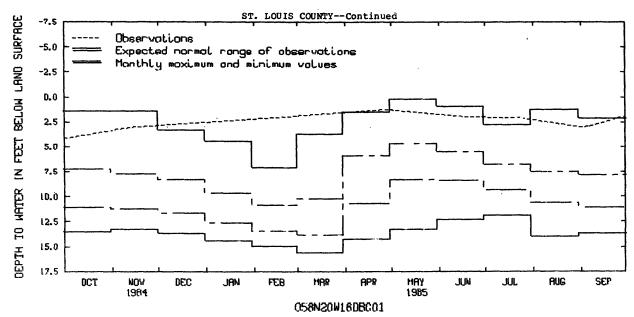
473011092524301. Local number, 058N20W16DBC01. LOCATION.--Lat 47°30'11", long 92°52'43", in SW\N\\SE\ sec.16, T.58 N., R.20 W., Hydrologic Unit 04010201, in Chisholm.

Owner: City of Chisholm.
AQUIFER.--Buried sand and gravel of Pleistocene Age.
WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 12 in (0.30 m), depth 40 ft (12.2 m), screened

30 to 40 ft (9.1 to 12.2 m).

DATUM.--Altitude of land-surface datum is 1,500 ft (457 m). Measuring point: Top of wood platform, 1.70 ft

(0.52 m) above land-surface datum.


REMARKS.--Water level affected by pumping. Water-level subject to freezing during winter months.

PERIOD OF RECORD.--August 1953 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 0.23 ft (0.07 m) below land-surface datum, May 10, 1954; lowest, 15.60 ft (4.75 m) below land-surface datum, Mar. 23-24, 1957.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 1	4.21	APR 28 JUN 18	1.23	JUL 23	2.05	SEP 3	3.06

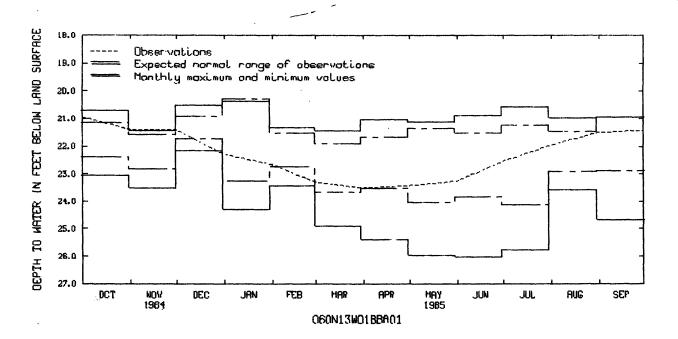
474253091574101. Local number, 060N13W0lBBA01. LOCATION.--Lat 47⁰42'53", long 91⁰57'41", in NEኒNWኒNWኒ sec.l, T.60 N., R.13 W., Hydrologic Unit 09030001, at Babbitt water tower.

Owner: U.S. Geological Survey.

AQUIFER.--Surficial sand and gravel of Pleistocene Age.

WELL CHARACTERISTICS.--Bored observation water-table well, diameter 2 in (0.05 m), depth 30 ft (9.1 m), screened

27 to 30 ft (8.2 to 9.1 m).


DATUM.--Altitude of land-surface datum is 1,485 ft (453 m). Measuring point: Top of 3 in (0.08 m) pipe, 4.00 ft (1.22 m) above land-surface datum.

PERIOD OF RECORD. --October 1975 to June 1978, July 1979 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 20.38 ft (6.21 m) below land-surface datum, Jan. 1, 1983; lowest, 26.03 ft (7.93 m) below land-surface datum, June 14, 1977.

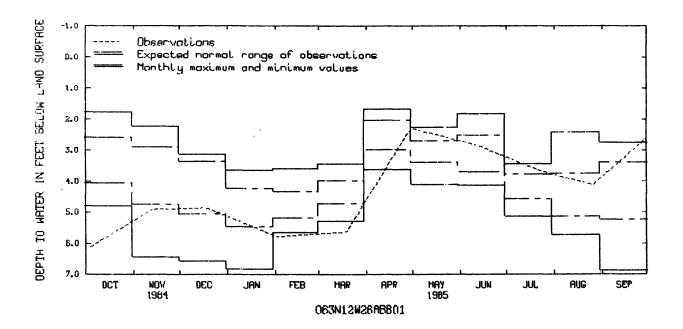
WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

DATE	Water Level	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	Water Level
NOV 1 DEC 1	21.40 21.42	JAN 1 FEB 1	22.29 22.66	MAR 1 APR 1	23.30 23.50	MAY 1 JUN 1	23.42 23.25	JUL 1 AUG 1	22.54 21.96	SEP 1	21.50

ST. LOUIS COUNTY--Continued

475502091494601. Local number, 063N12W26ABB01.
LOCATION.--Lat 47°55'02", long 91°49'46", in NW\NW\\NE\\ sec.26, T.63 N., R.12 W., Hydrologic Unit 09030001, at Ely.
Owner: U.S. Geological Survey.
AQUIFER.--Surficial sand and gravel of Pleistocene Age.
WELL CHARACTERISTICS.--Bored observation water-table well, diameter 1\(\) in (0.03 m), depth 9 ft (2.7 m), screened 7 to 9 ft (2.1 to 2.7 m).

DATUM.--Altitude of land-surface datum is 1,342 ft (409 m). Measuring point: Top of casing, 4.00 ft (1.22 m)


DATUM.--Altitude of land-surface datum is 1,342 ft (409 m). Measuring point: Top of casing, 4.00 ft (1.22 m) above land-surface datum.

PERIOD OF RECORD.--October 1970 to current year.

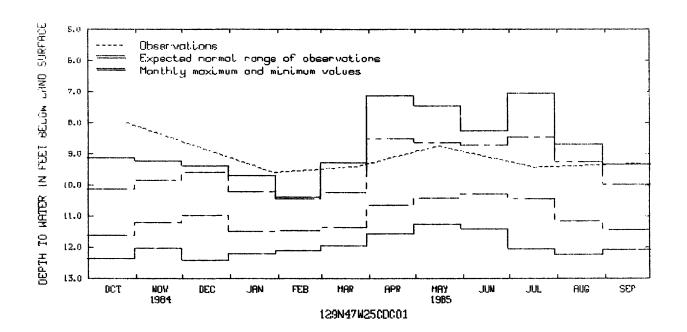
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 1.68 ft (0.51 m) below land-surface datum, Apr. 20, 1982; lowest, 6.87 ft (2.09 m) below land-surface datum, Sept. 27, 1976.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER Level
OCT 4 NOV 13	6.10 4.92	DEC 18 FEB 2	4.86 5.78	MAR 19 APR 30	5.63 2.29	JUN 13	2.86	JUL 23	3.67	AUG 23	4.12

TRAVERSE COUNTY

455700096314001. Local number, 129N47W25CDC01.
LOCATION.--Lat 45°57'00", long 93°31'40", in SW\SE\SW\ sec.25, T.129 N., R.47 W., Hydrologic Unit 09020101, 9 mi (14.5 km) north of Wheaton.


Owner: U.S. Geological Survey.
AQUIFER.--Surficial sand of Pleistocene Age.

WELL CHARACTERISTICS.--Bored observation water-table well, diameter 1k in (0.03 m), depth 39 ft (11.9 m), open end. DATUM.--Altitude of land-surface datum is 1,010 ft (308 m). Measuring point: Top of casing, 2.00 ft (0.61 m) above land-surface datum.

PERIOD OF RECORD.--October 1965 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 7.05 ft (2.15 m) below land-surface datum, July 14, 1978; lowest, 12.42 ft (3.79 m) below land-surface datum, Dec. 2, 1983.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	
በር ሞ 26	8.01	JAN 29	9.60	MAR 25	9.40	MAY 16	8.75	JUL 17	9.43	SEP 24	9.31	

QUALITY OF GROUND WATER

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

BECKER COUNTY

;	STATION NUM	BER		LOCAL ENTIFIER		GEO- LOGIC UNIT	DAT	E TI	ME (SPE- CIFIC CON- DUCT- ANCE LAB US/CM) 90095)	PH LAB (STAND- ARD UNITS) (00403)
	470405095425 470500095423 470504095423 470506095423 470507095423	007 14 006 14 005 14	1 N40W02B 2 N40W35C 2 N40W35C	SEEPAGE SEEPAGE SEEPAGE SEEPAGE	SAMPLE SAMPLE SAMPLE	1120TSH 1120TSH	09-05 09-05 09-06	-85 14 -85 15 -85 10	00 00 00	401 687 507 838 595	7.3 7.0 7.2 7.0 7.2
	470508095423 470508095423 470509095423	002 14	2N40W35C	SEEPAGE SEEPAGE SEEPAGE	SAMPLE	1120TSH	08-28	-85 17	00	487 300 844	6.8 7.8 7.6
	DATE	COL FOR FEC 0.7 UM-1 (COL 100 (316	M, TOCO AL, FE(KF P MF (COI S./ PE ML) 100	AGAR DI LS. SO ER (M ML) AS	LVED G/L CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	SULFA DIS- SOLV (MG/ AS SO (0094	TE RII DIS ED SOI L (MC 4) AS	LO- DE, S- LVED G/L CL) 940)
	09-05-8 09-05-8 09-06-8 09-06-8	5 · 5 ·	<1 	<1 	59 93 62 130 69	15 33 28 32 35	2.5 3.0 2.5 4.1 3.4	215 381 263 457 325	2. <0. 9. <0. <0.	2 8 2 1	2.7 5.1 2.6 1 2.7
	08-28-8 08-28-8 09-05-8	5 -	K 4 	K8 	46 26 120	20 22 43	3.7 2.9 2.4	257 159 439	27 6. 21		3.9 1.4 1
	DATE	SOLI RESI AT 1 DEG DI SOL' (MG.	DUE GE BO NO2+ C DI S- SOI VED (MO /L) AS	NO3 G S- AMM LVED TO G/L (M N) AS	EN, ONIA (TAL G/L N)	MONIA +	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS- PHORUS, TOTAL (MG/L AS P) (00665)	PHCS PHORU DIS- SOLV (MG/) AS P (0066	S, BOI - DI ED SOI L (UC) AS	RON, IS- LVED G/L B) D20)
	09-05-8 09-05-8 09-05-8 09-06-8 09-06-8	5 2° 5 3° 5 3°	30 0.74 <0.24 <0.96 <0.46 <0.46	.10 0 .10 0 .10 1	.02 .55 .64 .50	0.2 1.9 1.4 2.7	0.2 1.3 1.0 1.8 0.7	0.19 0.08 0.18 0.12 0.06	0.1 0.0 0.1 0.0 0.0	5 5 6	30 30 30 20 30
	08-28-8 08-28-8 09-05-8	5 1	74 <0.	.10 0	.70 .03 .14	4.8 0.6 0.7	3.1 0.6 0.3	0.16 0.06 0.06	0.0 0.0 0.0	4	50 40 (20
					OTTE	R TAIL CO	UNTY				
	STATION NU	MBER	11	LOCAL DENTIFIER		GE LOG UN	IC	TE T	IME	DEPTH OF WELL, TOTAL (FEET) (72008)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)
	46210009541 46271509532 46324509533 46350009533	3001 1501	1341 1361	N40W11BCC N39W01ACD N39W35DAD N39W14DDD	02 02	1120T 1120T 1120T 1120T	SH 05-1 SH 05-1	5-85 1 5-85 1	700 530 500 430	20 60 68 40	420 520 575 560
_	DATE (SPE- CIFIC CON- DUCT- ANCE LAB US/CM) 90095)	PH (STAND- ARD UNITS) (00400)	PH LAB (STAND- ARD UNITS) (00403)	TEMP ATUI (DEG (000	RE AS C) CAC	TY SUL: LD DI: /L SO: (MC O3) AS:	FATE R S- D: LVED S: G/L (1 SO4) A:	IS- OLVED MG/L S CL)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)
7	05-15-85 05-15-85 05-15-85 05-15-85	437 515 578 538	7.6 7.4 7.4 7.5	7.3 7.4 7.5 7.7	8	.5 3 .0 4	89 92 55 99	15	3.2 13 4.7 29	5.60 <0.10 5.10 9.60	<0.01 0.28 <0.01 <0.01

K. Non-ideal colony count

INDEX

	Page		Page
Access to WATSTORE data	21	Deer Creek near Holyoke	55,163
Accuracy of the records, stage and water dis-		Definition of terms	21
charge recordsAcre-foot, definition of	16 21	Diatoms, definition of	25 70,164
Ada, Marsh River Ditch near	131	Discharge at, partial-record stations. and	70,104
Wild Rice River near	131	miscellaneous sites	124-133
Adenosine Triphosphate, definition of	21	high-flow partial-record stations	128-132
Algae, definition of	21	low-flow partial-record stations	124
Algal growth potential, definition of Analyses of samples collected at water-	21	miscellaneous sites Discharge, definition of	133 23
quality partial-record stations	134-161	Discontinued gaging stations	31-34
Aquifer, definition of	21	Dissolved, definition of	23
Argyle, Middle River at	89,166	Dissolved-solids concentration	23
Arrangement of records, water quality Artesian, definition of	17 21	Diversity index, definition of	23 130
Artificial substrate, definition of	27	Downer, Spring Creek above Downstream order system and station number	12
Ash mass, definition of	22	Drainage area, definition of	23
Aurora, St. Louis River near	50,162	Drainage basin, definition of	23
Pactoria definition of	21	Drayton, ND, Red River of the North at	90-91 22
Bacteria, definition of	21 130	Dry mass, definition of Duluth, Miller Creek at	128
Bartism River near Beaver Bay4		Talmadge River at	128
Barnesville, Whiskey Creek at	130		
Basswood River near Winton	107,167	Si harawila danal wasa Masaka	320
Battle River, North Branch near Redby South Branch, at Northome	159 131	Eighteenmile Creek near Wheaton	130 105,167
Baudette, Rapid River near	121,168	Ely, Filson Creek near	
Beaver Bay, Baptism River near4		Emerson, Manitoba, Red River of the North at	93-95
Bed load, definition of	26	Encampment River tributary at Silver Creek	1 28
discharge, definition of	26	Explanation of the records	12
Fed material, definition of	122		
Bigfork, Big Fork River near	132 117,168	Factors for converting Inch-Pound Units	
Fig Fork River at Big Falls	117,168	to International System (SI)	
near Bigfork	132	UnitsInside bac	
Biochemical oxygen demand, definition of	22	Fairbanks, North Branch Whiteface River near	129
Biomass, definition of	22 131	Fargo, ND, Red River of the North at Red River of the North below	65-66 67
Blackhoof, Rock Creek near	129	Fecal colifrom bacteria, definition of	22
Rock Creek tributary near	129	Fecal streptococci bacteria, definition of	22
Blue-green algae, definition of	25	Fergus Falls, Orwell Lake near	57
Bois de Sioux River near White Rock, SD	60,163 132	Orwell Lake Site 1 near	135-137 138-140
Boriin Creek near Chisholm Bottom material, definition of	22	Site 3 near	141-144
Bowerman Brook near Craigville	132	Site 4 near	145-148
Buffalo River near Callaway	130	Site 5 near	149-151
near Dilworth	70,164	Otter Tail River below Orwell Dam, near5	
near Hawley	68,163 69,163	Otter Tail River nearFilson Creek near Ely	56 105,167
Bug Creek at Shaw	129	Floodwood, Floodwood River above	129
		Floodwood River above Floodwood	1 29
Callaway, Buffalo River near	130	Forbes, St. Louis River at	51,163
Caribou, Roseau River below State ditch 51,	_101 166	Fort Frances, Ontario, Rainy Lake near	112
near99 Caribou River near Little Marais	128		
Cells/volume, definition of	22	Gage height, definition of	23
Cfs-day, definition of	2 2	Gaging-station, definition of	23
Chemical oxygen demand, definition of	22	records	40-123
Chisholm, Boriin Creek near	132 113,167	Gaging stations, discontinued	31-34
Sturgeon River near	22	near Ray	111,167
Classification of records, surface-water		Gonvick, Ruffy Brook near	131
quality	16,17	Goodridge, Red Lake River at High Landing	
Clearbrook, Silver Creek near	131	near	79-16 4
Clearwater River at Plummer at Red Lake Falls	81,165 83,165	Graceville, West Branch Mustinka River tributary near	129
tributary near Plummer	132	Grand Forks, ND, Red River of the North at	87-88
Climax, Sand Hill River at	76,164	Grand Portage, Pigeon River at Middle	
Color, unit, definition of	22	Falls near	40-162
Contents, definition of	22	Graph showing comparison of chloride	8
Control, definition of	22 1	concentrationsof discharge at three stream-gaging	0
Craigville, Bowerman Brook near	132	stations	6-7
Crane Lake, Vermilion River near	110,167	of nitrate concentrations	9
Crookston, Red Lake River at8		Grygla, Mud River near	131
Cubic feet per second, definition of	22	Green algae, definition of	25 172-187
Cubic feet per second per square mile, definition of	22	Ground-water, level data, by county levels in hydrologic conditions	5
Data, collection and computation, ground-		quality data, by county	188
water levels	19-20		
ground-water quality	20-21	Halstad, Red River of the North at	72-74
surface-Water records	13-14 20	Hardness of water, definition of	23 69 163
presentation, ground-water levels ground-water quality	20	Hawley, Buffalo River near	68,163 71,164
stage and water discharge	14-16	Hickson, ND, Red River of the North at	63-64
surface-water quality	18-19	High-flow partial-record stations	128-132

	Page		Page
Holyoke, Deer Creek near	55,163	Milligrams of oxygen per area or volume	
Nemadji River near	129	per unit time, definition of	25
South Fork Nemadji River near	129	Milligrams per liter, definition of	2 4
Lake at4	5-49-162	Miscellaneous analyses of streams in Minnesota, water-quality data at	
Hydrologic benchmark network, definition of	5	streamflow stations	162-168
Hydrologic conditions, summary of	2	Miscellaneous sites, discharge measurements	•••
Hydrologic unit, definition of	23	at	133
		numbering system for	12 130
Identifying estimated daily discharge	16	Mud River above Redby	154
Introduction	1	at mouth at Redby	157
Instantaneous discharge, definition of	23	near Grygla	131
		Mustinka River, West Branch, tributary	129
Kawishiwi River near Ely	-104.166	near Graceville	127
near Winton	106,167	Namakan River at outlet of Lac la Croix	
Knife River near Two Harbors	44,162	Ontario	108,167
	••	Nashaua, Rabbit River near	130
Laboratory measurements, surface-water quality Lac la Croix, Ontario, Namakan River at	18	National Geodetic Vertical Datum of 1929 (NGVD), definition of	24
outlet of	108,167	National stream-quality accounting network	
Lake Bronson, South Branch Two Rivers at	92,166	(NASQAN), definition of	5,24
Lakes and Reservoirs:		National trends network (NTN)	5,24
Lake of the Woods at Springsteel Island		Natural substrate, definition of	26
near Warroad	123	Nemadji River near Holyoke	129 129
at Warroad	122 77,158	South Fork, near Holyoke Newfolden, Middle River near	132
Orwell Lake near Fergus Falls	57	North Branch Battle River near Redby	159
Orwell Lake Site 1 near Fergus Falls	135-137	Whiteface River near Fairbanks	129
Site 2 near Fergus Falls	138-140	Northome, South Branch Battle River at	131
Site 3 near Fergus Falls	141-144	Numbering system for wells and	
Site 4 near Fergus Falls	145-148	miscellaneous sites	12
Site 5 near Fergus Falls	149-151 152	Ogoma Shring Crofk tributary near	131
Strawberry Lake near Ponsford Upper Red Lake near Red Lake	161	Ogema, Spring Creek tributary near Oklee, Lost River at	82,165
Vermilion Lake near Soudan	109	On-site measurement and collection, surface-	0-7-00
White Earth Lake near White Earth	1 53	water quality	17
Lake of the Woods at Springsteel Island		Organic mass, definition of	22
near Warroad	123	Organism, definition of	2 4
at Warroad	122	count/area, definition of	24
Lake of the Woods basin, gaging-station	102-123	count/volume, definition of	2 4 57
records inhigh-flow partial-record stations in	132	Orwell Lake near Fergus Falls	135-137
Lake Superior, streams tributary to, high-	132	Site 2 near Fergus Falls	138-140
flow partial-record stations	128-129	Site 3 near Fergus Falls	1 41-14 4
streams tributary to, gaging-station		Site 4 near Fergus Falls	145-148
records	40-55	Site 5 near Fergus Falls	149-151
Latitude-longitude system for wells and	7.0	Other records available	16
miscellaneous sites	12	Otter Tail River below Orwell Dam, near Fergus Falls5	8-59.163
records are published	vii	near Fergus Falls	56
for which ground-water-quality records are			
published	viii	Parameter code numbers	24
List of gaging-stations, in downstream order,		Partial-record station, definition of	24
for which records are published	Vi-V11	discharge at	124-133
Little Fork River at Littlefork		water quality at	134-161 24
Little Marais, Caribou River near	1 28	Particle-size, definition of	24
Little Stewart River near Two Harbors	128	Partridge River above Colby Lake, at	
Lost River at Oklee	82,165	Hoyt Lakes4	5-49,162
Lower Red Lake near Red Lake	77,158	Percent composition, definition of	24
Low-flow partial-record stations	124	Periphyton, definition of	25 131
Lutsen, Poplar River at	128	Perry Creek tributary near Shooks Pesticides, definition of	25
		Phytoplankton, definition of	25
Mahnomen, Marsh Creek tributary near	130	Picocurie, definition of	25
Malung, Roseau River below South Fork, near	96,166	Pigeon River at Middle Falls, near Grand	
Manitou Rapids, Rainy River at	,120,168	Portage	40,162
Map of Minnesota, annual precipition	3	Pike Creek at Red Lake	156 25
annual runoff	170 171	Plankton, definition of	81,165
ground-water observation wells high-flow partial-record stations	170-171 126,127	Plummer, Clearwater River attributary near	132
lake and stream-gaging stations	36-37	Polychlorinated biphenyls, definition of	25
seasonal water levels in confined aquifers.	11	Poplar River at Lutsen	128
water-table levels	10	Strawberry Lake near Ponsford	152
surface water-quality stations	38-39	Precipitation, in summary of hydrologic	
Marsh Creek tributary near Mahnomen	130	conditions	25
Marsh River Ditch near Ada	131 75,164	Primary productivity, definition of Publications on techniques of water-	25
Mean Concentration, definition of	26	resources investigations	29-30
Mean discharge, definition of	23		_
Measurements at miscellaneous sites	133		
Metamorphic stage, definition of	23	Rabbit River near Nashaua	130
Methylene blue active substance,	22	Radiochemical program, definition of	12,25
definition of	23 23	Rainy Lake near Fort Frances, Ontario	
Micrograms per gram, definition of Micrograms per kilogram, definition of	23	Rapid River near Baudette	121,168
Micrograms per liter, definition of	23	Ray, Gold Portage outlet from Kabetogama	,-,-
Middle River at Argyle	89,166	Lake near	111,167
near Newfolden	132	Records of ground-water levels	19
Milligrams of carbon per area or welves	1 28	ground-water quality	20
Milligrams of carbon per area or volume per unit time, definition of	25	stage and water discharge	13
Fact the second months of the second second	23	surface-water quality	16

•	Page		Page
Recoverable from bottom material,		Surface area, definition of	27
definition of	25	Surficial bed material, definition of	27
Redby, Mud River above	154	Suspended, definition of	27
Mud River at mouth at	157 159	Suspended recoverable, definition of	27 27
Red Lake, Lower Red Lake near	77,158	Suspended total, definition of Suspended sediment, definition of	26
Pike Creek near	1 56	Suspended-sediment concentration,	
Upper Red Lake near	161	definition of	26
Red Lake River near	78,164	Suspended-sediment discharge, definition of	26
Sandy River near	155 83,165	Suspended-sediment load, definition of	26
Red Lake River at Crookston84-			
at High Landing, near Goodridge	79,164	Talmadge River at Duluth	1 28
near Red Lake	78,164	Taxonomy, definition of	27
Red River of the North at Drayton, ND	90-91	Terms, definition of	21 27
at Emerson, Manitobaat Farqo, ND	93-95 65-66	Thermograph, definition of	80,165
at Grand Forks, ND	87 -88	Thief River Falls, Thief River near	80,165
at Halstad	72-74	Time-weighted average, definition of	27
at Hickson, ND	63-64	Tons per acre-foot, definition of	27
at Wahpeton, ND	61-62	Tons per day, definition of	27
below Fargo, ND	67	Total, definition of	28 28
Red River of the North basin, high-flow	29-132	Total in bottom material, definition of Total coliform bacteria, definition of	21
partial-record stations in I gaging-station records in	56-101	Total load, definition of	28
miscellaneous measurements in	133	Total organism count, definition of	24
Remark codes	19	Total recoverable, definition of	28
Reservoir (see lakes and reservoirs)	25	Total sediment discharge, definition of	26
Return period, definition of	26 129	sediment load	26 28
Rock Creek near Blackhooftributary near Blackhoof	129	Tritium network, definition of Wild Rice River at	130
Roseau Lake, Roseau River at	97	Wild Rice River tributary near	130
Roseau River at Roseau Lake	9 7	Two Harbors, Knife River near	44,162
	98,166	Little Stewart River near	128
below State ditch 51, near Caribou99-1		Silver Creek near	124 128
below South Fork, near Malung	96,166 98,166	Silver Creek tributary near Stewart River near	124
Ruffy Brook near Gonvick	131	Two Rivers, South Branch, at Lake Bronson	92
Runoff in inches, definition of	26		
Sabin, South Branch Buffalo River at	69,163	Upper Red Lake near Red Lake	161
St. Louis River at Forbes	51,163	opper ned bake near ned baker	10
at Scanlon52-			
near Aurora	50,162	Vermilion Lake near Soudan	169
Sand Hill River at Climax	76,164	Vermilion River near Crane Lake	110,167
Sandy River near Red Lake	155		
Scanlon, St. Louis River at52- Sediment, definition of	-54,163 26	Wahpeton, ND, Red River of the North at	61-62
surface-water quality	17-18	Warroad, Lake of the Woods at	122
Seven-day 10-year low flow, definition of	26	Lake of the Woods at Springsteel Island	
Shaw, Bug Creek at	129	near	123
Shelly, Marsh River near	75-164	Water-quality records, analyses of samples	3.00
Shooks, Perry Creek tributary near	131 160	collected at ground-water wells	188 17
Shotley Brook near Shotley	160	arrangement ofat partial-record stations	134-161
Silver Creek, Encampment River tributary at	128	classification of	16
near Clearbrook	131	data collection and computation	20
near Two Harbors	124	data presentation	18,21
tributary near Two Harbors	128	in summary of hydrologic conditions	2 18
Sodium-adsorption-ratio, definition of	26 26	laboratory measurements	16
Solute, definition of	109	stations	162-168
South Branch Battle River at Northome	131	on-site measurement and collection	17
South Branch Buffalo River at Sabin	69	remark codes	19
South Branch Two Rivers at Lake Bronson	92,166	sediment	17
South Fork Nemadji River near Holyoke	129	Water temperature	17 17
Special networks and programs	5,12 26	Water year, definition of	28
Specific conductance, definition of Specific conductance and temperature at	20	weighted averagee, definition of	28
	162,168	Well number, definition of	12
Spring Creek above Downer	130	West Branch Mustinka River tributary near	
near Blackduck	131	Graceville	129
tributary near Ogema	131 26	Wet mass, definition of	22 130
Stage-discharge relation, definition of Station indentification numbers, explanation	26	Whiskey Creek at Barnesville	130
of	12	White Earth Lake near White Earth	153
Steward River near Two Harbors	124	White Earth, White Earth Lake near	1 53
Strawberry Lake near Ponsford	152	Whiteface River, North Branch, near	100
Streamflow, definition of	26 2	Fairbanks	129 60,163
in summary of hydrologic conditions	2	Wild Rice River at Hendrum	71,164
Streams tributary to Lake Superior, high-flow partial-record stations in	128-129	at Twin Valley	130
gaging-station records in	40-55	near Ada	131
low-flow partial-record stations in	124	tributary near Twin Valley	130
Sturgeon River near Chisholm	113,167	Winton, Basswood River near	107,167
Substrate, definition of	26	Kawishiwi River near	106,167 28
Summary of hydrologic conditions	2 4 6-11	WDR, definition of	28
graphs or maps of	, 1,0-11	WSP, definition of	28
precipitation	2		
streamflow	2	good on the Assistance	25
water quality	2	Zooplankton, definition of	25

INDEX

FACTORS FOR CONVERTING INCH-POUND UNITS TO INTERNATIONAL SYSTEM UNITS (SI)

The following factors may be used to convert the inch-pound units published herein to the International System of Units (SI). This report contains both the inch-pound and SI unit equivalents in the station manuscript descriptions.

Multiply inch-pound units	Ву	To obtain SI units
	Length	
inches (in)	2.54x10 ¹	millimeters (mm)
6 4 (6)	2.54x10 ⁻²	meters (m)
feet (ft)	3.048x10 ⁻¹	meters (m)
miles (mi)	1.609x10°	kilometers (km)
	Area	
acres	4.047x10 ³	square meters (m ²)
	4.047x10 ⁻¹	square hectometers (hm ²)
	4.047x10 ⁻³	square kilometers (km ²)
square miles (mi ²)	2.590x10°	square kilometers (km²)
	Volume	
gallons (gal)	3.785x10°	liters (L)
8	3.785x10°	cubic decimeters (dm³)
	3.785x10 ⁻³	cubic meters (m ³)
million gallons	3.785×10^3	cubic meters (m ³)
And the Level Colored	3.785x10 ⁻³	cubic hectometers (hm³)
cubic feet (ft ³)	2.832x101	cubic decimeters (dm³)
	2.832x10 ⁻²	cubic meters (m ³)
acre-feet (acre-ft)	1.233×10^{3}	cubic meters (m ³)
	1.233x10 ⁻³	cubic hectometers (hm ³)
	1.233x10 ⁻⁶	cubic kilometers (km³)
	Flow	
cubic feet per second (ft ³ /s)	2.832x101	liters per second (L/s)
1	2.832x101	cubic decimeters per second (dm ³ /s)
	2.832x10 ⁻²	cubic meters per second (m³/s)
gallons per minute (gal/min)	6.309x10 ⁻²	liters per second (L/s)
	6.309x10 ⁻²	cubic decimeters per second (dm ³ /s)
	6.309x10 ⁻⁵	cubic meters per second (m³/s)
million gallons per day	4.381x101	cubic decimeters per second (dm ³ /s)
	4.381x10 ⁻²	cubic meters per second (m³/s)
	Mass	
tons (short)	9.072x10 ⁻¹	megagrams (Mg) or metric tons

POSTAGE AND FEES PAID U.S. DEPARTMENT OF THE INTERIOR INT 413

U.S. DEPARTMENT OF THE INTERIOR Geological Survey 702 Post Office Building St. Paul, MN 55101

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE \$300
SPECIAL 4TH CLASS BOOK RATE